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SUMMARY

In the previous report the linearized stability results for the flow of granular materials
down an inclined plane, modeled by a constitutive theory based on the kinetic theory
approach [cf. Richman & Marciniec (1990)] were presented. In this repor, we derive the
governing equations for the flow of granular materials down an inclined plane, modeled
by the consitutive theory proposed by Boyle and Massoudi (1990). The governing

equations obtained will be solved numerically to obtain the basic solutions.
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INTRODUCTION

Kinetic theory approaches in the formulation of rapid flows of granular materials
have arracted considerable amention in recent years. There are several models which
have been suggested to describe the rapid flow of granular marernials which are derived
using a staustucal approach. Boyle and Massoudi (1989) have wrinen comprehensive
survey article of the consumuve equarions and the laws goveming the flow of granular
material. A major difference berween the continuum theories discussed previously and
the theones based on a statistical approach is the concept of “granular temperature”
which is introduced in the latter approach. Granular temperarure describes the flucruatng
velocity of the flow of granular solids and in this sense is similar to the temperarture in 2
gas due to fluctuating motion of the gas partricles. However, it is not clear how this
quantity can be measured. Several models have been proposed by various investigators

using ideas of kinetic theory.

GOVERNING EQUATIONS

Bovle and Massoudi (1990) proposed a model which can exhibit normal-stress effects
by including the effects of the gradient of the volume distibution function, which is the
noticeable difference berween the model proposed by Lun, Savage and co-workers
(1984).

The granular smess tensor T is the sum of the two terms, reflecting that momenmn
can be transported by the uninterrupted streaming of granules T, and by the essentally
Instantaneous transport from one center to another during a collision T.. The granular
stress tensor T follows from that of Lun et al. (1984), but there is an additonal
contibution to T that is given by
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The stress tensor for a rapidly sheared granular material is found by summing the

above individual conmibutions, which is given by
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V, repesents the volume per neighboring particle, and D is the stretching tensor. Also
p is the bulk densiry, v is the volume fraction, 6 is the granular temperature, e is the

coefficient of restitution, G is the diameter of the spherical particles and m is the mass.

Consider the flow of granular materials modeled by the above model down an
inclined plane (cf. Figue 1) due to the action of graviry [Savage (1979), Johnson and
Jackson (1987), Johnson, et al. (1990), Hui, et al. (1984), Richman and Marciniec (1990),



Hutter, et al. (1986a, b)]. In this problem we consider steady one dimensional flow of
incompressible granular materials (i.e. p, = constant) down an inclined plane, where the
angle of inclination is a. The goveming equations of motion are the conservation of
mass and momentum. We assume that the granular temperature is constant and the

volume fraction, velocity to be of the form

v =Vv(¥v)
u=U@)i 3

For the above flow field. the conservation of mass is automatically satisfied. From the

balance of linear momentum we have
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The equations (4) and (5) are to be solved subject io0 appropriate boundary conditions. for
this problem, they are:

U=0 aty =0 (on the inclined plane) (6)
L
Q;= f v dy )
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r 0 3

v=0 at‘_v = L (at the free surface) 2



The system of equations subject to the boundary conditions are non-dimensionalized
by

V==
- L

where L is the characteristic length and u, is the reference velocity. Now, the above

U= (10)
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system equations reduces to

2 D3 V: av JJV
(I-vV3dydy:  (1-vV)* dy

D,v(2+v V) gy
+—_— [ )3

+{D +D2v (2—\1"’0)] dav

—=—VCcosQ (11)
(1-vVp)? f &
. Dgv: Y &*U
{04(1—vV0)+st+ S }T
(1-vVy) ) ay*
. D.v(2-vVy) T
+{D5—D4V0+——6——‘—°}d—zf—i—g=—vsina (12)
(1=vVy)* ) dy dy
and the boundary conditions become
U=0 at v = 1 (on the inclined plane) (13)
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Results and Discussion

The system of equations (11) and (12), with the boundary conditions (13}, (14), (15)
and (16) will be solved numerically using a collocation code COLSYS [cf. Ascher et al.
(1981)]. A paramerric study for the volume fraction and velocity profiles will be carried

out for the base solution and the results will be presented in the next report.



Figure 1. Flow Down An Inclined Plane
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