The National Center for Advanced Information Components Manufacturing:
Program Update *

James L. Jorgensen

National Center for Advanced Information Components Manufacturing
Sandia National Laboratories
Albuquerque, New Mexico 87185

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

* This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04-94AL85000.
Introduction

The National Center for Advanced Information Components Manufacturing (NCAICM) was established by congressional appropriation in the FY93 Defense Appropriation Bill. The Center, located at Sandia National Laboratories in Albuquerque, NM, is funded through the Advanced Research Projects Agency (ARPA). The technical focus of NCAICM is emissive flat panel displays and associated microelectronics, specifically targeting manufacturing issues such as materials, processes, equipment, and software tools.

This Center is a new avenue of collaboration between ARPA and the Department of Energy (DOE). It will help the government meet its obligation to develop dual-use capabilities for the defense and civilian sectors of the economy and provide a new method for cooperation and collaboration between the federal government and American industry. In particular, one of NCAICM's goals is to provide industry access to the broad resource base available at three DOE Defense Programs laboratories -- Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory.

Technical Discussion

NCAICM was dedicated at Sandia on January 14, 1993. On March 30-31, 1993, a workshop in Albuquerque explained the process for industrial participation in this program. In addition, the workshop defined the NCAICM technical project areas, requested input on industry needs, and described the resource areas available from Sandia, Los Alamos, and Lawrence Livermore National Laboratories. The workshop had 397 attendees representing 193 companies, 10 government agencies, and 5 universities.

Organizationally, the NCAICM program office consists of four permanent staff: a manager, two technical program managers, and an administrative support person. Technical staff and resources for the Phase I projects will be drawn from industry, universities, and the three laboratories; Sandia, Los Alamos, and Lawrence Livermore. Policy and project oversight are provided through a Project Advisory Board (PAB), whose current membership is:

- Industry: Gene Feit, Sematech; Roger Johnson, SAIC
- ARPA: Steve McBurnett
- DOE: Charles Fowler
- National Labs: Ray Bair, Sandia; David Watkins, Los Alamos; Tony Bernhardt, Lawrence Livermore
- Center manager, PAB Chair: Jim Jorgensen

NCAICM supports two types of projects: Phase I -- precompetitive, technology enabling projects that will be done at the Center and Phase II -- joint industry/lab projects, which
may carry intellectual property rights, that will be accomplished at the appropriate site; industry, national lab, and/or Center. The NCAICM funding is $60 Million with $12 Million to operate the Center and fund the Phase I projects, and $48 Million available for the Phase II projects. All projects are scheduled for completion on or before September 30, 1995.

At the workshop, ARPA defined the Phase II technology areas:

- Flexible Single Wafer Processing
- Advanced Contamination Free Manufacturing
- Advanced On-chip Interconnects
- Advanced Lithography
- Next Generation Microelectronics and Optoelectronics
- Emissive Displays
 - Materials, Design, and Fabrication Techniques
 - Manufacturing Tools and Processes
 - Robust Manufacturing Development

The first step in the Phase II proposal process consisted of an abstract proposal due to ARPA by April 28, 1993, and 138 were submitted. ARPA requested full proposals from 55 of the abstract proposals and ultimately received 62 full proposals. Each of these proposals was submitted by the lead industrial partner. The presentation will summarize the Phase II proposals selected by ARPA.

The Phase I projects were selected by the Project Advisory Board. From 23 proposals, six were selected and formed into four funded projects:

- Flat Panel Display Factory Modeling
- Field Emission Display Characterization Facility
- In-situ Process Sensors and Metrology
- Automated System Identification

These projects are currently underway, and a short description will be provided in the presentation.

Summary

NCAICM provides a new way to integrate federal and commercial research and development. Industry-driven projects determine which technologies are of prime interest to industry, and, at the same time, industry can select which resources from the national laboratories can best help them improve their manufacturing capabilities. Projects ranging from precompetitive technology enablers to those retaining intellectual property rights where a commercialization path is in evidence are supported. Information components help enable the information industry, and NCAICM is a new approach to help the US improve its national competitiveness in that area.