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ABSTRACF

This paper evaluates the performance of Poisson and negatiwe binomial (NB) regression models in

establishing the relationship between truck accidents and geometric design of road sections. Three

types of models are considered: Poisson regression, zero-inflated Poisson (ZIP) regression, and NB

regression. Maximum likelihood (ML) method is used to estimate the unknown parameters of these

models. Two other feas_le estimators for estimating the dispersion parameter in the NB regression

model are also examined: a moment estimator and a regression-based estimator. These models and

estimators are evaluated based on their (1) estimated regression parameters, (2) overall goodness.of-

fit, (3) estimated relative frequency of truck accident involvements across road sections, (4) sensitivity

to the inc:asion of short road sections, and (5) estimated total number of truck accident involvements.

Data from the Highway Safety Information System (HSIS) are employed to examine the performance

of these models in developing such relationships. The evaluati,-- results suggest that the NB

regression model estimated using the moment and regression-based methods should be used with

caution. Also, under the ML method, the estimated regression parameters from ali three models are

quite consistent and no particular model outperforms the other two models in terms of the estimated

relative frequencies of truck accident involvements across road sections. It is recommended tha, ",,he

Poisson regression model be used as an initial model for developing the relationship. If the

overdispersion of accident data is found to be moderate or high, both the NB and ZIP regression

models could be explored. Overall, the ZIP regression model appears to be a serious candidate

model when data exl_"oitexcess zeros due, e.g., to underreporting. However, the interpretation of

the ZIP model can be difficult.

Key Words: Truck Accidents, Geometric Design, Poisson, Zero-Inflated Poisson, Negative Binomial
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1. INTRODUCTION

The relationship between vehicle accidents and geometric design of road sections, such as horizontal

curvature, vertical grade, lane width, and shoulder width, have been studied using multiple linear

regression models in numerous previous studies [Roy Jorgensen Associates, Inc., 1978; Zegeer et al.,

1987; Okamoto and Koshi, 1989; Zegeer et al., 1990]. Because the occurrences of vehicle accidents

are typically sporadic across the road network, in most vehicle accidents-geometric design studies the

analysts are faced with a problem of dealing with a large number of road sections that had no

reported accidents during the observed period. For example, in a study by Zegeer et aL [1990], 55.7

percent of the road sections they studied had no reported vehicle accidents in a 5-year period, _.nd

in another study by Miaou and Lum [1993], over 80 percent of the road sections had no reported

truck accidents during a 1-year period. This suggests that for a period of several years most of the

road sections considered would have a high probability of being observed with no accidents. In other

words, the underlyingdistn_oution of the occurrences of vehicle accidents on most of the road sections

during the observed period is positively or rightly skewed. The conventional multiple linear

regression models, which must rely on normal assumption, have been demonstrated to be lack of

distn_outional property to describe adequately the random and discrete vehicle accident events on the

road [Jovanis and Chang, 1986; Saccomanno and Buyco, 1988; Miaou and Lum, in press]. As a result,

these linear regression models are not appropriate to make probabilistic statements about vehicle

accidents on the road, and test statistics derived from these models are questionable.

The unsatisfactory property, of linear regression models has led to the inv_tigation of the

Poisson and negative binomial (NB) regression models in recent studies [Maycock and Hall, 1984;

Joshua and Garber, 1990; Miaou et aL, 1991; Miaou et aL, 1992; Miaou et al., in press; Miaou and

Lure, 1993]. Although the Poisson and NB regress/on models have been found to have desirable

distributional property to describe the vehicle acc/dents-geometric design relationship, these models

are not without limitations. In addition, the relative performance of these models in establishing such

relationships has not been fully evaluated.

The objective of this paper is to evaluate the statistical performance of the Poisson and NI3
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regression models in establishing the relationship between truck accidents and geometric design of

road sections. Three types of models are considered: Poisson regression, zero-inflated Poisson (ZIP)

r__ ession, and NI3 regression. Maximum likelihood (ML) method is used to estimate the unknown

parameters of these models. Two other feas_le estimators for estimating the dispersion parameter

in the NB regression model are also examined: a moment estimator and a regression-based estimator.

These models and estimators are evaluated based on their (1) estimated regression parameters and

associated t-statistics, (2) overall goodness-of-fit, (3) estimated relative freqtmncy of truck accident

involvements across road sections, (4) sensitivity to the inclusion of short road sections, and (5)

estimated total number of truck accident involvements. Data from the Highway Safety Information

System (I-ISIS), a highway safety data base administered by the Federal Highway Administration

(FHWA), are employed to examine the performance of these models in developing such relationships.

The remaining paper is organized as follows. First, three types of Poisson and NB regression

models used for studying truck accidents and geometric design relationships are presented. Second,

the performance of these models are evaluated using the HSIS data. The last section concludes the

study.

2. MODEI_ AND ESTIMATORS

Consider a set of n road sections of a particular roadway type, say, rural Interstate. Let _ be a

random variable representing the number of trucks involved ill accidents on road section i during a

period of one year, where i=l,2,...,n. Note that the same road section in different sample periods

are considered as separate road sections; this allows the year-to-year changes in geometric design,

traffic conditions, and other relevant attn_Dutesto be considered in the model Further, let the actual

observation of Y/during the period be denoted asYi,where y_=0,1,7_3,.., and i=l,2,...,n. Also, let the

amount of truck travel (or truck expostlre) during the sample year on this road section be vi and

computed as 365_kADTi×T%ix[, where AADTi is the average annual daily traffic (in number of

vehicles), T%i is the percentage of trucks in the traffic stream, and Ciis the length of road section

L Associated with each road section i, there is a k x 1 covariate vector, x_, descn'bing its geometric

characteristics, traffic conditions, and other relevant attributes. The transpose of the covariate vector

is denoted by x l = (xn, x/2, ..., xa). Without loss of generality, let the first covariate xi: be a dummy

variable equal to one for ali i (i.e., xi= 1). Some of the covariates can be 0,1 dummy variables,

indicating the presence or absence of a condition.

The general forms of these three types of regression models and brief descriptions of their

estimation proce.zlures are presented in this section. Ali models are formulated under the assumption

that (1) the occurrences of truck accidents on different road sections are independent, and (2) truck

miles data and other covariates are free from errors.
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Poisson Relmession Model

The Poisson regression model considered in this study is the one used by Miaou ct al. [1991]:

Y_ -Pl
lhc (1)

prY,--y) -
Yi!

where

(2)

where_ isak x 1vectorofunknown regressionparameters,thetransposeofwhichisdenotedby

_-'= (_I,_2,.-.,_k)-Thismodel assumesthatYi,i=l,2,...,n,arcindependentlyand Poisson

distn_outcdwithmean Pi-The expectednumber oftrucksinvolvedinaccidentsPiorE(Y.,)inthis

model isproportionaltotrucktravelv_.The modelalsoassumesan exponentialratefunction,

_.i=E(Yi)/vi=cxp(x_[J_),whichensuresthataccidentinvolvementrateisalwaysnonnegativc.Thistype

ofratefunctionhasbeenwidelyemployedinstatisticalliteratureand foundtobeveryflcx_olein

fittingdifferenttypesofcountdata[e.g.,Cox and Lewis,1966;CameronandTrivcdi,1986;Frome

ctal.,1990].Notethatwheneverappropriatehigherorderand interactiontermsofcovadatescan

be included in Eq. (2) without difficulties.

The regression parameters _. of this model can be estimated using the ML method [Cramer,

1986], the quasi-likelihood method [McCuUagh and Nelder, 1983], or the generalized least squares

method [Carroll and Ruppert, 1989]. The estimated parameters from the last two methods would

converge, to those from the ML method as more iterations are used. For deriving the asymptotic

variance and t-statistics of the estimated parameters using the second derivative of the loglikelihood

function, see Cramer [1986] for reference.

A limitation of using the Poisson regression model, which is well-known in the statistical

literature [e.g., Cox, 1983; Dean and Lawless, 1989], is that the variance of the data is restrained to

be. equal to the mean, Var(Y.,)=E(Y.,) (=Pi)- In many applications, count data were found to display

extra variation or overdispersion relative to a Poisson model [e.g., Dean and Lawless, 1989]. That

is, the variance of the data was greater than what the Poisson model indicated. In vehicle accidents-

geometric design studies, the overdispersion could come from several poss_le sources, e.g., omitted

variables, uncertainty in exposure data and covariates, and nonhomogeneous highway environment

[Miaou et aL, in press].

The corLsequences of ignoring the extra variations in the Poisson regression models are that

consistent estimates, such as the ML estimates (MLE), of the regression parameters under the

Poisson model, are still consistent; however, the variances of the estimated parameters would tend
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to be uaderestimat¢_ _aotherwords,when the samplesizen is large, the MLE J_under thePoisson

regressionmodelwouldstill be closeto the true parameterL but we may overstatethe significance

levels of the estimatedparameters [Cameron madTrivedi, 1990]. (Note that this is under the

assumptionthat F_._.(2) is correctlyspecified.)

To correct for the overdispersion problem for the Poisson model, Wedderbura [1974]

sugg_ted that one could assumethat the varianceof Y_is tiwi insteadof Pi,where .¢is referred to

as overdispcrsionparameter (and t :.1). It wasalsosuggestedthat the overdispersionparameter

could be estimated by XZ/(n-k), where X z is the Pearson'schi-squarestatistic,n is the numberof

obsc:rvations(i.e., the number of road sections),and k is the number of unknown regression

parameters in the Poissonmodel. The Pearson'sX "2statisticis computed as ]]i(Yi-J_.=)2/j_i,where J_i

= v,exp(x_'_.).A better estimate of the asymptotict-statistic for each regressionparameteris ¢.la

times that obtained from the original Poissonregressionmodel basedon the ML method [Agresti,

1990].

Zero-Inflated Poisson Regression Model

The particular ZIP regression model considered in this study has the following form:

p(_=yj)=e-e' if y_=O
-,, (3)

=/.x.;-':--"t
t x-e-") Y:

and

, (4),,
where 0 < O < 1. (Note that for O > 1, the probability of observing zeros is deflated rather than

inflated.) Under this ZIP regression model, the mean and variance of _ can be shown to be

I_'=E(YI) =(1-,-")' =tld Va,'(T_)=i_,+ ee"-I )1_=1_, ++,lh

where ¢i isa function of ri and 0. When 0= I, the ZIP regressionmodel is identical to the Poisson

regressionmodel presentedin F_xls.(I) and (2). Also,when 0<0<I, one canshowthat the variance

of _ exceeds its mean. Thus, the ZIP regressionmodel allows averdispersionin the data due to

excess zeros when compared to the classic Poisson regression model.

One reason for considering the ZIP regression model is the potential underreporting of

vehicle accidents, especially those minor injury and property damage accidents. If the number of
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trucks involved in accidents on road sections follow a Poissc_, distn'bution, then, because of

underreporting, the "reported" number of trucks involved in aec._dentswould follow a ZIP distn'bution

under some-underreporting covditions.

Although the ZIP regression is more flexible than the Poisson regression, th_ interpretation

of the ZIP regression can be difficult. For example, the expected number of trucks invoived in

accidents I_iis related to truck travel vi and other eovariates x_ in a much more complicated way in

the ZIP regression than that in the Poisson regression, and it is not as easy to see how an increase

in vi or x_ would increase or decrease the mean I_iin the ZIP regression. Note, however, that the

ZIP regression model still ensures that truck accident involvement rate is al)rays nonnegative.

The ML estimation and other poss_le variations of the ZIP regression models have been

discussed in Lambert [1992]. In this study, the ML method is used to estimate the unknown

parameters _. and 0, and their asymptotic standard deviations and t-statistics are estimated using the

second derivative of the loglikelihood function (or the observed Fisher information matrix).

Nemative Binomial Re_'emion Model

To deal with the overdispersion problem in count data, one commonly used distribution is the NB

distn"oution. The NB regression model considered in this study has the following form:

/r,-y,)- )[ ' y,-o, (o3

where

(7)

and the variance of Y/is

(8)Var(_) =I_ +a _tt

where _t > 0 and is usually referred to as dispersion parameter. From Eq. (8) one can see that this

model allows the variance to exc,eexl the mean. Also, the Poisson regression model can be regarded

as a limiting model of the negative binomial regression model as a approaches 0.

The ML estimation of the NB regression model and the calculation of associated statistics are

described in detail by Lawless [1987]. The moment estimation, which was first suggested by Breslow

[1984], is also commonly used for estimating the parameters in the NB model. For comparison, in

this study the moment estimation method as described in Lawless [1987] is also used for parameter
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estimation. The method is an iterative procedure until the estimated dispersion parameter converges.

Another estimation method considered in this study for estimating the NB regression model

is a regression-based estimation method suggested by Cameron and Trivedi [1986, 1990]. The method

is an iterative estimation procedure de,cn'bed below.

Step 1. Give an initial estimate of a, say, Zt.

Step 2. Estimate _. using the ML method, assuming a=_ t. Let the estimate of _. be _..

Step 3. Obtain the following regression estimator for ct:

m

,-I (9)
m

l-'l

where =

Step 4. If i -&tI<E,stop; else let _t=_ and go to Step 2. Here, E is a small positive number
equal to, e.g., 0.001.

The NB regression model using the ML method was used in Miaou et al. [in press] to

establish truck accidents-geometric design relationships for three different roadway classes. Although

the NB regression model is more general than the Poisson regression model, it requires more

extensive computations to estimate model parameters and to generate inferential statistics than the

Poisson regression modeL Furthermore, the statistical property of different estimators, e.g., the br_.E

and moment estimators, of the NB regression model under different sample sizes have not yet kw.en

fully investigated [Lawless, 1987].

Although the discussion above does not distinguish accidents by truck configuration and

accident severity, in principal, these three types of Poisson and NB regression models could be

applied to any truck type and accident severity type of interest, provided that there are enough

accident data and that truck exposure by truck type can be properly estimated.

3. MODEL EVALUATIONS

Data Source

Data from the HSIS are employed to evaluate the performance of the Poisson and NB regression

models (and estimators) de*cn2)ed above in terms of its ability to establish truck accidents and

geometric design relationships. Specifically, accidents involving large trucks on rural Interstate

h/ghways from Utah State are used. Note that here large trucks are defined as trucks with gross

vehicle weight rating of 10,000 lb or over. Among the five HSIS State* available, Utah State was
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considered to be the State that had the most complete information on highway geometric design

[Miaou et al., in press]. In addition, this particular State was the only HSIS State with a "historical"

road inventory file in which year-to-year changes on highway geometric design and traffic conditiom

were recorded. Thus, ac_'dents in a given year could be matched to the road inventory information

of the same period. For this study, truck accident and road inventory data from 1985 to 1989 are

used.

Accidents, Characteristics of Road Sections, and Covariates

Detailed descriptions of the data can be found in Miaou et aL [in press]. The time period considered

in this study is one year, which means that the same road section, even if nothing had changed, is

considered as five independent sections - one for each year from 1985 to 1989. As indicated earlier,

this allows the year-to-year changes on highway geometric design and traffic conditions to be

considered in the model. There is a total of 8,263 homogeneous road sections during the 5-year

period. These road sections constitute 14,731 lane-miles of roadway, which covers over 98% of the

total rural Interstate lane-miles in Utah during the period. Data for each year contain roughly one-

fifth of the total sections and lane-miles. The section lengths vary from 0.01 to 7.77 mi (0.016 to

12.43 km) - with an average of 0.45 mi (0.72 km). Descriptive statistics of these 8,263 road sections

on truck accident involvemen;.: and truck miles traveled are given in Table 1.

During the 5-year period, there were 1,643 large trucks reported to be involved in accidcnts

on these highway sections, regardless of truck configuration and accident severity type. With the total

truck miles estimated to be 2,030 million truck miles (3 248 million truck kilometers), the overall

truck accident involvement rate was 0.81 truck accident involvements per million truck miles (0.51

truck accident involvements per million truck kilometers). These accidents occurred on only 14

percent of the 8,263 road sections. The maximum number of trucks involved in accidents oa an

individual road section was 8. On average, each section had 0.20 trucks involved in accidents in one

year.

The covariates considered for individual road sections and their definitions are also presented

in Table 1. They include (1) yearly dummy variables to capture year-to-year changes in the overall

truck accident involvement rate due, e.g., to long-term trend, annual random fluctuations, changes

in omitted variables such as weather; (2) AADT per lane, used as a surrogate measure for traffic

density; (3) horizontal curvature; (4) vertical grade; and (5) deviation of paved inside (or left)

shoulder width from an "ideal" width of 12 ft per direction. Because aH of the road sections are 12

ft in lane width, about 89 percent of them have 4 lanes, and ali road sections have paved outside (or

fight) shoulder width of 10 ft per direction, we are unable to test the effects of these variables.

It has been suggested that as length of grade increases to a point that can slow a truck to a
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speed significantly slower than the speed of the traffic stream (e.g., 10 mi/h or 16 km/h), the accident

rate increases [Roy Jorgensen Associates, 1978]. Also, for a fixed curvature degree, as the length of

curve increases, the accident rate increases [Zegeer et aL, 1990]. In order to test the effects of length

of curve and length of grade on truck accident involvement rate, two covadates - length of original

curve and length of original grade - are considered. Because each curve or grade considered in the

model may have been subdivided from a longer curve or grade for achieving total homogeneity, for

each road section in the model these two covariates are defined as the length of the original

undivided curve or grade to which this section belongs. In addition, these two covafiates are defined

only for curves with horizontal curvatures greater than 1 degree and sections with grade greater than

2 percent. (Note that these two covariates are set equal to 0 if horizontal curvature is less than or

equal to 1 degree or if vertical grade is less than or equal to 2 percent.) This definition is based on

an assumption that the length of a mild curve or grade has no aggravated effect on truck accident

involvements. The interactions of horizontal curvature and length of original curve, vertical grade

and length of original grade, and horizonal curvature and vertical grade are also considered.

Percent trucks in the traffic stream is included in the model to evaluate the effects of car-

truck mix. Previous studies suggested that as percent trucks increases, truck accident involvement

rate decreases. One possl'ble reason is that, (or a comtant vehicle density, as percent trucks increases,

the frequency of lane changing and overtaking movements by cars decreases. Also, previous records

showed that more trucks involved in truck-car multivehicle accidents than in truck-truck accidents

[Jovanis and Chang, 1986].

Model Estimation Results

The estimated parameters and associated t-statistics of five Poisson and NB regression models and

estimators descn'bed in the previous section are presented in Table 2. Discussion on variable

selection and testing procedures can be found in Miaou and Lure [1993]. The Poisson and ZIP

regression models are estimated using the ML method. The biB regression model is estimated using

the ML method (NB-ML), moment method (NB-MOM), and regression-based method (NB-REG).

The loglikelihood function evaluated at the estimated parameters, L(_, and the Akaike Information

Criterion (AIC) value [see, e.g., Bozdogan, 1987] for each model are also given in the table. Note

that AIC=-2L(_.)+2k, where k is the total number of unknown regression parameters in the model

Estimated models with high logLikelihood function and low AIC values are preferred. The

Wedderburn's overdispersion parameter, for the Poisson regre_ion model is computed to adjust the

estimated t-statistics from the _ Furthermore, the expected total number of trucks involved in

accidents across road sections from the model (_'t12i=r_iv,cxp(x_./__))is compared with the observed

total (I_.yi).
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In order to examine the effect of short road sections on the estimation of different models

and estimators, we remove road sections with section length less than or equal to 0.05 mi (0.08 km).

As a result, a total of 1,259 road sections are eHminateck The remaining 7,004 road sections, which

had 1,603 truck accident involvements, are used to develop new models. The results are also

presented in Table 2.

To evaluate how well the Poisson regression, ZIP regression, and NB-ML models estimate

the relative frequencies of truck accident involvements across road sections, the following comparison

is made. F'trst,the relative frequency of road sections with k trucks involved in accidents is computed

and denoted byfk. More specifically, fk is the percentage of road sections which had k truck accident

involvements during the sampled year (i.e., fk ffi number of road sections with k truck accident

involvements/total number of road section n). Second, the estimated relative frequency is computed

as: fk ffi P,_(Y_=k)/n, where _(Y_=k) is the estimated probability of having k trucks involved in

accidents, given the estimated parameters. The observed and estimated relative frequencies _ and

fk) and their differences (fk-fJ,) are presented in Table 3. In this table, the relative frequencies are

computed for k-0,1,2,3,4 and for k>5. (Note that this kind of comparison has been used by Lambert

[1 J21.)

Model Performance

From Tables 2 and 3, the following observations can be made:

1. Estimated regression parameters and associated t-statistics:

The comparison of the estimated parameters and t-statistics in Table 2 for the three models

under the ML estimation method suggests not only that the conclusions reached regarding

the significance level of the relationships between truck accidents and the examined traffic

and geometric design variables are quite consistent, but also that most of the estimated

regression parameter values are quite close. In addition, ali of the estimated regression

parameter values related to traffic and geometric design variables have the expected algebraic

sign. Another observation is that the ZIP regression model seems to suggest slightly stronger

relationships between truck accidents and horizontal curvature and between truck accidents

and inside shoulder width than the other two models.

2. Sensitivity to the inclusion of short road sections:

Except the NB-MOM model, the estimated regression parameter values for each model only

change slightly after the short road sections (with 0_<0.05 mi) are removed from the data.

Some of the estimated regression parameters of the NB-MOM model are ,somewhat different

from those of the NB-ML model when short road sections are included in the model

es6matiort. However, after removing the short road sections, the estimated regression
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parameter values from the two models become very close. This indicates that the NB

regression model using the moment estimation is sensitive to the inclusion of short road

sections. (Note that it has been shown by Miaou and Lure [in press] that those vehicle

accidents-geometric design models based on conventional linear regressions are also very

sensitive to the inclusion of short road sections.)

3. Overdispersion and dispersion parameters:

When ali road sections are considered in the model, the Wedderburn's overdispersion

parameter x for the Poisson regression model is 1.57. This suggests that the truck accident

data used in this study are moderately overdispersed than what the Poisson models has

implied. Also, when short road sections are excluded from the model, the Wedderbum's

overdispersion parameter decreases to I._2, indicating that the overdispersion measure is

somewhat inflated when short road sections are included in the model. For the NB

regression model, the estimated dispersion parameter from the three estimators are quite

different. The inclusion of short road sections does not affect the estimation from the ML

and regression-based estimators, but tends to inflate the dispersion parameter when estimated

using the moment method. Also, the regression estimator seems to have underestimated the

dispersion parameter when compared to the ML estimator, Poison regression model and

ZIP regression model.

4. AIC value, loglikelihood function, and relative frequency:.

Based on the loglikelihood function and the AIC value, the NB-M-tL,model has better

performance than the Poisson and ZIP regression models. However, by examining the

estimated relative frequencies in Table 3, it is found that no particular model is performing

better than the other two models for ali k's. For k=0, the N-B-ML model performs the best

and the ZIP model performs quite weil; for k= 1,2,3, the ZIP model performs the best; and

for k>4, the Poisson model performs the best. Therefore, it seems that the NB-ML model

is performing better under the loglikelihood function and the AIC value simply because it

provides better estimated probabilities of having no reported truck accident for different road

sections and there are over 86% of the road sections that were reported to have no truck

accident.

5. Expected versus observed total truck accident involvements:

Except the NB-MOM model, the expected total truck accident involvements are reasonably

close to (or specifically within 4 percent of) the observed total when ali road sections are

considered in the modeL After removing short road sections, the expected total from the NB-

MOM model is found to be closer to the observed total. This indicates that the estimated

overall,accident involvement rate is inflated in the NB-MOM model when short road sections
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are included. (Note that it was demonstrated in Miaou and Lum [in press] that conventional

linear regression models can seriously overestimate or underestimate the total number of

accident involvements across road sections.)

Examples of Accident Probab_t3,

To see how accident probability distn'bution varies under th_:)_ee regression models as the expected

number of truck accident involvements increases, three h)pothetical road sections are created to

represent a low, a medium, and a high truck accident involve',nent road section and are given in Table

4. The estimated accident probability distn'butions of me three hypothetical road sections are given

in Figure 1. When the expected number of truck accident involvements (E(Y,)) is low (say, < 1), the

estimated probability distn'butions (/3(Y_) from the three models are quite similar in shape and

magnitude. When E(Y.,) is high (say, >2), _(Y._ from the three models deviate from one another

subst_ ltially in shape and magn/tude. Particularly, the N'B-I_R.model suggests a much more diffused

accident probability distn'bution than the other two models as E(Y,) increases beyond 2.

4. CONCLUSIONS

The performance of the Poisson and NB regression models in establishing the relationship between

truck accidents and geometric design of road sections is evaluated using the HSIS data. The Poisson

and ZIP regression models are est/mated using the ML method, while the NB regression model are

estimated using the MI., moment, and regression-based estimators. The NB model based on the

moment method is quite sensitive to the inclusion of short road sections. While the N'Bmodel using

the regression estimator tends to understate the di:,persion of the data. Both estimators should be

used with caudom Under the ML method, the est/mated regression parameters from ali three models

are quite consistent and no particular model outperforms the other two models in terms of the

estimated relative frequencies of truck accident involvements across road sections. The NB model

performs the best in estimating the frequency of road sections with zero truck accident involvement.

The ZIP model, on the other hand, performs the best in estimating the frequencies of road sections

with 1, 2, and 3 truck accident involvements. While the Poisson model performs the best in

estimating the frequencies of road sections with 4 or more truck accident involvements. It is

recommended that the Poisson regression model be used as an initial model for developing the

relationship. If the overdispersion of accident data is found to be moderate or high (e.g., when the

Wedderburn's overdispersion parameter > 1.3), both the NB and 7_JPregression models could be

explored. Overall the ZIP regression model appears to be a serious candidate model for studying

the relationships when accident data exhibit excess zeros due, e.fr, to underreporting, However, the

interpretation of the ZIP model can be dif[iculL
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TABLE 4 TRUCK ACCIDENT INVOLVEMENT RATES AND ACCIDENT PROBABII.rIIES OF THREE
EXAMPLE ROAD SECHONS.

Year 1989 1989 1989

Lane Widm (ft) 12 12 12

Number oflanes 4 4 4
.i i

SectionLength(mi) 0.3 0.3 0.3
i

AADT (numberof vehicle) 5,000 25,000 50,000

Horizontal Curvature (degree/100 ft arc) 0 3 6
i1,

Lengthof OriginalCurve(mi) 0 0.5 0.5

Vertical Grade (percent) 0 3 3

Lengthof OriginalGrade(mi) 0 0.3 0.3

Pa._:d Inside Shoulder Width (ft) 10 6 6
iiii

Paved Outside Shoulder Wklth (t_) 10 10 10
,,11 ,i i

Percent Truclut 25 25 25
| , =,,, ,,, li i i | i i ,

Truck Accident Iavulvemcnt Rate (J-0 Poisson 0.3089 1.1881 2.5669
ZIP 0.2464 1.1554 3.0861
NB-ML 0.3439 1.2989 2.8631

Expected Number of Truck Accident Poisson 0.0423 0.8131 3.5135
Involvements (E(Y'.,):_0 ZIP 0.0337 0.7908 4.2241

NB-ML 0.0471 0.8889 3.9189
iiiiii i

Variance of Truck Accident Poisson 0.0423 0.8131 3.5135

Involvements (Vm'(Y,)) ZIP 0.0345 1.0410 5.3787
NB-ML 0.0492 1.6368 18.4556

iii i i i iii

Probability of Truck Accident Hf,. l(a) Hfr l(b) Fig. l(c)
Tmoivcmcnts(p(FJ)

..... ._,. ....

1 mi = 1.61 km; 1 ft -- 0.3048 m.
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