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ABSTRACT

This paper evaluates the performance of Poisson and negative binomial (NB) regression models in
establishing the relationship between truck accidents and geometric design of road sections. Three
types of models are considered: Poisson regression, zero-inflated Poisson (ZIP) regression, and NB
regression. Maximum likelihood (ML) method is used to estimate the unknown parameters of these
models. Two other feasible estimators for estimating the dispersion parameter in the NB regression
model are also examined: a moment estimator and a regression-based estimator. These models and
estimators are evaluated based on their (1) estimated regression parameters, (2) overall goodness-of-
fit, (3) estimated relative frequency of truck accident involvements across road sections, (4) sensitivity
to the inciusion of short road sections, and (5) estimated total number of truck accident involvements.
Data from the Highway Safety Information System (HSIS) are employed to examine the performance
of these models in developing such relationships. The evaluatic » results suggest that the NB
regression model estimated using the moment and regression-based methods should be used with
caution. Also, under the ML method, the estimated regression parameters from all three models are
quite consistent and no particular mode! outperforms the other two models in terms of the estimated
relative frequencies of truck accident involvements across road sections. It is recommended tha* the
Poisson regression model be used as an initial model for developing the relationship. If the
overdispersion of accident data is found to be moderate or high, both the NB and ZIP regression
models could be explored. Overall, the ZIP regression model appears to be a serious candidate:
model when data exhibit excess zeros due, e.g., to underreporting. However, the interpretation of
the ZIP model can be difficult.

Key Words: Truck Accidents, Geometric Design, Poisson, Zero-Inflated Poisson, Negative Binomial.
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1. INTRODUCTION

The relationship between vehicle accidents and geometric design of road sections, such as horizontal
curvature, vertical grade, lane width, and shoulder width, have been studied using multiple linear
regression models in numerous previous studies [Roy Jorgensen Associates, Inc., 1978; Zegeer et al.,
1987; Okamoto and Koshi, 1989; Zegeer et al., 1990]. Because the occurrences of vehicle accidents
are typically sporadic across the road network, in most vehicle accidents-geometric design studies the
analysts are faced with a problem of dealing with a large number of road sections that had no
reported accidents during the observed period. For example, in a study by Zegeer et al [1990], 55.7
percent of the road sections they studied had no reported vehicle accidents in a S-year period, <nd
in another study by Miaou and Lum [1993], over 80 percent of the road sections had no reported
truck accidents during a 1-year period. This suggests that for a period of several years most of the
road sections considered would have a high probability of being observed with no accidents. In other
words, the underlying distribution of the occurrences of vehicle accidents on most of the road sections
during the observed period is positively or rightly skewed. The conventional multiple linear
regression models, which must rely on normal assumption, have been demonstrated to be lack of
distributional property to describe adequately the random and discrete vehicle accident events on the
road [Jovanis and Chang, 1986; Saccomanno and Buyco, 1988; Miaou and Lum, in press]. As aresult,
these linear regression models are not appropriate to make probabilistic statements about vehicle
accidents on the road, and test statistics derived from these models are questionable.

The unsatisfactory property of linear regression models has led to the investigation of the
Poisson and negative binomial (NB) regression models in recent studies [Maycock and Hall, 1984;
Joshua and Garber, 1990; Miaou et al, 1991; Miaou et al, 1992; Miaou et al., in press; Miaou and
Lum, 1993]. Although the Poisson and NB regression models have been found to have desirable
distributional property to describe the vehicle accidents-geometric design relationship, these models
are not without limitations. In addition, the relative performance of these models in establishing such
relationships has not been fully evaluated.

The objective of this paper is to evaluate the statistical performance of the Poisson and NB
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regression models in establishing the relationship between truck accidents and geometric design of
road sections. Three types of models are considered: Poisson regression, zero-inflated Poisson (Z1IP)
re - ession, and NB regression. Maximum likelihood (ML) method is used to estimate the unknown
parameters of these models. Two other feasible estimators for estimating the dispersion parameter
in the NB regression model are also examined: a moment estimator and a regression-based estimator.
These models and estimators are evaluated based on their (1) estimated regression parameters and
associated t-statistics, (2) overall goodness-of-ﬁt,‘ (3) estimated relative frequency of truck accident
involvements across road sections, (4) sensitivity to the inclusion of short road sections, and (5)
estimated total number of truck accident involvements. Data from the Highway Safety Information
System (HSIS), a highway safety data base administered by the Federal Highway Administration
(FHWA), are employed to examine the performance of these models in developing such relationships.

The remaining paper is organized as follows. First, three types of Poisson and NB regression
models used for studying truck accidents and geometric design relationships are presented. Second,
the performance of these models are evaluated using the HSIS data. The last section concludes the

study.

2. MODELS AND ESTIMATORS

Consider a set of n road sections of a particular roadway type, say, rural Interstate. Let Y; be a
random variable representing the number of trucks involved in accidents on road section i during a
period of one year, where i=1,2,..,n. Note that the same road section in different sample periods
are considered as separate road sections; this allows the year-to-year changes in geometric design,
traffic conditions, and other relevant attributes to be considered in the model. Further, let the actual
observation of Y; during the period be denoted as y,, where y;=0,1,2,3,... and i=1,2,..,n. Also, let the
amount of truck travel (or truck exposuvre) during the sample year on this road section be v; and
computed as 365xAADT;xT%;xt, where AADT,; is the average annual daily traffic (in number of
vehicles), T%; is the percentage of trucks in the traffic stream, and ¢ is the length of road section
i. Associated with each road section i, there is a k x 1 covariate vector, x;, describing its geometric
characteristics, traffic conditions, and other relevant attributes. The transpose of the covariate vector
is denoted by x| = (x;, Xz, --» Xz)- Without loss of generality, let the first covariate x;, be a dummy
variable equal to one for all i (i.e.,, x;=1). Some of the covariates can be 0,1 dummy variables,
indicating the presence or absence of a condition.

The general forms of these three types of regression models and brief descriptions of their
estimation procedures are presented in this section. All models are formulated under the assumption
that (1) the occurrences of truck accidents on different road sections are independent, and (2) truck

miles data and other covariates are free from errors.
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Poisson Regression Model
The Poisson regression model considered in this study is the one used by Miaou et al. [1991}:

b /] ) (1
e i<12.3,..n. )

P=y) =p() =

where

B =E(Y) =v‘[¢“] =v,[eﬂ" "l"'] i=1,2,3,..n. @

where B is a k x 1 vector of unknown regression parameters, the transpose of which is denoted by
8' = (B, By» - By- This model assumes that Y, i=12,..,n, are independently and Poisson
distributed with mean p;. The expected number of trucks involved in accidents p; or E(Y) in this
model is proportional to truck travel v, The model also assumes an exponential rate function,
A;=E(Y)/v;=exp(x;8), which ensures that accident involvement rate is always nonnegative. This type
of rate function has been widely employed in statistical literature and found to be very flexible in
fitting different types of count data [e.g., Cox and Lewis, 1966; Cameron and Trivedi, 1986; Frome
et al,, 1990]. Note that whenever appropriate higher order and interaction terms of covariates can
be included in Eq. (2) without difficuities.

The regression parameters § of this model can be estimated using the ML method [Cramer,
1986], the quasi-likelihood method [McCullagh and Nelder, 1983}, or the generalized least squares
method [Carroll and Ruppert, 1989]. The estimated parameters from the last two methods would
converge to those from the ML method as more iterations are used. For deriving the asymptotic
variance and t-statistics of the estimated parameters using the second derivative of the loglikelihood
function, see Cramer [1986] for reference. |

A limitation of using the Poisson regression model, which is well-known in the statistical
literature [e.g., Cox, 1983; Dean and Lawless, 1989), is that the variance of the data is restrained to
be equal to the mean, Var(Y,)=E(Y,) (=p,;).- In many applications, count data were found to display
extra variation or overdispersion relative to a Poisson model [e.g., Dean and Lawless, 1989]. That
is, the variance of the data was greater than what the Poisson model indicated. In vehicle accidents-
geometric design studies, the overdispersion could come from several possible sources, e.g., omitted
variables, uncertainty in exposure data and covariates, and nonhomogeneous highway environment
[Miaou et al,, in press].

The consequences of ignoring the extra variations in the Poisson regression models are that
consistent estimates, such as the ML estimates (MLE), of the regression parameters under the

Poisson model, are still consistent; however, the variances of the estimated parameters would tend
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to be underestimated. in other words, when the sample size n is large, the MLE f under the Poisson
regression model would still be close to the true parameter 8, but we may overstate the significance
levels of the estimated parameters {Cameron and Trivedi, 1990]. (Note that this is under the
assumption that Eq. (2) is correctly specified.)

To correct for the overdispersion problem for the Poisson model, Wedderburn [1974]
suggested that one could assume that the variance of Y; is ty; instead of p;, where t is referred to
as overdispersion parameter (and t21). It was also suggested that the overdispersion parameter ¢
couid be estimated by X?/(n-k), where X? is the Pearson’s chi-square statistic, n is the number of
obscrvations (i.e., the number of road sections), and k is the number of unknown regression
parameters in the Poisson model. The Pearson’s X? statistic is computed as Z,(y;- £ )%/ £ ;, where #;
= vexp(x/B). A better estimate of the asymptotic t-statistic for each regression parameter is v

times that obtained from the original Poisson regression model based on the ML method [Agresti,
1990].

Zero-Inflated Poisson Regression Model
The particular ZIP regression model considered in this study has the following form:

PYp) =" if 3=0 3
1-¢°" r{"e"‘ f 123 @
1™ ) ¥ e

and

)

¥

r, =v‘[er'n]=v,[e - x'”’] i=123,...n.

where 0 < 8 < 1. (Note that for 8 > 1, the probability of observing zeros is deflated rather than
inflated.) Under this ZIP regression model, the mean and variance of ¥, can be shown to be

1-¢7°" 1-e"°P) , 2
B, =E(Y) = T r, and Var(Y)=p,+ '—;rr Bi =B+ B ®)

where ¢, is a function of r; and 8. When 8=1, the ZIP regression model is identical to the Poisson
regression model presented in Egs. (1) and (2). Also, when 0<6<1, one can show that the variance
of Y, exceeds its mean. Thus, the ZIP regression model allows overdispersion in the data due to
excess zeros when compared to the classic Poisson regression model.

One reascn for considering the ZIP regression model is the potential underreporting of

vehicle accidents, especially those minor injury and property damage accidents. If the number of



Miaou, S.-P., 1993 : ' 5

trucks involved in accidents on road sections follow a Poissc.: distribution, then, because of
underreporting, the "reported” number of trucks involved in accidents would follow a ZIP distribution
under some-underreporting conditions.

Although the ZIP regression is more flexible than the Poisson regression, the interpretation
of the ZIP regression can be difficult. For example, the expected number of trucks invoived in
accidents p; is related to truck travel v; and other covariates x{ in a much more complicated way in
the ZIP regression than that in the Poisson rcgfession, and it is not as easy to see how an increase
in v; or x; would increase or decrease the mean p; in the ZIP regression. Note, however, that the
ZIP regression model still ensures that truck accident involvement rate is always nonnegative.

The ML estimation and other possible variations of the ZIP regression models have been
discussed in Lambert [1992]. In this study, the ML method is used to estimate the unknown
parameters § and 6, and their asymptotic standard deviations and t-statistics are estimated using the

second derivative of the loglikelihood function (or the observed Fisher information matrix).

Negative Binomial Regression Model

To deal with the overdispersion problem in count data, one commonly used distribution is the NB

distribution. The NB regression model considered in this study has the following form:

A
(Y =y)= i a)l (14»}; )5(1::‘ T %,=0,1,2,... (©
VR G M

where

w=EY) =v[eR]av[e T o123, 8. ®

and the variance of Y; is
Var(Y) =y, +apf 8

where « > 0 and is usually referred to as dispersion parameter. From Eq. (8) one can see that this
model allows the variance to exceed the mean. Also, the Poisson regression model can be regarded
as a limiting model of the negative binomial regression model as a approaches 0.

The ML estimation of the NB regression model and the calculation of associated statistics are
described in detail by Lawless [1987]. The moment estimation, which was first suggested by Breslow
[1984], is also commonly used for estimating the parameters in the NB model. For comparison, in

this study the moment estimation method as described in Lawless [1987] is also used for parameter
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estimation. The method is an iterative procedure until the estimated dispersion parameter converges.
Another estimation method considered in this study for estimating the NB regression model
is a regression-based estimation method suggested by Cameron and Trivedi [1986, 1990]. The method

is an iterative estimation procedure described below.

Step 1. Give an initial estimate of a, say, a,.
Step 2. Estimate @ using the ML method, assuming a=a,. Let the estimate of B be f.
Step 3. Obtain the following regression estimator for «:

> 8 [0, -0)* -]
&= im]

3 A

i=1

®)

where f; = vexpx/B).

Step 4. If | a-a, | <e, stop; else let a;=a and go to Step 2. Here, ¢ is a small positive number
equal to, e.g., 0.001.

The NB regression model using the ML method was used in Miaou et al. [in press] to
establish truck accidents-geometric design relationships for three different roadway classes. Although
the NB regression model is more general than the Poisson regression model, it requires more
extensive computations to estimate model parameters and to generate inferential statistics than the
Poisson regression model. Furthermore, the statistical property of different estimators, e.g., the MLE
and moment estimators, of the NB regression model under different sample sizes have not yet been
fully investigated [Lawless, 1987].

Although the discussion above does not distinguish accidents by truck configuration and
accident severity, in principal, these three types of Poisson and NB regression models could be
applied to any truck type and accident severity type of interest, provided that there are enough
accident data and that truck exposure by truck type can be properly estimated.

3. MODEL EVALUATIONS
Data Source
Data from the HSIS are employed to evaluate the performance of the Poisson and NB regression
models (and estimators) described above in terms of its ability to establish truck accidents and
geometric design relationships.  Specifically, accidents involving large trucks on rural Interstate
highways from Utah State are used. Note that here large trucks are defined as trucks with gross
vehicle weight rating of 10,000 Ib or over. Among the five HSIS States available, Utah State was
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considered to be the State that had the most complete information on highway geometric design
[Miaou et al, in press]. In addition, this particular State was the only HSIS State with a "historical”
road inventory file in which year-to-year changes on highway geometric design and traffic conditions
were recorded. Thus, accidents in a given year could be matched to the road inventory information

of the same period. For this study, truck accident and road inventory data from 1985 to 1989 are
used.

Accidents, Characteristics of Road Sections, and Covariates

Detailed descriptions of the data can be found in Miaou et al. [in press]. The time period considered
in this study is one year, which means that the same road section, even if nothing had changed, is
considered as five independent sections — one for each year from 1985 to 1989. As indicated earlier,
this allows the year-to-year changes on highway geometric design and traffic conditions to be
considered in the model. There is a total of 8,263 homogeneous road sections during the 5-year
period. These road sections constitute 14,731 lane-miles of roadway, which covers over 98% of the
total rural Interstate lane-miles in Utah during the period. Data for each year contain roughly one-
fifth of the total sections and lane-miles. The section lengths vary from 0.01 to 7.77 mi (0.016 to
12.43 km) - with an average of 0.45 mi (0.72 km). Descriptive statistics of these 8,263 road sections
on truck accident involvemen.. and truck miles traveled are given in Table 1.

During the 5-year period, there were 1,643 large trucks reported to be involved in accidcats
on these highway sections, regardless of truck configuration and accident severity type. With the total
truck miles estimated to be 2,030 million truck miles (3 248 million truck kilometers), the overall
truck accident involvement rate was 0.81 truck accident involvements per million truck miles (0.51
truck accident involvements per million truck kilometers). These accidents occurred on only 14
percent of the 8,263 road sections. The maximum number of trucks invoived in accidents on an
individual road section was 8. On average, each section had 0.20 trucks involved in accidents in one
year.

The covariates considered for individual road sections and their definitions are also presented
in Table 1. They include (1) yearly dummy variables to capture year-to-year changes in the overall
truck accident involvement rate due, e.g., to long-term trend, annual random fluctuations, changes
in omitted variables such as weather; (2) AADT per lane, used as a surrogate measure for traffic
density; (3) horizontal curvature; (4) vertical grade; and (5) deviation of paved inside (or left)
shoulder width from an "ideal” width of 12 ft per direction. Because all of the road sections are 12
ft in lane width, about 89 percent of them have 4 lanes, and all road sections have paved outside (or
right) shoulder width of 10 ft per direction, we are unable to test the effects of these variables.

It has been suggested that as length of grade increases to a point that can slow a truck to a
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speed significantly slower than the speed of the traffic stream (e.g., 10 mi/h or 16 km/h), the accident
rate increases [Roy Jorgensen Associates, 1978]. Also, for a fixed curvature degree, as the length of
curve increases, the accident rate increases [Zegeer et al., 1990]. In order to test the effects of length
of curve and length of grade on truck accident involvement rate, two covariates - length of original
curve and length of original grade -- are considered. Because each curve or grade considered in the
model may have been subdivided from a longer curve or grade for achieving total homogeneity, for
each road section in the model these two covariates are defined as the length of the original
undivided curve or grade to which this section belongs. In addition, these two covariates are defined
only for curves with horizontal curvatures greater than 1 degree and sections with grade greater than
2 percent. (Note that these two covariates are set equal to 0 if horizontal curvature is less than or
equal to 1 degree or if vertical grade is less than or equal to 2 percent.) This definition is based on
an assumption that the length of a mild curve or grade has no aggravated effect on truck accident
involvements. The interactions of horizontal curvature and length of original curve, vertical grade
and length of original grade, and horizonal curvature and vertical grade are also considered.
Percent trucks in the traffic stream is included in the model to evaluate the effects of car-
truck mix. Previous studies suggested that as percent trucks increases, truck accident involvement
rate decreases. One possible reason is that, for a constant vehicle density, as percent trucks increases,
the frequency of lane changing and overtaking movements by cars decreases. Also, previous records
showed that more trucks involved in truck-car multivehicle accidents than in truck-truck accidents

[Jovanis and Chang, 1986].

Model Estimation Results
The estimated parameters and associated t-statistics of five Poisson and NB regression models and

estimators described in the previous section are presented in Table 2. Discussion on variable
selection and testing procedures can be found in Miaou and Lum [1993]. The Poisson and ZIP
regression models are estimated using the ML method. The NB regression model is estimated using
the ML method (NB-ML), moment method (NB-MOM), and regression-based method (NB-REG).
The loglikelihood function evaluated at the estimated parameters, L(§), and the Akaike Information
Criterion (AIC) value [see, e.g., Bozdogan, 1987] for each model are also given in the table. Note
that AIC=-2L(f8)+2k, where k is the total number of unknown regression parameters in the model.
Estimated models with high loglikelihood function and low AIC values are preferred. The
Wedderburn’s overdispersion parameter ¢ for the Poisson regression model is computed to adjust the
estimated t-statistics from the MLE. Furthermore, the expected total number of trucks involved in
accidents across road sections from the model (3, ft ;=2vexp(x/f)) is compared with the cbserved

total (Zy,).
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In order to examine the effect of short road sections on the estimation of different models
and estimators, we remove road sections with section length less than or equal to 0.05 mi (0.08 km).
As a result, a total of 1,259 road sections are eliminated. The remaining 7,004 road sections, which
had 1,603 truck accident involvements, are used to develop new models. The results are also
presented in Table 2.

To evaluate how well the Poisson regr&ssi(_)n, ZIP regression, and NB-ML models estimate
the relative frequencies of truck accident involvements across road sections, the following comparison
is made. First, the relative frequency of road sections with k trucks involved in accidents is computed
and denoted by f,. More specifically, f, is the percentage of road sections which had & truck accident
involvements during the sampled year (i.e., fi = number of road sections with k& truck accident
involvements/total number of road section #). Second, the estimated relative frequency is computed
as: J, = Z.,p(Y;=k)/n, where p(Y;=k) is the estimated probability of having k trucks involved in
accidents, given the estimated parameters. The observed and estimated relative frequencies (f; and
7.) and their differences (f,-f;) are presented in Table 3. In this table, the relative frequencies are
computed for k=0,1,2,3,4 and for k25. (Note that this kind of comparison has been used by Lambert

[1992])

Model Performance

From Tables 2 and 3, the following observations can be made:

1. Estimated regression parameters and asscciated t-statistics:
The comparison of the estimated parameters and t-statistics in Table 2 for the three models
under the ML estimation method suggests not only that the conclusions reached regarding
the significance level of the relationships between truck accidents and the examined traffic
and geometric design variables are quite consistent, but also that most of the estimated
regression parameter values are quite close. In addition, all of the estimated regression
parameter values related to traffic and geometric design variables have the expected algebraic
sign. Another observation is that the ZIP regression model seems to suggest slightly stronger
relationships between truck accidents and horizontal curvature and between truck accidents
and inside shoulder width than the other two models.

2 Sensitivity to the inclusion of short road sections:
Except the NB-MOM model, the estimated regression parameter values for each model only
change slightly after the short road sections (with §<0.05 mi) are removed from the data.
Some of the estimated regression parameters of the NB-MOM model are somewhat different
from those of the NB-ML model when short road sections are included in the model

estimation. However, after removing the short road sections, the estimated regression
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parameter values from the two models become very close. This indicates that the NB
regression model using the moment estimation is sensitive to the inclusion of short road
sections. (Note that it has been shown by Miaou and Lum [in press] that those vehicle
accidents-geometric design models based on conventional linear regressions are also very
sensitive to the inclusion of short road sections.)

3. Overdispersion and dispersion parameters:
When all road sections are considered in the model, the Wedderburn’s overdispersion
parameter t for the Poisson regression model is 1.57. This suggests that the truck accident
data used in this study are moderately overdispersed than what the Poisson models has
implied. Also, when short road sections are excluded from the model, the Wedderburn’s
overdispersion parameter decreases to 1.32, indicating that the overdispersion measure is
somewhat inflated when short road sections are included in the model. For the NB
regression model, the estimated dispersion parameter from the three estimators are quite
different. The inclusion of short road sections does not affect the estimation from the ML
and regression-based estimators, but tends to inflate the dispersion parameter when estimated
using the moment method. Also, the regression estimator seems to have underestimated the
dispersion parameter when compared to the ML estimator, Poisson regression model, and
ZIP regression model.

4. AIC value, loglikelihood function, and relative frequency:
Based on the loglikelihood function and the AIC value, the NB-ML model has better
performance than the Poisson and ZIP regression models. However, by examining the
estimated relative frequencies in Table 3, it is found that no particular model is performing
better than the other two models for all ’s. For k=0, the NB-ML model performs the best
and the ZIP model performs quite well; for k=1,2.3, the ZIP model performs the best; and
for k>4, the Poisson model performs the best. Therefore, it seems that the NB-ML model
is performing better under the loglikelihood function and the AIC value simply because it
provides better estimated probabilities of having no reported truck accident for different road
sections and there are over 86% of the road sections that were reported to have no truck
accident.

s. Expected versus observed total truck accident involvements:
Except the NB-MOM model, the expected total truck accident involvements are reasonably
close to (or specifically within 4 percent of) the observed total when all road sections are
considered in the model. After removing short road sections, the expected total from the NB-
MOM model is found to be closer to the observed total. This indicates that the estimated
overall accident involvement rate is inflated in the NB-MOM model when short road sections
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are included. (Note that it was demonstrated in Miaou and Lum [in press] that conventional
linear regression models can seriously overestimate or underestimate the total number of

accident involvements across road sections.)

Examples of Accident Probability

To see how accident probability distribution varies under the f.ree regression models as the expected
number of truck accident involvements increases, three hypothetical road sections are created to
represent a low, a medium, and a high truck accident involve:nent road section and are given in Table
4. The estimated accident probability distributions of ine three hypothetical road sections are given
in Figure 1. When the expected number of truck accident involvements (E(Y))) is low (say, <1), the
estimated probability distributions (p(Y) from the three models are quite similar in shape and
magnitude. When E(Y,) is high (say, >2), p(Y,) from the three models deviate from one another
subst: atially in shape and magnitude. Particularly, the NB-ML model suggests a much more diffused
accident probability distribution than the other two models as E(Y;) increases beyond 2.

4. CONCLUSIONS
The performance of the Poisson and NB regression models in establishing the relationship between
truck accidents and geometric design of road sections is evaluated using the HSIS data. The Poisson
and ZIP regression models are estimated using the ML method, while the NB regression model are
estimated using the ML, moment, and regression-based estimators. The NB model based on the
moment method is quite sensitive to the inclusion of short road sections. While the NB model using
the regression estimator tends to understate the dizpersion of the data. Both estimators should be
used with caution. Under the ML method, the estimated regression parameters from all three models
are quite consistent and no particular model outperforms the other two models in terms of the
estimated relative frequencies of truck accident involvements across road sections. The NB model
performs the best in estimating the frequency of road sections with zero truck accident involvement.
The ZIP model, on the other hand, performs the best in estimating the frequencies of road sections
with 1, 2, and 3 truck accident involvements. While the Poisson model performs the best in
estimating the frequencies of road sections with 4 or more truck accident involvements. It is
recommended that the Poisson regression model be used as an initial model for developing the
relationship. If the overdispersion of accident data is found to be moderate or high {e.g., when the
Wedderbum's overdispersion parameter > 1.3), both the NB and ZIP regression models could be
explored. Overall, the ZIP regression model appears to be a serious candidate model for studying
the relationships when accident data exhibit excess zeros due, e.g., to underreporting. However, the

interpretation of the ZIP model can be difficult.
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TABLE 4 TRUCK ACCIDENT INVOLVEMENT RATES AND ACCIDENT PROBABILITIES OF THREE
EXAMPLE ROAD SECTIONS.

B e RS e

| Variables | Modet Section #1 Section #2 Section #3
Year 1989 1989 1989 Ft
| Lanc Width (R) 12 12 12 :
Number of Lanes ' o 4 4 4 n
| Scction Length (mi) 03 03 03

AADT (number of vehicles) 5,000 25,000 50,000 H
§ Horizontal Curvature (degree/100 ft arc) 0 3 6 u
Length of Original Curve (mi) 0 05 05

j Vertical Grade (percent) 0 3

Length of Original Grade (i) 0 03

| Paved Inside Shoulder Width (f)

| Paved Outside Shoulder Width (ft)
‘. Percent Trucks

§ Truck Accident Involvement Rate (1) Poisson 03089 1.1881

2.5669

Al 0.2464 1.1554 3.0861

| NB-ML 03439 1.2989 2.8631
: Expected Number of Truck Accident Poisson 0.0423 0.8131 35135
Invotvements (E(Y;) =g, P 0.0337 0.7908 4.2241
NB-ML 0.0471 0.8889 3.9189

| Variance of Truck Accident Poisson 0.0423 0.8131 35135
Involvements (Var(Y))) yAlS 0.0345 1.0410 53787
NB-ML 0.0492 1.6368 18.4556

% Probability of Truck Accident Fig. 1(a) Fig. 1(b) Fig. 1(c)

1mi = 1.61 km; 1 & = 0.3048 m.
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