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Abstract

I

After extensive investigations over three decades, the linear-coupling model and its

equivalents have become the standard microscopic models for quantum harmonic Brow-Q

nian motion, in which a harmonically bound Brownian particle is coupled to a quantum

dissipative heat bath of general type modeled by infinitely many harmonic oscillators.

The dynamics of these models have been studied by many authors using the quantum

Langevin equation, the path-integral approach, quasi-probability distribution functions

(e.g., the Wigner function), etc. However, the quantum Langevin equation is only appli-
. ,

cable to some special problems, while other approaches all involve complicated calcula-

tions due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating

the degrees of freedom of the heat bath.

In this dissertation, I propose an improved methodology via a modified phase-space

approach which employs the characteristic function (the symplectic Fourier transform of

the Wigner function) as the representative of the density operator. This representative is

claimed to be the most natural one for performing the reduction, not only because of its

simplicity but also because of its manifestation of geometric meaning. Accordingly, it is

particularly convenient for studying the time evolution of the Brownian particle with an

arbitrary initial state. The power of this characteristic function is illuminated through

a detailed study of several physically interesting problems, including the environment-

induced damping of quantum interference, the exact quantum Fokker-Planck equations,

and the relaxation of non-factorizable initial states. All derivations and calculations are

shown to be much simplified in comparison with other approaches.

• In addition to dynamical problems, a novel derivation of the fluctuation-dissipation

theorem which is valid for all quantum linear systems is presented. With the help of

• this theorem, the mechanism of this model is examined and the correspondence with

classical phenomenological theories is discussed.
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Introduction

In the past ten years, there has been a great deal of renewed interest in the dissipative

mechanism of quantum open systems. This resurgence is motivated by the possible obser-

vations of macroscopic quantum phenomena in quantum optics (coherent and squeezed

states) [34, 106], quantum non-equilibrium statistical mechanics (low-temperature and

strong-damping anomalies) [44, 45], quantum measurement (quantum tunneling and

SchrSdinger's cat in SQUID) [11, 13], and quantum gravity as well as quantum cosmol-

ogy (quantum-to-classical transition) [54, 107], etc. Among the problems of quantum

open systems, quantum Brownian motion is a paradigm since the corresponding classical

phenomenological theories are well established. The original Brownian motion refers to

a heavy "Brownian particle" moving in a viscous fluid; today this term indicates the

time evolution of any macroscopic degree of freedom under the influence of a dissipative

heat bath (or "environment" for short).

For a closed (i.e., isolated) quantum system with a given Hazniltonian or Lagrangian,

the time evolution of physical states can be studied from first principles of quantum

mechanics, e.g., the SchrSdinger equation. However, until now there has not been a

fundamental theory for quantum open systems. Existing theories fall into the following

three categories:

(I) New quantum theories with non-standard quantization rules, e.g., stochastic

quantization, complex canonical variables, and several kinds of non-linear SchrSdinger

equations [20].
o

(II) (Semi-) phenomenological theories, which start with a model Hamiltonian and

employ the Markovian approximation to derive a quantum master equation as the equa-

tion of motion for the density operator of the open system. The quantum Fokker-Planck

equation usually serves as a c-number representation of the master equation. The quan-
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turn Langevin equation (in the Heisenberg picture) is also derivable from the model

Hamiltonian hence is equiwlent to the quantum master equation and the quantum

Fokker-Plancak equation [4, 19, 65].

(III) Microscopic-model approach, which deals with an explicitly defined modelt,

Hamiltonian for the "total system" (the open system and the environment as well as

their interactions). A necessary condition for the model Hamiltonian is that, with certain

conditions imposed, the appropriate classical limits of the open system raay be recov-

ered. This approach has become more and more popular recently since it allows us to

study quantum dynamics at arbitrarily low temperature and/or with strong damping,

and the model environment can be of general dissipative character (ohmic, sub-ohmic,

or supra-ohmic). Because the model Hamiltonian contains the degrees of freedom of

both the open system and the environment, and only the open system is of interest, a

reduction (i.e., contraction) operation is necessary in order to ignore or eliminate the

details, and only keep the influence of the environment. Coarse graining, one of the fun-

damental principles in statistical mechanics, is manifested by this reduction operation

in the microscopic-model approach.

In the following, we shall discuss in detail the microscopic-model approach to quazi-

turn harmonic Brownian motion, where the open system is a harmonically bound Brow-

nian particle. Just as the quantum Brownian particle is the paradigm of quantum

open systems, quantum harmonic Brownian motion is a paradigra among all quantum

Brownian motions. For quantum harmonic Brownian motion, the simplest and most

successful microscopic model is the linear-coupling model [10, 16, 22, 25, 40, 44, 45,

48, 73, 76, 85, 95], in which the environment is modeled by an infinite set of harmonic

oscillators linearly coupled to the Brownian particle. In the literature, there are several

equivalent formalisms for studying microscopic models, the most oft-used ones are the

quantum Langevin equation, the (orthodox) pha_e-space approach, and the path-integral

• approach, among them the first is in the Heisenberg picture and the other two are in

the SchrSdinger picture.

(i) Quantum Langevin equation: This is similar to the phenomenological quantum

Langevin equation, but all parameters and coefficients of this equation are explicitly and

ix



exactly defined [8, 22, 28, 30, 63]. As we will discuss in Chap. 8, the applicability of this

quantum Langevin equation is limited to some special problems.

(ii) Phase-space approach: This approach employs the quasi-probability (quantum)

phase-space distribution functions as the representatives of the density operators of the
,1

total system as well as the Brownian particle. In the classical regime these distribu-

tion functions behave like classical distribution functions over the phase space, among
m

them the Wigner function [47, 101] is the most studied. As long as the Hazniltonian is

(inhomogeneously) quadratic, i.e., the quantum system is linear, the time evolution of

these distribution functions is completely determined by the classical phase flow. Hence

in this approach the classical-quantum correspondence is most clear. The phase-space

approach to quantum harmonic Brownian motion has a long history [95], but has mainly

been applied to ohmic dissipation.

(iii) Path-integral approach: The path-integral (or functional-integral) description of

quantum open systems was pioneered by R. Feynman and F. Vernon in the early 1960's

[25, 26], and was modified by A. Caldeira and A. Leggett twenty years later [10]. The

applicability of this approach was first limited due to the factorization assumption for the

initial condition introduced by Feynman and Vernon, where the initial quantum states

of the Brownian particle and the environment are independent of each other. Since this

factorization is not practical from the experimental point of view, it is more reasonable

to consider non-factorizable initial states. Generalization of the path-integral approach

to include non-factorizable initial staves has been successfully accomplished during the

past few years [40, 85].

In the literature, in addition to the above three formalisms, there have been other

equivalent formalisms for quantum (harmonic) Brownian motion. They employ the pro-

jection operator [37, 69], the continued-fraction expression [89], the closed-time-path

integral (closed-time Green's function) [16, 83, 87], etc.

In the path-integral approach, the so-called influence functional, which can be cal- •

culated systematically for a given model ttamiltonian, carries information about the

environmental influence on the Brownian particle after reduction. Due to its systematic

calculational nature, the path-integral approach soon became the standard microscopic-



model approach to quantum Brownian motion. Many physically interesting problems

have been studied using this approach, and several generalizations have been proposed

[16, 17, 40, 49, 85]. It is widely believed nowadays that this approach is the best, if

not the only one for dealing with quantum (harmonic) Brownian motion in a general
w

environment. In contrast, the phase-space approach seems obsolete in the 1990's.

The aim of this dissertation is to introduce a modified phase-space approach to
qt

quantum harmonic Brownian motion, which is claimed to be more efficient than both

the orthodox phase-space approach and the path-integral approach. Before introducing

this novel approach, let us first take a closer look at the limitations and difficulties of

those conventional approaches.

For the microscopic-model approaches to quantum Brownian motion, the reduction

usually involves complicated calculations, especially with respect to the non-factorizable

initial states, since the total number of the environmental degrees of freedom is essentially

infinite. The only exception is in the quantum Langevin equation approach, where the

reduction is done by eliminating the degrees of freedom of the heat-bath oscillators from

the Heisenberg equation of motions [22, 28, 30]. But the price paid is the Limitation of

its applicability.

Since the complexity of microscopic-model approaches is mainly due to the reduction

operation, the calculations promise to be simpLified if we can find an appropriate repre-

sentative. In the literature, a few authors have noticed that the characteristic function,

which is the symplectic (or double) Fourier transform of the Wigner function, is the most

suitable representative for the reduction operation [33, 43, 96]. (Since the Wigner func-
I

tion is a quantum analogue of the probability density function, its symplectic Fourier

transform is called the characteristic function by analogy to probability theory.) The

characteristic function is not a quasi-probabiLity distribution function and hence has no

. direct physical meaning even in the classical Limits. However, as we will show in Chap. 5,

it gives an illuminating geometric meaning to the reduction operation in phase space.

Q In the modified phase-space approach, the characteristic function takes the place of

the traditional Wigner function as the representative of the density operator. In the

following, it will be shown through many practical examples that quantum harmonic

Brownian motion in a general environment can be studied with great efficiency in this

xi



modified phase-space approach.

This dissertationconsistsofthreemain parts:PartI (Chap.I-5)containsa review

ofallrelatedgeneraltheories,PartII(Chap.6-8)discussesthemechanism and validity
w

ofthemodel,and PartIll(Chap.9-11)formulatesthedynamics ofquantum harmonicI
J

I Brownian motion via the modified phase-space approach. The organization is as follows:

Chap. 1 formulatesallnecessarymathematics. Chap. 2 givesa reviewof classical

theoriesofBrownian motion.Chap. 3 studiesthreedifferentrepresentativesoftheden-

sityoperator:thecoordinaterepresentation,theWigner function,and thecharacteristic

function.The firsttwo aretheconventionalrepresentativesforquantum Brownian mo-

tion,and the thirdone isthe representativeto be used in our modifiedphase-space

approach.Chap. 4 reviewsthe phase-spaceapproachto quantum mechanics,i.e.,the

Weyi-Wigner-Moyal formalism.Aspects of similarityand the contrastbetween the

Wigner functionand the characteristicfunctionare discussed.Chap. 5 investigates

the generaltheoryof reduction.The advantageof usingthe characteristicfunctionin

performingreductionisshown throughexplicitformulas.

In Chap. 6,we deriveand solvetheclassicalaswellasquantum equationsofmotion

forthepositionofthe Brownian particle.Allresultsinthischapterareusefulforthe

subsequentdiscussion,among whichthefundamentalsolution(theGreen'sfunction)and

generalizedsusceptibilityareofspecialimportance.In Chap. 7,we study thethermal

(equilibrium)stateofthemodel system.A novelderivationofthefluctuation-dissipation

theorem forthismodel, which isvalidforallquantum linearsystems,isproposed.

Usingthefluctuation-dissipationtheorem,withoutdiagonalizingthemodel Hamiltonian,

we are ableto calculatethe correlationfunctionsof the Brownian particlefrom the

resultsofdynamicalproblemsinthepreviouschapter.The explicitform ofthethermal

equilibriumstateofthe Brownian particle,which isdefinedas a reducedstateofthe

thermalstateof the totalsystem,isconsequentlyobtained.In Chap. 8, we begin to

take the thermodynamic limit and construct the quantum dissipative heat bath model •

by specifying the spectral density. The quantum Langevin equation for the position

operator of the Brownian particle is constructed explicitly, and from it the validity of

the model is verified.

o.
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In Chap. 9, general formulations of the time evolution of the Brownian particle from

an arbitrary initial state in terms of the characteristic function are summarized. The

results are then applied to the following two chapters: Chap. 10 studies the dynamics

of the Brownian particle with factorizable initial states, which covers many important
.°

results previously obtained via the path-integral approach in the literature; Chap. 11

analyzes the time evolution of non-f_torizable initial states, with three explicitly solved
b

examples following the general formulation.

Finally, several possible generalizations of this modified phase-space approach are

discussed in the Conclusion and Outlook.

ooo
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Chapter 1

Mathematical Preliminaries

1.1 Notations and Conventions

Throughout this paper the Boltzmann constant kB is set equal to unity and 8 -1

denotes the temperature, with h--- 1 unless otherwise specified. The symbol, denotes

complex conjugate, t denotes Hermitian conjugate, 7"denotes transpose of a matrix, and

--r denotes inverse of the transpose of a matrix. Wherever E appears, it is understood

that the limit e--,0 + has been taken.

The physical system under consideration is an N-mode system, which contains ex-

actly N = (n + 1) coupled harmonic oscillators, among which the 0-th mode corresponds

to the one-dimensional Brownian particle and the other n modes to the heat bath. The

indices or subscripts i and j always run from 0 to n, while g runs from 1 to n. The

subscript for the 0-th mode, i.e., the Brownian particle, will be dropped if there is no

ambiguity.

We use _ = (x, xl, x2, • • ", xn) and k = (k, kl, k2, • •., kn) to denote the N-dimensional

canonical coordinate and momentum, respectively, and Q and _bfor the N-dimensional

position and momentum operators corresponding to _ and k. The canonical commuta-

tion relations are

[_i,'_j]-- [fi,/_./]= O, [,_/,/_./]= i6iji, (1.1)

where i is the identity operator. The Hilbert space upon which these operators act is

the tensor product of the Hilbert space corresponding to each of the quantum harmonic



oscillators of the system. Note that we shall never employ creation or annihilation

operators in this paper.

We then use z = (x, k) to denote a row vector in the 2N-dimensional phase space,

and use _- (¢), lb) for the operator-valued vector corresponding to z. Following this con-
t

vention, we shall always use the lower case, bold-faced letters to denote the row vectors

unless otherwise specified. These row vectors work as the row matrices in matrix multi-

plications. The two-dimensional phase space spanned by (x, k), the canonical coordinate

and momentum of the Brownian particle, will be called the Brownian phase plane.

To each harmonic oscillator of the system we assign a characteristic mass mj and

a characteristic frequency wj > 0, so that it acquires a characteristic length (mjwj)-½.

The 2N × 2N scale matrix g is defined accordingly as

g = diag moWo, mlwl,..', rn,.,Wn, moWo ' mlwa ' ' ' (1.2)

This g is a symplectic matrix since it satisfies

g'rjg _ j, and det(g) = 1, (1.3)

where

J = (Iv = N x N unit matrix) (1.4)
-I_ 0

is the 2N x 2N metric matrix in a 2N-dimensional symplectic vector space with the

following properties:

j-_ = j'r = _j. (1.5)

The 2 x 2 matrix gj is a submatrix of the scale matrix g defined as

(mjwj 0 ) (1.6)" gJ= 0 (mj_) -1 '

and the 2 x 2 analogue of the metric matrix J is denoted by

J= -1 0 "

The elements of every 2Nx2N matrix are labeled by the indices 0, 1, ...... , (2N-1),

e.g., the upper-left element is (0, 0) and the lower-right element is (2N-1, 2N-1). For



a given 2N x 2N matrix M, the matrix [[M'_ is a 2 × 2 submatrix of M defined as

IIMll = M_o MNN '

hence

NM_ = j JIM,I, etc. (1.9)

The Heaviside unit step function 6(w) is defined as

1, w_>0;
0(w) = (1.10)

0, w<0.

The Dira_c delta function of X is denoted by 5(X), where X can be either a scalar or a

ve:tor variable. Since 6(t) is symmetric with respect to t = 0 for a scalar t, we have

ohdt6(t)x(t) = {X(0), (1.11)

where A > 0, and X(t) is an arbitrary function of t.

For dynamical problems, the initial conditions are always chosen with respect to

time t = 0. The symbol ._ denotes the time derivative of X, etc. The (asymmetric)

Fourier transform of f(t) in the time domain to F(w) in the frequency domain is defined

according to the convention in linear response theory:

+oo

f dtexp(&,_t)y(t), (1.12)
.P(w)

--00

hence the inverse transform is

+oo

/(0 = (1.13)

and we say that f(t) and F(w) form a Fourier transform pair.

The Laplace transform of f(t) is defined as

L£s{f(t)} = f[s] = dt exp(-st)f(t), (1.14)

where 8 is a complex variable with Re(s) bounded from below. The Fourier-Laplace

transform of f(t) is defined as the Laplace transform of f(t) with s=-iw.

In contrast to using () for an operator, the notation l_d will be used for a random

variable. Therefore (I_r) denotes the expectation value of the random variable IYdwith

4



respect to a probability density, which is analogous to (_)>for the expectation value of

the operator O with respect to a quantum state. If it is necessary, a subscript will follow

the bracket ( > to specify the probability density or the quantum state.

All integral formulas used in this paper can be found in [41]. For improper integrals,

the symbol Pr indicates the Cauchy principal value.

1.2 Symplectic Algebra and Group

1.2.1 Inhomogeneous Symplectic Group

We adopt the definition of canonical transformations as transformations which pre-

serve the Poisson brackets [5, 36] of the canonical variable z defined in Sec. 1.1. Ac-

cording to this definition, the linear canonical tramsforraation contains the following two

transformations as special cases:

(1) Translation in phase space:

z _ z- Zc, (1.15)

where z¢ is a constant vector in the 2N-dimensional phase space. The group corre-

sponding to this transformation is the translation group T(2N). It is a 2N-dimensional

Abelian Lie group.

(2) Symplectic transformation:

zT _-0 Mz T, (1.16)

where M isa 2N x 2N realsyrnplecticmatrixthatsatisfiesM vJM = J.The groupwhich

correspondstothistransformationisthesymplecticgroupand isdenotedby Sp(2N, R)

[32]. It is an N(2N+l)-d_mensional Lie group.

It is obvious that the combination of the above two transformations gives the most

general linear canonical transformations in the 2N-dimensional phase space, and the cor-

responding group is the semi-direct product of T(2N) and Sp(2N, R), which is usually

denoted by T(2N)®sSp(2N, It). We will call this group the inhomogeneous symplectic

group and denote it by ISp(2N, R). The action of ISp(2N, R) on z is the general linear

canonical transformation defined according to

z_"_ M(z - Zc)"r. (1.17)

I
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If we take the scale of each mode into account, it is convenient to decompose lYl into

M = g-½Sg½. (1.18)

Since g is a symplectic matrix, so axe g½, g-½, and hence S.

1.2.2 Weyl-raetaplectic Group

According to the canonical commutation relations (1.1), the vector space spanned

by {i,_i,_5,_i_5,_i_j,¢_li_j+_j_i} is a Lie algebra. It will be shown below that the

group of unitary operators corresponding to this Lie algebra is the quantum analogue of

ISp(2N, R).

First, we shall study the quantum analogue of T(2N). It is a (2N + 1)-dimensional

Lie _oup of unitary operators with its algebra spanned by {i, _/,/_j}, i.e., the Weyl

(or Weyl-Heisenberg) algebra. We will call this group the Weyl group and denote it by

W(2N). It is a central extension of the Abeliem group T(2N) [88].

The elements of W(2N) are the unitary operators with the form

=o)= {iei+ (1.19)

where 0 is a real number and zc is the same constant vector as in (1.15). The action of

T(O, zc) on _"is defined according to

zo)= (1.20)

This operation is formally isomorphic to (1.15), the translation in phase space made by

the group T(2N). Therefore we obtain the following group isomorphism:

W(2av)/{exp(iei)} _ W(2N)/U(1)_ T(2N). (1.21)

q

Next, we study the quantum analogue of Sp(2N, It). It is an N(2N+l)-dimensional

Lie group of unitary operators with its algebra spanned by {qi_j,_i)j, {i)._ +/3j{i}.

We shall show that this Lie algebra is isomorphic to sp(2N, R)---the Lie algebra of

Sp(2N, It), and thus the group acquires the name metaplectic group Mp(2N, l:t) [27,

64, 92]. The elements of the Lie algebra of Mp(2N, R) axe the anti-Hermitian operators



of the form

¢(m)- T(,_,i,)g½_, u g_(0,i,)"

_ 2

- _-,_Jg-_mg_', (1.22)

where a and b are N x N symmetric real matrices, and

m -- e_p(2_,R) (1.2a)
a c

isa 2N x 2N realmatrix[32].Introducingthescalematrixg isnecessarysincewe have

to distinguishsqueezedstatesfrom coherentstatesinthefollowingdiscussion.Note that

g-_mg_ E sp(2N, R).

From the canonical commutation relations, we have

= (1.24)

and

thusthe LieMgebra ofMp(2N, R) isisomorphicto sp(2N,R).

The actionof exp{{1(m)}E Mp(2N, R) on _ can be definedand calculatedfrom

(1.24)

where exp(-m) ¢ Sp(2N, R), hence g-_ exp(--m)g_ E Sp(2N, R). Therefore this action

induces an element in Sp(2N, R).

Let us next generMize (1.26) by replacing g'_ exp(-m)g½ in (1.26) by a generM

element M in $p(2N, R) which is defined as in (1.18), we then try to find a unitary

. operator$(M) inMp(2N, R) suchthat

$(M) _,T_t(M) = M_T = $-_Sg½_Cr. (1.27)

From linearalgebraand group theory,we know thatthereisa uniquepolardecompo-

sitionS = RP forany elementS of Sp(2N, R), where R isorthogonal,P issymmetric



and positive definite, and both R and P are in Sp(2N, 1_). Therefore we can always put

S =exp(mR)exp(mp), where R _-exp(mR) and P = e×p(mp), and both m R and mp are

elements of sp(2N, R) (rap is symmetric and unique, while mR is anti-symmetric and

not unique) [64]. The element S(M) in Mp(2N, It) which is unitary and satisfies (1.27)
o

can be constructed as

However, among all elements of Mp(2N, It), there are exactly two which give the

same matrix M in (1.27), i.e., :t:S(M). The reason that-S(M) also belongs to Mp(2N, R)

is because of the following identity:

where c is any non-zero real number. Hence we see that Mp(2N, R) is a doubly covering

group of $p(2N, It):

Mp(2N,R)/{±i} _ Sp(2N,1_). (1.30)

Now we axe ready to define the group which corresponds to ISp(2N, R). It is the

semi-direct product of W(2N) and Mp(2N, it), i.e., W(2N)®,Mp(2N, R). We will

denote this group by WMp(2N, R) and define its element as the unitary operator

_(8, zc)$(M). The transformation of _ under WMP(2N, R) is defined as

which is formally isomorphic to (! .17).

1.2.3 Diagonalization by $ymplectic Congruence Transformations

Theorem [93, 102]: If M is a symmetric and positive definite 2N x2N real matrig, then

there exist two matrices $1, S2 E Sp(2N, R), such that
d

(.00) (o.0)s_- s_ s2, (1.32)

wheren --di g( o, with



19_rnarks:

(I)S _ Sp(2N, R) ifand onlyif5TJS=J by definition.

(2) f/5's are not eigenvalues of M in general. We will call them the "symplectic

eigeavalues" of the matrix M.
a

(3) The eigenvaiues of JM are :t=i_5's, hence we can calculate the symplectic eigen-

values f_j's from JM as an ordinary eigenvalue problem.

(4) If the matrix Cj corresponds to a two-dimensional rotation on the (xj, kj) phase

plane, then

(0"0) ,(o o)(oo)Cjr Cj = Cj Cj ---- . (1.33)
f_ 0 _ 0

Therefore51 in(1.32)can be repl_cedby CjSI and isnot unique.

(5) 52 can be constructed from 51 as

(o 0)S_ _ $1, (1.34)
0 f_½

hence 5_ is not unique either.

1.3 The Weyl Operator and the Wigner Operator

1.3.1 Squeezed Coherent _tates and the Weyl Operator

Let 10) denote the direct product of the ground states of N independent harmonic

oscillators with masses mj and frequencies wj defined in Sec. 1.1. In the coordinate

representation this ground state takes the form

< }11 _ (1.35)= exp -2rnjwjzj ,
,

3

where _ is a vector in the N-dimensional configuration space.

According to the theory of generalized coherent states [74, 106], we define the N-

mode squeezed coherent state as the generalized coherent state corresponding to the

• group _VMp(2N, R) with 10> as the fiducial state:

_(O, z¢),5'(M)lO), (1.36)

where _(0, Zc)S(M) is an eleraent of WMp(2N, R) as defined in Sec. 1.2.2. Since the

fiducial state 10> is invariant under the action of some elements of WMp(2N, R), the

9



squeezed coherent state defined above is equivalent to [66, 104]

/)(z=) e×p{_(-mp)}10) =/5(z=)_(g-½ exp(mp)g_ )10>, (1.37)

where/)(zc) is called the Weyl operator (or the phase-space displacement operator):

D(zc)- exp{/_Jz:} - exp{/(kc. _ - xc. 15)}, (1.38)

which is an element of W(2N) with 0=0, and exp(mp) is a positive definite symmetric

2N x 2N syraplectic matrix.

As a special case of the N-mode squeezed coherent state defined above, the N-mode

coherent state is defined as [34, 55, 81]:

Iz=> =/)(z=)10>. (1.39)

Because z¢ is a vector in the 2N-diraensional phase space, there is a one-to-one corre-

spondence betvceen lz¢> in (1.39) and the phase space made of z¢.

The set of coherent states {Iz)[ zeR 22v}forms an overcomplete basis of the Hilbert

space for the total system because of the following resolution of the identity:

+oo

/ d_zl_><_l= (2_)"i. (1.40)
--OO

The following formulas are useful for later discussion:

b'(_) = b-_(_)= b(-_), (1.41)

b(_)_(-_) = _- _, (1.42)

b(_l)b(_2)= D(zl + z2)exp{-_zlJz_}, (1.43)

/)(zl)/)(z=)b(z3 ) =/)(Zl + z= + z3) exp {--_(zlJz_ + zlJz_ + z2Jz_)}, (1.44)

-----/)(z2) exp{-izlJz_ } , (1.46) •

(olb(z)lo)-- exp {--¼zgz T} e R, (1.47)

i "r
(zl[z_) = (z2lzl)" = exp {-_(zl--" z2)g(z,- z2) "r + "_zlJz2}. (1.48)

10



1.3.2 The Parity Operator and the Wigner Operator

We definetheparityoperatorIIasa unitaryoperatorwhichgeneratesthefollowing

transformationon _ [42]:

" II _ T_'= -_. (1.49)

• By the uniqueness theorem of von Neumann, II is determined up to a phase. If we also

demand that

fl-'=fl,_-dill0>= Io), (1.s0)

thentheparityoperatorflisuniquelydeterminedas a specialelementofWMp(2N, R)

[783:
+oo

I_I= (41r)-"/ d2"zD(z)= exp {-_lr(_'g_V-Ni)}, (1.51)
--OO

where -_(_g_V-Ni) is usually called the number operator for the total system.

The Wigner operator Z_w(z) is defined as the symplectic Fourier transform of the

Weyl operator D(-z):

+co

£w(z) = (27r)-2N J d_"¢ exp (-i_Jz v} b(-_), (1.52)
_OO

i.e., Aw(z) and D(-z) form a symplectic Fourier transform pair. The inverse of the

above relation is

.oo

D(-z) = / d_"¢ exp{-i_Jz "r} £w(_). (1.53)

Using (1.46) and (1.51), the explicit form of the Wigner operator can be obtained as

[9, 68]

£+(_) = _-_b(2_)I_ = _-_fib(-2_), (1.54)

• hence _w(z) is an element of WMp(2N, R). It is easy to prove that _w(z) is a

Hermitian operator, and

+oo

f i
_OO

11



The transformation of the Wigner operator under WMp(2N, R) is defined as

= _¢t(M)bt(z_)Aw(z)b(z.) 5'(M)

=a_((,-_o)M'), (_._6)

hence this transformation induces a linear canonical transformation on the argument of

the Wig_er operator, which is isomorphic to the linear canonical transformation (1.17).

1.3.3 Trace and Pseudo-trace of Operators

The pseudo-traceofan operatorf(_)isdefinedintermsofthe coherentstatebasis

asfollows:

+oo

tr(]({')) = (2_') -N f d_Nz_zkf({')lz). (1.57)

Using (1.40),we can provethatif](¢')isinthetraceclass[75],i.e.,theordinarytrace

Tr(f(_))isa finitecomplexnumber and isindependentofthe choiceofthe basis,then

=
Thereforethe pseudo-traceofa trace-classoperatorisidenticaltotheordinarytraceof

thisoperator.

Although theparityoperator,Weyl operator,and Wigner operatorare not inthe

traceclass,we stillhave weU-definedpseudo-tracesof theseoperators.The following

formulaswillbe usefulinlaterdiscussion:

t_(_)=2-", (1._9)

t_(b(_))=(2,_)"6(_), (_._o)
i,

t_(a,,(_))=(2,_)-", (1.61)

tr(b(z,)b(z2)) = (2_r)_(z, + z2), (1.62)

12



In the fonowmgcontext, we will also need to use the general result that if ]({')_({')

is in the trace class, then

Tr(](_')O(_')) = Tr(O(_')](_')). (1.64)

1.4 Stochastic Processes

this section we shaU review the theory of stochastic processes with a continuous

parameter and a continuous state space. The continuous parameter will be denoted by

t _ 0 and interpreted as time. For the stochastic process formulations, we shall always

use m, n E N for the subscripts, and 0 _ tl _< t2 _ t3 ...... for the time moments

throughout this paper.

1.4.1 Definitions and Theorems

A (stochastic) process _(t) can be naively defined as a time dependent random

variable which is described by a set of probability densities Pn(Yl; it, Y2; t2," ", Yn; tn),

among which Pl(yl;tl)=_P(yl;tl) is the probability density that _(t) has the value Yl

at time tl (which is usually called the distribution function by physicists), and in general

Pn(Y_; t_, Y2; t2,..', Yn; tn) is the joint probability density that _(t) has the value Yt at

time tl, Y2 at time t2, ..., and Yn at time tn. These (joint) probability densities satisfy

the following consistency conditions [53]:

Pn(yl;tl,y2;t2,'" ",yn;tn) >_O, (1.65)

. / dymPn(yl;tt, y2;t2,'",yn;tn)
--00

= Pn-l(yl;tl,'" "ym-1;tm-l, ym+l;tm+l,'",yn;tn), 1 < in <_n, (1.66)

+oo

/dylP(yl;tl) = (1.67)1,
--00

13



and Pn(yl;tl,Y2;t2,'"",yn;tn)issymmetric with respectto the exchange of any two

pairs(ya;t,)and (yb;tb),where 1_<a,b<_n. A stochasticprocessZ)(t)iscalleda multi-

vaxiateprocessif_(t)isa random-vaxiable-valuedvectorwithmore thanone component,

otherwiseitiscalleda one-variable(orone-dimensional)process.In thefollowing,we

shalldealwithone-variablereal-valuedstochasticprocessesunlessotherwisementioned.

v tThe mean ofa processy( )isdefinedas
J

+co

(#(t)} = / dyP(y;t)y. (1.68)
--OO

The m-th moment of _(t) is defined as

+oo

= / dyldy2.. "dymPm(yl; tl, Y2; t2," ", ym;tm)ylY2" "Ym

1.

(1.69)
wOO

if the integral converges, otherwise we say that there is no m-th moment for this process.

A process with an m-th moment is called an m-th order process. The (auto)-correlation

function of a second-order process _(t) is defined as

The conditional probability densities of a process are defined as

Pmln(Yl; tl, y2; t2." "Ym; tmlYm+l; tin+l, • ' •, Ym+n; tin+n)

_ Pm+n(Yl; tl, y2; t2"" ", Ym+n; tin+n) (1.71)
- Pm(yl;tl,'" ", ym; tin) '

q

among which

P2(Yl;tl, Y2; t2) (1.72) •
Plll(Yl;tl[y2;t2) - P(yl;tl[y2;t2) = P(yl;tl)

is usually called the transition probability density because of the following identity:

+co

t2) = f dylP(yl; tl[Y2; t2)P(yl;tl). (1.73)
P(Y2;

--00

14



It then follows that P(yl; tly2; t)=6(yl - Y2), which is independent of t.

A stochastic process y(t) is called stationary if for all n:

or equivalently,

• Pn(yl;tl "{"at, y2;t2 Jr At,. "',yn;tn + at) = Pn(Yl;tl, y2;t2," "', yn;tn). (1.75)

For a stationary process, P(Yl; tl) = P(yl) is time-independent, and P2(yl; tl, Y2; t2) =

P2 (Yl; 0, Y2;t2-tl ). In other words, the mean of a stationary process is time-independent,

and the correlation function

is an even function of (tl - t2).

A stochastic process ._(t) is called Gaussian if the (joint) probability density Pn(yl;tl,

Y2; t2,-- ", yn; tn) of this process is an n-dimensional Gaussian distribution in (yl,"" ", Yn)

for every n. A Gaussian process is completely determined by its mean and correlation

function.

A stochastic process t)(t) is called Markovian if

Pm[l(yl;tl,y2;t2,'",ym;tm[Ym+l;tm+l)- P(ym;tmlYm+l;tm+l) (1.77)

for every m, hence it is fully determined by P(yl; tl) and P(yl; tl[y2; t2). For a Markovian

process, the transition probability density P(Yl; tlly2;t2) must satisfy the (Bachelier-

Smoluchowski-) Chapman-Kolmogorov equation,

+oo

P(Yl; tllY2; t2) = ] gyP(y1; tl[y;
t)P(y; tlY2; t2), (1.78)

--OO

where tl _<t _<t2.

• A stationary Ganssian process _(t) is Markovian if and only if

This is usually called Doob's theorem [97].
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The power spectrum (orthe spectraldensity)ofa stationaryprocess9(t)isdefined

as theFouriertransformofitscorrelationfunction((,_(t)z)(O))):

+oo

_00 "

+oo

= (1.80)

The power spectrum Iy(w)is an even function of co because the correlation function is

an even function of t. Note that there is an equivalent definition for the power spectrum

in terms of the Fourier transform or Fourier series of _(t). If we use this alternative

definition, then (1.80) follows as the famous Wiener-Khinchin theorem.

For a given stochastic process _(t), if we have an explicit expression _(t)= Y(&; t),

where & is a A-dimensional multivariate random variable (A E IN), and the probability

density T'(a) for & is given. Then the probability density for the process _(t) can be

obtained as

+oo

--00

and in general, for those joint probability densities:

Pn(Yl; tl, Y2; t2,'' ",Yn; in)

_00

-- (8(Yl- Y(&; tl))8(y2- Y(&; t2))""8(yn - Y(&; tn))). (1.82)

Hence we have

-boo

--00

and

-boo

(_l(tl)_/(t2).'._/(tn)) = f d_aP(a)Y(a;tl)r(a;t2)'"r(a;tn), (1.84)

which are analogous to the quantum-mechanical formulations in the Heisenberg picture.
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1.4.2 Stochastic Differential Equations

Roughly speaking, a stochastic differential equation is a differential equation which

connects two or more stochastic processes. For example, the following is a second-order

. stochastic differential equation:

+ + =

where I2¢'(t) is a given process and _(t) is the unknown one, and Co and cl e R. If the

given l_(t) is stationary, although the stationary solution always exists, in general there

are many other non-stationary solutions for (1.85). For the stationary solution of (1.85),

its power spectrum can be determined by Fourier analysis as follows [103]:

Iw(_,) I" (1.S6)X,(_,) = i__, _ _ i_,_, + Co "

Hence the correlation function of the stationary solution is determined according to the

above algebraic relation.

As a generalization of the stochastic differential equation (1.85), let us consider the

following stochastic integro-differential equation for #(t):

t

_t(t) + [ drb(t - r)_(r) + Cog(t) = IYd(t), (1.8_)
d-- cO

where W(*) is a given process and b(t) is the memory kernel. It is obvious that (1.87)

contains (1.85) as a special case. We can also Fourier analyze (1.87) and get the power

spectrum for the stationary solution as

iv(w ) = Iw(w) (1.88)- +col'
where b[-/w] is the Fourier-Laplax:e transform of b(t). Hence the correlation function of

• the stationary solution for (1.87) is determined by the above relation.
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Chapter 2
,+

Classical Theories of Brownian

Motion

2.1 Historical Remarks

Brownian motion [71] was first discovered by the English botanist R. Brown in 1827

from the observations of tiny pollen grains immersed in a liquid. The cause of this kind

of motion was in debate for decade,: until A. Einstein proposed a sound kinetic theory

in 1905 [24]. Einstein considered Brownian motion of many identical free particles as a

diffusion process, and derived the diffusion equation as the equation of motion for the

number density of the Brownian particles under certain approximations. At the same

time, and at first independently, the Polish physicist M. Smoluchowski used the same

approach but a different mathematical formulation to study this problem. In a paper

published in 1906, Smoluchowski generalized Einstein's theory of Brownian motion to a

particle in an external force field.

In 1908, P. Langevin derived the first phenomenological dynamical equation for Brow-

nian motion, in which the force from the environment acting upon a Brownian particle

is separated into two terms--the friction and the random force [60]. On the other hand,
i

in the 1910's A. Fokker, and later M. Planck, derived the equation of motion for the

distribution function of the Brownian particle, which is now called the Fokker-Planck

equation and is mathematically equivalent to the Langevin equation. The generalization

of the Fokker-Planck equation was made by It. Kramers, and later by J. Moyal, in the
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1940's [53, 77].

In 1923, N. Wiener studied the mathematical model for Brownian motion and gave

a concise and rigorous definition of the stochastic process corresponding to the dis-

placement of a Brownian particle, known as the Wiener process [100]. Later, other
o

mathematicians including A. Kolmogorov, W. Feller, P. Ldvy, and J. Doob also made

important contributions to the mathematical theory of Brownian motion.
q

In 1930, L. Ornstein and G. Uhlenbeck modified the Langevin equation by giving

an explicit definition of the random force [94]. Their theory then became the most

well-known classical theory of Brownian motion. In the 1960's, H. Mori, and later

R. Kubo, made a further modification to the Langevin-Ornstein-Uhlenbeck theory by

generalizing the Langevin equation to an integro-differential equation, which is now

called the generalized Langevin equation [56, 69].

In the following we shall give a short review of these classical theories. This review

does not exactly follow the historical development, and the discussions will be restricted

to one-dimensional Brownian motion.

2.2 Einstein-Smoluchowski Theory

In the Einstein-Smoluchowskitheory,Brownian motion istreatedas a diffusion

processofmany identicalBrownian particles,withtheassumptionthatthecauseofthis

diffusionistherandom bombardment from theenvironmentalmoleculesdue tothermal

motion. The mathematicalmodel they consideredisessentiallythe one-dimensional

continuous-timerandom walk.

InEinstein'soriginaltheory[24],he consideredtheBrownianparticlesasan ensemble

I ofmany initiallyidenticalfreeparticlesin thermalequilibriumwith the environment.

The distributionoftheseBrownian particlesisdescribedby thenumber densityn(_;t),t

where x isthe coordinatein configurationspaceand t isthe time elapsed.Einstein

thenshowed thattheequationofmotion forthe number densityn(x;t)isthediffusion

equation

Using theories in thermodynamics and hydrodynamics, Einstein was able to give an
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explicitexpressionforDx, the configuration-spacediffusioncoefficient,as

(2.2)Ox- 8'

where # is the mobility of a Brownian particle and _-t is the temperature of the envi-

ronment. Eq. (2.2) is known as the Einstein relation.

For the initial condition that all Brownian particles are at the origin when t = 0, i.e.,

n(_, 0)= A/'_(x) with N' being the total number of the Brownian particles, the solution

of the diffusion equation (2.1) is

n(z; t) = _ exp 4Dxt " (2.3)

It then follows that the mean displacement of a Brownian particle is zero, while the

root-mean-square displacement is

which is the main result in Einstein's theory.

In Smoluchowski's paper, instead of using the number density, he discussed the tran-

sition probability density P(zo; 0[_; t) for the probability density that a Brownian particle

makes a transition from Xoat t=0 to x at t. The Smoluchowski equation for P(zo; 0]x; t)

takes the form [52]

[o 0,]-_ - _ V'(x) - Dx-_x _ P(zo; 0ix; t) = 0, (2.5)

where

OV(x) (2.6)- V'(z) -- 0x

is the external force acting upon the Brownian particle, and # and Dx are the same

as those in Einstein's theory. The initial condition of the Smoluchowski equation is

obviously P(x0; 0Ix; 0)= &(x- x0). If the external force is set equal to zero, then (2.5)

reduces to •

- D_-;_ P(_o;Olx;t)= O, (2.7)
h

which can be interpreted as the equation for the Green's function of the diffusion equation

(2.1) in Einstein's theory since
+0o

= / d:toP(:_o;Ol_;t)n(zo;O) (2.8)r_(x; t)
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for an arbitrary initial number denrity n(_o; 0).

From the general theory of random walks, we know that the displacement of a Brow-

nian particle in the Einstein-Smoluchowskl theory is a Markovian process. However, the

momentum of a Brownian particle is not well-defined in this theory.

2.3 Wiener Process and White Noise
d

The Wiener (orWiener-L_vy)processI_(t)[53,i00,103]isa stochasticprocess

whichmodels thedisplacementofa freeBrown|anparticleintheEinstein-Smoluchowski

theory.Itisdefinedby thefollowingconditions:

(i)l_(t)isalmosteverywherecontinuous;

0i)gv(0)=0;
(iii) [IYV(t2)- l_(tl)] has a Gaussian distribution with mean 0 and variance 2Dw(t2-tl);

(iv) IYV(t) has independent increments, i.e., [_(t2) - l/g(tl)], [lY¢(t3)- lYV(t2)], ..,

[l_(tn) - t_(tn-1)] are mutually independent.

It can be proved that the probability density for the Wiener process defined above

takes the form

- }" (2.9)v(w;t)= {

The Wiener process l_(t) is both Gaussian and Markovian, but it is not a stationary

process. Although the original Wiener process is designed for describing the displacement

of a free Brownian particle, wherein Dw = D= for this interpretation, the time derivative

of the Wiener process serves as the mathematical model of the idealized random force, the

so-called white noise. Rigorously speaking, white noise thus defined is not an ordinary

stochastic process, but it can be understood as a generalized stochastic process just as

. the delta function may be regarded as a generalized function.

. 2.4 Langevin-Ornstein-Uhlenbeck Theory

Langevin's approach to Brownian motion is a phenomenological dynamical theory

[60]. For a single Brownian particle in thermal equilibrium with the environment, the

time-dependent force that the environment acts upon the Brownian particle is due to the
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incessant impacts from the environmental molecules. Langevin's idea was to separate

this time-dependent force into two parts: (i) a time-average-out part, which represents

the time-independent friction experienced by the Brownian particle, and (ii) a rapidly

fluctuating part, usually called the random force, which is time-dependent with zero time

average. The most general Langevin equation for one-dimensional Brownian motion

takes the form
Q

m (t) + + v'(x(t)) =/(t), (2.10)

where m and _ are the mass and position of the Brownian particle, respectively, f(t)

is the random force, -V_(m) represents the external force due to a given potential as

defined in (2.6), and -m75 corresponds to the friction which is proportional to the

velocity _ according to Stoke's law in hydrodynamics (m7 > 0 is usually called the

friction constant). If the external force is zero, then (2.10) can be simplified into

k(t) + .yk(t) = f(t), (2.11)

where k = m_ is the momentum of the Brownian particle.

Using (2.11), with the assumption that the Brownian particle is in thermal equilib-

rium with the environment, Langevin was able to rederive the Einstein relation with

=

In the Ornstein-Uhlenbeck theory [94, 97], the Langevin equation is implicitly re-

interpreted as a stochastic differential equation with a well-defined random force. In our

notation, the Langevin equation (2.10) in the Ornstein-Uhlenbeck theory becomes

+ + =/(t), (2.12)

with the random force ](t) defined explicitly as a generalized stochastic process which

is characterized by [53, 56, 57, 77]:

(I) (](t))=0 from Langevin's original assumption.

(II) ((](tx)](t2))) = (](t_)](t2)) = 2D_,5(tl - t2) with Dk > 0, which means that there

is no correlation between the random forces at different times, i.e., the random force

is purely random hence stationary. The power spectrum of this random force is 2D_,

which is frequency-independent. Therefore this random force acquired the name white
0

noise.
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(III)/(t)isa Gaussianprocessaccordingto the centrallimittheorem. Sinceitis

assumed thatBrownian motion istheresultofa greatnumber ofsuccessiveimpactsdue

to thermalmotion oftheenvironmentalmolecules.

The whitenoisedefinedaboveisexactlythetimederivativeoftheWiener processdis-

cussedin Sec.2.3withDw-_ D_. Itwillbe shown laterthatDk isthemomentum-space

diffusioncoefficient.In the following,we shalldiscusstwo examples ofthe Langevin-

Ornstein-Uhlenbeck equation [97]:

(I) Brownian motion of a free particle:

+ =/(t), (2.13)

which is an analogue of (2.11). According to the discussion in Sec. 1.4.2, we have for the

stationary solution:

2Dk (2.14)- + ,
i

and the correlation function follows as

-y

Because the white noise ](t) is a Gaussian process, so is this stationary momentum

process _(t). Hence we see that this _(t) is a Markovian process according to Doob's

theorem. On the other hand, it follows that the corresponding position _(t) of the

Brownian particle is non-Maxkovian. This stationary momentum process k(t), or the

corresponding velocity process, is usually called the Ornstein-Uhlenbeck process.

Taking the mean of (2.13), we get the differential equation for (k(t)) as

d

dUI_(t))+ _<k(t))= 0. (2.16)

• From thesolutionto theabove equation,

(k(t))--(k(0)) exp(--yt), (2.17)
t

it is obvious that (k(t)}-_ 0 for the stationary solution of (2.13), which corresponds to

(i) (k(0)) =0, or (ii) t_oc. Hence we find that for the stationary solution:

(k'(t)k(0)) -- ((k(t)k(0)_) --- D----_-kexp (-')' [t0 . (2.18)-y
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Settingt=0 in(2.18),we get themomentum varianceofthe Brownian particle:

Dk (2.19)=T
Comparing withtheequipartitionlawinclassicalstatisticMmechanics,we can determine

theexplicitform ofDk as

mV
Dh -- ---. (2.20) "

(II) Brownian motion of a harmonic oscillator:

_(t)+ _(t) + _0_(_)=](t___), (2.21)
m

where _ is measured from its balanced position with respect to the Hooke force, and Wo

is the characteristic frequency of the Brownian particle as a harmonic oscillator. For the

stationary solution:

2Dk/m_ (2.22)I_(_)= (__ _0,)_+ (_)_,
hence

2Dkw2 (2.23)x_(_)= (__ %,)_+ (_)_.

From the above two power spectra for _(t) and k(t), we find that neither _(t) nor k(t)

is Markovian. However, it will be shown in Sec. 2.6 that (_(t),k(t)) is a multivariate

Maxkovian process with respect to this harmonic Brownian motion.

2.5 Generalized Langevin Equation

The limitation of the Langevin-Ornstein-Uhlenbeck equation can be easily seen from

the correlation function (2.15). As a_t even function of t, it is not differentiable at t = 0

since there is a cap at theft point. It then follows that the correlation function

is not weU-defined. This defect is due to the idealized assumption that the random force

is a white noise. For small t, Eq. (2.15) represents the correlation between two momenta

separated by a very short time interval. But from physical considerations, the Brownian
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particle suffers only a few or even no impacts during a very short time, and the white

noise assumption is obvious invalid for this situation [56, 59].

In order to take into account the phenomena involving small time intervals, wherein

the time scale of thermal motion of the environmental molecules is not very much shorter

than that of the Brownian particle, the assumption that the random force is purely ran-

dom, i.e., delta-correlated, has to be abandoned. Accordingly, we also have to abandon
o,

the assumption that the friction is determined by the instantaneous velocity of the Brow-

nian particle, the so-called ohmic dissipation, and replace it by a retarded friction which

corresponds to non-ohmic dissipation [57].

The generalized Langevin equation, proposed by Mori and Kubo [56, 57, 69], is a

natural generalization of the Langevin equation which comprises the above more delicate

considerations. The generalized Langevin equation corresponding to (2.13) takes the

form

/2+ d,-r(t- (2.25)

and that corresponding to (2.21) is

_(t) + drrCt- r)_Cr) + w_Ct) - _'(t) (2.26)

where _(t) is the counterpart of the white noise f(t), and r(t) is the memory kernel

which satisfies [30]

lim r(t) = o. (2.27)

Conventionally, r(t) is defined as an even function of t. This does not violate the

causality principle since the upper limits of the integral terms in these two generalized

Langevin equations are t instead of +c_.

" Eqs. (2.25)and (2.26)reduce to (2.13)and (2.21), respectively, when _(t)=](t) and

r(t)=2 6(t) according to (1.11).

For the random force _(t) in the generalized Langevin equation (2.25) and (2.26), it

is still reasonable to assume that/_(t) is Gaussian, stationary, and zero centered, hence

it can also be characterized by its correlation function. In order to ensure that the

system achieves an equilibrium state, whose characterization is independent of F(t), it
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is necessary to assume that the memory kernel r(t) and the correlation function of F(t)

are related by the following relation [18, 57]:

((_(t)_(0)))- mr(t) (2.2s)"

The Fourier transform of the above relation gives the power spectrum of F(t):

Woo ,.

_rF(_o)-_ et _xp(/,_t)r(t)= _____2mt[-/_], (2.29)

where r[-_] is the Fotu'ier-Lapla_e transform of r(t). Since IF(_O) is frequency-

dependent, the random force _(t) is usually called colored noise in contrast to the

white noise defined in See. 2.4. Therefore we conclude that in general the white noise is

associated with ohmic dissipation, while the colored noise is associated with non-ohmic

dissipation.

From the results in Sec. 1.4.2, we have for the stationary solution of (2.25)"

It(,.)

i_(,_)= i__,'+r[__l[_, (2.ao)
which corresponds to a correlation function which is smooth at t = 0 in general [103].

Similarly, for the stationary solution of (2.26), we have

XF(w)/m_ (2.31)

2.6 Fokker-Planck Equation

Conventionally, the terms Fokker-Planck equation, Kramers-Moyal expansion, and

master equation are usually defined only for Markovian processes, but the non-Markovian

generalizations of these equations have also been discussed in the literature, e.g., the

non-Markovian Fokker-Planck equation [2] corresponding to the generalized Langevin

equation (2.26). In this paper, we shall use these terms in the general sense, and take
I

the Markovian versions of these equations as special cases.

_tFor a stochastic process y(), the Fokker-Planck equation and its generalization

the Kramers-Moyal expansion of this process are partial differential equations for the

probability density P(y;t) or the transition probability density P(yo;Oly;t ). In the
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following, we shall first derive the Kramers-Moyal expansion from (1.73), and then take

the Fokker-Planck equation as its approximation. From now on we shall always use the

term distribution function instead of probability density for P(y; t).

Rewriting (1.73) as

+¢¢

= [ dz'P(z'; tly; t + At)P@'; t), (2.32)P(y;t + At)

• mOO

it is then easy to obtain the time derivative of P(y; t) as [77]

-_ - _yt, au(Y; t) P(y; t) = 0, (2.33)tt=l

where

+¢o

a,(y;t) --- lim 1 /dzP(y;tlz;t+ at)(z-y)"

is called the/_-th order jump moment of the process _(t). Eq. (2.33) is the so-called

(forward) Kramers-Moyal expansion.

If we assume that among all the jump moments only al(y; t) and az(y; t) are finite,

which corresponds to _(t) always changing by small amounts in a short time interval,

then the Kramers-Moyal expansion (2.33) reduces to the Fokker-Planck equation for

the distribution function P(y; t) over y-space:

, 0, ]0 + -_yal(y;Ot) 1 _y2a_(y; t) P(y; t) = 0. (2.35)

In stochastic process theory, Eq. (2.35) is called the forward Kolmogorov equation.

In general, if the process 9(t) is non-Markovian, then a_,(y; t) depends on (9(r)) for

r < t. On the contrary, for a Markovian process at,(y; t) only depends on the instanta-

neous expectation value (9(t)). This difference serves as a criterion for determining the

Markovianness of a process defined by a given Fokker-Planck equation.

The Kramers-Moyal expansion, hence the Fokker-Planck equation, can also be de-

rived through the master equation,

+_

OP(y;t)ot - [Jdz [W(z, y; t)P(z;t) - W(y,z;t)P(y;t)], (2.36)
m_
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which is essentially the differential version of (1.73).)/Y(z, y; t) and W(y, z; t) in (2.36) axe

defined according to the expansion of the transition probability density P(y; t]z; t + ,_t):

+c_

v

--00

(2.37)

W(y, z; t) is called the transition rate for the state jumping from y to z during the time

interval (t, at + t), it is independent of the previous history of the process if and only if

the process is Markovian. Using the transition rate, the jump moment a_(y; t) in (2.34)

can be expressed as

+_

/ dzW(y,z;t)(z- y)". (2.38)a_(y; t)

Since the transition probability density P(yo; 0]y; t) can be interpreted as the Green's

function for P(y; t) according to (1.73), the Fokker-Planck equation for P(y0; 0]y;t) is

of the same form as that for P(y; t):

+ -_yal(y;t) 20y 2a2(y;t) P(yo;O]y;t)=O. (2.39)

In the Einstein-Smoluchowski theory of Brownian motion, the diffusion equation

(2.1) and the Smoluchowski equation (2.5) axe both special cases of the Fokker-Planck

equation, where the distribution functions are over the configuration space.

In the Langevin-Ornstein-Uhlenbeck theory, it can be proved that the Fokker-Planck

equation is exact instead of an approximation to the Kramers-Moyal expansion [57, 77,

97]. The Fokker-Planck equation for free Brown]an motion corresponding to (2.13) takes

the form

- "[-_k- Dk-_-_ P(k;t) = O, (2.40) .

where P(k; t) is the distribution function over momentum space. Hence we see that Dk

is the momentum-space diffusion coefficient.

As for the harmonic Brownian motion described by (2.21) in the Langevin-Ornstein-

Uhlenbeck theory, the corresponding Fokker-Planck equation is

[0 0 0(mw_x + _/k) Dk P(x; k; t) O, (2.41)- =m O= Ok
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where P(x; k; t) is the distribution function over phase space. From (2.41)_ it is obvious

that (_(t), It(t)) is a multivariate Markovian process.

To solve the Fokker-Planck equation (2.41), it is easier to employ the symplectic

Fourier transform of the distribution function P(x, k; t) [97]:

+oo

C(x,k;t) =_-/ dx'dk' exp[-i(x'k - k'x)]P(x',k';t), (2.42)

#Q

which is the (classical) characteristic function corresponding to P(x, k; t). The corre-

sponding equation for C(x, k; t) takes the form

"_x - mw_x-_ + Dkx _ C(x; k; t) = 0. (2.43)

l

In contrast to (2.41), which is a second-order partial differential equation, Eq. (2.43) is

of first order. Thus it can be solved exactly by using the method of characteristics.
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Chapter 3
m

Representatives of Density

Operators

In quantum mechanicsthestatesof a system,eitherpureor mixed,can alwaysbe

describedby the Hermitiannon-negativedensityoperator(ordensitymatrix)_. The

densityoperator_ isinthetraceclassand isalwaysnormalized,i.e.,

Tr(_) = 1. (3.1)

From this normalization condition, it follows that

<r_(_)<_,0 (3.2)

where the equal sign holds if and only if _ corresponds to a pure state.

Once the density operator of a quantum system is determined, all physical observables

of the system can be obtained via this density operator. For example, with respect to

the state represented by _, the expectation value of a physical observable (9 is

(3.3) .
Since L5is an abstract operator, most of the time we need to use a representative

(or representation) to perform practical calculations. In the literature there are many

equivalent representatives [31], e.g., the coordinate representation, momentum represen-

tation, P-representation, Q-representation, R-representation, Fock-space representation,

Wigner function, and characteristic function. The representative that has been used
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most for the quantum Brownian motion is the coordinate representation which is most

suitable for the path-integral approach. The orthodox phase-space approach employs the

Wigner function as the representative since it serves as a quasi-probability distribution

over phase space. However, as we will show below, the best representative for problems

involving reduction is the characteristic function, which is the symplectic Fourier trans-

form of the Wigner function. In the following, we shall study in detail the aforementioned

three representatives of the density operator.

3.1 Definitions of the Representatives

3.1.1 Coordinate Representation

In the coordinate representation, an N-mode density operator _ is represented by the

kernel function _(x, y) which is written symbolically as

y) = (3.4)

where x and y are two vectors in the N-dimensional configuration space. We shall

call Q(x, y) the coordinate representation of _ for short. The normalization condition

corresponding to (3.1) is

+oo

Tr(_) = / d_x_(x,x) =
1.

3.1.2 Wigner Function

The Wigner function [6, 47, 70, 86, 90, 101] W(z) = W(x, k) of an N-mode density

operator _ is defined via Q(x, y) of the same density operator:

W(x, k) = Ir-_¢ / dny exp {2ik . y} _(x - y, x + y). (3.6)
--00

• The normalization condition of the Wigner function corresponding to (3.1) is

+oo

/ d2_z W(z) = 1. (3.7)
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The Wigner function defined above can be expressed in the following representation-

independent form [9, 68, 78]:

- Tr [_Aw(Z)], (3.8)W(z)

where A.w(Z) is the Wigner operator defined in Sec. 1.3.2. Since Aw(z) is a Hermitian

operator, the Wigner function is rea/-va/ued. However, it is not always positive definite
I"

and is thus ca/led the (quantum) quasi-probability distribution function over the "phase

space" z = (z,k).

For the coherentstate(1.39)with the densityoperator_ = Izc)(zcl,the Wigner

function can be calculated using (3.8) as

W(z) = r -_ exp{-(z - z¢)g(z - zz)'}. (3.9)

3.1.3 Characteristic Function

The characteristic function [3, 9, 33, 43, 47, 65, 68, 70, 96] O(z)= ¢I,(_,k) of an

N-mode density operator _ is defined as the symplectic Fourier transform of the Wigner

function W(z) of the same density operator:

+oo

/ d2_'_ exp {-i_Jz T} W((_). (3.10)@(z)
--OO

The normalizationconditionofthecharacteristicfunctioncorrespondingto (3.1)can be

easilyderivedfrom (3.7)as

• (0)=1. (3.11)

Corresponding to (3.8), the characteristic function of a density operator @can also

be expressed in the following representation-independent form:

r "1

@(z) "-Tr[_b(-z)], (3.12)

which is a direct consequence of (1.53). Since D(-z) is a unitary operator, O(z) is ,

complex in genera/. From (3.10), it is obvious that ¢I,*(z) =@(-z).

Corresponding to (3.9), the characteristic function of the coherent state (1.39) is

O(z) = exp {-'-}z,z"r+ izJz_}. (3.13)
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3.2 Transformations among the Representatives

Letus firstlistallofthetransformationsamong O(x,Y),W(z), and @(z) asfollows:

+oo

/. O(x,y)= dNkexp{ik.(x-yl}W --_,k
--00

- = (2,)-'</d'<kexp{_,.(,+_)}¢(:- y._,). (3.1,)
--OO

+00

W(x,k) : 7r-N f d_yexp{2ik.y}p(a_- y,x+ Y)
--00

+00

:w(.): (2_1-_f_"¢exp{-iCJE}¢(¢), (3.151
--00

+00

= / tiny exp (-iV. k} p (V + z/2, y - x/2)O(x, k)
--00

+00

= [ d2N( exp {-i_'Jz "r} W((). (3.16)_(z)
b#

--OO

In order to discuss the physical interpretation of the relations among these three

representatives, we first make a change of variables in _(x, Y):

e(x, Y)--+ e(a, 6), (3.17)

with

x + Y & - x - Y. (3.18)a-_ 2 '

We can then express both the Wigner function and the characteristic function as the

(ordinary) Fourier transforms of p(a, &) in the following way:

B

where 5rot_k and .T&..k denote the Fourier transforms on the variables tx and &,

respectively, to a new space corresponding to k. Hence we see that W(z) and _)(z) form

a symplectic Fourier transform pair via the following correspondence:

(t_,k) E W(a,k) ¢=, (k,6) e _(_,k). (3.20)
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Sincethe Wigner functionW(a, k) behavesasa quasi-probabilitydistributionoverthe

"phasespace" (a,k),we findthatct correspondsto the classicalcoordinate,and k,

which isfrom the Fouriertransformof 3, correspondsto theclassicalmomentum. By

contrast,neitherofthetwo argumentsin @(/_,k) has a classicalcorrespondent.

3.3 Mean Vectors and Covariance Matrices

For an N-mode (pureor mixed)statewith thedensityoperator_,themean vector

inthe2N-dimensionalphasespaceisdefinedas

(¢') = Tr(_¢'), (3.21)

and the covariance matrix is defined as a 2N x 2N symmetric matrix:

-('" (3.22)-- ¢

O'_'p O'pp

with

There is no constraint on the mean vector (3.21), while the covariance matrix (3.22) ,i

must satisfy the "generalized uncertainty relations," i.e., all of the symplectic eigenvalues

(as defined in Sec. 1.2.3) of E must be greater than or equal to _ [21, 84].

For the elements in the 2 × 2 covm'iance matrix _:E_] which correspond to the 0-th

mode, i.e., the Brownian particle, we shall use the following notations:

= _= . (3.26)
O'qp,O o tT pp,O0 {Tqp O'pp
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3.4 Gaussian States

The Gaussianstateisdefinedasa quantum statewhose Wigner functionisa Gaussian

distributionin z:

o

W(z) = C. exp{-(z - zc)M(z- zc)V}, (3.27/

" where C_ = r-#_ is the normalization constant, zc is a constant vector in the

2N.dimensional phase space, and M is a symmetric and positive definite matrix. The

mean vector of (3.27) is zc, and the covariance matrix is

_. = _ M-'. (3.28)

According to the generalized uncertainty relations discussed in Sec. 3.3, each sym-

plectic eigenvalue of M must be smaller than or equal to 1, otherwise (3.27) will not

correspond to a physical state [84]. Hence we have

0 < det(M) _<1, (3.29)

where the equal sign holds if and only if (3.27) corresponds to a pure state, which is in

general a squeezed coherent state as defined in (1.37). As a special case, the Gaussian

Wigner function (3.27) becomes (3.9), the Wigner function for coherent states, when

M=g.

Since a Gaussian distribution is completely determined by its first and second mo-

ments, the Gaussian state (3.27) can be determined solely by zc and :E. Therefore,

instead of using the density operator or its representatives, we can simply use the

representation-independent zc and :_ to represent a Gaussian state.

The Wigner ellipsoid corresponding to (3.27) is defined as

" (z -- zc)M(z- zc) v = 1, (3.30)

which is an ellipsoid in the 2N-dimensional phase space with its center at z¢ and its

shape determined by M. Eqs. (3.27) and (3.30) axe mathematically equivalent since, as

just mentioned, a Gausslan distribution is completely determined by its first and second

moments. Therefore we can use the Wigner ellipsoid as a geometric representation of

the Gaussian Wigner function, hence the Gaussian state, in phase space [64].
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The characteristicfunctioncorrespondingtotheGaussianWignerfunction(3.27)is

a complexGausslanfunctionofz:

_(z) = exp{-{zJ'rIBJz '' + izJz_}. (3.31/

By analogytotheWignerellipsoid,thecharacteristicellipsoidfora Gaussiancharac-

teristicfunctionisdefinedas

(z- zc)E(z- zc) T--I. (3.32)

The centerofthecharacteristicellipsoidisthesame asthatoftheWignerellipsoid,

whiletheshapeisdeterminedby thecovariancematrix_. Thischaracteristicellipsoid

canalsoserveasa geometricrepresentationoftheGaussianstateinphasespace[105].

3.5 Thermal States

We definethethermalstateofa time-independentquantumsystemimmersedinan

ideal(non-dissipative)heatbathoftemperature/_-*asthecanonicalensemblewiththe

canonicaldensityoperator

exp{-_/_}

where H-/_ (_) is the Hamiltonian of the system.

Consider an iV-mode system with the inhomogeneously quadratic ttamiltonian

_(_') = {_'M_ ''r + n_'T, (3.34)

where M is a symmetric and positive definite matrix as defined in Theorem 1.2.3, and n

is an arbitrary 2N-dimensional row vector. The Wigner function and the characteristic

function of the thermal state of this system can be calculated using the results in Secs. 1.2

and 1.3 as follows [104]:

Firstly, let us transform the Hamiltonian/_(_) in (3.34) into the following form:

H(q') = {('_- zl)M(_'- z,) "r- {z,MzT

_. b(zl),_(Sl)_rN(_')_t(s_)bt(zl)- _zlM£[, (3.35)
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where

zlm -riM -1, (3.36)

and

with $1 and _ defined as in Theorem 1.2.3.

Secondly, substitute (3.35) into (3.33), then the latter becomes

A A Af ^

D(._)$(S;)_Xpf=_Us)S(Si)Dt(.,)
_= - _ Tr[exp{-_H_¢}]

A A A ^f ^

D(zl)S(S1)Q_,NS (S1)Dt(zl), (3.38)

where

_,_¢ _= exp{-fl_¢} (3.39)

Thirdly, according to (3.8) the Wigner function of the density operator _a is

W_(z) Tr [D(zl)_(Sl)Q_mS, ^t ^= (S_)D(z_)A_(z)]

= Tr [_,_,_l(S1)bt(zl)£w(z)/)(z,)_(S1)]

where (1.56) has been used.

Finally, recall that for a one-dimensional harmonic oscillator with the ttamiltonian

1 2-2
= _+_m_ q

• the Wigner function of the thermal state is [47]

( (.o,I,.,,)o ) (,))= -(z,k)lt_ Io_ •
_' 0 tasth(_w/2) k
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Itfollowsthattheexplicitexpressionof (3.40)is

w_(z) = C,,(_)exp -(z - zl)S;_ S_(-- "_1"
0 tanh(/31"//2)

--- C_(/3)exp{-(z-- Zl)J T tan(/3JM/2)(z- z,)T}, (3.43)

where

tanh(/3£//2)= diag{tanh(/3f/o/2),tanh(/3f/,/2),•..,tanh(/3f_,/2)}, (3.44)

and

C.,v(/3)_ =-"¢ det(tanh(/3f'//2)). (3.4,5)

Thereforewe findthatthe thermalstateisa GaussianstateifJ is(inhomogeneously)

quadratic.The covariancematrixcorrespondingto (3.43)is

1 I (coth(/3f//2) O )_t_- _ cot(/3JM/2)j- _-S[ 0 coth(/31"//2)$_v. (3.46)

Accordingto (3.31),the characteristicfunctioncorrespondingto (3.43)takesthe

form

(1)_(z) = exp {-_zJT_3/_Jz T + izJz'[}

= exp --_.-zSl r Siz T + izJzTI . (3.47)o coth(/3n/2)

The one-naodecharacteristicfunctioncorrespondingto (3.42) isa specialcaseof (3.47):

o

which willbe usefulforlaterdiscussion.
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Chapter 4
b

Phase-Space Approach to

Quantum Mechanics

It is well known that the uncertainty principle ma_es the concept of phase space

improper in quantum mechanics, since we cannot have a weU-defined point in the phase

space which corresponds to precise and simultaneous measurements of both the position

and momentum of a particle. Therefore a genuine probability distribution function over

phase space does not exist in quantum mechanics. Nevertheless, the Wigner function

defined in Chap. 3, which serves as a quasi-probability distribution function over the

"phase space" made of its arguments z = (x, k), has proved to be very useful in many

branches of quantum mechanics, especially in those problems involving classical-quantum

correspondence.

The phase-space approach (or picture) to quantum mechanics, also known as the

Weyl-Wigner-Moyal formalism [3, 70, 86, 90, 99, 101], serves as an alternative formal-

ism of quantum mechanics that incorporates the Weyl correspondence rule with the

Wigner function. In this approach the Wigner function plays the central role, as the

wave function or the density operator does in other approaches to quantum mechanics

(Schr_ger, Heisenberg, density-operator or path-integral). In contrast to other ap-b

proaches, there is no operator in the phase-space approach. In other words, the phase-

space approach resembles classical statistical mechanics; all operators are replaced by

the corresponding c-number variables, known as the Weyl symbols, and the expecta-

tion value of an operator becomes the average of the corresponding symbol over phase
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space with respect to the Wigner function. This approach is particular useful when the

Hamiltonian is (inhomogeneously) quadratic, i.e., when the system is linear, wherein

all formulas are formally isomorphic to those in classical mechanics, and the solutions

of the corresponding classical equations of motion completely determine the quantum

dynamics.

4.1 Weyl Symbols and the Weyl-Wigner Correspondence

As we discussed above, all operators have to be transformed into the equivalent Weyl

symbols in the phase-space approach. There are many equivalent definitions of the Weyl

symbol; in this paper we define the Weyl symbol fw(z) corresponding to an N-mode

operator f(_) via the following relation:

+oo

f(i.) = / c_z fw(z)_,w(z), (4.1)

where _,w(z) is the Wigner operator defined in Sec. 1.3.2. The Weyl symbol is mathe-

matically equivalent to the original operator since (4.1) is invertible:

fw(z)- (27r)Ntr (f(i')/%w(z)), (4.2)

where (1.63) has been used.

Comparing (4.2) with (3.8), we see that the Weyl symbol of a density operator

is proportional to the Wigner function of the same density operator (the Weyl-Wigner

correspondence):

W(z) = (2r) -N (Weyl symbol of _). (4.3)

From the formulas in Sec. 1.3.3, we have the following two useful relations:

+ao

.co

--00
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Eq. (4.5)containsthefollowingtwo formulasas specialcases:

+oo

--00

+oo

(/(+)5: f

Using (4.7), we axe able to ca/culate the expectation value of an operator as the average

of its Weyl symbol over phase space with respect to the Wigner function.

From (1.53), we see that the Weyl symbol of the Weyl operator/)(zc) is exp {izJz_},

which is formally isomorphic to D(z¢). As a special case, the Weyl symbol of the identity

operator i is 1.

The Weyl symbol fw(z) of the operator ](_) is a/so known as the Weyl correspon-

dent of f(_) by the Weyl correspondence rule (the symmetrization rule) [99]. This

correspondence can be obtained via the isomorphism between/)(z¢) and exp {izJz_}

by comparing their series expansions in zc. The following Weyl correspondence will be

usefulinlaterdiscussion:

k

_ x_ . (4.8)

k_

4.2 CharacteristicSymbols

The characteristic symbol f_(z) of an N-mode operator f(_) is defined analogously

to the Weyl symbol via the relation

+oo

--OO

From (1.62), the inverse of the above relation is

y_(z) = (2r)-"tr(](¢')b(-z)), (4.10)
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hence thecharacteristicsymbol isalsomathematicallyequivalentto the originalopera-

tor.Moreover,thecharacteristicsymbol and theWeyl symbolfora givenoperatorform

a syrnplecticFouriertransformpair:

.oo

fw(z) = Jd_NCexp{-i¢.JzT}f,r(¢) (4.11)
Q

according to (1.52).

From (4.9), it is obvious that the characteristic symbol of the Weyl operator D(zc)

is 6(z-zc). As a special case, the characteristic symbol of the identity operator i is

8(z). The following six formulas are the analogues of (4.3)-(4.8):

@(z) = (27r) N(characteristic symbol of _), (4.12)

t,(](_))= (2_)"y¢(0), (4.13)

+co +co

--00 --00

_-00

r,(e) =(2.)-- fe-_l,(_)l_, (4._)
--00

-i_(_),_

¢=_ -6(_),hk , (4.17)
r_ -6(_),=

_,_ +/_, _, 26(z),zk

where

6(z),k-- Ok ' 6(z),zk-- Oxcgk ' etc. (4.18)
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From (4.16) and (4.17), it follows that

r°_(_)l , (4._9)

" JOe(z)] (4.20)

b

<e>--_,(oe)---ro=_:l] (4.21)I. Ok2 z-o'

W¢---(*)I (4.22)<e>:_,-(oe)=-Lo_:,=:o'

2 2 k Oxcgk J z=0'

4.3 Time Evolution of the Wigner and Characteristic

Functions

For a general quantum systemwith the Hamiltonian H = H(_;t), the quantum

dynamics of this system can be completely determined by the von Neumann-Landau

equation (also known as the quantum Liouville equation), which is the equation of motion

of the density operator _ [86]:

-- + i[t/, _] = O. (4.24)dt Ot

This equation can be taken as the fundamental equation of quantum mechanics since

it is equivalent to the SchrSdinger equation and the Heisenberg equation. The formal

solution of (4.24) is

_(t) =/_(t)g(O)L?/t(t), (4.25)

" where/_(t) is the unitary time-evolution operator which satisfies the SchrSdinger equa-

tion

', 0 A

,-Eiu(t)= Ptg(t), t_(o)= i. (4.26)
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The equation of motion of the Wigner function can be derived from (4.24) as [6, 47, 86]

where H(z; t) is the Weyl symbol of H(_; t), and

" 2 0 0 0 0 (4.28)0- . 0N0_i 0zi '3

with the arrows indicating in which direction the derivatives act.

If we restrict the Hamiltonian _(_; t) to be (inhomogeneously) quadratic, then (4.27)

degenerates to the classical Liouville equation,

a OH O W(z; t) - _ O_/ a (4.291.7 3

where H --H(z; t) is (inhomogeneously) quadratic in z and is in general time-dependent:

Using Hamilton's canonical equations in classical mechanics,

OH OH

= =---, (4.30)' Oxj

Eq. (4.29) can be rewritten as

"_ + Zx, j-_j + :i'_j W(z;t) = "_iW(z;t) = O. (4.31)3

Therefore the time evolution of z, i.e., the solutions of the corresponding classical equa-

tions of motion (4.30), completely determines the solution of (4.31).

In general, the solutions of (4.30) with respect to a (inhomogeneously) quadratic

H(z;t) can be denotedas

zr(t)=R(t)zT(O)+aT(t), R(O) (l_ 0)
-- , and a(0) = 0. (4.32)

0 IN
t

Since the time evolution of the classical canonical variables is a canonical transforma-

tion, R(t) is a 2N × 2N symplectic matrix, a(t) is a time-dependent vector in the 2N-

dimensional phase space, which vanishes for all t if and only if H(z; t) is homogeneously

quadratic. The geometric meaning of a(t) is the trajectory traced by the point which is

initially at the origin in phase spare. Eq. (4.32) is essentially a time-dependent inhomo-

geneous linear canonical transformation, and we will call it "phase flow" hereafter.
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Using (4.32), the general solution of (4.31) can be expressed as

w(_;t) =w([_- _(t)]R-_(t);t =0), (4.33)

and we say that the time evolution of the Wigner function follows the phase flow in

phase space.

The time evolution of the corresponding characteristic function can be obtained from

(4.33) via (3.10):

which is also completely determined by the phase flow. However, the time evolution of

the characteristic function follows the phase flow if and only if a(t) =0, i.e., if and only

if H (z; t) is homogeneously quadratic.

4.4 Time Evolution of the Mean Vectors and the

Covariance Matrices

For a quantum linear system, the time evolution of the operators _ in the Heisenberg

picture is formally isomorphic to (4.32) via the Weyl correspondence:

_,r(t) = R(t)_r(0) + a'r(t). (4.35)

For an arbitrary initial state with the mean vector (_(0)) and the covariaace matrix

:E(0), the time evolution of the mean vector is a direct consequence of (4.35):

<_(t)>• = a(t)<.(0)>_+_(t), (4.36)

and the time evolution of the covariance matrix can be derived by substituting (4.35)

into (3.22):

, ]E(t) = R(t)_(0)Rr(t). (4.37)

Note that (4.37) is determined solely by R(t) and _(0), and is independent of (_(0)) and

a(t). This relation can also be obtained by using (4.7).
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Chapter 5
r

Reduction of Density Operators

5.1 General Theory

Consider a quantum system made of two subsystems (A) and (B) whose density

operator is denoted by _as. With respect to this division, a reduction of ignoring the

subsystem (B) is a commitment that no measurement on (B) will be made. After we

perform this reduction, an operator 0 originally corresponding to a measurement on the

total system reduces to (_A® i, where 0a corresponds to a measurement on (A). The

expectation value of 0A can be Calculated as
i
l
i

= ®iD

_= Tr(_,0A), (5.1)

where Tr_ denotes the partial trace operation with respect to the degree(s) of freedom in

(A), and Trs is defined in a similar manner. Oa=--TrB(_as) is called the reduced density

operator for the subsystem (A) which includes the influence from (B). The normalization

condition (3.1) is an extreme case of TrB(_AZ)=_A, where (A) is empty and (B) is the

total system.
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5.2 Reduction of a Density Operator via Its

Representatives

For the quantum system (A)+(B) discussed in Sec. 5.1, let us assume that the

number of degrees of freedom in (A) is (N- A) and that of (B) is A, and define z __

(zA, zB), y = (YA, Y_), and k _-_.(/cA, ks) according to this division. The corresponding

representatives of the reduced density operator _A= Tr_(_A_) can be easily obtained as

+oo

(_.2)
--00

+oo

: f dXx_d'XksW, tB(z,,,zn, k,_,ka), (5.3)

¢_(_, _)= _(_,o,k_,0). (_.4)

As we mentioned earlier, the normalization conditions (3.5), (3.7), and (3.11) can be

taken as the extreme cases of (5.2), (5.3), and (5.4). Note that (5.8) is an analogue of

the marginal probability density in probability theory [53].

Since (5.4) is simply a restriction of the original _(xA, z_, kA, kB) to a subspa_e in the

2N-dimensional phase space, the reduction becomes a geometric operation (a projection

in phase space) via the characteristic function. Compared with (5.2) and (5.3), it is

obvious that the easiest way to perform the reduction is using the characteristic function.

5.3 Reduction of the Gaussian States

As we discussed in Sec. 3.4, a Gaussian state is completely determined by its mean

' vector and cova_ia_ce matrix. Therefore the reduction of a Gaussian state can be realized

by the corresponding reductions of these two entities. Using the same assumptions as in

" Sec.5.2,the reductionsofthemean vectorzc,_8and thecovariancematrix_2A_can be

obtainedby substituting(3.31)into(5.4):

zo,_ = (_:_,A,a:_,_,k_,,,,k_,_)=* z_,_- (=_,,_,_,_), (5.5)
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and

ZAa = _ E_ = , (5.6)
IT

¢F_p O'pp O"qp O"Ipp
q

where EA is a 2(N-_)x 2(N-_) matrix with the elements

' (5._)

o' (5.8)pp,/,_ _ O'pp,/z_

' (5.9)O"qp,/_ -_ _7 qp,_ v

for #,v = 0, l,...,(n- A).

Hence we see that the reduced mean vector is a projection of the original mean vector,

and the reduced cova_iance matrix is a submatrix of the original covariance matrix. If we

use the characteristic ellipsoid (3.32) as the geometrical representation of the Gaussian

state in phase space, then the reduction becomes the restriction of this ellipsoid to a

2(N - A)-dimensional subspace.

5.4 Time Evolution of the Reduced Density Operators

For a quantum linear system, the time evolution of the Wigner function is given by

(4.33) and that of the characteristic function is (4.34). Using the same assumptions as

in Sec. 5.2, Eqs. (5.3) and (5.4) give the time evolution of the reduced Wigner function

and the reduced characteristic function as follows:

WA(Z_,kA;t)

+oo

= f d:_zvd_kBWAB(ZA, zB, kA, ks; $) Q

--00

+oo

= f d_zBd_k_WAB([(zA,z_,k_,ks)- a(t)]R-r(t);t = 0), (5.10)
--00

= exp{i(zA,O, kA,O)Ja'r(t)}_A_((ZA,O, kA, O)R-T(t);t= 0). (5.11)
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Similarly,from (5.2)we have thetime evolutionofthe correspondingreducedcoor-

dinaterepresentation:

+oo

= (5.12)
• '_00

where p(_,xB,_,_a;t) can be solved exactly in terms of the classical action for a

" quantum linearsystem[26,82].The complexityof (5.12)issimilartothatof(5.10).

From (5.11),we seethatonce the initial(total)characteristicfunctionisobtained,

we canwritedown thetimeevolutionofthecharacteristicfunctionintermsofthephase

flowwithoutdoingany integrations.Among allrepresentativesofthe densityoperator,

onlythecharacteristicfunctionpossessesthisadvantage.Thereforewe concludethatthe

characteristicfunctionisthebestrepresentativefortheproblemsinvolvingreduction.
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Part II

The Model
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Chapter 6

Equations of Motion and the

Solutions

NOTE: Unless otherwise mentioned, the time t >_0 throughout this chapter.

6.1 The Model Hamiltonians

In the literature, there have been several successful models for the quantum dissipa-

tive heat bath [30]. For quantum harmonic Brownian motion, the one used most often is

the linear-coupling model [10, 16, 22, 25, 40, 44, 45, 48, 73, 76, 85, 95]. Since the Hamil-

tonian of the linear-coupling model is not positive definite, a renormalization procedure

is necessary. After the renormalization is performed, the linear-coupling model is then

equivalent to the independent-oscillator model [28, 29, 30], in which the heat bath is

modeled by an infinite set of mutually independent oscillators attached to the Brownian

particle by Hooke springs. In this paper, we shall use the independent-oscillator model

exclusively without loss of generality.
$

In the independent-oscillator model, the total system of a harmonically bound Brow-

nian particle immersed in a quantum dissipative heat bath is described by the Hamilto-
G

nian

_..1 _ F__L1 _ ]
= _ + -_mwo_ + _ + _mtw_(_t - 4)2j, (6.1)2m t L2mt

where _ = _o and i_= _o are the operators for the Brownian particle, m =mo and rat's
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are the characteristic masses, and wj's are the characteristic frequencies defined a_ in

Sec. 1.1. (From now on we shall never drop the subscript %" in Wo.) Among the terms

in(6.1),

+ 1 2-2 (6.2)2-"m -_m_sq

is the Hamiltordan of the harmonically bound Brownian particle,
,,t

-2 1 2o21_, _EL.+ "_mtwtq_J (8.3)t 2mr

is the Hamiltonian of the heat-bath oscillators,

-mt_t_ (6.4)

corresponds to the interaction, i.e., the linear coupling, between the Brownian particle

and the heat bath, and

£

corresponds to the renormalization counterterm in the linear-coupling model. It is ob,

vious that the Hamiltonian (6.1) is positive definite as long as wj > 0. Without loss of

generality, we shall assume that all wt's are different. The mechanical analogue of (6.1)

is shown schematically in Fig. 1.

Without changing the essential structure of the ltamiltonian in (6.1), we can linearly

couple the Brownian particle to a classical tim_dependent external force by adding the

linear term -_fx(t) to (6.1) and get

_'(t) = _ - 4fx(t). (6.6)

Hence the time-independent/_ in (6.1) becomes a special case of this/t'(t). We shall use

both (6.1) and (6.6) as the model Hamiltonians, but note that only the former represents

the "total system." The total number of heat-bath oscillators is assumed at first to be

finite, and the thermodynamic limit n--.c_ will be taken starting in Chap. 8.
D

6.2 Classical Equations of Motion

From the discussion in Chap. 4, we know that for a quantum linear system the

dynamics is completely determined by the corresponding classical equations of motion.

52



t

. I
I

I I
I I
I I

/] _ i _,, i
/ 0000000(_'_m_ i

i i

_o wt i I00000009000000 m LOAOOpAOOgpO_O_O_O_00mt
!

LooOooo_Qo_),_,
/
/
/
/
/
/

• Figure 6.1: Mechanical analogueoftheindependent-oscillatormodel. Note that_j

locatesthecenterofmassofthej-thoscillatorwithrespecttoitsbalancedposition.
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Therefore our study of the model Hamiltonians begins with the equations of motion for

the classical correspondent of the quantum system described by (6.6).

The corresponding classical Hamiltonian, i.e., the Weyl symbol, of the model Hamil-

tonian (6.6) is
I

_r'(t)- _ + -_-,_= +_t 2,__ +5_t_(_ - _)' - =/_(t). (6.7)
Using Hamilton's canonical equations (4.30), we have the following equations of motion

for this corresponding classical system:

,_ = k, (6.8)

k= -m_= +_,_(=_ - =)+ f_(t), (6.9)
t

meie = ke, (6.10)

_ = -m_(_- =). (6.11)

From (6.10) and (6.11), the equations of motion for the heat-bath oscillators take the

form

_ +_ =_=, (6.12)

which indicates that each heat-bath oscillator is driven by a time-dependent force w_z(t).

The formal solution to the above equation is

xe(t) = xe(O) cos(wet) + ke(O) sin(wet) b wern_we

= xe(0) cos(wet) + ke(0) sin(wet)
rnewe

i'+ =(t)- =(0)c_(a,_t)- dr_(r) cos(_e(t- r)). (6.13)
,,8

Combining (6.8), (6.9), and (6.13),we get the classical equation of motion for the position

of the Brownian particle:

m_(t) + mw_x(t) + dr_(r) mtw_eos(we(t- r)) (6.14)

= -=(o)_.-,_,4_o,(_,,t)+_,.,_,4 [_,(o)_,.(,,,,t)+k,(o)'_n("_t)]+/,,(t),e t mewe J
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or equivalently,

m_(t) + drrl(t- r)_(r) + m_z(t) - -_(O)rl(t)+ f(t) + fx(t), (6.15)

where

'7(0- (6.16)
,. t

serves as the memory kernel, and

f(t) -- _"_[xt(O)m.o_ cos(w_t)+ kt(O)w, sin(wtt)] (6.17)
t

is a time-dependent force acting on the Brownian particle. From the Weyl correspon-

dence rule, the quantum analogue of (6.15) is

m(l(t) + drrl(t- r)_(v) + mw_o_(t)= -O(O)r/(t) + ](t) + fx(t), (6.18)

where

Eq. (6.18) can also be obtained from (6.6) using the tteisenberg equation of motion

[22, 28, 30].

6.3 Solutions of the Classical Equations of Motion

In this section, we shall apply the Laplace transform method to solve the classical

equation of motion (6.15) in terms of fx(t) and the initial values xj(0) and kj(0). Firstly

we make a Laplace transform on (6.15):

Z:_{=(t)} = _(0) + m=(O)_+ .f[s] + :,,[s]
Z(s) ' (6.20)

where the variable s is complex with Re(s) > 0,

][s] = _-w_[m_xe(O)s + ke(0)]a + ' (6.21)g

fx[s] = f_s{fx(t)}, (6.22)
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and

Z(s) - rn(s 2 + w_) + s_[s], (6.23)

with

mtw_s (6.24)
_[_1= _ _ + _ •t

Note that Z(8) is an even function of s, and

Z(r) > 0, V r e R, (6.25)

with

z(_)z(o)= m_, and nm_ = ,_ (6.26)
r--,oo ?,2

Since (6.7) is an N-mode Hamiltonian with its homogeneous part positive definite,

there are exactly N real normal mode frequencies corresponding to those N normal

modes of the corresponding classical system, which will henceforth be denoted by 12j > 0.

From the Laplace transform of ¢(t) in (6.20), we know that if 12j is a normal mode

frequency of (6.7), then both =kiflj are zeroes of Z(s), i.e.,

mtw_ 2

Z(4-ifl) = -m(fl'- w02)+ _ 9/'-oa_ -'- 0 (6.27)g

is the equation for those normal mode frequencies. Using the graphical method (referring

to Fig. 2, where N = 1 + 3), we see that as long as the w_'s are all different from each

other, those N normal mode frequencies flj's are also mutually different. The claim that

all ftj's are real is also confirmed since fl_ >0. Moreover, we find that

0 <_ _"_o<: CO1 ¢: fll <_ _02 ¢: _'_2 ¢_ ...... < fin-1 < wn < fin < c_. (6.28)

Because (6.27) is of the form

N-degree polynomial in _2
=0, (6.29) -

ll(n_-_)

it is guaranteed that (6.27) has no other roots in addition to 4-iflj. Therefore we conclude

that Z(s) -1 contains exactly 2N simple poles which lie on the imaginary axis of the

complex s-plane and are symmetric about the origin. It is worthwhile to emphasize
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Figure6.2:Graphicalmethod fordeterminingthe rootsof Eq. (6.27)with N = 1 + 3,

. which isequivalentto y_- V2,where

Vl = m( f/2-Wo_), and y2 = __, fl;"w_"_=1

57



againthatZ(s)-I isanalyticon the s-planeexceptforthese2N simplepoleslyingon

theimaginaryaxis.

We then definethefundamentalsolutionu(t)of(6.15)as

u(t)=£_, {z_s)} i fe+_ooexp(at)=2%-___o0d_ Z(_) ' (6.30) •

where _ is an arbitrary positive real number since Z(s) -x is analytic for Re(a) >0. Since

this fundamental solution u(t) is defined in terms of the inverse Laplace transform, it

vanishes for t <0. From (6.15) and (6.20), we can determine the initial conditions of the

fundamental solution u(t) as

1
u(0) = 0, _(0) = _, _(0) = 0. (6.31)m

Using this fundamental solution u(t), the time evolution of x(t) can be expressed as

= fotdru(r)[f(t- r)x(t) m]c(O)u(t) + mx(O)i_(t) + + fx(t - r)]

= _(t)_(0)+_(0_(0)+_ [_(t)_(0) + _(t)k_(0)]

+/o_d_(_)f_(t- _), (6.32)

where

fotdvu(v')sin(we(t v)), (6.33)
u_(t)- _

and

_(t) = _ fo_d_,,(_)¢o_(,_(t- _))

i'= _ dra(r) sin(w_(t - r)). (6.34)

The time evolution of k(t) can be obtained from (6.32) straightforwardly'
,,r

k(t) - m2_i(t)z(0)+ma(t)k(O)+ m _[rn_i_(t)xl(0) + ae(t)k_(0)]

/:+ m ara(r)I_(t- r), (6.35)

where

{ie(t) = w_ d1"it(7")cos(we(t-r)) (6.36)
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according to (6.34).

In principle, we can substitute (6.32) into (6.13) to calculate the explicit solutions

of xl(t) and then k_(t) in terms of u(t), fx(t), and the initial values xj(0) and kj(O).

However, it will be clear later that it is not necessary to obtain the explicit solution of
a

x_(t) or k_(t) for determining the dynamics of the Brownian particle.

6.4 Linear Responses and the Generalized Susceptibility

According to the Weyl correspondence rule, the solution of the operator equation of

motion (6.18) is formally isomorphic to (6.32):

:(t) miz(t):_(O) + u(t):(O) + + v)] (6.37)

= m_(t)4(0)+_(t)_(0)+_ [r_(t)_(0) + _(t)_(0)] (6.38)
,f

+ e_u(_)/_(t-,-),

and the time evolution of the momentum operator/3(t) is

_(t) = ma£_(t)_l(O)+ miz(t)_(O) + rn

= rn2_(t)tl(O)+ mi_(t):(O)+ m _,[m_e(t)_le(O)+ ae(t)/_e(0)] (6.40)
l

f+ m dri_(r)f×(t- r).

From the above two expressions, we can calculate the responses of the Brownian

particle with respect to an applied force which corresponds to fx(t) in the model Hamil-

tonian (6.6). Taking the expectation value of (6.38) with respect to a given initial

quantum state, we get

- (4(t))= ,-,,_(t)(,_(o)>+ ,,(t)(:(o))+_ [,,,e_(t)(,_(o))+,,_(t)(_(o)>]

. + fo'dr_(_):_(t-_). (6.4:)

Ifthe mean vectorofthisinitialstateiszero,thentheabove expectationvaluereduces

to

/o' /:(O(t)>= dru(r)fx(t- r)= d_'u(t- v)fx(7"), (6.42)

59



where u(t < 0)---0 has been used. As a comparison, the linear response of the momentum

expectation value for the same initial state is

//. <i6(t)) = m dri_(t- r)fx(r). (6.43)

In (6.42), if we interpret u(t <0) =0 as the causality condition, then the fundamental

solution u(t) serves as the retarded Green's function for <(_(t)>with respect to the applied

force fx(t). From linear response theory, we know that it is convenient to consider the

retarded Green's function as a Fourier transform of the so-called generalized suscepti-

bility a(w). The explicit expression for a(w) corresponding to u(t) can be obtained by

setting _=e in (6.30):

+c¢

f _xp[(_+i_)t]_(t) = 2_ _ z((+ i_)
--OO

i f exp(-_t)= 2"; d,,,Z(,-_)

±
/d__xp(-_t)_(_,), (6.44)-- 2_"

--OQ

i.e.,

1 1

':'(")= z(_- i_) = z(-_ +/,,,) (6.45)

is the generalized susceptibility of the total system for the response (_(t)) with respect

to the applied force f×(t). Note that in (6.44) we have made a change of variable w-,-w

in order to follow our convention for the Fourier transform.

The reason that we took _ in (6.30) to be the infinitesimal e is because otherwise we

will not be able to put the fundamental solution u(t) in (6.30) as a Fourier transform

of a function of w, and accordingly it is impossible to determine the explicit form of

the susceptibility a(w) in terms of Z(s). The physical meaning of this limit is the

manifestation of the resonant behavior of the total system, which is analogous to the

resonant absorption in electrodynamics [50, 57], the continuous-spectrum transition in

quantum perturbation theory [58], and Landau damping in collisionless plasmas [62], etc.

This resonance is also the physical mechanism which allows us to construct a dissipative

environment out of a conservative model Hamiltonian.
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Conversely, we can take a(w) as the Laplace transform of the fundamental solution

_(t):

a(a_) = dt exp[i(_o + iE)t]u(t), (6.46)

where ie guarantees the convergence of the integral. This ie can be omitted if and only

if we take the thermodynamic limit, which will be discussed in Chap. 8.

Following the convention in linear response theory, we use the notations a'(w) and

a"(_o) to denote the real and imagin_y parts of a(_o), individ,_lly. From (6.45) or

(6.46), it is obvious that a'(w) and a"(_o) are even and odd functions of w, respectively.

Moreover, from (6.45) we find that

1 1

_'(0)=_ = --_o_, _"(0)=0, (6.47)
and

lira a#(w)-. O(w). (6.48)
w--*0

In linear response theory, it is more convenient to take the generalized susceptibility

as a function of the complex frequency. Hence we shall now extend the frequency w into

a complex variable w-w ./w". It is necessary to emphasize that, although the original

real w is the imaginary part of the complex variable s, the complex w.plane does not

overlap with the complex s-plane! According to (6.46), a(w) is analytic for w# _>0 on

the complex w-plane, which is a generic property of the generalized susceptibility as a

consequence of the causality principle.

Since a(w) is analytic for w" >_ 0, a'(w) and a"(w) are related via the dispersion

relation:

+oo

1 f a"(u)
a'(w) = -- Pr du . (6.49)

Usingthewell-knownformulaincomplexanalysis:

-/d,f(")= d,:("..._..k)+
,Q

or the symbolical expression

V-- _E
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we have

+oo

1 / a'(v)_(_) = -- d. . (6.521_r v-w- iE
--00

It then follows that the fundamental solution u(t) in (6.44) can be expressed as

• q-c_

,/u(t) = --- dw exp(-/wt)a"(w)
--00

-- --Irl/ d_ sin(wt)a'(_). (6.53)
'-OQ

Note that when t < 0, the right hand side of (6.53) is equal to -u(-t) # 0. Tiffs is

because a"(w), unlike _(_), is not analytic for wu _>O. For t E It, we define another

fundamental solution w(t) as

_(t) = _(t)- _(-t)

"-" ' /dwexp(-/_t)a'(w)iF
--00

+00

...-___.1/ d_sin(,,,t)d'(_,), (6.54)
--00

which is aa odd function of t E It.
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Chapter 7

Thermal Equilibrium State

NOTE: Unless otherwise mentioned, t E tt and 0 < _ < c_ throughout this chapter.

7.1 Diagonalization of the Model Hamiltonian

As a preparation, we consider the diagonalization of the model ttarniltonian (6.1)

[8, 29, 95] in this section. First let us put (6.1) into the matrix form

(vo)= _-(0,I_)0 U (O'I6)'r- _'K_',, (7.1)

where U and V are two N x N symmetric and positive definite matrices defined as

o-_{_ _ _ _} (_._)

,$

-mlw_ mlw_ 0 ... 0

V = -_ 0 ,_ ... 0 • (7.3)

lr • • • • •

. According to Theorem 1.2.3, the matrix K can be diagonalized by a congruence

symplectic transformation:

(vo)s,(O0)K - _- S, (7.4)
0 U 0 n
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where S is a 2N × 2N symplectic matrix, and the diagonal N × N matrix fl has the

normal mode frequencies f/j's as its diagonal elements. The explicit form of S can be

calculated via an orthogonal transformation as follows:

(°o')(: )( ) ( )o o u-½ o N½xu-½ o (7._)
S= N-_ x o U½ = o _-_XU_ '

with

U_VUl = Xr,Q:X, and XTX = XXT = I_v, (7.6)

i.e.,thesquareofeachnormalmode frequencyf_jisan eigenvalueofthesymmetric

matrixU_VU½. Sincewe willonlyuse(7.4)formallyinthefollowing,itisnotnecessary

tocalculatetheexplicitformofthematrixX orS.

7.2 Phase Flow of the ClassicalSystem

We shallnow derivethephaseflow(4.32)fortheclassicalsystemcorrespondingtothe

quantumHamiltonian(6.1)[8,44,45,95]usingtheresultsobtainedinthelastsection.

Firstofall,we canmake surethata(t)=OsincetheHanailtonian(6.1)ishomogeneous.

BecausethisHamiltonianistime-independent,thetime-evolutionoperatordefinedby

(4.26) is simply

a(t)= {-itS}, (7.7)

which is an element of the group Mp(2N, R). According to the Weyl correspondence

rule, R(t) in (4.32) can be calculated via the time evolution of _. Using the results in

See. 1.2.2, we have

_r(t) = at (t) C,T/_(t)= R(t)_ v, (7.8)

where

R(t) = exp {tJK} = S -_ S, (7.9) "

--sin(at)cos(at)

with

cos(f/t) ------diag, 'cos(f/0t), cos(f/it), cos(f/2t),..', cos(12nt)}, (7.10)
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and sin(f/t)definedin a similarway.

Comparing thedefinitionofthephaseflowin(4.32)with (6.32)and (6.35),thelatter

two equationsgivethe explicitexpressionsfortheelementsinthe 0-thand N-th rows

of R(t> 0),which willbe theonlyelementswe need forstudyingthe dynamics ofthe

Brownian particle.Hence itisnot necessarytoobtaintheexplicitform of R(t)in(7.9).

From the solutions (6.32) and (6.35), along with the explicit form of the phase flow
o

(7.9), we find that the two-dimensional restricted phase flow on the Brownian phase

plane takes the form

(mw(t) w(t) 1

_R(t)_--- , (7.11)

m e(t)

where w(t)isdefinedby (6.54).Fort_>0,Eq. (7.11)reducesto

)
_R(t)_= • (7.12)

me(t)

7.3 CorrelationFunctionsoftheBrownian Particle

Ifthetotalsystem describedby the Hamiltonian(6.1)isimmersed inan ideal(i.e.,

non-dissipative)phenomenologicalheat bath oftemperature/3-_,the stateofthetotal

systemwillfinallyapproachthethermalstatewiththecanonicaldensityoperator(3.33),

which willhereafterbe calledthe "modelthermalstate."Afterthetotalsystemreaches

the model thermalstate,i.e.,reachesthermalequilibriumwith the phenomenological

heatbath,thetotalsystemcan be isolatedand thephenomenologicalheatbath can be

removed. Conceptually,inorderto definethemodel thermalstateofthe totalsystem,

, theintroductionofthisphenomenologicalheat bathisnecessary.

The correlationmatrixC_(tl,t2)ofthetotalsystemwithrespectto themodel ther-

• realst&teis definedas

= R(t,){_v(0)_(0))_RT(t=), (7.13)
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where ( )# denotestheexpectationvaluewith respectto themodel thermalstate,the

same notationwillbe used throughoutthe remainderof thispaper. Sincethe model

HamUtonian (6.1)ishomogeneous,the mean vectorof themodel thermalstateiszero.

Thereforeitisnot necessarytoincludethe mean vectorinthe above definitionof the

correlationmatrix.

SincetheHarniltonian_ in(6.1)istime-independent,the model thermalstateisa

steadystate.Hence we have

= =_+
accordingto (3.22),where E]#denotesthecovariancematrixofthemodel thermalstate

which satisfies

R(t)_BRV(t) = _. (7.15)

SinceS in(7.5)isblock-diagonal,_# isalsoblock-diagonalaccordingto (3.46).

From (7.14)we caninferthattheoperator#'(t)isa multivariate(quantum)stationary

processwithrespecttothemodel thermalstatesincethelatterisa Gaussianstate.The

explicitexpressionofthecorrelationmatrixC#(tl,t2)is

C_(t,,t2) - R(t! - t,) (E_ 4- {J), (7.16)

hence we can merely study

C#(t, 0) -- C#(t) = S#(t) + {R(t)J, " (7.17)

where S#(t)mR(t)_#. Note thatC#(t)#C/_(-t).

Among allthe elementsin C#(t),thosefourin _.CB(t)'_arethosecorrespondingto

theBrownian particle:

I_C_(t)]l = llS#(t)]l + --_[LR(t)]]j

= . (7.18)

Comparing C_(t)withC#(-t),we findthatthetwo diagonalelementsin _.S#(t)]]arethe

symmetrizedauto-correlationfunctionsforthepositionand momentum oftheBrownian
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particle:

IIS/_(t)]11= _-<_}(t)0(0)+ ¢}(O)t}(t))_, (7.19)

- ,'Is_ct)_== ½(_(0_(0)+_(0)_t))_, (7.20)

which are both even functions of t.

Using the Heisenberg picture, it is easy to derive the following relations:

d H.C_(t)'_21, (7.21),_ ilCz(t)_1_= - Iicz(t)__ =

and

_.C_(t)'_22= -m _ d_ (7.22)_ llc_(t)_l,
where

and

have been used in deriving (7.21).

Applying (7.21) and (7.22) to (7.18), we get similar relations among the elements in

(7.25)

2 d2 (7.26)IlS_(t)l122=-m _llS_(t)_l.

Hence HS/_(t)'_can be expressed as
1I

, IlS_(t)]1 = , (7.27)

\ m_(t;_) -,n_(t; _)

where v(t; _)--(4(t)_(0))_ is the counterpart of the fundamental solution u(t) for study-

in_ .iuantum harmonic Brownian motion. The explicit expressions of the elements in

IlS_(t)]] will be calculated in the next section.

67



7.4 Fluctuation-Dissipation Theorem

In this section, we shall derive the fluctuation-dissipation theorem (or fluctuation-

dissipation relation) [14, 56, 57, 59, 91] for our model, and then apply this theorem

to obtain the correlation functions of the Brownian particle with respect to the model

thermal state [51, 76]. The advantage of using this theorem is that, instead of diago-

nalizing the Hamiltonian explicitly, we can use the fundamental solution u(t) to obtain

these correlation functions. This is one of many examples of using the analogy between

the canonical density operator and the time-evolution operator in connecting quantum

statistical mechanics with quantum dynamics.

Firstly, we shall apply the results from Chap. 6 to prove the fluctuation-dissipation

theorem for our model, Using/_(t) in (7.7), the time evolution of _(t) in the Heisenberg

picture can be expressed as

4(t) = _*(t)_(0)z_(0

= _(-t)4(0)z_(t). (T.2s)

Since up to a proportionality constant, the canonical density operator can be taken

as the time-evolution operator with imaginary time, i.e.,

we have

Tr [/_(-i/3)0(t - i/3)0(0)]

On the other hand, from the canonical commutation relations (1.1) and the time

evolution of 4(t) in (6.38), it is easy to get the following operator identity:

[4(t),0(0)]= -/u(t)i, t > o. (7.31)
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Accordingly,for t E R:

[_(t),_(0)]= -iw(0i. (7.32)

Takingthe expectationvalueof(7.32)with respectto themodel thermalstateand

using(7.30),we get

The fluctuation-dissipation theorem can be easily obtained from (6.54) and (7.33):

,,(t;_)= ½(o(t)o(o)+o(o)o(t))_

={[,+

-- [ ]+*1 1+ exp{-i_Ot} d_ exp(-/_t)a"(w)
I mOO

+oo

2,_ ,_,_xp(-#t)_"(o,) + _xp(-#_)]- - exp(-/%.,)J
mOO

+oo

'/= 2_ _ exp(-/-,Od'(_)_th(_/2)

-- _ _ _o_(_,O_"(_)_,th(_/2). (_.34)

Note that the integrand of the above integration is finite at _o= 0 according to (6.48)

and

2

coth(/3E/2) = _ + O(E). (7.35)

Itisworthwhileto mentionthatintheproofofthe fluctuation-dissipationtheoremt

fora generalsystem [56,57,59],thegeneralizedsusceptibilitya(_),hencec_"(_),has

to be definedfrom the retardedGreen'sfunctionwith respectto a perturbingforceo

which correspondsto fx(t)in (6.6).However,sinceour model islinearhenceexactly

solvable,c_H(w)canbe defineddirectlyfromthefundamentalsolutionu(t),and we do not

even have tointroducetheperturbingforcefx(t)in statingthefluctuation-dissipation

theorem forour model [91].(Althoughu(t)isindeedthe retardedGreen'sfunction
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with respect to fx(t), and we can still interpret our a_t(w) in the traditional way. But

note that fx(t) does not have to be a small perturbation in this case.) Therefore the

fluctuation-dissipation theorem is exact for our model, and it can be proved that the

above argument is valid for any quzntum linear system.

Substituting (7.34) into (7.25) and (7.26), we get

+oo

m/ .l[S_(t)]]l_ = -U.S_(t)]]21 = _ d_ sin(wt)wa"(w) coth(_a_/2), (7.36)

and

_S_(t)_2 = 2-"_ dw exp(-iwt)w_a"(w) coth(_w/2)
--OO

+oo

m,f

Similar to (7.34), the integrands of the above two integrations are also finite at w=0.

Substituting (7.34), (7.36), and (7.37) into (7.18), we then get the explicit expressions

for the four correlation functions of the Brownian particle. As a comparison, we list two

anti-symmetrized auto-correlation functions as follows:

_(t)_(0)-- O(0)0(t));-- --_w(t), (7.38)

_-(_(t)i_0)- i6(0)i_t)}_ = -_m'ib(t), (7.39)

which axe both temperature-independent.

7.5 Thermal Equilibrium State of the Brownian Particle

If the total system described by (6.1) is isolated and ie in the model thermal state,

then the Brownian particle is in thermal equilibrium with the remainder of the system,

i.e., the heat-bath oscillators. Therefore, it is legitimate to define the thermal equilibrium

state of the Brownian particle in our model as the state corresponding to the 0-th mode

reduced density operator of the canonical density operator. In the following, we shall

derive the explicit form of this thermal equilibrium state of the Brownian particle.
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SincetheHamiltonian(6.I)ishomogeneouslyquadratic,themodel thermalstateisa

Gaussianstatewithzeromean vector,thusitiscompletelydeterminedby thecovariance

matrix IEE accordingto the discussionin Sec.3.4.The characteristicfunctionof the

model thermalstatetakestheform

= }. (7.40)
a

From the reduction theory studied in Chap. 5, the reduced state out of the model

thermal state that corresponds to the Brownian particle is characterized by the reduced

covaxiaace matrix [[IEE]], which is also a Gaussian state with zero mean vector. This

reduced state is then defined as the thermal equilibrium state of the Brownian particle

immersed in a quantum dissipative heat bath modeled by the independent-oscillator

model. The correspon,:ting one-mode characteristic function is

Since _ is block-diagonal, _]E_]] is diagonal. Hence we can define

,_[]D;_]]= (a,q[_] 0 ), (7.42)0 a_[Z]

where L8] indicates that these two variances are with respect to the thermal equilibrium

state with the temperature j9-1, and aaq_] and app_8] can be taken as the the initial

values of (7.34) and (7.37), respectively, as follows:

+oo

aq,_l= v(O;_)- _ da_"(a,)coth(_o/2), (7.43)

+oo

m,fa_W] = -m2{_(0;/9) = 2--_" dww2a"(w) coth(/9_/2). (7.44)
mOO

• Both (7.43) and (7.44) can be transformed into series expansions by using the

Parseval-Plancherel theorem in Fourier analysis:

+oo +oo
1

/ dr/(r)g'(r)= _ / gwF(w)G'(w), (7.45)
mOO --OO

where (f(t), F(w)) and (g(t),G(w)) are two Fourier transform pairs according to the

definitions in Sec. 1.1.
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In order to apply the Parseval-Plancherel theorem to (7.43) and (7.44), first we have

to replace coth(_w/2) by its principal value Pr coth(_w/2) in (7.43) and (7.44) since the

former has no Fourier transform but the latter does. This replacement will not change

the results of the integrations since, as we just mentioned, the integrands of (7.43) and

(7.44) are both finite at w=0.

Since the Fourier transform of Prcoth(_w/2) is [-iPrcoth(lrt/_)/_] and that of
o

a'(w) is given by (6.54), according to the Parseval-Plancherel theorem we can transform

(7.43) into

aaq[#] = dT ITJ _ Prcoth(_rr/#)
--OO

+¢:
1 #,

= _ /drw(r)coth(_rv/Z)t#

--00

lfo= -E d_(,)_oth(_/n)

'S? [ = ]: -_ dvu(,) 1 -t- 2 _ exp(-2#Trv/#)

= -j- z-'(0)+ 2_ z-'

1 +o¢

: z-,
where _s{U(t)} : Z-l(s): Z-_(-s) has been used. Note that Pr disappears from the

integration of (7.46) since the integrand is finite at r:0.

Similarly, from (7.44) we have

+_

[-_)(r)l-i coth(_r/#)]_3 = _"i _'l. 2i j [-j-Pr "

= -m--A=f0_d_(_)¢oth(_/#)#

= -J.=__ _C_i J_=2,..l#
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__ _ z -_ _+ , , (7.47)

where we have used

8_ z(s) (7.48)
• z:_{_(t)}= z(_) _,(0)= "_-mz(_) '

It is interesting to note that 2#zr//3 in the above two series is the Matsubara frequency

of the temperature Green's function [67], and Z -x (2#zr//_) follows as the Matsubara sus-

ceptibUity analogous to the susceptibility a(w) [62]. Eqs. (7.46) and (7.47) are convenient

for practical calculation of aqq[_] and ¢rpp[_].
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Chapter 8
a.

Quantum Langevin Equation

In this chapter, we shall begin to take the thermodynamic limit and derive the

quantum Langevin equation for the position operator of the Brownian particle from the

independent-oscillator model. The purposes of studying the quantum Langevin equation

are: (1) Among all equivalent formalisms, the quantum Langevin equation is the most

suitable one for constructing the dissipative heat bath. (2) The quantum Langevin equa-

tion is the simplest approach for some special problems of quantum harmonic Brownian

motion. (3) The independent-oscillator model is a well-defined quantum system which

can be studied by first principles of quantum mechanics. But before we can make any

prediction from it, we have first to verify the validity of this model. This verification

can be done via the construction of the quantum Langevin equation, and we will show

that in the classical limit this quantum-mechanical model gives results compatible with

the classical phenomenological theories discussed in Chap. 2.

8.1 Spectral Density

In this section, we shall define the spectral density for the heat-bath oscillators of the

independent-oscillator model. As we discussed in Sec. 6.4, the manifestation of resonant

behavior is the mechanism for the heat-bath oscillators being able to model a dissipative

heat bath. Therefore in order to define the spectral density, we should first examine in

more detail the behavior of Z(s) near the imaginary axis.
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Using (6.51), we can express _?[e-/w] in (6.24) as

_?[e- iw] = _ _ mew_ _/m _ mr + e -i_., +-_ + g (8.1)

- -iPr_,_ .__ _. +-_-_,_O4 +_) + - .

. Note that the real part of _;[E-/m] is an even function, while the imaginary part is an

odd function of w.

The spectral density p(w) is then defined as the real part of O[e - _]:

7r

g

which is a non-negative even function of w. Using this p(w), we have the following general

relation:

1 / dwp(w)G(w), (8.3)

• for any even function G(w). Accordingly, @[e-/w] can be transformed into

_;[e -/w] = -i Pr(w) + p(w), (8.4)

where

fPr(w) _ --_rPr dvp(v) _ . (8.5)
--OO

Substituting (8.4) into (6.23), we get

Z(e - iw) = -m(w = -. w_) - w Pr(w) - imp(w). (8.6)

Note that

z(_- _) # 0,v_ _.R, (s.7)

since all zeroes of Z(s) lie on the imaginary axis of the complex s-plane. Using (8.6),

_(_)i_(6.45)becomes

a(w) = la(w)l _ [-m(w 2 - w[) - w Pr(w) +/mR(W)], (8.8)
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hence

(s.9)

In terms of p(oa) we can also transfbrm r/(t) in (6.16), as an even function of t e R,

into the integral form:

+co
1

n(t)= -E f
--00

+oo

_ 1 f dzz exp(-iwt)[2p(w)], (8.10)27r
--OO

i.e., r/(t) is the Fourier transform of 2p(w).

Since both a(_) and r/(t) are completely determined by p(w), it is convenient to

work on this spectral density. In Sec. 8.3, we will show that p(w) also determines the

correlation function of quantum noise.

8.2 Quantum Dissipative Heat Bath

If a quantum harmonic oscillator is isolated, the time evolution of this oscillator will

be periodic since the system is free of dissipation. On the other hand, if we intend to make

a dissipative heat bath model out of our model Harailtonian, then the corresponding

fundamental solution u(t) in (6.44) or (6.53) must decay with the increasing t.

From the Pdemann-Lebesgue Lemma in real analysis [98], the fundamental solution

u(t) in (6.53) approaches zero as t--,oe if a"(w) is a measurable function of w, which

is impossible when n is finite. This can be understood from R(t) in (7.9), in which

every element is a linear combination of periodic functions of t with frequencies £/j's, the

normal mode frequencies of the total system, when n is finite. This means that a"(w)

in (6.53) is a linear combination of delta functions 6(w =t=_j), and each delta function

corresponds to a simple pole on the imaginary axis of the complex s-plane.

Therefore, in order to make a"(w) measurable, there must be a cut instead of a

collection of finitely many simple poles on the imaginary axis of the complex s-plane. In

other words, to construct a dissipative heat bath model we must take the thermodynamic

limit n--,ce, such that the accumulation of those infinitely many simple poles produces
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an effective cut. From the relative positions among the w_'s and _tj's described in (6.28),

we know that this can be achieved by a (uniform) distribution of infinitely many w_'s.

In addition, we have to demand that the spectral density p(w) be a measurable function

since a"(w) is a function of p(w) according to (8.6) and (8.9). It is interesting to note thatA

this thermodynamic limit is equivalent to a field description of the heat bath [23, 30, 96].

From now on, we shall assume that the thermodynamic limit n--,ov is taken and

p(w) is a legitimate spectral density. Accordingly, u(t), v(t; 8), and r}(t) all approach

zero when t--,cc, and we have the well-defined Fourier transform pairs: (w(t), 2ia"(w)),

(v(t;_),a"(w)coth(Zw/2)), and (_7(t),2p(w)) according to (6.54), (7.34), and (8.10).

Thus we are allowed to drop e in all related formulas henceforward.

Conventionally, the heat bath models are classified in terms of the spectral density

I(w) instead of p(w). I(w) is defined as

Ir

= 7 - (s.11)
l

which corresponds to the positive frequency part of p(w) since I(w<O)=O. I(w) can be

expressed in terms of #(w) as

= (s.12)

where O(w) is the tieaviside unit step function. Conversely, we have

= (s.la)

Hence these two spectral densities p(w) and I(w) are mathematically equivalent.

In contrast to an ideal (quantum) heat bath which has only one parameter, the

temperature/3 -1, to characterize a quantum dissipative heat bath we have to specify

both the temperature and the spectral density I(w) or p(w). We usually let the spectral

density I(w) take the form

. I(w) --- mTWQR(w; h)0(w), (8.14)

where _/is a constant, and R(w; A) is the cutoff function with A as the high-frequency

cutoff. The heat bath is called ohmic for a--- 1, sub-ohmic for 0 < a < 1, and supra-

ohmic for a > 1. Note that in defining the spectral function (8.14), we have implicitly
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assumed thateach couplingconstantmew_ ismfimt.slmal,sinceotherwiseI(_)willbe

divergent.However,thisisnottheweak-couplinglimit[7]becausethecouplingbetween

the Brownian particleand theheatbath isdescribedby I(w) whichisfiniteingeneral.

Inthe literature,thecutofffunctionR(_; A) usuallytakesthefollowingforms:

(i)Abrupt cutoff(Debye--Zwanzigmodel) [10,108]:

R(_;A)=0(A- _); (s.15) "

(ii) Lorentzian cutoff (Drude model) [38, 44, 45, 76, 95]:

A2

R(_;A)c_As+ _ ; (8.16)

(iii) Exponential cutoff [17, 48, 61, 73]:

R(w; A) oc exp (--wb/Ab), b = 1 or
2. (s.lz)

It is obvious that I(w), hence p(w), is a measurable function of w for the above three

cutoff functions.

According to (8.11), by suitably choosing the distributions for me and we of the heat-

bath oscillators, we can construct any given physical spectral density I(w) in the limit

n_cc. Therefore we have verified that the independent-oscillator model is a legitimate

model for a general environment [30].

8.3 Quantum Noise

Consider a Brownian paxticle immersed in a quantum dissipative heat bath modeled

by the Hamiltonian (6.1). We assume that initially the Brownian particle and the heat-

bath oscillators are independent of each other, i.e., the initial state of the total system is

a product of the state of the Brownian particle and that of the heat-bath oscillators, the

so-called factorizable initial state. If we want to model a quantum dissipative heat bath

of temperature/_-_, the natural choice of the initial state for those independent heat-

bath oscillators is the thermal state with the same temperature. According to (3.48),

the characteristic function of the thermal state of the heat-bath oscillators is

V_th(_e,ke) = Hexp coth(_we/2)(xe, ke)ge
e

78



{1 ,81,i

Using( )bathtodenotetheexpectationvaluewithrespecttotheinitialstateofthe

heat-bathoscillators,we have

(q>_h <_e>_,hO, (S.IO)

<qtqt'>bath-- bte, coth(f_wt/2), (8.20)2mtw_

<16ei6_,>bath= T mtwt coth(f_wt/2), (8.21)

= =_u,. (s.22)

In the following, we shall argue that under the above assumptions, the force term

' ](t) on the right hand side of (6.18) serves as the quantum noise (or quantum random

force) [31], which is the quantum analogue of the colored noise discussed in Sec. 2.5.

(I) Since ](t) is a linear combination of _(0) and lilt(0), and the thermal state of the

heat-bath oscillators is Gaussian, we conclude that ](t) is a quantum Gaussian process

with respect to ( )bath.

(II) (](t))bath=0 according to (8.19).

(III) The symmetrized correlation function of ](t) is defined as

g(tl,t2;_) {<](tl)j(t2) +f( 2)f(tl))bat h. (8.23)

From (8.20)-(8.22), we have

</(t')Z(t2)>bath = _ E m,w_ coth(/_,/2)cos(_t(t, -t,))t

- _ E'_t_'in(_(t, - t,)), (s.24)t

hence the explicit expression of the correlation function K(tl, t2; t3) in (8.23) is

" 4-00
1 /.

/ dwp(w)wcoth(/gwl2)cos(_p(tl-t2))2-'_
--00

+oo
, 1 I"

= _ / dwp(w)wcoth(tSw/2)exp(:l:iw(tl - t2)). (8.25)
--00
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Sincewcoth(/3w/2)isan even functionof w forfinite/_,itissuitableto use (8.3)to

convertthesum intoan integration.

Because K(tl, t2; _)= K(tl-t2,0; _)according to (8.25), ](t) is a stationary process

with respect to ( )bath" Hence we can merely study h

+oo

K(t, 0; _) -- K(t;/3) -- _ d_ exp(-_t)a_p(w) coth(_w/2), t E It, (8.26)

and accordingly wp(w)coth(_0/2) can be interpreted as the power spectrum of ](t), the

quantum analogue of IF(w) in (2.29). K(t; _) is usually called the noise kernel in the

path-integral approach.

In order to discuss the classical limit of K(t; fl), let us first approximate K(t; _) in

(8.26) by

where A is the cutoff frequency. Note that we have let h appear explicitly in the above

equation. If we impose the classical limit flhA << 1, which corresponds to the high

temperature limit and/or the limit/i_0, then it follows that

1

f__ d_exp(-_t)p(_)_ v(t) (8.28)g(t;Z) V ^

which is analogous to the correlation function of the classical colored noise given by

(Z28).

' From (I)-(III), we conclude that f(t) serves as a quantum analogue of the classical

colored noise. As a comparison, we also calculate the commutator of ](tl) and ](tl) as

follows:

[/(t,),/(t,)] = -i Z: - t ))i
t

• -1-oo

_- -..2*f d_p(co)wsin(_(h - t2))i71"
-oo

= i¢?(h - t.o)i, (8.29)

which is an odd function of (tl-t2) and is temperature-independent just like (7.38) and

(7.39).
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8.4 Quantum Langevin Equation

From the above discussions, we find that if (i) n--,_ and the spectral density of the

heat-bath oscillators is defined according to (8.14), and (ii) the initial state of the total

system is fa_torizable with the heat-bath oscillators being in a thermal state, then it is

legitimate to call (6.18) the quantum (generalized) Langevin equation for the position

operator _. Note that _(t)/m and f(t) in (6.18) axe, individually, the quantum analogues

of the memory kernel and colored noise in the classical generalized Langevin equation

(2.26). The solution of (6.18) is given by (6.38).

Compaxing the quantum La_gevin equation (6.18) with f×(t)= 0 with the classical

generalized Langevin equation (2.26), we find that: (1) There is no classical correspon-

dent to the term -_(0)_7(t) in (6.18), which is an intrinsic defect of the linear-coupling

and independent-osciUator models. (2) The lower limit of the integral term in (6.18) is

t=0, in contrast to that in (2.26) which is taken to be -c_. This is because in Chap. 6,

we took t = 0 as the initial moment when we solved the equations of motion. Therefore

the stationary solution of (6.18), which corresponds to the thermal equilibrium state of

the Brownian particle, only exists when t--*_ in general. On the other hand, for the

classical generalized Langevin state (2.26), the stationary solution exists for any finite t.

For the thermal equilibrium state of the Brownian particle, since a"(_)coth(/3_/2)

and v(t;/_) form a Fourier transform pair, we can interpret &t(_)coth(/_/2) as the
l

power spectrlLm of the stationary quantum process _(t). Compared with (8.9), we get

c_"(¢Q)coth(_/2) = Ic_(¢Q)l_[¢Qp(cQ)coth(_cQ/2)]. (8.30)

According to the discussion in See. 8.3, ¢Qp(cQ)coth(_/2) is interpreted as the power

spectrum of the quantum noise ](t), hence for the stationary solution of the quantum

Langevin equation (6.18), Eq. (8.30) is the quantum analogue of (2.31). Throngh the
,L

successful derivation of the quantum Langevin equation from the independent-oscillator

model, the validity of this model is herewith verified.

The advantage of the quantum Langevin equation (6.18) are: (1) Its solution (6.38)

is state-independent, hence we can take the expectation value with respect to any given

initial state (not necessarily fa_torizable) to calculate the time evolution of the mean vec-

tor of the Brownian particle. (2) Using the solution of the quantum Langevin equation,
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we can derive the time evolution of the covariance matrix of the Brownian particle with

respect to an arbitrary fa_:torizable initial state, which will be discussed in Sec. 10.3.

The limitations of the quantum Langevin equation are: (1) It is derived under the

assumption that the initial state is factorizable, hence it cannot be applied to the general o

problems with non-factorizable initial states. (2) With respect to the factorizable initial

states, it is inconvenient (although not impossible in principle) to study the relaxation

of the non-Gaussian initial states of the Brownian particle using the quantum Langevin

equation, because these kind of states cannot be completely determined by the first two

moments.

8.5 Ohmic Dissipation

In this section we shall study the simplest example of quantum harmonic Brownian

motion, i.e., the case corresponding to ohmic dissipation with infinite cutoff. In this case

I(w)=m-fw_(w), and p(w)=m7 becomes the friction constant. From (8.10),

+oo

,_7 f d__xp(-_t) = 2r_(t), (8.31)n(t)- -V
_OO

and accordingly the quantum Langevin equation (6.18) with fx(t)=O reduces to

_(t) + 7_(t) + woz4(t) = -275(t)ff(0) + ](t_._), (8.32)m

or equivalently,

_(t) + 7_(t) + (wo_ + 275(t))_(t) - ](t), (8.33)m

where (1.11) has been used.

The corresponding generalized susceptibility a(w) ta_es the form

1

a(w) = rn(_w_ _ ivw + w02)' (8.34)
o

hence

_./m (s.3_)_,,(_)= (__ _o_)_+ (_)_ '
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The fundamental solution u(t) for (8.32) is easy to solve using (6.44). Let us consider

the underdamped case as an example. In this case the two zeroes for the denominator

in (8.34) can be expressed as

_I,2 = ivn - i7-- lw_2 ' _, - - q- e R. (8.36)

Using a contour integral on the complex w-plane, we get from (6.44):

exp (S.aT)mva

Note that the corresponding _(t) has a jump at t = 0.

In contrast to the classical Langevin equation, where ohmic dissipation is associated

with white noise, the power spectrum of the ohmic quantum noise is mTwcoth(13w/2),

which is obviously colored. This difference can be traced to the failure of the classical
i

equipartition law in quantum statistical mechanics. In the classical limit discussed in

Sec. 8.3, we have

K(t;/3) _ _b(t), (8.38)

which corresponds to classical white noise discussed in Sec. 2.4. Hence we find that, using

ohmic dissipation accompanied by the classical limit, the quantum Langevin equation

(8.32) becomes the analogue of the classical Langevin equation (2.21) with an extra

b(t)-term, which can be interpreted as a frequency shift according to (8.33).

Before closing this section, let us discuss two more interesting questions. The first

one is the weak-coupling limit of the ohmic quantum dissipative heat bath [7], which

corresponds to the case -i_0. From (8.35), we have under this limit:

m (w2 -wg) 2 + e=

. =
m

= + (s39)2mwo

Hence the heat bath model reduces to an ideal heat bath free of dissipation. According

to (7.43) and (7.44), in this limit the thermal equilibrium state of the Brownian particle

is consistent with the thermal state of a harmonic oscillator'. It is obvious that this

conclusion is also true with respect to a finite cutoff.

83



The second interesting question is the long time behavior at low temperature. Let

us use v(t; _) with large t > 0 as an example to compute the so-called long-time tail

[38, 44, 45, 51, 76]. The formulation we shall use is a generalization of that discussed in

Sec. 7.5.

Applying the Parseval-Plancherel theorem (7.45) to (7.34), in analogue to (7.46) we

have for amy t > 0:

+oo
1 *

v(t;/3) = 2"-_/ dw [a"(w)] [exp(/wt)coth(_Tw/2)]

-i-¢_

-i= f dr[.--_--j [--_- Pr coth0r(r -
--O¢

= "_1 [jo°°dru(r) [coth(zr(r + t)/13)+ Pr coth(zr(r - t)//3)]. (8.40)

This formula is especially useful for low temperature expansions. For the special case

that the temperature approaches absolute zero and t is large, we get the asymptotic

value of v(t; /3) as

'F [']v(t; 13) _ --r Pr dvu(r) r2 _ t_ ,

-1 fo °°_, lrt---_ dru(r)r

-1[ . 0a(_o)]=

(8.41)
-- _m0304 t 2

where (8.46) has been used, and we have taken advantage of u(t) being very small for

large t.
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Part III

The Dynamics
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Chapter 9

General Formulations

9.1 Time Evolution of the Brownian Particle

From the discussion in Sec. 5.4, we know that once we have the explicit form of

the initial characteristic function, we can immediately write down the time evolution of

the reduced characteristic function in terms of the phase flow. For quantum harmonic

Brownian motion, the subsystem A is the Brownian particle and B is collection of

the heat-bath oscillators according to the notations in Chap. 5. With respect to the

Hamiltonian (6.1), if the characteristic function of the initial state of the total system

is _ni(z), according to (5.11) the time evolution of the reduced characteristic function

• 0(x, k; t), which corresponds to the reduced density operator for the Brownian particle

at t, is given by

where (x, 0, k, 0) is a vector in the 2N-dimensional phase space with only two non-zero

components, and _(t) is a 2N-dimensional vector defined as
f

which is a function of x, k, and t. Note that x_ and ke are not involved in the definition

of _.(t)! Comparing (9.2) with (6.32) and (6.35), we can decompose

_(t) = (_(t),_l(t),_2(t),...,_,(t),k(t),kl(t),k2(t),-..,k,(t)) (9.3)
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into the following expressions:

kj(t) ) =_ rj(t) ( : ) , (9.4)

where

ro(t) = = j" _R(t)_rj, (9.5)

and

re(t) = , (9.6)

-mrngfie(t) mgi_g(t)

with the initial values

(1:), and r_(0) = 0. (9.7)ro(0)= o

The quantum dynamics of the Brownian particle is then completely determined by

the matrices rj(t), whose elements are the elements of the 0-th and N-th rows in R(t).

Hence our claim in Part II that only these two rows in R(0 axe needed for studying the

dynamics of the Brownian particle has been confirmed.

Eq. (9.1) is the main result of this paper. We shall show in the following two chapters

that it can be applied to quantum harmonic Brownian motion with great efficiency. If

the model Hamiltordan is (6.6) instead of (6.1), according to (5.11) there will be an extra

factor exp (i(x,O,k,O)JaT(t)} in (9.1), which corresponds to a shift in the mean vector

of the Brownian particle and is easier to deal with using the quantum Langevin equation

discussed in Chap. 8.

9.2 Two General Relations
m

Since there is no coupling term involving the momentum operators in the model

" Hamiltonians, there exist two general relations which are useful in simplifying the calcu-

lations. With respect to the model Hazniltonian (6.1) or (6.6), the Heisenberg equation

of motion for _ of the Brownian particle takes the form

dO
m_-_ =/_, (9.8)

87



which is the quantum correspondent of (6.8). Taking the expectation value of the above

equation with respect to a given physical state, we have

md (_(t_ = (_(t)). (9.9)tit\ "/
b

Accordingly, the time derivative of aqq(t) is related to aqp(t) by

-_-_aqq(t) - 2 dt

2

= (9.1o)

Since (9.9) and (9.10) axe valid for any given state, we can always calculate (/_(t))

and aqp(t) from the time derivatives of (_(t)) and aqq(t), respectively. Therefore we

shall henceforward omit the explicit expression for aqp(t). Note that due to the coupling

terms in the model Hamiltoniaxts, there is no simple relation between %q(t) and ar_(t )

nor between aqp(t) and %_(t).
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Chapter 10
P

Factorizable Initial States

In this chapter we shall consider the time evolution of a Browniam particle whose

initial state is independent of that of the heat-bath oscillators, which is a thermal state.

In other words, the initial state of the total system is the factorizable state that we

assumed in deriving the quantum Langevin equation. As we mentioned in Chap. 8, the

quantum Langevin equation is only convenient for obtaining the time evolution of the

mean vector. For general problems, we shall use the reduced characteristic function to

I study the time evolution of the Brownian particle.

Throughout this chapter, the density operator of the total system corresponding to

the factorizable initial state is assumed to be

_(t=0) = _A_B, (10.1)

where the density operator _A corresponds to an arbitrary physical state of the Brownian

particle, and _B to the thermal state of the heat-bath oscillators at temperature f_-i as

discussed in Sec. 8.3.

10.1 Time Evolution: General Formulation

' We define the characteristic function corresponding to the density operator (10.1) of

the factorizable initial state as

• ini(z) = ¢.4(x,k)(_s(x_,k_), (10.2)
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where the characteristic function _a(x,k) corresponds to _A, and _B(x_,k_), which is

the same as _bath(xe, k_) in (8.18), corresponds to _B. Note that both _a(x,k) and

_B(xt, kt) are individually normalized.

According to the formulations in Sec. 9.1, the time evolution of the reduced charac-

teristic function for the Brownian particle with respect to the factorizable initial state

(10.2) is

=
Substituting (9.4)into _s (_(t), kt(t)) and comparing with (8.18), we get the following

exact expression:

( 1 _coth(/3we/2)(x,k)r'_(t)gere(t) k

-exp (-1 (x, k)®(t;/3) (:) }, (10.4)

which is the analogue of the influence functional in the path-integral approach. The 2x2

matrix ®(t;/3) is defined as

®(t;/3) = _ _ coth(Bwt/2)r_(t)gert(t) (10.5)
l

= __..._.mtcoth(/3wz/2) / m=[:dz(t)=+w_i_t(t)=] -mi_(t)[:dt(t)+w_ut(t)] I
e -mi_e(t)[£_e(t) + w_ue(t)] fie(t)' + w_ue(t) 2

At t=0, O(0;fl)=0 according to the initial values of r_(t) in (9.7), hence we have

• ,(_,(0),_,(0))=1 (10.6)

according to the normalization condition of Cs(_e, k_). It follows that

¢o(=,k;t=0)=_ (_(0),_(0))= _,(=,k), (_0.7) .

which means that there is no initial influence from the heat bath on the Brownian

particle, consistent with the assumption that the initial state is factorizabie.
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The explicit expressions for the elements in ®(t;/3) can be calculated by using (6.33),

(6.34), and (6.36), with the aid of (8.25) and (8.26) as follows:

fofoE)ll(t;_ ) -" m 2 dT"ldT2_(T1)_(7"2)I((T1--T2;]_ )

+oo

= 2"ff dwwp(w)coth(/3w/2) dr exp(iwr)/_(7") (10.8)
--OO

/o70'
+_

_-- 12..__f dwwp(w) coth(/_w/2) ]fotd_" exp(/wr)u(,) 1_ (10.9)

e2(t; = e2 (t;

= -m drldr2i_(n)u(r2)K(n - _'2;/_)

m.

= --_-e22(t; t3), (10.10)

where K(t; _) is the correlation function of the quantum noise defined in (8.26).

Summarizing the above results, we get the time evolution of the reduced" characteristic

function for the Brownian particle as

¢0(x,k; t) = Ca (_.(t),k(t)) exp --_"

which is completely determined by the initial state of the Brownian particle, the fun-

damental solution u(t), and the spectral density as well as the temperature of the heat

bath. Note that the elements of the matrix ®(t; fl) depend explicitly on the spectral

density p(w), which means that (10.11) depends on the cutoff frequency A in (8.14).

" 10.2 Approach to Equilibrium

• In this section we shall prove that for an arbitrary factorizable initial state, as time

t--.c_ the Brownian particle always approaches the thermal equilibrium state defined in

Chap. 7.

As discussed in Sec. 8.2, if we take the thermodynaznJc limit n--*oo and use the

measurable spectra] density p(w), then the fundamental solution u(t) approaches zero as
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t---*oo according to the Riemann-Lebesgue lemma. Similarly, fi(t) and i_(t) also approach

zero in this limit according to (6.53). Hence we have

lim to(t) = 0, (10.12)t--*oo

and

lim _A(_(t),k(t)) "" _A(0,0)= 1 (10.13) "t-*co

according to the normalization condition on CA(x, k). Thus we find that the final state

of the Brownian particle is independent of its initial state. As t_, the reduced char-

acteristic function for the Browniax_ particle takes the form

limO0(z k;t)= limexp{ 1 ( ) (x)} -.oo '  -oo -7 k

= exp (-1 (x, k) ®(c¢; _) (:) }. (10.14)

The explicit expressions for the elements in ®(co,/_) can be obtained by applying (6.46)

and (8.9) to (10.8)-(10.10):

-}-co

+_
m 2

= 2"--_-/ d_'a'_P(a')c°th(_/2)la(_°)[_

+_

= 2--_ d_a_2a"(a_)c°th(Ba_/2)' (10.15)

+_
1 _, 2

+_

= 12_rf dw_0p(w)coth(_/2)la(_)[ 2
--OO

+oo

_- 1..}_27r/,dwa"(w)coth(flw/2), (10.16)
--OO
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and

e_2(oo;_)= -_ 22(oo;_)= 0. (10.17)

Note that we have omitted iE from the kernel exp(/wr) in (10.15) and (10.16). This is

because, after ta_ng the thermodynamic limit, both Fourier-Laplace transforms of u(t)

and _2(t) converge.
o

Comparing the four elements of ®(oo; _) with (7.43) and (7.44), we find tb_ the

final characteristic function of the Brownian particle is

_"_ 0 _qq[_] k '

which is exactly the characteristic function (?.41) for the Brownian particle in thermal

equilibrium with the heat-bath oscillators. Therefore we have proved that, with re-

spect to an arbitrary factorizable initial state, the Brownian particle always approaches

thermal equilibrium when t--.oo.

10.3 Time Evolutionofthe Gaussian Statesand the

Covariance MatricesofArbitraryInitialStates

To illustratethe applicationof the resultsderivedin the lasttwo sections,letus

considera simpleexamplewhere theinitialstateoftheBrownianparticleistheGaussian

statedefinedin Sec.3.4.The characteristicfunctionofthisinitialstateistheone-mode

versionof (3.31):

Xc

where (zc,kc)isthe mean vectorand Z0 isthe2x2 covaxiancematrixofthisone-mode
.

Gaussianstate.

Substituting(10.19)into(10.ii)and using(9.5),we get the time evolutionof the

reducedcharacteristicfunctionofthe Brownian particleas

#o(x,k;t) (10.20)

Xc
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From thischaracteristicfunction,we findthat the mean vectorfollowsthe restricted

phaseflowwith (zc,kc)asthe initialvalue,and thecovaxiancematrixevolvesaccording

to

Zo(t) = [_R(t)]]_o [_R(t)_]T + jT®(t;/3)j. (10.21) "

ThereforethestateisalwaysGaussianinthecourseoftimeevolution,and itapproaches
Q

thethermalequilibriumstateas t--_oo.

Using the formulasin Sec.4.2,we can generalizethe above resultsto thatof the

time evolutionofarbitraryfactorizableinitialstates.Suppose thata giveninitialstate

of the Brownian particlehas theinitialmean vector(zc,kc)and the initialcovaxiance

matrixT0. Itiseasyto provethat(i)the timeevolutionofthemean vectorfollowsthe

restrictedphaseflowwith (xc,kc)as theinitialvalue,and (ii)thetimeevolutionofthe

covariancematrixobeys(10.21).Nevertheless,(i)and (ii)cannotcompletelydetermine

the timeevolutionoftheBrownian particlefora non-Gaussianinitialstate.

The aboveresults(i)and (ii)can alsobe obtainedfrom thesolutionofthequantum

Langevinequation.Thiscan be easilydone ifwe put (6.37)and (6.39)intothefollowing

form:

then set J'x(t- r)=O.

10.4 Environment-Induced Damping of Quantum

Interference

In thissectionwe discussan interestingproblemwhere theinitialstateoftheBrow-

nian particleisa superpositionoftwo coherentstates[12,48,73,107].We shallshow

how to usethecharacteristicfunctiontocalculatethedamping ofquantum interference

due to influenceofthe environmentinthecourseoftime evolution.

In orderto simplifytheformulation_we introducea new notationz ---(x,/c)forthe

vectoron the Brownian phaseplane.Accordingly,b(-z) representsthe corresponding

one-mode Weyl operator.Note thatthisnotationwillbe employedonlyin thissection.
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We then assume that the initial state of the Brownian particle is a superposition of

the following two one-mode coherent states:

Izo>+ Izb>, (10.23)

where Za= (x,_, k,_) and zb= (zb, kb) are two non-identical constant vectors on the Brow-

nian phase plane. The mean and difference of za and zb are defined as

Za + Zb
zm -- 2 ' z_ = Za -- Zb. (10.24)

The density operator corresponding to the initial state (10.23) is

- 0zo>. iz,>)(<zol. 0,
where

1

c_= 20+_<zolz_>) (10.2_)
is the normalization constant, with

<zolz_>=_xp(-zz_z__• +_zojz_'••} ¢10.27)

according to (1.48).

Using (3.12) and formulas in Sec. 1.3.1, the characteristic function of _a can be

obtained as

@A(z)

where

Co(z)- <zolb(-z)lzo>-- exp{-lzgoz v -t- izjz:}, (10.29)

and

- ¢b(z)- (zblD(-z)lzb>= exp{-¼z_g + izjz_} (10.30)

are analogies of (3.13), and

Cob(z)- (zolO(-z)Izb>

Zz_) T izjzrm
i " T

= exp(-_(z + z=)go(z+ q-q- _-ZaJZb}

i • T- (z,,Izb>exp{-¼z_z" -i-izj(z_ - _-jgoZ,,)} (10.31)
1
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and

¢_(z)- (zblb(-z)Izo)

-- exp{-¼(z - zA)go(z - z_) T + izjzTm -- _-'zaj'z_} .

i " T

= (zblza)exp{-¼zgoz v + izj(zTm + _JgozA)} (10.32)
,a

correspond to the interference terms.

Once we get the explicit expression for (_a(z), the characteristic function for the

initial state of the Brownian particle, we axe ready to derive the time evolution of the

reduced characteristic function _o(z; t) for the Brownian particle. Using the notation
i

(,.))zV(t)- k(t) - r°(t)zV' (10.33)

Eq. (I0.11)becomes

Co(Z; t) -- (_A (_(t))exp{--_-z ®(t; _)z" }. (10.34)

Substituting (10.28) into (10.34) gives the explicit expression of C0(z; t). In order to

keep track of the interference terms, we express (_o(z; t) in (10.34) as

ao(z;t) = c_[_o(Z;t)+ _(z; t)+ _o_(z;t)+ _(z; t)], (lo.35)

with

(_a(z; t)- exp{-¼z[rTo(t)goro(t)+ 2®(t; f_)]z" + izjzra(t)), (10.36)

Oh(z; t)----exp{-¼z [r:(t)goro(t)+ 2®(t; f_)]zv + izjz:(t)}, (10.37)

i'T T•o,(z;,)=-<zolz,>ex_{-_,[_:(_)_,o(_)+_o(,,_)]:+,zj[z:(,)-_,ro(_)_zo]},
(Io.3s)

P

(_(z; t)- (zblz_)exp{-¼z [r:(t)g_ro(t)+ 2®(t; f_)] zT + izj [z:(t)+ _jroT(t)goZ:]),

(10.39)
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where

z_(t) = [[R(t)_z_, z_(t) = _R(t)'_z_, (10.40)

and

(10.41)• -

i.e., za(t), zb(t), and zm(t) all follow the restricted phase flow on the Browxfian phase

plane, with za, Zb, and zm as their initial values, respectively.

Since among those four terms in (10.35), _a(z; t) and _b(Z; t) correspond to the time

evolution of the coherent state Iza) and IZb), individually. It follows that [_ab(z;t)+

_(z; t)] corresponds to the interference. Because the characteristic functions have no

direct physical meaning, in order to make a quantitative study of this interference we

have to transform the characteristic function (10.35) into the Wigner function:

Wo(z;t)=Ca[Wa(z;t)+ Wb(z; t) + Wab(z; t) + Wba(z; t)], (10.42)

with Wa(z; t) being the Wigner function corresponding to the characteristic function

• _(z; t) in (10.35), etc.

Since _(z;t) in (10.36) is Gaussian in z, we cart use the formulas in Sec. 3.4 to get

the corresponding Wigner function:

where

rI(t;/3) j_ [r0v(t)goro(t) + 2®(t;/3)] -1"= j, (loA4)

and

Cdet(YI(t; _))
Cl(t;/3) = . (10.45)

Similarly, we have

Wb(z;t) : C,(t;_)exp {- [z -- zb(t)lYI(t; _) [z -- zb(t)lV} , (lO.4a)
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and analogously,

wob(_;t)= w_(_;t) (10.471

= Cl(t;_)(zaJzb>exp(-[z-zrn(t)+ _-Z=goro(t)jv] II(t;/3) [zr - ZVm(t)+ _'jr0V(t)gozT] } •

Hence we get the explicit form of the Wigner function corresponding to the interference:

ql

w_.,(_;t)=__wob(_;t)+ wbo(_;t) = 2Re[wob(_;t)]

= 2c_(t;Z)l<_ol_b>lexp{¼_go_o(t)j_n(t;Z)jro_(t)go_2}

exp{-[z- zrn(t)]YI(t;/3)[z- zm(t)]v}

COS{ 1 Z " I"_jzb+z_goro(t)jn(t;_)[z-z_(t)]_}. (I0.4s)

In orderto quantitativelyanalyzetheinfluenceofthe environmenton theinterfer-

ence,we havetodefinea functionwhichmeasurestherelativestrengthoftheinterference

term W_nt(z;t)compared withthedirectterms Wa(z;t)and Wb(z;t).Considerthenor-

realizedratio

X(t) = I(z=lzb)lexp{ ¼zAgoro(t)jTII(t; /3)jr0V(t)g0ZT}

= exp('¼z,,[go-g, oro(t)jvII(t;_)jrVo(t)golzV_}, (10.49)

which is one half the ratio of the upper limit of Wint(z; t),

2c_(t;_)I<_oIzb>lexp{¼zagoro(t)jVll(t;ZljroT(tlgoz_}, (10.501

to the maximum valueof W=(z;t)or Wa(z;t),which isequalto C1(t;_).Eq. (10.50)

isonly theupper limitinsteadofthe maximum valueofWint(z;t)ingeneralbecause

ofthe cosineterm in (10.48).From the quasi-probabilityinterpretationofthe Wigner

function,we know thatthisX(t)meets the requirementas an indicatorofthe relative

strength of the interference. Note that x(t) depends on za explicitly, and X(0)= 1.

In general X(t) is a monotonically decreasing function of t, which indicates the damp-

ing of the interference induced by the environment. When t---_cc, we have

X(oo)= exp{-IZ_goZ_} < i. (10.51)

98



As a comparison, let us consider the same problem for an isolated harmonic oscillator.

The corresponding X(t) can be obtained by setting ®(t;/3)=0 and

_o_(_ot) - _in(,,.,ot)/(_,.,.,o))
. ,'o(t)= (lo.52)

mwo sin(wot) cos(w0t)

, in all related formulas. Hence we get YI(t;/3) = go, and x(t)= 1 for all t in this special

case, which means that the interference does not decay if there is no environment coupled

to the Brownian particle.

10.5 Quantum Fokker-Planck Equations

In this section we shall derive the equation of motion for the reduced characteristic

function _0(x, k; t), and from it obtain the equation of motion for the corresponding

reduced Wigner function Wo(x,k;t). Both equations are usually called the quantum

Fokker-Planck equations and are equivalent to the master equation for the reduced

density operator of the Brownian particle [10, 44, 45, 48, 79, 96].

It is necessary to emphasize that, the purpose of constructing these quantum Fokker-

Planck equations is not to determine the time evolution of the Brownian particle. We

have already obtained the time evolution of the reduced characteristic function ¢0(x, k; t)

in (10.11). The main motivation of this construction is to derive the quantum analogues

of the classical Fokker-Plamck equations discussed in Sec. 2.6, and from them to deter-

mine the quantum version of the diffusion coefficients.

The Fokker-Planck equation (2.43) for the classical characteristic function is a first-

order linear partial differential equation. Since all formulas for quantum Brownian mo-

tion have classical analogues, we start the deriwtion of the quantum Fokker-Planck

• equations by considering the following linear combination of first-order partial deriva-

tives of the reduced characteristic function ¢0(x, k; t):

O_o(x,k;t) cg_o(=,k;t) O¢o(x,k;t) (10.53)L(x, k; t) -- Ot + Cx Ox + Ck Ok "

Using (10.11), we have the explicit expression of the time derivative of _0(x, k; t):
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+ -- Ot --exp

= @o(X, k; t) -_

+ - O'(t) ' -- Ok(t) --] "_ \ k(t)] exp {_.l(x, _)

(O¢,('(t),k(t))Oyc(t) cg"a('(t)'k(t))-)_o(t) (:)exp{-2(x'k)O(t;_)C:)}"
+ - - ' - o_(t)

Similarly, we have

0x

and

Ok

+ - _ ' -- o_.t

with ro(t) defined by (9.5). Note that the above three expressions are expressed in terms

of matrix multiplications. Substituting (10.54)-(10.56) into (10.53), we get

+ _ O_(t}--'- o_(t} -) k

Noticing that on the right hand side of the above equation, there are two terms

oe.,(_(t),_(t))=a
-- o_(t) o_(t)
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which are not functionals of ¢o(z,k;t). Since CA(z,k) is an arbitrary function, we

cannot make any further simplification or transformation on the above two derivatives.

Therefore in order to construct a linear partial differential equation for ¢0(x, k; t) from

(10.57), we must demand that

 o(t) + to(t)I

such that both terms in (10.58) disappear from (10.57). The coefficients Cz and Ck are

then determined as

Ck

where A(t) is a 2x2 matrix with the elements:

fiii- u_/

All(t) = uii- fi_ ' (10.61)

1
A,2(t) = --, (10.62)

m

A21(t).. - m • -- , (10.63)fi2UU--

A22(t) = 0. (10.64)

Substituting (10.60) into (10.57), we have

[L(z,k;t)=-¢o(x,k;t)(z,k) ®(;/3)+®(t;_)A(t) . (10.65)

Rearranging (10.65) and using (10.62) and (10.64), Eq. (10.65) becomes

+ + An(t)x + A2,(t)= + Dt¢k(t;/3)x 2 + D=_(t;_)xk ¢o(x,k;t) = O,

(10.66)

where

Dkk(*; jb) -- _11(t;B)2 + Axl(t)®ll(t; _)+ A_l(t)®12(*; _), (10.67)
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and

z)_k(t;_)= o_(t;_)+ o_(t;_) + n_(t)o_2(t;_)+ A2_(t)O22(t;_). (10.68)m

Eq. (10.66) is the quantum Fokker-Planck equation for the reduced characteristic func-

tion corresponding to the Brownian particle [96], which can be taken as the c-number

representation for the master equation of the reduced density operator. Note that in
a

(10.66) the coefficient of the term k2_0(x, k; t) vanishes because of the relation (10.1O).

From the expressions (10.8)-(10.10), we see that in general the elements in ®(t;13),

hence Dkk(t; t3) and Dxk(t;/3), depend on the history of the Brownian particle. Thus in

general the solution of the quantum Fokker-Planck equation (10.66) corresponds to a

non-Markovian process.

Eq. (10.66) can be easily transformed into the quantum Fokker-Planck equation for

the reduced Wigner function W0(x, k; t). As discussed in Chap. 3, the Wigner function

and characteristic function are symplectic Fourier transforms to each other, hence we

have the following correspondence:

0 ko k
x-_, Ox' - ' Ok,' ox_' 02ok w(x, k;t)

¢==, x , k , x_--_x , , xk O(x,k;t). (10.69)

From this correspondence, the quantum Fokker-Planck equation for the reduced Wigner

function W0(x, k; t) corresponding to (10.66) follows as [44, 45, 48, 79, 96]

-_ + ----- +rnOx (A21(t)x- An(t)k)-Dkk(t;13)-_-_ + Dxa(t;13) O--_-_-£ Wo(x,k; t) = O.

(_0.70)

The corresponding equation of motion for the coordinate representation 0(x, V; t) of

the reduced density operator [48] can also be obtained from (10.66) by a similar method.
t

Both (10.66) and (10.70) are mathematically equivalent to the quantum Langevin equa-

tion discussed in Chap. 8.
w,

In the following, we shall calculate the explicit expression of (10.70) for ohmic dissipa-

tion with infinite cutoff frequency. From (8.33), we see that in this case the fundamental

solution u(t) satisfies the following second-order differential equation:

ii(t) + 7/L(t) + w_(t)u(t) = 0, (10.71)
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where

w_(t) =_W_o+ 275(t). (10.72)

The matrix A(t) follows as

-_g(t) 0 " (10.73)

Substituting (10.73) into (10.70), we get the quantum Fokker-Planck equation for

the Wigner function of a harmonically bound Brownian particle coupled to ohmic heat

bath with infinite cutoff frequency"

_.+ - = O.m O= Ok #)'ff_ OzOkj w°(x'k;t)

(lo.74)

To calculate the coefficients Dkk(t; t3) and D=k(t; _), we first need to use integration

by parts to express {_ll(t;_) and E)12(t; f_) as follows:

Ol_(t;_) (lo.75)

= 2m_ dra(r)_(t)K(t - r; _)

= 2m" drldrafi(rl)iz(ra)K(r, - r2;f_) + 2m dri_(r)K(r;Z),

O12(t; f_) (10.76)

= -m aru(r)a(t)g(t- r;_)- m dra(r)u(t)K(t- r;_)

i)io' r<,,<,, i)dru(v)K(rlJ).

• Substituting (10.8)-(10.10), (10.73), (10.75), and (10.76) into (10.67) and (10.68),

and using (10.71), we get

- fo'D_k(t;_) = m dr_(v)K(r;/_), (10.77)

and

D=k(t; _) = - dru(r)K(r;_). (10.78)
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In the classical limit with K(t; 13)given by (8.38), we have from the initial conditions

(6.31):

m7

Dkk(t;_) = _ = Dk, (10.79)

Dxk(t;t3) = 0, (10.80)

and (10.74) becomes [10]

o k o o (m_(t)_+_k)- D_ W0(_,k;t)=0 (_0.S_)b_ + m 0x 0k

which is the quantum analogue of the classical Fokker-Planck equation (2.41). Obviously,

the solutions of (10.81) correspond to Markovian processes.
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Chapter 11

Non-factorizable Initial States

In the previous chapter we have discussed in detail the time evolution of a Brownian

particle with respect to the factorizable initial states, which is based on the assumption

that there is no initial correlation between the Brownian particle and the heat bath,

and the interaction between them is switched on only after t > 0. The simplicity of

these kind of initial states allows us to derive many explicit results. Unfortunately, such

naive and simplified initial states are not realized in most applications. Initial states of

a Brownian particle which can be prepared in the laboratory are those non-factorizable

states called perturbed thermal states. These non-factorizable initial states have been

discussed by several authors in the literature [16, 40, 80, 85]. In this chapter we shall

use the characteristic function to calculate the time evolution of the Brownian particle

with respect to these non-factorizable initial states.

11.1 Perturbed Thermal State: General Formulation

The perturbed thermal state of the total system described by the Hamiltonian (6.1)

" is defined as

O_b= C_b&O_b, (11.1)

where _ isthecanonicaldensityoperatorofthemodel thermalstatedefinedinChap. 7,

a-a(_,is) and b=b(_,iS) are two operators which only act on the Brownian particle, and

1
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isthe normalizationconstant.The operators_ and b must satisfycertainconditions

in orderto guaranteethatthe perturbedthermalstate(11.1)isa legitimatedensity

operator.Inthissection,we shallderivethe generalformulationforthe timeevolution

of a Brownian particlewithrespecttotheinitialstate(11.1).

AccordingtoChap. 9,we havefirsttoobtaintheexplicitform oftheinitialcharac-

teristicfunctioncorrespondingto (11.1).Using (3.12),we have

[0:)]#ini(Z) = Tr bD(-z

= C_bTr[aO_bb(-z)]. (11.3)

In ordertogetan explicitexpressionfor_ini(Z), we need to resortto thecharacter-

isticsymbolsdefinedinSec.4.2.Accordingto (4.9)and (4.12),theoperatorsfi,b,and

_ can be expressedas

+oo

_00

,4-O0

--00

and

+_

_ = (2_)-_' f ,e%_(z)b(_), (11.6)
--00

where a(z) and b(z) are the characteristic symbols of the operators 5 and b, respectively,

and @O(z) is the characteristic function corresponding to _¢ which is defined by (7.40).

Substituting the above three representations into (11.3), it follows that

+_

= f d_Uzad2Nzb_Nzoa(z,,)b(zb)_/3(za)
--00

tr[b(z_)b(z,lb(zb)b(-z)]. (11.7)

Note that the trace in (11.3) has been replaced by the equivalent pseudo-trace in (11.7)

since the product of the Weyl operators is not in the trace class. Using the formulas in
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Secs. 1.3.1 and 1.3.3, the pseudo-trace in the above integrand can be evaluated as

. = (27r)'6(za+ Zb+ zB- z)exp{'_zJ(za- Zb)"r+ &2zaJz'_}, (11.8)

hence (11.7)reducesto

" -boo
B#

_i.i(z)
--00

i T

Substituting(11.9)into(9.1)and using(7.40),we get the time evolutionof the

reducedcharacteristicfunctionfortheBrownian particle:

,_o(x,k;t)=_,_,(_(t)) (11.10)
4-oo

--OO

i T

_p{_(tlJ(.o-=_1"+T-.J-_}

- exp {-_(z, O, k, O)JrZ_J(z, O,k, O)"r}

-r Zb)J'_J(z_ Zb)_}c_,f _,,.e"_,.(zo)b(z,,)_ {_.oJ.,,- {(.o+ +

exp {(z, O,k, O)JVS/3(t)J(z_ + Zb) r -I-{(z,O,k,O)JR(t)(za- Zb)V} ,

where _(t) is defined as in (9.2), and we have tL_<l (7.15) and So(t)= R(t)_x_ in simpU-

fying (11.10).

Sinceboth a and b areone-mode operatorswhichonlyacton theBrownian particle,

accordingto the discussionin Sec.4.2thechaxax:teristicsymbolsa(z)and b(z)ca_ be

specified as
.

a(=)= _o(_,k)II6(_t)_(kt), (11.11)
t

b(z)---.bo(x,,k)II 6(xt)6(kt). (11.12)
t
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Therefore we can further simplify @o(x, k; t) into

@o(x,k;t) = exp { 1

+oo

/ -CPa_b dxadkadX, bdkb_ab(xa, Xb, ka, kb)
--00

exp "llS (tl'llJ ko+ ko- kb
where

_ab(Xa, _,b, ]C,a,kb ) m__ao(Xa, _a)bo(Xb, kb) (11.14)

kb)JVH_J ks + kb

and [kR(t)_, _S_(t)_l, and I1_ are defined by (7.12), (7.27), and (7.42), respectively.

Note that the first llne of (11.13) is the characteristic function of the thermal equilibrium

state for the Browaian particle given by (7.41).

Finally, the easiest way to determine the normalization constant C_b is to impose the

normalization condition on (11.13):

+oo

• o(0, 0; t) C_b /= d,xadxbdkadk b_ab(Xa, Xb, ka, kb)# = 1. (11.15)

In summary, Eq. (11.13), together with (11.14) and (11.15), describe the time evolu-

tion of a Brownian particle with the perturbed thermal state (11.1) as the initial state.

Note that in (11.13), unlike in (10.11), the spectral density p(w) of the heat bath does

not appear explicitly, which means that all the results derived from (11.13) are indepen-

dent of the cutoff frequency. The time evolution of the mean vector and the covariance

matrixcorrespondingto(11.13)canbecalculatedvia(4.19)-(4.23).

When t---}oo,accordingtotheRiemann-LebesgueLena:

tim[R(t)l_= 0 and tlim[LSx_(t)_= 0. (11.16)t--*OO

Applyingtheaboveresultsto(11.13)and using(11.15),we findthat
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which means that with an arbitrary perturbed thermal state as the initial state, the state

of the Brownian particle always approaches the thermal equilibrium state corresponding

to (7.41) as t--_c_.

The above formulation can be trivially generalized to the the most general perturbed
e

^_ ' defined in (11.1) with thethermal state, which is a linear combination of several _ab s

same _ but different h's and b's [40].
Q

11.2 Localized Thermal State

In this section we shall consider a practical example of the perturbed thermal state

i called the localized thermal state. It is prepared by filtering the ensemble of the Brow-

nian particle, which is originally in thermal equilibrium with the heat bath, through a

Gaussian slit represented by the operator [40, 85]

( 1 __/4+_
P(xc; (70) = \2--_aoJ / dx exp {_ 1_(x - xo)_}Ix)(xl

--OO

2-'_aoJ exp{ - 1 ^= _(q- _o)'}, (11.1s)

where z and _ correspond to the position of the Brownian particle, zc is the center and

ao is the variance of the filter. Note that a0 cannot be arbitrarily small due to the

uncertainty principle. According to the definition in the last section, this initial state is

the perturbed thermal state (11.1) with

5- b-- P(:rc; O'o). (11.19)

From the Weyl correspondencerulediscussedin Sec.4.1,we know that the Weyl

symbol ofthe operator/5(xc;(70)is

(1 t.
,t

It follows that the characteristic symbols ao(X,k) in (11.11)and bo(x,k) in (11.12) take

the form

ao(:c,k) = bo(x,k)= Co6(x)exp{-crok2 -ixck}, (11.21)

109



where

( O.0 _1/4 (11.22)
c0- \-_-_j •

Substituting the above results into (11.13) gives
,b

¢o(_,k;t) (11.23)

+co

_ooC.ab/ dk.dkbexp {-ao(kX + k[)- iz_(k.+ kb)- }aqq_](k_+ kb)=}

exp{[-m_(t;_)_+ v(t;_)kl(k_+ kb)+ _-[ma(t)x- _(t)k](ko- kb)}

where

A --2ao + aqqLs] , (I1.24)
0 1

:) (:') (:°o)+ _(t;01 + },_a(t) + 9_,(t) ,B(t)= -mi,(t;_) 1 1 1 1

and

d = -ixc • (11.26)
1

After performing the double Gaussiaa integrals in (11.23), we get

(11.27)

where

[(1 2O'o"_ aqq[]3] -- O'qq[]3] , (11.28)
A-_ = 4ao(ao+aqq_]) 0 1 1 0
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hence

Br (t)A-'B(t) = 1 [ m2i)(t; _)2 -mv(t; _)_(t; B) /

ao + aqq[_] _ -my(t; _)_(t; _) v(t; _)2 )
,)

_A_ , (11.29)

• 4_o -mu(t)a(O u(t)_

and

B,(t)A__d = iz_ (m_(t;_)) (11.30)_o4_._j-_(t;_) "

Prom (ii.27), we find that the time evolution of the mean vector is

k(t) (TO "_" O'qq[i_] k _)(t; _) / '

with the initial value

(11.32)
k(0)] _o+ _,_ 0

and the time evolution of the variances axe

_(t)_
v(t;/_)' +--, (11.33)

_rqq(t) = O'qq[_] - 0"0 Jl" O'qq[_] 4ao

and

m2v(t;/_)2 + . (11.:}4)
crpp(t) = Gpp[/3]- Go q" Gqq[13] 4no

Note that v(0; _) = aqqW]. It is interesting to notice that at t = 0, the filtering operation

changes the original variances aqq_] and am[#] into

" aqq(O)= aoaqq_] (11.35)
(7"0"t" 0"(1(1113]'

. which is the harmonic mean of ao and aqq_, and

1

ar_(O ) = aqq_] + 4"-_o" (11.36)

When t--+oo, it is obvious that this state approazJaes the thermal equilibrium state,

as discussed in the last section.
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11.3 Thermal Squeezed Coherent State

As anotherexample of the non-factorizableinitialstate,we considerthe thermal

squeezedcoherents_ateofthe Brownian particle[40,80].Although itisa specialcase

of the perturbedthermalstate(11.1),becauseofthe symplecticsymmetry itiseasier

to firstderivethe timeevolutionofthetotalsystem,then performthereductionto get

thetime evolutionoftheBrownian particle.

Let us firstbrieflydiscussthe generalmultimode thermalsqueezedcoherentstate

constructedfrom the thermalstateofthe totalsystem,which isdefinedas a quantum

statecorrespondingtothe densityoperator

(11.37)

where

_Ds - D(zc)S(O) (11.38)

is the same operator for constructing the ordinary squeezed coherent state (1.37), with

Q - g-½ exp(mp)g_ E Sp(2N, R). (11.39)

In ordertoconstructthethermalsqueezedcoherentstateforthe Brownian particle,

we definetheone-mode analogueof Q in (11.39)as

Qo = g_½ g_ - , (11.40)
e d c d

where

isa positivedefiniteand symmetricsymplecticmatrix,hencetheelementsinQ0 satisfies

ad-bc=1, and a,d>0. (11.42) .

The inverseofQo followsas

Qo_ = . (11.43)
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The thermal squeezed coherent state for the Brownian particle can be defined as a

special case of the general (11.37) with/XDs only acting on the Brownian particle, i.e.,

with the/XDs in (11.38)specified by

• zc = (xc, O, kc, O), (11.44)

and

Q = Qo@ 12@ 12@ ...... @12 -I_N+ _, (11.45)

where 12and 12_are the 2x2 and 2Nx2N unit matrices, respectively. We make a special

arrangement of the elements in Q such that

llQ]l=qo= , (11.46)
c d

hence

= . (11.47)
c d-1

We then define the matrix E via

Q-, = JTQTJ __=12N+ E, (11.48)

where

E = JTATJ, IIE]I = . (11.49)
-c a-1

After these preparations, we can begin to study the time evolution of the Brownian

particle with respect to the thermal squeezed coherent state. Firstly, we use (3.12) to

calculate the characteristic function of the multimode thermal squeezed coherent state

(11.37) as follows:

, = Tr[_b(-zQT)]exp{izJz:}. (11.50)

Comparing with (3.31), we find that this _ini(z) has the initial mean vector zo and the

initial covariance matrix

Q-,_Q-T _ _q. (11.51)
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Substituting (11.48) into (11.51), the latter becomes

_q - _3Z+ _BE T -t- E_3_+ E_0E T. (11.52)

According to (4.37), the time evolution of the above covariance matrix is

_q(t) = R(t)_RT(t) + R(t)_/_ErRT(t) + R(t)E_x_RT(t) + R(t)E_x_ETRT(t)

= _3_+ S_(t)ETRT(t) + R(t)ES_(t) + R(t)E_ETRT(t). (11.53)

Now we can perform the reduction by extracting out of (11.53) the elements corre-

sponding to the Brownian particle:

= [L_3#_1+ IIS#(t)ETRT(t)_I+ [LR(t)ES_(t)'_+ IIR(t)E_3_ETRT(t)_I

= II_3#_I+ IIS#(t)_IIIE_ITilR(t)_1T+ _R(t)_IIIE_]llS_(t)_]T

+ U.R(t)]IIIE]IIIZ_]I llE]]T_.R(t)'llT, (11.54)

where we have used the property that the only four non-zero elements in E are those in

IIE]]. The explicit forms of aq_(t) and app(t) for the Brownian particle follow as

aqq(t) = -2cu(t)v(t; 8) + 2(d - 1)m_(t)v(t;/3)

- 2(a- 1)mu(t)_)(t; 8) + 2bm2_(t)t)(t; 8)

+o_{_+[_-_(_-c_] _}
+ o_j[-b_a(t)+ (_- _)_(t)]_, (_._1

and

o_(_)= -2_m_(_)_(_;/_)+2(d- i)m_(_)_(_;/_)

- 2(a- 1)m3_(t)i_(t;/_) + 2bm'_(t)_)(t;O)

+ _,,_,l[(d-1)_'_(t)-_,-,,:,(t)]_

O'pp[_] { 1 +[-,,_'_/_+_-_,_,/]_}. _._+
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To obtain the time evolution of the mean vector for the Brownian particle, we first

substitute (11.44) into (4.36) and get the time evolution of the mean vector of the total

system as

' z (t) = 0,ko,0y, (11.57)

hence the time evolution of the mean vector for the Brownian particle isa

k(t) = [[R(t)]] kc '

i.e., the mean vector ibUows the restricted phase flow.

When t--.c_, it is easy to see that this state approaches the thermal equilibrium

state.

11.4 Displaced Thermal State

Our last example of a non-factorizable initial state is the displaced thermal state

[40, 45], which corresponds to the thermal state of the total system with the Brownian

particle displaced from the original balanced position by an external constant force.

The Hamiltonian which describes this initial state can be taken as a special case of the

Hamiltonian in (6.6) of the form

H'(t) = It - _fxO(-t), (11.59)

where H is the model tiamiltonian defined in (6.1), fx > 0 is a constant force, and O(-t)

is the tteaviside unit step function. The physical picture for the system described by

(11.59) is that the Brownian particle is displaced by an external constant force when

t < 0, and accordingly each heat-bath oscillator is also displaced to a new balanced

" position. The external force is then switched off at the moment t = 0+, so that the total

system, which corresponds to the Hamiltonian (6.1), begins to evolve in time.

" In the following we shall study the time evolution of the Brownian particle with

respect to this initial state. From Secs. 1.2.2 and 3.5, we know that this initial state is

a special case of (11.37) with/_Ds = D(zc), hence it is also a perturbed thermal state.

However, an easier way to solve this particular problem is as follows:
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Firstly,we neeJ to calculatethe characteristicfunctionof thisinitialstate,which

isthe thermalstatewith respectto the Hamiltoni_i//'(t)in (11.59)fort__.0. From

Sec.3.5,we know thatthecovariancematrixofthisinitialstateisthesame asthemodel

thermalstatedefinedin Chap. 7, hence theonly quantitywe have to calculateisthe

new balancedpositionfortheHamiltonian(11.59)att< 0,which c.orrespondsto zl in

(3.35).Thisnew balancedpositioniseasytodetermineby completingthesquareofthe
#,

Hamiltonian(11.59)fort_<0:

2mr -_-mtw_ - 2m_o _ . (11.60)

Hence we see that the new balanced position, which minimizes (11.60), is (zl, 0) with

zl being an N-dimensional vector and each of its component being equal to fx/(m_2o).

The physicalmeaning of thisresultisthatthe whole system isuniformlyshiftedby

.fx/(m_2o)in configurationspace,which isa trivialconsequenceforthe independent-

oscillatormodel sinceallheat-bathoscillatorsareattached(and onlyattached)to the

Brownian particle.

SubstitutingZl =(_I,O) into(3.47),we getthecharacteristicfunctionof theinitial

stateas

@,n,(z) -- exp JL-_zJ'r S#Jz'r + izJ(=l, o)'rj _ .
¢ -- k _

(11.61)

Sincethisdisplacedthermalstatediffersfrom the model thermalstate(7.40)only by

a mean vector,from (7.15)we know thatthe totalcovariancematrix issteady,hence

thereduced2x2 covariancematrixforthe Brownianparticleisstill_.Ea_].Thereforeto

determinethe dynamicsof the Brownian particlewith respectto thisinitialstate,we

onlyhave to calculatethe time evolutionofthe mean vector.For t> 0, withthe new

balancedposition(zl,0) astheinitialvalue,theexpectationvalueofthepositionofthe

Brownian particleevolvesaccordingto (6.41):

(fx) (fx) (11.62)(q(t)) = mi_(t) _ + _mtiL_(t) _ .t

Instead of calculating the explicit form of the above expression, let us consider an aux-

iliary system described by the I-Iamiltonian

" /_ qfx (11.63)
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which diffe:sfrom (11.59)onlyby theexternalforcefx beingconstantforallt.Therefore

the positionoftheBrownian particleisstationaryforthlsauxiliarysystem,i.e.,

( ) /o'<_(t>0)>o.:<q(0)>o._^=m_(t)_ +_ mt_t(t)_m_:. t

(11.64)

" accordingto (6.41).Since((_(O))=((_(O))a,_, comparisonof(11.62)and (11.64)gives

/:(O(t))- (0(0))-fx dru('r)

'_[ /o' ]= m--_o'i-m_o' a_,(_). (11.65)

Itthenfollowsthat

<i_(t)> ---rafxu(t). (11.66)

As t_oo, accordingto (6.45)and (6.46):

fo°° 1 i,_,,,0")=z-_ =m-"_o_" (11.67)

Substituting(11.67)Into(11.65),we findthat(_(t))approacheszerowhen t---,oo.Since

u(t)decaysto zerofort---,oo,so does (_t)).Thus we concludethatwhen t_co, the

mean vectoroftheBrownian particlevanishes,hencethestateoftheBrownian particle

approa_es thethermalequilibriumstate.
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Conclusion and Outlook

The aim ofthisdissertationisnot to proposea new theoryforquantum harmonic

Brownian motion,but ratherto developan innovativemethodologywith themost ap-

propriatemathematicalmethods.I began thisstudyby notingthatalmostallexistent

approachesinvolvecomplicatedcalculationsdue to the inevitablereductionoperation,

which iscommonly performedby integratingoverallheat-bathdegreesof freedom.I

then noticedthat the reductionoperationcan be much simplifiedby usingthe char-

acteristicfunctionas the representativeofthe densityoperator.Accordingly,the time

evolutionofthe Brownian particleisalsomuch easierto calculateviathereducedchar-

acteristicfunction_and themodifiedphase-spaceapproachisthemost efficientapproach

forstudyingquantum harmonic Brownian motion.

Of course,thecharacteristicfunctionisnota new idea.Iam neitherthefirstone who

noticedthesimplicityofusingthecharacteristicfunctionforreduction[33,43],nor the

firstwho appliedittoquantum harmonicBrownianmotion [96].However,I believethat

the systematicstudyof quantum harmonic Brownian motion ina generalenvironment

via the characteristicfunctionisoriginal,and no one has previouslyclaimedthat(at

leastforthisproblem)thepath-integralapproachcan be completelyreplacedby a more

efficientphase-spaceapproach.

In my opinion,solvinga problem involvingreductionisan artof doing the mini- ,t

mum calculations.In thismodifiedphase-spaceapproach,the reductionoperationis

performedby a projectionin the phasespace,which guidesus to calculateonly those p

quantitiesnecessaryfordescribingthereducedsystem.The only inconvenienceofthis

approachisthatthecharacteristicfunctionhas no directphysicalmeaning. But we can

easilytransformittothe Wigner functionwhose physicalmeaning isobviousand clear.
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In summary, the success of this modified phase-space approach to quantum harmonic

Brownian motion relies upon the following three facts:

(1) The model Hamiltonian is (inhomogeneously) quadratic hence the system is linear,

therefore it is suitable for the phase-space approach. Moreover, this kind of Hamiltonian
p

allows an exact and explicit derivation of the fluctuation-dissipation theorem.

(ii) The characteristic function is the most efficient representative of the density
4

operator for performing the reduction operation.

(iii) The analogy between the time-evolution operator and the canonical density op-

erator allows the application of results from dynamical problems to the study of the

thermal equilibrium state of the Brownian particle.

Generallyspeaking,allproblemsof quantum harmonic Brownian motion can be

solvedwithmore efficiencyusingthismodifiedphase-spaceapproach.The followingare

some examplesthatI have not been ableto coverinthisdissertation:

(1)Externalclassicalforcefr(t)linearlycoupledto themomentum oftheBrownian

particle:Thiscorrespondstoaddinga term

to themodel Hamiltonian(6.6).Doing thisputsthepositionand momentum operators

on the same footinginthe model Harniltonian.

(II)Time evolutionof the Wigner functionand the coordinaterepresentationof

the Brownian particle:This can be obtainedfrom the time evolutionof the reduced

characteristicfunctionviathetransformationformulaslistedin Sec.3.2.In particular,

forfactorizableinitialstatesthe exactpropagators[10,73]can be derivedfrom (10.11).

(III)Damping ofquantum interferencewiththeinitialstatebeinga superpositionof

• two non-ldenticalsqueezedcoherentstates:Thisisa trivialgeneralizationoftheproblem

discussedin Sec.10.4.

" (IV) System with a f_w coupled Brownian particles [16]: This corresponds to a

reduced system with more than one degree of freedom. According to the formulations

in Chap. 5, the modified phase-space approach can be straightforwardly generalized to

deal with this kind of problem.
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(V) FreeBrownian Motion [39,40,46]:Thiscorrespondsto thelimitw0_0 inquan-

tum harmonic Brownian motion. Sincethemodel Hamiltonianbecomes non-negative

definitein thislimit,the correspondingv(t;:3)divergesingeneral.Thereforeitisnec-

essaryto replacev(t;/3)by

i.

beforetakingthelimitwo--+0.Itcan be shown thatonly(v(t;/_)-aqq_]),which isalways

finite,survivesafterthelimithasbeen taken.To compare withtheclassicaltheoriesdis-

cussedin Chap. 2,thequasi-probabilitydistributionfunctionsoverconfigurationspace

and momentum spacecan be obtained,respectively,via

+oo
#Q

e(x;t)= / W0(x,k;t),
--00

and

+oo

e(k;t) = / dx, Wo(x,k;t),

where Wo(x, k; t) is the reduced Wigner function of the Brownian particle.

AlthoughI have onlydiscussedquantum harmonicBrownian motion inthisdisser-

tation,thetechniqueintroducedherecan be generalizedto many otherlinearquantum

open systems.In particular,the characteristicfunctionisusefulforany problemsin-

volvingthereductionoperation.In thefollowing,I listfourpossiblenon-trivialgener-

alizationsof this modified phase-space approach:

(I) Time-dependent quadratic potentials, where the characteristic frequency of the

Brownian particle becomes time-dependent, and W_o(t) is allowed to be zero or negative

for certain time intervals (e.g., a particle periodically kicked by a Hooke force [17], a ,

charged particle in the Paul trap [35, 72]): The calculations are similar to those in this

dissertation, but the corresponding fundamental solution u(t) cannot be expressed in a

closed form in general. It is believed that some approximations are necessary for this

kind of problem.

(II) Anharmonic potentials: The phase-space approaches rely on the model Hamil-

tonian being (inhomogeneously) quadratic. If the Hamiltonian contains higher degree
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terms[ii,13,16],e.g.,thoseinquantvm tunnelingorquantum coherenceproblems,then

thetimeevolutionoftheWigner functionand thecharacteristicfunctioncannotbe ex-

actlydeterminedby thephase flow.As inthe path-integralapproach,a perturbation

scheme isnecessaryfordealingwiththesekindof quantum systems.B

(HI)Finite-statesystems:In contrasttothequantum harmonicoscillatorwhich has

infinite energy eigenstates, many quantum open systems can be approximated by finite-

state systems, e.g., the simplest two-state system [61]. Since these so-ca_ed spin-boson

Hamiltonianshaveno classicalanalogues,thereisno correspondingclassicalphasespace.

Nevertheless,thetechniqueofperformingreductionviathecharacteristicfunctionisstill

validforthesesystems[43].

(IV)Fermionicheatbaths[15]:The model discussedinthisdissertationis,ofcourse,

a bosonicheatbath.Ithas been noticedrecentlythatan infinitesetoffermionicparti-

clescan alsoserveas a heatbath model.Itisthusan interestingproblem to generalize

thismodifiedphase-spaceapproachtoincludethe fermionicdegreesoffreedom.A pos-

sibleway isto startwiththesupersymmetricWigner function[1].

APOLOGY: SinceBrownian motion,both classicaland quantum-mechanlcal,has

a longhistoryand has been studiedby innumerableauthors,itisalmost impossible

to exhaustthe literatureon thissubject.To concludethisdiscussion,I would liketo

make an apologyto thoseauthorswhose works I have not been ableto quotein this

diss_xtation.
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