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ABSTRACT 1: 

1 

Recent nuclear magnetic resonance (n.m.r.) hydrogen exchange experiments on 
five different proteins have delineated the secondary structures formed in 
trapped, partially folded intermediates. The early forming structural elements 
are iden-tifiable with a method devised to predict folding pathways. The 
technique that the sequential selection of structural fragments such as 
alpha-helices and beta-strands involved in the folding process is founded upon 
the maximal burial of solvent accessible surface from both the formation of 
internal structure and substructure association. The substructural elements 
are defined objectively by major changes in main-chain direction. The 
predicted folding pathways are in complete correspondence with the n.m.r. 
results in that the formed structural fragments found in the folding 
intermediates are those predicted earliest in the pathways. The technique has 
also been applied to proteins of known tertiary structure and with fold 
similar to one of the five proteins examined by n.m.r. observations, 
suggesting conservation of a secondary structural framework or molten globule 
about which folding nucleates 

ABSTRACT 2: 

A NEW METHOD TO CONFIGURE PROTEIN SIDE-CHAINS IN HOMOLOGY 
MODELL I NG 

Protein homology ntodelling typically involves the prediction of side-chain 
conformations -in the modelled protein while assuming a main-chain trace 
taken from a known tertiary structure of a protein with homologous sequence. 
It is generally believed that the need to examine all possible combinations of 
side-chain confirmations poses the major obstacle to accurate homology 



modelling. Methods proposed heretofore use only discrete or limited searches 
of the side-chain torsion angle space to mitigate the combinatorial problem 
and also rely on simplified energy functions for computational speed. The 
configurational constraints are typically based upon use of frequently 
observed torsion angles, fixed steps in torsion angles, or oligopeptide 
segments taken from tertiary structural databanks that are similar in sequence 
and conformation with the target structure. A more fundamental approach has 
been explored for several protein structures and it is demonstrated that the 
combinatorial barrier in side-chain placement hardly exists. Each side-group 
can be configured individually in the environment of only the backbone atoms 
using a systematic search procedure combined with extensive local energy 
minimization. Tests, using the main-chain or both the main-chain and remaining 
side-chain atoms to calculate low energy geometries for each residue, 
establish the dominance of the main-chain contribution. The final structure is 
achieved by combining the individually placed side-chains followed by a full 
energy refinement of the structure. The prediction accuracy of this approach 
has been compared to other automated procedures. 
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Surface Contraction and EKpansion UJaues Correlated with Differentiation 
in Axolotl Embryos. 

111. The Shape o f  the Fate Map 
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Audiovisual equipment needed: overhead projector, slide projector, VHS VCR, 

blackboard. 

Extended Abstract 

Why do some types of cancer cells occur when a cellular switch is somehow 
inappropriately stuck? If you cut off a salamander's leg, it simply grows a new 
leg. How does it do this? Why don't our own cells retain this ability? Why should 
gene expression in a cell culture sometimes change with generation number? We 
think that the answer to each of these questions might be found in a complete 
understanding of normal embryonic development. If we could explain precisely how a 
single egg can become a multicellular organism we could then use this knowledge to 
understand many other related cellular processes. 

The discipline of embryology has hitherto been to a large degree unsuccessful 
in achieving this understanding. Embryologists still cannot explain how a cell 
"knows" that it is to become a certain type of cell at a certain time and in a 
certain place. We have recently made a discovery that may provide the long missing 
spatial component of embryological explanation, and turn this situation around. 

Imagine yourself as a cell in a urodele (salamander) blastula just prior to the 
midblastula transition. At this point you are one cell in a hollow ball of cells 
that up until now has been functioning exclusively using the mRNA left for you 
from maternal sources. If you are on the bottom of the ball (gravitationally 
speaking) you have more yolk. If you are on the top you have more pigment. But 
other than that there is very little difference between you and all your sister 
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cells in the hollow ball. If you are moved from one end of the ball to the other 
you won't "mind", you'll just carry on in that spot participating as if you had 
always been there. (This makes you part of a "regulating" embryo.) 

Gradually over the next few hours you will begin synthesizing your own set of 
mRNA. You will begin to somehow "sense" where you are relative to the other cells 
in the hollow ball. By the time gastrulation begins, you will have already figured 
out your relative position enough to have become one of three basic embryonic cell 

types: endoderm, mesoderm, or ectoderm. If you have become endoderm or mesoderm 
you will mve into the interior of the embryo during the next developmental stage, 
gastrulation. By the end of gastrulation you will have become either part of a 
strictly nutritive endoderm, or the endoderm portion that will form the innermost 
organs. If you are mesoderm you will have determined that you should become either 
somitic, lateral, notochordal or germ cell line mesoderm. If you are ectoderm, you 
will have "made the choice" of whether to become neural plate or epidermis. 
Whatever your position, you will be producing the appropriate mRNA for cells in 
that position. 

If you are in the ectoderm you will stay on the outside for now. If you are on 
the top hemisphere you will participate in the formation of the future nervous 

system. If you find yourself the bottom surface, you will form epidermis. If you 
are roughly in the middle you will become part of the special sense plate 
eventually forming the sense organs. Of course, if you were neural ectoderm during 
gastrulation but subsequently found yourself on the interior of the embryo due to 
neurulation movements, you will somehow know you should change your ways 
completely and begin forming all the cell types required in the tail. You'll do 
that even though it may mean (seemingly) reverting back to mesoderm and starting 
over again to make the inside of the tail. 

As a cell you must have some way of keeping track of what your location is now 
and what it has been. Somehow this three dimensional data must be translated into 
a form, presumably using repressors, enhancers, methylation, etc., that your one 
dimensional linear DNA can both record and respond to, Your data storage and 
retrieval system is so consistent that even while you were a cell in the blastula 
stage, an embryologist can know what you will become simply by checking your 
location on a "fate map". Your original location on the hollow ball has been 
marked with a vital dye and tracked, In this way, all the important tissue types 
of the embryo can be shown to have originated in the surface cells of the 
blastula. How you know where you are, what the "developmental time" is, and what 

4 



you do next, is a secret you've been keeping from embryologists for about 150 

years now. How do you do it? Why do you follow a peculiar path over the surface of 
the embryo described by the strange shape of the fate map? 

Now let's go back to the embryologist studying this problem. H o w  much can be 
explained? There are quite a few things known for certain. Throughout the earliest 

stages of development, cells experience a special time when they are "competent" 
to sense their location in the embryo. This "competence" is transitory. If the 
message, the "induction", comes before they are competent, the cells can't 
respond. But while they are competent they can be induced by everything from 
boiled Guinea pig's liver to activin. Similarly, once a cell is set on a 
particular pathway to a certain final cell type, it is usually impossible to 
change it to follow a new path. Obviously understanding the nature of "competence" 

and the signalling system of "inductions" cells respond to, would explain a lot 
about how cells do what they do. 

But a specific chemical inducer has never been found in spite of three 
generations of long and intense investigations. Rather, a bewildering assortment 
of both artificial and natural inducers of ectoderm into neural tissue is known to 
exist. In fact, the eminent embryologist Dr. Pieter Nieuwkoop has been heard to 
state: 

"Anything you can find in your kitchen garbage will probably induce ectoderm." 

In despair, the embryological community largely gave up on explaining primary 
neural induction of ectoderm and turned their efforts to other tissues (especially 
mesoderm) instead. sadly for the chemical inducer proponents, mesoderm also has a 
rapidly growing list of possible inducers. 

Beth Burnside (1971, 1973), using transmission electron microscopy, found that 
in the apical end of each ectoderm cell there is a cytoskeletal apparatus. It 
consists of a microfilament ring with microtubules lying in a mat coplanar to the 
ring. In our own laboratory we have confirmed her result and also found that 
immediately below the microfilament ring is an intermediate filament ring. 

We have also discovered a number of surface contraction and expansion waves 
that appear to correlate with each of the steps of differentiation in the 
amphibian embryo, (Gordon, Bjorklund, L Nieuwkoop, 1994). The waves are known to 
occur in the urodele embryo the axolotl, Ambystoma mexicanum, Gordon h Brodland 
(1989) and the fruit fly, Drosophila. (Poodry, Hall L Suzuki, 1973: Suzuki, 1974; 
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Ready, Hanson & Benzer, 1976). The waves themselves propagate from one cell to the 
next as a visible contraction or expansion of the apical surface of each cell. The 
cells involved in a contraction wave remain contracted for about ten minutes and 
then they relax. The relaxation probably occurs because the intermediate filament 

ring provides an elastic component to the cell (Brodland & Gordon, 1990). The 
cells involved in an expansion wave appear to simply expand and remain expanded. 

The waves are paired. A single early tissue type will eventually differentiate 
into two daughter types each with it's own wave. For example, the portion of the 
ectoderm that experiences a contraction wave becomes neural tissue. The portion 
that experiences an expansion wave becomes epidermis. We now know that each of the 
final tissue types that is known to exist by the end of gastrulation experiences a 
unique sequence of expansion and contraction waves. By tracking the fate map as it 
invaginates, we can show how the fate map's peculiar shape is directly correlated 
to the sequence of contraction and expansion waves we have discovered. 

In Gordon is Brodland (1987) it was postulated that the microfilament ring and 
the microtubule mat in the apical end of each competent ectoderm cell is in a 
state of balanced mechanical equilibrium. When the pharyngeal endoderm touches the 
ectoderm, the force on these ectoderm cells due to the internal pressure of the 
hollow ball is reduced. The reduction in the outward force gives a mechanical 
advantage to the microfilament ring. The cell contracts. It tugs on the adjacent 
cell and, like the stretch activated contraction of smooth muscle, the adjacent 
cell contracts in response. The mechanical signal to contract is then passed 
through the upper portion of the ectoderm as a self-propagating signal. On the 
other side the microtubules get a mechanical advantage. This sets off a wave of 
expansion. We do not know yet why the waves propagate over one region of a tissue 
type. We suspect that simple mechanically based restrictions will explain this. 

For our proposed signalling system to work, cell state splitter construction is 
matched by the preparation of two possible signals for triggering one of two gene 
cascades. Once the cell contracts or expands a signal indicating the type of wave 
is sent to the nucleus. The nucleus responds to the signal by initiating one of 
the two possible gene cascades. The end of the gene cascade includes the resetting 
of the mechanical instability (competence) by the construction of a new cell state 
splitter, two new signalling systems, and two new gene cascades. The cell waits 
for the next wave to come along, participates in it, and propagates it. 

In this model, a cell does not "know" where it is. What it records (in some 

6 



manner yet to be determined) is the sequence of contraction and expansion waves it 

has experienced. One prediction is that all cells that have experienced the same 

sequence of waves are developmentally equivalent. This contrasts with the concept 

of "positional information", in which each cell knows where it is by some 
mechanism or other, and uses a "lookup table" to determine what to do next. 

The nature of the signal between the contracting or expanding cell state 
splitter and the subsequent gene cascade has been postulated in Bjorklund c Gordon 
(1993). Because of the many studies done on the nature of competence and induction 
there is a huge body of literature on what happens to cells that are induced to 
become neural tissue from ectoderm. For example, it is known that these cells 
experience a protein kinase C translocation followed by a rise in CAMP levels. The 
PKC translocation is prolonged, lasting about ten minutes. Further, different 
isozymes of PKC are known to occur at different stages of development in different 
tissues. On the basis of this we suggest that there is a calcium wave propagated 
from cell to cell causing both the microfilament ring contraction and the PKC 

translocation. We envisage two master genes prepared to respond to a signal 
generated from the PKC translocation. One master gene is triggered and it sets off 
a gene cascade appropriate to neural tissue. The other master gene would require a 
different signal to be triggered. Excellent candidates for generating the signal 
are the microtubule associated proteins, If the microtubules are suddenly greatly 
expanded in an expansion wave the number of MAPS that bind to these microtubules 
would also be suddenly increased. Their activity could then trigger a gene cascade 
appropriate to epidermal tissue. 

In our presentation we will show our computer generated time lapse images of 
contraction and expansion waves. We will show the results of our laboratory's EM 
work on the cell state splitter. We will explain how the peculiar shape of the 
urodele fate map can be explained by the succession of waves, We will present a 
differentiation tree showing the sequence of expansions and contractions that each 
tissue type present by the end of gastrulation has experienced. We will introduce 
our ideas for the signalling system between the physical waves we see and the gene 
cascades the nucleus responds with. Finally we hope to discuss the implications of 
the waves to other specialties including molecular biology, embryology, and 
evolution. 
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Deriuing Non-Homogeneous Markou Chain Models from the Multiple 
Alignment with the Entropy Criteria. 

Mark Borodousky , 
School of Biology 

Georgia Institute of Technology 
Atlanta, GA 30332-0230 

Many biologically significant regions of the DNA (and protein) sequences do 

not reveal any consensus-like pattern which would be determined by the 
traditional multiple alignment algorithm based on matching scores. The 
important example of that kind would be the DNA protein-coding regions for 
which the attempt of the multiple alignment might be successful only in the 
case of collecting a narrow group of closely related genes. 

The general idea to perform multiple alignment for several randomly chosen 
gene sequences looks unreasonable. Nonetheless, when it is placed into a bit 
different context this idea leads to the extracting a non-homogeneous Markov 
chain model of the protein-coding sequence. This model might be considered as 
a generalization of the consensus or profile-like model of the DNA functional 
region. 

We suggest a multiple alignment method for deriving the parameters of the 
non-homogeneous Markov chain model from the sample of sequences which are 
suspected to share common compositional pattern and which can be described by 
virtue of that model. Usually such a pattern might be expected if there is an 
a priori known phasing of the biologically active DNA (like triplet genetic 

code), positioning around the firmly established single point (like origin of 
replication or transcription) and soon. 

The main step of the method's algorithm is the Shannon entropy calculation 
procedure which is applied to each one column in the multiple alignment "box" 
which width is chosen usually bigger than the length of the expected pattern. 
The column entropy value is a function of the frequencies of oligonucleotides 
associated with the given column (gaps are not allowed). The entropy alignment 
criteria (for the whole "box") is obtained by summing the column entropy 
values up. This entropy total is storing, sequences are shifting according to 
a certain (random or deterministic) rule and the new calculation of the 
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entropy criteria follows until the minimum value is achieved. The final 
configuration of the multiple alignment is the one which is used for the 
definition of the non-homogeneous Markov chain model parameters (transition 

probabilities). 

The results obtained currently for the set of sequences generated by various 
types of Markov chain generators show that the method allows to align 
sequences in the "box" and extract the hidden phase from the set of DNA 
fragments which were randomly shifted in the beginning. In the case of real 

protein-coding sequences the method gives the result which clearly indicates 
the triplet phase and allows to extract the non-homogeneous Markov chain model 
which has already been used for the purpose of gene prediction in the GENMARK 

algorithm (1-3). Some other sets of nucleotide and protein sequences are now 
under consideration. 

There is one remarkable property of the entropy minimization based multiple 
alignment. The final alignment configuration leads to such a Markov chain 
model which defines the maximum value of the likelihood that sequences (in the 
box) would appear as an output of the generator defined by this model. This 
maximum value is determined in comparison with the values obtained from the 
similar model extracting from any 
other intermediate alignment configuration. 

1. Borodovsky M., and McIninch J. (1993) Computers h Chemistry, to appear. 

2 .  Plunkett G. 111, Burland, V., Daniels D.L., and Blattner F.R. (1993) 
Nucleic Acids Research, to appear. 

3 .  Noble J.A., Innis M.A., Koonin E.V., Rudd K.E., Bunuett and F., Herskowitz 
(1993) PNAS, to appear. 
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THE LIMITS TO REASON 
What Science Can Know Rbout Eueryday Euents 

John 1. Casti 

Technical University of Vienna 
Vienna, Austria 

AND 

Santa Fe Institute 
Santa Fe, NM 87501 

The primary goal of science is to offer convincing answers to the question: 
‘*Why do we see what we do and not see something else?”. In confronting this 
question, science is distinguished from its many competitors in the reality- 
generation game by the particular sorts of methods and tools the scientist 
employs. The *scientific* answer is a set of rules, i.e., an algorithm, 
usually encoded as a mathematical model or computer program, with which one 
can explain the observed phenomena and predict (sometimes) what will happen 
next. 

This talk explores the possible limitations of rule-based procedures for 
reality generation. In particular, a number of processes from everyday life, 
ranging from weather and climatic changes to stock market price fluctuations 
and even to the outbreak of warfare, will be examined in an attempt to 
determine the degree to which the science of today is in a position to give a 
convincing set of rules for predicting and/or explaining such phenomena. The 
lecture concludes with some general ideas centered around the Turing-Church 
Thesis and the theorems of Goedel and Chaitin for why we can never expect to 
achieve perfect prediction and explanation---scientific-style---of any natural 
or human activity. 
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Estimation of  Protein Coding Density in a Corpus o f  DNA Sequence Data 

James W. Fickett and Roderic Guigo 

Theoretical Biology and Biophysics Group and 
Center for Human Genome Studies 

Los  Alamos National Laboratory, Los Alamos, NM 87545 

ABSTRACT 

A number of experimental methods have been reported for estimating the number 
of genes in a genome, or the closely related coding density of a genome, 
defined as the fraction of base pairs in codons. Recently, DNA sequence data 
representative of the genome as a whole have become available for several 
organisms, making the problem of estimating coding density amenable to 
sequence analytic methods. Estimates of coding density for a single genome 
vary widely, so that methods with characterized error bounds have become 
increasingly desirable. We will present a method to estimate the protein 
coding density in a corpus of DNA sequence data, in which a "coding statistic" 
is calculated for a large number of windows of the sequence under study, and 
the distribution of the statistic is decomposed into two normal distributions, 
assumed to be the distributions of the coding statistic in the coding and 
noncoding fractions of the sequence windows. The accuracy of the method is 
evaluated using known data and application is made to the yeast chromosome I11 
sequence and to C. Elegans cosmid sequences. It can also be applied to 
fragmentary data, for example a collection of short sequences determined in 
the course of STS mapping. 

INTRODUCTION 

Fundamental knowledge about an organism includes an estimate of the number of 
genes in its genome -- one measure of the overall complexity of the organism 
-- and an estimate of the closely related coding density (defined as the 
fraction of base pairs that are in codons). The latter is a basic aspect of 
genome structure, related to the intriguing question of the prevalence of 
"junk" or "selfish" DNA [Orgel and Crick, 19801. An estimation of coding 
density has important practical consequences as well, for example in deciding 
whether more information will be gained by sequencing cDNAs or genomic DNA. 
Current estimates of coding density for most eukaryotic organisms are given 
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only in rather wide ranges. For example, Clark et al. [1988] estimate that 
there are roughly 3500 essential genes in Caenorhabditis elegans, giving both 
reasons to think this estimate may be too high as well as reasons that 
indicate it may be minimal. Combined with the results of Park and Horvitz 

119861, which suggest that half of the genes in C. elegans may be inessential, 
this gives an estimate of roughly 7000 genes. However Waterston et al. [1992] 

estimate that the true number of genes in C. elegans may be closer to 15000. 

Kaback, Angerer, and Davidson [1979] showed that roughly 50-60% of the yeast 
genome is transcribed in roughly 5000 transcripts, under laboratory 

conditions. (A transcript density of 50-60% corresponds to a coding density of 

less than 50%, since an mRNA contains untranslated regions.) If all genes were 

distributed uniformly over the genome, this estimate would give about 120 

genes on chromosome 111. However Yoshikawa and Isono 119901 found 156 
transcripts from chromosome 111, and Oliver et al. [1992], equating genes with 
open reading frames of length at least 100 amino acids on the chromosome 111 

sequence, find 182 genes, giving a coding density estimate of 67% and an 

estimate of about 8000 genes in the whole organism. 

The analyses of Waterston et al., Sulston et al. [1992], and Oliver et al. 
were made possible because an important new source of data has recently become 
available. Whereas most sequences in the current databases are from highly 
expressed genes, sequence is now becoming available which is a much less 
biased sample of the genome. In some cases this means a very long stretch of 
DNA encompassing many genes, as in the case of the recent determination of 

yeast chromosome I11 [Oliver et al. 19921, in others it means a large qumber 
of short sequences, randomly selected from the genome in the course of 
determining STSs for genome mapping [Olson et al. 19891. 

Current methods to determine coding density, both experimental and 

computational, rely on counting genes. The experimental methods typically give 
low estimates because, under the experimental conditions chosen, not all genes 

are required or expressed. A major difficulty with the computational methods 
applied to date is that current gene recognition methods have rather large, 
and sometimes uncharacterized, error rates. Thus Oliver et al. simply count 
open reading frames exceeding a certain size and the studies of Waterston et 
al. and Sulston et al. depend on the gene recognition program Genefinder. In 
neither case is it easy to evaluate the accuracy of the predicted number of 
genes. 
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W e  w i l l  p r e s e n t  a method t o  estimate coding d e n s i t y  i n  a corpus of sequence 
data -- e i t h e r  long  stretches of sequence data or a l a r g e  number of s h o r t  
sequences -- t h a t  does n o t  r e l y  on i d e n t i f y i n g  genes. Indeed, it is p o s s i b l e  
t o  d e f i n e  on windows of sequence a number of simple measures, or coding 
statistics, which are i n d i c a t i v e  of p r o t e i n  coding f u n c t i o n  (reviewed i n  
[ F i c k e t t  and Tung 19921) .  And w h i l e  such s ta t is t ics  have a l a r g e  random 
component and a large v a r i a n c e  when observed on i n d i v i d u a l  windows, t h e  
o v e r a l l  d i s t r i b u t i o n  of such a s ta t i s t ic ,  when observed on a large set of 
windows, i s  c l o s e l y  correlated w i t h  global coding d e n s i t y  (F ig .  1 ) .  

One simple approach to  t h e  problem cons idered  here  would be (1) t o  i n f e r ,  
u s i n g  sequence data of known coding d e n s i t y  from p u b l i c  databases, a model of 
t h e  r e l a t i o n s h i p  between coding d e n s i t y  and an  ensemble p rope r ty  of t h e  coding 
s ta t is t ic  d i s t r i b u t i o n ,  as for  example t h e  l i n e a r  r e g r e s s i o n  shown i n  Fig. 1, 

and ( 2 )  u s e  such a m o d e l  t o  p r e d i c t  t h e  coding  d e n s i t y  of t h e  new sequence 
data under s tudy .  However, because t h e  data i n  t h e  p u b l i c  sequence databases 
is a ve ry  biased sample of t h e  genome, e x t r a p o l a t i o n  from t h e  database t o  t h e  

genome may n o t  be j u s t i f i a b l e .  

T h i s  problem may be surmountable, b u t  here we  pursue  an a l t e r n a t i v e  method 
which does no t  r e l y  on f irst  e s t a b l i s h i n g  a m o d e l  of t h e  r e l a t i o n s h i p  between 
coding  d e n s i t y  and a coding  s ta t is t ic  i n  p rev ious ly  c h a r a c t e r i z e d  sequences, 
b u t  rather depends e x c l u s i v e l y  on t h e  d i s t r i b u t i o n  of t h e  coding s ta t is t ic  on 
t h e  corpus  of sequence data under study. I n  t h e  method we w i l l  p r e sen t ,  t h e  
sequence data under s tudy  are first p a r t i t i o n e d  i n t o  a set of f ixed - s i ze  
windows, and the  chosen coding s ta t is t ic  is c a l c u l a t e d  on each. Then t h e  
d i s t r i b u t i o n  of t h e  statist ic is decomposed i n t o  t w o  normal d i s t r i b u t i o n s  t h a t  
are assumed t o  correspond t o  t h e  d i s t r i b u t i o n  of t h e  s ta t i s t ic  i n  t h e  
noncoding and coding f r a c t i o n s  of t h e  sequence data. 

F igu re  1. C o r r e l a t i o n  between the  mean of a coding s ta t i s t ic  and t h e  coding  
d e n s i t y  c a l c u l a t e d  from GenBank anno ta t ion .  For each d e n s i t y  d, d=O,..., 100, 
a set of y e a s t  240 bp sequence windows w a s  made by s e l e c t i n g  windows a t  random 
from a GenBank r e f e r e n c e  set w i t h  probabi l i t ies  chosen t o  o b t a i n  an expected 
o v e r a l l  percentage  d of coding windows, and an  expected set s i z e  of 315 kb. 

Each such set is  rep resen ted  as a p o i n t  i n  t h e  f i g u r e ,  t h e  abscissa g i v i n g  t h e  
average of t h e  coding s ta t is t ic  (maximum of a codon usage d i s c r i m i n a n t  
f u n c t i o n  over t h e  s i x  frames of t h e  window) over  t h e  set, and t h e  o r d i n a t e  
g i v i n g  t h e  coding d e n s i t y  computed from GenBank anno ta t ion  
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W e  w i l l  f i r s t  i n t roduce  t h e  Max Codon Usage coding statist ic,  or MCU, for 
which w e  have g e n e r a l l y  observed reasonably gauss ian  behavior. W e  w i l l  
describe i n  detail  t h e  method used t o  decompose t h e  d i s t r i b u t i o n  of t h e  coding 
statist ic,  us ing  t h e  y e a s t  genomic sequences from GenBank t o  e x p l i c i t l y  
i l l u s t r a t e  it. W e  w i l l  t hen  evaluate t h e  accuracy of t h e  method i n  l a r g e  sets 
of c h a r a c t e r i z e d  genomic sequences from f i v e  d i s t a n t l y  related genomic 
organisms, and describe t w o  a p p l i c a t i o n s .  I n  t h e  first,  t h e  coding d e n s i t y  of 
y e a s t  chromosome I11 is estimated by decomposing t h e  d i s t r i b u t i o n  of t h e  MCU 

d i s t r i b u t i o n .  I n  t h e  second, t h e  coding d e n s i t y  of a c o l l e c t i o n  of  sequenced 
cosmids from C. Elegans is  estimated. I n  t h i s  case, however, s i n c e  we  s t rong ly  
suspec t  t h a t  t h e  MCU s ta t is t ic  does no t  have a normal d i s t r i b u t i o n ,  t h e  
estimate w i l l  be obtained by decomposing t h e  d i s t r i b u t i o n  of a d i f f e r e n t  
coding s ta t i s t ic .  F i n a l l y ,  we  w i l l  d i s c u s s  t h e  a p p l i c a b i l i t y  of  t h e  method t o  
other genomes, and its l i m i t a t i o n s .  
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SCIENCE i s  IN THE EYE OF THE BEHOLDER 

Richard W. Hamming 

Introduction 

The  t i t l e  is  an obvious v a r i a n t  of t h e  s t anda rd  remark t h a t  "Beauty is i n  
t h e  eye  of t h e  beholder", and c l e a r l y  imp l i e s  t h a t  I do no t  t h i n k  t h e r e  is  a 
s i n g l e  s c i e n t i f i c  method, b u t  r a t h e r  t h a t  t h e r e  is only  some degree  of 
agreement among v a r i o u s  p r a c t i t i o n e r s  of sc ience .  How did I come t o  t h i s  v i e w ?  
That i s  par t  of t h e  t a l k ,  and by t e l l i n g  you stories about  my exper iences  I 
hope they  w i l l  b r i n g  you t o  view t h e  matter somewhat as I do. 

There i s  a second reason  for t h e  t a l k .  It  w a s  obvious t o  m e  from t h e  s tar t  
t h a t  I could  te l l  you l i t t l e  of u s e  t o  you about your own f i e l d  of 
s p e c i a l i z a t i o n .  What I could  do is emphasize t h e  famous remark of Pas teu r ,  

"Luck favors t h e  prepared mind." 

The more y e a r s  I have contemplated h i s  remark, and examined t h e  h i s t o r y  of 
sc i ence ,  t h e  more I believe i n  it. Y e s ,  t h e  p a r t i c u l a r  t h i n g  you do is t o  a 
fa i r  e x t e n t  a matter of luck ,  b u t  i f  you prepare your se l f  i n  many ways then  it 
is reasonable  t h a t  a great success  should s t r i k e  you. The m u l t i p l e  successes  
by t h e  same person  i n  t h e  h i s t o r y  of s c i e n c e  are too many t o  believe much i n  
t h e  "random luck theory". 

As you know beauty  i n  a woman of t h e  Ubangi tribe means very large, 
distorted l ips ,  around t h e  y e a r  1000 Japanese women blackened t h e i r  t e e t h ,  and 
c u r r e n t l y  American women p a i n t  t h e i r  l i p s  a b r i l l i a n t  red and o f t e n  color 
t h e i r  f i n g e r  na i l s  vivid colors - a l l  i n  t h e  name of beauty. Thus t h e  s t anda rd  
of beauty,  and by in fe rence ,  of sc i ence ,  depends on t h e  p a r t i c u l a r  social 
group you are a member of, as w e l l  as t h e  p a r t i c u l a r  age i n  which you l i v e .  
There is  no t  a s i n g l e  s c i e n t i f i c  method practiced by a l l  s c i e n t i s t s ,  there is 
on ly  a vague c u l t u r e  i n  which you happen t o  operate. People from d i f f e r e n t  
f i e l d s  tend  t o  c l i n g  t o  t h e  s t anda rds  of doing s c i e n c e  t h a t  t h e y  were raised 
on, and by i n f e r e n c e  t r y  t o  impose them on others. 

By t h e  t i m e  half a dozen d i f f e r e n t  teachers i n  school  had told m e  about  t h e  
s c i e n t i f i c  method I no t i ced  t h a t  t hey  d id  n o t  s a y  t h e  same t h i n g s ,  rather they  
differed a good deal. They a l l  emphasized t h e  importance of first g e t t i n g  
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measurements, data i f  you p r e f e r ,  and then  making t h e  t h e o r i e s .  As Sherlock 
Holmes said,  "One should no t  t h e o r i z e  before your data." By t h e  l a te  high 
school  days,  and more c l e a r l y  i n  c o l l e g e ,  I r e a l i z e d  t h a t  you had t o  have some 
sort of theo ry  t o  t e l l  you wha t  kinds of data t o  ga the r .  But also t h a t  you had 
t o  have some data be fo re  you could  have any theory! Ne i the r  t heo ry  nor 
p r a c t i c e  could  completely precede t h e  other. I t  could no t  be a s imple process! 
Theory and exper imenta l  data must go hand i n  hand. 

From a l i f e t i m e  of watching, and a sk ing  people  about  w h a t  t hey  were doing, 
I have come t o  t h e  r e a l i z a t i o n  t h a t  i n  my areas of e x p e r t i s e ,  mainly t h e  so- 
called hard sc i ences ,  there is a gradual  process  of having some sort of hunch, 
ga the r ing  some data which may confirm it, making a more c a r e f u l ,  and poss ib ly  
somewhat altered theory ,  followed by more data ga ther ing ,  bo th  more ex tens ive  
and o f t e n  more c a r e f u l  measurements i n  t h e  lab. This  i n  t u r n  gene ra t e s  more 
theory  and more data ga ther ing ,  perhaps widening or narrowing of t h e  area of 
a p p l i c a t i o n ,  t h e  range of use,  etc., u n t i l  one has a decent  t h e o r y  of some 
g e n e r a l i t y .  

Any theo ry  you create should be followed by a n  active, c a r e f u l  s ea rch  f o r  
why your  f i n a l  t heo ry  might be wrong. T h i s  las t  stage is, i n  my opinion,  an  
e s s e n t i a l  par t  of doing sc ience .  Unfor tuna te ly  i n  t h i s  day and age  of r a p i d  
p u b l i c a t i o n  t h i s  luxury is  r a r e l y  indulged i n  - whoever pub l i shes  first, i f  
t h e y  are r i g h t ,  g e t s  the credit and t h e  c a r e f u l ,  c a u t i o u s  person is left o u t  
completely! And i f  t hey  are wrong, i n  many areas t h i s  is  soon fo rgo t t en ,  i f  
ever no t i ced  a t  a l l !  The idea of doing c a r e f u l  s c i ence  is  r a p i d l y  fad ing  under 
t h e  p r e s s u r e  of pub l i sh  or p e r i s h ,  t o  t h e  de t r iment  of science gene ra l ly .  

Gather t h e  D a t a  F i r s t  

I n  t h e  s o f t e r  s c i ences  people  t e n d  t o  s t a r t  w i t h  volumes of  data from which 
t h e y  t h i n k  they  w i l l  e x t r a c t  a theory .  To i l l u s t r a t e  t h e  extreme, suppose I 
make random e n t r i e s  for 100 measurement of 20 variables. I now, as they  do i n  
some areas, let t h e  computer go t o  work and compute every one of t h e  190 

c o r r e l a t i o n  c o e f f i c i e n t s .  With a h igh  p r o b a b i l i t y  I w i l l  f i n d  one or more 
s i g n i f i c a n t  c o r r e l a t i o n s .  But s i n c e  t h e  data w a s  random one believes t h a t  
there i s  noth ing  there a t  a l l !  That  is w h a t  is  wrong w i t h  t h i s  s imple model of 
s c i e n c e  which s a y s  t h a t  you g a t h e r  t h e  d a t a ,  search f o r  a theory ,  and then  
publ i sh .  Such science is a p t  t o  be ephemeral! 
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In a conversation with Einstein after a talk he had given, Heisenberg 
observed that he had followed the method Einstein had used when he had created 
the special theory of relativity. Einstein laughed and replied, "I may have 

used it but still it is nonsense." He went on to explain, "Whether you can 
observe a thing or not depends on the theory which you use. It is the theory 
which decides what can be observed." 

Let m e  illustrate this with an example you all know. Newton had suggested 
that light might consist of particles (he knew of course about Newton's 
rings), and this became, ignoring Newton's caution, the dominant theory of 
light until the wave theory arose. In this new theory the raw facts were seen 
differently. The edge no longer attracted the particles and caused the 
diffraction pattern. Where once the particle on hitting the photographic plate 
developed the grain of silver, now it was not clear how the wave got all its 
energy to one place to apply it to the single grain of silver salt. Of course 
at the moment we have in Quantum Mechanics a lovely combination of the two 
theories, but they do not mix very well at all. As your professor of QM had to 
say with regard to the two slit experiments (which Feynman insists is at the 
bottom of QM), "I can't explain it, you will get used to it." 

There are more arcane theory changes in which literally the facts changed 
with the change of theory, but this is not the place to go into them. I 
suspect that is you search your own knowledge of your field you will find 
examples of where when you got a new theory the older facts seemed to change 
radically. There is a lot of truth in Einstein's remark that it is the theory 
that determines the facts. 

Ockham's Razor 

There are many criteria in science. For example Ockham's razor which says, 
in modern words, that you do not make unnecessary assumptions. You keep your 
assumptions down to as few as possible. It sounds like a good rule, and it 
ought to keep the danger of contradictory assumptions to the minimum. 

In a graduate course in abstract algebra I noticed that most text books 
gave three conditions for a group, but there was one book which gave only two. 
The two conditions required a lot of hard preliminary proofs to show that they 
implied the three assumptions usually given. Furthermore, the two assumptions 
were so peculiar as to be hard to understand while the three were easily 
understood. From that, (and there were a couple of other similar cases in 
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abstract a l g e b r a ) ,  I came t o  t h e  belief t h a t  it w a s  t h e  c l a r i t y  i n  
understanding t h e  assumptions t h a t  took precedence over Ockham's razor .  But, 
as w e  say  i n  t h e  m i l i t a r y  des ign  of weapons f i e l d ,  I know of no exchange r a t io  
t o  tell me how much t o  g i v e  up of one for a ga in  i n  t h e  other, nor can  I 
measure ease of understanding i n  an  o b j e c t i v e  way. 

Accuracy of the Theory 

W e  o f t e n  hear  t h a t  t h e  theory  which g ives  a better f i t  t o  t h e  e x i s t i n g  data 
is t h e  better theory .  But w e  a l l  know t h a t  t h e  theo ry  Copernicus proposed did 
n o t  f i t  t h e  data, as he used it, as w e l l  as t h e  older Ptolemy p r e d i c t i o n s ,  y e t  
i n  t i m e  t h e  Copernican theory d i sp laced  t h e  theo ry  of P to lemy and is o f t e n  
regarded as one of t h e  s i g n i f i c a n t  s t e p s  forward i n  sc ience .  

I t  should be obvious t h a t  a t  t he  s t a r t  of any new theory  it cannot  account  
for as much as t h e  older theory ;  f o r  a long time Quantum Mechanics could  not  
e x p l a i n  as much as t h e  classical theory ,  y e t  it has won out1  

I n  t he  e a r l y  days of a new theory  w e  u s u a l l y  try applying it t o  a l l  k inds  
of s i t u a t i o n s ,  and t h u s  we gradua l ly  l e a r n  t h e  l i m i t a t i o n s  of t h e  theory .  A 

lack of accuracy i n  t h e  e a r l y  s t a g e s  of a theo ry  may mean only  t h a t  we  have 
n o t  learned t h e  l i m i t a t i o n s  of t h e  theory, or it may mean t h a t  we have t o  
modify t h i n g s  a b i t  - which t o  do is  no t  obvious a t  t h e  time. And, of course, 
it may mean t h a t  t h e  theo ry  should be abandoned, o r  maybe t h e  d a t a  i s  bad! 

Controlled Experiments 

Another c r i t e r i o n  of sc i ence  one o f t e n  hears is  t h a t  you must be able t o  do 
c o n t r o l l e d  experiments t o  be s u r e  of what you are observing. Again t h i s  is 
p l a u s i b l e ,  b u t  Astronomy for most of its e x i s t e n c e  had a b s o l u t e l y  no c o n t r o l  
of what it w a s  observing; a l l  t h a t  astronomers could do w a s  t o  choose t h e  t i m e  
and p l a c e  of observa t ion .  There w a s  no p o s s i b i l i t y  of r e p e a t i n g  e x a c t l y  t h e  
same experiment,  or r epea t ing  w i t h  a l l  bu t  one factor the  same. But most of u s  
w i l l  a g r e e  t h a t  Astronomy w a s  t h e  f i r s t  of t h e  sc i ences  i n  sp i te  of t h i s  
handicap. Hence controlled experiments cannot be an e s s e n t i a l  f e a t u r e  of 
sc ience .  

I n  t h e  c u r r e n t  cosmological theories there is prec ious  l i t t l e  checking w i t h  
f a c t s ,  and i n  some of t h e  theories t h e  e s s e n t i a l  p a r t s  may never be testable1 
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A Theory Must be Potentially Disprovable 

Karl Popper has made this a popular criterion. He came to it apparently 

because while he was studying psychoanalysis in Vienna he gave a psychoanalyst 
a set of symptoms and got an explanation, another set of symptoms and another 
explanation - and suddenly, like the proverbial light bulb in the comic 
strips, he realized that a theory that could explain any set of data could 
explain nothing! A theory which can explain everything can explain nothing. If 
there is no conceivable set of data which would vitiate a theory then it is 
not science, so Popper claims. Again, it is not bad criterion to keep in your 
mind - what kind of data could prove you to be wrong - but it is not an 
absolute standard to meet at all times. 

Consider the history of gravity waves. The attempts to measure them has now 
a long history of significantly more and more accurate measuring instruments 
(of higher and higher cost) and has produced nothing. A few years ago I heard 
of an experiment being done in Italy which is supposed to have 100 times or 
more accuracy than any previous attempt, but I think they had better begin to 
think about what they will do if once more they do not find anything 
significant. What would they accept that there are no gravity waves? That 
their theory could be wrong? Popper is looking over their shoulders! When you 
keep looking for some effect and it keeps getting smaller and smaller and 
harder and harder to detect, when do you decide that there is nothing there? 
There is a classic paper on the dangers of working at the edge of 
detectability. 

A Theory Should not Involve Unmeasurable Phenomena 

As you all know we once had a theory of an ether that filled all space and 
was the medium through which light waves propagated. But it proved to be 
unmeasurable by anything we could imagine, and we gradually, for most people, 
abandoned it. 

To what extent the ether is now back among us in a similar form through 
which is propagated the low temperature background radiation left over from 
the supposed “Big Bang” is difficult to say at the moment. 

Maxwell, when he wrote his two famous papers on the kinetic theory of 
gasses, had to assume molecules for which there was no possibility then of 
seeing, measuring directly, or doing any other thing, to make them real; they 
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were simply f i c t i t i o u s  e n t i t i e s  t o  e x p l a i n  other observa t ions .  Y e t ,  t h e  
success  of h i s  t h e o r y  brought u s  t o  believe i n  molecules,  though t h e  hard 
boiled people  who believed only  i n  measurable t h i n g s  resisted i n t o  t h e  20th  
century1 Th i s  a t t i t u d e  of cons ide r ing  only  observables ( through,  of course ,  
su i tab le  in s t rumen t s ) ,  w a s  popular  i n  t h e  Vienna circle of p o s i t i v i s t s ,  and i n  
fact  E i n s t e i n  i n  h i s  e a r l y  yea r s  believed i n  it, as did Heisenberg,  bu t  i n  
time both  seemed t o  have abandoned t h i s  s t r o n g  p o s i t i o n  of d e a l i n g  only  w i t h  
measurements and eschewing imaginary e n t i t i e s  (see above story).  

Fruitfulness 

A va luab le  proper ty  of a theory  is how much it sugges ts  t h i n g s  t o  do t h a t  
you had n o t  thought  of earlier. A complete,  closed theory  is n o t  much use;  it 
w i l l  n o t  lead you t o  t h e  f u t u r e  theo ry  t h a t  is going t o  d i s p l a c e ,  i n  t i m e ,  t h e  

c u r r e n t  one you are working w i t h .  I once asked Walter B r a t t a i n ,  of t h e  

t r a n s i s t o r  Nobel P r i z e ,  why they  had succeeded when others who working a t  t h e  
same t i m e  on t h e  same gene ra l  idea f a i l e d .  H i s  s imple  answer was  t h a t  t h e y  
succeeded because they  had kept  t heo ry  and p r a c t i c e  (experiments)  t o g e t h e r ,  
and when one side w a s  s t u c k  t h e  o t h e r  suggested t h i n g s  t o  do. It i s  n o t  so 
important  t o  have t h e  correct theory ,  or even e x a c t l y  t h e  correct 
measurements, as it is t o  have a basis f o r  f u r t h e r  a c t i o n  when you g e t  s tuck .  

As a p a r t i a l  example of t h e  a p p l i c a t i o n  of t h i s  consider t h e  fo l lowing  
s t o r y .  When B e l l  T e l  Labs w a s  f i n a l l y  s u c c e s s f u l l y  making t h e  e a r l y  p o i n t  
t r a n s i s t o r s ,  and Shockley w a s  s t a r t i n g  on junc t ion  t r a n s i s t o r s ,  a V. P. is  
reported to  have said, "I w i l l  back t h e  junc t ion  t r a n s i s t o r  over t h e  p o i n t  
t r a n s i s t o r  because t h e  s c i e n t i s t s  t h i n k  they  can  understand t h e  junc t ion  
t r a n s i s t o r . "  H e  c l e a r l y  expressed h i s  f a i t h  i n  t h e  relative f r u i t f u l n e s s  of 
t h e  theo ry  for t h e  junc t ion  t r a n s i s t o r .  

One s c i e n t i s t  I r e c e n t l y  talked t o  about  h i s  s t y l e  of doing s c i e n c e  claimed 
t h a t  he analyzed t h i n g s  c a r e f u l l y  and tr ied t o  f i n d  t h e  c e n t r a l  problem, and 
f i t t e d  o t h e r  t h i n g s  around it. I observed t h a t  some scientists do e x a c t l y  t h e  
oppos i te ,  t h e y  s tar t  almost anywhere and mess around u n t i l  t h e y  remove a l l  t he  
d i f f i c u l t i e s  and then  have t h e  r e s u l t  t hey  want. I n  w r i t i n g  computer programs 
t h e  t w o  extreme approaches are called " top  down" and "bottom up"; i n  p r a c t i c e  
m o s t  people  use  a combination of both methods - n e i t h e r  extreme is as good as 
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a judicious mixture applied properly, and what you do may depend on the 
particular situation you face at that time. 

Unifying Power 

A characteristic of important theories is that they unify what before were 

seen as separate things - that they have breath of application rather than a 
narrow, sort of ad hoc, structure. Consider the great unification that 
Maxwell's equations made1 The breadth of application gives some "truth" from 

each part. 

Mathematics is, of course, the great example of this unification of 
different phenomena via the same equations. I will discuss mathematics later. 

Save the Phenomenon 

There is a wide spread belief, especially among the philosophers of science 
(who generally have never done real science), that all science is merely a 

mnemonic for connecting various results in a framework so that they can be 
retrieved easily. They maintain that there is absolutely no "truth" in any 
theory. On their side is the obvious fact that all previous theories have been 
rejected to make place for the present theories, and we can hardly suppose 

that we have now reached the millennium of unchanging theories. 

Against them is the simple fact that most scientists talk and act as if 

they believed their current theories represented "reality", perhaps not "exact 

reality" but close to it. By believing that our theories represented "reality" 
we have made much progress, and successfully predicted new, unknown effects. 
If the theories were not representations of "reality" how does this happen so 
often? But, again, we know in our hearts that our theories are doomed to be 
replaced. The phenomena to be explained stays much the same but the theory may 
change greatly. 

For example in the Middle Ages the belief seems to have been that the 
angels pushed the planets around the heavens. They seemed not to have 
recognized inertia clearly so something had to keep the planets moving, (note 

that it must have been a deadly monotonous job for the angels). Later Newton 
gave formulas describing how inertia kept them moving without any other 
forces, and how gravity bent the trajectories into ellipses. In the theory of 

General Relativity they claim that the mass "bends the space" to produce the 



observed trajectories. Three r a d i c a l l y  d i f f e r e n t  theories, b u t  p r e t t y  much t h e  
same phenomena w e r e  expla ined  by them. 

There is not a unique theory 

There is n o t  a unique theo ry  t o  account  for, or "explain"  a set of data. I n  
QM w e  started w i t h  t h e  Heisenberg Matr ix  Mechanics and t h e  Schrodinger  Wave 
Mechanics, which, a long  w i t h  t h e  later Group Theory approach, w e r e  shown t o  
be, i n  a l imited sense ,  equ iva len t .  

While supe rv i s ing  a Ph.D. t h e s i s  I acqui red  from another  p r o f e s s o r  I found 
t h a t  i n  h i s  area of research, us ing  mainly random i n p u t s  w i t h  selected power 
s p e c t r a  and measuring t h e  ou tpu t s  of t h e  b lack  box one could  de te rmine  a n  
i n t e r n a l  s t r u c t u r e ,  b u t  t h a t  t h i s  s t r u c t u r e  w a s  i n  no way unique! N o  p o s s i b l e  
set of measurements of t h e  kind being made, could  ever d i s t i n g u i s h  between t w o  
r a d i c a l l y  d i f f e r e n t  i n s i d e s  of t he  black box. S imi l a r ly ,  from a set of data 
you cannot  hope t o  prove a unique theory is correct. As i n  QM there can  be 
m u l t i p l e  theories which ag ree  on the  measurements, bu t  have d i f f e r e n t  
theoretical foundat ions.  

And you a l l  know t h a t  w h i l e  you may say  c a r e l e s s l y  t h a t  Eucl idean and 
a n a l y t i c  geometry are t h e  same, i n  p r a c t i c e  there is  no t  a l a r g e  amount of 
ove r l ap  - we use  each where it is  m o s t  convenient ,  and would hesitate t o  prove 
some r e s u l t s  ob ta ined  by one method by t h e  other method. For example, 
Eucl idean geometry proves t h e  Pythagorean theorem, a n a l y t i c  geometry assumes 
it ! 

Mathematics 

There is a widespread belief t h a t  t h e  more mathematics t h a t  there i s  i n  a 
f i e l d  t h e  more " s c i e n t i f i c "  it is. T h i s  belief is  u s u a l l y  based on t h e  idea 
t h a t  mathematics is  a b s o l u t e l y  c e r t a i n  knowledge. T h i s  i s  c e r t a i n l y  what t h e  
e a r l y  Greeks believed. But Kl ine  has w r i t t e n  a book Mathematics: The L o s t  of 
C e r t a i n t y  i n  which h i s  aim is t o  show how we  have passed from t h e  Greek belief 
t o  our p r e s e n t  one t h a t  there is no " t ru thf8  i n  a l l  of mathematics. 

There are f ive  d i f f e r e n t  schools  of t h e  philosophy of mathematics: (1) 
Platonism, where ideas are e t e r n a l  and are t h e  only  t r u t h ;  ( 2 )  Formalism, 
where we abandon a l l  meaning and merely manipulate  symbols accord ing  t o  
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a r b i t r a r y  r u l e s ,  (when r i g o r  enters meaning d e p a r t s ) ,  ( 3 )  t h e  Logica l  school 
which a t tempts  t o  show t h a t  a l l  of mathematics is  a branch of logic; ( 4 )  t h e  
i n t u i t i o n i s t s  who b e l i e v e  t h a t  i n  a f i e l d  where we have a r i s i n g  s t anda rd  of 
r i g o r  t h e r e  can  be no f i n a l  proofs ,  and a t  t h e  bottom is  human i n t u i t i o n  not  
l o g i c ;  and { 5 )  t h e  c o n s t r u c t i v i s t s  who i n s i s t  t h a t  t h i n g s  must be cons t ruc t ed  
t o  show t h a t  t h e y  " e x i s t f f .  But t h e  c o n s t r u c t i v i s t s  t a k e  away so much of 
mathematics as w e  use  it t h a t  on ly  a few computer people  t end  t o  l i k e  t h e  
school .  None of t h e  schools  has  succeeded i n  winning t h e  ma jo r i ty  of people  
who t h i n k  about  what mathematics is. 

You have o f t e n  heard t h i n g s  l i k e :  nothing i s  m o r e  s u r e  than  t h a t  1 + 1 = 2, 

y e t  I wrote a book i n  which t h e  b u l k  of t h e  arithmetic and a lgeb ra  had t h e  
r u l e  1 + 1 = 0.  O f  course  you w i l l  s ay  t h a t  t h e  1 i n  t h e  t w o  equa t ions  i s  not  
t h e  same th ing ,  j u s t  as t h e  p o i n t s ,  l i n e s  and p lanes  i n  Euclidean geometry and 
non-euclidean geometry are no t  t h e  same th ings .  

A t  t h e  end of t h e  Middle Ages when people  began t o  f a c e  t h e  t o p i c  of fo rces  
they  found t h a t  t h e  convent ional ,  rece ived  from t h e  p a s t ,  arithmetic did no t  
work when adding f o r c e s ,  and they  had t o  create a new kind of mathematics 
called vectors. A s  j u s t  noted,  t o  develop error c o r r e c t i n g  codes I had t o  use  
arithmetic modulo 2 and abandon both standard arithmetic and t h e  Pythagorean 
d i s t ance .  

Much of c u r r e n t  mathematics is  t a i n t e d  w i t h  " the  whole i s  t h e  sum of t h e  
parts" bu t  it appears t o  me t h a t  i n  your f i e l d  o f t e n  t h e  whole is  more than  
t h e  sum of t h e  p a r t s ,  t h a t  t h e  modern w o r d  "synergism" a p p l i e s .  Th i s  sugges ts  
t o  me t h a t  you w i l l  i n  your t u r n  have t o  inven t  t h e  mathematics you need. 
Sometimes, as w a s  t h e  case wi th  Heisenberg, t h e  mathematics of matrices had 
a l r eady  been developed, b u t  I doubt t h a t  you w i l l  be so f o r t u n a t e  much of t h e  
t i m e .  But I tel l  you from personal  experience,  once you are clear i n  your mind 
as t o  w h a t  you are d e a l i n g  w i t h ,  t hen  it is not  hard t o  create t h e  
corresponding mathematics. A f t e r  a l l ,  according t o  an  ex-department head of 
mathematics a t  Bel l  T e l  Labs, 

Mathematics is nothing but clear thinking 

Hence i f  you are going t o  t h i n k  c l e a r l y  you are going t o  be doing mathematics. 

When I w a s  cons ide r ing  accept ing  t h e  i n v i t a t i o n  t o  g ive  a t a l k ,  it was  t h i s  
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point that caused me to accept. I hoped that I could get you to see that the 
mathematics you were taught in school is not sacred, that it was not on the 
stone tablets that Moses brought down from Mount Sinai, but that it is human 
made to meet conditions that w e  face. The conditions in your field seem to m e  
to be sufficiently different from those of the past as to require you to 
create new forms of mathematics. 
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In protein multiple sequence alignments, positions conserved with regard to 
amino acid type or property are often spotted by eye. In contrast, 
relaxionshlps bctwr=a:n pairs of positions (columns) in multiple sequence 
alignments are best detected by other methods: the term covariance defines 
one such relationship, where variation as to amino-acid type in one column 
is echoed by complementary change in amino add type in the second 
column. For instance, two columns in a protein famfly multiple alignment 
may correspond to residues necessary for salt bridge formation: h such a 
case, whenever the residue type in one column is positively charged the 
corresponding residue in the second column wlll be negatively charged, and 
vice versa. 
I f  the two columns vary in such a manner for all proteins in the mulciple 
aJlgnment and the pattern of covariation Is sufffciently complex, 
is t-Jnis an indication of proximity of the two restdues in the tertiary structure 
of a member of the protein family? prevlous attempts (1 
question have used exact pattern matching methods and further 
investigation using site-directed mutagenests. These attempts have encoded 
columns in a multiple alignment (IIIVVL) as numbers (111223) by assigning 
sequential numbers to each amino-acid type. Columns which are assigned 
the same number (SSSDDM - 111223) are considered correlated. Howcver, 
when a protein multiple sequence alignment is made up of two or more 
subfamilies, this method lacks the ability to discern between pairs of 
conserved columns which show variation between subfamilies and covarylng 
pairs of columns. Conserved paits of columns with subfamily-speclflc 
differences can often be found in the active site ur core of the protein, and 
are qujte distinct from covarying positions. In addition, any method to detect 
covariance between columns must be able to dfstinguish complementarity 
betwcen nofi-varying columns, which does not suggest association of the 
columns, from covariance beween columns which do vary: when one column 
is conserved with respect to positive charge and another is conserved with 
respect to negative charge, the two cofumns are not considered to exhibit 
covariance, yet both are asslgaed equivalent patterns (namely 1 Il.-...l) by 
the most simple pattern matching schemes. In this work, new methods for 
detecting covariance which surmount these problem are presented. 

to answer this 
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Consider the multiple alignment shown in fig.1.. Each column in the alignment 
is a mosaic of black, white and grey squares. Dashes repreiwmt indels. Ebch 
square represents a residue in the alfgnmcnt; black squares reprcscnt 
residues with aue characteristic, white squares represent resfducs with thc 
complementary characteristic. Grey squares represent residues which posess 
neither charac*eristlc. A simple scorhg scheme was devised to score one 
column (1) against another(j): 

Here, 
a = No. blacks in column( i) matched with whites in column(j); 
b = No, whites in column(i) matched wlth blacks in colurnn(j); 
c = No. blacks in column(i) matched with blacks In cdumn(]); 
d = Nawhites in column(i) matched with whiles in colu~nn(J). 

Note score(i,j) does not necessarily equal score(j,i). 
The minimization ensures that columns with approximately equal 
numbers of blacks and whites score most highly if covariance is found. 

As we wish to establish a scoring system in which the S C O F ~  of two 
columns is identical whether score(j,i) or score(i,j) is taken, we define 
the funcLion 

totUore(  t,j) - score(i,j) + score( j,i) (2) 

Thus the best score for any particular column(i) in an alignment of 
length N is given by 

When column(f) gives the best score for coiumn(t) and column(i) glves 
the best score for colum(j), the relationship between column(i) and 
column(jf is called reflexive. This is only necessafly the case for the 
best score out of all columns. This is given by 

N N 
Max Max totatScore(i,j) 

i-1 1-1 
A C program which obtains a list of the best X scoring coluiiiii pairs 
(reflexive or both reflexive and non-d'l&ve) given a MIlLTAL(3) 
alignment is freely available on request from the authors. 
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f a L ? € w  

?tvc, methods have been presented for the analysis of covariance in pmtein 
multiple sequence alignments: both methods avoid the shortcomings of the 
pRvious pattern matching method develowd to analyst covariance. Results 
are showd for the second of these methods, expected to be more discerning 
as regards courdinatd changc in ambo-acid columns. 
Table 1 shows that while the meat1 beta-cmbon dtstane far cuvarylng 
columns is almost always smaller than expected, conserved pairs (which do 
not covary) provide a better estimate of amino-acid proximity than the 
amino acid network scoring scheme, being significantly closer to one another 
than covaryhg amino acid posWons.Important explanations for the margfnal 
significance of the samples selected by the amlno acid network scoring 
scheme include (a) long range interactions between covarylng column pairs, 
(b) residual bias towards better conserved pairs among the compensated 
pairs. These factors appear to be less problematic for the automated 
search for Watson-Crick covariation used for the detection of secondary and 
ternary structure in RNA(7); hcre it is possible to pinpoint coiumns fn 
multiple alignments that covary wlth much greater efficiency, due to greater 
constraints on ribonucleotide paititlg. If such analysis could be brought to 
bear on pmtein multiple sequence alignments, it could aid the prediction of 
protein stmctum, providing specific constraints on fold topologies of the 
polypeptide chain. FOF the present, the columns in a multiple alignment that 
tovary and are close to each other cannot be distinguished from those 
colums that covary and are far from each other. Future work will aim to 
enhance the distinction using information on protein secondary structure to 
f'ilter out the "notse" contributed by these columns. 
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Columns 
.....,........,...,.,.,...- ~ ........_................... . ........ ., ..,..... .... ..... .....,... .... ...-n 

i Col(i) 
COl(j) 

a = 4  
b = 3  
c = l  
d = 1  

score(ilj) = 2 

score(j,i) = 2 

tatalscore(i 3) = 4 

32 



From : Lab. of Math. Biol. s N. I.M.R. PHONE No. : 44 81 913 8 3 5  Jun.24 1993 3:28pM PF36 

Table 1 :Various sample sizes (N) of the bcst conserved (cn) and best 
compensated (a) pairs of residues were compared to the mean 
pairwise distance over all pairs in each protcin, The accumulatcd 
dUYerences in the means (A) are given in tho columns headed 
cn-cr, al-cr, akn, while the columns headed cn< al, cre al, cre cn 
give the number of proteins in which one mean is less than the 
other. 

r;; 
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-2.15 0.46 3.60 
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Figure 2 : In a mdtlple alignment of protein sequences, two positlotis i and 
are comidercd. in method 2.2, each pair of sequences m and n is 
takcn and the score Utjm is calculated. 
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A METHOD TO RECOGNIZE DISTANT REPEATS IN PROTEIN SEQUENCES. 

Jaap Heringa and Patrick Argos 

European Molecular Biology Laboratory (EMBL) 
Meyerhofstrasse 1 
Postfach 10.2209 

D-69012 Heidelberg 
Germany 

An automated algorithm is presented that delineates protein sequence 
fragments which display similarity. The method incorporates a selection of a 
number of non-overlapping local sequence alignments with the highest 
similarity scores and a graph-theoretical approach to elucidate the consistent 
start- and end-points of the fragments comprising one or more ensembles of 
related subsequences. A multiple alignment of the resulting fragment 
ensemble(s) is performed. Finally, a profile is constructed from the multiple 

alignment to detect possible and more distant members within the sequence. The 
method tolerates mutations in the repeats as well as insertions and deletions. 
The sequence spans between the various repeats or repeat clusters may be of 
different lengths. The technique will be shown using a number of proteins 
where the repeating fragments are known based on information additional to the 
protein sequences. 
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Physical Mapping in the Presence o f  Errors: The Chimeric Clones 
Problem 

Dauid S. Greenberg Sorin Istrail1 and Michael Sipserl y z  
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Algorithms and Discrete Mathematics 

Dept 1423 
Albuquerque, NM 87185-5800 

(2) Massachusetts Institute of Technology 
Department of Mathematics 

Cambridge, MA 02139 

An important problem for the Human Genome Project is to develop robust 
software technology for the physical mapping of chromosomes. The process of 
creating a physical map is the divide/merge step in a divide-and-conquer 
approach to sequencing DNA and related problems. 
reduced to several smaller pieces by physically breaking it apart. 
process of breaking into pieces does not preserve information about the order 
of the pieces in the w hole and thus a combinatorial problem results to 
reorder the pieces. Various experimental errors complicate the problem. A 
major source of difficulty -- which seems to be inherent to the recombination 
technology -- is the presence of *chimeric* DNA clones. It is fairly common 
for two disjoint DNA pieces to form a chimera, i.e., a fusion of two pieces 
which appears as a single piece. 

One large segment of DNA is 
The 

Attempts to order chimera will fail unless they are algorithmically divided 
into their constituent pieces. In an editorial in the October 1992 issue of 
Nature, Peter Little comnnents on the breakthrough of the first high 
resolutions physical maps using the cloned DNA technology and the difficulties 
associated with chimerism " At the risk of belittling a substantial 
achievement, there are still some serious drawbacks to these YAC maps. Some 
40% (chromosome 21) and not more than 50-60% (Y chromosome) of the YACs 
contains artefactual hybrids of 21 or Y DNA with DNA from some other 
chromosome. These chimeric clones are very problematic to work with -- how do 
you know which piece of DNA comes from the correct genomic region ?"  The 
chimeric clone problem has received only passing attention in the literature 
until now. In collaboration with Eric Lander of the Whitehead Institute we are 
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devising strategies for tackling this problem based on the optimization of 
several natural objective functions. Not too surprisingly, the computational 
complexity of such optimizations turns out to be invariably NP-complete (i.e., 
very likely intractable). Indeed, connections between the physical mapping and 
the Traveling Salesman Problem have been made repeatedly in the literature. To 
overcome this apparent computational intractability we have developed several 
algorithms including fast performance-guaranteed approximation algorithms. 
Through probabilistic analysis and simulations on synthetic data we are 
evaluating the performance of our algorithms. It turns our that one of our 
optimization functions is extremely successful in identifying chimeric clones 
and thereby allowing the creation of physical maps that relyably include 
almost the entire biologically correct one. 

A first evaluation of our software library devoted to physical mapping of 
chimeric clones will be perfornted by researchers at the Whitehead Institute of 

Biomedical Research, and at L o s  Alarnos Genomic Research Center. 

( f )  supported in part by the U.S. Department of Energy under contract DE- 

ACO4-76 DP00789 
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DETERMINATION OF ARCHITECTURAL ELEMENTS OF RNA STRUCTURE 

Danielle fl.M. Konings, and Robin R.  Gutell 

Department of Molecular, Cellular and Developmental Biology. 
University of Colorado 

Campus Box 234 

RNA structure has been elucidated by a variety of computational and 
experimental methods. Comparative sequence analysis, as one of these methods, 
deduces a common secondary structure for RNAs belonging to a set of homologous 
sequences through correlation analysis based on a multiple sequence alignment. 
This method is responsible for the derivation of many higher-order structure 
models including tRNAs and 16s and 23s rRNAs. Underlying the complex 
architecture of these RNA structures is a repertoire of simpler structural 
elements. An understanding of these simple structural elements is needed to 
appreciate fully RNA structural and functional diversity. In addition, this 
knowledge is essential to further improve the accuracy of predicting RNA 
secondary structure from a single sequence based on thermodynamic or kinetic 
based principles. Starting from these complex higher-order structures as 
derived by comparative sequence analysis, we aim to identify their underlying 
structural constraints which will consist of simpler structural (and 
associated sequence) motifs. An example of such a structural motif are the 
specific sequence constraints that are associated with hairpin 'tetraloops' in 
rRNA. 

Two research directives will be discussed that aim at increasing our 
understanding of RNA structure: 

1. Decipher RNA structural constraints. 

The objective here is to identify structural constraints of complex 
higher-order structures. Among others the analysis will be concerned with the 
distribution of specific RNA structure motifs (analogous to the tetraloop 
motif), position-specific motifs (e.g. protein binding motifs) and structural 
motifs that interchange at specific positions. We have developed a 
computational method that allows us to address these questions. The basic 
premise of comparative sequence analysis is that homologous sequence elements, 
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as defined by the sequence alignment, form equivalent units in the higher 

order structure of the RNA molecules. This principle allows us to utilize the 
multiple sequence alignment of a set of RNAs in conjunction with the 

secondary structure coordinates of a reference sequence to search for 
structural motifs throughout the entire set of sequences. 

To allow for a systematic collection of structural constraints our searches 
for RNA structural elements are performed in a hierarchical manner: starting 
with the identification of generalized structural features and then 
progressively searching for more detailed and specific structural features. 
Our initial searches address general structural constraints such as the base 
composition of paired versus unpaired nucleotides, the distribution of base 

pair and consecutive base pair types in general and those associated with the 

closure of different loop types, and sequence constraints of loops according 
to the loop type and length. In general, however, the interest in specific 
searches evolves during the course of the analysis based on the specific 
outcomes of the successive steps. Thus far we have performed the statistical 
analysis on large collections of sequences of tFWA and 5S, 16s and 23s rRNAs. 
The analysis has revealed several structural features that are in agreement 
with known biophysical data as well as a number of unreported structural 
principles. 

2. Evaluation of free-energies and rules for RNA structure calculation. 

In parallel to the statistical analysis of sets of comparatively-derived 
structures as described above, we have started to identify structural 
elements that are presently poorly predicted by standard thermodynamic rules. 
Here we compared and contrast 
those identified by comparative sequence analysis. The elements identified by 
this analysis can serve subsequently as focal points in our statistical 
analyses or directly in the biophysical elucidation of improved 
principles. 

thermodynamically calculated structures with 

folding 

A preliminary analysis of 16s rRNA structures of different phylogenetic 
groups in this way has revealed large differences in the predictive value of 
their respective structures. Whereas the thermodynamic structure prediction 
for eubacteria and archaebacteria is around 60% in terms of predicted base 
pairs, this percentage is only around 30% for mitochondria and eukaryotes. 
This imposes the question whether different phylogenetic classes of RNAs use 
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distinct structural elements or folding principles (e.g. the relative 
importance of proteins for stabilization) to generate their functional 
higher-order structure. To further address this question, a detailed mapping 
of the differences between the two types of structural models in terms of 
their association with basic structural elements, such as long-range helical 
elements, hairpinloops and multistemloops, will be performed. 
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COMPUTRTIONRL MOLECULAR BIOLOGY IN LOGICAL PERSPECTIUE 

A.K. Konopka 

Particularly in Biology heuristic reasoning can be conclusive. Yet 

biologists face the problem of not being able to specify all the rules applied 
to derive conclusions. Nor  are they able to list all assumptions on which 
those rules ought to operate. It seems that these inabilities are a reflection 
of the complexity of biological systems themselves. Biological phenomena are 
often represented by models that are still too complex to be described in a 
communicable manner. Further and further modeling is required until our 
observations can be conveyed in a linguistically comprehensive way. The 

cascade of models gives us the advantage of creating "communicable reality" 
but does not help us to judge the evidence pertinent to "real" (i.e., not 
necessarily communicable) reality. To the contrary, the more advanced a model 
in a cascade is, the further is its "distance" (in terms of number of modeling 
steps) from the modeled system. 

From a logical point of view there are two problems here. First, we have no 
formal system of inference to judge formal correctness of observation 
sentences that have a variable true value (credibility) and that use ill- 
defined terms. Second, we have no formal system to judge the material adequacy 
of sentences derived from a "distant" model to the properties of modeled 
phenomena. 

The problem of formal correctness seems to be solvable in principle. 
Progress in dealing with it can be noticed already in the fields of Artificial 

Intelligence (AI), Pattern Recognition (especially development of fuzzy 
mathematical techniques) and Situation Logic. In the near future we can expect 
to have formal tools to derive plausible conclusions from "imprecise" 
premises. Or, at least, we will have the option of relying on a machine (i.e., 
reliable AI software) that will perform plausible reasoning for us (I would 
probably exclude myself from the "us"). As far as formal judgement of 
material adequacy is concerned, it is unlikely that the problem is 
"addressable" in its generality. At least within mathematics the celebrated 
W e 1  theorem precludes such a possibility. However, informal (more or less 
educated common-sense) judgements of material adequacy are possible and, as a 
matter of fact, all fields of science explore them. 
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Computational Molecular Biology (CMB) is a new science emerging from the 
liaison of computational technology and molecular biology proper (MBP). Its 
general goal is to understand biological phenomena through computational 

experiments and plausible reasoning. In a narrow sense, CMB is concerned with 
the informational (or symbolic) interpretations of biological phenomena that 
involve nucleic acid and protein sequences. The focus on symbolic 
interpretations distinguishes both CMB and MBP from physics, chemistry and 
other fields of "hard" science. However, the paradigms of CMB and MBP seem to 
have more aspects distinguishing them from each other than aspects in common. 
For one thing, instruments (say "measuring sticks") are different in CMB and 
MBP. Computer hardware and software along with plausible reasoning are 
examples of instruments used by computational biologists. Electrophoretic 
gels, centrifuges, spectrometers, probes of nucleic acids, antibodies and, 

perhaps, high individual tolerance to radiation are examples of equipment 
employed by MBP scientists. Because of the differences in research tools, both 
the data and data-associated percepts are different in CMB and MBP. So are the 
intellectual "folklores" that contribute to both paradigms. By inference, we 
ought to expect that criteria of material adequacy for observation sentences 
will not always be the same in CMB and MBP. 

The presentation/discussion will (ideally) focus on protocols of pragmatic 
inference as seen (but not always clearly described) by most computational 
biologists. A general scheme of pragmatic inference for sequence research 
(part of CMB) is shown in Figure 1. The scheme is merely meant to illustrate 
the fact that vaguely defined "biological knowledge" is a vital factor 
allowing us to judge the material adequacy of outputs from each step of the 
"procedure". How exactly we should proceed to Ycorrectly" implewnt our 
"biological knowledge" is currently unknown. N o r  is it known how to clearly 
classify (or enumerate) this knowledge. Specific proposals of solutions for 
both those problems within sequence research will be described and (if time 
will allow it) discussed. 

Suggested readings 

1. Carnap, R. (1939). Foundations of Logic and Mathematics. Chicago Univ .  
Press, Chicago. 

2 .  Gadel, K. (1931). iiber formal unentscheidbare Satze der Principia 
Mathenatica und verwandter System. Monatshefte fur Mathematik und Physik 38,  
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Toward the Unification o f  Sequence and Structural Data for 
I dent ifica t ion o f  Structural and Functional Constraints 

Chip Lawrence 

Wadsworth Labs, NYS-DOH, Albany NY 
& 

NCBI, NIH, Bethesda MD 

The i d e n t i f i c a t i o n  and c h a r a c t e r i z a t i o n  of local r e s i d u e  p a t t e r n s  or 
conserved segments shared a set of biopolymers has provided a number of 
i n s i g h t s  i n  molecular  biology. 
macro molecules t h a t  share common s t r u c t u r a l  or f u n c t i o n a l  f e a t u r e s .  The 
approach taken  here rests on t h e  not ion  t h a t  in format ion  may be most 
e f f i c i e n t l y  e x t r a c t e d  from t h e s e  observa t ions  through t h e  use  of a model t h a t  

f a i t h f u l l y  r e p r e s e n t s  macro-molecular characteristics. Accordingly, o u r  
efforts are focused on statist ical  models which a t tempt  t o  c a p t u r e  what we 
believe t o  be c e n t r a l  f e a t u r e s  of p r o t e i n  s t r u c t u r e ,  func t ion ,  and change. 

Biopolymer sequences are obse rva t ions  from 

There are t w o  major f o c i  of o u r  work i n  t h i s  area: 

1) Threading of a sequence through s t r u c t u r a l  motifs seeks t o  
determine i f  a p r o t e i n  sequence f i t s  a known p r o t e i n  s t r u c t u r e ;  and i n  t h i s  
way recognize f o l d i n g  motif .  (Bryant and Lawrence, 1993) 

2 )  Mul t ip l e  sequence alignment via t h e  G i b b s  sampling algorithm seeks 
t o  i d e n t i f y  p o s i t i o n  specific " f r e e  energy" models for r e s i d u e  sites i n  common 
"core elements"  and s imultaneously t h e  alignment (Lawrence e t  al. 1993). 

Because t h e s e  t w o  e f f o r t s  address apparent ly  d i f f e r e n t  problems, they  
appear s u b s t a n t i a l l y  unre la ted .  
stochastic macro-molecular model. Five basic characteristics of p r o t e i n  
s t r u c t u r e ,  func t ion ,  and change form t h e  basis of these t w o  collaborative 
efforts. 

I n  fact, both are based on a common 

1) P r o t e i n s  are s t a b i l i z e d  by t h e  e n e r g e t i c  i n t e r a c t i o n s  among i t s  
re s idues ,  and t h e  i n t e r a c t i o n s  of i t s  re s idues  w i t h  water, t h e  peptide 
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backbone and ligands. 
function. 

These interactions determine a protein's structure and 

2) When biopolymers have been subjected to a limited amount of 
evolutionary change, their commonality stems primarily from their mutational 
history. This case is of little interest to us. Rather, the focus here will be 
on the more difficult case that arises when the sequences have been subjected 
to extensive change, and any common patterns that remain are subtle. 
such distantly related sequences, common features stem primarily from 
structural or functional constraints. These constraints arise from the 
energetic interactions among residues or between residues and ligand. 
relationship between energetic constraints and frequencies forms that basis of 
statistical mechanics, pioneering by Gibbs and Boltzmann. There is an 
analogous relationship for residue frequencies subject to random point 
mutations (Polh,l 971) (Berg c von Hipple 1987) (Bryant and Lawrence, 1991). 
This relationship suggests that the use of residue frequency models can be a 
valuable tool for representing the structural and functional constraints. 

Among 

The 

Given an alignment, the joint distribution of the residue types at the W 
positions in the common core may be represented by a multinomial residue 
frequency model. Interactions of residues with ligand, backbone atoms and 
water are essential to protein structure and function, and impose first order 
constraints on residue frequencies. 
key determinants of protein structure, and impose pairwise interaction 
constraints on residue frequencies. Since, the multinomial model is a member 
of the exponential family (Kendall and Stuart, 1952) ,  and we consider at most 
pairwise interactions, the log joint distribution of residue frequencies may 
be described as a sum over first order terms plus the sum of pairwise terms 
over the set that mutually interact (Besag, 1974).  In other words, 

Forces between pairs of residues are also 

log(P(R [ A  ) )  = Sum-(d=l..W} u-d,r + Sum-(C} u-i,r,j,s (1) 

where C is the set of residue pairs that make contact, and the u-d,r and 
are respectively the first and second order free energy parameters. ui,r,j,s 

3 )  Proteins or protein motifs that share a common structure share a common 
core. 
structure interrupted by variable length loops. 

This core is composed primarily of ungapped segments of secondary 
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4 )  The primary determinants of protein function are its energetic 

interactions with ligands. Thus, proteins or protein motifs that share a 
common function nearly always share common ligand based constraints. Ligand 

interactions often involve residues in a subset of a proteins loops. Since 
the geometry of these loops is tightly constrained to maintain these 
interactions, the lengths of these loops are nearly always preserved. 
Furthermore, residue frequencies in these loops are constrained by the 
energetics of their interactions with ligand. 

5) Biopolymer sequences are misaligned by tranpositions, 
insertions/deletions, and gene duplications. In proteins these events result 
in variations in loop length. 
effects of these events in biopolymer sequences. Nevertheless, the 
probability of these events can be inferred from available sequence data. 

No direct data are available concerning the 

In the 1970's it became widely recognized that many statistical problems 

are most easily addressed by pretending that critical missing data are 
available. In fact, for some problems, statistical inference is facilitated 
by creating a set of latent variables, none of whose values are observed 
(Goodman, 1974). The key observation was that conditional probabilities for 
the values of the missing data could be inferred, by application of Bayes 
theorem to the observed data. 
first described by Orchard and Woodbury (1972) and called the "missing 
information principle". Its application became widely known through a 
deterministic maximum likelihood algorithm, the expectation maximization (EM) 
algorithm (Dempster et al., 1977). 

Statistical inference based on this concept was 

Geman & Geman (1984) developed a sampling based approach, which they named 
the Gibbs sampler. 
distribution is a complicated, and thus difficult or impossible to obtain by 
direct integration. They employed this sampling algorithm both to develop a 
Bayesian description of the complete posterior distribution, and to find 
maximum a posteriori (MAP)  estimates. They chose the name the Gibbs Sampler 
because a key required theorem from statistical physics , the Hammersley 
Clifford theorem, employs Gibbs/Boltzmann potentials to model joint 
probabilities from a complete set of conditionals. The use of sampling 
methods for problems involving missing data was first undertaken by Tanner & 

Wong (1987) and Li & Kim-Rung (1988). This sampling approach and its 
extensions have become a topic of great interest in statistics in the last few 
years (Gelfand & Smith, 1990),(Smith t Roberts, 1993). Most statistical 

It was developed for the case in which the posterior 
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applications have little connection with statistical mechanics, thus the names 
Gibbs sampling has fallen into disfavor among some statisticians. Because the 
connections of this work with statistical physics name Gibbs Sampler is 
entirely appropriate. 

The missing information principle was first used for sequence alignment to 
develop a block based (EM) algorithm for the identification and 
characterization of common motifs in biopolymer sequences (Lawrence and 
Reilly, 1990). This work subsequently was extended to permit small variations 
in the spacing of pairs of blocks (Cardon & Stormo, 1992). More recently, EM 
algorithms for gap-based alignment methods, in the form of Hidden Markov 
Models (HMM), have been described (Hausler et al., 1993). A mre complete 
description of statistical aspects of the use of these ideas for misaligned 
data is given by Lawrence and Reilly (1992). Following this tradition, Bryant 
and Lawrence (1993) have recently presented a statistical model which imputes 
the alignment of a sequence to a structural motif, and Lawrence et al. (1993) 
have recently developed a Gibbs sampling algorithm which imputes the alignment 
of multiple sequences. 

Threading:  

In threading, the free energy parameters of equation (1) are taken as 
known. In fact, estimation of these parameters using the observed frequencies 
of residue pairs by distance in the protein data bank, was a major focus of 
the analysis conducted by Bryant and Lawrence (1993). With these known, the 
probability of an alignment is 

where 2 is the sum over all possible alignments. When all alignments the 

most probable can be identified from equation (2). 
alignments exceeds computing limits equation (2) can be employed as the basis 
of a sampling algorithm for the identification of the most probable alignment. 

When the number of 

A Gibbs sampler for multiple sequence alignment: 

For this problem the free energy parameters of equation (1) are unknown and 
are estimated from the available sequence data using an iterative sampling 
algorithm. The algorithm iterates between equation (1) and equation (2) with 
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t h e  goa l  of s imul taneous ly  i d e n t i f y i n g  t h e  alignment and t h e  unknown r e s i d u e  
"free energy" parameters .  
i n t e r a c t i o n s  t o  p r o t e i n  s t a b i l i t y ,  much of t h e  informat ion  conta ined  i n  
p r o t e i n  motifs is  captured  by first o r d e r  terms alone.  Even when l igand  
s p e c i f i c  e f f e c t s  are ignored,  over 65% of t h e  informat ion  concerning r e s i d u e  
pairs f r equenc ie s  i n  p r o t e i n s  of known s t r u c t u r e  i s  captured  by f i r s t  o r d e r  
"hydrophobicity" terms (Bryant  61 Lawrence, 1993). Furthermore, because t h e  
number of p a i r s  i s  l a r g e ,  it is no t  clear t h a t  t h e  a d d i t i o n a l  e n e r g e t i c  
information from t h e  p a i r  terms w i l l  compensated for t h e  s u b s t a n t i a l l y  missing 
information p e n a l t y  when s t r u c t u r e s  are unknown. Accordingly, t o  date we w i l l  
restrict a t t e n t i o n  t o  f irst  order r e s i d u e  frequency models, for  problems i n  
m u l t i p l e  sequence alignment.  

I n  s p i t e  of t h e  important  c o n t r i b u t i o n  of pa i rwise  

A more complete d e s c r i p t i o n  of t h e  mathematical models and algorithmic 
methods used w i l l  be given, and a p p l i c a t i o n s  t o  s u b t l e  m u l t i p l e  sequence 
alignment problems and f o l d i n g  mtif recogn i t ions  problems w i l l  be presented .  
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EUOLUTION ON RUGGED LANDSCAPES 
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We have studied walking on rugged fitness landscape as a model of the 
process of affinity maturation in an immune response. Affinity maturation 
appears to be the outcome of a mutation and selection process, described as 
"neo-Darwinist evolution in real time". Divorced from the biological context, 
walking on a fitness landscape applies to the appearance of a general 
optimization process. 

Here, we outline a model of affinity maturation in order to introduce the 
formalism of fitness landscapes, and to develop an intuition about 
optimization in high dimensional space. Then we discuss mre general issues, 
such as comparison of optimization techniques, and classification of 
landscapes. 

Rugged fitness landscapes have been introduced in many areas of biology and 
physics to study, for example: affinity maturation of antibodies by somatic 
hypermutation, protein folding, RNA folding and evolution, species evolution, 
and spin glasses. 

A fitness landscape consists of two components: sequence space, and a 
fitness function. Sequence space, S, is an abstract representation of the 
collection of all individuals of interest (protein, antibody, RNA molecule, 
glass states, etc.) as a set of strings or sequences of elements chosen from 
an appropriate alphabet. A fitness function assigns a real-valued "fitness" 
to each sequence in S. In principle, fitnesses can be plotted as heights of a 
landscape above the multidimensional sequence space. To model evolution on a 
rugged landscape, a rule is used to describe permissible moves through 
sequence space. Here we consider the rule in which only one element of a 
sequence can be changed in one unit of time. Thus, paths through sequence 
space involve moving between so-called one-mutant neighbors. 

The nature of the landscape depends entirely on the fitness function. In 
most settings, this function is difficult to determine realistically, and 
therefore fitnesses are assigned in a somewhat arbitrary fashion. An extreme 
example, which nevertheless captures aspects of reality, is to assign a 
fitness value chosen at random from a probability distribution such as the 
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normal or uniform. Fitnesses are thus independent of sequence, and the 
resulting landscape has a characteristically rugged nature. Clearly, to assume 
that fitnesses are random functions of sequence is extreme. Site-directed 
mutagenesis reveals that some point mutations in a protein have little effect 
on its fitness, while others can drastically change fitness. 

As an attempt to quantitatively describe the possibility of single 
mutations leading to small fitness changes, Kauffman introduced the NK model. 
In this model the fitness of a sequence of length N is a sum of fitnesses of 
the N individual elements of the sequence, but fitnesses of individual 
elements are assigned for each configuration of 0 5 K 5 N - 1 other elements. 
By altering the value of K, the ensuing landscape exhibits different degrees 
of ruggedness. The N K model has been studied in simulation experiments and to 
some extent analytically. Importantly, the assumption of additive fitnesses 
leads to strong central limit theorem effects in which all fitnesses cluster 
around the mean fitness with decreasing variability as N increases. Further, 
the ability to tune the degree of ruggedness by altering K results from the 

fact that random fitness samples of size 2K have larger extrema as K is 
increased. We propose an alternative approach to a "tunably rugged" landscape 
that achieves variation in ruggedness by means of a model of physical 
structure within a sequence. It has the additional advantage of easy analysis 
and freedom from dominance by central limit theorem effects. We call our model 
the block model since it treats a sequence as a collection of independent 
blocks of elements. Fitness correlations among neighboring sequences are then 
a natural consequence of the block structure, and can be "tuned" by changing 
the number of blocks. The original motivation for our block model was the 
observation that molecular sequences often have natural partitions. When 
blocks of a sequence are long, the model is easy to study analytically: 
results of earlier theory (1) can be combined, using convolutions, into theory 
about the block model of sequences. 

antigen-antibody or protein-ligand interactions, we use the binding free 
energy (or log affinity) as a fitness. Thus, fitness of a sequence is 

u- t u z ,  where block i has length ni, N =  E n i  , and Vi is the fitness of 
block i. We assume that blocks contribute independently to sequence fitness, 

and choose the block fitness, Ui, randomly from a continuous probability 
distribution Gi. Changing the number of blocks in the block model changes the 
characteristics of the fitness landscripe. Intermediate levels of correlation 
between fitnesses of neighbors occur for 1 < B < N. 

Consider a sequence of length N composed of B blocks. In considering 

B 

t-1 1-1 
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Important results exist on the characteristics of a landscape, and of walks 
on a landscape. Many of these results are independent of the fitness 
distribution G, depending instead on a mechanism for assigning a rank to each 
possible sequence. When walks are restricted to movements in an uphill 
direction only, they quickly terminate at a local optimum. The length of walks 
increases with the degree of correlation between neighbors in sequence space. 

The model for affinity maturation invokes a "random ascent" method of 
optimization, which may be compared with other optimizers, such as greedy 

algorithm, using, for example, reverse hill-climbing. 

categories within which optimization procedures have similar properties? To 
date, the correlation length of a landscape is the only such classification 
measure that has been proposed. However, a single statistic is unlikely to 
capture all of the influential properties of a landscape. 

With the availability of a variety of optimization techniques, often 
incompletely understood, a correspondence between the characteristics of a 
landscape and preferred method of walking on the landscape is needed. 
Classification of landscapes is a first step toward establishing such a 
correspondence. 

An important question is: How might landscapes be classified into 

1. Macken, C. A., Hagan, P., and Perelson, A. S. (1991). Evolutionary walks on 
rugged landscapes. SIAM J. Appl. Math. 51, 799 - 827. 
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during CHMafEL tramsit, the SIGHAM say be alterad by 
combining with pervasive ISOI8E always f0-d in tho -L; 
puaaiblp altered SI611ALS atripe at a BTCCEIVBR, which make8 
hperfect deehfoas trhflo Conosrting the 8IGBJAU3 to .guioal.nt 
YE88AQB6, slployiag whatevw U M h g  appropriate; these 
U-BS hopefully are undelcatood a386 Mv0 utility to tar, 
DBSTZMATIW. 

Informatien and a c h e  are the main facets of Elhaanon's model. 
In hi8 worst uasa mmlysoa, Shannon assumed *.white hoi.88," 
bocanro of i t s  natural and ooweniant nuximum entropy 
property. IbthsteintI) remappH Sbanaan's medal into a 

(for 
-10, the eaae a i  M analptior1 balrwe). lo reaouat far 
the pxeaifsian and looIullop bir6.8 inhuurt fn flaetuatiag 
rn+aacweQ-values, he renamed MUISE to "8xror 8oureeH (F ig .  1)- 
aathrtdn'a 8yrbOlia rerrpphq has nwmerous rurifieations and 
applied conoequenacs. 

gen8rrl M d m l  of I lrrruring-prousburr-urd-rpparatlam 
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#U selectioa of the "just in time" imagery, the first 
heuristic, arises from a Pc&bCif i8  example of RNA rcditing in 
the trypanosome mitoehenxion. AB *%uQ'. start-sigaal for 
polypeptide ayntheaia is not found ia t&e genomic DHA aistron 
and is not present i n  tlm tra.nscrABed m, 
aarraotly placed %UW fs r r d i t e d  into the #&?#A[?], allowing the 
appXOPrirt9  polOpIptid0 to be sade by the ribarorrl comglex. 

DoXremt in i t iat ion of 8 vital polypeptide. 
taken to be the fully aomplote IR#x, croataining anong othat 
features the 
porAtion to "0th- signals needed by #xe rfbortmal colrplar. 

V u s t  in tha," I 

In .ffQCt, Z: mV9 ah@@- 8 DSSTQJATXGM, the jU8t-ia-tho 
The W 6 A G l l  can be 

aucls8tibe triplet in correct junxta- 

Under the influmxcr of the oantral dogma, ene auther wrote 
this wrote this about EtHA Witing: %%le other forms of RlpA 
procsessiag maintain primary mequanee earrespondanam between 
gcne and transoript, Rya editing disrupt15 tbis informational 
lin&agm by .;lt;erhq the rrcttual smquamar o f  an 
after it has h e n  tran8uribmd."[ll] It is factually corrmct, 
but canceptwlly pervartsd. 

The Xn T h e n  huurfotio forces one to almarly define the 
D B S T I ~ T Z O I ! 4  8nd tha prebable ensemble of aasaaqes that might 
be rmarivod v i r  the ccmmtmitzation ayrten. 

w 1 r c u Z r  

Identifying the Lent and received mesarge 8 a t ~ r r b l M S  forcem a 
thoughful spwifiaation of the eaunnioation abuur.l(o) used; 
any rerialisation ox paralls&iratien, i.e. scrXinpt tiaaing 
requixurentr or aoaetraints; and any sno6dingdmaeding 
put-terirrtiens and spocirlfsatiaaa. 
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KINKO‘S- 

In a thamodynamia Universe, noise is pervasive and 
inesoapabla. 
tine and distamco as a cbaanel signal, noise b t m r c r c r t s  w i t h  
that rignal in an algebrafoo&ly additive f U 8 h A O l l { ? ] .  me net 
result is that a cerkain potion of the original infermation 
aan bo0010 irrwoverabl., braaura it has burn ~onverted to 
error. M o i m  impaaaa a natural upper linit to system 
8fficieacy. Soise hus anather coIa8equential rffeot: it 
qmatirrr cont~nuouelp variable information. 
errar nfnhuriaation can b t h  be dealt with via cedes and 
utcoding 8cb-e~ 

maring the conveyance of information through 

Q u n t i m t i o n  and 

Elermarch in radio 8pZ8ad rpmctmlan oyPtePs shew8 that the 
Is ta t la t ie81 structure of noise sourc++s has a prafound affrut 
on thm zSUu~m88 and aBff&dWmy of any particular q a t -  Of 
onoedbg i.n a aoamuniaationa rpstun,[9J 

often a communfcation chamel m u s t  be shard among rultfplr 
riqaala. BeeaUc16 phyaticrl oomnmioation aystems a r m  finitr 
maahher, they have a aapadtp lhi. When the capaeity 
rviromeats of  mutiplo ftiukdlp signals sum to p o r m  thas the 
avsilablm chisnrl aapaoity, eauh rigarl b q h s  to 8rparfrmoe 
dmgradstion bsaaulse th8 othru: co-rimfdent aignrls rhift to 
operating as noise(arzor 10tar~es &a a mutual farhion. 

exp8rhnce with radio sprmad spec- tsrahniques ha8 
buonstratd, s o u  rowcea of channel waoi8e” are actually 
eo-resident signals drsfgned t o  reduce channel sffilthncy or 
to direut uell structured erras inte other chamml carosident 
signal8 . 
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SENT BY:OPER 24 W R S  ; 7- 8-33 ; 18:3Q ; KINKO'S-, 

WmsEo PROBtmm 

Several collpoll mlscsular biology phenomena vi11 be presented 
for reaappiaq t o  the nihast-Xn-Timo Infomt ion  Forwarding 
Modal-" EopefUlly, frank asasarrnsnt and rrPssussm=t of ideas  
wf11 result. :*) 

101 R.B. Tamarin, **Principles of GeaoticsP, m s  Publishers, 

11) C.0. Wail aad 8 . R .  lfesahr, ?the Effsuta o f  Plant 

Boston, 2986 

Transposable l ! ~ ~ n t  Ina8rtion ofl Transcription Xnitiathn 
and RBXA PrOCessillQes, Ban. iiev. of Plant Phyalol, Pl-t 
Mol. B i o .  41~527-52 1990. 

fa ]  C.EI Shwmon, **AMathslllcrtforl 'Jpbtlory of comPrunicationvv, 

[33 e.$. Shannaa, NCopownicration in the Prerencr of afaiseo*, 

SYS. 'Ped&. J. 27Z379-433.623-656 1948 

PXOG- Inst. of Radio Bngheerr 37~10-21 1949 

I I 

mc. 1. 
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Towards DNA Sequencing by Hybridization 

Pauel A. Peuzner 

Departments of Computer Science 
The Pennsylvania State University 

University Park, PA 16802 

In view of the limitations of current DNA sequencing technology, it would 
be advantageous to have a method for sequencing DNA that (1) does not require 
gel electrophoretic separation, (2) provides the sequence of a very long DNA 
fragments in a single experiment, ( 3 )  is amenable to automation. 

Sequencing by Hybridization (SBH) is a challenging alternative to the 
classical DNA sequencing methods. The basic approach is to build an array 
(Sequencing Chip) of short oligonucleotides, to use hybridization for finding 
oligonucleotide content of an unknown DNA fragment and to 
original fragment by a combinatorial algorithm. Three major breakthroughs in 
SBH have reported recently; Southern et al. built the first sequencing chip, 
Drmanac et al. read the first 100 bp by SBH, Fodor et al. developed 
photolithographic technique for building sequencing chips with millions of 
oligonucleotides. It is becoming clear that SBH is a challenging approach and 
may be the most promising alternative sequencing method and that large-scale 
SBH projects are about to be launched. Even today a chip for sequencing 
hundreds to thousands of nucleotides might cost from a few dollars to tens of 
dollars when made by mass production. 

reconstruct the 

The implementation of SBH requires the application of biochemistry, 
computer science and high technology. Recent studies indicate that the 
original SBH chip C(8) containing all 65,536 octanucleotides is insufficient 
for sequencing long DNA fragments. In particular, Pevzner demonstrated that 
even in the case of an ideal SBH experiment (no hybridization errors) one 
can hope to reconstitute a 200 nucleotide long sequence only in 94 out of 100 
cases. This discouraging result indicates that additional joint efforts by 
biologists and computer scientists are required to make SBH practical. 
Sometimes biologists can not estimate the computer science limitations of the 
proposed SBH experiments. On the other hand computer scientists frequently 
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cannot anticipate what information useful for DNA sequence reconstruction can 
be obtained by modern biochemical techniques. We are trying to narrow this gap 
by presenting the links between the biochemical, computer science and 

technological aspects of SBH. 

We also consider the problem of designing high-resolution chips for SBH. 
Recently Pevzner et a1.,1991 demonstrated that the classical C ( k )  sequencing 
chips containing all k-tuples are very redundant and therefore inefficient. I 
present a new chip design which allows significant chip miniaturization 
without reducing their resolving power. This is a joint work with Robert 
Lipshutz. 
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ON THE SCHRODINGER QUESTION 

Robert Rosen 

Dept. of Physiology & Biophysics 
Dalhousie University 

ABSTRACT 

Almost fifty years ago, the eminent physicist Erwin Schrodinger 
published a famous essay, entitled "What is Life?". We undertake a 
comprehensive re-evaluation of this basic question, both as SchrZidinger 
himself envisioned it, and in the light of a half-century of further 
experience since his time, not only in biology, but also in physics, in 
mathematics, and in the theory of systems. 

Today, Schrodinger's Essay has long since been embalmed as a classic 
embodiment of molecular-biological orthodoxy. We assert that, to the 
contrary, Schr6dinger's arguments were then, and remain today, highly 
heterodox; indeed, quite incompatible with the dogmas which have evolved 
since then. We will attempt to reformulate these original arguments, and 
compare them to the distorted and truncated versions which have survived 
in the molecular biology of today. 

We start from Schrodinger's original question, "What is Life?". To 
what extent is this even a legitimate scientific question? That is: to 
what extent can "life", the subject-matter of biology, be considered a 
t h i n g ;  a legitimate object of scientific scrutiny in itself? If so, 
what kind of "thing" is it? Schradinger clearly thought it was a thing 
in itself; not just a qualifying adjective for other things, Today's 
molecular biology would consider the question itself nonsensical. 

Besides simply taking this question seriously, Schrodinger repeatedly 

insisted in his essay that, in his words, "new physics" was required to 
address it properly. On the other hand, people like Jacques Monod, 
writing decades later, denounced any such suggestion as "vitalism", and 
as incompatible with the "objectivity" of science itself. 

Schrodinger's essay seems to devolve around an earlier argument of 
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his colleague Max Delbruck, which asserts that the "Mendelian gene", 
recognized and characterized in terms of phenotypic effects, had to be a 

molecule. Under this camouflage, Schrijdinger actually concerned himself 
more with a converse question: when could a molecule be a Mendelian 
gene? The ramifications of this converse question were what led to the 
conviction that %ew physics" was essential; at the same time, they led 
to the most familiar, yet the most thoroughly misunderstood parts of the 

Essay: the "aperiodic solid", the idea of a cryptographic relation 
between genotype and phenotype, and the idea of "feeding on order 
(negentropy)". 

In modern terminology, Schrodinger is asking us to contemplate the 
stability of genomically forced, thermodynamically open material 
systems. Beyond a few vague mathematical hints, and a few heuristic 
physical rules of thumb, no part of the program Schrodinger was hinting 
at has even been approached. None of this program is addressed at all by 
the reductionistic character of modern molecular biology, nor have they 
yet been approached from conventional physical directions; indeed, it 
turns out that the preferred starting-point of conventional physics, the 
closed system, is so degenerate (structurally unstable) that how you 
open it is an infinitely more important determinant of how it will 
behave than what it is like when closed. 

Schrodinger concluded his Essay by completely discounting the 
"machine analogies", going back to Descartes and before, which seemed to 
provide the backbone for any strategy to relate biology and physics. On 
the other hand, these analogies are precisely what have been retained in 
today's molecular biology; they comprise whatever vision and philosophy 
it has. Yet the very deficiencies of these machine metaphors go a very 
long way in specifying the shape of the vision Schrodinger was actually 
advocating . 
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Biopolymer Sequences and Structures 

Peter Schuster 
Institut fur Molekulare 3iotechnologie 

Jena 

Germany 

Properties and functions of biopolymers are considered as being the result 
of two classes of mappings. The first class consists of maps which assign a 
(three-dimensional) structure to every sequence. They are tantamount to 
mappings from genotypes into phenotypes. The second class of mappings deal 
with relations between structures and functions as expressed by free energies, 
activation energies, or  other scalar quantities. They map structures into the 
real numbers. A landscape is understood as a combination of one map of each of 
the two classes. We thus have, for example, free energy landscapes, activation 
energy landscapes, fitness landscapes, etc. 

RNA secondary structures are chosen as an example because only in this case 
we have sufficiently fast folding algorithms at hand which allow to handle 
millions of sequences and structures. The relation between RNA sequences and 
structures is considered as a mapping from one metric space of sequences into 
another metric space of secondary structures, called shape space. In sequence 
space the Hamming metric is used. An appropriate metric in shape space is 
obtained by tree editing. The secondary structures are converted into 
equivalent trees for that purpose. Several properties of RNA shape space will 
be discussed. In particular three major results are presented: 
(1) we have many more sequences than structures, 
(2) sequences folding into the same structure are randomly distributed in 
sequence space, and 
( 3 )  any random sequence is sourrounded by a ball in sequence space which 
contains sequences folding into all common structures. 
The radius in Hamming distance of this ball is much smaller than the 
chain lengths of the sequences. 

The meaning of these results for biological evolution and evolutionary 
biotechnology is discussed. Possible generalizations to real three dimensional 
structures of RNA molecules and to protein structures will be considered. 
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Euolution on Fitness landscapes 

Peter F. Stadler 

Institut fur Theoretische Chemie der Universitat Wien 
Wahringer Strasse 1 7  

A-1090 Vienna 
Austria 

Evolution can be viewed as an adaptation process on a 'fitness' landscapes 
(at least in some systems). The dynamics of evolution are hence tightly linked 
to the structure of the underlying landscape. Global features of landscapes 
can be described by statistical measures like number of optima, lengths of 
walks, and correlation functions. 

Statistical characteristics of RNA landscapes are accessible on the level 
of secondary structures. It turns out that RNA landscapes belong to the same 
class as well known optimization problems and simple spin glass models. 

The evolution of a quasispecies on such landscapes exhibits three dynamical 
regimes depending on the replication fidelity: Above the localization 
threshold the population is centered around a (local) optimum, between 
localization and "dispersion threshold" the population is still centered * 

around a consensus sequence, which, however, is non constant in time. For very 
large mutation rate the population spreads gas-like in sequence space. 
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ABSTRACT for "Open Problems in Computational Molecular Biology" 
Telluride, July 1993. 

N O N A L I G N A B I L I T Y  A N D  NONCOMPACTNESS 
M O D E L S  A N D  REALITY OF L O W - C O M P L E X I T Y  P R O T E I N  SEGMENTS 

JOHN C. WOOTTON 
National Center for Biotechnology Information, Building 38A, Room 
8N805, National Library of Medicine, National Institutes of Health, 
Bethesda, MD 20894, U.S.A. E-mail: wootton@ncbi.nlm.nih.gov 

Introduction 
How much of amino acid sequence space is represented in natural proteins? 
Global computational analyses of sequence databases have recently shown 
surprising biases. 
least one segment of low compositional complexity, consisting predominantly of 
one or a few amino acids, and such strongly biassed, interspersed segments 
comprise 15% of the residues in the database (Wootton &I Federhen, 1993). 
Conserved sequence families, of the type common to a wide range of organisms 
and familiar since the 1950s from sequence alignments, may number fewer than 
1000 according to some estimated extrapolations (Green et al., 1993), and such 
conserved domains and motifs may eventually account for less than half of the 
residues in natural proteins. Moreover, from a rapidly growing number of cases 
of random cDNA or genomic coding DNA sequenced without regard for function, 
deduced amino acid sequences show a non-random excess of long "medium- 
complexity" sequences in addition to the near-homopolymeric low-complexity 
segments. 

More than half of deduced protein sequences contain at 

Taken together, these analyses reveal a disturbing level of ignorance about 
protein structure, dynamics, interactions and evolution. The wealth of 
knowledge of relatively compact globular proteins, as derived in atomic detail 
from crystal and NMR structures, and as also represented by numerous 
alignments of conserved domains or motifs from multiple sequences, may provide 
a paradigm for understanding as little as half of natural amino acid sequences 
or  subsequences. 
inferred from the limited evidence available, generally evolve rapidly, rarely 
have unique conformations and show more flexibility in conformational dynamics 
and interactions with other macromolecules and solvent. New models will be 

Low and medium-complexity segments, as far as can be 
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explored in this report for conceptualizing the physical properties of such 
"non-globular" sequences, and methods will be evaluated for their utility in 
analyzing and organizing the copious mass of low-complexity amino acid 

sequence data now available. 

Nonalignabilitp 
The great majority of low-complexity sequences can not be sensibly aligned by 
conventional sequence comparison methods based on residue position. Their 
heterogeneous mixture of compositional biases confounds the statistical basis 
of most sequence alignment algorithms. More fundamentally, traces of 
mutational pathways of evolutionary descent are lost through insertions, 
deletions, substitutions and sequence repeats, except in comparisons of 
equivalent sequences in close organisms. Even corresponding low-complexity 
sequences from distant species, which are evidently similar in function and 
location, do not generally align in a unique manner by residue position. 
Mutational dynamics involving DNA replication slippage and repeat expansion 
may generate similar simple sequences de novo. 

These properties have prompted an analysis of the premises of multiple 
sequence alignment methodology. Such alignments have relevant fundamental 
limitations when considered as representations (or "observations") of unknown 
common folds of residue chains. Some issues arise from discrete sybolization 
of a spatial continuum and arbitrariness of gaps. 
are transformed into numerical models, additional problems arise from the 
data-dependence of the generalizability of the models, from effects of fixed 
dimensionality, and from the paucity of reliable independent evaluation 
criteria. 

When multiple alignments 

Classification of low-complexity amino acid sequences, and the possible 
detection of any recurrences of very subtle compositional or sequential 
patterns, may be based on unaligned sequences in the absence of prior 
knowledge of significant subsequences. Different pseudometrics have been 
evaluated for their ability to neighbor these segments by single and k-word 
composition, together with residue correlations within segments and 
definitions of local compositional complexity. 

Figure 1 illustrates the results of one of these methods used to search the 
Swissprot database. The query sequence is a methionine-proline-glycine rich 
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segment of a type occurring in some small nuclear ribonucleoproteins and heat 
shock protein 70. 
this class of sequence, which is unusually conserved in subsequence 
characteristics in the above proteins, is an important epitope in some 
autoimmune diseases, but is of unknown structure, dynamics and interactions. 
This search reveals that segments of the same compositional properties also 
occur in many other DNA binding and developmental control proteins from a wide 
range of organisms. 
comprehensive classification of the low-complexity sequences of the database. 
This process is complementary to the neighboring by Blast MSP scores, as used 
for the NCBI Entre2 datasets, for which purpose the low-complexity sequences 
are filtered from the database prior to Blast neighboring. 

The complete list contains approximately 100 examples of 

Such methods may be extended to give a relatively 

One limitation arises in the question of what constitutes a class or family of 
low-complexity sequences. In many cases, in the absence of direct evidence 
for structure or dynamics, this has to be decided using purely statistical 
criteria. Relatively indirect empirical evidence is available in some cases 
from mutational effects or the location of segments in relation to conserved 
globular domains. Such cases, together with regularities that emerge from the 
unbiased classification of the segments, give a few general insights into the 
nature of sequence variation in functionally significant low-complexity 
sequences. 

loncorpactness 
To what extent do simple amino acid sequences imply noncompact, nonunique, 
flexibly dynamic 3-dimensional structures? 
using some simplified physical models and a comparison of different 
definitions of conformational entropy and structural complexity. 
give some insights into the sequence requirements for compact collapsed 
structures and also into the nature of molecular assemblies that exhibit 
larger-scale emergent "informed" thermal and dynamic properties. 

This question has been explored 

The results 
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3 rtSMB-I3uMAN 
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16.12 
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........................................................................... 
Figure 1. Neighboring a low-complexity amino acid sequence. The list shows 
the few nearest neighbors, amongst the low-complexity sequences of the 
Swissprot database, to the query sequence, which is a methionine-proline- 
glycine-rich subsequence of the human U1 SnRNP-associated protein. The hits 
are ranked in order of distance, as measured by an algorithm based on the 
pairwise residue covariances observed in the low-complexity subset of 
Swissprot. 
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