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ABSTRACT 1:

PREDICTION OF PROTEIN FOLDING PATHIDAYS

Recent nuclear magnetic resonance (n.m.r.) hydrogen exchange experiments on
five different proteins have delineated the secondary structures formed in
trapped, partially folded intermediates. The early forming structural elements
are iden-tifiable with a method devised to predict folding pathways. The
technique that the sequential selection of structural fragments such as
alpha-helices and beta-strands involved in the folding process is founded upon
the maximal burial of solvent accessible surface from both the formation of
internal structure and substructure association. The substructural elements
are defined objectively by major changes in main-chain direction. The
predicted folding pathways are in complete correspondence with the n.m.r.
results in that the formed structural fragments found in the folding
intermediates are those predicted earliest in the pathways. The technigue has
also been applied to proteins of known tertiary structure and with fold
similar to one of the five proteins examined by n.m.r. observatioms,
suggesting conservation of a secondary structural framework or molten globule

about which folding nucleates
ABSTRACT 2:

A NEIU METHOD TGO CONFIGURE PROTEIN SIDE-CHRINS IN HOMOLOGY
MODELLING

Protein homology modelling typically involves the prediction of side-~chain
conformations in the modelled protein while assuming a main-chain trace
taken from a known tertiary structure of a protein with homologous segquence.
It is generally believed that the need to examine all possible combinations of
side~chain confirmations poses the major obstacle to accurate homology




modelling. Methods proposed heretofore use only discrete or limited searches
of the side-chain torsion angle space to mitigate the combinatorial problem
and also rely on simplified energy functions for computational speed. The
configurational constraints are typically based upon use of freguently
observed torsion angles, fixed steps in torsion angles, or oligopeptide
segments taken from tertiary structural databanks that are similar in seguence
and conformation with the target structure. A more fundamental approach has
been explored for several protein structures and it is demonstrated that the
combinatorial barrier in side-chain placement hardly exists. Each side-group
can be configured individually in the environment of only the backbone atoms
using a systematic search procedure combined with extensive local energy
minimization. Tests, using the main-chain or both the main-chain and remaining
side-chain atoms to calculate low energy geometries for each residue,
establish the dominance of the main-chain contribution. The final structure is
achieved by combining the individually placed side-chains followed by a full
energy refinement of the structure. The prediction accuracy of this approach

has been compared to other automated procedures.




Surface Contraction and Expansion Waves Correlated with Differentiation
in Axolotl Embryos. ,
I11. The Shape of the Fate Map
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Extended RAbstract

Why do some types of cancer cells occur when a cellular switch is somehow
inappropriately stuck? If you cut off a salamander's leg, it simply grows a new
leg. How does it do this? Why don't our own cells retain this ability? Why should
géne expression in a cell culture sometimes change with generation number? We
think that the answer to each of these questions might be found in a complete
understanding of normal embryonic development. If we could explain precisely how a
single egg can become a multicellular organism we could then use this knowledge to
understand many other related cellular processes.

The discipline of embryology has hitherto been to a large degree unsuccessful
in achieving this understanding. Embryologists still cannot explain how a cell
"knows" that it is to become a certain type of cell at a certain time and in a
certain place. We have recently made a discovery that may provide the long missing
spatial component of embryological explanation, and turn this situation around.

Imagine yourself as a cell in a urodele (salamander) blastula just prior to the
midblastula transition. At this point you are one cell in a hollow ball of cells
that up until now has been functioning exclusively using the mRNA left for you
from maternal sources. If you are on the bottom of the ball (gravitationélly
speaking) you have more yolk. If you are on the top you have more pigment. But
other than that there is very little difference between you and all your sister
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cells in the hollow ball. If you are moved from one end of the ball to the other
you won't "mind”, you'll just carry on in that spot participating as if you had
always been there. (This makes you part of a "regulating" embryo.)

Gradually over the next few hours you will begin synthesizing your own set of

- mMRNA. You will begin to somehow "sense" where you are relative to the other cells
in the hollow ball. By the time gastrulation begins, you will have already figured
out your relative position enough to have become one of three basic embryonic cell
types: endoderm, mesoderm, or ectoderm. If you have become endoderm or mesoderm
you will move into the interior of the embryo during the next developmental stage,
gastrulation. By the end of gastrulation you will have become either part of a
strictly nutritive endoderm, or the endoderm portion that will form the innermost
organs. If you are mesoderm you will have determined that you should become either
somitic, lateral, notochordal or germ cell line mesoderm. If you are ectoderm, you
will have "made the choice" of whether to become neural plate or epidermis.
Whatever your position, you will be producing the appropriate mRNA for cells in
that position.

If you are in the ectoderm you will stay on the outside for now. If you are on
the top hemisphere you will participate in the formation of the future nervous
system. If you find yourself the bottom surface, you will form epidermis. If you
are roughly in the middle you will become part of the special sense plate
eventually forming the sense organs. Of course, if you were neural ectoderm during
gastrulation but subsequently found yourself on the interior of the embryo due to
neurulation movements, you will somehow know you should change your ways
completely and begin forming all the cell types required in the tail. You'll do
that even though it may mean (seemingly) reverting back to mesoderm and starting

over again to make the inside of the tail.

As a cell you must have some way of keeping track of what your location is now
and what it has been. Somehow this three dimensional data must be translated into
a form, presumably using repressors, enhancers, methylation, etc., that your one
dimensional linear DNA can both record and respond to. Your data storage and
retrieval system is so consistent that even while you were a cell in the blastula
stage, an embryologist can know what you will become simply by checking your
location on a "fate map"”. Your original location on the hollow ball has been
marked with a vital dye and tracked. In this way, all the important tissue types
of the embryo can be shown to have originated in the surface cells of the
blastula. How you know where you are, what the "developmental time" is, and what
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you do next, is a secret you've been keeping from embryologists for about 150
years now. How do you do it? Why do you follow a peculiar path over the surface of
the embryo described by the strange shape of the fate map?

Now let's go back to the embryologist studying this problem. How much can be
explained? There are guite a few things known for certain. Throughout the earliest
stages of development, cells experience a special time when they are "competent”
to sense their location in the embryo. This "competence" is transitory. If the
message, the "induction”, comes before they are competent, the cells can't
respond. But while they are competent they can be induced by everything from
boiled Guinea pig's liver to activin. Similarly, once a cell is set on a
particular pathway to a certain final cell type, it is usually impossible to
change it to follow a new path. Obviously understanding the nature of "competence”
and the signalling system of "inductions” cells respond to, would explain a lot
about how cells do what they do.

But a specific chemical inducer has never been found in spite of three
generations of long and intense investigations. Rather, a bewildering assortment
of both artificial and natural inducers of ectoderm into neural tissue is known to
exist. In fact, the eminent embryologist Dr. Pieter Nieuwkocop has been heard to
state:

"Anything you can find in your kitchen garbage will probably induce ectoderm.”

In despair, the embryological community largely gave up on explaining primary
neural induction of ectoderm and turned their efforts to other tissues (especially
mesoderm) instead. Sadly for the chemical inducer proponents, mesoderm also has a
rapidly growing list of possible inducers.

Beth Burnside (1971, 1973), using transmission electron microscopy, found that
in the apical end of each ectoderm cell there is a cytoskeletal apparatus. It
consists of a microfilament ring with microtubules lying in a mat coplanar to the
ring. In our own laboratory we have confirmed her result and also found that
immediately below the microfilament ring is an intermediate filament ring.

We have also discovered a number of surface contraction and expansion waves
that appear to correlate with each of the steps of differentiation in the
amphibian embryo, (Gordon, Bjorklund, & Nieuwkoop, 1994). The waves are known to
occur in the urodele embryo the axolotl, Ambystoma mexicanum, Gordon & Brodland
(1989) and the fruit fly, Drosophila. (Poodry, Hall & Suzuki, 1973; Suzuki, 1974;
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Ready, Hanson & Benzer, 1976). The waves themselves propagate from one cell to the
next as a visible contraction or expansion of the apical surface of each cell. The
cells involved in a contraction wave remain contracted for about ten minutes and
then they relax. The relaxation probably occurs because the intermediate filament
ring provides an elastic component to the cell (Brodland & Gordon, 1990). The
cells involved in an expansion wave appear to simply expand and remain expanded.

The waves are paired. A single early tissue type will eventually differentiate
into two daughter types each with it's own wave. For example, the portion of the
ectoderm that experiences a contraction wave becomes neural tissue. The portion
that experiences an expansion wave becomes epidermis. We now know that each of the
final tissue types that is known to exist by the end of gastrulation experiences a
unique sequence of expansion and contraction waves. By tracking the fate map as it
invaginates, we can show how the fate map's peculiar shape is directly correlated
to the sequence of contraction and expansion waves we have discovered.

In Gordon & Brodland (1987) it was postulated that the microfilament ring and
the microtubule mat in the apical end of each competent ectoderm cell is in a
state of balanced mechanical equilibrium. When the pharyngeal endoderm touches the
ectoderm, the force on these ectoderm cells due to the internal pressure of the
hollow ball is reduced. The reduction in the outward force gives a mechanical
advantage to the microfilament ring. The cell contracts. It tugs on the adjacent
cell and, like the stretch activated contraction of smooth muscle, the adjacent
cell contracts in response. The mechanical signal to contract is then passed
through the upper portion of the ectoderm as a self-propagating signal. On the
other side the microtubules get a mechanical advantage. This sets off a wave of
expansion. We do not know yet why the waves propagate over one region of a tissue
type. We suspect that simple mechanically based restrictions will explain this.

For our proposed signalling system to work, cell state splitter construction is
matched by the preparation of two possible signals for triggering one of two gene
cascades. Once the cell contracts or expands a signal indicating the type of wave
is sent to the nucleus. The nucleus responds to the signal by initiating one of
the two possible gene cascades. The end of the gene cascade includes the resetting
of the mechanical instability (competence) by the construction of a new cell state
splitter, two new signalling systems, and two new gene cascades. The cell waits
for the next wave to come along, participates in it, and propagates it. .

In this model, a cell does not "know" where it is. What it records (in some
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manner yet to be determined) is the sequence of contraction and expansion waves it
has experienced. One prediction is that all cells that have experienced the same
sequence of waves are develophentally equivalent. This contrasts with the concept
of "positional information", in which each cell knows where it is by some
mechanism or other, and uses a "lookup table" to determine what to do next.

The nature of the signal between the contracting or expanding cell state
splitter and the subsequent gene cascade has been postulated in Bjorklund & Gordon
(1993). Because of the many studies done on the nature of competence and induction
there is a huge body of literature on what happens to cells that are induced to
become neural tissue from ectoderm. For example, it is known that these cells
experience a protein kinase C translocation followed by a rise in cAMP levels. The
PRC translocation is prolonged, lasting about ten minutes. Further, different
isozymes of PKC are known to occur at different stages of development in different
tissues. On the basis of this we suggest that there is a calcium wave propagated
from cell to cell causing both the microfilament ring contraction and the PKRC
translocation. We envisage two master genes prepared to respond to a signal
generated from the PRC translocation. One master gene is triggered and it sets off
a gene cascade appropriate to neural tissue. The other master gene would require a
different signal to be triggered. Excellent candidates for generating the signal
are the microtubule associated proteins. If the microtubules are suddenly greatly
expanded in an expansion wave the number of MAPs that bind to these microtubules
would also be suddenly increased. Their activity could then trigger a gene cascade

appropriate to epidermal tissue.

In our presentation we will show our computer generated time lapse images of
contraction and expansion waves. We will show the results of our laboratory's EM
work on the cell state splitter. We will explain how the peculiar shape of the
urodele fate map can be explained by the succession of waves. We will present a
differentiation tree showing the sequence of expansions and contractions that each
tissue type present by the end of gastrulation has experienced. We will introduce
our ideas for the signalling system between the physical waves we see and the gene
cascades the nucleus responds with. Finally we hope to discuss the implications of
the waves to other specialties including molecular biology, embryology, and

evolution.
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Deriving Non-Homogeneous Markou Chain Models from the Multiple
Alignment with the Entropy Criteria.

Mark Borodousky,
School of Biology
Georgia Institute of Technology
Atlanta, GA 30332-0230

Many biologically significant regions of the DNA (and protein) sequences do
not reveal any consensus~-like pattern which would be determined by the
traditional multiple alignment algorithm based on matching scores. The
important example of that kind would be the DNA protein-coding regions for
which the attempt of the multiple alignment might be successful only in the
case of collecting a narrow group of closely related genes.

The general idea to perform multiple alignment for several randomly chosen

gene sequences looks unreasonable. Nonetheless, when it is placed into a bit
different context this idea leads to the extracting a non-homogeneous Markov
chain model of the protein-coding sequence. This model might be considered as
a generalization of the consensus or pfofile—like model of the DNA functional

region.

We suggest a multiple alignment method for deriving the parameters of the
non-homogeneous Markov chain model from the sample of sequences which are
suspected to share common compositional pattern and which can be described by
virtue of that model. Usually such a pattern might be expécted if there is an
a priori known phasing of the biologically active DNA (iike triplet genetic
code), positioning around the firmly established single point (like origin of

replication or transcription) and soon.

The main step of the method's algorithm is the Shannon entropy calculation
procedure which is applied to each one column in the multiple alignment "box"
which width is chosen usually bigger than the length of the expected pattern.
The column entropy value is a function of the frequencies of oligonucleotides
associated with the given column (gaps are not allowed). The entropy alignment
criteria (for the whole "box") is obtained by summing the column entropy
values up. This entropy total is storing, sequences are shifting according to
a certain (random or deterministic) rule and the new calculation of the
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entropy criteria follows until the minimum value is achieved. The final

configuration of the multiple alignment is the one which is used for the
definition of the non-homogeneous Markov chain mcdel parameters (transition

probabilities).

The results obtained currently for the set of sequences generated by various
types of Markov chain generators show that the method allows to align
sequences in the "box" and extract the hidden phase from the set of DNA
fragments which were randomly shifted in the beginning. In the case of real
protein-coding seqguences the method gives the result which clearly indicates
the triplet phase and allows to extract the non-homogeneous Markov chain model
which has already been used for the purpose of gene prediction in the GENMARK
algorithm (1-3). Some other sets of nucleotide and protein sequences are now -

under consideration.

There is one remarkable property of the entropy minimization based multiple
alignment. The final alignment configuration leads to such a Markov chain
model which defines the maximum value of the likelihood that sequences (in the
box) would appear as an output of the generator defined by this model. This
maximum value is determined in comparison with the values obtained from the
similar model extracting from any

other intermediate alignment configuration.

1. Borodovsky M., and McIninch J. (1993) Computers & Chemistry, to appear.

2. Plunkett G. III, Burland, V., Daniels D.iL., and Blattner F.R. (1993)
Nucleic Acids Research, to appear.
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THE LIMITS TO REASON
What Science Can Know About Everyday Events

dJohn L. Casti

Technical University of Vienna
Vienna, Austria

AND

Santa Fe Institute
Santa Fe, NM 87501

The primary goal of science is to offer convincing answers to the question:
"“Why do we see what we do and not see something else?’’'. In confronting this
guestion, science is distinguished from its many competitors in the reality-
generation game by the particular sorts of methods and tools the scientist
employs. The *scientific* answer is a set of rules, i.e., an algorithm,
usually encoded as a mathematical model or computer program, with which one
can explain the observed phenomena and predict (sometimes) what will happen

next.

This talk explores the possible limitations of rule-based procedures for
reality generation. In particular, a number of processes from everyday life,
ranging from weather and climatic changes to stock market price fluctuations
and even to the outbreak of warfare, will be examined in an attempt to
determine the degree to which the science of today is in a position to give a
convincing set of rules for predicting and/or explaining such phenomena. The
lecture concludes with some general ideas centered around the Turing-Church
Thesis and the theorems of Goedel and Chaitin for why we can never expect to
achieve perfect prediction and explanation---scientific-style---of any natural
or human activity.
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Estimation of Protein Coding BDensity in a Corpus of DNA Sequence Data

James W. Fickett and Roderic Guigo

Theoretical Biology and Biophysics Group and
Center for Human Genome Studies
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

A number of experimental methods have been reported for estimating the number
of genes in a genome, or the closely related coding density of a genome,
defined as the fraction of base pairs in codons. Recently, DNA sequence data
representative of the genome as a whole have become available for several
organisms, making the problem of estimating coding density amenable to
sequence analytic methods. Estimates of coding density for a single genome
vary widely, so that methods with characterized error bounds have become
increasingly desirable. We will present a method to estimate the protein
coding density in a corpus of DNA sequence data, in which a "coding statistic”
is calculated for a large number of windows of the sequence under study, and
the distribution of the statistic is decomposed into two normal distributions,
assumed to be the distributions of the coding statistic in the coding and
noncoding fractions of the sequence windows. The accuracy of the method is
evaluated using known data and application is made to the yeast chromosome III
sequence and to C. Elegans cosmid sequences. It can also be applied to
fragmentary data, for.example a collection of short sequences determined in
the course of STS mapping.

INTRODUCTION

Fundamental knowledge about an organism includes an estimate of the number of
genes in its genome -- one measure of the overall complexity of the organism
-- and an estimate of the closely related coding density (defined as the
fraction of base pairs that are in codons). The latter is a basic aspect of
genome structure, related to the intriguing question of the prevalence of
*junk" or "selfish” DNA [Orgel and Crick, 1980]. An estimation of coding
density has important practical consequences as well, for example in deciding
whether more information will be gained by sequencing cDNAs or genomic DNA.
Current estimates of coding density for most eukaryotic organisms are given
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only in rather wide ranges. For example, Clark et al. [1988] estimate that
there are roughly 3500 essential genes in Caenorhabditis elegans, giving both
reasons to think this estimate may be too high as well as reasons that
indicate it may be minimal. Combined with the results of Park and Horvitz
[1986], which suggest that half of the genes in C. elegans may be inessential,
this gives an estimate of roughly 7000 genes. However Waterston et al. [1992]
estimate that the true number of genes in C. elegans may be closer to 15000.

Kaback, Angerer, and Davidson [1979] showed that roughly 50-60% of the yeast
‘genome is transcribed in roughly 5000 transcripts, under laboratory
conditions. (A transcript density of 50-60% corresponds to a coding density of
less than 50%, since an mRNA contains untranslated regions.) If all genes were
distributed uniformly over the genome, this estimate would give about 120
genes on chromosome III. However Yoshikawa and Isono [1990] found 156
transcripts from chromosome III, and Oliver et al. [1992], eguating genes with
open reading frames of length at least 100 amino acids on the chromosome III
sequence, find 182 genes, giving a coding density estimate of 67% and an
estimate of about 8000 genes in the whole organism.

The analyses of Waterston et al., Sulston et al. {1992], and Oliver et al.
were made possible because an important new source of data has recently become
available. Whereas most sequences in the current databases are from highly
expressed genes, sequence is now becoming available which is a much less
biased sample of the genome. In some cases this means a very long stretch of
DNA encompassing many genes, as in the case of the recent determination of
yeast chromosome III [Oliver et al. 1992}, in others it means a large number
of short seguences, randomly selected from the genome in the course of
determining STSs for genome mapping {Olson et al. 1989].

Current methods to determine coding density, both experimental and
computational, rely on counting genes. The experimental methods typically give
low estimates because, under the experimental conditions chosen, not all genes
are required or expressed. A major difficulty with the computational methods
applied to date is that current gene recognition methods have rather large,
and sometimes uncharacterized, error rates. Thus Oliver et al. simply count
open reading frames exceeding a certain size and the studies of Waterston et
al. and Sulston et al. depend on the gene recognition program Genefinder. In
neither case is it easy to evaluate the accuracy of the predicted number of
genes.
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We will present a method to estimate coding density in a corpus of seguence
data -- either long stretches of seguence data or a large number of short
sequences -- that does not rely on identifying genes. Indeed, it is possible
to define on windows of sequence a number of simple measures, or coding
‘statistics, which are indicative of protein coding function (reviewed in
[Fickett and Tung 1992}). And while such statistics have a large random
compcnent and a large variance when observed on individual windows, the
overall distribution of such a statistic, when observed on a large set of
windows, is closely correlated with global coding density (Fig. 1).

One simple approach to the problem considered here would be (1) to infer,
using seqguence data of known coding density from public databases, a model of
the relationship between coding density and an ensemble property of the coding
statistic distribution, as for example the linear regression shown in Fig. 1,
and (2) use such a model to predict the coding density of the new sequence
data under study. However, because the data in the public sequence databases
is a very biased sample of the genome, extrapolation from the database to the
genome may not be justifiable. ’

This problem may be surmountable, but here we pursue an alternative method
which does not rely on first establishing a model of the relationship between
coding density and a coding statistic in previcusly characterized sequences,
but rather depends exclusively on the distribution of the coding statistic on

the corpus of sequence data under study. In the method we will present, the

sequence data under study are first partitioned into a set of fixed-size
windows, and the chosen coding statistic is calculated on each. Then the
distribution of the statistic is decomposed into two normal distributions that
are assumed to correspond to the distribution of the statistic in the
noncoding and coding fractions of the seguence data.

Figure 1. Correlation between the mean of a coding statistic and the coding
density calculated from GenBank annotation. For each density d, d=0,..., 100,
a set of yeast 240 bp sequence windows was made by selecting windows at random
from a GenBank reference set with probabilities chosen to obtain an expected
overall percentage d of coding windows, and an expected set size of 315 kb.
Each such set is represented as a point in the figure, the abscissa giving the
average of the coding statistic (maximum of a codon usage discriminant
function over the six frames of the window) over the set, and the ordinate

giving the coding density computed from GenBank annotation
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We will first introduce the Max Codon Usage coding statistic, or MCU, for
which we have generally observed reascnably gaussian behavior. We will
describe in detail the method used to decompose the distribution of the coding
statistic, using the yeast genomic seguences from GenBank to explicitly
illustrate it. We will then evaluate the accuracy of the method in large sets
of characterized genomic sequences from five distantly related genomic
organisms, and describe two applications. In the first, the coding density of
yeast chromosome III is estimated by decomposing the distribution of the MCU
distribution. In the second, the coding density of a collection of sequenced
cosmids from C. Elegans is estimated. In this case, however, since we strongly
suspect that the MCU statistic does not have a normal distribution, the
estimate will be obtained by decomposing the distribution of a different
coding statistic. Finally, we will discuss the applicability of the method to

other genomes, and its limitations.
REFERENCES

Clark, D.V., Rogalski, R.M., Donati, L.M., and Baillie, D.L. (1988) Genetics,
119, 345-353.

Fickett, J.W. and Tung, C.-S. (1992) Nucl. Acids Res., 24, 6441-6450.

Raback, D.B., Angerer, L.M., and Davidson, N. (1979) Nucl. Acids Res., 6,
2499-2517.

Oliver S.G., et al. (1992) Nature, 357, 38-46.

Olson, M., Hood, L., Cantor, C., and Botstein, D. (1989) Science, 245, 1434-
1435.

Orgel and Crick (1980) Nature, 284, 604-607.

Park, E.-C. and Horvitz, H.R. (1986) Genetics, 113, 821-852.

Sulston, J., Dw, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R.,
Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L., Dear, S., Coulson, A.,

Craxton, M., Durbin, R., Berks, M., Metzstein, M., Hawkins, T., Ainscough, R.,
and Waterston, R. (1992) Nature, 356, 37-41.

15



Waterston, R., Martin, C., Craxton, M., Huynh, C., Coulson, A., Hillier, L.,
purbin, R., Green, P., Shownkeen, R., Halloran, N., Metzstein, M., Hawkins,
T., Wilson, R., Berks, M., Du, Z., Thomas, K., Thierry-Mieg, J., and Sulston,

J. (1992) Nature Genetics, 1, 114-123,

Yoshikawa, A., and Isono, K. (1990) Yeast, 6, 383-401.

Annotated Coding Density, Percent

100.0 T T . .
80.0 + Z
&
%
)4
&
&
60.0 + 6%
7
&60
6/3
b
40.0
sf
4
o/
20.0 960
o/ ©
i %gé’
[c]
0.0 1 . I : 1
1.6 1.8 2.0 2.2

Codon Usage Discriminant, Maximum of Six Frames

16




SCIENCE IS IN THE EVE OF THE BEHOLDER

Richard ). Hamming
Introduction

The title is an obvious variant of the standard remark that “Beauty is in
the eye of the beholder”, and clearly implies that I do not think there is a
single scientific method, but rather that there is only some degree of
agreement among various practitioners of science. How did I come to this view?
That is part of the talk, and by telling you stories about my experiences I
hope they will bring you to view the matter somewhat as I do.

There is a second reason for the talk. It was obvious to me from the start
that I could tell you little of use to you about your own field of
specialization. What I could do is emphasize the famous remark of Pasteur,

“Luck favors the prepared mind.”

The more years I have contemplated his remark; and examined the history of
science, the more I believe in it. Yes, the particular thing you do is to a
fair extent a matter of luck, but if you prepare yourself in many ways then it
is reasonable that a great success should strike you. The multiple successes
by the same person in the history of science are too many to believe much in
the *random luck theory”.

As you know beauty in a woman of the Ubangi tribe means very large,
distorted lips, around the year 1000 Japanese women blackened their teeth, and
currently American women paint their lips a brilliant red and often color
their finger nails vivid colors - all in the name of beauty. Thus the standard
of beauty, and by inference, of science, depends on the particular social
group you are a member of, as well as the particular age in which you live.
There is not a single scientific method practiced by all scientists, there is
only a vague culture in which you happen to operate. People from different
fields tend to cling to the standards of doing science that they were raised
on, and by inference try to impose them on others.

By the time half a dozen different teachers in school had told me about the

scientific method I noticed that they did not say the same things, rather they
differed a good deal. They all emphasized the importance of first getting
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measurements, data if you prefer, and then making the theories. As sSherlock
Holmes said, “One should not theorize before your data.” By the late high
school days, and more clearly in college, I realized that you had to have some
sort of theory to tell you what kinds of data to gather. But also that you had
to have some data before you could have any theory! Neither theory nor
practice could completely precede the other. It could not be a simple process!
Theory and experimental data must go hand in hand.

From a lifetime of watching, and asking people about what they were doing,
I have come to the realization that in my areas of expertise, mainly the so-
called hard sciences, there is a gradual process of having some sort of hunch,
gathering some data which may confirm it, making a more careful, and possibly
somewhat altered theory, followed by more data gathering, both more extensive
and often more careful measurements in the lab. This in turn generates more '
theory and more data gathering, perhaps widening or narrowing of the area of
application, the range of use, etc., until one has a decent theory of some
generality. ‘

Any theory you create should be followed by an active, careful search for
why your final theory might be wrong. This last stage is, in my opinion, an
essential part of doing science. Unfortunately in this day and age of rapid
publication this luxury is rarely indulged in - whoever publishes first, if
they are right, gets the credit and the careful, cautious person is left out
completely! And if they are wrong, in many areas this is soon forgotten, if
ever noticed at all! The idea of doing careful science is rapidly fading under

the pressure of publish or perish, to the detriment of science generally.
Gather the Data First

In the softer sciences people tend to start with volumes of data from which
they think they will extract a theory. To illustrate the extreme, suppose I
make random entries for 100 measurement of 20 variables. I now, as they do in
some areas, let the computer go to work and compute every one of the 190
correlation coefficients. With a high probability I will find one or more
significant correlations. But since the data was random one believes that
there is nothing there at all! That is what is wrong with this simple model of
science which says that you gather the data, search for a theory, and then
publish. Such science is apt to be ephemerall!
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In a conversation with Einstein after a talk he had given, Heisenberg
observed that he had followed the method Einstein had used when he had created
the special theory of relativity. Einstein laughed and replied, “I may have
used it but still it is nonsense.” He went on to explain, “Whether you can
observe a thing or not depends on the theory which you use. It is the theory
which decides what can be observed.”

Let me illustrate this with an examble you all know. Newton had suggested
that light might consist of particles (he knew of course about Newton's
rings), and this became, ignoring Newton’s caution, the dominant theory of
light until the wave theory arose. In this new theory the raw facts were seen
differently. The edge no longer attracted the particles and caused the
diffraction pattern. Where once the particle on hitting the photographic plate
developed the grain of silver, now it was not clear how the wave got all its
energy to one place to apply it to the single grain of silver salt. Of course
at the moment we have in Quantum Mechanics a lovely combination of the two
theories, but they do not mix very well at all. As your professor of QM had to
say with regard to the two slit experiments (which Feynman insists is at the
bottom of QM), “I can’t explain it, you will get used to it.”

There are more arcane theory changes in which literally the facts changed
with the change of theory, but this is not the place to go into them. I
suspect that is you search your own knowledge of your field you will find
examples of where when you got a new theory the older facts seemed to change
radically. There is a lot of truth in Einstein’s remark that it is the theory
that determines the facts.

Ockham’s Razor

There are many criteria in science. For example Ockham’s razor which says,
in modern words, that you do not make unnecessary assumptions. You keep your
assumptions down to as few as possible. It sounds like a good rule, and it
ought to keep the danger of contradictory assumptions to the minimum.

In a graduate course in abstract algebra I noticed that most text books
gave three conditions for a group, but there was one book which gave only two.
The two conditions required a lot of hard preliminary proofs to show that they
implied the three assumptions usually given. Furthermore, the two assumptions
were so peculiar as to be hard to understand while the three were easily
understood. From that, (and there were a couple of other similar cases in
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abstract algebra), I came to the belief that it was the clarity in
understanding the aséumptions that took precedence over Ockham’s razor. But,
as we say in the military design of weapons field, I know of no exchange ratio
to tell me how much to give up of one for a gain in the other, nor can I

measure ease of understanding in an objective way.
Accuracy of the Theory

We often hear that the theory which gives a better fit to the existing data
is the better theory. But we all know that the theory Copernicus proposed did
not fit the data, as he used it, as well as the older Ptolemy predictions, yet
in time the Copernican theory displaced the theory of Ptolemy and is often
regarded as one of the significant steps forward in science.

It should be obvious that at the start of any new theory it cannot account
for as much as the older theory; for a long time Quantum Mechanics could not
explain as much as the classical theory, yet it has won out!

In the early days of a new theory we usually try applying it to all kinds
of gituations, and thus we gradually learn the limitations of the theory. A
lack of accuraéy in the early stages of a theory may mean only that we have
not learned the limitations of the theory, or it may mean that we have to
modify things a bit - which to do is not obvious at the time. And, of course,
it may mean that the theory should be abandoned, or maybe the data is bad!

Controlled Experiments

Another criterion of science one often hears is that you must be able to do
controlled experiments to be sure of what you are observing. Again this is
plausible, but Astronomy for most of its existence had absolutely no control-
of what it was observing; all that astronomers could do was to choose the time
and place of observation. There was no possibility of repeating exactly the
same experiment, or repeating with all but one factor the same. But most of us
will agree that Astronomy was the first of the sciences in spite of this
handicap. Hence controlled experiments cannot be an essential feature of
science.

In the current cosmological theories there is precious little checking with
facts, and in some of the theories the essential parts may never be testable!
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A Theory Must be Potentially Disprovable

Karl Popper has made this a popular criterion. He came to it apparently
because while he was studying psychoanalysis in Vienna he gave a psychoanalyst
a set of symptoms and got an explanation, another set of symptoms and another
~explanation - and suddenly, like the proverbial light bulb in the comic
strips, he realized that a theory that could explain any set of data could
explain nothing! A theory which can explain everything can explain nothing. If
there is no conceivable set of data which would vitiate a theory then it is
not science, so Popper claims. Again, it is not bad criterion to keep in your
mind - what kind of data could prove you to be wrong - but it is not an
absolute standard to meet at all times.

Consider the history of gravity waves. The attempts to measure them has now
a long history of significantly more and more accurate measuring instruments
(of higher and higher cost) and has produced nothing. A few years ago I heard
of an experiment being done in Italy which is supposed to have 100 times or
more accuracy than any previous attempt, but I think they had better begin to
think about what they will do if once more they do not find anything
significant. What would they accept that there are no gravity waves? That
their theory could be wrong? Popper is looking over their shoulders! When you
keep looking for some effect and it keeps getting smaller and smaller and
harder and harder to detect, when do you decide that there is nothing there?
There is a classic paper on the dangers of working at the edge of
detectability.

A Theory Should not 1Involve Unmeasurable Phenomena

As you all know we once had a theory of an ether that filled all space and
was the medium through which light waves propagated. But it proved to be
unmeasurable by anything we could imagine, and we gradually, for most people,
abandoned it.

To what extent the ether is now back among us in a similar form through
which is propagated the low temperature background radiation left over from
the supposed “Big Bang” is difficult to say at the moment.

Maxwell, when he wrote his two famous papers on the kinetic theory of
gasses, had to assume molecules for which there was no possibility then of
seeing, measuring directly, or doing any other thing, to make them real; they
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were simply fictitious entities to explain other observations. Yet, the
success of his theory brought us to believe in molecules, though the hard
boiled pedple who believed only in measurable things resisted into the 20th
century! This attitude of considering only observables (through, of course,
suitable instruments), was popular in the Vienna circle of positivists, and in
fact Einstein in his early years believed in it, as did Heisenberg, but in
time both seemed to have abandoned this strong position of dealing only with
measurements and eschewing imaginary entities (see above story).

Fruitfulness

A valuable property of a theory is how much it suggests things to do that
you had not thought of earlier. A complete, closed theory is not much use; it
will not lead you to the future theory that is going to displace, in time, the
current one you are working with. I once asked Walter Brattain, of the
transistor Nobel Prize, why they had succeeded when others who working at the
same time on the same general idea failed. His simple answer was that they
succeeded because they had kept theory and practice (experiments) together,

. and when one side was stuck the other suggested thingé to do. It is not so
important to have the correct theory, or even exactly the correct
measurements, as it is to have a basis for further action when you get stuck.

As a partial example of the application of this considér the following
story. When Bell Tel Labs was finally successfully making the early point
transistors, and Shockley was starting on junction transistors, a V. P. is
reported to have said, “I will back the junction transistor over the point
transistor because the scientists think they can understand the junction
transistor.” He clearly expressed his faith in the relative fruitfulness of
the theory for the junction transistor.

Top Down vs. Bottom Up

One scientist I recently talked to about his style of doing science claimed
that he analyzed things carefully and tried to find the central problem, and
fitted other things around it. I observed that some scientists do exactly the
opposite, they start almost anywhere and mess around until they remove all the
difficulties and then have the result they want. In writing computer programs
the two extreme approaches are called “top down” and “bottom up”; in practice

most people use a combination of both methods - neither extreme is as good as
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a judicious mixture applied properly, and what you do may depend on the
particular situation you face at that time.

Unifying Power

A characteristic of important theories is that they unify what before were
seen as separate things - that they have breath of application rather than a
narrow, sort of ad hoc, structure. Consider the great unification that
Maxwell’s equations made! The breadth of application gives some “truth” from

each part.

Mathematics is, of course, the great example of this unification of
different phenomena via the same equations. I will discuss mathematics later.

Save the Phenomenon

There is a wide spread belief, especially among the philosophers of science
(who generally have never done real science), that all science is merely a
mnemonic for connecting various results in a framework so that they can be
retrieved easily. They maintain that there is absolutely no “truth” in any
theory. On their side is the obvious fact that all previous theories have been
rejected to make place for the present theories, and we can hardly suppose
that we have now reached the millennium of unchanging theories.

Against them is the simple fact that most scientists talk and act as if
they believed their current theories represented “reality”, perhaps not “exact
reality” but close to it. By believing that our theories represented “reality”
we have made much progress, and successfully predicted new, unknown effects.
If the theories were not representations of “reality” how does this happen so
often? But, again, we know in our hearts that our theories are doomed to be
replaced. The phenomena to be explained stays much the same but the theory may
change greatly.

For example in the Middle Ages the belief seems to have been that the
angels pushed the planets around the heavens. They seemed not to have
recognized inertia clearly so something had to keep the planets moving, (note
that it must have been a deadly monotonous job for the angeis). Later Newton
gave formulas describing how inertia kept them moving without any other
forces, and how gravity bent the trajectories into ellipses. In the theory of
General Relativity they claim that the mass “bends the space” to produce the
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observed trajectories. Three radically different theories, but pretty much the
same phenomena were explained by them.

There is not a unique theory

There is not a unigue theory to account for, or “explain” a set of data. In
QM we started with the Heisenberg Matrix Mechanics and the Schrddinger Wave
Mechanics, which, along with the later Group Theory approach, were shown to
be, in a limited sense, equivalent.

While supervising a Ph.D. thesis I acquired from another professor I found
that in his area of research, using mainly random inputs with selected power
spectra and measuring the outputs of the black box one éould determine an
internal structure, but that this structure was in no way unique! No possible
set of measurements of the kind being made, could ever distinguish between two
radically different insides of the black box. Similarly, from a set of data
you cannot hope to prove a unique theory is correct. As in QM there can be
multiple theories which agree on the measurements, but have different
theoretical foundations.

And you all know that while you may say carelessly that Euclidean and
analytic geometry are the same, in practice there is not a large amount of
overlap - we use each where it is most convenient, and would hesitate to prove
some results obtained by one method by the other method. For example,
Euclidean geometry proves the Pythagorean theorem, analytic geometry assumes
it!

Mathematics

There is a widespread belief that the more mathematics that there is in a
field the more “scientific” it is. This belief is usually based on the idea
that mathematics is absolutely certain knowledge. This is certainly what the
early Greeks believed. But Kline has written a book Mathematics: The Lost of

Certainty in which his aim is to show how we have passed from the Greek belief
to our present one that there is no “truth” in all of mathematics.

There are five different schools of the philosophy of mathematics: (1)

Platonism, where ideas are eternal and are the only truth; (2) Formalism,
where we abandon all meaning and merely manipulate symbols according to
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arbitrary rules, (when rigor enters meaning departs), (3) the Logical school
which attempts to show that all of mathematics is a branch of logic; (4) the
intuitionists who believe that in a field where we have a rising standard of
rigor there can be no final proofs, and at the bottom is human intuition not
logic; and (5) the constructivists who insist that things must be constructed
to show that they “exist”. But the constructivists take away so much of
mathematics as we use it that only a few computer people tend to like the
school. None of the schools has succeeded in winning the majority of people
who think about what mathematics is.

You have often heard things like: nothing is more sure than that 1 + 1 = 2,
yet I wrote a book in which the bulk of the arithmetic and algebra had the
rule 1 + 1 = 0. Of course you will say that the 1 in the two equations is not
the same thing, just as the points, lines and planes in Euclidean geometry and
non-euclidean geometry are not the same things.

At the end of the Middle Ages when people began to face the topic of forces
they found that the conventional, received from the past, arithmetic did not
work when adding forces, and they had to create a new kind of mathematics
called vectors. As just noted, to develop error correcting codes I had to use
arithmetic modulo 2 and abandon both standard arithmetic and the Pythagorean
distance.

Much of current mathematics is tainted with “the whole is the sum of the
parts” but it appears to me that in your field often the whole is more than
the sum of the parts, that the modern word “synergism” applies. This suggests
to me that you will in your turn have to invent the mathematics you need.
Sometimes, as was the case with Heisenberg, the mathematics of matrices had
already been developed, but I doubt that you will be so fortunate much of the
time. But I tell you from personal experience, once you are clear in your mind
as to what you are dealing with, then it is not hard to create the
corresponding mathematics. After all, according to an ex-department head of
mathematics at Bell Tel Labs,

Mathematics is nothing but clear thinking
Hence if you are going to think clearly you are going to be doing mathematics.

When I was considering accepting the invitation to give a talk, it was this
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point that caused me to accept. I hoped that I could get you to see that the
mathematics you were taught in school is not sacred, that it was not on the
stone tablets that Moses brought down from Mount Sinai, but that it is human
made to meet conditions that we face. The conditions in your field seem to me
to be sufficiently different from those of the past as to require you to
create new forms of mathematics.
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(1) Introduction

In protein multiple sequence alignments, positions conserved with regard to
amino acid type or property are often spotted by eye. In contrast,
relationships beiween palrs of positions (columns) in multiple sequence
alignments are best detected by other methods: the term covariance defines
one such rejationship, where variation as to amino-acid type in one column
is echoed by complementary change in amino acid type in the second
column. For instance, two columns in a protein family multiple alignment
may correspond to residues necessary for salt bridge formation: in such a
case, whenever the residue type in one column is positively charged the
corresponding residue in the second column will be negatively charged, and
vice versa.

If the two columns vary in such a manner for all proteins in the multiple
alignment and the pattern of covariation is sufficiently complex,

is this an indication of proximity of the two residues in the tertiary structure
of a member of the protein family? Previous attempts (1 ,2) to answer this
question have used exact pattern matching methods and further
Investigation using site-directed mutagenesis. These attempts have encoded
columns in a multiple alignment (JIIVVL) as numbers (111223) by assigning
sequential numbers to each amino-acid type. Columns which are assigned
the same number (SSSDDM = 111223) are considered correlated. However,
when a protein multiple sequence alignment is made up of two or more
subfamilies, this method lacks the ability to discern between pairs of
conserved columns which show variation between subfamilies and covarying
pairs of columns. Conserved pairs of columns with subfamily-specific
differences can often be found in the active site or core of the protein, and
are quite distinct from covarying positions. In addition, any method o detect
covariance between columns must be able to distinguish complementarity
between non-varying columns, which does not suggest association of the
columns, from covariance between columns which do vary: when one column
is conserved with respect to positive charge and another is conserved with
respect to negative charge, the two columns are not considered to exhibit
covariance, yet both are assigned equivalent patterns (namely 111.....1) by
the most simple pattern matching schemes. In this work, new methods for
detecting covariance which surmount these problems are presented.
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Consider the multiple alignment shown in fig.1. Each column in the alignment
is a mosaic of black, white and grey squares. Dashes represent indels, Each
square represents a residue in the alignment; black squares represent
residues with one characteristic, white squares represent residues with the
complementary characteristic. Grey squares represent residues which posess
neither characteristic. A simple scoring scheme was devised to score one
column (i) against another(j):

Here,
a = No. blacks in column(i) matched with whites in column(});
b = No, whites in column(i) matched with blacks in column(j);
¢ = No. blacks in column(i) matched with blacks in column(});
~ d = No.whites in column(l) matched with whites in columnngj).

Then .
score(l,j)=min((a-c),(b-d)) and score(),i)=min({b-c),(a-d)) (1)

Note score(i,j) does not necessarily eqﬁal score(j,i).
The minimization ensures that columns with approximately equal
numbers of blacks and whites score most highly if covarlance is found.

As we wish to establish a scoring system in which the score of two
columns 1s identical whether score(J,i) or score(l,j) is taken, we define
the funcuon

total_score(l,j) = score(l,j) + score(},i) (2)
Thus the best score for any particular column(l) in an alignment of
length N is given by
N
Best(i) = max total_score(i,j) (3)
J=1

When column(j) gives the best score for column(i} and column(i) gives
the best score for column(j), the relationship between column(i) and
column(j) is called reflexive. This is only necessarily the case for the
best score out of all columns. This is given by

N N
Max Max  total_score(i,j) (4)
fm=]1 j=1

A C program which obtains a list of the best X scoring column pairs
(reflexive or both reflexive and non-reflexive) given a MULTAL(3)
alignment is freely available on request from the authors.
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f .
Amino acid relatedness has been rep 3 a5 a metric distance matrix{4);

a regularized model of these reiationships has been captured in a three-
dimensional network of aminc-acids. The souring scheme presented above
(2.1) ¢ ders amino acid residues as bers of a particular amino-acid
set (specified in (5)), Inevitahly, some infurmation s Jost in encoding a
multiple alignment in terms of sets of physico-chemical properties. Taylor(6)
has detalled a method for finding covarying columns which incorporates the
network information, avoiding this loss. In this method, all covariance
involying residues a and b (at positions 1 in sequences m and n,respectively)
and residues ¢ and d ( at position § in sequences m and n) is identified as
fullows:

leenasetofvacmr:w}betwemmmonds}s,medegmaf
compensatory change between the amino acid pairs (a,d) and (c,b)

can be meastred directly from either pair of opposing edges,

such that

t{iymn) ~‘ab-cd} (3)

Thus changes in opposite directions on the “edges” (see fig.2) dominate,
An alternate formuiation gives more explicit weighting to the direction
of the vertical edge vectors through use of their dot product:

Vu(ljmn) =lablicdi - (ab.cd) (6}
Alternately, the horizontal edges can be used to give a score:

Nudijmn} = i acl bd1 - (cbd). n

Both horizontat and vertical edge scores are used to give an overull
score uflfmn), defined as

ulijmn) = Va(iimn) + bu(imn). (8)

For a given pair of columns in a multiple alignment, u(i/mn) 1s calculated for
all residues (4, b, ¢ <. In order to calculate the maximum sum of scores, the
sequences are divided into two groups by chuster analysis: where the two
groups are denoted A = {a],.......ap} and B = {D},......... bg}, with C = {c1,...ck}
representing unassigned sequences, the preference P of a sequence ¢ in C for
groups A (AP) and B (BP)s given by

P q
min  s(cpap+ 1 min  s{q,b)+1
te fm

Bp@) -
q P

max s(cpbp +1 min  s(c)ap)
fml

{ml

AP(j) = 9
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(2.2)An.amine acld network scoriag scheae.

The function s (in {9)) 1s the score u(ifmn). The maximum of AP and Bp (the
higher group preference) identifies the group to which cj is joined. Other
scoring schemes {6) based on y tical and di Ny simil
residues in a pair of columns have also been used in place of s.

(1 Resulis

Results obtained so far have used method(2.2} to analyse covariance.in
muldple align Aligno of p families were obtained using the
program MULTAL (3). Two controls were used to assess the statistical
significance of the mean separation for pairs chosen by the compensation
measure uffimn) : the first control 15 to compare the mean separation for
pairs chosen by the comp jon against the mean di over
all pairs. The second control is to compare against an equivalent mean
separation of pairs selected by the estimated packing-preference ,p (,§)-

This is given by
pljpi=citcf, (10}
where ¢ is a measure of conservation given the amino acid relatedness able

(M) by taking a mean over all palrs of aligned residues in a family of N
SEGUCNCEs!

2 N-1 N

I Zz MRIjRiK (1)
N2-N I=1 kafsrl

=

For the first control, i u(i/mn) selects cohunn pairs at random, then, over a
large number of trials, the mean pairwise dis of the ples should be
evenly distributed about the mean distance of all palrs: the overall mean can
be taken as a class divider, with the expected number of sample means

{alling above or below this value following the binomial distribution. Where
N column pairs are selected by the network scoring scheme, the chance of M

or more being selected is
N

PM=1-Z 2 ‘ (12)

M
For the 16 proteins that constitute the data set, atly measure that setecis 14
or more is uniikely to be a random process. There is 2 1/10 chance that 11

will be selacted, a 1/26 chance that 12 will be selected and a 17100 chance

that 13 will be selected,

The resuits for a test set of 16 multiple alignments {each of which contained
one protein sequence with a known three-dimensional structure) are shown
in table 1.
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Two methods have been presented for the analysis of covariance in protein
multiple sequence alignments: both methods avoid the shortco.mings of the
previous pattern matching method developed to analyse covariance. Results
are shown for the second of these methods, expected to be more discerning
as regards coordinated change in amino-acld columns.

Table 1 shows that while the mean beta-carbon distance for covarying
columns is almost always smaller than expected, conserved pairs (which do
not covary) provide a better estimate of amino-acid proximity than the
amino acid network scoring scheme, being significantly closer to one another
than covarying amino acld positions.Important explanations for the marginal
significance of the samples selected by the amino acid network scoring
scheme include (a) long range interactions between covarying column pairs,
(b) residual bias towards better conserved pairs among the compensated
pairs. These factors appear to be less problematic for the automated

search for Watson-Crick covariation used for the detection of secondary and

tertiary structure in RNA(7); here it is possible to pinpoint columns in
multiple alignments that covary with much greater efficiency, due to greater
constraints on ribonucleotide pairing. If such analysis could be brought to
bear on protein multiple sequence alignments, it could aid the prediction of
protein structure, providing specific constraints on fold topologies of the
polypeptide chain. For the present, the columns in a multiple alignment that
covary and are close to each other cannot be distinguished from those
columns that covary and are far from each other. Future work will aim to
enhance the distinction using information on protein secondary structure to
filter out the “noise” contributed by these columns. ‘
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Table 1 :Various sample sizes (N) of the best conserved (cn) and best
compensated (cr) palrs of residues were compared to the mean
pairwise distance over all pairs in each protein. The accumulated
differences in the means (A) are given in the columns headed
cn-cr, al-cr, al-cn, while the columns headed cn« al, cr< al, cr< ¢n
give the number of proteins in which one mean {is less than the

other,
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Figure 2 : In a multiple alignment of protein sequences, two positions i and j

are considered. in method 2.2, each pair of sequences m and n is
taken and the score uljmn is calculated.
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A METHOD TO RECOGNIZE DISTANT REPERTS IN PROTEIN SEQUENCES.
Jaap Heringa and Patrick Argos

European Molecular Biology Laboratory (EMBL)
Meyerhofstrasse 1
Postfach 10.2209
D-69012 Heidelberg
Germany

An automated algorithm is presented that delineates protein sequence
fragments which display similarity. The method incorporates a selection of a
number of non-overlapping local sequence alignments with the highest
similarity scores and a graph-theoretical approach to elucidate the consistent
start- and end-points of the fragments comprising one or more ensembles of
related subsequences. A multiple alignment of the resulting fragment
ensemble(s) is performed. Finally, a profile is constructed from the multiple
alignment to detect possible and more distant members within the sequence. The
method tolerates mutations in the repeats as well as insertions and deletions.
The sequence spans between the various repeats or repeat clusters may be of
different lengths. The technique will be shown using a number of proteins
where the repeating fragments are known based on information additional to the
protein sequences.
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Physical Mapping in the Presence of Errors: The Chimeric Clones
Problem

David S. Greenberg!, Sorin Istraill, and Michael Sipser!.2

(1) Sandia National Laboratories
Algorithms and Discrete Mathematics
Dept 1423
Albuguerque, NM 87185-5800

(2) Massachusetts Institute of Technology
Department of Mathematics
Cambridge, MA 02139

An important problem for the Human Genome Project is to develop robust
software technology for the physical mapping of chromosomes. The process of
creating a physical map is the divide/merge step in a divide-and-conquer
approach to sequencing DNA and related problems. One large segment of DNA is
reduced to several smaller pieces by physically breaking it apart. The
process of breaking into pieces does not preserve information about the order
of the pieces in the w hole and thus a combinatorial problem results to
reorder the pieces. Various experimental errors complicate the problem. A
major source of difficulty -- which seems to be inherent to the recombination
technology ~- is the presence of *chimeric* DNA clones. It is fairly common
for two disjoint DNA pieces to form a chimera, i.e., a fusion of two pieces
which appears as a single piece.

Attempts to order chimera will fail unless they are algorithmically divided
into their constituent pieces. In an editorial in the October 1992 issue of
Nature, Peter Little comments on the breakthrough of the first high
resolutions physical maps using the cloned DNA technology and the difficulties
associated with chimerism " At the risk of belittling a substantial
achievement, there are still some serious drawbacks to these YAC maps. Some
40% (chromosome 21) and not more than 50-60% (Y chromosome) of the YACs
contains artefactual hybrids of 21 or Y DNA with DNA from some other
chromosome. These chimeric clones are very problematic to work with -- how do
you know which piece of DNA comes from the correct genomic region 2" The
chimeric clone problem has received only passing attention in the literature
until now. In collaboration with Eric Lander of the Whitehead Institute we are
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devising strategies for tackling this problem based on the optimization of
several natural objective functions. Not too surprisingly, the computational
complexity of such optimizations turns ocut to be invariably NP-complete (i.e.,
very likely intractable). Indeed, connections between the physical mapping and
the Traveling Salesman Problem have been made repeatedly in the literature. To
overcome this apparent computational intractability we have developed several
algorithms including fast performance-guaranteed approximation algorithms.
Through probabilistic analysis and simulations on synthetic data we are
evaluating the performance of our algorithms. It turns our that one of our
optimization functions is extremely successful in identifying chimeric clones
and thereby allowing the creation of physical maps that relyably include
almost the entire biologically correét one.

A first evaluation of our software library devoted to physical mapping of
chimeric clones will be performed by researchers at the Whitehead Institute of
Biomedical Research, and at Los Alamos Genomic Research Center.

- — e s P > . . iy T S e g S B s S

(*) Supported in part by the U.S. Department of Energy under contract DE-
‘AC04-76 DP0O0789
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DETERMINATION OF ARCHITECTURAL ELEMENTS OF RNA STRUCTURE

Danielle A.M. Konings, and Robin R. Gutell

Department of Molecular, Cellular and Developmental Biology.
University of Colorado
Campus Box 234

RNA structure has been elucidated by a variety of computational and
experimental methods. Comparative sequence analysis, as one of these methods,
deduces a common secondary structure for RNAs belonging to a set of homologous
sequences through correlation analysis based on a multiple sequence alignment.
This method is responsible for the derivation of many higher-order structure
models including tRNAs and 168 and 23S rRNAs. Underlying the complex
architecture of these RNA structures is a repertoire of simpler structural
elements. An understanding of these simple structural elements is needed to
appreciate fully RNA structural and functional diversity. In addition, this
knowledge is essential to further improve the accuracy of predicting RNA
secondary structure from a single sequence based on thermodynamic or kinetic
based principles. Starting from these complex higher-order structures as
derived by comparative sequence analysis, we aim to identify their underlying
structural constraints which will consist of simpler structural (and
associated sequence) motifs. An example of such a structural motif are the
specific sequence constraints that are associated with hairpin 'tetraloops' in
IRNA.

Two research directives will be discussed that aim at increasing our
understanding of RNA structure:

1. Decipher RNA structural constraints.

The objective here is to identify structural constraints of complex
higher-order structures. Among others the analysis will be concerned with the
distribution of specific RNA structure motifs (analogous to the tetraloop
motif), position-specific motifs (e.g. protein binding motifs) and structural
motifs that interchange at specific positions. We have developed a
computational method that allows us to address these guestions. The basic

premise of comparative sequence analysis is that homologous sequence elements,
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as defined by the sequence alignment, form equivalent units in the higher
order structure of the RNA molecules. This principle allows us to utilize the
multiple sequence alignment of a set of RNAs in conjunction with the
secondary structure coordinates of a reference sequence to search for
structural motifs throughout the entire set of sequences.

To allow for a systematic collection of structural constraints our searches
for RNA structural elements are performed in a hierarchical manner: starting
with the identification of generalized structural features and then
progressively searching for more detailed and specific structural features.
Our initial searches address general structural constraints such as the base
composition of paired versus unpaired nucleotides, the distribution of base
pair and consecutive base pair types in general and those associated with the
closure of different loop types, and sequence constraints of loops according
to the loop type and length. In general, however, the interest in specific
searches evolves during the course of the analysis based on the specific
outcomes of the successive steps. Thus far we have performed the statistical
analysis on large'collections of sequences of tRNA and 5S, 16S and 23S rRNAs.
The analysis has revealed several structural features that are in agreement
with known biophysical data as well as a number of unreported structural
principles.

2. Evaluation of free-energies and rules for RNA structure calculation.

In parallel to the statistical analysis of sets of comparatively-derived
structures as described above, we have started to identify structural
elements that are presently poorly predicted by standard thermodynamic rules.
Here we compared and contrast thermodynamically calculated structures with
those identified by comparative sequence analysis. The elements identified by
this analysis can serve subsequently as focal points in our statistical
analyses or directly in the biophysical elucidation of improved folding
principles.

A preliminary analysis of 16S rRNA structures of different phylogenetic
groups in this way has revealed large differences in the predictive value of
their respective structures. Whereas the thermodynamic structure prediction
for eubacteria and archaebacteria is around 60% in terms of predicted base
pairs, this percentage is only around 30% for mitochondria and eukaryotes.
This imposes the question whether different phylogenetic classes of RNAs use
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distinct structural elements or folding principles (e.g. the relative
importance of proteins for stabilization) to generate their functional
higher~order structure. To further address this question, a detailed mapping
of the differences between the two types of structural models in terms of
their association with basic structural elements, such as long-range helical
elements, hairpinloops and multistemloops, will be performed.
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COMPUTATIONAL MOLECULAR BIOLOGY IN LOGICAL PERSPECTIVE

f.K. Kanopka

Particularly in Biology heuristic reasoning can be conclusive. Yet
bioclogists face the problem of not being able to specify all the rules applied
to derive conclusions. Nor are they able to list all assumptions on which
those rules ought to operate. It seems that these inabilities are a reflection
of the complexity of biological systems themselves. Bioldgical phenomena are
often represented by models that are still too complex to be described in a
communicable manner. Further and further modeling is required until our
observations can be conveyed in a linguistically comprehensive way. The
cascade of models gives us the advantage of creating “communicable reality”
but does not help us to judge the evidence pertinent to “real” (i.e., not
necessarily communicable) reality. To the contrary, the more advanced a model
in a cascade is, the further is its “distance” (in terms of number of modeling
steps) from the modeled system.

From a logical point of view there are two problems here. First, we have no
formal system of inference to judge formal correctness of observation
sentences that have a variable true value (credibility) and that use ill-
defined terms. Second, we have no formal system to judge the material adequacy
of sentences derived from a “distant” model to the properties of modeled
phenomena.

The problem of formal correctness seems to be solvable in principle.
Progress in dealing with it can be noticed already in the fields of Artificial
Intelligence (AI), Pattern Recognition (especially development of fuzzy
mathematical techniques) and Situation Logic. In the near future we can expect
to have formal tools to derive plausible conclusions from “imprecise”
premises. Or, at least, we will have the option of relying on a machine (i.e.,
reliable AI software) that will perform plausible reasoning for us (I would
probably exclude myself from the “us”). As far as formal judgement of
material adequacy is concerned, it is unlikely that the problem is
“addressable” in its generality. At least within mathematics the celebrated
Gddel theorem precludes such a possibility. However, informal (more or less
educated common-sense) judgements of material adequacy are possible and, as a
matter of fact, all fields of science explore thenm.
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Computational Molecular Biology (CMB) is a new science emerging from the
liaison of computational technology and molecular biology proper (MBP). Its
general goal is to understand biological phenomena through computational
experiments and plausible reasoning. In a narrow sense, CMB is concerned with
the informational (or symbolic) interpretations of biological phenomena that
involve nucleic acid and protein sequences. The focus on symbolic
interpretations distinguishes both CMB and MBP from physics, chemistry and
other fields of “hard” science. However, the paradigms of CMB and MBP seem to
have more aspects distinguishing them from each other than aspects in common.
For one thing, instruments (say “measuring sticks”) are different in CMB and
MBP. Computer hardware and software along with plausible reasoning are
examples of instruments used by computational biologists. Electrophoretic
gels, centrifuges, spectrometers, probes of nucleic acids, antibodies and,
perhaps, high individual tolerance to radiation are examples of equipment
employed by MBP scientists. Because of the differences in research tools, both
the data and data-associated percepts are different in CMB and MBP. Sc are the
intellectual “folklores” that contribute to.both paradigms. By inference, we
ought to expect that criteria of material adequacy for observation sentences
will not always be the same in CMB and MBP.

The presentation/discussion will (ideally) focus on protocols of pragmatic
inference as seen (but not always clearly described) by most computational
biologists. A general scheme of pragmatic inference for sequence research
(part of CMB) is shown in Figure 1. The scheme is merely meant to illustrate
the fact that vaguely defined “biological knowledge” is a vital factor
allowing us to judge the material adequacy of outputs from each step of the
“procedure”. How exactly we should proceed to “correctly” implement our
“biological knowledge” is currently unknown. Nor is it known how to clearly
classify (or enumerate) this knowledge. Specific proposals of solutions for
both those problems within sequence research will be described and (if time
will allow it) discussed.

Suggested readings

1. Carnap, R. (1939). Foundations of Logic and Mathematics. Chicago Univ.
Press, Chicago.

2. Gédel, K. (1931). Uber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme. Monatshefte fur Mathematik und Physik 38,
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Ronopka, A. K. (1993). Sequences and Codes: Fundamentals of Biomolecular
Cryptology. In: Biocomputing: Genome Sequence Analysis, (D. Smith, Ed.).

Academic Press, San Diego. in press.

Quine, W. V. (1980). From a Logical Point of View. Harvard University Press,
Cambridge, MA.

Rosen, R. (1985). Anticipatory Systems. Pergamon Press, New York.
Rosen, R. (1991). Life Itself. Columbia University Press, New York

Shannon, C. E. (1949). Communication Theory of Secrecy Systems. Bell Syst.
Tech. J. 28, 657 - 715.

Tarski, A. (1933). The concept of Truth in Formalized Languages. In: Logic,
Semantics and Metamathematics, Ed.). Oxford University Press (1956), Oxford.
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Toward the Unification of Sequence and Structural Data for
identification of Structural and Functional Constraints

Chip Lawrence

Wadsworth Labs, NYS-DOH, Albany NY
&
NCBI, NIH, Bethesda MD

The identification and characterization of local residue patterns or
conserved segments shared a set of biopolymers has provided a number of
insights in molecular biology. Biopolymer sequences are observations from
macro molecules that share common structural or functicnal features. The
approach taken here rests on the notion that information may be most
efficiently extracted from these observations through the use of a model that
faithfully represents macro-molecular characteristics. Accordingly, our
efforts are focused on statistical models which attempt to capture what we
believe to be central features of protein structure, function, and change.

There are two major foci of our work in this area:

1) Threading of a sequence through structural motifs seeks to
determine if a protein sequence fits a known protein structure, and in this
way recognize folding motif. (Bryant and Lawrence, 1993)

2) Multiple sequence alignment via the Gibbs sampling algorithm seeks
to identify position specific "free energy" models for residue sites in common

"core elements” and simultaneously the alignment (Lawrence et al. 1993).

Because these two efforts address apparently different problems, they
appear substantially unrelated. In fact, both are based on a common
stochastic macro-molecular model. Five basic characteristics of protein
structure, function, and change form the basis of these two collaborative
efforts.

1} Proteins are stabilized by the energetic interactions among its
residues, and the interactions of its residues with water, the peptide
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backbone and ligands. These interactions determine a protein's structure and

function.

2) When biopolymers have been subjected to a limited amount of
evolutionary change, their commonality stems primarily from their mutational
history. This case is of little interest to us. Rather, the focus here will be
on the more difficult case that arises when the sequences have been subjected
to extensive change, and any common patterns that remain are subtle. Among
such distantly related sequences, common features stem primarily from
structural or functional constraints. These constraints arise from the
energetic interactions among residues or between residues and ligand. The
relationship between energetic constraints and frequencies forms that basis of
statistical mechanics, pioneering by Gibbs and Boltzmann. There is an
analogous relationship for residue fregquencies subject to random point
mutations (Polh,l 971) (Berg & von Hipple 1987) (Bryant and Lawrence, 1991).
This relationship suggests that the use of residue frequency models can be a

valuable tool for representing the structural and functional constraints.

Given an alignment, the joint distribution of the residue types at the W
positions in the common core may be represented by a multinomial residue
frequency model. Interactions of residues with ligand, backbone atoms and
water are essential to protein structure and function, and impose first order
constraints on residue frequencies. Forces between pairé of residues are also
key determinants of protein structure, and impose pairwise interaction
constraints on residue frequencies. Since, the multinomial model is a member
of the exponential family (Kendall and Stuart, 1952), and we consider at most
pairwise interactions, the log joint distribution of residue frequencies may
be described as a sum over first order terms plus the sum of pairwise terms
over the set that mutually interact (Besag, 1974). In other words,

log(P(R |A )) = sum {d=1..W} ud,r + Sum_{C} wu_i,r,j,s (1)

where C is the set of residue pairs that make contact, and the u_d,r and
u_i,r,j,s are respectively the first and second order free energy parameters.

3) Proteins or protein motifs that share a common structure share a common

core. This core is composed primarily of ungapped segments of secondary
structure interrupted by variable length loops.
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4) The primary determinants of protein function are its energetic
interactions with ligands. Thus, proteins or protein motifs that share a
common function nearly always share common ligand based constraints. Ligand
interactions often involve residues in a subset of a proteins loops. Since
the geometry of these loops is tightly constrained to maintain these
_interactions, the lengths of these loops are nearly always preserved.
Furthermore, residue frequencies in these loops are constrained by the

energetics of their interactions with ligand.

5) Biopolymer sequences are misaligned by tranpositions,
insertions/deletions, and gene duplications. 1In proteins these events result
in variations in loop length. No direct data are available concerning the
effects of these events in biopolymer sequences. Nevertheless, the
probability of these events can be inferred from available sequence data.

In the 1970's it became widely recognized that many statistical problems
are most easily addressed by pretending that critical missing data are
available. In fact, for some problems, statistical inference is facilitated
by creating a set of latent variables, none of whose values are observed
(Goodman, 1974). The key observation was that conditional probabilities for
the values of the missing data could be inferred, by application of Bayes
theorem to the observed data. Statistical inference based on this concept was
first described by Orchard and Woodbury (1972) and called the "missing
information principle®. 1Its application became widely known through a
deterministic maximum likelihood algorithm, the expectation maximization (EM)
algorithm (Dempster et al., 1977).

Geman & Geman (1984) developed a sampling based approach, which they named
the Gibbs sampler. It was developed for the case in which the posterior
distribution is a complicated, and thus difficult or impossible to obtain by
direct integration. They employed this sampling algorithm both to develop a
Bayesian description of the complete posterior distribution, and to find
maximum a posteriori (MAP) estimates. They chose the name the Gibbs Sampler
because a key required theorem from statistical physics , the Hammersley
Clifford theorem, employs Gibbs/Boltzmann potentials to model joint
probabilities from a complete set of conditionals. The use of sampling
‘methods for problems involving missing data was first undertaken by Tanner &
wong (1987) and Li & Kim-Hung (1988). This sampling approach and its
extensions have become a topic of great interest in statistics in the last few
years (Gelfand & Smith, 1990),(Smith & Roberts, 1993). Most statistical
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applications have little connection with statistical mechanics, thus the names
Gibbs sampling has fallen into disfavor among some statisticians. Because the
connections of this work with statistical physics name Gibbs Sampler is
entirely appropriate.

The missing information principle was first used for sequence alignment to
develop a block based (EM) algorithm for the identification and
characterization of common motifs in biopolymer sequences (Lawrence and
Reilly, 1990). This work subsequently was extended to permit small variations
in the spacing of pairs of blocks (Cardon & Stormo, 1992). More recently, EM
algorithms for gap-based alignment methods, in the form of Hidden Markov
Models (HMM), have been described (Hausler et al., 1993). A more complete
description of statistical aspects of the use of these ideas for misaligned
data is given by Lawrence and Reilly (1992). Following this tradition, Bryant
and Lawrence (1993) have recently presented a statistical model which imputes
the alignment of a sequence to a structural motif, and Lawrence et al. (1993)
have recently developed a Gibbs sampling algorithm which imputes the alignment
of multiple sequences.

Threading:

In threading, the free energy parameters of equation (1) are taken as
known. In fact, estimation of these parameters using the observed frequencies
of residue pairs by distance in the protein data bank, was a major focus of
the analysis conducted by Bryant and Lawrence (1993). With these known, the
probability of an alignment is

P(A [R)) = exp((Sum_{d=1..W} wu d,r + Sum_{C} wu_i,r,j,s / 2)) , (2)
where Z is the sum over all possible alignments. When all alignments the
most probable can be identified from equation (2). When the number of
alignments exceeds computing limits eguation (2) can be employed as the basis
of a sampling algorithm for the identification of the most probable alignment.
A Gibbs sampler for multiple sequence alignment:
For this problem the free energy parameters of equation (1) are unknown and

are estimated from the available sequence data using an iterative sampling
algorithm. The algorithm iterates between equation (1) and equation (2) with
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the goal of simultaneously identifying the alignment and the unknown residue
"free energy" parameters. In spite of the important contribution of pairwise
interactions to protein stability, much of the information contained in
protein motifs is captured by first order terms alone. Even when ligand
specific effects are ignored, over 65% of the information concerning residue
pairs frequencies in proteins of known structure is captured by first order
"hydrophobicity” terms (Bryant & Lawrence, 1993). Furthermore, because the
number- of pairs is large, it is not clear that the additional energetic
information from the pair terms will compensated for the substantially missing
information penalty when structures are unknown. Accordingly, to date we will
restrict attention to first order residue frequency models, for problems in

multiple seguence alignment.

A more complete description of the mathematical models and algorithmic
methods used will be given, and applications to subtle multiple sequence
alignment problems and folding motif recognitions problems will be presented.
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EUOLUTION ON RUGGED LANDSCAPES
Catherine Macken

Theoretical Division
Los Alamos National Laboratory
Los Alamos, NM 87545

We have studied walking on rugged fitness landscape as a model of the
process of affinity maturation in an immune response. Affinity maturation
appears to be the outcome of a mutation and selection process, described as
“neo-Darwinist evolution in real time”. Divorced from the biological context,
walking on a fitness landscape applies to the appearance of a general
optimization process. '

ﬁere, we outline a model of affinity maturation in order to introduce the
formalism of fitness landscapes, and to develop an intuition about
optimization in high dimensional space. Then we discuss more general issues,
such as comparison of optimization techniques, and classification of
landscapes.

Rugged fitness landscapes have been introduced in many areas of biology and
physics to study, for example: affinity maturation of antibodies by somatic
hypermutation, protein folding, RNA folding and evolution, species evolution,
and spin glasses.

A fitness landscape consists of two components: sequence space, and a
fitness function. Sequence space, S, is an abstract representation of the
collection of all individuals of interest (protein, antibody, RNA molecule,
glass states, etc.) as a set of strings or sequences of elements chosen from
an appropriate alphabet. A fitness function assigns a real-valued “fitness”
to each sequence in S. In principle, fitnesses can be plotted as heights of a
landscape above the multidimensional sequence space. To model evolution on a
rugged landscape, a rule is used to describe permissible moves through
sequence space. Here we consider the rule in which only one element of a
sequence can be changed in one unit of time. Thus, paths through sequence
space involve moving between so-called one-mutant neighbors.

The nature of the landscape depends entirely on the fitness function. In
most settings, this function is difficult to determine realistically, and
therefore fitnesses are assigned in a somewhat arbitrary fashion. An extreme
example, which nevertheless captures aspects of reality, is to assign a
fitness value chosen at random from a probability distribution such as the
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normal or uniform. Fitnesses are thus independent of sequence, and the
resulting landscape has a characteristically rugged nature. Clearly, to assume .
that fitnesses are random functions of seguence is extreme. Site-directed
mutagenesis reveals that some point mutations in a protein have little effect
on its fitness, while others can drastically change fitness.

As an attempt to quantitatively describe the possibility of single
mutations leading to small fitness changes, Kauffman introduced the NK model.
In this model the fitness of a sequence of length N is a sum of fitnesses of
the N individual elements of the sequence, but fitnesses of individual
elements are assigned for each configuration of 0 < K < N - 1 other elements.
By altering the value of K, the ensuing landscape exhibits different degrees
of ruggedness. The N K model has been studied in simulation experiments and to
some extent analytically. Importantly, the assumption of additive fitnesses
leads to strong central limit theorem effects in which all fitnesses cluster
around the mean fitness with decreasing variability as N increases. Further,
the ability to tune the degree of ruggedness by altering K results from the
fact that random fitness samples of size 2K have larger extrema as K is
increased. We propose an alternative approach to a “tunably rugged” landscape
that achieves variation in ruggedness by means of a model of physical
structure within a sequence. It has the additional advantage of easy analysis
and freedom from dominance by central limit theorem effects. We call our model
the block model since it treats a sequence as a collection of independent
blocks of elements. Fitness correlations among neighboring sequences are then
a natural consequence of the block structure, and can be “tuned” by changing
the number of blocks. The original motivation for our block model was the
observation that molecular sequences often have natural partitions. When
blocks of a sequence are long, the model is easy to study analytically:
results of earlier theory (1) can be combined, using convolutions, into theory
about the block model of sequences.

Consider a sequence of length N composed of B blocks. In considering
antigen-antibody or protein-ligand interactions, we use the binding free
energy (or log affinity) as a fitness. Thus, fitness of a sequence is

B B
U= zUi, where block i has length nj, N=En,. , and U{ ig the fitness of

E=1 Pl
block i. We assume that blocks contribute independently to sequence fitness,
and choose the block fitness, U;, randomly from a continuous probability
distribution G; 6 Changing the number of blocks in the block model changes the
characteristics of the fitness landscape. Intermediate levels of correlation
between fitnesses of neighbors occur for 1 < B < N.
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Important results exist on the characteristics of a landscape, and of walks
on a landscape. Many of these results are independent of the fitness
distribution G, depending instead on a mechanism for assigning a rank to each
possible sequence. When walks are restricted to movements in an uphill
direction only, they quickly terminate at a local optimum. The length of walks
increases with the degree of correlation between neighbors in sequence space.

The model for affinity maturation invokes a “random ascent” method of
optimization, which may be compared with other optimizers, such as greedy
algorithm, using, for example, reverse hill-climbing.

An important question is: How might landscapes be classified into
categories within which optimization procedures have similar properties? To
date, the correlation length of a landscape is the only such classification
measure that has been proposed. However, a single statistic is unlikely to
capture all of the influential properties of a landscape.

With the availability of a variety of optimization techniques, often
incompletely understood, a correspondence between the characteristics of a
landscape and preferred method of walking on the landscape is needed.
Classification of landscapes is a first step toward establishing such a
correspondence.

1. Macken, C. A., Hagan, P., and Perelson, A. S. (1991). Evolutionary walks on
rugged landscapes. SIAM J. Appl. Math. 51, 799 - 827.
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JUST-IN-TIME INFORMATION FORWARDING:
Biological S8ystems Viewed As Shannonian Communication Systems

Stephen A. Mcdena
Dept. of Crop 8cience ~- Box 76290
North Carolina State University
Raleigh, NC 27695-7620
nmodena@unity.ncsu.edu

TYHE WAY THINGS ARE

*originally, the flow of information involving the genetic
material was termed the central dogma: DNA tranaferred
information to RNA, which then directly controlled protein
synthesis. DKA also controlled its own replication.” [0]
However a growing body of observational and experimental
evidence has necessitated various addenda.

Molecular bioclogy today seems to follow the Latin model: The
Central Dogma is presented as the First Declension, reqular in
structure but not highly used. S8ubsequent declensions are
introduced, replete with their structural irregularies, as the
powerful main atays of cellular "l1life"” at the moclecular level.
The final declension is a cateh all for the exceptions not
fitting well anywhere else and possibly not very importamt in
the bhroader view.

Suppose one modernized the definition: “The central dogma is a
description of the direction of information transfer among
DNA, RNA and protein.”™ [0] It still fails to accomodate the
following: "The insertion of transposible elements inte plant
genes set the stage for a varisty of interactions that can
lead to alterations in normal transcriptional procssses. The
complex nature of these interactions...reflects the insertion
of one intricate set of regulatory and processing signals into
another.* [1]

THE WAY THINGS COULD BE

I propose a successor model: Just-In-Time Information
Fowarding. It will emphasise information, time, dynamics and
noise; be scalable; be able to represent a biolegical work
engine requiring energy dissipation; and most importantly, not
be expressed explicitly in terms of specific cellular
elements, unlike the tradtional central dogma. The “Just-iIn-
Time Information Forwarding Model" is based on the S8hannon
General Communication System, as set forth by Shanne{2,3]

with the apecific augmentation by Rothstein[4], along with the
addition of two heuristics nseded for a genetics-driven
biological system.
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Any communication system has two main levels of abstraction:
an end-to-end portion and a comnectivity portion, illustrated
in Figure 1, redrawn from [4]. The communication system
exists to convey INFORMATION between the SOURCE and the
DESTINATION in the presence of NOISE. The SOURCE and the
DESTINATION are the end-to-and portion of the model. Lat’s
defer specific identification of the source or the
destination, except to say that the source is forwarding
eritical information through time and distance and hopefully
it will arrive at the destination "jJust in time."™

A SHEANNONIAN BYSTEM

Shannon’s Theory is a mathematical presentatiomn, rooted in an
ensemble of critical, interoperating componeats. The General
communication System is a logical machine operating through a
physical machine. Briefly sald, an INFORMATION SOURCE enmits
MESSAGES that a TRANSNITTER converts into physical BIGMALS,
with encoding as needed; these are conveyed through a CHANNEL,
i.e. the real world with time, distance and energy attributes;
during CHANNEL transit, the SIGNALS may be altered dy
combining with pervasive NOISE always found in the CHANNBL;
possibly altered SIGMALS arrive at a RECEIVER, wvhich makes
imperfect dacisions while converting the SIGNALS to egquivalent
MESSAGHEHS, amploying whatever decoding appropriate; these
MESSAGES hopefully are understood and have utility to the
DESTINATION.

THE STRUGGLE BETWEEN THE LIGHT AND THE DARENESS

Information and noise are the main facets of shannon’s model.
In his worst case analyses, Shannon assumed "white noise,"™
because of its natural and convenient maximum entropy
property. Rothstein[4] remapped Shannon’s model into a
general model of a measuring-procsdurs—and-apparatus {(for
example, the case of an analytical balance). To account for
the precision and accuracy biases inherent in fluctuating
measured-values, he renamed NOISE to "error source" (Fig. 1}.
Rothstein’s symbolic remapping has numerous ramifications and
applied conseguences.

I am remapping the Rothstein-modified shannon Nodel into the
biological sphere, which ought to bs legitimate since shannon
himself precedes me[5]. This model is proposed from a particular
point-of-visw: that wve, experimental and computational
biologists, are engaged in the reverse engineering of the
machinery of 1ife. As such, we oftem defer the larger
questiona of "who" and "why" in favor of coacentrating on the
more immediately tractable aspects of our favorite system. I
would like to emphasize that I am borrowing the Shannon system
of ideas in its entirety, rather than selecting one or two
features and discarding the remainder--a common practice which
caused Shannon himself both distress and disillusionment(é].
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JUST IN TIME DELIVERY OF CRITICAL INFORMATION

My selection of the "just in time" imagery, the first
heuristic, arises from a specific example of RNA editing in
the trypanosome mitochonrion. An “AUG" start-signal for
polypeptide synthesis is not found in the genomic DMA ocistrom
and is not present in the transcribed mRNA. "“Just in time,”™ a
corractly placed "AUG" is edited into the mRNA[7], allowing the
appropriate polypeptide to be made by the ribosomal complex.
In effect, I have chosen a DESTINATION, the just-in-time
correct imnitiation of a vital polypeptide. The MESSAGE can be
taken to be the fully complete mRNA, containing among other
features the “AUG" nucleotide triplet in correct junxta-
position to “other” signals needed by the ribosomal complex.

Under the influence of the central dogma, one author wrote
thias wrote this about RNA editing: "While other forms of RNA
processing maintain primary sequence correspondance between
gene and transoript, RMA editing disrupts this informational
linkage by altering the actual sequence ¢f an RNA molecule
after it has been transcribed.®[8] It is factually correct,
but concaeptually perverted.

The "Just In Time" heuristic forces one to clearly define the
DESTINATION and the probable ensemble of messages that might
be received via the communication system.

INFORMATION FORWARDING

Information forwarding is the second heuristic. If the =mRNKA
mentioned above is not constitutively expressed, then one must
account for it’s timely appearance. Symbolically, one can say
that this mRNA, positioned on the ribosomal complex just about
to trigger protein synthesis, must be reincarnated from time-
to-time by means of an information forwarding schema. 1In
essence, the source and the destination are the "“same"
temporal phenomenon or entity with an intervening existence as
pure “information."” A similaxr notion is embodied in the
bioclogical concept named “alternation of generationsa.

The "Information Forwarding" heuristic forces one to identify
the SOURCE and the probable ensemble of messages that might be
transmitted via the communications system.

Identifying the sent and received message ensembles forces a
thoughful specification of the communication channel(s) used;
any serialization or paralleligzation, i.e. scaling; timing
regquirements or coastraints; and any encoding-decoding
parameterizations and specialisations.
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NOISE AND ERROR ARE TWIMS

In a thermodynamic Universe, noise is pervasive and
inescapable. During the conveyance of information through
time and distance as a channel signal, noiss interacts with
that signal in an algebraically additive fashion{2]. The net
result is that a certain potion of the original information

" csan bscome irrecoverable, because it has haen converted to
error. Moise imposas a natural upper limit to system
efficiency. ¥Noise has another conseguential effect: it
quantizes continuously variable information. Quantization ana
error miniwmumization can both be dealt with via codes and
sncoding schemes,

LEARNING FROM REAL SHANNONIAN SYSTEMS

Ressarch in radio spread spectrum systems shows that the
statistical structure of noise sources has a profound sffect
on the success and efficiency of any particular system of
encoding in a communications system.[9]

Often a communication channel must bhe shared among multiple
s;gnals. Because physical communication systems are finite
machines, they have a capacity limi. When the capacity
reguirements of mutiple friendly signals sum to more than the
available channel capacity, each signal begina to experience
degradation because the other co-resident signals shift to
operating as noise/erxrror sources in a mutual fashion.

As experience with radio spread spectrum techniques has
dsmonstrated, soms sources of channel “noise”™ are actually
co-raesident signals designed to reduce channel efficliency or
to direct well structured errors into other channel corsesident

signals.

ACTIVELY ADAPT OR DIE

Adaptive stategies have been embraced to counteract or
tolerate channel capacity depletion by either friemndly or
enamy channsl co-occupants. I bslieve that one of hallmarks
of genetic systems is the avolutionary adaptive capacity to
tolerate or cosxiat with friendly and unfriendly channel
co-residsnts under competition for channel capacity resources.
Soms of the main strategies appear to bes switching coding
schemes; adopting better emcoding to effectively increase
channel capacity or create channel diversity; increased
segmentation of the channel; resynchronization via time
diversity to take adavantage of episodic fluctuations in
channel capacity availability; and restructuring signals to
take advantage of mutual antropy aenpononts of co-resident
channel signals.
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WORKED PROBLEMS

Beveral common molecular biology phenomena will be presented
for remapping to the "“Just~In-Time Information Forwarding
Model." Hopefully, frank assessaent and reassessment of ideas
will result. :*)

{01 R.H. Tamarin, "Principles of Genetics'™, PWS Publishers,
Boston, 1986 .,

[1] C.F. Weil and S.R, Waessaler, "“"The Effects of Plant
Transposable Element Insertion on Transcription Initiation
and RNA Proc¢essing', Ann. Rev. of Plant Physiol. Plant
Mol. Bio. 413:527-52 1990.

{2] C.E. Shannon, "AMathematical Theory of Communication",
Sys. Tech. J. 27:379~423,623~-656 1948

(3] C-E. Shannon, “Copmunication in the Prasence of Noise",
Proc. Inst. of Radio Engineers 37:10-21 1949

{43 J. Rothstein, “Information, Measurement and Quantum
Mechanies™, Science 114:171-175 1951

{5} C.E. 8hannon, "Prediction and Entropy of Printed English®,

[6] C.E. Shannon, "The Bandwagon (Bditorial)" I.R.B. Trans.
Info. Theory Ir-2:3 1956

~ [7) K. Btuart, "RNA Editing in Trypanosomatid Mitochondria",
Ann. Rev. Microbiol. 45:327-44 1991.

[8] M.W. Gray et. al., “Transcription, Processing and BEditing
in Plant )litochoudria“ » Ann. Rav. Plant Physiol. Plant

[9] R.C. Dixon, “Spread Spectrum Syatems”, John Wiley & Sons,
N New York, 1934.
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Towards ONA Sequencing by Hybridization
Pavel . Pevzner

Departments of Computer Science
The Pennsylvania State University
University Park, PA 16802

In view of the limitations of current DNA segquencing technology, it would
be advantageous to have a method for sequencing DNA that (1) does not require
gel electrophoretic separation, (2) provides the sequence of a very long DNA
fragments in a single experiment, (3) is amenable to automation.

Sequencing by Hybridization (SBH) is a challenging alternative to the
classical DNA sequencing methods. The basic approach is to build an array
({Sequencing Chip) of short oligonucleotides, to use hybridization for finding
oligonucleotide content of an unknown DNA fragment and to reconstruct the
original fragment by a combinatorial algorithm. Three major breakthroughs in
SBH have reported recently; Southern et al. built the first seqguencing chip,
Drmanac et al. read the first 100 bp by SBH, Fodor et al. developed
photolithographic technique for building sequencing chips with millions of
oligonucleotides. It is becoming clear that SBH is a challenging approach and
may be the most promising alternative sequencing method and that large-scale
SBH projects are about to be launched. Even today a chip for sequencing
hundreds to thousands of nucleotides might cost from a few dollars to tens of
dollars when made by mass production.

The implementation of SBH requires the application of biochemistry,
computer science and high technology. Recent studies indicate that the
original SBH chip C(8) containing all 65,536 octanucleotides is insufficient
for sequencing long DNA fragments. In particular, Pevzner demonstrated that
even in the case of an ideal SBH experiment (no hybridization errors) one
can hope to reconstitute a 200 nucleotide long seqguence only in 94 out of 100
cases. This discouraging result indicates that additional joint efforts by
biologists and computer scientists are required to make SBH practical.‘
Sometimes biologists can not estimate the computer science limitations of the
proposed SBH experiments. On the other hand computer scientists frequently
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cannot anticipate what information useful for DNA sequence reconstruction can
be obtained by modern biochemical techniques. We are trying to narrow this gap
by presenting the links between the biochemical, computer science and
technological aspects of SBH.

We also consider the problem of designing high-resolution chips for SBH.
Recently Pevzner et al.,1991 demonstrated that the classical C(k) sequencing
chips containing all k-tuples are very redundant and therefore inefficient. I
present a new chip design which allows significant chip miniaturization
without reducing their resolving power. This is a joint work with Robert
Lipshutz.
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ON THE SCHRODINGER QUESTION
Robert Rosen

Dept. of Physiology & Biophysics
Dalhousie University

ABSTRACT

Almost fifty years ago, the eminent physicist Erwin Schr&dinger
published a famous essay, entitled “What is Life?”. We undertake a
comprehensive re-evaluation of this basic guestion, both as Schr&dinger
himself envisioned it, and in the light of a half-century of further
experience since his time, not only in biology, but also in physics, in

mathematics, and in the theory of systems.

Today, Schrddinger's Essay has long since been embalmed as a classic
embodiment of molecular-biological orthodoxy. We assert that, to the
contrary, Schrddinger’s arguments were then, and remain today, highly
heterodox; indeed, gquite iﬁcompatible with the dogmas which have evolved
since then. We will attempt to reformulate these original arguments, and
compare them to the distorted and truncated versions which have survived
in the molecular biology of today.

We start from Schrddinger’s original question, “What is Life?”. To
what extent is this even a legitimate scientific guestion? That is: to
what extent can “life”, the subject-matter of biology, be considered a
thing; a legitimate object of scientific scrutiny in itself? If so,
what kind of “thing” is it? Schrddinger clearly thought it was a thing
in itself; not just a qualifying adjective for other things. Today’s
molecular biology would consider the guestion itself nonsensical.

Besides simply taking this question seriously, Schrédinger repeatedly
insisted in his essay that, in his words, “new physics” was required to
address it properly. On the other hand, people like Jacqﬁes Monod,
writing decades later, denounced any such suggestion as “vitalism”, and
as incompatible with the “objectivity” of science itself.

Schrddinger’s essay seems to devolve around an earlier argument of
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his colleague Max Delbriick, which asserts that the “Mendelian gene”,
recognized and characterized in terms of phenotypic effects, had to be a
molecule. Under this camouflage, Schrddinger actually concerned himself
more with a converse question: when could a molecule be a Mendelian
gene? The ramifications of this converse question were what led to the
conviction that “new physics” was essential; at the same time, they led
to the most familiar, yet the most thoroughly misunderstood parts of the
Essay: the “aperiodic solid”, the idea of a cryptographic relation
between genotype and phenotype, and the idea of “feeding on order
(negentropy)”.

In modern terminology, Schrddinger is asking us to contemplate the
stability of genomically forced, thermodynamically open material
systems. Beyond a few vague mathematical hints, and a few heuristic
physical rules of thumb, no part of the program Schrddinger was hinting
at has even been approached. None of this program is addressed at all by
the reductionistic character of modern molecular biology, nor have they
yet been approached from conventional physical directions; indeed, it
turns out that the preferred starting-point of conventional physics, the
closed system, is so degenerate (structurally unstable) that how you
open it is an infinitely more important determinant of how it will
behave than what it is like when closed.

Schrédinger concluded his Essay by completely discounting the
"machine analogies”, going back to Descartes and before, which seemed to
provide the backbone for any strategy to relate bioclogy and physics. On
the other hand, these analogies are precisely what have been retained in
today’s molecular biology; they comprise whatever vision and philosophy
it has. Yet the very deficiencies of these machine metaphors go a very
long way in specifying the shape of the vision Schrddinger was actually
advocating.
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Biopolymer Sequences and Structures

Peter Schuster
Institut fur Molekulare Biotechnologie
Jena
Germany

Properties and functions of biopolymers are considered as being the result
of two classes of mappings. The first class consists of maps which assign a
{(three-dimensional) structure to every sequence. They are tantamount to
mappings from genotypes into phenotypes. The second class of mappings deal
with relations between structures and functions as expressed by free energies,
activation energies, or other scalar quantities. They map structures into the
real numbers. A landscape is understood as a éombination of one map of each of
the two classes. We thus have, for example, free energy landscapes, activation
energy landscapes, fitness landscapes, etc. '

RNA secondary structures are chosen as an example because only in this case
we have sufficiently fast folding algorithms at hand which allow to handle
millions of sequences and structures. The relation between RNA seguences and
structures is considered as a mapping from one metric space of sequences into
another metric space of secondary structures, called shape space. In seguence
space the Hamming metric is used. An appropriate metric in shape space is
obtained by tree editing. The secondary structures are converted into
equivalent trees for that purpose. Several properties of RNA shape space will
be discussed. In particular three major results are presented:

(1) we have many more sequences than structures,

(2) sequences folding into the same structure are randomly distributed in
sequence space, and

(3) any random sequence is sourrounded by a ball in sequence space which
contains sequences folding into all common structures.

The radius in Hamming distance of this ball is much smaller than the
chain lengths of the sequences.

The meaning of these results for biological evolution and evolutionary

biotechnology is discussed. Possible generalizations to real three dimensional
structures of RNA molecules and to protein structures will be considered.
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Evolution on Fitness Landscapes
Peter F. Stadler
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A-1090 Vienna
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Evolution can be viewed as an adaptation process on a 'fitness' landscapes
(at least in some systems). The dynamics of evolution are hence tightly linked
to the structure of the underlying landscape. Global features of landscapes
can be described by statistical measures like number of optima, lengths of
walks, and correlation functions.

Statistical characteristics of RNA landscapes are accessible on the level
- of secondary structures. It turns ont that RNA landscapes belong to the same
class as well known optimization problems and simple spin glass models.

The evolution of a quasispecies on such landscapes exhibits three dynamical
regimes depending on the replication fidelity: Above the localization
threshold the population is centered around a (local) optimum, between
localization and ~“dispersion threshold'' the population is still centered
around a consensus sequence, which, however, is non constant in time. For véry
large mutation rate the population spreads gas-like in sequence space.
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NONALIGNABILITY AND NONCOMPACTNESS
MODELS AND REALITY OF LOW-COMPLERITY PROTEIN SEGMENTS

JOHN C. IFGOTTON
National Center for Biotechnology Information, Building 38A, Room
8NBO5, National Library of Medicine, National Institutes of Health,
Bethesda, MD 20894, U.S.A. E-mail: woottonéncbi.nlm.nih.gov

Introduction

How much of amino acid sequence space is represented in natural proteins?
Global computational analyses of sequence databases have recently shown
surprising biases. More than half of deduced protein sequences contain at
least one segment of low compositional complexity, consisting predominantly of
one or a few amino acids, and such sfrongly biassed, interspersed segments
comprise 15% of the residues in the database (Wootton & Federhen, 1993).
Conserved sequence families, of the type common tc a wide range of organisms
and familiar since the 1950s from sequence alignments, may number fewer than
1000 according to some estimated extrapolations (Green et al., 1993), and such
conserved domains and motifs may eventually account for less than half of the
residues in natural proteins. Moreover, from a rapidly growing number of cases
of random ¢DNA or genomic coding DNA sequenced without regard for function,
deduced amino acid sequences show a non-random excess of long "medium-
complexity" sequences in addition to the near-homopolymeric low-complexity
segments.

Taken together, these analyses reveal a disturbing level of ignorance about
protein structure, dynamics, interactions and evolution. The wealth of
knowledge of relatively compact globular proteins, as derived in atomic detail
from crystal and NMR structures, and as alsc represented by numerous
alignments of conserved domains or motifs from multiple seqguences, may provide
a paradigm for understanding as little as half of natural amino acid sequences
or subsequences. Low and medium-complexity segments, as far as can be
inferred from the limited evidence available, generally evolve rapidly, rarely
have unique conformations and show more flexibility in conformational dynamics
and interactions with other macromolecules and solvent. New models will be
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explored in this report for conceptualizing the physical properties of such
"non-globular" sequences, and methods will be evaluated for their utility in
analyzing and organizing the copious mass of low-complexity amino acid
sequence data now available.

Nonalignability

The great majority of low-complexity sequences can not be sensibly aligned by
conventional sequence comparison methods based on residue position. Their
heterogeneous mixture of compositional biases confounds the statistical basis
of most sequence alignment algorithms. More fundamentally, traces of
mutational pathways of evolutionary descent are lost through insertions,
deletions, substitutions and sequence repeats, except in comparisons of
equivalent sequences in close organisms. Even corresponding low-complexity
sequences from distant species, which are evidently similar in function and
location, do not generally align in a unique manner by residue position.
Mutational dynamics involving DNA replication slippage and repeat expansion

may generate similar simple sequences de novo.

These properties have prompted an analysis of the premises of multiple
sequence alignment methodology. Such alignments have relevant fundamental
limitations when considered as representations (or "observations") of unknown
common folds of residue chains. Some issues arise from discrete sybolization
of a spatial continuum and arbitrariness of gaps. When multiple alignments
are transformed into numerical models, additional problems arise from the
data-dependence of the generalizability of the models, from effects of fixed
dimensionality, and from the paucity of reliable independent evaluation
criteria.

Classification of low-complexity amino acid sequences, and the possible
detection of any recurrences of very subtle compositional or sequential
patterns, may be based on unaligned sequences in the absence of prior
knowledge of significant subsequences. Different pseudometrics have been
evaluated for their ability to neighbor these segments by single and k-word
composition, together with residue correlations within segments and
definitions of local compositional complexity.

Figure 1 illustrates the results of one of these methods used to search the
Swissprot database. The query sequence is a methionine-proline-glycine rich
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segment of a type occurring in some small nuclear ribonucleoproteins and heat
shock protein 70. The complete list contains approximately 100 examples of
this class of sequence, which is unusually conserved in subsequence
characteristics in the above proteins, is an important epitope in some
autoimmune diseases, but is of unknown structure, dynamics and interactions.

~ This search reveals that segments of the same compositional properties also
occur in many other DNA binding and developmental control proteins from a wide
range of organisms. Such methods may be extended to give a relatively
comprehensive classification of the low-complexity sequences of the database.
This process is complementary to the neighboring by Blast MSP scores, as used
for the NCBI Entrez datasets, for which purpose the low-complexity sequences
are filtered from the database prior to Blast neighboring.

One limitation arises in the question of what constitutes a class or family of
low-complexity sequences. In many cases, in the absence of direct evidence
for structure or dynamics, this has to be decided using purely statistical
criteria. Relatively indirect empirical evidence is available in some cases
from mutational effects or the location of segments in relation to conserved
globular domains. Such cases, together with regularities that emerge from the
unbiased classification of the segments, give a few general insights into the
nature of sequence variation in functionally significant low-complexity
sequences.

Noncompactness

To what extent do simple amino acid sequences imply noncompact, nonunique,
flexibly dynamic 3-dimensional structures? This question has been explored
using some simplified physical models and a comparison of different
definitions of conformational entropy and structural complexity. The results
give some insights into the sequence requirements for compact collapsed
structures and also into the nature of molecular assemblies that exhibit
larger-scale emergent "informed" thermal and dynamic properties.
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QUERY SEQUENCE: pommpaphmggpprmpmgpprpgrnpvgpapgmr ppugghmpmmpgppm

mrpparpimmvp
NAME,
RESIDUES DISTANCE SEQUENCE
1 sM11_RaT
152-212 7.73 pPpPYTr9gPPPHENJTJapppgmngpPPPgr pRgprmg i ppgrgt prngmppp
gmrppppgmrg
2 HS70_TRYCR
616-666 8.38 gmagagmpggmpggMPGYMPgIMPIgMPIgRPIgNpggmpggmpggmpgy
a
3 RSMB_HUMAN
169-240 9.22 ppgrggppPpmgrgapppgmmgpppgnr pregprngippgrgtpngmppp
gUrppPPRINr gppPPPImIpprp
4 RUIC_HUMAN
70-152 11.19 pppaganippppslpgpprpgimpaphmggprmmprngppppamnpvgpa
pgmrpringghmpmmpgppmmr ppar prmvptrp
5 K10_DROME
224-281 11.71 rgpppnrppprlmmgppmgpmgpapr gpgpmgpggpyYpampt pppvpgmr
gpghhgpm
6 SRP5_YEAST
495-537 11.74 glmgnmmnmfgggmgggmgggmpdmnemmkmmadpamggmakag
7 MAM_DROME
1092-1156 13.84 vgvgvgvgvgvgvgvgngqvvggpgsggpnngamngmggpmggmpgmang
gpmnpmamnpnaagp
8 HS70_BRELC
615-659 14.43 aaagaaggmpggmpPgRPggIMPIMPIOMPgMPIaIpPggmpgampgg
9 K2C2_XENLA
299-374 15.30 ggaaggmgggggmggomgggMgNaggmMgmggYmaMgggmgmgggmggamg

ngggmgmggamgmgdgrgsghgggyg

10 HS70_PLAFA
627-675 16.12 aagaaggmpggupggmpggmpsgpggmnipggupgagmpgnapagsgp

11 pC1l_DROME
752-794 20.36 gaggnagongmmcaaImggrawsedgagiggggrarenggt prmm

Figure 1. Neighboring a low-complexity amino acid sequence. The list shows
the few nearest neighbors, amongst the low-complexity sequences of the
Swissprot database, to the guery sequence, which is a methionine-proline-
glycine-rich subsequence of the human Ul SnRNP-associated protein. The hits
are ranked in order of distance, as measured by an algorithm based on the
pairwise residue covariances observed in the low-complexity subset of
Swissprot.

68



	Patrick flrgos
	Natalie Bjorklund E;I Richard Gordon
	Mark Borodovsky
	John Casti
	& Roderic Guigo
	Richard Hamming
	Kerr Hatrick & William Taylor
	Jaap Heringa 0 Patrick Argos
	David Grinberg Sori n I s t ra i I I & Michael Sipser
	Danielle Konings & Robin Gutell
	Ftndrzej Konopka
	Charles Lawrence
	Catherine Macken
	Stephen Modena
	Pauel Peuzner
	Robert Rosen
	Peter Schuster
	Peter Stadler
	John Woo t ton

