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We study the interplay between a deterministic process of weak chaos, responsible for the anoma-
lous diffusion of a variable x, and a white noise of intensity =. The deterministic process of anomalous
diffusion results from the correlated Quctuations of a statistical variable ( between two distinct val-
ues +1 and —1, each of them characterized by the same waiting time distribution @(t), given by
@(t) t " with 2 ( p, ( 3, in the long-time limit. We prove that under the influence of a weak
white noise of intensity =, the process of anomalous diffusion becomes normal at a time t, given
by t, 1/:-~t"l. Here P(p) is a function of p, which depends on the dynamical generator of the
waiting-time distribution vtr(t) We der. ive an explicit expression for P(p) in the case of two dynam-
ical systems, a one-dimensional superdifFusive map and the standard map in the accelerating state.
The theoretical prediction is supported by numerical calculations.

PACS number(s): 05.40.+j, 05.60.+w

I. INTRODUCTION whose Fourier transforms have the form

The deterministic approach to anomalous difFusion has
been intensively studied in the last few years by several
groups [1—3]. The map originally introduced by Geisel
and co-workers [1] is now regarded [4] as the prototype
for deterministic dynamics leading to anomalous diffu-
sion faster than ordinary Brownian motion. It is a one-
dimensional map driving the motion of a variable,
which can be thought of as the velocity of a diffusing
particle whose position is given by the variable x itself.
In the continuous time limit we have

d, =&(t) (1)

and the map of Ref. [1] makes the variable ( fluctuate
between the two states, ( = 1 and ( = —1. The sojourn
time in each state is characterized by the distribution
g(t), which has the inverse power-law structure

lim g(t) = const
(2)

in the long-time limit, with p & 1. Here we focus our
attention on the range

2& p, (3. (3)

This choice is determined by two distinct but related
reasons: (i) The range of Eq. (3) has been proved [2,3]
to correspond to the dynamical realization of an o,-
stable Levy diffusion process. We remind the reader that
Levy processes of diffusion are [5,6] a generalization of
Brownian motion, characterized by distributions p(z)

(4)

with the parameter o. in the range 0 & o. ( 2. The de-
terministic approach of Refs. [2] and [3] connects n and
p via the relation n = p —1. Thus, the region given
by Eq. (3) corresponds to the parameter o. ranging from
n = 2 (Gaussian difFusion) to o. = 1 (ballistic motion)
and this range of the parameter has been shown to be
compatible with an equilibrium dynamical realization of
Levy processes. Moreover, the recent investigations of
many groups [4] suggest that Levy processes are as ubiq-
uitous as the Brownian motion itself. (ii) The theoretical
investigations of Refs. [2,3] have shown that the asymp-
totic properties of a process of anomalous diffusion are
independent of the details of the dynamical generator of
the distribution g(t) and that they depend only on the
time asymptotic property of (2). The standard map in
the accelerating state is proved [7,8] to result in a waiting-
time distribution in each of the two accelerating modes
with the same inverse power structure as that of (2) with
the index p fulfilling the condition (3). Thus, the anoma-
lous difFusion generated by the standard map "coincides"
with the one generated by the map of Geisel, Nierwet-
berg, and Zacherl [1] if the index p is the same, and both
are a dynamical realization of a Levy process.

The main purpose of this paper is to study the tran-
sition from anomalous to normal diffusion triggered by
environmental fI.uctuations. In the literature there are
already investigations of this kind [9,10] and the interest
for this problem in our case is dictated by the following
reasons.
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(a) As already pointed out in [9] the Hamiltonian dy-
namical realization of a process of anomalous diffusion
in complex systems implies the interaction of the source
of the inverse power-law distribution with a virtually in-
finitely large number of degrees of &eedom. This leads to
a transition &om the inverse power-law behavior of (2) to
an exponential decay. In Ref. [9] this transition was as-
sessed numerically and the focus of the paper was on the
dependence of the resulting diffusion coeFicient on this
crossover time with no discussion of how this crossover
time depends on the intensity of the environment fluc-
tuations. The purpose of this paper is to establish this
dependence by means of a simple analytical expression.

(b) According to recent theoretical work [4], the roots
of anomalous diffusion in Hamiltonian systems rest on
the self-similar properties of the region at the border be-
tween the chaotic sea and the accelerating islands. Self-
similarity with no lower bound is an idealization of re-
ality conflicting with the quantum-mechanical nature of
the physical systems. It has been recently assessed [11],
on the basis of both theoretical and numerical arguments,
that this implies a transition &om anomalous to normal
diffusion at a quantum crossover time tg~ that depends
logarithmically on the Planck constant 5,

1 1
tq~ - —ln —,

A

where A is the Lyapunov coeKcient of the trajectories
moving in the chaotic sea embedded within the &actal
region at the border with the accelerating islands [4].
One would expect that for a macroscopic system en-
vironmental fluctuations are a cause of breakdown of
anomalous diffusion more signi6cant than quantum fluc-
tuations. This would imply that the crossover time of
the transition, caused by thermal fluctuations, depends
logarithmically, or more weakly, on the intensity of the
corresponding fluctuations. We shall show, on the con-
trary, that this crossover time, t~, fulfills the relation

where P(p) is a simple analytical function of p, which
turns out to be of the order of unity.

The outline of the paper is as follows. Sec. II is de-
voted to applying our theoretical approach to the map of
Geisel, Nierwetberg, and Zacherl [1]. In Sec. III the same
theoretical approach is applied to the standard map. In
Sec. IV these theoretical predictions are checked with the
help of computer calculations. Finally, in Sec. V we point
out the physical significance of the results obtained.

Using the property of antisymmetry by reflection around
x = 0 and the invariance by translation of a unit cell,
they express their map in the reduced range 0 & x & 1/2
as

x„+i ——g(x„), (7)

with

g(x) = x+ ax' —1, (8)

where the constant a is given by a = 2 .
The reduced map, which is obtained iterating sepa-

rately the motion within each unitary cell and the motion
between cells, is defined as [2]

y-+i = g*(y ),
N„+i ——N„+ g(y„), (9)

where 0 & y & 1 and x = y +N (see Fig. 1).
To simulate the interaction with the environment we

perturb the deterministic dynamics of Eqs. (7), (8),
and (9) adding a Gaussian white noise of (small) intensity
:-, defined by

(f f)=2:-8,,
The map dynamics under the influence of environmental
Huctuations thus becomes

y~+i = g (yn) + f~&

N„+i ——Nn + 9(yn) ~

1.0

0.8—

0.6—
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In the original mapping the diffusion between cells could
not take place through the boundaries (in the unitary
cell) y = 0 or y = 1, but only via the map driving the
cell number. In principle, the addition of noise opens up
also the possibility of diffusion through the boundaries.
To avoid this, which would imply a major perturbation of
the original mapping, we introduced reflecting boundary
conditions at y = 0 and y = 1 for the evolution of y,
once the noise is switched on.

We are now in a position to realize a discrete-time rep-

II. THE ONE-DIMENSIONAL DYNAMICAL
MODEL

0.2—

The discrete-time dynamical model studied here is one
of the two discussed by Zumofen and Klafter [2], origi-
nally introduced by Geisel, Nierwetberg, and Zacherl [1].
We focus on the map they used to discuss anomalous dif-
fusion that evolves faster than normal (superdiffusion).

0.0
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FIG. 1. The reduced map of Eq. (11). Note the regions I,
J, and K, and the points d and b.
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resentation of the generic equation of motion

(12)
t(8) =

a(z —1)
(14)

The motion in the regions I, J has a regular (laminar)
character; the particle remains there for a large number
of iterations. Perinanence in region I(J) corresponds to
an increment —1(+1) of the variable x at each iteration.
Regions I and J therefore correspond to the velocity (
having the value —1, +1, respectively. In the absence of
noise, the waiting-time distribution in each of the two
regions is given [1,2] by the inverse power law of Eq. (2)
with

z —1

As a consequence of these dynamical properties we have

g(yo, t) = gi(yo, t —t(b)) if yo & Ii,
g(yo, t) = g2(yo, t) if yo c I2.

This is equivalent to defining g(yo, t) as

g(y, t) = e(b —y )0(t —t(b))g (y, t —t(b))
+0 (yo —8)0(t (b ) —t) q2 (yo, t),

where 0(z) is the usual step function.
Assuining, as is usually done [2], that the particles are

uniformly injected in the laminar region, we obtain

The laminar motion is interrupted by short phases of
chaotic motion, corresponding to iterations in the cen-
tral region K. The two phases (laminar and chaotic)
alternate intermittently.

I et us refer to the laminar region on the left of the uni-
tary cell, i.e., the region I of size d defined by 0 & y & d.
Analogous considerations apply to the region J. I et us
divide the left laminar region into the two intervals Ii
defined by 0 & y & b and I2 defined by b & y & d.
The quantity we are interested in is the distribution of
sojourn times in the interval I, in the presence of noise.
We shall solve the problem, making the following simpli-
fying assumption: the interval Iq corresponds to a region
where the dynamics is dominated by difFusion, while the
interval I2 corresponds to a region where the dynamics
is dominated by the deterministic motion (9). This is so
because while the deterministic dynamics slows down as
we approach y = 0, the dynamics induced by the noise is
independent of the point in I we consider. The problem
of a proper definition of b, i.e., the boundary between the
interval Ii and the interval I2, will be tackled later.

I et us first show how to express the distribution of
sojourn times g(t) in the interval I in terms of upi(t)
and $2(t), the waiting-time distributions relative to the
intervals Ii and I2, respectively. Let g(yo, t) be the dis-
tribution of sojourn times in the interval I if the particle
is located at yo at t = 0. We also introduce gi(yo, t) and

g2(yo, t), the distributions corresponding to the sojourn
in Ii and I2 with yo belonging to I~ and I2, respectively.

If yo belongs to Ii, the particle will move within Iq un-
der the infIuence of diffusion, it will reach the border with
I2 and then it will move within I2 driven by the deter-
ministic motion. Notice that the motion in the laminar
phase takes place only in one direction, from within the
two laminar regions towards the central chaotic region.
Thus, after entering the interval I2, the particle moves
towards the border y = d with no recrossings, but those
induced by noise, which, by hypothesis, are supposed to
be negligible in the region I2. If yo belongs to I2, the only
possible dynamics left to the particle is the deterministic
motion towards the border y = d. Notice that adopting
the continuous-time representation [1], we can evaluate
the time t(b) it takes the particle to move from y = b to
y = d. This reads

g(t) = — g(yo, t)dyo,

b

g, (t) = — g, (y, t)dy,

1
@,(t) = — q, (y„t)dy, . (i9)

This is equivalent to expressing @(t) as follows:

@(t) = 0(t —t(b)) —@i(t —t(b)) + 8(t(b) —t)@2(t). (20)

Let us now address the problem of evaluating gi(t)
(the same calculation has been carried out by Agmon and
Weiss in Ref. [12]). First, we note that the probability
of finding the particle at y if it was initially placed at
yo, assuming that both y and yo belong to Ii and thus
the motion from yo to y is diffusional, can be evaluated
solving the standard diffusion equation

OpOpOp
Ot By t9yo

(21)

with initial condition

p(y, t = 0lyo) = b(y —yo). (22)

It follows from the dynamics that we must impose a
reflecting boundary condition at y = 0. This means
Bp Op
&"„l&=o = &" lil, —o ——0. Then we assume that, once
the border y = b is reached, the particle is immediately
injected into the interval I2. Consequently we set at
y = b an absorbing boundary condition p(y = 8, tlyo) =
p(y, tlyo = b) = 0. Then we define

fi(yo, t) = p(ylt, yo) dy,

namely, the probability that the coordinate y is still in
Iq at the time t given the initial condition yo at t = 0
(with yo E Ii). We define also the probability that the
coordinate y is still in Ii given the initial condition of
being somewhere in Iq at t = 0,
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b

fi(t)—:— f, (yp, t)dyp.
0

(24)
Then, (ti) can be determined using @i(t) from (29), and
we have

OO 2b~ 1
(t, ) = tg, (t)dt = )

0
m2= (n+ i)

b2
(33)It is straightforward to show that these definitions imply

0
n (yo, t) = &—, fi(yp, t),

0~.(t) = ——f.(t)
Ot

(25) The determination of Tg comes from

(26)
(34)Tg = — dypT(yp),

b 0
The solution of (21), with a refiecting boundary con-

dition at y = 0 and an absorbing boundary condition at
y=b, is [12]

where T(yp) is the time it takes a deterministic trajectory
driven by the unperturbed map to reach the border b
from the initial position. T(yp) turns out to be

(27)

Using (23) and (24), we derive

2 f' 1b ay ( 11 ~yp
p(y, t~yp) = ) —cos

~

n+ —
~

cos
~

n+ —
~2r ~.

ir'= ( 1)
x exp —

~

n+ —
~b'

q 2r

1—z bl —z

T(yo) =

so that we get the following result:

b1—z

T$
a(2 —z)

'

(3s)

(36)

2 exp —~,
= (n+ —,')'t

fi(t) = ).~,b +

Substituting (28) in (26) we get

(28)
b1+z

Using (13) we derive from (37) the result

(37)

Using (36) and (33), we derive from the condition (32)
the following estimate for b:

=
2=-

@i(t) = ) exp
n=o

/n+ —
/

t (29)
=(u —1)r'(2~ —1)

We see from Eqs. (20) and (29) that the asymptotic
behavior of vP(t) is given by

We note that this expression fulfills the normalization
condition g(t) exp —

~

—
~

t
$2 (39)

@,(t)dt = 1.
0

(30) Using (38) we finally derive

The calculation of @2(t) is carried out as in Ref. [1] and
leads to

~2(t) = —[(z —1)at+" ]'- .
d

g(t) exp —= ~~ " lt

or, writing explicitly the crossover time,
—1/(2p, —1)

4C

(40)

(41)

(ti) = Tg. (32)

The total waiting-time distribution g(t) of Eq. (20) is
completely defined, since @i(t) is given by Eq. (29) and
@2(t) by Eq (31). It is immediate to verify that the
waiting-time distribution g(t) is also correctly normal-
1zed.

I et us now approach the central problem of this sec-
tion. We have to define the parameter b as a function
of:-, a, and z. The criterion adopted to define b is the
following: we define (ti) as the mean sojourn time in Ii,
evaluated with the assumption that the dynamics within
I1 is only due to diffusion; then we evaluate the mean
sojourn time under the assumption that the dynamics
of the system depends only on the deterministic motion
of the unperturbed map (i.e. , we fictitiously remove the
noise), and we denote it by the symbol Tg. The parame-
ter b is determined by the condition

Writing [see also Eq. (6)] the relation between t, and:-
in the form

for this model we have that

2/i —1

This prediction will be checked in Sec. IV with the
help of numerical calculations. We have to stress,
however, that this prediction is also supported by the
renormalization-group arguments of Sec. III.

We would like, now, to establish a connection with the
results of a preceding paper of our group [9]. In that pa-
per it was proved that if the long-time behavior of @(t),
exhibiting at intermediate times an inverse power-law be-
havior like that of (2), is dominated by the exponential
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behavior g(t) exp( —et), then in the asymptotic time
limit we will recover standard difFusion with a diffusion
coeKcient that is proportional to eI' . We want to prove
that the theory developed in this section fits this result.

Let us note first [9] that in the long-time limit

of Refs. [9] and [10] seems to suggest. In Sec. III we
shall give a firmer support to this view adopting the
renormalization-group method.

(*'(t)) = (t')
(t)

' (44)

III. THE RENORMALIZATION-CROUP
APPROACH AND THE STANDARD MAP

IN THE ACCELERATING MODES

where (t") is the nth moment of vP(t). Using (20) we find

t(~) OO

(t) = tg, (t)dt + — [t'+ t(b)]g, (t')dt'
0 d p

Let us again consider the reduced map (9), focusing on
the behavior near the tangent bifurcation it exhibits at
y = 0. The map reads

t(~) b
t@2(t)dt + —[(ti) + t(b)]. (45) u+i =f(v ) (50)

The second term vanishes for b going to zero, whereas
the first term is independent of b. Thus, for = —+ 0, we
get

with f(y) defined by

f(u) =@+au .

We perturb it with a noise term as follows:

(51)

d1—z

(t) =
a(2 —z)

As far as (t ) is concerned, we get

(46) f(u) = V+ au'+ ~2=-(. ,

where ( is a white noise defined by

(52)

t(b)
(t') = t'g, (t)dt

OO t" + 2t(b) t'+ t'(b) g, (t') dt'
p

t(b)
t'@,(t)dt + — (t,') + 2t(b) (t, ) + t'(b)

0
1

(47)

Both terms diverge for b going to zero. The leading di-
vergence is

(~(t)~(t )) = b(t —t ). (53)

(54)

It is known that the scaling properties of the intermit-
tent transition from chaos to regular motion that takes
place at a tangent bifurcation can be described by a
renormalization-group (RG) equation [13] (the original
idea of a RG approach to the study of period-doubling
bifurcations is due to Feigenbauin [14]). The scaling the-
ory tells us that a characteristic time of the process t(:-)
rescales as

liin(t )8—+0

Thus we find Rom (45) and (38) that

(48)
where the exponent v is calculated by solving and lin-
earizing the corresponding renormalization-group equa-
tion. The analysis carried out in [13] gives

(
3 (t) ) b(~ 3)/(P i) t (P——3)/(2—P —i) t (49)

Identifying e with:-i/( ~ ) [see Eq. (40)] we recover the
result of the preceding paper [9]. We remark that the
transition &om anomalous superdift'usion to normal dif-
fusion results in an enhancement of the difFusion coeK-
cient "(" )/'( " ), which is proportional to an inverse
power of the small noise intensity ".

We note that the result (49) is consistent with the pre-
dictions of [10]. In fact, the physical situation discussed
in that paper in the case where the map displays intermit-
tent behavior is the same discussed here in the particular
case z = 2(p = 2). It is immediate to verify that the
prediction for the diffusion coefficient given by Eq. (34)
of Ref. [10] is the same of Eq. (49) with p, = 2.

At first sight, the two-state approximation used in this
section seems too drastic to provide accurate predictions.
However, we think that its description of the asymptotic
properties is correct, as the recovery of the prediction

C(z —1)
z+1 (55)

Using (13) we have

t(-) ——i/(zp, —i) (56)

If we interpret t(:") as the characteristic time scale for
diffusion, or equivalently as the crossover time between
power-law and exponential behavior of @(t), then the re-
lation given by (56) has the same functional dependence
of Eq. (41), with P(p) = 1/(2p, —1), which coincides with
the one given by Eq. (43).

This is quite satisfactory and it encourages us to ap-
ply the two-state approach of Sec. II to the case of the
standard map in its accelerating modes [6] where, on the
other hand, the RG would not be applicable. Prom a
formal point of view the standard map perturbed by the
environmental fluctuations is given by
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p„+g ——p„+K sino„,
0„+i ——0„+p„+i +. f„, mod 2vr, (57)

LW;~
P2~$

2

(58)

where f is the white noise term defined in Eq. (10).
We approach the problem considering the model for

transport in phase space proposed by Hanson, Cary, and
Meiss [15). We now recall the physical picture on which
this model rests [16]. It is known that the phase space of
a nonintegrable Hamiltonian system with two degrees of
freedom consists of a mixture of regular components, in
which the motion is quasiperiodic, and irregular compo-
nents, in which the motion appears to be chaotic. Every
island of stability in the chaotic sea is encircled by a set
of cantori (cantori are the remnants of destroyed invari-
ant tori, through which orbits must weave). The cantori
that have a sufBciently irrational rotation number have a
small flux across them and act as barriers to transport;
they form a sequence converging to the boundary circle of
the island, which is believed to always be a critical KAM
torus. Critical tori exhibit scaling properties that also
imply scaling for the fluxes across the encircling low-flux
cantori.

In the model for transport developed in [15,16] the
transitions take place between states corresponding to
the regions of phase space whose boundaries are two suc-
cessive low-flux cantori. The motion of an orbit trapped
in a state is regarded as random, and successive transi-
tions are assumed to be uncorrelated. This means that
the dynamics can be described by a Markov chain. The
transition probability from the ith to the jth state is
given by

the environment-induced diffusion. As in the case of the
one-dimensional map of Sec. II, it is reasonable to expect
that the resulting waiting-time distribution will behave
as

t
q(t) exp ~—

tN)
(68)

A~ oc (65)

The dependence of N on the noise intensity can be deter-
mined by noticing that the connection between t~ and.
A~ must be

i.e. , physically, that the phase state A~ is "filled" by the
noise.

Using Eqs. (64) and (65), from Eq. (66) we get

(67)

where t~ represents the crossover time between anoma-
lous and normal diffusion. We can regard t~ as the
characteristic time at which trajectories that reach states
i ) N give the dominant contribution to the total prob-
ability of permanence in the Markov chain. At the same
time we notice that for small noise intensity, which im-
plies N )) 1, the crossover time is essentially identical
to the transition time from the (N —1)th to the Nth
state. This implies that, due to the nature of the model
adopted, t~ rescales as

(64)

On the other hand, from (60) we have that the phase
space area relative to the state N, A~, rescales as

where LW, ~ is the flux through the cantorus connecting
the ith state to the jth state. Ai is the area of phase
space accessible to the particle in the ith state. This
model rests on the scaling assumption

Using Eqs. (64) and (67) we get

which results in

(68)

LTV, i+g ——LWi+g i ——(u'LWO g, (59) @(t) exp —= l ~" lt

Pi —+2+ i —PO —+1& ~

(6o)

(61)

It is clear that Eq. (68) implies a relation between the
cutofF time [here, tN, see Eq. (63)] and the noise intensity
:- similar to Eq. (42), with the function P(p) given by

This approach leads to the waiting-time distribution of
Eq. (2) with P(v) = 1

(7o)

ln~p= 1+
ln~

(62)

The speed of the deterministic motion becomes slower,
increasing the index i of the state considered, which is
equivalent to the particle entering more and more deeply
inside the &actal region at the border between the chaotic
sea and the accelerating island. The role of the environ-
ment fluctuation given by the stochastic force appearing
in (57) is to produce a slow difFusional motion all over
the phase space available to the particle. However, there
must exist a given integer N such that the deterministic
dynamics of the map for i ) N must become slower than

It must be stressed that the relation (66) is equivalent
to the criterion of Sec. II, based on the division of the
laminar phase into two regions. The diffusion motion
resulting from the environmental fluctuations alone does
not have any time scale whereas the time it takes to cross
a phase space region of size A~ depends only on the
fluctuation intensity =. Thus Eq. (66) defines the site N
at which the importance of the diffusion motion becomes
comparable to that of the deterministic process.

We believe that this is a reliable criterion. We think
that the only element of weakness of our treatment is that
it rests on the prediction of Eq. (62), which is based on
the parameters w and e, which are not rigorously derived
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from the Hamiltonian of the system. However, we can
always look at u and e as effective parameters, taking
into account the complex hierarchical structure of the
real phase space. In practice, we can assume a p value
coinciding with that given by the numerical calculations.
We shall see, in Sec. IV, that the numerical calculations
lead indeed. to results in satisfactory agreement with the
theoretical prediction of Eq. (69).

1 ~
0-

0.8—

IV. NUMERICAL RESULTS
0.4—

10

10

0 0 OO OO
D

FA

S@

The first model we have studied numerically is the sys-
tem given by Eq. (11),driven by a standard generator for
the Gaussian noise. We typically followed 10000 trajec-
tories, initially randomly distributed over the range [0, 1],
for times up to 10 iterations of the mapping. We focused
on the interval I, and built the distribution of exit times
from this region. Some typical @(t) are shown in Fig. 2
as dots, for the same value of p and different noise inten-
sities.

We fitted the distribution of exit times with an expo-
nential function (see the solid line in Fig. 2), and then
we derived, via a power-law~It, the dependence of the
crossover time on the noise intensity.

The comparison between the numerical results for the
function P(p) and the theory [Eq. (43)] is shown in Fig. 3,
as a function of p: we regard the agreement as excellent.

We turned next to the standard map of Eq. (57). The
first problem here is to have a reliable value for the pa-
rameter p, which characterizes the universal behavior of
the map itself: note that the only &ee parameter, beside
the noise intensity, is K. To the best of our knowledge,
there is no extensive work on this map, aiming at map-
ping out the dependence, if any, of p on K: thus, we lim-
ited ourselves to the numerical investigations of the map
for a couple of well-known values of K, for which some
phenomenology is already known [4]. For these values
of K, the map is characterized by a chaotic motion over

0.2—

1.0
I

1.5
I

2.0
p.

I

2.5
I

3.0

FIG. 3. Comparison between simulations (symbols) and
theory (solid line) for the map of Eq. (11).

almost all the available phase space, apart from small
regions (islands) of stable motion.

In this case it proved not very accurate to derive the
crossover time directly: we decided then to look instead
at the diffusion coefBcient, which is directly connected to
the crossover time [see Ref. [9] or the derivation leading to
Eq. (49)]. For the sake of clarity, though, we will always
express the numerical results in terms of P(p).

We picked a number of initial starting points, making
sure they were not within the periodic islands, and it-
erated them forward, computing the second moment of
the variable x. Then, in the region where normal dif-
fusion was established. , we fitted a straight line to the
second moment evolution, and derived a diffusion con-
stant. Repeating the procedure for a number of different
noise intensities we finally derived the dependence of the
diffusion coefFicient on the noise intensity =. Finally, we
"rescaled" the result in terms of a power expressing the
dependence of t on the noise intensity.

We found that for K = 6.91150, for which p
2.667 [4], the simulations yield P(p) = 0.604, and for
lt = 6.47168, for which p, = 2.302 [4], the simula-
tions yield P(p) = 0.8673. Theoretically, from Eq. (70),
we would expect P(p) = 0.600 in the former case and

P(p) = 0.7681 in the latter case. We think that also for
this system, although the dynamics is much more com-
plex than in the previous case, the simulations agree well
with the theory.
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V. CONCLUDING REMARKS

In conclusion, we have shown that the crossover &om
anomalous to normal diffusion takes place at times t„
which are inversely proportional to =~~~~,

(71)

FIG. 2. Some typical vp(t) for the map of Eq. (11), for dIf-

ferent noise intensities (symbols). The full line is the (asymp-
totic) best fit w'ith the function exp( —t/t, ).

1
P(V) =

2
(72)
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if the dynamical generator is the map of Eq. (8), and

P(v) = (73)

if the dynamical generator is the standard map in the
presence of accelerating modes. This means that anoma-
lous diffusion is fairly robust against the environmental
fluctuations. Since = && 1, the crossover time becomes
longer and longer moving &om p, = 3 (normal diffusion)
to p = 2 (ballistic motion). It must be noticed that in
the standard case of ( characterized by an exponential
relaxation function, there is no transition from anoma-
lous to normal difFusion, and that the process of normal
diffusion with a slightly increased diffusion coefBcient is
realized instantaneously. In the case of anomalous dif-
fusion, on the contrary, as pointed out in [9], the difFu-

sion coefBcient of the process, after the transition Rom
anomalous to normal diffusion took place, is anomalously
large.

A further relevant aspect of this result is the sensitiv-
ity of the long-time regime of normal diffusion on the
details of the dynamical generator. There is a general
agreement on the universal nature of these processes: this
means that different dynamical generators with the same
waiting-time distribution lead to the same diffusion pro-
cess. The effect of an environmental perturbation on an

anomalous process of diffusion implies that the univer-
sal nature of the process is lost and that the crossover
time (71) (and, consequently, the resulting difFusion co-
efficient [9]) depends on the nature of the dynamical gen-
erator, as is evident &om the different dependence on p
of Eqs. (72) and (73). This may have interesting appli-
cations in distinguishing different microscopic dynamics
leading to the same macroscopic behavior.

Finally, we must stress that the result of this pa-
per might have remarkable consequences on the Geld
of macroscopic effects of quantum mechanics. Numeri-
cal calculations [11) seem to support the conjecture that
the crossover time &om anomalous to normal diffusion
caused by quantum fluctuation depends logarithmically
on the strength of the fluctuations, i.e., the Planck con-
stant, whereas, as shown in this paper, the crossover time
of the corresponding process caused by environmental
fluctuations is related to the intensity of these fluctua-
tions, ", by an inverse power-law relation [see Eqs. (72)
and (73)]. This suggests that the transition to normal
diffusion should be more sensitive to quantum than to
thermal fluctuations. This is an interesting aspect re-
quiring further investigation. Et seems, however, that
through the response to fluctuations it is possible to get
information on the microscopic details of the dynamical
generator, in spite of the universal character of the pro-
cess and of the supposed independence of the macroscopic
diffusion &om microscopic dynamics.
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