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A METHOD FOR APPLYING SCIENTIFIC SUBROUTINE PACKAGE
IN MICR1OPROCESORS

INTRODUCTION

The scientific subroutine package is one of the most
important parts of the software for the scientific industry.
By now, most big computers have scientific packages, but
applying such a software package in microprocessors requires
consideration of the microprocessor's facilities such as
limited main memory, slow execution time, and only a few
small registers. In any scientific package, the trigono-
metric functions are the ones more widely used.

This paper discusses a method for implementing several
trigonometric function programs in a scientific package in
microprocessors. These programs will contain routines for
computing sin cos, tan and cot of any angle within the
range-of (-360o, + 36005.

The paper will also include the discussion of several
approaches to computing trigonometric functions used in dif-
ferent computer systems.

FLOATING POINT IN MICROPROCESSORS

Most of the microprocessors have 8 bit registers which
are inadequate for scientific applications. Sixteen or even
32 bit fixed point calculations should be used for greater
accuracy. However, these techniques are still inherently
inadequate for calculations performed over a wide range of
numbers. If one could dynamically slide the radix point,
the number range would be dramatically increased. This
is made possible by the use of floating point representation.
By using floating point formats, we increase the range of
numbers and obtain better accuracy.2

There are many ways to represent floating point nuw-
bers, but three formats are more common. The first one is
hexadecimal form with binary representation; the second
one is in binary form. The third format uses a binary coded
decimal (BCD) representation.

One format using a base of 16 is used in the IPM/360,
as shown in Figure 1. This format consists of a sign
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Figure 1: IBM/360 Floating Point Format.
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Figure 2: A -Binary Floating Point Format Used by Digital
Equipment Corporation and Hewlett Packard.
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Figure 3: A DCD Floating Point Format.
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bit for fraction, a 7 bit exponent, and 24 bit mantissa.
The radix point is to the left of the most significant
digit. The exponent sign is inherent. The sign bit is
zero if the number is positive, otherwise it is 1.

Another format, as shown in Figure 2, is a binary
format, which is used by Digital Equipment Corporation (DEC)
and Hewlett-Packard in their BASIC interpreters. In this
format, the most significant bit is always one, a normalized
number, unless the entire number is zero. The sign of a
number is shown in the sign bit. The exponent is stored
in 8 bits and represents a power of two in excg--128
not ion. The range of this format is from 2 to
2 ,or approximately 10+38 to 10~M3, with 7 decimal
digit accuracy.1

There are several kinds of BCD (binary coded decimal)
floating point formats currently in use. The range of the
mantissa in this format can be as few as four digits to as
many asixteel4igits of acc i cy, and a1e exponent can
be 10- 9to 10- or even 10+ to 10_ . 6 The popular
format, as shown in Figure 3, has 8 bits (2 digits) for
the exponent, and an 8 digit mantissa with the decimal
point assumed to be to the left of the most significant
digit. The sign of the number is represented by a whole
byte, 00 for positive and FF for negative. The exponent
can be represented in the form of excess-128 notation, similar
to DEC.

In floating point computations, the use of guard
digits is well established. A Guard bit or byte is
used in floating point registers to maintain accuracy in
performing the calculation. The guard byte is a 8 bit
extention to the least significant byte of the fraction,
mantissa. By using guard digits, significance will not be
lost when round off occurs.

ippliedFloating Point Format

Each of the above floating point formats has its own
particular advantages and disadvantages. Which is best
depends upon the requirements of the particular application:
speed, small memory size, variable mantissa length, ease
of interfacing to other software routines, etc.

The floating point format used in this application,
as shown in Figure 4, has the following BCD format: The
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The exponent is two digit decimal in excess-50 notation, eg.
a zero exponent (100) is 50, and the maximum exponent (104 J)
is 99. The mantissa is normalized. The radix point is as-
sumed to be to the left of the fraction. Thus the most signi-
ficant digit is not zero. However, the mantissa is represent-
ed by the 8 digit number, 32 bits. Therefore, the number has
8 digit accuracy. Whenever the number is negative, it will
be represented by the ten's complement of the original number.
If the most significant digit of the mantissa is o through 4,
then the number is positive; otherwise, the number is negative.

Numbers from +0.49999999 X 1049 to -o.49999999 X 10-50
can be represented by this format. A "guard byte" is used in
the floating point registers to maintain accuracy in perfor-
ming the calculations.

Since the applied floating point form is a knd of BCD
format, it has the same advantage which BCD does: it is
easy to compute. The applied format is the shortest length
for BCD format, because the sign of the represented number is
inherent and there is no need to represent the sign in one
byte. However, it js easy to convert numbers from ASCII to
BCD and vice-versa.

This format has some disadvantages, but the commercial
computer industry has adapted to it. One of the disadvantages
is that the execution times for this format are significant-
ly slower than the binary floating points.1

T RIGONOMET RI C FUNCTIONS

There are several kinds of methods for computing trigono-
metric functions, such as Table searching, Taylor's expan-
sion, and Chebychev polynomials.

In regard to the microcomputer facilities (such as small
size of memory, 8 bit accumulator, and relatively slow Com-
putation speed), most of these methods are inefficient.

In order to use the table searching method, a relatively
large amount of the main memory is devoted to the table of
the required angles. As a matter of fact, several program
routines should be used for searching the table. Since in
microprocessors we are dealing with a small size main memory,
applying this method for computing trigonomtric functions
would not be efficient.

From Taylor's expansion, we know that, for example, the
value of Sin(x) can be computed as

_ 3 x _m+ 2xm-1
S i n ( x ) 4 X -+. ,. . . . . + ( 1 ) ++-1 +

' (2m-.1)!



This approximation for Sin has the error as remainder
. 2n+ 1

R = E { 
(2n+1) !

In the remainder term, as the range of x increases, it
is necessary to include more and more terms in the series in
order to obtain any desired accuracy. For getting a relative-
ly small error bound for the approximating formula, at least
ten terms of the equation should be used. Computing these
terms in microprocessors causes relatively large round-off
errors and also requires a large amount of main memory. How-
ever, the execution time for computation would be slow.?

The 11314 system library uses Chebychev polynomials for
computing the value of trigonometric functions. In this
algorithm, the main part of computation s finding the value
of Sin (A/4 . h) or Cos (t/4.(h) where ri is within the range
of o, < j .3 for computing Sin (-3/4.'h) the following
polynomial is used:

2 r

Sin (n/4r . )= (a + ai h + a2 l + a3 '6)

The coefficients were obtained by the roots of the Chebychev
polynomials of degree 4. The relative error in this method
is less than2-2 for the range of - AV2 < x <+It//4

If Cos ()T/4 . 1i) is needed, it is computed by a poly-
nomial of the following form:

Cos ()T/4. 1) =,I + b1 K12 + b 2 4 + b3 h 6

Coefficients were obtained by a variation of the minimax ap-
proximation, which provides a partial rounding for short pre-
cision amputation. The error of this approximation is less
than 2 L~

However, as the value of x increases, the relative error
would increase too, and no consistent relative error control
can be maintained outside the principal range -'2N<x,+/4.

As vie see, applying the Chebychev polynomial for comput-
ing the trignometric - functions in microprocessors h s almost
the same disadvantages that the Tayor expansion does.9

Trigonometric Functions on the M6800

For implementing any method to compute the trigonometric
functions on the 16800, three facts should be considered.
The method should be accurate, easy to execute and effi-
cient in its use of main memory.

One of the methods for computing the trigonometric.
functions which is recomended by several text books is
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approximating polynomails in the terms of finite differences.
During the research, it was found out this method would be
more efficient, more accurate, and faster than the others.3'9

Although this method uses the approximating formula for
computing, the execution time is not very long, moreover, the
execution time for microprocessors is not as important as oc-
cupied main memory. In regard to the other techniques for
approximating polynomials, the finite difference algorithm
has less arithmetic computation, so the execution time would
be faster.

DESCRIPTION OF THE APPROXIMATING FORMULA

The problem is to obtain a function g(x), which approxi-
mates a giYen function, f(x) at a certain number of specified
points. One of the important requirements for g(x) is sim-
plicity of evaluation; a polynomial will certainly fit this
requirement.

The approximating polynomial, in terms of finite diffe-
rences, Gregory-Newton Formula, is one of the formulation
which is not essentially difficult for digital computers.

The applied algorithm for finding trigonometric func-
tions is the third degree polynomial gien by:

?(Ak-i) (t-)( 2
P , (x) = Yo+ 'QY0 +ay +3Yh

2! 3!
Where X is a point in the interval (xo, x3).- xo, x1 , x2 and
x3 are 4 points of the function;k /= (x-xo)/h, and

h =X -xQ= x2 -x 1 = x3 -x2.
AY 0 , ACY and A3Y are defined in the following table.

X Y yoA 2Y 3 Y

YO Y1-Yo

X.1 Y1AY1- AYo Y 2

XY2-Y1 1- o
X 2 Y2 1 2- A1

X3 Y3 Y3-Y2

For the best accuracy, the four nearest points to any
given value, x,.should be used in the above formula.
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Algorithm Description

For implemeting the trigonometric functions on the
microprocessor, following procedure is required:

1. Convert the gigen an le from the range of (-3600 ,
+360 ) into (0. , 90,) by using the trigonometric
relationship.

2. Find the four angles which are the nearest points to
the given angle in the reserved table.

3. Build the approximating polynomial used the four ob-
tained points in the table and compute the approximat-
ed value of the required trigonometric function.

ERROR ANALYSIS

There are three kinds of errors which arise in the com-
putation of the trigonometric functions.

1. Errors due to shortened initial data

2. Truncation errors in the computational procedures

3. Errors due to the use of pseudo-arithmetic operations.

For the applied algorithm, each kinds of error should
be considered and the bound for each should be defined.

Errors Due to Shortened Initial Data

These kinds of errors arise from shortening data by the
need to use no more than a certain number of digits, say d
digits, to represent ap given umber. It is assumed that if
a number such as a = bi1On- is to be represented by "a
number such as & in t ~ec'fputer with d digits of precis of,
then the error = a-a will be such that 1O(1bo.5 X 10n- +
that is, the error will be less than or equal to - in the
last digit position to be retained. Further, if a number, a,
is to be represented by a numbe a which is to have m decimal
places of accuracy, then o(= a-S is such that 1t( ( 0.5 X 1 0 -m.

The applied floating point is represented in a way that
there is at least 7 decimal places of accuracy. So, the
errors due to the shorte ed initial data for the input data
will be c() \< 0.5 X 10~

Trunca ion Error in the Computational Procedure

Since digital computing devices can perform only the
fundamental arithmetical operations of addition, subtraction,
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multiplication, and division, the only mathematical quantity
which can be calculated by their use is a rational fraction.
It is fortunately the case that most functions commonly
emountered can be approximated by rational fractions. How-
ever, the fact that these are only approximations should be
emphasized. Thus, for example, in the applied formula which
is used for computing the trigonometrical functions we have

111 E2J AY o .[-7ti"Y o
Y YY0o+4 0__+ + ."..."+ n

2!

where n is chosen large enough to produce an error term which
is acceptable. However, re ardless of the size of n, the
error is generally present.) This error is called truncation
error which is actually the remainder term of the equation.

In general, the remainder term of the applied approxima-
tion formula, Gregory-Newton Formula, is R(x) which can be
computed as follows

R(x) = hn+l d ,n+i] where fis a point in the range
(n+1)!

of the function. 3 Since the third degree of the polynomial
will be used for approximation, we have

R(x) = f(f)/4!'h'"Ajf)! the interval of two points, h, as-
sumed to be o.1;for Sin and Cos function, f(1) ,( 1 for any
value of because all orders of the derivatives of the func-
tion are Sin or Cos, and the upper bound on the magmitudes
of all derivatives will be less than or equal one. Since in
the range of (00, 900) the value Tan and Cot are not bounded,
the relative error for R(x) should be computed instead of
absolute error. Since the value of A= (x-xo)/h, for any
value of x the value of/i will be o (, (1 ,so the remainder
is 1
R(x) -- X h (A )(,,-1)(A-2)(-, -3)

24

R(x) X o10'7 X o.S37 o.35 X 10-6

ERRORS DUE TO THE S OF PSEUDO ARITHMETIC OPERATIONS

A .pseudo-arithmetic operation is some operation which
produces the same result as a corresponding arithmetic opera-
tion to within a certain unavoidable error.

The pseudo-operations of concern with digital computers
are the counterparts of +,--, X,... of usual arithmetic in
which every result must be a number with at most d digits in
it, for some d. Hence, some loss of accuracy will occur.5
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Each pseudo-arithmetic operation which is performed on
two numbers with d digits may result in more than d digits.
In this situation, some digit must be discarded.

Since in the applied floating point representation there
is at least 7 decimal place of accuracy, the maximum error
due to the pseudQ arithmetic operation for each performance
is less than 10-,.

The input to the approximating formula uses at least 7
decimal place of accuracy, so the round-off error in f(x) is
of the oreder of o.5 X 10-7. In general, the maximum round-
off error in computation will be

f(x) =Y 2Y A3 Y

o.5 X 10- 7  10 7 2 X 10 ~7 4 X 10~7
Since the approximating formula is

P3 (x) = Y0+ AY-A+ A2 Y A ,-1) +
2!

the maximum error added to the remainder error, R4 (x), due to
round-off error is
Error = Errora + Errorb + Errorc + Errord where
Errora = Error(Yo) = o. X 10-7
Errorb = Error( AY = X 107+X 10-7 2 X 10-7+107

=X", 10-7

Errorc= Error 2 Y/(4-1)j=d 2 Y 0.5 X 3 X 10-7+o.5 X 2 x 1o7
+2 X 10'7 X o.5 X o.5\(2.5 X 10~7+0.5 X 10~7= 3_X 1O~7

Errord= Error [3Y,4(,-1)} -2j }[2.5 X 10~7X 3 X 3 X

10~ 7 X o.2519A Y + 4 X 10-7X 3 X .25 =7.5 X 10~7+ .75 X 10~7+

3 X 10 7 10.75x 10-7
So the to a error is

Errorx = 1 2rroral 4IErrorbI+ jErrorc/2! J+lErrord/3! 1 o.5 X 10~7

+3 X 10-7 + 3/2 X 10~ 7 +10.75/3x2)X 10-7\<o.5o X 10~7+3 X 10"7

+1.5 X 10~7 + 1.76 X 1o<6.76 x 10~7

So maximum round-off error is less than o.675 X 10'6.
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CONCLUSION

Since microprocessors are relatively small in main memory
and slow in execution time, implementing any scientific routine
in these kinds of machines should have the following charac-
teristics: it should be easy to compute, it should be accurate
and it should occupy the least amount of main memory.

The proposed formula for implementing' floating point
computation and the approximating algorithm for computing the
trigonometric functions on the M6800 microprocessor have
the above characteristics.
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DOCUMENTATION
USER'S INFORMATION

iNPUT

The input to the program is in the A andB'registers.The.value

of the input angle is in the range of ( -3600- ,43600.) in the BCD,,

binary code decimal, form. The left half byte of the A register represents

the sign of the angle. When the angle is in the positive range, zero

should be stored into the half byte sign, otherwise nine is stored.

The right half byte of the A register and the whole byte of the B

register hold the value of the angle in the degree. The right half byte

of the A register is zero if the absolute value of the angle is not

more than 99.

e.g. The angle of -600 for input is stored in the A and h registers as

and 1700 is stored as A re. B re.
01 70

OUTPUT

The output of the program is in the floating point form. Each

number is represented 14 five contiguous locations.as a block.

The address of the starting location is in the x register. The first

four locations hoed.thetfraction part of the result ntanbers and the

fifth location of the block has the exponent of the number. The resulting

number is represented in the BCD, binary code decimal,form. The fraction

and the exponent are in the ten's complement form if they are negative
n
numbers. When the most significant digit of the number is zero through



four tne number is positive, otherwise the number is negative and is in

the ten's complement form. The decimal point of the fraction part is

assumed to betto the right of the least significant digit of the

number.
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The Major Functions of the Programs

There are seven major subroutines used in the algorithm( see figure7.

The major function of each one is as follows

1. The Main Program

This program receives the given angle and converts it from the range

of ( -360 0 , +36OP ) into ( 00 , +900 ). It also finds the required tri-

gonometric function. Finally, it calls the search subroutine.

2. The Search Subroutine

After obtaining the angle from the main program,.this subroutine will

find the four angles which are the nearest points to the given angle'in the

reserved table. This subroutine then calls the polynomial subroutine and

transfers the five angular values to the called subroutine.

3. The Polynomial subroutine

By. calling the delta subroutine, this subroutine will compute' the ap-

proximated value of the required trigonometric function and transfers the

value to the main program.

4. The Delta Subroutine

By getting the approximating points, this subroutine computes the

value of the coefficients. Far computing these coefficients, the subroutine

- needs to call the addition, subtraction and the multiply subroutines.

This subroutine also calls the Muo subroutine.
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Figure 7: System Flowchart
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5. The Muo Subroutine

This subroutine computes the value of /f for a given value of an

angle, and it transfers the value to the polynomial subroutine for use in the

approximating polynomial.

6. The Multiply Addition and Subtraction

This subroutine gets two floating point numbers and adds them

together. It then returns the result to the calling program.

7. The Multiply Subroutine

This subroutine gets two floating point numbers and multiplies them

and then returns the result to the calling program.
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General Flowchart of the FADD,and,FSUB subroutine
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F1*chart of the Main Program
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Flowchart of the Search subroutine
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Flowchart of the Polynomial Subroutine
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Flowchart of the MUO Subroutine
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Flowchart of the Delta Subroutine
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Subtract DYl from DY2
and store the result as

D2Y2
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