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A METHOD FOR APPLYING SCIENTIFIC SUBROUTINE PACKAGE
IN MICROPROCTGSORS

INTRODUCTION

The sclentific subroutine package is one of the most
important parts of the software for the scientific industry,
By now, most big computers have scientific packages, but
applying such a software package in microprocessors requires
consideration of the microprocessor's facilities, such as
limited main memory, slow execution time, and oniy a few
small registers, In any scientific package, the trigono-
metric functions are the ones more widely used.

This paper discusses a method for implementing several
trigonometric function programs in a scientific package in
microprocessors, These programs will contaln routines for
computing sin, cos, tan, and cot of any angle within the
range of (-3660, + 36005.

The paper will also include the discussion of several

approaches to computing trigonometric functions used in dif-
ferent computer systems,

FI.OATING POINT IN MICROPROCF.SSORS

Most of the microprocessors have 8 bit registers which
are inadequate for scientific applications. Sixteen or even
32 bit fixed point calculations should be used for greater
accuracy. However, these techniques are still inherently
inadequate for calculations performed over a wide range of
numbers, If one could dynamically slide the radix point,
the number range would be dramatically increased, This
is made passible by the use of floating point representation,
By using floating point formats, we_increase the range of
numbers and obtain better accuracy.

There are many ways to represent floating point num-
bers, but three formats are more common, The first one is
hexadecimal form with binary represcntation; the second
one is in binary form, The third format uses a binary coded
decimal (BCD) representation,

One format using a base of 16 is used in the IBM/360,
as shown in Flgure 1, This format consists of a sign
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bit for fraction, a 7 bit exponent, and 24 bit mantissa.
The radix point is to the left of the most significant
digit., The exponent sign is inherent. The sign bit is
zero if the number is positive, otherwise it is 1.

Another format, as shown in Figure 2, is a2 binary
format, which is used by Digital Equipment Corporation (DEC)
and Hewletit-Packard in their BASIC interpreters. In this
format, the most significant bit is always one, z normalized
number, unless the entire number is zero., The sign of a
humber is shown in the sign bit. The exponent is stored
in 8 bits and represents a power of two in exg?gg—128
no?ggipn. The range of this format is_from 2" ' to
2~ or approximately 10+38 to 1077°, with 7 decimal
digit accuracy.!

There are several kinds of BCD {binary coded decimal)}
floating point formats currently in use. The range of the
mantissa in this format can be as few as four digits to as
many aggsixteepggigits of acc¥5 cy, and1§9e exponent can
be 10=77 to 10° or even 10% to 107'°', 6 The popular
format, as shown in Figure 3, has § bits (2 digits) for
the exponent, and an 8 digit mantissa with the decimal
point assumed to be to the left of the most significant
digit. The sign of the number is represented by a whole
byte, 00 for positive and FF for negative. The expcnent
can be represented in the form of excess~128 notation, similar
to DEC.

In fleoating point compgtations, the use of guard
digits is well established. A Guard bit or byte is
used in floating point registers to maintain accuracy in
performing the calculation. The guard byte iz a 8 bit
extention to the least significant byte of the traction,
mantissa., By using puard digits, significance will not be
lost when round off occurs.

Applied Floating Point Format

Each of the above floating point formats has its own
particular advantages and disadvantages, Vhich is best
depends upon the requirements of the particular application:
speed, small memory size, variable mantissa length, ease
of interfacing to other software routines, etc.

The floating point format used in this application,
as shown in Figure 4, has the following BCD format: The
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The exponent is two digit decimal in excess-50 notation, e,f.
a zero exponent (10°) is 50, and the maximum exponent (1049)

is 99, The mantissa is normalized, The radix peint is as-
sumed to be to the left of the fraction., Thus the most signi-
ficant digit is not zero, However, the mantissa is represent-
¢d by the 8 digit number, 32 bits. Therefore, the number has
& digit accuracy. Whenever the number is negative, it will

be represented by the ten's complement of the original number,
If the most significant digit of the mantissa is o through 4,
then the number is positive; otherwise, the number is negative.

Numbers from +0.49996999 X 1049 to ~0,499935999 X 10'50
can be represented by this format, A "guard byte" is used in
the floating point registers to maintain accuracy in perfor-
ming the calculations.

Since the applied floating point form is a kgnd of BCD
format, it has the same advantage which BCD does: it is
easy to compute, The applied format is the shortest length
for BCD format, because the sign of the represented number is
inherent and tﬁere is no need to represent the sign in one
byte, However, it %s easy to convert numbers from ASCII to
BCD and vice=-versa,

This format has some disadvantages, but the commercial
computer industry has adapted to it. One of the disadvantages
is that the execution timcs for this format are significant-
ly slower than the binary floating points.!

TRIGONOMETRIC FUNCTIONS

There are several kinds of methods for computing trigono-
metric functions, such as Table searching, Taylor's expan-
sion, and Chebychev polynomials,

In regard to the microcomputer facilities (such as small
size of memory, 8 bit accumulator, and relatively slow Com-
putation speeds, most of these methods are inefficient,

. In order to use the table searching method, a relatively
large amount of the gain memory is devoted to the table of
the required angles, As a matter of fact, szveral program
routines should be used for searching the iable. Since in
microprocessors we are dealing with a small size main memory,
applying this method for computing trigonomtric functions
would not be efficient,

From Taylor's expansion, we know that, for example, the
value of Sin(x) can be computed as

. ~ x3 x5 m+1 x2m~1
Sln(x) = X= —3-!- + —5-! srssnve +("]) (2m-1)|

+ LN
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This approximation for 5in has the error as remainder
. 2nt
=g {2 }
{(2n+1)!

In the remainder term, as the range of x increases, it
is necessary to include more and more terms in the series in
order to obtain any desired accuracy. For getting a relative-
ly small error bound for the approximating formula, at lecast
ten terms of the equation should be used, Computing these
terms in microprocessors causes relatively large round-off
errors and also requires a large amount of main memory,_  How-
gver, the execution time for computation would be slow,”?

The IBM system library uses Chebychev polynomials for
computing the value of trigonometric functions. In this
algorithm, the main part of computation is finding the value
of Sin (X/4, 1) or Cos (ﬁthx}ﬂ) where 1 is within the range
of o ¥3g1.; for computing Sin (4. N) the following
polynomlél 15" used:

: 2 3 6
sin (T/h o ¥1) = p1 (ag*at ) +aapp” + aspr” )

The coefficients were obtained by the roots of the Chebychev
polynomials of degree 4., The relative error in this method
is less than 220 for the range of - W2 x‘g + T/,

If Cos (X/4 o ¥q) is necded, it is computed by a poly-
nomial of the following form:

cos (TU o Pq) =4 + by P18+ bp 4t + b3 y16

Coefficients were obtained by a variation of the minimax ap-
proximation, whichk provides a partial rounding for shor!t pre-
cision Eﬂmputation. The error of this approximation is less
than 277,

However, as the volue of X increases, the relative crror
would increase too, and no consistent relative ¢rror control
can be maintained outside the principal range -J';‘;B\{ x\{ﬂ"/q.

As we see, applying the Chebychev polynomial for comput-

ing the trignometric - functions in microprocessors hgs almost
the same disadvantages that the Tayor expansion does,

Irigonometric Functions on the M6800

For implementing any method to compute the trigonometric
functions on the M6800, three facts should be considered.
The method should be accurate, easy to execute and effi-
clent in its use of main memory,

One of the methods for computing the trigonometric
functions which is recomended by several text books is



approximating polynomails in the terms of finite differences,”
During the research, it was found out this method would be 9
more efficient, more accurate, and faster than the others.’s

Although this method uses the approximating formula for
computing, the execution time is not very long, moreover, the
execution time for microprocessors is not as important as oc-
cupied main memory. In regard to the other techniques for
approximating polynomials, the finite difference algorithm
has less arithmetic computation, so the execution time would
be faster,

L]

DESCRIPTION OF THE APPROXTMATING FORMULA

The problem is to obtain a function g(x), which approxi-
mates a giv.en function, f(x) at a certain number of specified
points. One of the important requirements for g(x) is sim-
plicity of evaluation; a polynomial will certainly fit this
regquirement,

The approximating polynomial, in terms of finite diffe-
rences, Gregory-lewton Formula, is one of the formulationg
which 1s not essentially difficult for digital computers.

The applied algorithm for finding trigonometric func=-
tions is the third degree polynomial given b{:
“ 5 (M=1) 5 CA=1)(H=2)
Py (x) = Y401, +AY-——2—|——- + A°Y

! !
Where X is a point in the interval (xg, X3).- Xo, X1, X2 and
%3 are 4 points of the function; 4 - (x-x5)/h, and

h = x1-xgy= Xp=X1_= X3Z=X2.
an

AYo, 4 ﬂ?Y ate defined in the following table,
X Y Ao A5 Ay
o Y
. 0 ¥q-Y, reee
1 T T1= DYy n
YE-YA‘ K—Y - AZY
X> Yo 1 0
- AYE- Y]
X3 ' Y5 Y3-Y2

For the best accuracy, the four nearest points to any
glven value, x, should be used in the above formula,
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Algorithm Description

For implemeting the trigonometric functions on the
microprocessor, following procedure is required:

T+ Convert the giyen aggle from the range of (-360°,
+360Y) into (07, 90¥) by using the trigonometric
relationship.

2. Find the four angles which are the nearest points to
the given angle in the reserved table,

3, Build the approximating polynomial used the four ob-
tained points in the table and compute the approximat-
ed value of the required trigonometric function,

ERROR_ANALYSIS

There are three kinds of errors which arise in the com-
putation of the trigonometric functions,

1« Errors due to shortened initial data

2. Truncation errors in the computational procedures

3« Lrrors duc to the use of pseudo-arithmetic operations.
For the applied algorithm, each kinds of error should

be considered and the bound for each should be defined,

Errors Due to Shortened Initial Data

These kinds of errors arise from shortening data by the
need Lo use no more than a certain number of digits, say d
digits, to represent apy given Eumber. It is assumed that if
a number such as a = _bi10%"* is to be represented by ‘a
number such as £ in tue4cﬁmputer with 4 digits of precis%o?g
then the error'® = a-& will be such that 1o¢1{o.5 X jon=at it
that is, the error will be less than or equal to ¥ in the
last digit position to be retaineg. Further, if a number, a,
is to be represented by a numbe§ a which 1s to have m decimal
places of accuracy, them &= a-8 is such that l«} 0.5 X 1077,

The applied floating point is represented in a way that
there is at least 7 decimal places of accuracy. So, the
errors due to the shorteaed initial data for the input data
will be (4] \< 0.5 X 107

Truncation Error in the Computational Procedhre

Since digital computing devices can perform only the
fundamental arithmetical operations of addition, subtraction,



multiplication, and division, the only mathematical quantity
which can be calculated by their usc is a rational fraction,
It is fortunately the case that most functions commonly
emountered can be approximated by rational fractions, How-
ever, the fact that these are only approximations should be
emphasized, Thus, for example, in the applied formula which
is used for computing the tgigonometrical fu?;siggs we have
1] [2] A Yo AYo

Y"'Y0+/£‘ AYO+ /‘( 2' +ocn.o+/( n!

where n is chosen large enough to produce an error term which
is acceptable, lowever, regardless of the sile of n, the
error is generally present, This error is called truncation
error which is actually the remainder term of the equation.

In general, the remainder term of the applied approxima-
tion formula, Gregory-Newton Formula, is R(x? which can be
computed as follows

[n+1]
R(x) = AP p* ] _/([nﬂ], where $1s a point in the range
(n+1)!
of the function, 3 Since the third degree of the polynomial
will be used for approximation, we have

4)

R(x) = fE'f)/q!‘hq'/qu the interval of two points, h, as-
sumed to be o,1;for Sin and Cos function, f(4)§ 1 for any
value of because all orders of the derivatives of the func-
tion are 5in or Cos, and the upper bound on the magmitudes

of all derivatives will be less than or equal one, Since in
the range of (09, 90°) the value Tan and Cot are not bounded,
the relative error for R(x) should be computed instead of
absolute error, Since the value of 4= (x-Xo)/h, for any
value of x the value of & will be o { ML ;80 the remainder

1ls
R(x) X R ) (Ma1) (A=2) (e -3)

2l
R(x) { =57 X 107% X 0.5(=0.5)(~1.5)(-2.5)
R(x) § =i~ X 1077 X 0,837 {0.35 x 107°

FRRORS DUE TQ THE USE OF PSEUDO ARITHMETIC QOPRRATIONS

A pseudo-arithmetic operation is some operation which
produces the same recult as a corresponding arithmetic opera-
tion to within a certain unavoidable error.

The pseudo-operations of concern with digital computers
are the counterparts of +,--, X, 2. of usual arithmetic in
which every result must be a number with at most d digits_in
it, for some d. Ilence, some loss of accuracy will occur, 2

~
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Each pseudo-arithmetic operation which is performed on
two numbers with d digits may result in more than d digits,
In this situation, some digit must be discarded,

Since in the applied floating point representation there
is at least 7 decimal place of accuracy, the maximum error
due to the pseuds arithmetic operation for each performance
is less than 10—/,

The input to the approximating formula uses at least 7
decimal place of accuracy,_so the round-off error in f(x) is
of the oreder of 0,5 X 107/, 1In general, the maximum round-
off error in computation will be

£(x) = Y, AY AoY APy

0.5 X 10~7 10~7 2 x 1077 b x 1077
Since the approximating formula is

Py(x) = Yo+ AVA+ §°Y /«g,oa.l.u v AN MG M A2),

the maximum error added to the remainder error, R,(x), due to
round-off error is
Error = Errory + Lrrory + Errorc + Errorg where

Error, = Error(Y¥,) = 0.5 X 10=7
Errorg = Error( EY-/J):Z‘Y X ¢ X 10'?+/¢X 10'7\< 2 X 10'7+1O"?
= 3 X 10~7

Error,= Error[AaY/((/‘f-Jl)] = AZY [0.5 X3 X 10"7+o.5 X 2 X 10“7]
+2 X 1077 X 0.5 X 0.5{2.5 X 1077+0,5 x 107%= 3 X 1077

Errory= Error iﬁy [ecu-n)[a-2] }\([2.5 X 107X 3 X 3 X
1077% 0.25)XA%Y + 4 x 107X 3 X .25 =7.5 X 1077+ .75 x 1077+

3 X 1077 10,75 X 10~7
So the total error is

ErrorMax = Iﬂrroral+lErrorbl+iErrorc/2!]+\Errord/3!\<b.5 X IO”?
#3 X 1077 + 3/2 X 10“7+1o.75/(3x2)x 10"7\<o.50 X 107743 X 10™7
#1.5 X 1077 + 1,76 X 10"7<6.76 £ 107

S0 maxdmum round-off error is less than 0,675 X 10"6.
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CONCLUSION

Since microprocecssors are relatively small in main memory
and slow in execution time, implementing any scientific routine
in these kinds of machines should have the following charac-
teristics: 1t should be easy to compute, it should be accurate
and it should occupy the least amount of main memnory.,

The proposed formula for implementing floating point
computation and the approximating algorithm for computing the
trigonometric functions on the M6800 microprocessor have
the above characteristics,



DOCUMENTATION
USER'S INFORMATION

feur |

The input to the program is in the A and.B'registers: The value
of the input angle is in the range of { -360° -,¥360°.) in the BCD,
binary code decimal, form. The left half byte of the A register represents
the sign of the angle. When the angle is in the positive range, zero
should be stored into the half byte sfgn, otherwise nine is stored.
The right half byte of the A register and the whole byte of the 8
register hold the value of the angle in the degree. The right half byte
of the A register is zero if the absolute value of the angle is not
more than 99.

e.q9. The angle of -60° for {nput 1s stored in the A and B registers as

re, B re.
- 90 60
and 170° {s stored as A re.. B ‘re.
01 70 J
QUTPUT

The output of the program is in the floating point form. Each
number is represented i@ five contiguous locations as a block.
The address of the starting location 1s in the x register. The first
four locations hold: the:fraction part of the result number; and the
fifth location of the block has the exponent of the number. The resulting
number is represented in the BCD, binary code decimal,form. The fraction

and the exponent are in the ten's complement form 1€ they are negative

n
numbers. When the most significant digit of the number is zero through

12



four the number 1is posftive, otherwise the number is negative and is 1n

the ten's complement form. The decimal point of the fraction part is
assumed to bacto the right of the least significant digit of the

number,
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The Major Functions of the Programs

——————

There are seven major subroutines used in the algorithm( see figure.7.).
The major function of each one is as follows :

1. The Main Program

This program receives the pgiven angle and converts it from the range
of ( -360 © ; +360° ) into ( 0° , 490° ), It also finds the required tri-

gonometric function. Finally, it calls the search subroutine.

2, The Search Subroutine

——

After obtaining the anple from the main program, . this subroutine will
find the four angles which are the neareat points to the given angle in the
reserved table. This subroutine then calls the polynomial subroutine and

transfers the five angular values to the called subroutine.

3. The Polynomial subroutine

By- calling the delta subroutine, this subroutine will compute the ap-
proximated value of the required trigonometric function and transfers the
value to the main program,

4. The Delta Subroutine

By getting the approximating points, this subroutine computes the

value of the coefficients. For computing these coefficients, the subroutine
+ needs to call the addition, subtraction and the multiply subroutines.

This suﬁroutine also calls the Muo subroutine.
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5. The Muo Subroutine

This subroutine computes the value of )9 for a given value of an

angle, and it transfers the value to the polynomial subroutine for use in the

approximating polynomial.

6. The Multiply Addition and Subtraction

This subroutine gets two floating point numbers and adds them

together. It then returns the result to the calling program.

7. The Multiply Subroutine

This subroutine gets two floating point numbers and multiplies them

and then returns the result to the calling program.-
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Fléwchart of the Main Program
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Flowchart of the Search subroutine
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Flowchart of the Polynomfal Subroutine
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Flowchart of the MUO Subroutine
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