Special Problem

DEVELOPMENT OF A TEXT FORMATTER
UNDER

VAX/VMS OPERATING SYSTEM

Presented to
The Department of Computer Sciences

NORTH TEXAS STATE UNIVERSITY

in partial fulfillment

of requirements for a Master of Science degree

by
Perng Chow

March, 1984

LIST OF

I.

IT.

TABLE OF CONTENTS

ILLUSTRATIONS

INTRODUCTION

CONTROL WORDS AND PARAMETERS

IT.1 Format of Control Words

IT.2 sSyntax of Control Words

ITT.

Iv.

STRUCTURE OF THE STF SYSTEM AND ITS FEATURES

ITI.1 System Data Flow

III.2 Structure of the STF System

IIT.3 Features of the STF System

IMPLEMENTATION OF THE STF SYSTEM

IV.1l Structure of Index

IV.

IV,

Iv.

Iv.

IvV.

Iv.

Iv.

2

Structure of Table of Contents
Structure of Titles

Structure of Macros

Boldface and Underline Effects
Centralization and Right Adjustment
Determining the Line Breaking Point
Distributing the Extra Spaces on

a Text Output Line

CONCLUSIONS

page

iii

11

11

11

14

21

21

23

25

27

30

31

32

32

34

VI. FURTHER POSSIBLE EXTENSIONS

VI.

VI.

VI.

VI.

VI.

vVI.

VI.

VI

VI.

VI.

VI

VIT.

1 Extra Space after Sentence
2 Setting Backspace Character
3 Setting Output Tabs
4 Multiple Control Words on a Single Input Line
5 Redefining Macros
6 Footnotes
7 Conditional Sections
.8 Multiple Input Files
9 Multiple Columns Per Page
10 Hyphenation
.11 Detailed Error Message
AFPPENDICES

Appendix A Source Program Listing

Appendix B Sample Input Data

Appendix C Sample Output

Appendix D STF User's Manual

Appendix E Bibliography

ii

36

36

36

37

37

38

38

39

40

40

41

41

43

44

138

141

144

183

LIST OF ILLUSTRATIONS

page

Figure 1. System Data Flow Chart . Coe 12

Figure 2. Hierarchy Chart of the Program v e 15
Figure 3. Structure of PN Nodes and

Page Number Linked List e e 22

Figure 4. Data $Structure of Index Structure . . . 24

Figure 5. Structure of the Table of Contents . . . 26

Figure 6. Structure of a Title Linked List 27

Figure 7. Data Structure of the Contents Linked List . 28

Figure 8. Structure of User Defined Macros 30

iii

I. INTRODUCTION

No matter how extended the use of computer is, the
printed document is still the primary medium for the
presentation information, and will continue to be for some
time. The use of computing facilities for preparation and
production of the document is becoming as prevalent as their
use for numeric computation. Commercially, deccument
preparation systems are now a standard facility at research
institution, and they have become guite common on each
computer system. A conventional document preparation system
usually contains twoc parts : a text editor used to create,
enter, update, and maintain the text and control words that
comprise the document in its "input" form, and a text
formatter used to process that input and produce the final
document[16] .

A text formatter is a program for neatly formatting a
document on a suitable printer. It produces ocutput for the
devices like terminals and line printers, with automatic
right margin Jjustification, pagination (skipping over the
fold in the paper), page numbering and titling, centering,
underlining, indenting, and multiple line spacing[7,16]. A
text formatter is an important tool for anyone who writes,
because, once correct, material is never retyped. This has

some obviocus cost benefits, and ensures that the number of

errors decrease with time. Machine formatting eases the
typing job, since margin alignment, centering, underlining
and similar tedious operations are handled by the computer.
It alsc permits drastic format changes in a document without
altering any text. But perhaps most important, it seems to
encourage writers to improve their product, since the
overhead of making an ilmprovement is small and there is an
esthetic satisfication in having a clear copy.

The original text formatter running under VAX/VMS
operating system, called RUNOFF, is a large and complex
formatting system{18]. Its full power is realized in the
preparation of large "structured" documents such as books,
manuals, theses, research, technical, and instructional
publications containing footnotes, tables, figures, index,
and table of contents. My project is trying to develop a
small and simple, but complete text formatter under VAX/VMS
operating system. I call it STF for the Small Text
Formatter. It includes all the necessary functions to
prepare most simple documents, such as office correspondence
and small papers. It also has the facilities to prepare the
table of contents and index.

This paper is divided into seven secticns. A brief
synopsis of the sections is included below.

Section I introduces the problem to be studied and the
organization of this paper.

Section II discusses the format of control words and

thelr parameters.

Section IIT describes the structure of the whole system
and its features. The structure of the program and its
hierarchy chart are also described.

Section IV discusses the strategies used in several
important view points of the program. Those strategies
include structure of index, structure of table of contents,
structure of titles, structure of user defined macros,
boldface and underline effects, centering and right
adjustment, a method to determine the line break point, and
method to distribute extra spaces on an text output line.

Section V presents the conclusions of the study.

Section VI discusses the possible further extensions.

Section VII is the appendices. Appendix A contains the
source listing of the program. Appendix B is the sample
input data. Appendix C is the output produced from the
sample input data. Appendix D is the STF user's manual, and

Appendix E is the bibliography.

ITI. CONTROL WORDS AND PARAMETERS

IT.1 Format of Control Words

The inputs to STF are the text and control words that
you enter into the computer using a terminal and a program
called "editor". The text comprises the main bedy of the
document, and the control words specify the formatting
requirements of the document. Each time STF reads a line
from the input file, it looks at the character in column 1.
If that character is a period ("."), STF considers the input
line to be a control word. Otherwise, the input line is
treated as text. Each STF control woid is of the form

.XX parameter(s)

The period (".") at column 1 is called the control word
indicator and "xx" is a 2-character control word name. Some
STF control words have one or more parameters. There should

be at least one space between the control word and the first
parameter. Each parameter must also be separated by at
least one space. Both the control words and their
parameters may be entered in any combination of uppercase
and lowercase characters. 1In the STF system, control words
and parameters are treated as lowercase characters. After
finding the input line is a control word, STF first converts
the input line into its lowercase equivalent, and then

processes it. With this way, STF will never be confused by

the different combinatiocn of uppercase and lowercase

characters in the control words and their parameters.

II.2 Syntax of Control Words

The following list describes the syntax of all STF
control words. These control words show that STF provides
all the functions needed to prepare a simple document. Some
functions, for example, drawing boxes, multiple input files,
multiple columns per page, and interactive input from the
terminal, are not included in STF[1,2,3,12.18)]. The reason
why I do not include these complex functions in STF is that
they are not frequently used for preparing a simple

document, or they can be done by using another way.

(1). .AD < ALL | EVEN | ODD » <n | +n | -n >
(2). .BD <1 in | ON | OFF »
(3). .BI <1 | n | ON | OFF »
(4). .BM < ALL | EVEN | ODD *» < n | +n | -n >
{5). .BR
(6). .BT < ALL | EVEN | ODD > n /sl/s2/s3/
(7). .CE <1 | n | ON | OFF >
(8). .CM information
(9). .CO < ON | OFF »
(10). .CP n
(11). .DM < name | OFF >
(12). .Ds

{13). .EA <n | +n { -n >

.EB

.EP

.FB

.FD

.FI

.FM

.FO

CFS

. HM

.HS

.IN

IR

LIX

.JU

.LL

.NC

.NF

NJ

.OA

.0B

.QP

.OT

.PA

.PI

'3

o]

/sl/s2/s3/

/sl/s2/s3/
ON | OFF | PUT >

ON | GFF »

ALL | EVEN | ODD
ON | OFF >

ALL | EVEN | ODD
ALL | EVEN | ODD

ALL | EVEN | ODD

nil +n | ~-n »

nl +n | -n »

ON | OFF »

nil +n | -n >

nl +n | -n >

nl +n | -n >
/sl/s2/s3/
/sl/s2/s3/

%+1 I n | +n | -n

+n

+n

+n

+I1

oDD

>

(40) .PL
(41). .PN
(42) .PS
(43). .PT
(44). .RI
(45). .RO
(46). .SK
(47) .SP
(48). .8sS
(49) .TC
{(50). .TI
(51). .TM
(52). .TT
(53) .uc
(54) .UN
(55) .UP
(56) .Us

According to the format of parameters,

<n | +n | -n >

< ARABIC | ROMAN »
character

<11 n | ON | OFF
< BIG | SMALL >

4 J__ | n >

¢l |1 n>

<1l | n>

<n | +n | -n >

<« ALL | EVEN | ODD
< ALL | EVEN | ODD
<1l | n| ON t OFF
<n !t +n | -n >
<1 | n| ON | OFF
¢ 1! n| ON | OFF

>

~

<n il +n | -n >

n /sl/s2/s3/

STF control

words can be divided into eight categories.

1. Control words which do not have any parameter.

Generally,

most of the control words in this

category are the short-hand way of another control word.

Using another control word, you also can obtain the same

result, but they offer an easy way to specify the

formatting requirements.

The other control words in this

category have an unigue function so that they need not
have the parameter to specify the result to be produced.
For example, ".IX" control word indicates that the next
text input line will be put into the index structure as
well as used to produce output text.
Control words whose parameters look like < n | +n | -n »>.
The parameter of these contrel words is a number.
It may be an unsigned number, a positive number, or a
negative number. A parameter with the form "n" will
change the current setting value absolutely, and a
parameter with the form "+n" or "-n" will change the
current setting value relatively. Some control words
will only affect the next text input line. Some of them
will remain in effect for all the subsequent text input
lines until another control word alters the current
setting value.
Control words whose parameters have the form < 1 | n ».
The parameters of these control words may be
omitted. If the parameter is omitted, then 1 is assumed.
Otherwise, the parameter must be an unsigned number.
This parameter is treated as a positive number.
Control words with < ON | OFF » in parameter field.
These control words always affect a block of text
input lines. This block of text input lines starts from

the control word with the "ON" parameter to the control

word with the "OFF" parameter.

Control words whose parameters have the form

< 1 t n 1 ON | OFF »

These control words will affect next "n" text input
lines or a block of text input lines. If no parameter is
presented, then 1 is assumed to affect the next text
input line.

Control words with the parameter of the form
¢ ALL | EVEN | ODD » < n | +n t -n >

These control words will affect the output text of
even and/or odd numbered pages. The second parameter is
used to change the current setting value absolutely or
relatively. The new setting value will be in effect for
all the subseguent text cutput lines until another
control word alters it.

Control words whose parameters look like n /sl/s2/s53/ or
< ALL | EVEN | ODD » n /sl/s2/s3/.

These control words define three items of the title

information to be printed at the top and/or bottom of the

even and/or odd numbered pages. The value of "n
indicates the title line number. S1, s2, and s3 are
three parts of this title line, and will appear left-
adjusted, centered, and right-adjusted on this title
line.

Control words which do not belong to any category

described above.

These control words have a special format of

10

parameter, and can not be classified into any category
described above. These control words are ".CM" (COMMENT)
control word, ".CP" (CONDITIONAL PAGE EJECT) controcl
word, ".DM" (DEFINE MACROS) control word, ".FB" (FLOATING
BLOCK) control word, "“.PA" (PAGE EJECT) control word,
".PN" (PAGE NUMBER TYPE) control word, ".PS" (PAGE NUMBER
SYMBOL) control word, and ".RO" (ROMAN) control word.
Each one of them has a special format of parameter, and

should be treated individually.

ITI. STRUCTURE OF THE STF SYSTEM AND ITS FEATURES

III.1 System Data Flow

The inputs of STF are the text and control words that
comprise the input form of the document. This input form of
the document is stored on the disk as an input save file.
The user first inputs the text and control words into the
computer by using a terminal and an editor program. STF
then reads the data of this input save file and produces the
output. The output can be sent directly to a printer to
produce the final document or it can be saved on the disk as
another save file. After that, this output save file can be
used to produce the final document or used for further
process. Figure 1 shows the system data flow and the

structure of the whole system.

ITT.2 Structure of the STF system

The STF system has been developed with maximum use of
state-of-the-art software development technigues. The
development techniques used are top-down software design
methodology, modular approach, and structured programming.
The development of the program concentrates on the highest
level of logic first, and then goes down to the details one
level at a time. The whole program is divided into more

than cne hundred subroutines. Each subroutine only has one

11

12

tmm 4

I
[old |

save |
| file |

+
I
[
I
|

+

STF

=+

I |
I printout |

output

! |

| |
I i save |
l_/’I | file |

Figure 1. System data flow chart

function and is almost independent to other subroutines.

The control structures used in the program are IF-THEN-ELSE,

13

WHILE-DO, and REPEAT-UNTIL control structure. No
unconditicnal branching is used. The implementation
language used is the VAX/VMS version PASCAL. The reason why
I choose this language is that this version of PASCAL has a
data type of VARYING OF CHAR which can be used to simplify
the implementation of variable-length character strings[4].
It alsc has some useful built-in functions that make me
handle character strings easily.

The whole program consists of three parts : INITIAL,
PROCESS, and END. INITIAL and END parts contain some
housekeeping operations such as opening files, initiating
variables, and terminating process. The main part of the
program is the PROCESS part. The PROCESS part can be
further divided into two routines : Control Words routine
and Text routine. Control Words routine works as a control
words dispatcher. When an input line was recognized to be a
control word, the Control Words routine sends the input line
to an appropriate routine according to its control word
name. Each control word has its own processing path. The
Control Words routine is a supervisor which matches each
control word to its own path.

The Text routine processes the text input lines. It
formats the text input lines according to the control words
encountered or by default, and produces the output. It
decides whether the text input lines should be put into the

index and/or table of contents or not. It also decides that

14

the text input lines are centered, right adjusted,
concatenated, or justified. The Control Words routine and
Text routine are almost independent of each other, and can
be implemented and debugged separately. The advantage is
that I can concentrate on a small part of the program at a
time, and solve the problem more easily. Figure 2

illustrates the hierarchy chart of the program.

I1II.3 Features of the STF System
STF is a text formatter primarily used to prepare the

simple documents. According to this gcoal, scme complex

functions unfrequently used to prepare a simple document are

not implemented in STF[1,2,3,12,18]. The following are the

functions available in STF.

1. Different adjustment values, margins, and titles on even

and odd numbered pages
In STF, user is allowed to specify different
adjustment values, margins, and titles for even and odd

numbered pages, and STF can alter them automatically

according to the value of the current page number. User

need not change these values through the document to

obtain the formatting requirements that he wants. 2ll

the alternative jobs are done by STF. This advantage is

more obvious especially on the documents that are

printed on both sides of the paper. It also offers some

meaningful benefits on time and efforts of preparing

o ———————— +
! |
[STF [
| formatter |
| f
fm——— Fmm—— +
|
|
|
Fmm e +
I | i
| i I
| ! {
e e =t
! I | | ! I
| INITIAL | | PROCESS | | END i
! f I I f !
e + t—— et —— =t - +
|
|
|
e ———— e ——— +
| I
| [
| I
ot T T
f I I I
| Control | | Text I
| Words | I |
| routine | | routine |
I I ! |
e T e T T
| I
| I
I I
routines routines
to process to process
control words text input
lines

Figure 2. Hierarchy chart of the program

input form of the document.

15

16

Comments in the input save file

Comments are allowed to exist in the input save
file, and STF will ignore them when these comments are
encountered. Comments can be anywhere in the input save
file and may be seen whenever the input file is edited
or printed. Comments may be used to stored unique
identifications for use during editing of the file.
This advantage is more useful when the document is
updated frequently in the few fixed positions. It also
can be used to comment the function and use of user
defined macros.
User defined macros

STF allows user to define his own macros and use
them toc format the document. The macro defined has a
2-character string as its name, and it should not be the
same as that of the system control words, or ancther
user defined macro name. Any character can be used to
comprise these two characters. The usage of macros are
the same as the system control words except that they
can not have the parameters. Text, system control
words, and user defined macros can be the contents of a
macro. User should take the responsibility to ensure
that no iteration is made, or an undefined situation
will be happened.
Multiple interline spacing

The number of blank lines inserted between the text

17

output lines of the document is not limited to be 0 and
1 (single spacing and double spacing). User can specify
line spacing other than these two numbers to produce
other kind of line spacing. This feature is more useful
when a special layout of the document is needed.
Skipping to the desired numbered page

STF allows user to control the output page ejecting
by using " .PA" control word. It also allows user to
specify the page number of the next output page. User
can control the printing of output page and lets the
output text be printed on the top of an even or odd
numbered page. STF does this job by comparing the
current page number and the parameter of the control
word. If they are not matched with each other, STF will
produce a blank page and force the page number to the
desired one. With this feature, user can specify that
the beginnings of the chapters are printed on the top of
the desired numbered pages.
Floating block of text input lines

STF can keep a block of text input lines
encountered at one time and process them at another
time. Several blocks of text input lines also can be
accumulated together and processed at a time. STF will
remember the text input lines in the blocks and produce
the output at the place where user specified. This

feature is particularly useful to produce the summary of

18

the document:.
Keeping a diagram together

In many instances, it is necessary to ensure that a
block of text doces not be split across a page boundary,
for example, the text for diagrams and tables. STF has
a facility to keep a block of text input lines be
printed together on the current output page or on the
next page. This is done by using the ".FD ON/OFF"
control word. The block of text input lines, usually
comprising a diagram or table, are printed as they are
and STF will decide where to print them. If there is
sufficient room to accommodate the diagram, it will be
printed on the current output page. ©Otherwise, the
diagram will be printed on the next page. With this
feature, a diagram will never be split by the fold of
the paper, and user need not worry about the position of
the diagram.
Indent on right margin

STF allows the output to be indented on the right
margin without changing the length of the output line.
This feature is used together with the indent on the
left margin to specify a block of text input lines that
have special meaning. It is useful when someone else’'s
statements are referenced in the document. With this
feature, user can easily specify the beginning and the

end of the text block and print it on the document very

10.

19

obviously.
Indexing

STF has a facility to prepare the index of the
document. User only need to specify the text input line
he wants it to be indexed, and STF will create the index
entity for the text input line and also keep the cutput
page number of this text line printed. If an indexed
text line is specified more than once, only one index
entity is created in the index structure. STF also trys
to eliminate the redundancy of the page numbers of an
index entity. Only one occurrence per page numbexr is
allowed in an index entity. Index is printed when the
“.PI" control word is encountered. User can use this
control word anywhere in the input form to produce the
index. Index structure is not destroyed after it is
printed.
Multiple-level table of contents

STF allows that the document has multiple levels in
its table of contents. The level of the heading in the
table of contents is specified by the user. The current
output page number and level number are saved with the
heading in the table of contents by STF. When user uses
the ".PT" control word to produce table of contents, the
level number is used to calculate the first printing

position of the heading.

11.

20

Temporary indenting on the left margin

STF allows a single text input line to be
temporarily indented on the left margin. ".TI" control
word causes next text input line teo be indented to the
right of a specified column, and dces not affect
subsequent text input lines. This feature is especially
useful when it is used before the first line of a

paragraph. It will create an indented paragraph style.

IV. IMPLEMENTATION OF THE STF SYSTEM

IV.1l Structure of Index
The whole index structure is organized as a binary
search tree. ZEach indexed text line comprises a node in
this binary search tree. Each node, called Index Entity
(IE) node, contains the following information
l. indexed text line
2. the string form of the indexed text line
3. the location of the first page number node of its page
number linked list
4. the location of the root of its left subtree
5. the location of the root of its right subtree
Every time a text line is indexed, this binary search
tree is searched to find whether the same text line has been
indexed before. 1If this text line exists in the binary
search tree, the current page numbexr is compared to the last
inserted page number of this IE node. If these twoc page
numbers are the same, it means a text line is indexed twice
on the same ocutput page, and no page number is inserted to
this IE node. Otherwise, the current page number is
inserted into this IE node. If this text line does not
exist in the binary search tree, a new IE node is created
and inserted into the leaves of the index binary search

tree. The current page number is also inserted into this

21

22

new IE node.

The page numbers of an IE node are arranged as a linked
list. Each page number comprises a node, called Page Number
{PN) ncde. Each PN ncde has the fcllowing information

1. page number of output page that indexed text line
printed

2. the location of next Page Number node of the same page
number linked list

Figure 3 shows the data structure of PN nodes and the

structure of the page number linked list.

—————— +

{

v
+————t ot et +—=——— +————
Ipage| | page | | page| | pagel Ipage|
| no.l | no.l | no.l | no.l t no. |l
+———— e - F————t Fom ey
Inext+~->|next+--> lnext+-->lnext+-->..... -->lnull|
+-———+ +-———+ +———-—t +-———+ R

Figure 3. Structure of PN nodes and page number linked list

There are several advantages provides by using a binary
search tree to implement the index structure.

1l. The size of the index structure is not limited in a fixed
range. If the index structure is organized as an array,
the size of the array has to be decided in advance by the
developer. It is very hard to decide because a large
array may cause a lot of memory spaces wasted, and a

small one can not accommodate a big index structure.

23

With binary search tree as its data structure, the index
structure can be as large as possible it wishes, and the
memory spaces used are just as they are needed.

2. The processing time to index a text line is reduced.
With binary search tree, the searching algorithm used is
binary search tree searching method. Its average
searching time is abkout O(LOG n) for a particular node of
a binary search tree containing n nodes. If the index
structure is implemented as an array or as a linked list,
the only searching method that can be used is sequential
searching method. 1Its average searching time is 0{(n/2)
for a particular node. It is obvious that the processing
time of binary search tree searching method is much less
than that of sequential searching method.

Figure 4 illustrates the data structure of the index

structure.

IV.2 Structure of Table of Contents
The table of contents is arranged as a linked list.
Each node of the linked list contains the following
information
1. heading line
2. page number of output page that the heading line
printed
3. level number of the heading line

4, the location of the next node

24

INDEX POINTER

v
- +
! text linel
tor— - + page number
fstr.|first+---> linked list
+-———t————- +
Fmm +left|right+-------- +
I -t + 1
I !
I
v v
=t + -t +
| text linel | text linel
e ks e + page no. ek ket + page no.
|str.{fixst+-~-> linked istr.ifirst+--> linked
+-———t-——-- + list - + list
it +leftiright+--——-- + e +leftiright+-~--- +
| e + | | it Attt + |
I ! | I
I I I I
v v vV \Y

Figure 4. Data structure of index structure

There are two pointers associated with this linked
list, that is, Table of Contents Head Pointer (TCHP) and
Table of Contents Tail Peointer {(TCTP). TCHP points to the
first node of the linked list, and is used when table of
contents is printed. TCTP pocints to the last ncocde of the
linked list, and is used when a heading line is put intc the
table of contents. When a heading line needs to be put into
the table of contents, a new node is created and inserted
after the node pointed by TCTP. And then the TCTP is
updated and points to this new node. The page number field

stores the page number of the output page where the heading

25

line is printed, and the level number field is used to store
the level number of the heading line. The level number is
used to determine the printing position of this heading line
when the table of contents is printed. The printing
position of the heading line is calculated by using the
following formula
printing position = 3 * (levle-no. - 1) + 1

From the formula we know that the heading line whose
level number is 1 will be printed from column 1. The
control word used to specify the heading line in input file
is the ".TC" control word. The parameter of this control
word specifies the level number of the heading line. If the
parameter value is 0, no heading line is put into the table
of contents. STF will ignore this control word because of
its invalid parameter value. Figure 5 shows the structure

of the table of contents.

IV.3 Structure of Titles

There are four kinds of titles in STF. They are top
and bottom titles of the even and odd numbered pages. Each
title has the same data structure. I use a linked list to
implement it. Each title linked list has fixed size and
contains 30 nodes at most. Each node has four fields
containing the following information

1. left part of the title line

2. middle part of the title line

26

TCHP TCTP
I |
\ \'
o + - + - + - +
lheadingl lheading]| lheading| lheadingl
| line | i line | | line | i line |
o + e + o + Fom———— +
| page | | page | | page | I page |
| no I | no | | no ! | no I
dmm————— + e + o= + Fm————— +
| lavel | | level | | level | I level |
| no. I | no. I | no. ! | no. [
—————— + Fomm o ———— + Fom———— +
| next +~~>] next +-->| next +~->....-->| null |
+-—————— + +-—---=== + - + tm———— +

Figure 5. Structure of the table of contents

3. right part of the title line
4. the location of next node in the same title linked
list
Each title linked list is created and initiated in the

INITIAL part, and the default values of three parts of each
title line are the null string. These three parts will
produce one title line. The left part is left adjusted on
the title line. The middle part is centered, and the right
part is right adjusted on the title line. The length of the
title line is equal to the length of the text output line.
When STF produces the title line, the middle part may
overlay the left part if necessary, and the right part may
overlay the middle part if necessary. When a title is
printed, only the nodes in the range of heading or footing
spacing need to be printed rather than all the neodes of the

title linked list are printed. The range of heading and

27

footing spacing are specified by the ".HS" and ".FS" contrecl
words. The three parts of a title line is put into the
corresponding node by using several changing title control
words, such as, ".TT" (TOP TITLE), ".BT" (BOTTOM TITLE),
“.ET" (EVEN PAGE TOP TITLE), etc. The numeral parameter of
these contrecl words specifies the line number of this title

line. Figure 6 illustrates the structure of a title linked

list.

TITLE POINTER

A"
+-—mm - + - + +--———= + o +
| left | | left 1| | left | | left |
| part | | part | | part | | part |
N + Fe———— + Fmm———— + == +
Imiddlel imiddle| Imiddle | Imiddlel
| part | | part | i part | | part |
e + e + +-————- + +—————= +
lright | lright | Iright | |xight |
| part | | part | i part | | part |
h—————— + ————— + - + tmm———— +
| next +-->| next +-->| next +-->....... -->] null |
fmmm——m + o + - + +-————= +

Figure 6. Structure of a title linked list

IV.4 Structure of Macros

User defined macros are crganized in a binary search
tree. Each macro comprises a node in the binary search
tree, and the contents of a macro are arranged in a linked
list. Each node of the macros binary search tree, called

Macro node, has four fields and contains the following

information

28

1. name of macro
2. the location of the first node of its contents linked
list
3. the location of the root of its left subtree
4. the location of the root of its right subtree
The contents of a macro are organized in a linked 1list,
and there is a field in Macrc node to keep the location of
the first node of this linked list. Each node of the
contents linked list contains two fields and contains the
following information
1. data of the macro
2. the location of next node in the same contents linked
list
Figure 7 shows the data structure of the contents

linked list of a macro node.

—————— +

I

Vv
+-————+ +-———+ +-———- + +--——+
Idatal ldatal Idatal idatal
===t +-—=—+ ===+ +-———+
Inext+-->Inext+-—>Inext+-->.......... -->lnulll
Fom—— o=t +--=—+ +--——+

Figure 7. Data structure of the contents linked list

Each time when a ".DM name" control word is
encountered, the name parameter is used to compare with the
names of the system control words. If they are not matched,

the name parameter is compared to the names of the user

29

defined macros that are already defined. A macro's name
should not be the same as either the names of the system
control words or the names of user defined macros that are
already used, otherwise an error condition is occurred and
the formatting process will be terminated. After the name
is recognized as a unigue one, a Macro node is created and
inserted into the appropriate position in the macros binary
search tree. The subsequent input lines are read in and
linked at the end of the contents linked list until the ".DM
OFF" control word is encountered. This control word
terminates the macro definition operation by putting the
location of the first node of the contents linked list into
new Macro node. With this organization, user can define as
many as macros he wishes. The contents of a macro can also
be as many as they are. There is no limitation for the
number of macros that can be defined and the size of a
macro,

The macros are used just as the system controcl words.
2 period preceding its name indicates that this input line
should be treated as a control word. When an input line is
recognized as a control word, its name is first compared to
the names of the system control words. If it matches a
system control word, the input line is processed according
to the normal routine. Otherwise, the macros binary search
tree will be searched. If the name exists in the macros

binary search tree, the datum in the nodes of the contents

30

linked list are used as they are read from input file. If
it does not exist in the macros binary search tree, an error
condition is occurred and the formatting process is

terminated. Figure 8 illustrates the structure of the user

defined macros.

MACRO POINTER

v
Fomm e + contents
inamelfirst+---> linked list
e it +
o +left|right+--—------ +
I e + I
I I
I
v \'
R + contents e e i + contents
Inamel first+--> linked fname | first+--> linked
R e Rt + list o + list
t--——- +leftiright+----- + A= +leftlright+----- +
e + to—mt————- +

Figure 8. Structure of user defined macros

IV.5 Boldface and Underline Effects

In STF, boldface effect is obtained by printing a
character twice at the same position. STF uses BACKSPACE
character (ASCII"8") to force the printer head back one
space, and prints the same character once again([4,5]. If
boldface is in effect, each character in a text input line

is converted into

31

character BACKSPACE character
Though each character is converted into three characters,
these three characters only produce one character on the
output device. They should be counted as one character in
the text input line.

The underline effect is also obtained by using the same
method in STF except that only alphanumeric characters are
underlined. Each word in the text input line is underlined
by converting each alphanumeric character into

_ BACKSPACE character
On many video terminals, underlining a character erases it,
so STF prints the underline first. WwWith that way you get to

see the character even if the underline is erased.

IV.6 Centralization and Right Adjustment
Centering and right adjusting a text line are obtained

by calculating the first printing position that the text
line is printed, and padding the extra spaces in the front
of the text line. The formula used to calculate the first
printing position of centering a text line

printing position = (A - B) / 2 + 1
and the formula used in right adjusting a text line is

printing position = A - B + 1
where A is the length of the text output line, and B is the

real length of the text line.

32

IV.7 Petermining the Line Breaking Foint

A basic problem in text formatting is that of
determining the breaking points to separate a string of
words into lines to obtain a formatted paragraph. When
formatted text is required to be aligned with both the left
and right margins. the choice of breaking points greatly
affects the quality of the formatted document. There are
several methods to solve this line break problem[1,3,6,11].
The method used in STF is the line-by-line method. With
this methcd, the text ocutput lines are to be formed by
shifting words to or from the next text input line so that
the resulting text output line will be as close to the line
length as possible without exceeding it or splitting a word
into two lines. When a text input line is read in, STF
examines this text input line and determines the line
breaking point according to the current line length. The
unused words are stored in a buffer and used to form next
text output line when another text input line is read in.

The line-by-line method is simple to implement. It
uses less processing time and memory spaces than any other
methods([6,11]. Though it does not always produce the best
result when text is being justified, it is tolerant and

works well in many situations.

IV.8 Distributing the Extra Spaces on a Text Output Line

When the justification is required to format text,

33

extra spaces are inserted into the words of the output text
line so that the resulting text line is aligned with both
the left and right margins. There are several metheds to
distribute these additional spaces into a text line, such
as, pseudo-random method and particular-character-first
method[1,3.6,16,18]. The method used in STF is the
alternation method, that is, distributing the extra spaces
for each text line between the words starting from the left
and right sides alternately. If line one has additional
spaces, the spaces between the first and second wcrds, the
second and third words and sco on will be increased by one
until the extra spaces are used up. If line two also has
extra spaces, it is now used up by increasing spaces between
the last and the last but one words, the last but one and
the preceding word, and so on. The aim of this strategy is
to avoid "rivers" of white space running down the length of
the page. This method is simple and easy to implement. It
also works well in most situations. 1In STF, a variable,
called DIRECTION, is used to keep the direction of
distributing the extra spaces. It is a BOQLEAN variable and
changes value from TRUE to FALSE or FALSE to TRUE after a

text output line is formed.

V. CONCLUSIONS

The text formatter is a tool for people who write. It
1s also a useful tool in ocffices and the printing industry.
A text formatter should be classified according to its
complexity and functions[16]. Generally, a complex text
formatter needs more memory space and longer processing time
than a simple one. The users also need to select their own
text formatter according to their demands. It is not
necessary to use a complex text formatter for a simple task.

The primary goal of my project is to design and develop
a small text formatter used for preparing simple dccuments.
The final STF system is a program that contains about 3000
lines of code. It has been developed by using several
design and programming methodologies. The whole program is
composed of a set of modules, and each of them deals with a
particular function of the overall formatting process. Each
module has been tested alone and the whole system also has
been tested by using several different sets of data. The
results are just like what I wish.

STF is a medium sized text formatter with simple
algorithm. Because of its modularity, it is easy to debug
and extend. Only one system dependent feature is used, that
is, the VARYING OF CHAR data type{4]. Because many versions

PASCAL support this kind of data type, STF is easy to

34

transfer from one system to another without any change.
This feature allows STF to be used on a lot of different

systems.

35

VI. FURTHER POSSIBLE EXTENSIONS

As I said above, STF is a small and simple text
formatter. Some complex functions unfrequently used to
format a simple document are not implemented in STF. There
are lots of things that could be added to STF and make it

more useful in formatting complicated document[1l,3,17,18].

VI.1l Extra Space after Sentence

Most people prefer an extra space after the period that
terminates a sentence, that is, two spaces after that
period(l]. This could be done by examining the last
character of each word when the text output line is formed.
If a period is found, an extra space will be added after the

period.

VI.2 Setting Backspace Character

Some documents may have special symbol that needs two
or more characters to form it{1,3]. This can be achieved by
defining a special punctuation as an user defined backspace
character, and changing it to real backspace character
(ASCII"8") when the text input line is read in. When a text
input line is read in, the text formatter first changes each
occurrence of user defined backspace character to the real
backspace character. And then this text input line is

processed following the normal routine. There should be a

36

37

new control word that allows the user to change this user

defined backspace character to what he wants.

VI.3 Setting Output Tabs

Output tabs are useful when there are tables in the
document. The user needs to specify a single punctuation as
the user defined tab character and the positions that each
occurrence of user defined tab character stops{1,3.18].
Text formatter first examines the text input line to find
whether it contains user defined tab characters or not. If
it contains user defined tab characters, the text line is
rearranged by aligning each occurrence of user defined tab
character to its position. Extra spaces are inserted into
the text line to replace the user defined tab characters and
adjust words to the appropriate positions. The resulting

text line is then processed to produce output text.

VI.4 Multiple Control Words on a Single Input Line

In STF, an input line only can contain one contrel
word. It is possible to allow more than one control word
appeared on a single input line by separating each control
word with a special character[l]. This special character
then is called the control word separator. It may be a
default character or a user defined character. 1In general,
an input line that contains multiple control words is
entered as follows

.X%X parameters;.yy parameters;......

38

where semicolon (";") works as a control word separator.
This can be done by examining each input line that the
character at column 1 is a period. If this input line
contains control word separator, it will be split into
several control words. These control words then can be
processed one at a time. The buffer used to hold these
control words can be a linked list because it is easy to
implement and no limit exists on the number of the control

words contained on a single input line.

VI.5 Redefining Macros

It is useful if a macro can be redefined. Usually,
only few user defined macros are used all over the document.
Most of them are used in the different portions of the
document. With this facility, the number of user defined
macro can be reduced, and the processing time of a macro
also can be decreased. This facility can be achieved by
continuing process the Define Macro (".DM") control word
instead of raising an error condition when the name
parameter of the contrel word is found in the macros binary
search tree. When the same macro name is found, the old
contents linked list of this Macroc node is thrown away. New
contents linked list then is formed and linked to this Macro

node in the normal way.

VI.& Footnotes

Footnote is the formatted text that will be printed at

39

the bottom of the text area. Many documents reguire the use
of footnotes. The formatting of the footnotes should not
disturb the formatting of the normal text[1,18]. I think
the footnotes should be formatted when they are encountered,
and saved in a buffer. A linked list is an appropriate data
structure to implement this buffer. When a footnote is
processed over, the text formatter goes back to process the
normal text, and leaves sufficient room at the bottom of the
page to ensure that the footnote text is printed at the same
page. If enough room does not exist, the text formatter
should print the footnote text immediately, and those
footnote text lines that are not printed at this output page
will be printed at the bottom of the text area of the next
output page. Text formatter should keep the number of
output lines that footnote text has and uses it to reserve
sufficient room in the output page so that footnote text can

be printed in the same page.

VI.7 Conditional Sections

Some times not the total document need be printed, only
the selected portions of the document are used. This can be
done by associating a conditional section code with selected
portion of the document, and unclassified portions should
have a special value in their code by default[l,3,18]. When
the document is produced, user specifies the output level.

Text formatter compares the value of the conditional section

40

code with the ocutput level to decide whether this portion
needs to be formatted and output. This facility is useful

when a summary of the document needs to be produced.

VI.8 Multiple Input Files

With any large document, it is an advantage to create a
separate input file for each its constituent parts, and then
construct a small “driver” file to process each file, in the
desired order[1l,18]. This needs that the text formatter can
read input either from its standard input file or from
another input file. The text formatter can keep another
logical file for the use of this purpose. When the end of
this additional input file is encountered, the text
formatter goes back to read in the next input line followed
in the standard input file. A special control word will be
presented to invoke the text formatter reading input lines
from another input file. It is obvious that the save file
name of this additional input file should be one of the
parameters of this control word. When this control word is
encountered, text formatter opens this additional input file
and reads the input from it until the end of file is
reached. Then text formatter closes this file and goes back

to read the input lines from the standard input file.

VI.9 Multiple Columns Per Page
The text in newspaper and magazines is formatted in

maltiple columns per page. A number of journals also use

41

this style {some IEEE publications, for example). This
facility is hard to implement, and I do not have any ideal
about how to implement it simply and which kind of data

structure will be used to implement it.

VI.1l0 Hyphenation

STF fills lines by packing as many words onto a line as
possible without exceeding the line length or splitting a
word into two lines. Hyphenation increases the number of
words in a line on the average, and thus improves the
appearance of the output[l]. The problem is to design a
reasonably accurate scheme for hyphenating English words by
program. It needs particular study on the composition of
English words and should be developed by the group

containing computer professionals and English linguists.

VI.1ll Detailed Error Message

In STF, the error message only tells the user which
input line causes the error condition. No more details can
be obtained from the error message. It is not a good ideal
to leave the user to find the problem by himself. The error
message should contain some detailed information about the
possible reason of the error condition and how to correct
it[1,3,18]. The error message system of STF can be enhanced
by numbering each error condition and using a table to store
the error messages of these error conditions in their

corresponding pesitions. An one dimensional array is

42

suitable to implemente this error message table. and the
error condition code is the subscript of the element that
its ceorresponding error message stored. Every time an error
condition occurs, this error message table is examined, and
the error message of that error condition is printed out.
With this error message system, more details can be provided

to the user when an error condition occurs.

VII. APPENDICES

Appendix A contains the source listing of the program.
Appendix B is the sample input data. Appendix C is the
output produced from the sample input data. Appendix D is

the STF user's manual, and Appendix E is the bibkliography.

43

Appendix A

Source Program Listing

In the source program listing, the "@" is used to
substitute the pointer symbcl "A" in the PASCAL language.
All the "@" symbol should be replaced by "A" in the program

when it is typed in.

44

PROGRAM FORMAT (INPUT, OUTPUT, INF, OUTF};
CONST

MAXSTR = 600; { MAX. LENGTH OF A STRING
COMMA = ',

PERIOD = '.';

BLANK = ' ';

PLUS = '+°;

MINUS = '=~';

UDLN = ' ';

NULL = CHR(0):; { EMPTY CHAR. }

BS = CHR(8); { BACK SPACE }

LF = CHR(10); { LINE FEED }

FF = CHR{12); { FORM FEED }

CR = CHR(13); { CARRIAGE RETURN }

TYPE
{ STRING TYPE }
STRING = VARYING [MAXSTR] OF CHAR;
{ COMMAND TYPE }
CMDTYPE = PACKED ARRAY [1l..2] OF CHAR;
{ TEXT TYPE }
TEXTTYPE = PACKED ARRAY [1..80] OF CHAR;

{ TEXT LINKED LIST }
TX P = @TEXT N;
TEXT N = RECORD
TX TXT : STRING;
TX NXT : TX P;
END;

{ MACRO BINARY SEARCH TREE !}

DM P = @MACRO_N;

MACRO N = RECORD

- DM_LFT : DM_P;
DM _NAM : CMDTYPE;
DM RIT : DM_P;
DM _FST : TX P;
END;

{ PAGE NUMBER LINKED LIST }
IN P = @QIN N;
IN N = RECORD
IN INT : INTEGER;
IN NXT : IN P;
END; a

VAR

46

{ INDEX BINARY SEARCH TREE }

IX_P = QINDEX_N;

INDEX N = RECORD
IX_LFT : IX_P;
IX_TXT : TEXRTTYPE;
IX_STR : STRING;
IX_PGN . IN_P;
IX_RIT : IX P;

END;

{ TABLE OF CONTENTS LINKED LIST)
TC_P = @TC_N;
TC N = RECORD

TC_TXT : STRING;

TC PGN : INTEGER;

TC LVN : INTEGER;

TC_NXT : TC_P;

END;

{ TITLE LINKED LIST }

TT_P = @TITLE_N;

TITLE N = RECORD
TT LFT : STRING;
TT _MDL : STRING;
TT RIT : STRING;
TT_NXT : TT_P;

END;

INF : TEXT; { INFUT DATA FILE }
OUTF . FILE OF STRING; { OUTPUT DATA FILE }

INSTR, { INPUT DATA AREA)
WKSTR, { WORKING DATA AREA }
{
{

OUTSTR, OUTPUT DATA AREA)

CRLF CARRTAGE RETURN & LINE FEED }
STRING;

PAUSE, { PAUSE AT EACH PAGE = FALSE }

START_FLAG, { START FLAG = TRUE }

ERROR { ERROR FLAG = FALSE }
BOOLEAN;

CARDNO { INPUT CARD NO. = Q }

INTEGER;

SYSDM { MACRO ROOT POINTER }

DM P;
SYSIX { INDEX ROOT POINTER }
IX P;
SYSTCH, { TABLE OF CONTENTS HEAD POINTER }
SYSTCE { TABLE OF CONTENTS END POINTER }
TC P;
SYSTTE, { EVEN PAGE TOP TITLE POINTER }
SYSTTC, { ODDPAGE TOP TITLE POINTER }
SYSBTE, { EVEN PAGE BOTTOM TITLE POINTER }
SYSBTO { ODDPAGE BOTTOM TITLE POINTER }
TT P;
SYSFDH, { FLOATING DIAGRAM HEAD POINTER |}
SYSFDE, { FLOATING DIAGRAM END POINTER }
SYSFBH, { FLOATING BLOCK HEAD POINTER }
SYSFBE { FLOATING BLOCK END POINTER }
TX_P;
SYSPS, { PAGE NUMBER SYMBOL = "%° |}
INDEXCHAR { FIRST CHAR. IN INDEX ENTRY }
: CHAR;
SYSPN, { PRINTED PAGE NO. TYPE = TRUE }
ROMBG, { BIG ROMAN NUMERAL OR NOT = FALSE }
COBOL, { CONCATENATE = TRUE }
JUBOL, { JUSTIFY = TRUE)
BDBOL, { BOLD = FALSE)
CEBOL, { CENTER = FALSE)}
RIBOL, { RIGHT ADJUST = FALSE }
USBOL, { UNDERSCORE = FALSE }
UPBOL, { UPPERCASE = FALSE)}
IXBOL, { INDEX = FALSE }

PAGETYPE, { EVEN PAGE OR ODD PAGE = TRUE }
DIRECTION { DIRECTION TO INSERT BLANKS = TRUE }
BOOLEAN;

SYSLS, LINE SPACE = 0 }

SYSTME, EVEN TOP MARGIN = 6 }
SYSTMO, ODD TOP MARGIN = 6 }
SYSHSE, EVEN HEADING SPACE = 1 }
SYSHSO, ODD HEADING SPACE = 1 }
SYSHME, EVEN HEADING MARGIN = 1 }
SYSHMO, ODD HEADING MARGIN = 1 }
SYSBME, EVEN BOTTOM MARGIN = 6 }
SYSBMO,

ODD BOTTOM MARGIN = 6

{

{

{

{

{

{

{

| |
SYSFME, { EVEN FOOTING MARGIN = 1 }

{

{

{

{

{

{

{

{

{

0
TEXT AREA OF EVEN PAGE = 54 |}
TEXT AREA OF ODDPAGE = 54)
ADJUST OF CURRENT PAGE = 0 }
TEXT AREA OF CURRENT PAGE = 54 }

NTEGER ;

TXBOTO,
SYSAD,
TXBOT

SYSFMO, ODD FCOTING MARGIN = 1 }
SYSFSE, EVEN FOOTING SPACE = 1 }
SYSFSO, ODD FOOTING SPACE = 1 }
SYSADE, EVEN ADRJUST = 0)
SYSADOQ, ODD ADJUST = 0 }
SYSIND, INDENT = 0 }
SYSIR, INDENT RIGHT = 0 }
SYSPL, PAGE LENGTH = 66 }
SYSLL, LINE LENGTH = 60)}
SKVAL, { SKIP = 0 }
SPVAL, { SPACE = 0 }
LBVAL, { LEADING BLANKS = 0 }
UNVAL, { UNDENT = 0)
TIVAL, { TEMPORARY INDENT = 0 }
TXVAL, | TEXT CHAR. PER LINE = 60 }
CEVAL, { CENTER = 0 }
RIVAL, { RIGHT ADJUST = 0 }
LINENO, { CURRENT PRINTED LINE NO. = 0 }
PAGENO, { CURRENT PAGE NO. = 1 }
CPVAL, { CONDITIONAL PAGE EJECT = 0 }
USVAL, { UNDERSCORE = 0 }
UPVAL, { UPPERCASE = 0 }
BDVAL, { BOLD = (}
TCVAL, { TABLE OF CONTENTS LEVEL = }
TXBOTE, {

{

{

{

I

PRCCEDURE ADDINDEXNO PROC (P : IX P;
INQ : IN_P);
FORWARD ;

FUNCTION ALLDIGITS FCTN (S : STRING) : BOOLEAN;
FORWARD;

PROCEDURE ARRANGEQUTSTR PROC (VAR S1, S2 : STRING:
I : INTEGER):
FORWARD;

FUNCTION BACKWARD FCTN (S : STRING;
I : INTEGER) : STRING;
FORWARD;

FUNCTION BDSTR FCTN (S : STRING} : STRING;
FORWARD;

PROCEDURE BREAK PROC (B : BOOLEAN);
FORWARD;

PROCEDURE BUILDTT PROC (VAR P : TT P);
FORWARD ;

FUNCTION BUILDTTPART FCTN (S : STRING) : STRING;
FORWARD;

PROCEDURE CE PROC (S : STRING;
I : INTEGER);
FORWARD;

PROCEDURE CO PROC (S : STRING);
FORWARD;

PROCEDURE COMMAND_PROC (S : STRING);
FORWARD;

FUNCTION CONVERSE_FCTN (S : STRING) : CMDTYPE;
FORWARD;

PROCEDURE CP_PROC (S : STRING);
FORWARD ;

PROCEDURE
FORWARD;

FROCEDURE
FORWARD;

PROCEDURE
FORWARD ;

PROCEDURE
FORWARD ;

PROCEDURE
FORWARD ;

DM_PROC (5 : STRING);
END_PROC;

FB_PROC (S : STRING);
FD_PROC (S : STRING);
FO_PROC (S : STRING);

FUNCTION FORWARD FCTN (S

FORWARD;

PROCEDURE

FORWARD ;

PROCEDURE

FORWARD;

PROCEDURE
FORWARD ;

PROCEDURE
FORWARD ;

PROCEDURE
FORWARD;

PROCEDURE
FORWARD;

FORWARD ;

STRING;

I INTEGER) STRING;
GETPARA PROC (VAR S STRING;

VAR P STRING;

VAR R BOOLEAN) ;
GETWORD PROC (VAR S STRING;

VAR W STRING;

VAR L INTEGER;

VAR R BOOLEAN) ;
INITFILE PROC;
INITIAL PROC;
INITTT_ PROC;
INITVAL PROC;

FUNCTION INRANGE FCTN (C, R1l, R2 CHAR} BOOLEAN;
STRING) INTEGER;

FUNCTION INTSTR_FCTN (S

FORWARD;

50

FUNCTION INTTOARB FCTN (I INTEGER) STRING
FORWARD;
PROCEDURE INTTOROM PROC (I INTEEGR;
VAR S STRING;
VAR E BOOLEAN) ;

FORWARD ;
FUNCTION ISAEC FCTN (S STRING) INTEGER;
FORWARD ;
FUNCTION ISALPHA FCTN (C CHAR) BOOLEAN;
FORWARD ;
FUNCTION ISCW_FCTN (A CMDTYPE) BOOLEAN;
FORWARD;
FUNCTION ISDIGIT FCTN (C CHAR) BOOLEAN;
FORWARD;
FUNCTION ISEVEN _FCTN (I INTEGER) BOOLEAN;
FORWARD;
FUNCTION ISLOWER FCTN (C CHAR) BOOLEAN;
FORWARD,;
FUNCTION ISNUMBER FCTN (S STRING) INTEGER
FORWARD;
FUNCTION ISOO_FCTN (S STRING) INTEGER;
FORWARD;
FUNCTION ISPUNCT FCTN (C CHAR) BOOLEAN;
FORWARD;
FUNCTION ISUPPER_FCTN (C CHAR) BOOLEAN;
FORWARD;
FUNCTION ISXXOFF FCTN (XX CMDTYPE:;

S5 : STRING;

VAR CMND CMDTYPE)
FORWARD;
PROCEDURE IX PROC (S STRING);

FORWARD ;

PROCEDURE LBVAL_ FROC;
FORWARD ;

.
!

.
’

INTEGER;

51

PROCEDURE LINKTEXT PROC (VAR HP, EP : TX P;
S : STRING);
FORWARD;

PROCEDURE LISTLINK PROC (VAR DH, DE : TX P;
XX : CMDTYPE;
VAR J : INTEGER);
FORWARD;

PROCEDURE LS PROC (S : STRING);
FORWARD;

FUNCTION LWSTR_FCTN (S : STRING) : STRING;
FORWARD;

PROCEDURE MACRO PROC (P : DM _P);
FORWARD;

FUNCTION MAKESTRING_FCTN (I : INTEGER;

C : CHAR) : STRING;
FORWARD,;
FUNCTION MAX FCTN (I, J : INTEGER) : INTEGER;
FORWARD;
FUNCTION MIN FCTN (I, J : INTEGER) : INTEGER;
FORWARD;

PROCEDURE MINUSONE_PROC (VAR I : INTEGER;
VAR E : BOOLEAN);
FORWARD;

PROCEDURE NEWPAGENO_PROC;
FORWARD;

PROCEDURE OTHERWISE PROC (S : STRING;
A : CMDTYPE);
FORWARD ;

PROCEDURE PA_PROC (S : STRING);
FORWARD;

PROCEDURE PARAO_PROC (S : STRING;
VAR E : BOOLEAN};
FORWARD;

52

PROCEDURE PARA1l PROC (S : STRING;
VAR Pl : STRING;
VAR E : BOOLEAN);
FORWARD;

PROCEDURE PARA2 PROC (S : STRING;
VAR P1l, P2 : STRING;
VAR E : BOOLEAN);
FORWARD ;

PROCEDURE PARAZNT PROC (5 : STRING;
VAR P1l, P2 : STRING;
VAR E : BOOLEAN);
FORWARD;

PROCEDURE PARA3 PROC (S : STRING;
VAR P1l, P2, P3 : STRING;
VAR E : BOOLEAN};
FORWARD ;

FUNCTION PARTDIGITS FCTN (S : STRING;
I, J : INTEGER) : BOOLEAN;
FORWARD;

PROCEDURE PN_PROC (S : STRING):
FORWARD ;

PROCEDURE PREPAREINDEXNO PROC (VAR S : STRING;
INP : IN_P);
FORWARD;

PROCEDURE PRINTBLANKPAGE PROC;
FORWARD;

PROCEDURE FPRINTFB_PROC;
FORWARD ;

PROCEDURE PRINTFGCOTHEAD PROC;
FORWARD;

PROCEDURE PRINTINDEX PROC (IP : IX P);
FORWARD;

PROCEDURE PRINTLINES PROC (I : INTEGER);
FORWARD ;

PROCEDURE PRINTSPACELINE_ PROC;
FORWARD ;

53

PROCEDURE PRINTTEXT PROC (S : STRING);
FORWARD;

PROCEDURE PRINTTC PROC (TP : TC_P);
FORWARD;

PROCEDURE PRINTTITLE PROC (P : TT_P):
FORWARD ;

PROCEDURE PROCESS PROC (S : STRING});
FORWARD ;

PROCEDURE PS_PROC (S : STRING);
FORWARD ;

PROCEDURE PUTHF PRCC (E : BOOLEAN);
FORWARD;

PROCEDURE PUTINDEX PROC;
FORWARD ;

PROCEDURE PUTTC PROC;
FORWARD;

PROCEDURE PUTTITLE PROC (V1, V2, V3 : INTEGER;

P : TT P);
FORWARD;

PROCEDURE RO_PROC (S : STRING):
FORWARD;

FUNCTION REVERSE FCTN (S : STRING) : STRING;
FORWARD;

PROCEDURE RI_PROC (S : STRING;
I : INTEGER});
FORWARD ;

FUNCTION RMLB_FCTN (S : STRING) : STRING;
FORWARD;

FUNCTION RMTB_FCTN (S : STRING) : STRING;
FORWARD;

PROCEDURE SEARCHINDEX PROC (T : TEXTTYPE;

VAR P : IX_PF;

VAR I : INTEGER);
FORWARD ;

54

PROCEDURE SEARCHMACRO PROC

FORWARD;

FUNCTION SELECT FCTN (E

J,

FORWARD;

PROCEDURE SEPTITLE_PROC (S8

VAR S1, S22, S3 STRING;
VAR E BOOLEAN) ;
FORWARD ;
PROCEDURE SETIN_PROC (S STRING;
VAR I INTEGER;
E BOOLEAN) ;
FORWARD ;
PROCEDURE SET1NOC PROC (S STRING;
VAR I INTEGER;
VAR B BOOLEAN ;
BOOLEAN) ;
FORWARD ;
PROCEDURE SETAEON PROC (S STRING;
VAR I. J INTEGER;
BOOLEAN) ;
FORWARD;
PROCEDURE SETAEONT_ PROC STRING;
P, Q : TT_P;
BOOLEAN) ;
FORWARD ;
PROCEDURE SETN_PROC (S STRING;
VAR I INTEGER) ;
FORWARD,;
PROCEDURE SETNT_PROC (S STRING;
P IT_P:
I INTEGER) ;
FORWARD;
FUNCTION SETNUM _FCTN (I INTEGER;
S STRING) INTEGER;

FORWARD;

{A : CMDTYPE;
VAR F : DM P;

VAR I INTEGER) ;
BOOLEAN;
INTEGER) INTEGER;
STRING;

55

56

PROCEDURE SETOO_ PROC (S STRING;

VAR B BOOLEAN) ;
FORWARD
PROCEDURE SETTITLE PROC (P TT P;

I : INTEGER:

S1, 82, S3 : STRING);

FORWARD ;
PROCEDURE SK_PROC (S : STRING);
FORWARD;
PROCEDURE SP_PROC (S : STRING);
FORWARD ;
FUNCTION SPREAD_FCTN (S : STRING;

I : INTEGER) : STRING;
FORWARD ;
FUNCTION STRCOPY FCTN (S : STRING) : STRING;
FORWARD ;
FUNCTION STRTOTEXT_FCTN (S : STRING) : TEXTTYPE;
FORWARD;
PROCEDURE TC_PROC (S : STRING);
FORWARD;
PROCEDURE TEXT PROC (S : STRING);
FORWARD;
PROCEDURE TONEWPAGE_FPROC;
FORWARD;
PROCEDURE TXBOT_PROC;
FORWARD ;
FUNCTION UPSTR_FCTN (S : STRING) : STRING;
FORWARD ;
FUNCTION USSTR_FCTN (S : STRING) : STRING;
FORWARD ;
FUNCTION VERIFY FCIN (S : STRING;

C : CHAR) : INTEGER;
FORWARD;
FUNCTION WIDTH_FCTN (S : STRING) : INTEGER:

FORWARD;

FUNCTION
PUT THE PAGE NUMBER IN THE PAGE NUMBER
LINKED LIST OF AN INDEX ENTRY.

PROCEDURE ADDINDEXNO PROC;

BEGIN
IF PAGENO <> P@.IX PGN@.IN INT THEN

BEGIN
INQ@.IN NXT := P@.IX PGN;
P@.IX PGN := INQ;

END;

END;
FUNCTION

CHECK THE CHARACTERS OF A STRING TO FIND
WHETHER THEY ARE ALL THE DIGITS OR NOT.

FUNCTION ALLDIGITS FCTN;
BEGIN
ALLDIGITS FCTN := FALSE;
IF LENGTH(S) > 0 THEN
IF PARTDIGITS FCTIN(S,1,LENGTH(S)) THEN
ALLDIGITS_FCTN := TRUE;

END;

et et Nt gt R

FUNCTION
USE LINE-BY-LINE METHOD TO ARRANGE THE
WORDS IN AN OUTPUT TEXT LINE.

PROCEDURE ARRANGEOUTSTR_ PROC;

VAR
W STRING;
J, K, L : INTEGER;
E, R : BOOLEAN;
BEGIN
52 = "',
J = 0;
K := 0;
E := FALSE;
IF S1[1] = BLANK THEN
BEGIN
K := VERIFY_FCTN(Sl,BLANK) - 1.
S2 := S2 + SUBSTR(S1,1,K):;
END;

GETWORD PROC(S1,W,L,R);
WHILE R AND (NOT E) DO
IF I »= K + J + L + 1 THEN

BEGIN
IF J = 0 THEN
BEGIN
S2 = 82 + W;
J = L;
END
ELSE
BEGIN
52 := 52 + BLANK + W;:
J :=J+ L + 1;
END;
GETWORD_PROC(Sl,W,L,R);
END
ELSE
BEGIN
E := TRUE;
IF J = Q THEN
S2 1= 82 + W
ELSE
S1 := W + BLANK + S1;
END;
IF R THEN
BEGIN
52 := SPREAD_FCTN(S2.1);
51 := RMLB_FCTN(Sl);
END;

END;

58

FUNCTION
INSERT PARTICULAR NUMBER OF BLANKS INTO A
STRING FROM THE BACKWARD DIRECTION.

FUNCTION BACKWARD FCTN;

BEGIN
S := REVERSE_FCTN(S);
S := FORWARD FCTN(S,I);
S := REVERSE_FCTN(S);
BACKWARD FCTN := S;

END;

FUNCTION

MAKE THE STRING BE PRINTED TWICE.

FUNCTION BDSTR _FCTN;

VAR
S1 : STRING;
I : INTEGER;
BEGIN
Sl := "',
FOR I := 1 TO LENGTH(S) DO
IF (S[I] <> BLANK) AND (S[I] <> BS) THEN
S1 := 51 + S[I] + BS + S[I)]
ELSE
S1 := 81 + S[1I];
BDSTR_FCTN := S1;

END;

O el e

FUNCTION : }
MAKE A BREAK IN THE PRINTED TEXT. }

PROCEDURE BREAK PROC;

BEGIN
IF B THEN
WHILE (LENGTH(WKSTR) > 0) DO
BEGIN
IF WIDTH FCTN(WKSTR) <= TXVAL THEN
BEGIN
OUTSTR := WKSTR;
WKSTR := '';:
END
ELSE
ARRANGEOUTSTR_PROC(WKSTR, OUTSTR, TKVAL) ;
PRINTTEXT PROC(OUTSTR);
END;
END;
__ }
FUNCTION : }
INITIATE A TITLE LINKED LIST. }

PROCEDURE BUILDTT_ PROC;
VAR
Q, R : TT P;
I : INTEGER;
BEGIN
R := NIL;
FOR I := 1 TO 30 DO
BEGIN
NEW(Q) ;
Q@.TT LFT := '';
Q@.TT MDL
Q@.TT RIT
Q@.TT NXT
R 1= Qj

END;
P :=R;
END;

FUNCTION
PREPARE ONE OF THREE PARTS OF A TITLE.
CHANGE THE PAGE NUMBER SYMBOL OF THE TITLE
TO THE REAL PAGE NUMBER.

61

e S g St Nt

(mmmmmmm e R R R)

FUNCTION BUILDTTPART_FCTN;
VAR
I : INTEGER;
31, S2 : STRING;
R : BOOLEAN;
BEGIN
sl := ',
WHILE (LENGTH(S) > 0) DO
BEGIN
I := INDEX{(S,SYSPS);
IF I = 0 THEN
BEGIN
31 := 351 + S;
S = '
END
ELSE
BEGIN
S1 := S1 + SUBSTR(S,1,I-1);
IF SYSPN THEN
S1 := S1 + INTTOARB_FCTN(PAGENO)
ELSE
BEGIN
INTTOROM PROC(PAGENO,S2,R);
IF R THEN
Sl := 51 + S2
ELSE

S1 := S1 + INTTOARB _FCTN(PAGENO);

END;

IF LENGTH(S) = I THEN
s = "

ELSE
S := SUBSTR(S,I+1,LENGTH(S)-I);

END;
END;
BUILDTTPART FCTN := S1;
END;

FUNCTION
PROCESS A PRINTED TEXT LINE THAT NEEDS TO
BE CENTERED.

PROCEDURE CE_PROC;

VAR
J, K : INTEGER;
BEGIN
K := ((TXVAL - I) DIV 2) + 1;
K := MAX FCTN(K,1);
FOR J := 1 TO (K - 1) DO
S := BLANK + 5;

PRINTTEXT PROC(S);
MINUSONE_PROC(CEVAL,CEBOL);
END;

FUNCTION
PROCESS THE TEXT WHEN THE CONCATENATION
SWITCH IS ON.

PROCEDURE CO_PROC;
BEGIN
IF S[1] = BLANK THEN
BREAK_PROC(TRUE) ;
IF LENGTH(WKSTR) = 0 THEN

WKSTR := S

ELSE
WKSTR := WKSTR + BLANK + S;

WHILE (WIDTH FCTN(WKSTR) >= TXVAL) DO
BEGIN

ARRANGEOUTSTR PROC({WKSTR,OUTSTR, TXVAL) ;
PRINTTEXT PROC(QUTSTR);
END;
END;

O s T Jr

63

{ }
{ TFUNCTION }
{ PROCESS SYSTEM CONTROL WORDS AND }
{ USER DEFINED MACROS. }

}

PROCEDURE COMMAND PROC;
VAR
CMND : CMDTYPE;
PO : STRING;
I : INTEGER;
BEGIN
I := LENGTH(S);
IF I < 3 THEN
ERROR := TRUE
ELSE
BEGIN
S := LWSTR FCTN(S);
PO := SUBSTR(S,2,2);
CMND := CONVERSE_FCTN(P0);
IF I > 3 THEN
S := SUBSTR(S.,4,I-3)

IF CMND = 'ad' THEN
BEGIN
SETAEON_PROC(S, SYSADE, SYSADO, TRUE) ;
SYSAD := SELECT FCTN(PAGETYPE, SYSADE, SYSADO);
END
ELSE
IF CMND = 'bd’ THEN
SET1NOO_PROC(S,BDVAL, BDBOL,FALSE)
ELSE
IF CMND = 'bi’ THEN
BEGIN
SET1NOO_PROC(S,BDVAL, BDBOL, FALSE) ;
SET1INOO_PROC(S,USVAL,USBOL,FALSE) ;
END
ELSE

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE)

IF CMND = 'bm' THEN
BEGIN
SETAEON PROC(S,SYSBME, SYSBMO, FALSE);
IF NOT ERROR THEN
BEGIN
TXBOT PROC;
IF NOT ERROR THEN
IF (SYSBME < (SYSFME + SYSFSE)) OR
(SYSBMO < (SYSFMO + SYSFSO)) THEN

ERROR := TRUE;
END;
END
BLSE
I¥ CMND = 'br' THEN
BEGIN

PARAO PROC(S,ERROR) ;
IF NOT ERROR THEN
BREAK_PROC (TRUE);
END
ELSE
IF CMND = 'bt' THEN
SETAEONT PROC{S, SYSBTE, SYSBTO, TRUE)
ELSE
IF CMND = 'ce' THEN
BEGIN
SET1NOO PROC(S,CEVAL, CEBOL, TRUE) ;
IF (NOT ERROR) AND CEBOL THEN
RIBOL := FALSE;
END
ELSE
IF CMND
BEGIN
END
ELSE
IF CMND = 'co' THEN
SETOO_PROC(S, COBOL)
ELSE
IF CMND = ‘cp' THEN
CP_PROC(S)
ELSE
IF CMND = 'dm' THEN
DM_PROC(S)
ELSE

‘cm' THEN

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE)}

65

IF CMND = 'ds’ THEN
BEGIN
PARAQ PROC(S,ERROR);
IF NOT ERROR THEN

BEGIN
S5 = '1";
LS _PROC(S);
END;
END
ELSE
IF CMND = 'ea’ THEN
BEGIN
SETN_PROC(S, SYSADE) ;
SYSAD := SELECT FCTN(PAGETYFE, SYSADE, SYSADO);
END o
ELSE
IF CMND = ‘'eb' THEN
SETNT PROC(S,SYSBTE,O0)
ELSE
IF CMND = 'ep' THEN
BEGIN

PARAO PROC(S,ERROR) ;
IF NOT ERRCR THEN

BEGIN
S := 'even';
PA PROC(S);
END;
END
ELSE
IF CMND = 'et’' THEN
SETNT_PROC(S, SYSTTE, 1)
ELSE
IF CMND = "£fb' THEN
FB PROC(S)
ELSE
IF CMND = *‘£4' THEN
FD PROC(S)
ELSE

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE }

66

IF CMND = 'fi' THEN
BEGIN
PARAO PROC(S,ERROR};
IF NOT ERROR THEN
BEGIN
5 := 'on';
FO_PROC(S);
END;
END
ELSE
IF CMND = 'fm' THEN
BEGIN
SETAEON_PROC(S,SYSFME,SYSFMO,FALSE);
IF NOT ERROR THEN
IF (SYSBME < (SYSFME + SYSFSE)) OR
{SYSBMO < (SYSFMO + SYSFSO)) THEN
ERROR := TRUE;
END
ELSE
IF CMND = ‘'fo' THEN
FO_PROC(S)
ELSE
IF CMND = 'fs' THEN
BEGIN
SETAEON_PROC(S,SYSFSE,SYSFSO,FALSE);
IF NOT ERROR THEN
IF (S3YSBME < {SYSFME + SYSFSE)) OR
(SYSBMO < (SYSFMO + SYSFSO)) OR
(SYSFSE > 30) OR
(SYSFSO » 30Q0) THEN

ERROR := TRUE;
END
ELSE
IF CMND = 'hm' THEN
BEGIN

SETAEON_PROC (S, SYSHME, SYSHMO, FALSE) ;
IF NOT ERROR THEN
IF (SYSTME < (SYSHME + SYSHSE)) OR
(SYSTMO < (SYSHMO + SYSHSO)) THEN
ERROR := TRUE;
END
ELSE

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE |}

{

IF CMND = 'hs' THEN
BEGIN

67

SETAEON PROC(S, SYSHSE, SYSHSOQ,FALSE) ;

IF NOT ERROR THEN

IF {SYSTME < (SYSHME + SYSHSE))

OR

(SYSTMO < (SYSHMO + SYSHSO)) OR

(SYSHSE > 30) OR
{SYSHSO » 30) THEN

ERRCR := TRUE;
END
ELSE
IF CMND = 'in' THEN
BEGIN

SETN PROC(S,SYSIND);
IF NOT ERROR THEN
LBVAL_ PROC;
END
ELSE
IF CMND = 'ir' THEN
BEGIN
SETN_PROC(S,SYSIR);
IF NOT ERROR THEN

LBVAL_PROC;
END

ELSE

IF CMND = 'ix’' THEN
BEGIN

PARAO PROC(S,ERRCR};
IF NOT ERROR THEN

IXBOL := TRUE;

END

ELSE

IF CMND = 'ju' THEN
SETOO PROC(S,JUBOL)

ELSE -

IF CMND = ']l1°' THEN
BEGIN

SETN_PROC(S, SYSLL) ;
IF NOT ERROR THEN
LBVAL_PROC;
END
ELSE

SAME ROUTINE WILL CONTINUE ON NEXT PAGE }

68

IF CMND = ‘ls' THEN
LS PROC(S)

ELSE

IF CMND = 'nc' THEN
BEGIN

PARAO_PROC(S,ERROR);
TIF NOT ERROR THEN
BEGIN
S := 'pff"';
SETOQ PROC{S,COBOL};
END; -
END
ELSE
IF CMND = 'nf' THEN
BEGIN
PARAO_PROC(S,ERROR);
IF NOT ERROR THEN
BEGIN
S = 'off’;
FO_PROC(S);
END;
END
ELSE
IF CMND = ‘nj' THEN
BEGIN
PARAO PROC(S,ERROR) ;
IF NOT ERROR THEN

BEGIN
S := "off';
SETOO_PROC(S,JUBCL});
END;
END
ELSE
IF CMND = 'oa' THEN
BEGIN
SETN_PROC(S, SYSADO) ;
SYSAD := SELECT_ FCTN(PAGETYPE, SYSADE,SYSADO);
END
ELSE

IF CMND = ‘ob' THEN
SETNT_PROC({S, SYSBTO, 2)
ELSE

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE }

{

IF CMND = 'op’ THEN
BEGIN
PARAO PROC(S,ERROR);
IF NOT ERROR THEN
BEGIN
S := ‘'pdd’';
PA PROC(S);
END;
END
ELSE
IF CMND = 'ot' THEN
SETNT_ PROC(S,SYSTTO, 3}
ELSE

IF CMND = ‘pa’ THEN
PA_PROC(S)

ELSE

IF CMND = 'pi‘' THEN
BEGIN

PARAQ PROC(S,ERROR) ;
IF NOT ERROR THEN
PUTINDEX PROC;
END
ELSE
IF CMND = ‘pl' THEN
BEGIN
SETN_PROC(S, SYSPL) ;
IF NOT ERROR THEN
TXBOT PROC;

END

ELSE

IF CMND = 'pn' THEN
PN _PROC(S)

ELSE

IF CMND = 'ps' THEN
PS PROC(S)
ELSE
IF CMND = 'pt' THEN
BEGIN
PARAO PROC(S,ERRCR);
IF NOT ERRCR THEN
PUTTC_PROC;
END
ELSE

SAME ROUTINE WILL CONTINUE ON NEXT PAGE |}

69

{ SAME ROUTINE WILL CONTINUE ON NEXT

IF CMND = 'ri' THEN
BEGIN
SETINOQ_PROC(S,RIVAL,RIBOL,TRUE);
IF (NOT ERROR} AND RIBOL THEN

CEBOL := FALSE;

END

ELSE

IF CMND = ‘'ro' THEN
RO_PROC(S)

ELSE

IF CMND = 'sk' THEN
SK PROC(S)

ELSE

IF CMND = 'sp' THEN
SP_PROC(S)

ELSE

IF CMND = 'ss' THEN
BEGIN

PARAO PROC(S,ERROR) ;
IF NOT ERROR THEN

BEGIN
S := '0";
LS PROC(S);
END;
END
ELSE
IF CMND = ‘'tc' THEN
SETIN PROC(S,TCVAL, FALSE)
ELSE
IF CMND = 'ti' THEN
BEGIN

SETN_PROC (S, TIVAL);
IF NOT ERROR THEN
LBVAL PROC;
END
ELSE

PAGE }

70

71

IF CMND = "tm' THEN
BEGIN
SETAEON_PROC(S, SYSTME, SYSTMO,FALSE) ;
IF NOT ERROR THEN
BEGIN
TXBOT_FROC;
IF NOT ERROR THEN
IF (SYSTME < {SYSHME + SYSHSE)) OR
(SYSTMO < (SYSHMO + SYSHSO)) THEN

ERROR := TRUE;
END;

END
ELSE
IF CMND = "tt' THEN

SETAEONT PROC{S,SYSTTE,SYSTTO, FALSE)
ELSE
IF CMND = ‘uc’' THEN

BEGIN

SET1NOO PROC(S,UPVAL,UPBOL,FALSE) ;
SETINOO PROC(S,USVAL,USBOL,FALSE);
END
ELSE
IF CMND = 'un' THEN
BEGIN
SETN_PROC(S,UNVAL);
IF NOT ERROR THEN

LBVAL PROC;

END
ELSE
IF CMND = ‘'up' THEN

SET1NOO PROC(S,UPVAL,UPBOL, FALSE)
ELSE
IF CMND = 'us’' THEN

SET1NOO PROC(S,USVAL,USBOL,FALSE)
ELSE -

OTHERWISE PROC(S,CMND);

END;
END;

FUNCTION
CONVERSE A CONTROL WORD FROM STRING TYPE
TO COMMAND TYPE.

FUNCTION CONVERSE FCTN;

VAR
A : CMDTYPE;
I : INTEGER;
BEGIN
FOR I := 1 TO 2 DO
Af1] := 8[1];
CONVERSE_FCTN := A;
END;
FUNCTION
PROCESS THE .cp SYSTEM CONTROL WORD.
cp n

PROCEDURE CP_PROC;
VAR
Pl : STRING;
I : INTEGER;
BEGIN
PARAl1 PROC(S,P1l,ERROR);
IF NOT ERROR THEN
IF (NOT ALLDIGITS FCTN(Pl)) THEN

ERROR := TRUE
ELSE
BEGIN
I := INTSTR FCTN(PLl});

BREAK PROC(TRUE);
IF TXBOT <= (I + LINENO) THEN
BEGIN
TONEWPAGE PROC;
NEWPAGENO PROC;
PUTHF_PROC(TRUE) ;
END; ’
END;
END;

—— e e Tt

FUNCTION
PROCESS THE .dm SYSTEM CONTROL WORD.
.dm < name | off >

PROCEDURE DM PROC;

VAR
P, Q : DM _P;
DP, DE : TX P
A : CMDTYPE;
I : INTEGER;
P1 : STRING;
BEGIN

PARA]l_ PROC(S,P1l,ERROR);
IF NOT ERROR THEN
IF LENGTH(Pl) <> 2 THEN
ERROR := TRUE
ELSE
BEGIN
A := CONVERSE FCTN(P1);
ERROR := ISCW FCTN(A);
IF NOT ERROR THEN
BEGIN
P SYSDM;
I 0;
SEARCHMACRO PROC(A,P,I};
IF I = 3 THEN

o

ERROR := TRUE
ELSE
BEGIN
NEW(Q) :
Q@.DM_LFT := NIL;
Q@.DM_NAM := A;
Q@.DM_RIT := NIL;
Q@.DM_FST := NIL;
IF I = 0 THEN
SYSDM := Q
ELSE
IF I = 1 THEN
P@.DM_LFT := Q
ELSE
P@.DM_RIT := Q;
DP := NIL;

LISTLINK PROC(DP,DE, ‘dm’',I);
IF NOT ERROR THEN
Q@.DM_FST := DP;
END;
END;
END;
END;

}
FUNCTION }
PRINT THE TEXT REMAINED IN WORKING DATA AREA |}
WHEN THE INPUT FILE IS END.)

}

PROCEDURE END PROC;

VAR
S : STRING;
BEGIN
IF ERROR THEN
BEGIN
S := 'ERROR IN INPUT CARD ' +
INTTOARB FCTN(CARDNO) + CRLF;
WRITE (OUTF,QUTS) ;
END
ELSE
BEGIN
BREAK PROC(TRUE);
TONEWPAGE_PROC;
WRITE(OUTF,FF};
END;
END;
__ }
FUNCTION : }
PROCESS THE .fb SYSTEM CONTROL WORD. }
fb < on | off | put » }

PROCEDURE FB PROC;
VAR h
Pl : STRING;
I : INTEGER;
BEGIN
PARAl_PROC(S,Pl,ERROR):
IF NOT ERROR THEN
IF (LENGTH(P1l) = 1) AND (Pl = NULL) THEN

ERROR := TRUE
ELSE
IF (LENGTH(Pl) = 2) AND (Pl = 'on') THEN
LISTLINK PROC(SYSFBH, SYSFBE, 'fb',I)
ELSE

IF (LENGTH(F1l) = 3) AND (Pl = 'put') THEN
PRINTFEB PROC
ELSE
ERROR := TRUE;
END;

}
FUNCTICON }
PROCESS THE .fd SYSTEM CONTROL WORD. }
.fd < on 1 off » }

PROCEDURE FD_PROC;

VAR
P1l, OUTS : STRING;
FDP, FDD : TX_P;
J : INTEGER;
E : BOOLEAN;
BEGIN

PARA1 PROC(S,Pl,ERROR);
IF NOT ERROR THEN
IF (LENGTH(Pl) <> 2) OR
((LENGTH(P1) = 2) AND (Pl <> 'on')) THEN
ERROR := TRUE
ELSE
BEGIN
BREAK_PROC(TRUE) ;
LISTLINK(SYSFDH, SYSFDE, '£fd',J);

{ IF NECESSARY, EJECT TO)
{ THE TOP OF NEXT PAGE }
IF J + LINENO > TXBOT THEN
BEGIN
TONEWPAGE PROC;
NEWPAGENO_PROC;
PUTHF_PROC(TRUE) ;
END;

{ PRINT THE BLOCK OF DATA)}

FDP := SYSFDH;

WHILE (FDP <> NIL) DO

BEGIN
PRINTFOOTHEAD PROC;
OUTS := MAKESTRING FCTN(SYSAD,BLANK) +
FDP@.TX_TXT + CRLF;

WRITE (OUTF, OUTS) ;

LINENO := LINENO + 1;
FbD := FDP;
FDP := FDP@.TX NXT;
DISPOSE(FDD) ;
END;

PRINTLINES PROC(SYSLS);

SYSFDH := NIL;

SYSFDE := NIL;

END;

END;

75

FUNCTION
PROCESS THE .fo SYSTEM CONTROL WORD.
.fo < on | off >

PROCEDURE FO_ PROC;
BEGIN
SETOO_PROC(S, COBOL) ;
SETO0 PROC{S,JUBOL);
END;

FUNCTION
INSERT PARTICULAR NUMBER OF BLANKS INTO
A STRING FROM THE FORWARD DIRECTION.

FUNCTION FORWARD FCTN;
VAR
S]1 : STRING;
J, K, L : INTEGER;
BEGIN
J = 1;
WHILE (I > 0) DO
BEGIN
S1 := SUBSTR{S.,J,LENGTH(S)-J+1);
K := INDEX(S1l,BLANK):
IF K > 0 THEN
BEGIN
K

J + K - 1;
S s

UBSTR(S,1,K) + BLANK +
SUBSTR(S,K+1,LENGTH(S5)-K);
51 := SUBSTR(S,K,LENGTH(S)-K+1};
L VERIFY_FCTN(Sl,BLANK);
J K+ L - 1;
END
ELSE
J :
IF J
I :

IE

W oH

1;
1 THEN
I-1;

W~ It

END;
FORWARD FCTN := S;
END;

—— e S St

FUNCTION
OBTAIN FIRST WORD FROM A STRING. IF NO WORD
IS OBTAINED, THEN A FLAG IS SET TO FALSE.

PROCEDURE GETPARA_ FROC;

VAR
I, J : INTEGER;
BEGIN
R := FALSE;
S = RMLB_FCTN(S);
I := LENGTH(S);
IF I > 0 THEN
BEGIN
R := TRUE;
J := INDEX(S,BLANK):
IF J = 0 THEN
BEGIN
P = 5;
5 = "'";
END
ELSE
BEGIN
P := SUBSTR(S.,1.,J-1);
S := SUBSTR(S,J+1,I-J);
END;
END;
END;
FUNCTION

OBTAIN FIRST WORD FROM A STRING. ITS LENGTH
IS ALSO RETURNED.

PROCEDURE GETWORD PROC;
BEGIN -
GETPARA PROC(S,W,R);
IF R THEN
L := WIDTH FCTN(W);
END;

}

FUNCTION }
OPEN TEXT INPUT FILE AND OUTPUT FILE. }
IT ALSO PRINTS THE STARTING MESSAGE. H

PROCEDURE INITFILE PROC;

VAR
S : STRING;
E : BOOLEAN;
BEGIN
WRITE('ENTER INPUT FILE NAME : ');
READLN(S); { INPUT DATA FILE NAME }
OPEN(INF,S,HISTORY:=OLD);
RESET (INF) ;
WRITELN({ 'IF ON-LINE PRINTOUTS, THEN PRESS RETURN,'
WRITE('OTHERWISE, ENTER CUTPUT FILE NAME : ');
READLN(S); { OUTPUT DATA FILE NAME |}
S := RMLB FCTN(S};
S := RMTB FCTN(S);
IF LENGTH(S) = 0 THEN
S := 'SYSS$SOUTPUT: ' ;

OPEN(QUTF, S, CARRIAGE CONTROL:=NONE) ;
REWRITE(OQUTF);

IF (LENGTH{(S) = 11) AND
{S = 'SYSSOUTPUT:') THEN
BEGIN
E := FALSE;
WHILE {(NOT E) DOQ
BEGIN
WRITE('PAUSE OR NOT 2 (Y/N) ‘)
READLN(S);
IF LENGTH(S) = 1 THEN
IF (s = 'y') OR (5 = 'Y*') THEN
BEGIN
E := TRUE;
PAUSE := TRUE;
END
ELSE
IF (S = 'n’) OR (S = 'N') THEN
BEGIN
E := TRUE;
PAUSE := FALSE;:
END;
END;
WRITELN(‘'LOAD PAPER AND PRESS RETURN');
READLN(S) ;
WRITE(OUTF,CRLF);
END;

END;

78

FUNCTION
INITIATE VARIABLES AND TITLES, OPEN FILES,
AND PRINT THE STARTING MESSAGE.

PROCEDURE INITIAL_PROC;
BEGIN

INITVAL_PROC;

INITTT PROC;

INITFILE PROC;
END;

FUNCTION
INITIATE TITLES.

PROCEDURE INITTT PROC;
BEGIN h
BUILDTT PROC(SYSTTE);
BUILDTT PROC(SYSTTO);
BUILDTT PROC(SYSBTE);
BUILDTT PROC(SYSBTO) ;
END;

St St g S

FUNCTION
INITIATE VARIAEBLES.

PROCEDURE INITVAL PROC;
BEGIN -
INSTR := " ';
WKSTR := '';
QUTSTR := '
CRLF := CR + LF;:

START FLAG := TRUE;
ERROR := FALSE;
CARDNO := (;

SYSDM

SYSIX

SYSTCH
SYSTCE
SYSTTE
SYSTTO
SYSBTE
SYSBTO
SYSFDH
SYSFDE
SYSFBH
SYSFBE

NIL;

NIL;
NIL;
NIL;
NIL;
NIL;
NIL;
NIL;
NIL;
NIL;
NIL;
NIL;

i u

SYSLS := 0
SYSTME :=
SYSTMO
SYSHSE
SYSHSO
SYSHME
SYSHMO
SYSBME
SYSBMO
SYSFME
SYSFMO
SYSFSE
SYSFS0
SYSADE
SYSADO
SYSIND
SYSIR

SYSPL

SYSLL

e e e ha we

-

L YR W

e me we owma

L T | | T T | | S T VT |

-

T OODOHFHHEOO G-

i
oo
h ~

60;

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE }

80

SKVAL := 0;
SPVAL := 0;
LBVAL := 0;
UNVAL := 0;
TIVAL := 0;
TXVAL := 60;
CEVAL := 0;
RIVAL := (;
LINENO := (;
PAGENO := 1;
USVAL := 0;
UPVAL := 0;
BDVAL := 0;
TCVAL := Q;
TXBOTE := 54;
TXBOTO := 54;
TXBOT := 54;
SYSAD := 0;
SYSPS := '%°';
INDEXCHAR := ' °;
SYSPN := TRUE;
ROMBG := FALSE;
CEBOL := FALSE;
RIBOL := FALSE;
USBOL := FALSE;
UPBOL := FALSE;
BDBOL := FALSE;
COBOL := TRUE:
JUBOL := TRUE;
IXBOL := FALSE;
PAGETYP := FALSE;
DIRECTION := TRUE;

END;

81

FUNCTION
WHETHER THIS CHARACTER IS5 IN A PARTICULAR
RANGE.

FUNCTION INRANGE FCTN;
BEGIN -
INRANGE FCTN := FALSE;
IF (ORD(C) >= ORD(R1)) AND
(ORD(C) <= ORD(R2)) THEN
INRANGE FCTN := TRUE;
END;

FUNCTION
CONVERSE A STRING INTO AN INTEGER.

FUNCTION INTSTR FCTN;
VAR N
I, J : INTEGER;

BEGIN

J = 0;

FOR I := 1 TO LENGTH(S) DO

J :=J * 10 + (ORD(S[1])-48);

INTSTR _FCTN := J;

END;

B i i el

FUNCTION
CONVERSE AN INTEGER TO AN ARABIC NUMERAL
STRING.

FUNCTION INTTOARB_FCTN;
VAR
S : STRING;
J : INTEGER;
BEGIN
IF I = 0 THEN
INTTOARB FCTN := '0°
ELSE
BEGIN
S = "'y
WHILE (I > 0) DO
BEGIN
J o
I
S
END;
INTTOARB_FCTN =5,
END;
END;

I MOD 10;
I DIV 10;
CHR(J+48) + S;

FUNCTION
CONVERSE AN INTEGER THAT IS FROM 1 TO 999
TO A ROMAN NUMERAL STRING.

PROCEDURE INTTOROM PROC;

VAR
J : INTEGER;
BEGIN
E := FALSE;
IF (I < 1000) AND (I > Q) THEN
BEGIN
E := TRUE;
S = '"';
J := I MOD 10;
I := I DIV 10;
CASE J OF
l H S V= .i.l
2 S = 'ii‘';
3 : 8 = "iii';
4 : S = 'iv';
5 S = 'v';
6 ¢ S := 'wvi';
7 ¢ 8 = 'vii';
8 : 8 = 'wviii‘';
9 S = "ix‘';
END;
IF I » O THEN
BEGIN
J := I MOD 10;
I := I DIV 10;
CASE J OF
1 : 8 := "x" + 5;
2 S = ‘¥x' + S;
3 S = '"XXX' + S;
4 S = 'x1' + 5;
) S = '1" + S§;
6 S = 'lx' + 5;
7 S = 'lxx' + §;
8 S = '"lxxx' + S:
9 S 1= 'xc' + 5;
END;

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE }

IF T » 0 THEN
CASE I OF
l . .

]
Q

L[|
Q
9]
9]

Nnunnhhnnhnn
non
S T o]
9] -

(LI

DOW~IRhOs w

=
A

END;
IF ROMBG THEN
S := UPSTR_FCTN(S);
END;
END;

FUNCTION
TEST A STRING IS 'all’, 'odd', OR 'even’.

FUNCTION ISAEO_FCTN;

BEGIN
ISAEO_FCTN := 0; { 0 -- ERROR)
IF LENGTH(S) = 3 THEN

BEGIN
IF S = ‘all' THEN
ISAEO_FCTN := 1 { 1 -- ALL)
ELSE
IF S = 'odd' THEN
ISAEO_FCTN := 2; { 2 -- ODD}
END
ELSE
IF (LENGTH(S) = 4) AND (S = ‘'even') THEN
ISAEO_FCTN := 3; { 3 -- EVEN }
END;
FUNCTION

TEST A CHARACTER IS ALPHABETIC OR NOT.

FUNCTION ISALPHA FCTN;
BEGIN
ISALPHA_FCTN := FALSE;
IF INRANGE FCTN(C,'a','z') OR
INRANGE _FCTN(C,'A','Z') THEN
ISALPHA_FCTN := TRUE;
END;

FUNCTION
TEST A STRING IS SYSTEM CONTROL WORDS CR NOT.

FUNCTION ISCW FCTN;

BEGIN

ISCW_FCTN := FALSE;

IF (A = 'ad’) OR (A = 'bd’) OR (A = 'bi"}) OR
(A = 'bm') OR (A = 'br') OR (A = 'bt") CR
(A = 'ce’) OR (A = 'cm") OR (A = 'co') OR
(A = 'cp’) OR (A = "dm") OR (A = 'ds') OR
(A = 'ea’") OR (A = 'eb') OR (A = 'ep"') COR
(b = 'et') OR (A = 'fb') OR (A = 'fd') OR
(h = "£fi') OR (A = 'fm') OR (A = 'fo’) OR
(A= '"fs') OR (A = 'hm') OR (A = 'hs') OR
(A = 'in') OR (A = 'ir') OR (A = "ix") OR
(A= "ju') OR (A = '"11') OR (A = "1s') OR
(A = 'nc') OR (A = 'nf') OR (A = 'nj') OR
(A = 'oa') OR (A = 'ob') OR (A = 'op') OR
(A = 'ot*) OR (A = *pa') OR (A = 'pi’') OR
(A = 'pl') OR (A = 'pn') OR (A = 'ps') OR
(A = "pt") OR (A = "ri') OR (A = 'ro’} OR
(A = "sk') OR (A = 'sp') OR (A = 'ss"') OR
(A = "tc') OR (A = "ti') OR (A = "tm') OR
(A = 'tt') OR (A = 'uc’) OR (A = 'un') OR
(A = 'up') OR (A = 'us') THEN

ISCW_FCTN := TRUE;
END;
FUNCTION

TEST A CHARACTER IS A DIGIT OR NOT.

FUNCTION ISDIGIT _FCTN;

BEGIN
ISDIGIT_FCTN := FALSE;
IF INRANGE FCTN(C,'0','9') THEN
ISDIGIT _FCTN := TRUE;

END;

FUNCTION
TEST AN INTEGER IS EVEN OR ODD NUMBER,

FUNCTION ISEVEN_FCTN;

VAR
J : INTEGER:;
BEGIN
ISEVEN FCTN := FALSE; { FALSE -- ODD }

J := I MOD 2;
IF J = (0 THEN
ISEVEN FCTN := TRUE; { TRUE -- EVEN)}
END;

FUNCTION
TEST A CHARACTER IS5 LOWERCASE LETTER OR NOT.

FUNCTION ISLOWER FCTN;
BEGIN
ISLOWER FCTN := FALSE;
IF INRANGE FCTN(C,'a','z') THEN
ISLOWER FCTN := TRUE;
END; -

FUNCTION
TEST A STRING I35 NUMBER-LOOK OR NOT.
NUMBERS INCLUDE UNSIGNED NUMBER, POSITIVE
NUMBER, AND NEGATIVE NUMBER.

FUNCTION ISNUMBER FCTN;

VAR
C : CHAR;
BEGIN
ISNUMBER FCTIN := 0; { 0 ~- NOT NUMBER }
IF ALLDIGITS FCTN(S) THEN
ISNUMBER_FCTN := 1 { 1 -- UNSIGNED }
ELSE { NUMBER }
IF LENGTH(S} >= 2 THEN
BEGIN
C := S[1};
S := SUBSTR(S,2,LENGTH{(S)-1);

IF ALLDIGITS _FCTN(S) THEN
IF € = PLUS THEN

ISNUMBER FCTN := 2 { 2 -- POSITIVE }
ELSE { NUMBER }
IF C = MINUS THEN
ISNUMBER FCTN := 3; { 3 -- NEGATIVE
END; { NUMBER
END:
__ }
FUNCTION }

TEST A STRING IS 'on' OR 'off’.

FUNCTION ISOO FCTN;

BEGIN
ISO0_FCTN := 0; { 0 -- ERRCR }
IF (LENGTH(S) = 2) AND
(s = ‘on’) THEN
ISO0_FCTN := 1 {1 --on}
ELSE
IF (LENGTH(S) = 3) AND
(S = "off') THEN
ISO0_FCIN := 2; { 2 -- off }

END;

et et St Tt et

}
}

g9

FUNCTION
TEST A CHARACTER IS A PUNCTUATION OR NOT.

FUNCTION ISPUNCT FCTN;
BEGIN

ISPUNCT FCTN := FALSE;

IF INRANGE FCTN(C,CHR(33),CHR(47)) OR
INRANGE FCTN(C,CHR(58),CHR(64)) OR
INRANGE FCTN(C,CHR(91).CHR(96)) OR
INRANGE FCTN(C,CHR{123),CHR({126)) THEN

ISPUNCT FCTN := TRUE;
END;
FUNCTION
TEST A CHARACTER IS AN UPPERCASE LETTER
OR NOT.

FUNCTION ISUPPER_FCTN;

BEGIN
ISUPPER_FCTN := FALSE;
IF INRANGE _FCTN(C,'A','Z') THEN
ISUPPER_FCTN := TRUE;

END;

FUNCTION
TEST A STRING LOOKS LIKE .xx off OR NOT.
THE VALUE OF xx IS PASSED FROM THE CALLING
ROUTINE.

FUNCTION ISXXOFF_FCTN;

VAR
S1 : STRING;
BEGIN
ISXXOFF FCTN := 0; { 0 -- TEXT DATA)
IF (S[1] = PERIOD) THEN
BEGIN
ISXXOFF_FCTN := 2; { 2 -- CTRL WORD
IF LENGTH(S) »>= 3 THEN
BEGIN
51 := SUBSTR(S.2.,2):

CMND := CONVERSE FCTN(S1l);
IF CMND = XX THEN

BEGIN
S := SUBSTR(S,4,LENGTH(S)-3);
S := RMLB FCTN(S}:
S := RMTB FCTN(S);

IF (LENGTH(S) = 3) AND
(S = 'off') THEN

ISXXOFF_FCTIN := 1; { 1 -- .xx off

END;
END;
END;
END;

)

91

FUNCTION 1
PROCESS INPUT TEXT WHEN THE INDEX FLAG IS ON. }
PUT THE INPUT TEXT INTO THE INDEX LINKED LIST.}
}

PROCEDURE IX PROC;
VAR
T : TEXTTYPE;
IP, IQ : IX_P;
INQ : IN P;
I : INTEGER;
BEGIN
T := STRTOTEXT FCTN(LWSTR_FCTN(S));
NEW(INQ);
INQ@.IN INT
INQR@.IN NXT
IP := SYSIX;
I := 0;
SEARCHINDEX PROC(T,IP,I);
IF I = 3 THEN { 3 -- INDEX ENTRY ALREADY EXISTS }
ADDINDEXNC PROC(IP, INQ)
ELSE n
BEGIN
NEW(IQ);
IQ@.IX LFT
IQ@.IX TXT
IQ@.IX STR S;
IQ@.IX_PGN INQ;
IQ@.IX RIT := NIL;
IF I = 0 THE { 0 -- EMPTY TREE }
SYSIX := IQ
ELSE
IF I = 1 THEN
IP@.IX LFT
ELSE -
IP@.IX RIT

PAGENO;
NIL;

NIL;
T;

(I L L TR |

1 -- LEFT SUBTREE }
19
2 -- RIGHT SUBTREE)
IQ;

. '

END;
IXBOL := FALSE;
END;

{ FUNCTION

{ COMPUTE THE NUMBER OF LEADING BLANKS AND THE

{ LENGTH OF TEXT AREA OF A PRINTED TEXT LINE.

{ ___________________________________ i e = ————m — ——— — ——

PROCEDURE LBVAL_ PROC;

BEGIN
LBVAL := SYSIND - UNVAL + TIVAL;
TXVAL := SYSLL - LBVAL - SYSIR;
IF (LBVAL < 0) OR (TXVAL <= 0) THEN
ERROR := TRUE;

END;
e
{ FUNCTION
{ LINK A TEXT NODE TO A TEXT LINKED LIST.

PROCEDURE LINKTEXT PROC;

VAR
QP : TX P;
BEGIN
NEW(QP);
QP@.TX_TXT := S;
QP@.TX_NXT := NIL;
IF HP = NIL THEN
HP := QP
ELSE
EP@Q.TX NXT := QP;
EP := QP;

END;

FUNCTION . }
READ TEXT FROM THE INPUT FILE, LINK THEM INTO }

A TEXT LINKED LIST UNTIL A SPECIAL INPUT DATA }
IS ENCOUNTERED. }

PROCEDURE LISTLINK FROC;

VAR
S : STRING;
CMND : CMDTYPE;
I : INTEGER;
E : BOOLEAN;
BEGIN
J = 0;
E := FALSE;
IF NOT EOF(INF) THEN
REPEAT
READLN(INF,S);
CARDNO := CARDNO + 1
S := RMTB FCTN(S);

IF LENGTH(S) = 0 THEN
LINKTEXT PROC(DH,DE,'"')

ELSE
BEGIN
I := ISXXOFF_FCTN(XX,S,CMND);
IF I = 1 THEN
E := TRUE
ELSE
IF (((XX = 'dm') OR (XX = 'fb')) AND
({(CMND = ‘dm') OR (CMND = ‘fb') OR
(CMND = '£d4')})) OR
({(XX = 'fd') AND (I = 2)) THEN
ERROR := TRUE
ELSE
BEGIN
LINKTEXT PROC(DH,DE,S);
J = J + 1;
END;
END;

UNTIL EOF({INF) OR ERROR OR E;
END;

FUNCTION
PROCESS THE .1s SYSTEM CONTROL WORD.
.1s n

PROCEDURE LS PROC;
BEGIN

SETN PROC(S, SYSLS);

IF NOT ERROR THEN

IF (SYSLS >= TXBOTE) OR
(SYSLS >= TXBOTO) THEN
ERROR := TRUE;

END;

FUNCTION
CONVERSE A STRING INTO LOWERCASE LETTER.

FUNCTION LWSTR_FCTN;
VAR
I : INTEGER;

BEGIN

FOR I := 1 TO LENGTH(S) DO

IF ISUPPER_FCTN(S[I]) THEN
S[I] := CHR(ORD(S[I])+32);

LWSTR_FCTN := S;

END;

et S St g Syt

{ FUNCTION
{ PROCESS USER DEFINED MACRO CONTROL WORD.

PROCEDURE MACRO_PROC;
VAR
DP : TX_P;
S : STRING;
BEGIN
DP := P@.DM FST;
WHILE (DP <> NIL) AND (NOT ERROR) DO
BEGIN
S := DP@.TX_TXT;
PROCESS_PROC(S);
IF NOT ERROR THEN
DP := DP@.TX NXT;
END;
END;

FUNCTION

}
}
MAKE A STRING WITH SAME CHARACTER AND }
PARTICULAR LENGTH. }

FUNCTION MAKESTRING_FCTN;

VAR
S STRING;
J : INTEGER;
BEGIN
s = '';
FOR J := 1 TO I DO
S = 8 + C;
MAKESTRING FCTN := 5;

END;

96

FUNCTION
OBTAIN THE MAXIMUM NUMBER FROM TWO INTEGERS.

FUNCTION MAX FCTN;
BEGIN
MAX FCTN := I;
IF I < J THEN
MAX FCTN := J;
END;

FUNCTION
OBTAIN THE MINUMUM NUMBER FROM TWO INTEGERS.

FUNCTION MIN FCTN;
BEGIN -
MIN FCTN := I;
IF I > J THEN
MIN FCTN := J;
END;

FUNCTION
IF AN VARIABLE IS NOT -1, THEN MINUS 1 FROM
IT

PROCEDURE MINUSONE PROC;

BEGIN
IF I <> -1 THEN
BEGIN
I =1 - 1;
IF I = 0 THEN
E := FALSE;
END;

END;

FUNCTION

IF THE PAGE NUMBER IS UPDATED, THEN UPDATED
THE ADJUST BLANKS AND TEXT LINES NUMBERS.

PROCEDURE NEWPAGENO_PROC;

BEGIN
PAGETYPE := ISEVEN FCTN({PAGENO);
SYSAD := SELECT FCTN(PAGETYPE, SYSADE, SYSADO);
TXBOT := SELECT:FCTN(PAGETYPE,TXBOTE,TXBOTO);
END;
FUNCTION

IF THE INPUT CONTROL WORD IS NOT A SYSTEM

CONTROL WORD,

MACRO CONTROL WORDS.

PROCEDURE OTHERWISE_ PROC;

VAR

BEGIN

P : DM P;
I : INTEGER;

PARAO_PROC(S,ERROR}) ;
IF NOT ERROR THEN

BEGIN
P := SYSDM;
I :=0;
SEARCHMACRO'PROC(A,P,I):
IF I <> 3 THEN { 0,1,2 -- DOES NOT
ERROR := TRUE
ELSE { 3 -- EXIST)

END;

END;

MACRO_PROC(P);

]
}
THEN SEARCH THE USER DEFINED }
}
}

EXIST }

}

FUNCTION }
PROCESS THE .pa SYSTEM CONTROL WORD. }
pa < %3+ I n i n ! -n | even | odd> }

PROCEDURE PA PROC;
VAR
Pl : STRING;
I : INTEGER;
BEGIN
PARAl PROC(S,P1,ERROR);
IF NOT ERROR THEN

BEGIN
IF (LENGTH(P1) = 1) AND (Pl = NULL) THEN
P1L := '+0";
I := ISAEO FCTN(Pl);
IF (ISNUMBER FCTN(Pl) = 0) AND
(I <> 2) AND
(I <> 3) THEN
ERROR := TRUE
ELSE
BEGIN
BREAK PROC(TRUE) ;
TONEWPAGE PROC;
{ . p2a <n |l 4+n | -n > }
IF ISNUMBER FCTN(P1) <> Q0 THEN
BEGIN
PAGENO := SETNUM FCTN(PAGENO,Pl);
NEWPAGENO PROC;
END -
ELSE
BEGIN
NEWPAGENO_ PROC;
{ .pa < even | odd> }
IF ((I = 2) AND PAGETYPE) OR
((I = 3) AND (NOT PAGETYPE) THEN
BEGIN

PRINTBLANKPAGE PROC;
NEWPAGENO PROC;
END;
END;
PUTHF PROC(TRUE) ;
END;
END;
END;

99

100

FUNCTION : }
TEST A STRING IS AN EMPTY STRING OR NOT. }

PROCEDURE PARAO_PROC;
BEGIN
S := RMLB FCTN(S);
IF LENGTH(S) » Q0 THEN
E := TRUE;
END;

FUNCTION }
OBTAIN THE FIRST PARAMETER FROM A STRING. }
IF THERE IS NOT ONLY ONE PARAMETER, THEN }
ERROR FLAG IS SET TO TRUE. }

}

PROCEDURE PARAl PROC;
VAR
R : BOOLEAN;
BEGIN
GETPARA_PROC(S,PI,R):
IF NOT R THEN
Pl := NULL
ELSE
IF LENGTH(S) > 0 THEN
ERROR := TRUE;
END;

101

}
FUNCTION }
OBTAIN THE FIRST TWO PARAMETERS FROM A STRING.}
IF THERE ARE NOT ONLY TWO PARAMETERS, THEN }
ERRCOR FLAG IS SET TO TRUE. }

}

PROCEDURE PARA2 PROC;
VAR
R : BOOLEAN:;
BEGIN
GETPARA PROC(S,P1,R);
IF NOT R THEN
E := TRUE
ELSE
BEGIN
GETPARA PROC(S,P2,R);
IF NOT R THEN

E := TRUE
ELSE
IF LENGTH(S) > 0 THEN
E := TRUE;
END;
END;

__ }
FUNCTION }
OBTAIN THE FIRST PARAMETER FROM A STRING, }
THEN TREAT REMAINING STRING AS A PARAMETER. }
IF THERE ARE ONLY ONE OR NO PARAMETER, THEN }
ERROR FLAG IS SET TO TRUE. }
}

PROCEDURE PARAZNT PROC;
VAR
R : BOOLEAN;
BEGIN
GETPARA PROC(S,P1,R):
IF NOT R THEN

E := TRUE
ELSE
BEGIN
S := RMLB_FCTN(S);
IF LENGTH(3) = 0 THEN
E := TRUE
ELSE
P2 = S;
END;

END;

1oz

FUNCTION
OBTAIN THE FIRST TWO PARAMETERS FROM A
STRING, AND THE REMAINING STRING ARE TREATED
AS A PARAMETER. IF THERE ARE NOT ONLY THREE
PARAMETERS, THEN ERROR FLAG IS SET TO TRUE.

Tt Tt gt Tt ot St

PROCEDURE PARA3 PROC;
VAR
R : BOOLEAN;
BEGIN
GETPARA PROC(S,P1,R);
IF NOT R THEN

E := TRUE
ELSE
PARAZNT PROC(S,P2,P3,E);
END;

__ }
FUNCTION }
TEST THE CHARACTERS BETWEEN A PARTICULAR }
RANGE ARE ALL DIGITS OR NOT. }
}

FUNCTION PARTDIGITS_FCTN;

VAR
K, L : INTEGER;
E : BOOLEAN;
BEGIN
PARTDIGITS FCTN := FALSE;
K =1+ J - 1;
IF LENGTH(S) »>= K THEN
BEGIN
L := 1;
E := FALSE;

WHILE (L <= K) AND (NOT E) DO
IF ISDIGIT_FCTN(S[I]) THEN
L ;=L +1
ELSE
E := TRUE;
IF NOT E THEN
PARTDIGITS FCTN := TRUE;
END;
END;

103

FUNCTION : }

PROCESS THE .pn SYSTEM CONTROL WORD. }
.pn < arabic | roman >)

PROCEDURE PN _PROC;
VAR
Pl : STRING;
BEGIN
PARA1l PROC(S,P1l,ERROR);
IF NOT ERROR THEN

IF (LENGTH(PL) = &) AND (Pl = ‘'arabic') THEN
SYSPN := TRUE { TRUE -- ARABIC }
ELSE
IF (LENGTH(P1l) = 5} AND (Pl = 'roman')} THEN
SYSPN := FALSE { FALSE -- ROMAN }
ELSE
ERROR := TRUE;
END;
__)
FUNCTION }
WHEN PRINTING THE INDEX, PREFARE THE PAGE }

NUMBER OF AN INDEX ENTRY. }

PROCEDURE PREPAREINDEXNO PROC;

BEGIN
S = 'y
WHILE (INP <> NIL) DO
BEGIN
IF LENGTH(S) = 0 THEN
S := INTTOARB_FCTN(INP@.IN_INT)
ELSE
S := INTTOARB_FCTN(INP@.IN_INT) + ',' + S;
INP := INP@.IN_NXT;
END;

END;

104

FUNCTION : }
PRINT A BLANK PAGE WITH TITLES. }

PROCEDURE PRINTBLANKPAGE PROC;

VAR
OUTS : STRING;
BEGIN
PUTHF PROC(TRUE) ;
OUTS := MAKESTRING FCTN(TXBOT,LF) + CR;

WRITE (OUTF,OUTS);

PUTHF PROC(FALSE) ;

PAGENO := PAGENO + 1;
END;

FUNCTION
PROCESS THE .fb put SYSTEM CONTROL WORD.
PRINT THE CONTENTS OF THE FLOATING BLOCK.

———— gt S

PROCEDURE PRINTFEB PROC;

VAR
DP, DQ : TX P;
S : STRING;
BEGIN
BREAK_PROC(TRUE) ;
DP := SYSFBH;
WHILE (DP <> NIL) DO
BEGIN
S := DP@.TX_ TXT;
PROCESS_PROC(S);
DQ := DP;
DP := DP@.TX NXT;
DISPOSE(DQ);
END;
SYSFBH := NIL;
SYSHBE := NIL;

END;

s —— —— r—

105

}
FUNCTION }
IF PRINTED LINE NUMBER IS OVER A PARTICULAR 1
NUMBER, THEN PRINT THE BOTTOM TITLE AND TOP !
TITLE. }

}

PROCEDURE PRINTFOCOTHEAD PROC;

BEGIN
IF LINENO >= TXBOT THEN

BEGIN
PUTHF _PROC(FALSE);
PAGENO := PAGENO + 1;
NEWPAGENC PROC;
PUTHF_PROC(TRUE) ;

END;

END;

FUNCTION : }
PRINT THE CONTENTS OF THE INDEX. }

PROCEDURE PRINTINDEX PROC;

VAR
S, 81, S2, OUTS : STRING;
J, K, L : INTEGER;
E, MO : BOOLEAN;
C : CHAR;

BEGIN

IF IP <> NIL THEN
BEGIN

PRINTINDEX PROC(IP@.IX LFT);
C := IP@.IX_TXT[1];

{ IF NECESSARY, PRINT THE FIRST }
{ CHARACTER OF THE INDEX ENTRY. }
IF C <> INDEXCHAR THEN
BEGIN
PRINTSPACELINE PROC;
INDEXCHAR := C;
PRINTFOOTHEAD_ PROC;

OUTS := MAKESTRING FCTN(SYSAD,BLANK) +
‘-~ ' + INDEXCHAR + ' --' + CRLF;
WRITE (OUTF,OUTS) ;
LINENO := LINENO + 1;
PRINTSPACELINE PROC;
END;

{ SAME ROUTINE WILL CONTINUE ON NEXT PAGE }

106

107

{ PRINT AN INDEX ENTRY }
PREPAREINDEXNO_PROC(S,IP@.IX PGN);

S1 := IP@.IX STR;
K := LENGTH(S1);
WHILE (LENGTH(S) > 0) DO
BEGIN
MO := TRUE;
IF K+4+LENGTH(S) > SYSLL THEN
BEGIN
MO := FALSE;

SUBSTR(S,1,SYSLL-K-4};

S2 =
IF S2[LENGTH(S2)] <> COMMA THEN
BEGIN
E := FALSE;

. := LENGTH(S2);
WHILE (L > Q) AND (NOT E) DO
IF S2[L] = COMMA THEN

E := TRUE
ELSE
L :=L - 1;
52 := SUBSTR(S2.1,L):
END:
S := SUBSTR(S,LENGTH(S2})+1,
LENGTH(S)-LENGTH(S2}};
END;
IF MO THEN
BEGIN
52 = S;
S = '7;
END;
PRINTFOOTHEAD_ PROC;
OUTS := MAKESTRING FCTN(SYSAD,BLANK) +
S1 + ! ' + S2 + CRLF;

WRITE(OUTF,QUTS);
IF NOT MO THEN

BEGIN
51 := "';
FOR J := 1 TO K DO
S1 := 81 + BLANK;
END;
LINENO := LINENO + 1;
END;

PRINTINDEX PROC(IP@.IX RIT);
END;
END;

108

FUNCTION
PRINT SEVERAL SPACE LINES UNTIL END OF PAGE
OR PARTICULAR NUMBER OF SPACE LINES.

et St Tt et St

PROCEDURE PRINTLINES PROC;

VAR
S : STRING;
BEGIN
I := MIN FCTN(TXBOT-LINENO,I);
IF I > 0 THEN
BEGIN
S := MAKESTRING FCTN(I,LF) + CR;
WRITE(OUTF,S);
LINENO := LINENO + I:
END;
END;
__ }
FUNCTION }
IF NOT THE TOP OF THE PAGE, THEN PRINT A }
BLANK LINE. }
__ }

PROCEDURE PRINTSPACELINE PROC;
BEGIN

PRINTFOOTHEAD PROC;

IF LINENO <> 0 THEN

BEGIN
WRITE(OUTF,LF);
LINENO := LINENO + 1;
END;

END;

106

FUNCTION : }
PRINT A TEXT LINE. }

PROCEDURE PRINTTEXT PROC;
VAR
OUTS : STRING;
BEGIN
PRINTFOOTHEAD PROC;
QUTS := MAKESTRING FCTN(SYSAD+LBVAL,BLANK) +
S + CRLF:
WRITE(OQUTF,OUTS):
LINENO := LINENO + 1;
PRINTLINES PROC(SYSLS);
TIVAL := Q;
UNVAL := 0;
LBVAL_ PROC;
END;

110

}
FUNCTION : }
PRINT THE TABLE OF CONTENTS. }

}

PROCEDURE FRINTTC PROC;

VAR
OUTS : STRING;
I, K : INTEGER;
S, 51 : STRING;:
BEGIN
K := 1
WHILE (TP <> NIL) DO

BEGIN
IF (TP@.TC LVN = 1) AND
(K > 1) THEN
PRINTSPACELINE_PROC;
K := TPQ@.TC LVN;
PRINTFOOTHEAD_PROC;
8 := INTTOARB_FCTN(TP@.TC_PGN);
IF K = 1 THEN
S1 := BDSTR_FCTN(TP@.TC_TXT)
ELSE
S1 := TP@.TC_TXT;
I := SYSAD + 3 * (K - 1);
OUTS := MAKESTRING_FCTN(I,BLANK) +
S1 + ° " + S + CRLF;
WRITE (OUTF,OUTS) ;
LINENO := LINENO + 1;
IF K = 1 THEN
PRINTSPACELINE_PROC;
TP := TP@.TC_NXT;
END;
END;

111

FUNCTION :)
PRINT TITLE. }

PROCEDURE PRINTTITLE PROC;
VAR B
S, LL, MM, RR, OUTS : STRING;
I, J : INTEGER;
BEGIN
{ GET THE THREE PARTS OF THE TITLE }
LL := BUILDTTPART FCTN(P@.TT LFT);
MM BUILDTTPART FCTN(P@.TT _MDL);
RR BUILDTTPART FCTN(PQ@.TT RIT);
S := '";

IF LENGTH(LL) > 0 THEN { LEFT PART OF TITLE }
S := 5 + LL;
IF LENGTH(MM) > 0 THEN { MIDDLE PART OF TITLE }
BEGIN
J := ((SYSLL - LENGTH(MM)) DIV 2) + 1;
J := MAX FCTN(J,1l);
IF J > LENGTH(S) THEN
FOR I := 1 TO (J - LENGTH(S) - 1) DO
S := S + BLANK
ELSE
S := SUBSTR(S,1,J-1);
S = 5 + MM;
END;
IF LENGTH(RR) » 0 THEN { RIGHT PART OF TITLE)}
BEGIN
J SYSLL - LENGTH(RR) + 1;
J MAX FCTN(J,1);
IF J > LENGTH(S) THEN
FOR I := 1 TO (J - LENGTH(S) - 1) DO
S := S + BLANK
ELSE
S := SUBSTR(S,1,J-1);
5 := 5 + RR;
END;

IF LENGTH(S) = 0 THEN (PRINT OUT THE TITLE }
WRITE(OUT,LF)
ELSE
BEGIN
OUTS := MAKESTRING FCTN(SYSAD,BLANK) +
5 + CRLF;
WRITE(OQUTF,OUTS) ;
END;
END;

112

FUNCTION : }
PROCESS THE INPUT DATA. }

PROCEDURE PROCESS PROC;
BEGIN
S := RMTB FCTN(S);
IF LENGTH(S) > 0 THEN
IF 5[1] = PERIOD THEN

COMMAND PROC(S)

ELSE
TEXT PROC(S)
ELSE
BEGIN { EMPTY LINE }

BREAK PROC(TRUE) ;
PRINTTEXT_PROC(""'};
END;
END;

FUNCTION }
PROCESS THE .ps SYSTEM CONTROL WORD. }
.ps character }

}

PROCEDURE PS_PROC;
VAR
Pl : STRING;
BEGIN
PARAl_PROC(S,P1l,ERROR);
IF NOT ERROR THEN
IF (LENGTH(P1l) <> 1) OR
(NOT ISPUNCT PROC(P1[1])) THEN

ERROR := TRUE
ELSE
SYSPS := P1[1];

END;

113

FUNCTION)
PRINT THE TITLE. IF THE PARAMETER IS TRUE, }
THEN PRINT TOP TITLE. IF IT IS FALSE, THEN }
PRINT BOTTOM TITLE.)

}

PROCEDURE PUTHF_PROC;

VAR
REPLY : STRING;
J : INTEGER;
BEGIN
IF E THEN
BEGIN { TOP TITLE }
IF NOT PAGETYPE THEN
BEGIN {(ODD TOP TITLE }
J := SYSTMO - SYSHSO - SYSHMO;
PUTTITLE_PROC(J, SYSHSO, SYSHMO, SYSTTO) ;
END
ELSE
BEGIN (EVEN TOP TITLE }
J := SYSTME - SYSHSE - SYSHME;
PUTTITLE PROC(J, SYSHSE, SYSHME, SYSTTE) ;
END;
LINENO := 0;
END
ELSE { BOTTOM TITLE }
BEGIN
IF NOT PAGETYPE THEN
BEGIN | ODD BOTTOM TITLE)
J := SYSBMO - SYSFMO - SYSFSO;
PUTTITLE PROC(SYSFMO,SYSFSO,J,SYSBTO);
END
ELSE
BEGIN { EVEN BOTTOM TITLE }
J := SYSBME - SYSFME - SYSFSE;
PUTTITLE PROC(SYSFME, SYSFSE,J,SYSBTE);
END;

IF PAUSE THEN
READLN(REPLY) ;
END;
END;

114

FUNCTION
PRINT INDEX. THEN SKIP THE THE TOP OF
NEXT PAGE.

e e e

PROCEDURE PUTINDEX PROC;
BEGIN
IF SYSIX <> NIL THEN
BEGIN

BREAK_PROC(TRUE) ;
PRINTINDEX PROC(SYSIX);
TONEWPAGE FROC;
NEWPAGENO PROC;

END;
END;
__ }
FUNCTION : }
PRINT THE TABLE OF CONTENTS. '

PROCEDURE PUTTC_ PROC;
BEGIN
IF SYSTCH <> NIL THEN
BEGIN
BREAK PROC(TRUE);
PRINTTC_PROC(SYSTCH);
TONEWPAGE_PROC;
NEWPAGENO PRUC;
END; o
END;

115

}
FUNCTION 1
PRINT THE TITLE AND THE BLANK LINES BEFORE }
AND AFTER IT. }

}

PROCEDURE PUTTITLE PROC;
VAR
QUTS : STRING;
J : INTEGER;
BEGIN
OUTS := MAKESTRING FCTN(V1,LF) + CR;
WRITE(OUTF,QUTS);
J = 0;

WHILE (P <> NIL) AND (J < V2) DO
BEGIN
PRINTTITLE PROC(P);
P P@.TT_NXT;
J J + 1;
END;

OUTS := MAKESTRING FCTN(V3,LF) + CR:
WRITE (OUTF,OUTS) ;

END;
__ }
FUNCTION :)
REVERSE A STRING.)

FUNCTION REVERSE_ FCTN;

VAR
51 : STRING;
J : INTEGER;
BEGIN
S1 = "',

J := LENGTH(S);
WHILE (J > 0) DO

BEGIN
351 := S1 + S[J];
J :=J - 1;
END;
REVERSE FCTN := SI1;

END;

116

FUNCTION
PROCESS THE TEXT LINE WHEN THE RIGHT
ADJUST FLAG IS ON.

et T St St et

PROCEDURE RI_ PROC;

VAR
J, K : INTEGER;
BEGIN
K := TXVAL - I + 1;
K := MAX FCTN(K,l1};
FOR J := 1 TO (K - 1) DO
S := BLANK + 5;

PRINTTEXT_ PROC(S);
MINUSONE PROC(RIVAL,RIBOL});
END;

FUNCTION }
PROCESS THE .ro SYSTEM CONTROL WORD. }
.ro < big | small » }

}

PROCEDURE RO_PROC;
VAR
Pl : STRING;
BEGIN
PARAl_PROC(S,P1l,ERROR);
IF NOT ERROR THEN

IF (LENGTH(Pl) = 3) AND (Pl = 'big’') THEN
ROMBG := TRUE
ELSE
IF (LENGTH(Pl) = 5) AND (Pl = 'small') THEN
ROMBG := FALSE
ELSE
ERROR := TRUE;

END;

117

FUNCTION : }
REMOVE THE LEADING BLANKS OF A STRING. }

FUNCTION RMLB FCTN;
VAR
I. J : INTEGER;
BEGIN
IF LENGTH(S) 0 THEN
RMLB FCTN := S
ELSE
BEGIN
I := VERIFY_FCTN(S,BLANK);
IF I = 0 THEN
BEGIN
I :=1;
J = 0;
END
ELSE
J := LENGTH(S) - I + 1:;
RMLB_FCTN := SUBSTR(S,I,J);
END;
END;

FUNCTION : }
REMOVE THE TRAILING BLANKS OF A STRING.)

FUNCTION RMTB_PROC;
VAR
I : INTEGER:
E : BOOLEAN;
BEGIN
IF LENGTH(S)
RMTB_FCTN
ELSE
BEGIN
I LENGTH(S);
E FALSE;
WHILE (I > 0) AND (NOT E) DO
IF S[I] = BLANK THEN
I =1 -1
ELSE
E := TRUE;
RMTB_FCTN := SUBSTR(S,1.1);
END;
END;

0 THEN
S

118

FUNCTION : }
SEARCH THE INDEX BINARY SEARCH TREE FOR }
A PARTICULAR INDEX ENTRY. }

PROCEDURE SEARCHINDEX PROC;
BEGIN { 0 -- EMPTY TREE }
IF (I = 0) AND (P <> NIL) THEN
IF T P@.IX TXT THEN
I 3 { 3 -- FOUND }
ELSE
IF T > P@.IX TXT THEN
IF P@.IX RIT <> NIL THEN

BEGIN
P := P@.IX RIT:
SEARCHINDEX PROC(T,P,I);
END
ELSE
I :=2 (2 -- RIGHT SUBTREE |}
ELSE
IF P@.IX_LFT <> NIL THEN
BEGIN
P := P@.IX_LFT;
SEARCHINDEX_PROC(T,P,I);
END
ELSE
I :=1; { 1 -- LEFT SUBTREE |}

END;

119

FUNCTION)
SEARCH THE MACRO BINARY SEARCH TREE FOR)

A PARTICULAR MACRO NAME.)
}

PROCEDURE SEARCHMACRO_ PROC;
BEGIN { 0 -- EMPTY TREE |}
IF (I = 0) AND (P <> NIL) THEN
IF A P@.DM NAM THEN
I 3 { 3 -- FOUND }
ELSE
IF A > P@.DM_NAM THEN
IF P@.DM RIT <> NIL THEN

N

BEGIN
P := P@.DM_RIT;
SEARCHMACRO PROC(A,P,I);
END -
ELSE
I :=2 { 2 -- RIGHT SUBTREE }
ELSE
IF P@.DM LFT <> NIL THEN
BEGIN
P := P@.DM LFT;
SEARCHMACRO PROC(A,P,I);
END
ELSE
I :=1; { 1 -- LEFT SUBTREE)}
END;
FUNCTION

}
}
ACCORDING TO THE VALUE OF A BOOLEAN VARIABLE, }
SELECT A NUMBER FROM TWO NUMBERS. }

FUNCTION SELECT FCTN;
BEGIN
SELECT_FCTN := K;
IF E THEN
SELECT FCIN := J;
END;

120

FUNCTION : i
SEPARATE THE INPUT TITLE INTO THREE PARTS. }

PROCEDURE SEPTITLE PROC;
VAR
C : CHAR;
I : INTEGER;
BEGIN
E := TRUE;
IF LENGTH(S) »>= 4 THEN
BEGIN
C := 8[1); { C -- DELIMITER)
IF ISPUNCT FCTN(C) THEN
BEGIN
S := SUBSTR(S,2,LENGTH{(S)-1)}:
I := INDEX(S,C);
IF (I > 0) AND (I < LENGTH(S)) THEN
BEGIN { FIRST PART OF TITLE }
Sl := SUBSTR(S,1,I-1);
S := SUBSTR(S,I+1,LENGTH(S)-I);
I := INDEX(S,C);
IF (I > 0) AND (I < LENGTH(S)) THEN
BEGIN (SECOND PART OF TITLE }
S2 := SUBSTR(S,1,I-1);
S := SUBSTR(S,I+1,LENGTH(S)~I);
I := INDEX(S5,C);
IF I = LENGTH(S) THEN
BEGIN { THIRD PART OF TITLE)
S$3 := SUBSTR(S,1,I-1);
E := FALSE;
END;
END;
END;
END;

I

END;
END;

— e, . p— oo

121

FUNCTION
SET THE VALUE OF SYSTEM VARIABLE IF THE
CONTROL WORD IS IN THE FOLLOWING FORM.
XX <1 1 n o>

et et et et Nt

PROCEDURE SETIN_PROC;
VAR
Pl : STRING;
BEGIN
PARAl PROC(S,P1l,ERROR};
IF NOT ERROR THEN

BEGIN
IF (LENGTH(Pl1) = 1) AND (Pl = NULL) THEN
P1 := '1"';
IF NOT ALLDIGITS FCTN(Pl) THEN
ERROR := TRUE
ELSE
BEGIN
BREAK PROC(E);
I := INTSTR FCTN(P1l);
END;
END;

END;

FUNCTION
SET THE VALUE OF SYSTEM VARIARLE IF THE
CONTROL WORD IS IN THE FOLLOWING FORM.
Xx ¢ 1 I nt on | off >

PROCEDURE SET1NOO PROC;
VAR
Pl : STRING;
J : INTEGER;
BEGIN
PARAl PROC(S,Pl,ERROR});
IF NOT ERROR THEN

BEGIN

IF (LENGTH(Pl) = 1) AND (Pl = NULL)
P1 := "1";

J := IS00_PROC(Pl);

IF (NOT ALLDIGITS FCTN(Pl)) AND (J
ERROR := TRUE

ELSE
BEGIN

BREAK_PROC(E);
IF¥ J = 0 THEN

BEGIN | .xx < 1 | n > }
I := INTSTR"FCTN(PI);
IF I = 0 THEN

B := FALSE
ELSE
B := TRUE;
END
ELSE

IF J = 1 THEN

BEGIN { .xx on }
I = -1;
B := TRUE;

END

ELSE { .xx off }

BEGIN
B := FALSE;
I := 0;
END;

THEN

122

}
FUNCTION }
SET THE VALUE OF THE SYSTEM VARIABLE IF THE }
CONTROL WORD IS IN THE FOLLOWING FORM. }
xx < all | even | odd > < n | +n | -n > }

}

PROCEDURE SETAEON PROC;
VAR
Pl, P2 : STRING;
K : INTEGER;
BEGIN
PARA2 PROC(S,Pl,P2,ERROR);
IF NOT ERROR THEN
BEGIN
K := ISAEO FCTN(P1);
IF (K = 0) OR (ISNUMBER FCTN(P2) = 0) THEN
ERROR := TRUE -
ELSE
BEGIN
BREAK_PROC(E) ;

{ 'all®' OR 'cdd' }
IF (K = 1) OR (K = 2) THEN
J := SETNUM_FCTN(J,P2);

{ 'all' OR 'even' }
IF (K = 1) OR (K = 3) THEN
J := SETNUM FCTN{I,P2);
END;
END;
END;

123

}
FUNCTION }
SET THE VALUE OF THE SYSTEM VARIABLE IF THE }
CONTROL WORD IS5 IN THE FOLLOWING FORM. }
xx < all | even | odd > n /sl1/s2/s3/ }

}

PROCEDURE SETAEONT_ PROC;

VAR
P1l, P2, P3 : STRING;
S1, S22, S3 : STRING;
I, J : INTEGER;
BEGIN

PARA3 PROC(S,Pl,P2,P3,ERROR};
IF NOT ERROR THEN
IF (ISAEO_FCTN(Pl) = 0) OR
(NOT ALLDIGITS FCTN(P2)) THEN
ERROR := TRUE
ELSE
BEGIN
SEPTITLE PROC(P3,S1,S2,53,ERROR);
IF NOT ERROR THEN
BEGIN
I := INTSTR FCTN(P2);
IF I > 30 THEN
ERROR := TRUE
ELSE
BEGIN
J := ISAEO_FCTN(P1);

{ 'all' COR 'odd’' }
IF (J = 1) OR (J = 2) THEN
IF ({NOT E) AND (I > SYSHSO)) OR
({E AND (I > SYSFS0)) THEN
ERROR := TRUE
ELSE
SETTITLE_PROC(Q,I,SI,52,53);

{ 'all® OR "even' }
IF (J = 1) OR (J = 3) THEN
IF ((NOT E) AND (I > SYSHSE)) OR
(E AND (I > SYSFSE)) THEN
ERROR := TRUE
ELSE
SETTITLE_PROC(P,I,S1,S2,S3);
END;
END;
END;
END;

124

125

}

FUNCTION }
SET THE VALUE OF THE SYSTEM VARIABLE IF THE }
CONTROL WORD IS IN THE FOLLOWING FORM. }

XX ¢<n | +n | -n > }
__ }

PROCEDURE SETN_PROC;
VAR
Pl : STRING;
BEGIN
PARAl PROC(S,Pl,ERROR);
IF NOT ERROR THEN
IF ((LENGTH(Pl) = 1) AND (Pl = NULL)) OR
(ISNUMBER_FCTN(Pl1) = 0) THEN
ERROR := TRUE
ELSE
BEGIN
BREAK_PROC(TRUE) ;
I := SETNUM_FCTN(I,Pl);
END;
END;

126

}
FUNCTION }
SET THE VALUE OF THE SYSTEM VARIABLE IF THE }
CONTRQOL WORD IS5 IN THE FOLLOWING FORM. }
xx n /sl/s2/s3/ }

}

PROCEDURE SETNT PROC;

VAR
Pl1, P2 : STRING;
51, 52, S3 : STRING;
J : INTEGER;

BEGIN

PARAZNT_PROC(S,Pl,P2,ERROR};
IF NOT ERROR THEN
IF NOT ALLDIGITS FCTN(Pl) THEN
ERROR := TRUE
ELSE
BEGIN
SEPTITLE PROC(P2,S1,52,53,ERROR);
IF NOT ERROR THEN

BEGIN
J 1= INTSTR_FCTN(Pl);
IF J > 30 THEN
ERROR := TRUE
ELSE
BEGIN
CASE I OF
0 : IF J > SYSFSE THEN
ERROR := TRUE:;
l : IF J > SYSHSE THEN
ERROR := TRUE;
2 ¢+ IF J » SYSFSO THEN
ERROR := TRUE;
3 : IF J > SYSHSO THEN
ERRCR := TRUE;
END;

IF NOT ERROR THEN
SETTITLE PROC(P,I,S1,52,S3);
END;
END;
END;
END;

127

FUNCTION }
ACCORDING TO THE KIND OF SECOND PARAMETER, }
CHANGE THE VALUE OF FIRST PARAMETER.)

)

FUNCTION SETNUM FCTN;

VAR
J : INTEGER;
BEGIN
J := ISNUMBER_FCTN(S):
IF J = 1 THEN { 1 -- UNSIGNED NUMBER }
I := INTSTR_FCTN(S)
ELSE
BEGIN
S := SUBSTR(S,2,LENGTH(S)-1);
IF J = 2 THEN { 2 -- POSITIVE NUMBER)}
I := I + INTSTR FCTN(S)
ELSE { 3 -- NEGATIVE NUMBER)}
I := I - INTSTR FCTN(S);
END; -
SETNUM_FCTN := MAX FCTN(I,0);

END;

FUNCTION
SET THE VALUE OF THE SYSTEM VARIABLE IF THE
CONTROL WORD IS IN THE FOLLOWING FORM.
XX < on t off »

PROCEDURE SETOO FROC;
VAR
Pl : STRING;
I : INTEGER;
BEGIN
PARAl PROC(S,P1l,ERROR);
IF NOT ERROR THEN

IF (LENGTH(Pl) = 1) AND (Pl = NULL) THEN
ERROR := TRUE
ELSE
BEGIN
I := IS00 FCTN(Pl);

IF I = 0 THEN
ERROR := TRUE

ELSE
BEGIN
BREAK_PROC(TRUE);
IF I =1THEN {1 -- on }
B := TRUE
ELSE { 2 -- off }
B := FALSE;
END;
END;
END;
FUNCTION

CHANGE THE THREE PARTS OF A TITLE ENTRY.

PROCEDURE SETTITLE PROC;

VAR
J : INTEGER;
BEGIN
I =1 - 1;
FOR J := 1 TO I DO
P := P@.TT NXT;
P@.TT LFT := Sl;
P@.TT MDL := S2;
P@.TT RIT := S3;

END;

128

129

FUNCTION
PROCESS THE .sk SYSTEM CONTROL WORD.
.sk <« 1 | n >

e N St St

PROCEDURE SK PROC;
VAR
I : INTEGER;
BEGIN
SETIN PROC(S, SKVAL, TRUE) ;
IF NOT ERROR THEN
WHILE (SKVAL > 0) DO
BEGIN
PRINTFOOTHEAD PROC;
I := MIN FCTN(TXBOT-LINENO, SKVAL);
PRINTLINES PROC(I);
SKVAL := SKVAL - I;
END;
END;

}
FUNCTION }
PROCESS THE .sp SYSTEM CONTROL WORD.)
.sp ¢ 1 | n >)

}

PROCEDURE SP_PROC;
BEGIN
SET1IN PROC(S, SPVAL,TRUE};
IF NOT ERROR THEN
PRINTLINES PROC(SPVAL};
END;

a— e, ot e,

FUNCTION
IF NECESSARY, THEN INSERT EXTRA BLANKS INTO
A STRING UNTIL THE LENGTH OF THIS STRING
REACHES A PARTICULAR NUMBER.

FUNCTION SPREAD FCTN;

VAR
J, K : INTEGER:
BEGIN
SPREAD FCTN := §;
IF JUBOL THEN
BEGIN
J := WIDTH FCTN(S);
J =1 - J;
IF J > 0 THEN
BEGIN
K := INDEX(S,BLANK);
IF K > 0 THEN
BEGIN
IF DIRECTION THEN
BEGIN { FORWARD INSERTION }
S := FORWARD FCTN(S,J);
DIRECTION := FALSE;
END
ELSE
BEGIN { BACKWARD INSERTION }
S := BACKWARD FCTN(S,J):
DIRECTION := TRUE;
END;
SPREAD FCTN := S;
END;
END;
END;

END;

130

et St et et et

131

}
FUNCTION }
ACCORDING TO THE VALUES OF SEVERAL BOOLEAN }
VARIABLES, CHANGE THE CONTENTS OF A STRING. }

}

FUNCTION STRCOPY FCTN;
BEGIN
IF USBOL THEN
BEGIN { UNDERSCORE }
S := USSTR FCTN(S);
MINUSONE PROC(USVAL,USBOL) ;
END;

IF BEDBOL THEN
BEGIN { BOLD }

S := BDSTR_FCTN(S);
MINUSONE PROC{BDVAL,BDBOL);
END; -
IF UPBOL THEN
BEGIN { UPPERCASE }
S := UPSTR FCTN(S);
MINUSONE PROC (UPVAL,UPBOL);
END; -
STRCOPY FCTN := S;

END;

132

}
FUNCTION 1
CONVERSE A STRING FROM STRING TYPE TO 1
TEXT TYPE. !

}

FUNCTION STRTOTEXT_FCTN;

VAR
I : INTEGER;
T : TEXTTYPE;
BEGIN
5 := RMLB_FCTN(S);
5 = RMTB_FCTN(S);
FOR I := 1 TO 80 DO

T[I] := BLANK:
IF LENGTH(S) > 0 THEN
IF LENGTH(S) <= 80 THEN

FOR I := 1 TO LENGTH(S) DO
T[I] := S[1]
ELSE
FOR I := 1 TC 80 DO
T[I] := s[1];
STRTOTEXT FCTN := T;
END;
__ }
FUNCTION : }

FUT AN INPUT DATA INTO THE TABLE OF CONTENTS }
LINKED LIST.)

PROCEDURE TC_PROC;

VAR
TQ : TC P:
BEGIN -
NEW(TQ) ;
TQ@.TC TXT := S;
TQ@.TC PGN := PAGENO;
TQR.TC LVN := TCVAL;
TQA.TC NXT := NIL;
IF SYSTCH = NIL THEN
SYSTCH := TQ
ELSE
SYSTCE@.TC_NXT := TQ;
SYSTCE := TQ;
TCVAL := 0;

END;

FUNCTICN
PROCESS THE INPUT DATA WHEN THE INPUT DATA
IS TEXT LINE.

FPROCEDURE TEXT_PROC;
VAR
I : INTEGER;
BEGIN
IF START FLAG THEN
BEGIN { FIRST PASS }
PUTHF_ PROC(TRUE) ;
START FLAG := FALSE;
END;

IF UPBOL THEN
S := UPSTR_FCTN(S);

IF IXBOL THEN { INDEX }
IX_PROC(S);

IF TCVAL > O THEN { TABLE OF CONTENTS }
TC_PROC(S);

STRCOPY _FCTN(S);

S
I WIDTH FCTN(S);

IF CEBOL THEN { CENTER }
CE_PROC(S,I)
ELSE
IF RIBOL THEN { RIGHT ADJUST)
RI_PROC(S,I)
ELSE
IF NOT COBOL THEN { NOT CONCATENATE }
BEGIN
S := SPREAD_FCTN(S,TXVAL);
PRINTTEXT PROC(S);
END
ELSE { CONCATENATE)
CO_PROC(S);
END;

133

134

FUNCTION : }
SKIP TO THE TOP OF NEXT PAGE. !

PROCEDURE TONEWPAGE PROC;

BEGIN
IF LINENO <= TXBOT THEN
BEGIN
PRINTLINES_PROC(TXBOT) ;
LINENO := LINENO + 1;
PUTHF_PROC(FALSE) ;
PAGENO := PAGENO + 1;
END;
END;
FUNCTION

COMPUTE THE TEXT LINE AREA OF THE ODD PAGE
AND EVEN PAGE.

——— — kgt it

PROCEDURE TXBOT PROC;

BEGIN
TXBOTE := SYSPL - SYSTME - SYSBME,
TXBOTO := SYSPL - SYSTMO - SYSBMO;

TXBOT := SELECT FCTN(PAGETYPE, TKBOTE, TXBOTO);
IF (TXBOTE <= 0) OR (TXBOTO <= () THEN
ERROR := TRUE;
END;

135

FUNCTION }
CHANGE CHARACTERS OF A STRING TO UPPERCASE. }

FUNCTION UPSTR_FCTN;
VAR
I : INTEGER;

BEGIN

FOR I := 1 TO LENGTH(S) DO

IF ISLOWER FCTN{S[I]) THEN
S[I] := CHR(ORD(S[I])-32);

UPSTR FCTN := §;

END; -

}
FUNCTION }
ADD UNDERLINE TO THE CHARACTERS OF A STRING. }
PUNCTUATUINS ARE NOT UNDERLINED. }

}

FUNCTION USSTR_PROC;

VAR
S1 : STRING;
I : INTEGER;
BEGIN
S1 := "' ;
I :=1;

WHILE (I <= LENGTH(S)) DO
IF S[I] = BS THEN

BEGIN
81 := S1 + S[I] + S[I+1];
I =1+ 2;
END
ELSE
BEGIN

IF (S[I] <> BLANK) AND
(NOT ISPUNCT FCTN(S[I])) THEN

31 := S1 + UDLN + BS + S{I]
ELSE
S1 := s1 + S[I]:
I:=14+ 1;
END;
USSTR_FCTN := S1;

END;

FUNCTION :
FIND THE POSITION OF THE FIRST CHARACTER THAT
IS5 NOT EQUAL TG A PARTICULAR CHARACTER.

FUNCTION VERIFY FCTN;
VAR
I, J : INTEGER;
E : BOOLEAN;
BEGIN
VERIFY FCTN :=
J := LENGTH(S);
IF J > O THEN
BEGIN
I := 1;
E := FALSE;
WHILE (I <= J) AND (NOT E) DO
IF 5[I] <> C THEN
BEGIN
E := TRUE;
VERIFY FCTN := I;
END
ELSE
I :=1+ 1;

g

END;
END;

FUNCTION
COMPUTE THE REAL LENGTH OF A STRING.

FUNCTION WIDTH_FCTN;

VAR
I, J : INTEGER;
BEGIN
I :=1;
J := 0;
WHILE (I <= LENGTH(S)) DO
IF S[I] = BS THEN
I :=1+ 2
ELSE
BEGIN
I I + 1;
J = J + 1;
END;

WIDTH _FCTN := J;
END;

136

{
{
{
{ READ THE INPUT DATA, REMOVE THE TRAILING
{ BLANKS, AND PROCESS THEM.

{

BEGIN
INITIAL PROC;
IF NOT EOF(INF) THEN

BEGIN
REPEAT
READLN(INF, INSTR) ;
CARDNO := CARDNO + 1;
INSTR := RMTB FCTN({INSTR);

PROCESS PROC(INSTR);
UNTIL EOF({INF) OR ERROKR:
END_ PROC;
END;
END.

137

Appendix B

Sample Input Data

138

.tm all 8

.bm all 7

.ds

.ad all 11

.fo off

.Co on

.t1 5

Twenty years age, digital computer technolegy in
the form of centralized digital control systems
caused the first fundamental change in industrial
process control.

Unfortunately, these systems, which partly replaced
analog controllers, had a serious disadvantage.

All control functions were dependent on one device,

and back-up controls -- either provision of analog
standby or duplication of the digital computer
systems -- were necessary.

Today, powerful 16-bit and 32-bit microcomputers
are changing the structure of control systems.
Together with a new way of developing control systems,
this structure is forcing us to redefine the tasks of
control engineers, who must now become real-time
software engineers as well.

When a computer is controlling a technical process,
its software must interact with the dynamic properties
of the industrial system and must react to
stochastically occurring events within the industrial
system,

It is this interaction between contrcl computer
software and the technical process that leads to two
major real-time requirements

.Sp

.in 6

.ir 6

.un 3

l. Requirements to perform control acticns at a certain
point in time. The following example illustrates

this using

.up

peral

(Process and Experiment Automation Real-time Language)
.Sp

.ce 2

.up 2

at 11:45 every 10 sec during 2 min

activate measurement priority 2;

.Sp

[Activate the task MEASUREMENT at 11:45 a.m. and repeat
this task activation every 10 seconds during a time
interval of two minutes with priority 2]

.Sp

139

.un 3

2. Requirements to perform control actions dependent on
stochastically occurring events within the process
plant (such as to handle a pressure surge in a chemical
rector); for example, in PEARL

. SP

.ce on

.up on

when pressure acticate valve;

.sp

.ce off

.up off

[If the interrupt signal designated by PRESSURE occurs,
activate the task VALVE].

.in -6

.ir O

.8p

With both types of requirements, we must have a certain
control software reaction time as well as the
synchronization of parallel tasks within the software
system.

140

Appendix C

Sample Output

141

142

Twenty vyears ago, digital computer technology in the
form of centralized digital control systems caused the first
fundamental change in industrial process control.
Unfortunately, these systems, which partly replaced analog
controllers, had a seriocus disadvantage. All control
functions were dependent on one device, and back-up controls
-- either provision of analog standby or duplication of the
digital computer systems -- were necessary.

Today, powerful 1l6-bit and 32-bit microcomputers are
changing the structure of control systems. Together with a
new way of developing contreol systems, this structure is
forcing us to redefining the tasks of control engineers, who
must now become real-time software engineers as well.

When a conputer is controlling a technical process, its
software must interact with the dynamic properties of the
industrial system and must react to stochastically occurring
events within the industrial system. It is this interaction
between control computer software and the technical process

that leads to two major real-time reguirements

l. Requirements to perform control actions at a
certain peoint in time. The following example
illustrates this using PEARL (Process and

Experiment Automation Real-time Lenguage)

AT 11:45 EVERY 10 SEC DURING 2 MIN

ACTIVATE MEASUREMENT PRIORITY 2;

143

fActivate the task MEASUREMENT at 11:45 a.m. and
repeat this task activation every 10 seconds
during a time interval of two minutes with

priority 2]

2. Requirements to perform control actions
dependent on stochastically cccurring events
within the process plant (such as to handle a
pressure surge in a chemical rector); for

example, in PEARL

WHEN PRESSURE ACTIVATE VALVE;

LIf the interrupt signal designated by PRESSURE
occurs, activate the task VALVE].
With both types of requirements, we must have a certain
control scoftware reaction time as well as the
synchronization of parallel tasks within the software

systemnm,

Appendix D

STF USER'S MANUAL

This is the user's manual of STF system. In this manual,
how to use this system and the function of each control word
are described in detail. All the control words are listed
in the alphabetic order so that a particular control word

can be referenced guickly.

144

145

How to use this STF system

When the "$", the VAM/VMS prompt, appears, type "RUN
DRB2:[IE68]STF". System will reply the following message

"enter input file name
Type in your input file name. System replys

"I1f online printouts, then press return.®
"Otherwise, enter output file name *

If you wish your printout to be printed on the terminal,
then press return. Otherwise, type in the output file
name.

If no output file name is provided, then system replys
"Pause or not ? (Y/N) "

If you answer "Y" (yes), then a pause is generated afterx
a page is printed. Otherwise, no pause is generated,
Then the following message appears

"load paper and press return"

The formatted text will start to be printed after you
press the return.

If you type in the output file name, then the "$§" appears
a moment later. It means that the process is over. You
can then type "TYPE output-file-name" to obtain your
printout. Using this method, you can save the formatted
text in your account for later use.

If you want to quite when the system is running, simply
type CTRL/Y, that is, press down the "CONTROL" key and
press the "Y¥", to terminate the process.

146

ADJUST control word
T
|

| .AD f ¢« ALL t EVEN | ODD > < n i +n | -n >]
I
L

The ADJUST control word causes all output to be moved to
the right of the physical left print margin.

ALL effects the adjustment values of even and odd
numbered pages.

EVEN effects the adjustment value cof even numbered pages
only.

oDD effects the adjustment value 0of odd numbered pages
only.

The .AD control word causes the logical left margin of
the formatted printout to be moved to the right of the
actual left margin of the output device (printer or
terminal}. This adjustment value remains in effect for
all subsequent lines until altered by another ".AD"
control word. An parameter of the form "+n" adds the
value to the current adjustment value. An parameter of
the form "-n" subtracts the value from the current
adjustment value.

This control word creates a break. The default for an
even or odd adjust is zero.

147

BOLD control word

The BOLD control word overstrikes an input line with
itself for a boldface effect.

n specifies that the next "n" input text records are
to be made bold by overstriking each character with
itself. If "n" is omitted, a value of 1 is assumed
to overstrike the next input text record. If the
value of "n" is zero, then it is the same as the
"OFF".

ON specifies that all following input text records are

to be made bold.

OFF terminates the bold translation after an "ON" was
specified. If "n" was given and has not yet been
exhausted, an "OFF" parameter will terminate bold
also.

The .BD control word overstrikes each printable character
of text with itself to produce a bold output effect. The
BOLD control word operates independently of other control
words that modify text. When more than one of ".BD",
"“.BI", ".uUuc", ".Up", ".U8" are in effect, the result is
the best equivalent of the sum of the effects. Each must
be disabled in any order to cancel them all.

This control word does not create a break. If no
parameter is presented, 1 is assume to bold the next
input text record.

148

BOLD ITALIC control word

The BOLD ITALIC control word overstrikes an input line
with itself and underscores it for a boldface italic
effect.

n specifies that the next "n" input text records are
to be made bold italic by overstriking each
character with itself and underscoring the result.
If "n" is omitted, a value of 1 is assumed to
overstrike and underscore the next input text

record. If the wvalue of "n" is zero, then it is
the same as the "OFF".
ON specifies that all fellowing input text records are

to be made bold italic.

OFF terminates the bold italic translation after an
"ON" was specified. If "n" was given and has not
yet been exhausted, an "OFF" parameter will
terminate bold italic also.

The .BI control word overstrikes each printable character
of text with itself to produce a bold effect.

Furthermore all alphanumeric character are underscored
also.

This control word does not create a break. If no
parameter is present, 1 is assumed toc bold italicize the

next input text record.

149

BOTTOM MARGIN control word
T
|

I .BM | < ALL | EVEN {1 ODD » <« n | +n | -n > |
|
L

The BOTTOM MARGIN control word specifies the number of
lines which are to appear between the bottom of the
output page and the last line of ordinary text.

ALL effects the bottom margin settings of even and odd
numbered pages.
EVEN effects the bottom margin setting of even numbered

pages only.
oDD effects the bottom margin setting of odd numbered
pages only.
At the bottom of all subsequent ocutput pages (including
the current page), "n" lines will appear between the
bottom of printed text and the physical bottom of the
page. An parameter of the form "+n" or "-n" adds this

value algebraically to the current bottom margin setting,
so long as the resulting value is not negative.

This control word does not create a break. Unless
otherwise specified n = 6 will be in effect. At no time
may the value set in .BM be smaller than the sum of the
.FM and .FS wvalues.

150

BREAK control word

BREAK control word causes the immediately previous line
to be printed without £illing in with words from the next
line. The .BR control word is used to prevent
concatenation of lines such as paragraph headings or the
last line of a paragraph. 1t causes the preceding line
to be typed as a short line if it is shorter than the
current line length.

This control word creates a break. That is its only
function. Many of the other control words act as a
BREAK. No BREARK is necessary when one of these is
presented. A blank in column one of an input line has
the effect of a BREAK immediately before the line. 1If NO
CONCATENATE is in effect, all lines appear to be followed
by a BREAK.

151

BOTTOM TITLE control word
T
[

] .BT | < ALL | EVEN | ODD » n /sl/s2/s3/ |
I
1

The BOTTCM TITLE control word is used to define three
items of title information to be printed at the bottom of
even and odd numbered pages.

ALL effects the bottom titles of even and odd numbered

pages.

EVEN effects the bottom title of even numbered pages
only.

oDD effects the bottom title of odd numbered pages
only.

The value of "n", from one to the maximum value of the

FOOTING SPACE (.FS), gives the footing line number and
sl, s2, s3 are character strings not containing the
delimiter character "/". The delimiter character can be
any punctuation, defined as the first character of the
parameter. Any of the fields may be omitted, but the
delimiter character must be included to indicate missing
fields.

The .BT control word is used in a way similar to the .TT
control word. The title items defined with .BT control
word will be printed in footing lines near the bottom of
even and odd numbered pages. The number of footing lines
printed is set by .FS (FOOTING SPACE).

A break is not created by this control. Unless otherwise
specified ".BT ////" will be in effect.

152

CENTER control word

The line following the CENTER control word will be

centered between the margins. The next "n" text lines in
the input file will be centered between the left and
right margins. If line to be centered 1s longer than the

current line length, it will not be centered. The left
and right margins are the value of any indent value
(.IN), undent value (.UN), temporary indent value (.TI)
and the current line length altered by indent right
(.IR), respectively.

This control word causes a break. A numeric parameter
will center the following "n" input lines. An "ON"
parameter will center all following input lines until
"OFF" parameter or a RIGHT ADJUST control word (.RI) is
encountered. If no parameter is present, then 1 is
assumed tc center the next input text record.

COMMENT control word

The COMMENT control word is ignored and may be used to
enter comments into a script text file. The .CM control
word allows comments to be stored in the script text
file. These comments may be seen whenever the input file
is edited or printed. Comment lines may be used to store
unique identifications for use during editing of the
file.

This control word does not cause a break.

153

CONCATENATE control word

The CONCATENATE control word enables or disables the
formation of output text lines by concatenating input
text lines and truncating at the nearest word boundary to
fit within the specified line length. The ".CO ON"
control word specifies that output text lines are to be
formed by shifting words to or from the next input text
line. The resulting line will be as close to the line
length as possible without exceeding it or splitting a
word.

The ".CO OFF" control word prevents the shifting of words
from line to line which results in : one line in, one
line out. If JUSTIFICATION (.JU) is still enabled then
the text will still be filled with blanks to fill the
line.

This command creates a break. ",CO ON" is in effect
until another ".CO OFF" control word or ".NC" control
word alters it.

CONDITIONAL PAGE EJECT control word

The CONDITIONAL PAGE EJECT contreol word causes a page
eject to occur if insufficient lines remain on the
current page for text. The .CP control word will cause a
page eject to occur if "n" lines do not remain on the
current page.

This control word does cause a break. This control word
is especially useful by preceding a section heading to
insure that the heading will not be left alone at the
bottom of the page.

154

DEFINE MACRO control word

The DEFINE MACRO control word defines a sequence of input
lines to be invcked by ".name" as a user defined control
word. The .DM control word is used to define a user
macro, which is defined with a ".DM name" at the start
and ".DM OFF" to terminate. Such user macros may be used
for common sequences of control words and text.

The user macro is known by "name", a two-character
identifier. The macro defines a segquence of control
words and text lines that are invoked by a " .name" macro

call. There are three system control words that can not
be used in the ".DM name/OFF" sequence, that is, .DM
(DEFINE MACRO), .FB (FLOATING BLOCK), and .FD (FLOATING
DIAGRAM) .

This control word does not create a break when defined.
It does not create a break when called either, although
the macro may contain control words which will cause a
break.

DOUBLE SPACE contreol word

The DOUBLE SPACE control word causes a line to be skipped
between each output text line. The following formatted
lines of text will be double spaced. This is done by
creating a conditional skip of one line after each text
line. The use of a SPACE (.SP) controcl word when in
double spacing will honour the SPACE instead of the
DOUBLE SPACE.

This control word is not in effect unless encountered.

It does cause a break when specified. The parameter of
the SPACE (.SP), SKIP (.SK) and CONDITIONAL PAGE EJECT
{.CP) are not doubled when .DS control word is in effect.

155

EVEN PAGE ADJUST control word

The EVEN PAGE ADJUST control word causes all ocutput of
the even numbered pages to be moved to the right of the
physical left print margin. This control word is similar
to the ".AD EVEN"' control word, however, it just effects
the output of the even numbered pages. An parameter of
the form "+n" adds the value to the current even page
adjustment value. An parameter of the form "-n"
subtracts the value from the current even page adjustment
value.

This control word will create a break when encountered.
Unless otherwise specifies n = 0 is in effect.

EVEN PAGE BOTTOM TITLE control word

The EVEN PAGE BOTTOM TITLE control word is used to define
three items of title information to be printed at the
bottom of even numbered pages.

The value of "n", from cone to the maximum value of the
EVEN PAGE FOOTING SPACE (.FS EVEN), gives the footing
line number and sl, s2, s3 are character strings not
containing the delimiter character "/". The delimiter
character can be any punctuation, defined as the first
character of the parameter. Any of the fields may be
omitted, but the delimiter character must be included to
indicate missing fields.

The .EB control word is used in a way similar to the ".BT
EVEN" contreol word. The title items defined with .EB
control word will be printed in footing lines near the
bottom of even numbered pages. The number of footing
lines printed is set by .FS (FOOTING SPACE).

A break is not created by this control word. Unless
otherwise specified ".EB ////" will be in effect.

156

EVEN PAGE EJECT control word

The EVEN PAGE EJECT control word causes output to
continue on an even numbered page. If output is at the
top of an even numbered page then no action is performed.
It is the short-hand way to specify the ".PA EVEN"
control word.

This control word creates a break.

EVEN PAGE TOP TITLE control word

The EVEN PAGE TOP TITLE control word is used to define
three items of the title information tec be printed at the
top of even numbered pages.

The value of "n", from one to the maximum value of the
EVEN PAGE HEADING SPACE (.HS EVEN), gives the heading
line number and sl, s2, s3 are character strings not
containing the delimiter character "/". The delimiter
character can be any punctuation, defined as the first
character of the parameter. Any of the fields may be
omitted, but the delimiter character must be included to
indicate missing fields.

The .ET control word is used in a way similar to the ".TT
EVEN" control word. The title items defined with .ET
control word will be printed in heading lines near the
tep of even numbered pages. The number of heading lines
printed is set by .HS (HEADING SPACE).

A break is not created by this contrel word. Unless
otherwise specified ".ET ////" will be in effect.

157

FLOATING BLOCK control word
T
|

| .FB | < ON | OFF | PUT > |
J
4

The FLOATING BLOCK control word allows the user to enter
a block of text that will print later in the document.
The .FB control word defines the beginning and ending of
a block of text that is to be printed later in the
document. When the ".FB ON" control word 1s encountered,
SCRIPT system prepares to accept the block of text. More
than one floating block may be defined; each new block is
added internally to the end of the current block. The
".FB PUT" control word is used to cause printing of the
block after the "END" parameter is encountered. All
blocks are accumulated to this point to be printed.

This control word does not create a break. A .DM (DEFINE
MACRO), a .FB (FLOATING BLOCK), or a .FD (FLOATING
DIAGRAM) control word is not allowed in the .FB ON/OFF
seguence.

FLOATING DIAGRAM control word

The FLOATING DIAGRAM control word defines a block of
input text lines that are treated as a single block.

Only text lines are allowed in the ".FD ON/OFF" sequence,
and any control word is not allowed to occur. The text
lines in this sequence are printed as they are, that is,
one line in, one line ocut. All the text lines are
printed in the single space mode, and the blank lines of
the line spacing will be printed after all text lines are
printed. This control word also has the function of .CP
control word. The text lines in the sequence will be
printed together. If there is no enough space to print
all text lines in the current page, then the text lines
will be printed at the top of the next page.

This control word does create a break.

158

FILL control word

The FILL control word is the short-hand of ".FO ON"
control word. This control word specifies that output
lines are to be formed by shifting words to or from the
next line and padded with extra blanks to produce an even
right margin.

This control word creates a break when encountered.

FOOTING MARGIN control word
T
|

| .FM | < ALL | EVEN | ODD » < n | +n | =-n > J
|
A

The FOOTING MARGIN control word specifies the number of
kblank lines which are to left between the bottom of
formatted text and any footing line.

ALL effects the footing margin settings of even and odd
numbered pages.

EVEN effects the footing margin setting of even numbered
pages only.

QDD effects the footing margin setting of odd numbered
pages only.

The .FM control word defines the footing margin, which is
the number of blank lines which will be left between the
bottom of formatted text and the first footing line on
the even and odd numbered pages. The first footing line
is in the top of the FOOTING SPACE area. An parameter of
the form "+n" or "-n" adds this value algebraically to
the current footing margin setting. so long as the
resulting value is not negative.

This control word does not create a break when
encountered and until then n = 1 will be in effect. The
FOOTING MARGIN plus FOOTING SPACE must always be less
than or equal to the BOTTOM MARGIN.

159

FORMAT control word

The FORMAT control word combines the effect of
CONCATENATE and JUSTIFY. The FORMAT control word is a
short-hand way to specify CONCATENATE and JUSTIFY. This
control word specifies that output lines are to be formed
by shifting words to or from the next line (concatenate)
and padded with extra blanks to produce an even right
margin (justify). The "OFF" parameter is equivalent to
the contreol words CONCATENATE OFF and JUSTIFY OFF.

This control word creates a break. ".FO ON" is in effect
unless a ".FO OFF" is encountered.

FOOTING SPACE control word

<« ALL 1 EVEN | ODD > < n | +n | -n > |

The FOOTING SPACE control word specifies the number of
footing lines to be printed at the bottom of both even
and odd numbered pages.

ALL effects the footing space values of even and odd
numbered pages.

EVEN effects the footing space value of even numbered
pages cnly.

oDD effects the footing space value of odd numbered
pages only.

The .FS control word controls the number of footing lines
to be printed at the bottom of a page. Up to thirty
foctings may be defined and printed at the bottom of each
page. An parameter of the form "+n" or "-n" adds this
value algebraically to the current footing space setting,
so long as the resulting value is not negative.

This contreol word does not create a break when
encountered and until then n = 1 will be in effect. The
value of the parameter may range from zero to thirty.

The FOOTING MARGIN plus FOOTING SPACE must always be less
than or equal to the BOTTOM MARGIN.

160

HEADING MARGIN control word

r-r—-——-"""""""7T’T T T T T T T T T s T T A

[
|

-+
|

. HM ! < ALL | EVEN | ODD > < n | +n | -n > |
!
4L

L ————————— e e ——— ——— — — —— — tm —— o —— -

The HEADING MARGIN control word specifies the number of
blank lines which are to be left between the HEADING
SPACE area and the first line of the text area.

ALL effects the hsading margin values of even and odd
numbered pages.

EVEN effects the heading margin value of even numbered
pages only.

oDD effects the heading margin value of odd numbered
pages only.

The last heading line produced on subsequent output pages
will be separated from the first line of text by "n"
blank lines. An parameter of the form "+n" or "-n" adds
this value algebraically to the current heading margin
setting, so long as the resulting value is not negative.

This control word does not create a break until it is
encountered n = 1 will be in effect. The HEADING MARGIN
plus HEADING SPACE must be less than or equal to the TOP
MARGIN.

161

HEADING SPACE control word
T
I

| .HS | < ALL | EVEN | OoDD » < n | +n | -n > |
|
A

The HEADING SPACE control word specifies the number of
title lines to be printed at the top of both even and odd
numbered pages.

ALL effects the heading space values of even and odd
numbered pages.

EVEN effects the heading space value of even numbered
pages only.

QDD effects the heading space value of odd numbered
pages only.

This control word controls the number of heading lines to
be printed at the top of a page. Up to thirty headings
may be defined and printed at the top of each page. An
parameter of the form "+n" or "-n" adds this value
algebraically to the current heading space setting, so
long as the resulting value is not negative.

This control word does not create a break and until it is
encountered n = 1 will be in effect. The value of the
parameter may range from zero to thirty. The HEADING
MARGIN plus HEADING SPACE must be less than or equal to
the TOP MARGIN.

le2

INDENT control word

The INDENT control word causes the logical left margin of
the printout to be indented a specified number of spaces.
The .IN control word causes the cutput to be indented the
value "n" from the left margin. This indentation remains
in effect for all subsequent lines until another .IN
control word is encountered. An parameter of the form
“+n" or "-n" adds this value algebraically to the current
indent setting.

wWhen this control word is encountered, it creates a
break. The initial wvalue for the indent is zero.

INDENT RIGHT control word

The INDENT RIGHT control word causes the logical right
margin of the output to be indented. The .IR control
word causes formatted cutput to be indented from the

right margin. This indentaticn remains in effect for all
subsequent output lines until ancther IR control word is
encountered. An parameter of the form "+n" or "-n" adds

this value algebraically to the current indent right
setting, so long as the resulting value is not negative.

This control word will cause a break. The initial value
of indent right setting is zero.

i63

INDEX control word

The INDEX control word builds the index structure. The
next input text record will be put intoc the index
structure as an index entry, and this input text record
is also used to create the formatted text line. The
index structure will be printed in alphabetic order when
the PRINT INDEX control word (.PI) is encountered. For
purpose of alphabetizing the index entries, all indexes
are treated as lowercase.

This control word does not create a break.

JUSTIFY control word

The JUSTIFY control word causes output lines to be padded
with extra blanks so that the right margin is justified.
The .JU control word specifies that all subsequent output
lines are to be formed by padding with extra blanks to
cause the right margin to be justified. If a line
exceeds the current line length, and CONCATENATE OFF is
in effect, the line is printed as it is.

This control word creates a break. ".JU ON" is in effect
until a ".JU OFF" or a ".NJ" is encountered.

le4

LINE LENGTH control word

The LINE LENGTH contrcl word specifies the number of
horizontal character positions which are to be printed in
subsequent output lines. The .LL control word sets the
length of subseqgquent output lines to width "n". An
parameter of the form "4n" or "-n" adds this value
algebraically to the current line length, so long as the

resulting value is not zero.

When this control word is encountered it creates a break.
Unless otherwise specified "n = 60" characters per line
{including blanks) will be in effect.

LINE SPACING control word

The LINE SPACING control word causes zero or more blank
lines to be skipped between each line of formatted
output. Subsequent cutput lines will have "n" blank
lines inserted after each line of body text. These blank
lines are produced as conditional spaces. If a SPACE
".8P" control word is used to create blank lines between
text then the maximum of the SPACE wvalue and the LINE
SPACING value will be used.

This control word creates a break. Single spacing ".LS
0" is the normal mode.

165

NO CONCATENATE control word

The NC CONCATENATE contrel word stops words from shifting
to or from the next line. There will be a one-to-one
correspondence between the words in input and output
lines., TIf JUSTIFY ON is in effect, the right margin will
still be adjusted. This control word is a short-hand way
of ".CO OFF" control word.

This control word does create a break and is not in
effect until encountered.

NO FILL control word

The NO FILL control word causes lines to be output as
they appear in the input by negating the effect of
JUSTIFY and CONCATENATE. The .NF control word is a
short-hand way to specify .NC and .NJ. Subsequent output
lines will be printed exactly as they appear in the input
until a .FO, .JU, .FI, or .CO control word is
encountered.

This control word create a break and is not in effect
until encountered.

lée

NO JUSTIFY control word

The NO JUSTIFY control word stops justificaticon of text
to the right margin. It is the short-hand way to specify
the ".JU OFF" control word. The .NJ control word causes
SCRIPT system, to cease inserting extra blanks into lines
in order to justify the right margin. If CONCATENATE is
in effect, the ocutput lines will be as long as possible
without exceeding the current line length and without
breaking words in the middle.

This control word does create a break and is not in
effect until encountered.

ODD PAGE ADJUST control word

The ODD PAGE ADJUST control word causes all output of the
odd numbered pages to be moved to the right of the
physical left print margin. This control word only
effects the cutput of the odd numbered page, and remains
in effect for all the following input lines. An
parameter of the form "+n" adds the value to the current

odd page adjustment value. An parameter of the form "-n"
subtracts the value from the current odd page adjustment
value.

This contrel word creates a break when encountered.

167

ODD PAGE BOTTOM TITLE control word

The ODD PAGE BOTTOM TITLE control word is used to define
three items of title information to be printed at the
bottom of odd numbered pages.

The value of "n", from one to the maximum value of the
FOOTING SPACE (.FS), gives the footing line number and
sl, s2, s3 are character strings not containing the
delimiter character "/". The delimiter character can be
any punctuation, defined as the first character of the
parameter. Any of the fields may be omitted, but the
delimiter character must be included to indicate missing
fields.

The .0B control word is used in a way similar to the .BT
control word. The title items defined with .0B control
word will be printed in footing lines near the bottom of
odd numbered pages. The number of footing lines printed
is set by .FS (FOOTING SPACE).

A break is not created by this control word. Unless
otherwise specified ".0B ////" will be in effect.

ODD PAGE EJECT control word

The ODD PAGE EJECT contreol word causes output to continue
on an odd numbered page. The .0OP control word causes the
formatted output to continue at the top of the next odd
numbered page. If output is at the top of an odd
numbered page then no action is performed.

This control word creates a break.

168

ODD PAGE TOP TITLE control word

The ODD PAGE TOP TITLE control word is used to define
three items of title information to be printed at the top
of odd numbered pages.

The value of "n", from one to the maximum value of the
HEADING SPACE (.HS), gives the heading line number and
sl, s2, s3 are character strings not containing the
delimiter character "“/". The delimiter character can bhe
any punctuation, defined as the first character of the
parameter, Any of the fields may be omitted, but the
delimiter character must be included to indicate missing
fields.

The .0T control word is used in a way similar to the .TT
control word. The title items defined with .0OT control
word will be printed in heading lines near the top of odd
numbered pages. The number of heading lines printed is
set by .HS (HEADING SPACE).

A break is not created by this control word. Unless
otherwise specified ".0T ////" will be in effect.

169

PAGE EJECT control word

< %+1 I n | +n | -n | EVEN | ©CDD > |

The PAGE EJECT control word causes an output page eject.
When the .PA control word is encountered, the rest of the
current page is skipped, the footing space lines are
printed, and a new page is begun whose number is
specified by the parameter.

The "EVEN" parameter causes the formatted output to
continue at the top of the next even numbered page, or no
action if output is at the top of an even numbered page.
Similarly, "ODD" parameter causes the output to continue
ocn the next odd page. An parameter of the form "n" will
change the current page number to the value specified:
"+n" will increment the current page number by “n"; "-n

will decrement the current page number by "n

This control word does create a break when encountered.
If the parameter is omitted then the current page number
plus one is assumed.

PRINT INDEX control word

The PRINT INDEX control word causes the index structure
to be printed. The index entries of the index structure
are printed in alphabetic order. This control word
should be used in the end of the script file. Otherwise,
the index printed in the middle of the document may be
not the complete index table that you want. The index
entries of the index structure are not destroyed after
printing. You may add another index entries to the index
structure after you print the index.

This control word creates a break when encountered.

170

PAGE LENGTH control word

The PAGE LENGTH control word specifies the physical size
of the ocutput page in units of typewriter lines. The .PL
control word allows the use of various paper sizes for
output, by setting the length of subsegquent output pages
to "n". An parameter of the form "+n" or "-n" adds this
value algebraically to the current page length, so long
as the resulting value is greater than .TM plus .BM.

This control word will create a break and unless
otherwise specified n = 66 will be in effect.

PAGE NUMBER TYPE control word
T
|

| . BN | < ARABIC | RCMAN > [
|
.

The PAGE NUMBER TYPE control word allows the user to
control the printing of page numbers.

ARABIC causes page numbers produced in headings and
footings to be printed in arabic numerals.
ROMAN causes page numbers produced in headings and

footings to be printed in lowercase or uppercase
roman numerals. You may use ROMAN control word
(.RO) to specify that you want to use lowercase
or uppercase roman humerals.

This control word will not create a break. Unless
otherwise specified ".PN ARABIC" will be in effect. If
the page number is less than 1 or greater than 999, then
the ".PN ROMAN" is not used. The page numbers will be
printed in arabic numerals.

171

PAGE NUMBER SYMBOL control word

The PAGE NUMBER SYMBOL control word defines the character
in headings and footings to be replaced by the current
page number. The percent sign "%" 1is usually reserved
for use as the page number symbol. SCRIPT system
substitutes the current page number for each occurrence
of the percent sign within a top or bottom title line.

Te allow the percent sign to appear in titles the .PS
contrel word is supported to change the character to be
replaced by the current page number. The character
specified in the PAGE NUMBER SYMBOL control word takes
effect for all subsequent headings and footings. This
means heading and footing specifications may have to be
changed at the same time.

This control word does not create a break when
encountered. The initial default page number symbol

character is the percent sign "%". Any punctuation may
be specified as an parameter.

PRINT TABLE OF CONTENTS control word

The PRINT TABLE OF CONTENTS control word causes the table
of contents to be printed out. This control word should
be used in the very last of the script file, or you may
obtain an incomplete table of contents. The entries in
the table of contents are not destroyed after printing.
You may add more entries into the table of contents after
it is printed.

This control word does create a break when encountered.

172

RIGHT ADJUST control word

The RIGHT ADJUST control word causes the next "n" input
line to be right adjusted in the output line.

n specifies that the next "n" input text records are
to be right adjusted. If "n" is omitted, a wvalue
of 1 is assumed to right adjust the next input

record. If the wvalue of "n" is zero, then it is
the same as the "OFF".
ON specifies that all following input text records are

to be right adjusted.

QOFF terminates the right adjustment after an "ON" was
specified. If "n" was given and has not yet been
exhausted, an "OFF" parameter will terminate right
adjustment also.

The next "n" input lines, only including input text
lines, will be right adjusted in the output lines. If
the next line is longer than the current line length, it
will not be right adjusted.

This control word will create a break when encountered.

A numeric parameter will right adjust the following "n"
input text lines. An "ON" parameter will right adjust
all following input lines until an "OFF" parameter, a "0"
parameter or a CENTER control word is encountered.

173

ROMAN control word
T
I

| .RO | < BIG | SMALL > I
|
.

The ROMAN controcl word causes page numbers to use
uppercase or lowercase roman numerals, if the page
numbers were produced using roman numerals. If the page
numbers were produced in arabic numerals, then this
control word will no effect at this moment. But when the
page number type changes to roman numerals, then the
parameter of this control word is in effect.

This control word will not create a break and unless
otherwise specified ".RO SMALL" will be in effect.

SKIP control word

The SKIP contrcl word causes several blank lines to be
printed out. This control word is similar to the SPACE
control word, except that if the end of the page is
reached before satisfying the request, the remaining
space lines are also printed at the top of the next page.

This control word does create a break. If the parameter
is omitted, then n = 1 is assumed to print one blank
line. In spite of the line spacing setting, exact "n"
blank lines are printed out.

174

SPACE control word

The SPACE control word generates a specified number of
blank output lines. The SPACE control word causes "n"
blank lines to be printed. If the end of the page is
reached before satisfyving the request or if output is at
the top of a page, the remaining space lines are normally
not output at the top of the next page.

This control word create a break when encountered and if
the parameter is omitted n = 1 will be assumed.

SINGLE SPACE control word

The SINGLE SPACE control word causes ocutput to be single

spaced. It is the short-hand way to specify the ".Ls 0"

control word. All following formatted lines of text will
be single spaced.

When this control word is encountered it will create a
break. Unless otherwise specified single spacing will be
in effect.

175

TABLE OF CONTENTS control word

The TABLE OF CONTENTS control word adds an input text
line to the Table of Contents.

This control word doces not create a break. The value of
"n" is the level of the text stored in the Table of
Contents. When the Table of Contents is printed by .PT
{PUT TABLE OF CONTENTS) control word, the entries will
indent 3 * (level - 1) blanks at the left margin if its
level is not 1.

TEMPORARY INDENT control word

The TEMPORARY INDENT control word causes next input text
record to be indented to the right of a specified column.
This control word is similar to the .IN control word, but
it only effects next input text record.

This control word does create a break when encountered.

17¢

TOP MARGIN control word

Ferm T T T T T T T T T T 1
| ! I
! . T™M I ¢ ALL | EVEN | ODD > < n | +n | -n > I
i
4.

b s o e o ot e e e e 4

The TOP MARGIN control word specifies the number of lines
which are to be placed between the physical top of the
output page and the first line of the text area.

ALL effects the top margin values of even and odd
numbered pages.

EVEN effects the top margin value of even numbered pages
only.

QDD effects the top margin value of odd numbered pages
only.

Subsequent output pages will begin with "n" lines ({which
may includes heading lines) before the first line of
text. An parameter of the form "+n" or "-n" adds this
value algebraically to the current wvalue of the top
margin. The TOP MARGIN must never be smaller than the
sum of the HEADING MARGIN plus the HEADING SPACE.

This control word will not create a break and until
encountered n = 6 will be in effect.

177

TOP TITLE control word
T
|

I .TT | < ALL | EVEN | oD » n /sl/s2/s3/ !
|
L

The TOP TITLE control word is used to define three items
of title information to be printed at the top of both
even and odd numbered pages.

ALL effects the top titles of even and odd numbered
pages.

EVEN effects the top title of even numbered pages only.

ODD effects the top title of odd numbered pages only.

The value of "n", from one to the maximum value of the
HEADING SPACE (.HS), gives the heading line number and
sl, s2, s3 are character strings not containing the
delimiter character "/". The delimiter character can be
any punctuation, defined as the first character of the
parameter. Any of the fields may be omitted, but the
delimiter character must be included to indicate missing
fields.

The .TT control word is used in a way similar to the .BT
control word. The title items defined with .TT control
word will be printed in heading lines near the top of
even and odd numbered pages. The number of heading lines
printed is set by .HS (HEADING SPACE). The s3 may
overlay s2 if necessary, and sZ may overlay sl if
necessary.

This control word does not create a break. The default
top title on each page is ".TT ////".

178

UNDERSCORE and CAPITALIZE ceontrol word

The UNDERSCORE and CAPITALIZE control word underscores
and capitalizes an input text line. The .UC control word
applies the rules of UPPERCASE (.UP) and UNDERSCORE (.US)
to subsequent text records. An "ON" parameter will cause
all following input text records to be operated on until
a "OFF" parameter or a "(0" parameter is encountered. A
numeric parameter will cause the specified number of
input text records to be operated on.

This control word does not create a break. If no
parameter is present, the next input text record will be
underscored and capitalized.

UNDENT control word

The UNDENT control word forces the next output line to
start a specified number of columns to the left of the
current indent. The .UN control word causes only the
next output line to begin to the left of the current
indent value. A relative change as in "+n" or "-n"
changes the previously specified .IN control word and .TI
control word. The result of undentation may not exceed
the current indention.

This control word create a break when encountered.

179

UPPERCASE control word

The purpose of the UPPERCASE contrecl word is to

capitalize an input line.

n specifies that the next "n" input text records are
to be capitalized. If "n" is omitted, a value of 1
is assumed to capitalize the next input text

record. If the value of "n" 1is zero, then it is
the same as the "OFF".
ON specifies that all fcllowing input text records are

to be capitalized.

OFF terminates the capitalization after an "ON" was
specified. If "n" was given and has not yet been
exhausted, an "OFF" parameter will terminate
capitalization also.

The .UP control word converts each lowercase alphabetic
of next "n" input text lines. The UPPERCASE control word
operates independently of other control words that modify
text. When more than one of ".BD", ".BI", ".UC", ".US",
",UP" are in effect, the result is the best equivalent of
the sum of the effects. Each must be disabled in any
order to cancel them all.

This control word does not create a break. If no
parameter is present, the next input text record will be
converted to uppercase.

180

UNDERSCORE control word

The UNDERSCORE contreol word is used to underscore an
input text line.

n

" n

specifies that the next "n" input text records are
to be underscored. If "n" is omitted, a value of 1
is assumed to underscore the next input text
record. If the value of "n" is zero, then it is
the same as the "OFF".

specifies that all feollowing input text records are
to be underscored.

terminates the underscoring after an "ON" was
specified. If "n" was given and has not yet been
exhausted, an "OFF" parameter will terminate
underscoring also.

All the alphanumeric characters of the following input
text records are underscored. The blanks and
punctuations are normally not underscored.

This control word does not create a break. If no
parameter is present, the next input text record will be
underscored.

181

The outer rectangle of *'s in the diagram below indicate the
physical dimensions of a sheet of paper. The innerxr
rectangle of *'s represent the "text area" {that part of the
physical page into which SCRIPT system formats the input
text}.

I A RS SRS S SR EEEESEEERERREES SRS S RRS S SRR ESSRERREEESEEEEEEEEEE]

—= AD--=>|-=--——mm—mee I A e TR >
I |

| .HS (for TOP TITLES, if any) i

™ | |
| e e +
! |
[. HM
| |
KX KX A AX KX A A AKXEETTRXAARKRARRA AR A A AR LT
*
THE TEXT AREA
L -= ,IN----- > (== IR--
{(~-.UN-~-
~=.TI~-->

*
*
*
*
X
*
*x
*
*
*
*
*
*
x

kkkhkhkhk btk hthhhhhkkkhkhkhkhkhkkkkAkhkhxkitkikk

—— e e N M % X% H M M N M M M

I
I
I
I
I
[
I
|
I
I
I
I
P
I
!
|
I
I
I
!
i
t
!
!
I
I
I
!
f
!
|

! !

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
®
*
*
*
*
*
*
*
*
*
*
*
*
IEEEE SR EEEESEEEESEEEEE S SR SRR SRR SR SRS REEEEEEESRERRREEREE N,

*
S
*
*
*
*x
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*

182

The default values for the control words show above are as
follows

.AD O (ADjust) JIN O (INdent)
.BM 6 {Bottom Margin) .IR O {Indent Right)
.FM 1 (Footing Margin) .LL 60 (Line Length)
FS 1 (Footing Space) .UN O (UNdent)
.HM 1 (Heading Margin) .PL 66 (Page Length)
.HS 1 (Heading Space) .TM 6 (Top Margin)
.TI O {Temporary Indent)
A

| END OF STF USER'S MANUAL I

Appendix E

Bibliography

183

184

Waterloo SCRIPT - version 82.1 (8B20CT18) Reference

Manual, Department of Computing Services, University of
Waterloo, Waterloo, Oritario. Canada N2ZL 3Gl, 19582.

Waterloo SCRIPT User's Guide, Department of Computing

Services, University of Waterloo, Waterloo, ©Oritario,
Canada N2L 3Gl, 1982.

MUSIC Script User's Manual, McGill University, Montreal,

Ouebec, Canada, 1981.

VAX-11 PASCAL Language Reference Manual, Digital

Equipment Corporation, October 1982.

VA¥X-11 PASCAL User's Guide, Digital Equipment

Coaportion, October 1982.
Achugkbue, J. 0. "On the Line Breaking Problem in Text

Formatting," in Proc. ACM SIGPLAN/SIGOA Conf. Text

Manipulation (Portland, ore., June 8-10, 1981), ACM, New

York, 1981, pp. 117-122.
Furuta, R., Scofield, J., and Shaw, A. "Document
Formatting Systems : Survey, Concepts, and Issues,”

Computing Survey, 14, 3 {(Sep. 1982).

Reid, B. K. "A High-level Approach to Computer Document

Formatting," in Proc. 7th Annu. ACM Symp. Programming

Languages (Jan. 1980), ACM, New York, 1980, pp. 24-30.
Chamberlin, D. D., Bertrand, ¢. P., Goodfollow, M. J.,
King, J. C., Slutz, D. R., and Todd, S. J. P, "JANUS
An Interactive Document Formatter Based on Declarative

Tags," IBM System Journal, 21:3, 250-271, 1882.

10.

11.

12.

13.

14.

15.

16.

17.

18.

185

Chamberlin, D. D., King, J. C., Slutz, D. R., and Todd,
S. J. P. "JANUS : An Interactive System for Document

Composition,"” in Proc. ACM SIGPLAN/SIGOA Conf. Text

Manipulation (Portland, Ore., June 8-10, 1981), ACM, New

York, 1981, pp. 82-91.

Samet, H. "Heuristics for the Line Division Problem in
Computer Justified Text," Comm. of ACM, 25, 564-571,
Aug. 1982.

Mouney, J. D. "MFS : A Modular Text Formatting System,"

National Computer Conference Proceedings, AFIPS Press.

Talmage, L. A. "Design and Implementation of an
Integrated Screen-Oriented Text Editing and Formatting

System," Noval Postgraduate School, June 1%80.

Noot, H. "Structured Text Formatting," Software

Practice and Experience, 13:1, 79-94, Jan. 1983.

Knuth, D. E., and Plass, M. F. ‘"Breaking Paragraphs

into Lines," Software Practice and Experience, 11:11,

1119-1184, Nov. 1981.

Hanson, H., and Steensgaard-Madson, J. ‘Document

Preparation Systems," Software Practice and Experience,

11:9, 983-997, Sep. 1981.

Kernighan, B. W., and Plauger, P. J. Software Tools in

PASCAL, Addison-Wesley Publishing Company, 1981, pp.
227-264.
RUNOFF User's Manual, Digital Equipment Corporation,

October 1982.

