Advanced bioreactors for enhanced production of chemicals

PDF Version Also Available for Download.

Description

A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids and other fermentation products. One key approach is immobilization of the biocatalyst leading to increased rates and yields. In addition, there are processes for simultaneous fermentation and separation to further increase production by the removal of an inhibitory product. For example, ethanol productivity in immobilized-cell fluidized-bed bioreactors (FBRs) can increase more than tenfold with 99% conversion and near stoichiometric yields. Two modified FBR configurations offer further improvements by removing the inhibitory product directly from the continuous fermentation. One involves the addition and removal of ... continued below

Physical Description

10 p.

Creation Information

Davison, B. H. & Scott, C. D. June 1, 1993.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids and other fermentation products. One key approach is immobilization of the biocatalyst leading to increased rates and yields. In addition, there are processes for simultaneous fermentation and separation to further increase production by the removal of an inhibitory product. For example, ethanol productivity in immobilized-cell fluidized-bed bioreactors (FBRs) can increase more than tenfold with 99% conversion and near stoichiometric yields. Two modified FBR configurations offer further improvements by removing the inhibitory product directly from the continuous fermentation. One involves the addition and removal of solid adsorbent particles to the FBR. This process was demonstrated with the production of lactic acid by immobilized Lactobacillus. The second uses an immiscible organic extractant in the FBR. This increased total butanol yields in the anaerobic acetone-butanol fermentation by Clostridium acetobutylicum.

Physical Description

10 p.

Notes

OSTI; NTIS; GPO Dep.

Source

  • 205. American Chemical Society national meeting,Denver, CO (United States),28 Mar - 2 Apr 1993

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE93015451
  • Report No.: CONF-930304--23
  • Grant Number: AC05-84OR21400
  • Office of Scientific & Technical Information Report Number: 10162475
  • Archival Resource Key: ark:/67531/metadc1390016

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • June 1, 1993

Added to The UNT Digital Library

  • Nov. 28, 2018, 2:33 p.m.

Description Last Updated

  • Dec. 12, 2018, 2:44 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Davison, B. H. & Scott, C. D. Advanced bioreactors for enhanced production of chemicals, article, June 1, 1993; Tennessee. (https://digital.library.unt.edu/ark:/67531/metadc1390016/: accessed April 22, 2019), University of North Texas Libraries, Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.