Radiological Survey Results
at 19 Wellman Street,
Beverly, Massachusetts (VB024)

R. D. Foley and C. A. Johnson

Date published — July 1992

Investigation Team
R. E. Swaja — Measurement Applications and Development Manager
W. D. Cotrell — FUSRAP Project Director
R. D. Foley — Survey Team Leader

Survey Team Members
J. F. Allred M. E. Murray
A. C. Butler* V. P. Patania
R. D. Foley D. E. Rice
D. Mackenzie† D. A. Rose
W. H. Shinpaugh*

*D. R. Stone and Associates, Inc.
†H&R Technical Associates

Work performed by the
MEASUREMENT APPLICATIONS AND DEVELOPMENT GROUP

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U. S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400
CONTENTS

LIST OF FIGURES ... v
LIST OF TABLES ... vii
ACKNOWLEDGMENTS ... ix
ABSTRACT .. xi
INTRODUCTION ... 1
SURVEY METHODS ... 2
SURFACE RADIATION MEASUREMENTS 2
SOIL SAMPLING AND ANALYSES 2
SURVEY RESULTS ... 3
SURFACE RADIATION MEASUREMENTS 3
SOIL SAMPLES ... 3
SIGNIFICANCE OF FINDINGS ... 4
REFERENCES ... 4
LIST OF FIGURES

1. Diagram showing general location of the former Ventron site 5
2. Diagram showing relative location of 19 Wellman Street, Beverly, Massachusetts, to the former Ventron site ... 6
3. Surface gamma exposure rates and soil sampling locations at 19 Wellman Street, Beverly, Massachusetts ... 7
LIST OF TABLES

1 Applicable guidelines for protection against radiation................................. 8
2 Background radiation levels and concentrations of selected radionuclides in soil in the Beverly, Massachusetts, area... 9
3 Concentrations of radionuclides in soil samples from 19 Wellman Street, Beverly, Massachusetts.. 10
ACKNOWLEDGMENTS

Research for this project was sponsored by the Office of Environmental Restoration, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The authors wish to acknowledge the contributions of K. F. Carrier, W. D. Cottrell, M. S. Uziel, D. A. Roberts, D. A. Rose, V. P. Patania, J. F. Allred, and T. R. Stewart of the Measurement Applications and Development Group who participated in the sample preparation and analyses, editing, graphics, and reporting of data for this survey.
ABSTRACT

At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 19 Wellman Street, Beverly, Massachusetts. The survey was performed in May 1991. The purpose of the survey was to determine if uranium from work performed under government contract at the former Ventron facility had migrated off-site to neighboring areas. The survey included a surface gamma scan, a beta-gamma scan of paved areas, and the collection of soil samples for radionuclide analyses.

Results of the survey demonstrated no radionuclide concentrations or radiation measurements in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines.
INTRODUCTION

The Metal Hydrides Corporation facility in Beverly, Massachusetts (which became the Ventron Corporation in 1965), was one of many companies performing work during the 1940s associated with the development of nuclear energy for defense-related projects under contract to the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC). Operations conducted under government contract at such sites included the procurement, storage, and processing of uranium oxides, salts, and metals, and the subsequent machining of these products. As a result of activities involving these materials, equipment, buildings, and land at some of the sites became radiologically contaminated with small amounts of the material resulting in low levels of contamination on the properties. At contract termination, release limits and decontamination operations were typically applied in conformance with standards currently deemed adequate for purposes of health and environmental protection. Subsequent to original assessments and the release of these facilities, new research and information have resulted in the development of more stringent guidelines for release of such facilities for unrestricted use. Furthermore, in some instances, documentation is limited or nonexistent, and conditions at a specific site may be unknown. It is the policy of the Department of Energy (DOE) to verify that radiological conditions at such facilities comply with existing guidelines. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established by DOE to assist in assessment and cleanup activities at these sites.

The radiological survey detailed in this report was performed under the FUSRAP program and is one of several conducted in May, 1991, on properties in the vicinity of the former Ventron facility by members of the Oak Ridge National Laboratory (ORNL) at the request of DOE. The city of Beverly lies on Beverly Harbor approximately 15 miles northeast of the central Boston area. The former Ventron facility, now owned by Morton International, Inc., is located at the confluence of the Bass and Danvers rivers on Congress Street near the Beverly-Salem bridge (Fig.1, p. 5).

From 1942 through 1948 the Metal Hydrides Corporation (later to become the Ventron facility) converted uranium oxide to uranium metal powder at the facility under contract to the MED in support of the war effort. Other operations conducted at the facility included the recovery of uranium from scrap uranium and turnings from the slug fabrication plant at Hanford, Washington. Contracts between Metal Hydrides and the government were completed in 1954.

*The survey was performed by members of the Measurement Applications and Development Group of the Health and Safety Research Division of Oak Ridge National Laboratory under DOE contract DE-AC05-84OR21400.
Following a radiological screening survey at the site in 1977, a comprehensive survey was performed in 1982. In 1987, DOE contractors removed the uranium-contaminated roof from a Ventron building, which had begun to leak. Radioactive materials remaining on the site do not pose a health hazard under present use conditions, but could cause radiation exposure to workers if excavation or major renovation took place on the property. DOE plans a complete characterization study of the site in 1992 and the initiation of remedial action soon thereafter.

The surveys of the property reported in this document and of other surrounding properties are part of DOE's continuing program to assess the former Ventron site and plan for remedial action. The objective of the surveys was to determine if uranium from plant operations had migrated offsite to neighboring areas including Beverly Harbor and, if so, to what degree. The relative location of this vicinity property to the former Ventron site is shown in Fig. 2 (p. 6). The radiological surveys consisted of measurements of radiation levels over the ground surface of the properties and analysis of soil, sediment, and other material samples for the presence of radionuclides in concentrations exceeding guidelines.

SURVEY METHODS

SURFACE RADIATION MEASUREMENTS

Gamma radiation levels were determined using a portable Nal gamma scintillation meter. Because Nal gamma scintillators are energy dependent, measurements of gamma radiation levels in counts per minute (cpm) are normalized to pressurized ionization chamber (PIC) measurements to estimate gamma exposure rates in µR/h. Using a Geiger-Mueller pancake detector, beta-gamma radiation levels in cpm were measured over paved surfaces and then converted to mrad/h.

SOIL SAMPLING AND ANALYSES

Surface and subsurface soil samples were systematically collected over the property in a pattern sufficient to obtain a characterization of the radionuclide content of the soil. Surface and subsurface soil samples were also collected in any areas of elevated gamma exposure rates. All soil samples were analyzed to determine 238U, 232Th, and 226Ra concentrations.
SURVEY RESULTS

Current guidelines for sites included within the FUSRAP are summarized in Table 1 (p. 8). Typical background radiation levels for the Beverly, Massachusetts area are presented in Table 2 (p. 9). These data are provided for comparison with the survey results presented in this section. All direct measurements presented in this report are gross readings; background radiation levels have not been subtracted. Similarly, background concentrations have not been subtracted from radionuclide concentrations in soil, debris, and other samples.

SURFACE RADIATION MEASUREMENTS

Results of gamma scanning at the ground surface of the property are shown on Fig. 3 (p. 7). Exposure rates at the ground surface of the property ranged from 7 to 10 µR/h, with a maximum of 13 µR/h measured on contact with the granite foundation of the house (see Fig. 3). (Granite usually contains slightly greater concentrations of naturally occurring radionuclides than soil). These values are comparable to the typical background measurements in the Beverly, Massachusetts, area (6 to 9 µR/h, Table 2).

Beta-gamma dose rates ranging from .03 mrad/h over paved surfaces to a maximum of .06 mrad/h on granite were measured on the property. All measurements are comparable to background levels in the area.

SOIL SAMPLES

Although 137Cs was not associated with any MED operations or processing activities at the Ventron site, samples are routinely analyzed for its presence. These analyses showed that samples S1A, S1B, and S1C, measured on the north side of the deck where a drainpipe from the roof emptied onto the soil, contained 6.7, 4.4, and 3.4 pCi/g of 137Cs respectively (decreasing with soil depth). Although these concentrations are slightly higher than those typically found in background areas, they are well below the guideline for 137Cs (Table 1). Cesium-137 is a man-made radionuclide present worldwide in atmospheric fallout from nuclear weapons testing. It is frequently found in soil taken from areas where rainwater collects, such as the driplines of roofs and low-lying areas in and around parking lots or thoroughfares.

Maximum concentrations of 238U, 232Th, and 226Ra in surface soil (0-15 cm) were 3.3, and 3.1 pCi/g, respectively. In subsurface soil (15-60 cm), where coal ash was prevalent, maximum values were 5.4 pCi/g for 238U, 4.5 pCi/g for 232Th, and 4.3 pCi/g for 226Ra. Coal ash contains naturally occurring radioactive substances which become concentrated in the ash that results from combustion. Therefore, these values are slightly higher than the typical Beverly area background concentrations for 238U, 232Th, and 226Ra (Table 2), but are well below the guidelines (Table 1). Although no specific guideline for uranium concentrations.
has been derived for this site, concentrations of 35 to 40 pCi/g have been applied at FUSRAP sites elsewhere (Table 1), and the analyses demonstrate that concentrations of 238U are well below these values. Locations of systematic soil samples are diagrammed in Fig. 3 and results of analyses are listed in Table 3 (p. 10).

SIGNIFICANCE OF FINDINGS

The results of the radiological survey at 19 Wellman Street, Beverly, Massachusetts, demonstrated no radionuclide concentrations or radiation measurements above established DOE guidelines.

REFERENCES

Fig. 1. Diagram showing general location of the former Vutron site.
Fig. 3. Surface gamma exposure rates and soil sampling locations at 19 Wellman Street, Beverly, Massachusetts.
Table I. Applicable guidelines for protection against radiation

(Limits for uncontrolled areas)

<table>
<thead>
<tr>
<th>Mode of exposure</th>
<th>Exposure conditions</th>
<th>Guideline value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma radiation</td>
<td>Indoor gamma radiation level (above background)</td>
<td>20 μR/h^a</td>
</tr>
<tr>
<td>Radionuclide concentrations in soil (generic)</td>
<td>Maximum permissible concentration of the following radionuclides in soil above background levels, averaged over a 100-m² area</td>
<td>5 pCi/g averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over 15 cm-thick soil layers > 15 cm below the surface</td>
</tr>
<tr>
<td>Radionuclide concentrations in soil (generic)</td>
<td>Maximum permissible concentration of the following radionuclides in soil above background levels, averaged over a 100-m² area</td>
<td>15 pCi/g averaged over the first 15 cm of soil below the surface</td>
</tr>
<tr>
<td>Derived concentrations</td>
<td>²⁳⁸U</td>
<td>Site specific^b</td>
</tr>
<tr>
<td></td>
<td>Concentration limit in surface soil above background levels based on dose estimates from major exposure pathways ¹³⁷Cs</td>
<td>80 pCi/g over a 100-m² area of contaminations</td>
</tr>
<tr>
<td>Guideline for non-homogeneous contamination (used in addition to the 100-m² guideline)</td>
<td>Applicable to locations with an area ≤25 m², with significantly elevated concentrations of radionuclides ("hot spots")</td>
<td>(G_A = G_i (100/A)^{1/2}) where (G_A) = guideline for "hot spot" of area (A) (G_i) = guideline averaged over a 100-m² area</td>
</tr>
</tbody>
</table>

^aThe 20 μR/h shall comply with the basic dose limit (100 mrem/yr) when an appropriate-use scenario is considered.

^dDOE guidelines specify that every reasonable effort shall be made to identify and to remove any source which has a concentration exceeding 30 times the guideline value, irrespective of area. (adapted from Revised Guidelines for Residual Radioactive Material at FUSRAP and Remote SFMP Sites, April 1987).

<table>
<thead>
<tr>
<th>Type of radiation measurement or sample</th>
<th>Radiation level or radionuclide concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Gamma exposure rate at ground surface (μR/h)</td>
<td>6-9</td>
</tr>
<tr>
<td>Concentration of radionuclides in soil (pCi/g)</td>
<td>0.70-0.94</td>
</tr>
<tr>
<td>226Ra</td>
<td>0.70-0.94</td>
</tr>
<tr>
<td>232Th</td>
<td>0.76-0.94</td>
</tr>
<tr>
<td>238U</td>
<td>0.69-1.05</td>
</tr>
</tbody>
</table>

Values obtained from three locations in the Beverly area.
<table>
<thead>
<tr>
<th>Sample number<sup>a</sup></th>
<th>Depth (cm)</th>
<th>Radionuclide concentration (pCi/g)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>226Ra</td>
</tr>
<tr>
<td>S1A</td>
<td>0-15</td>
<td>0.81 ± 0.03</td>
</tr>
<tr>
<td>S1B</td>
<td>15-30</td>
<td>0.80 ± 0.02</td>
</tr>
<tr>
<td>S1C</td>
<td>30-36</td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>S2A</td>
<td>0-15</td>
<td>0.89 ± 0.02</td>
</tr>
<tr>
<td>S2B</td>
<td>15-30</td>
<td>1.1 ± 0.02</td>
</tr>
<tr>
<td>S3A</td>
<td>0-15</td>
<td>1.5 ± 0.02</td>
</tr>
<tr>
<td>S3B</td>
<td>15-30</td>
<td>1.5 ± 0.03</td>
</tr>
<tr>
<td>S4A</td>
<td>0-15</td>
<td>1.8 ± 0.04</td>
</tr>
<tr>
<td>S4B</td>
<td>15-30</td>
<td>2.8 ± 0.07</td>
</tr>
<tr>
<td>S4C</td>
<td>30-45</td>
<td>3.3 ± 0.05</td>
</tr>
<tr>
<td>S4D</td>
<td>45-61</td>
<td>4.3 ± 0.09</td>
</tr>
<tr>
<td>S5A</td>
<td>0-15</td>
<td>0.89 ± 0.02</td>
</tr>
<tr>
<td>S6A</td>
<td>15-30</td>
<td>3.1 ± 0.04</td>
</tr>
<tr>
<td>S6B</td>
<td>30-45</td>
<td>3.4 ± 0.07</td>
</tr>
<tr>
<td>S6C</td>
<td>45-61</td>
<td>3.4 ± 0.04</td>
</tr>
</tbody>
</table>

^aSample locations are shown on Fig. 3.

^bIndicated counting error is at the 95% confidence level ($\pm 2\sigma$).

^cSystematic samples are taken at locations irrespective of gamma exposure rates.
INTERNAL DISTRIBUTION

1. B. A. Berven
2. R. F. Carner
3. W. D. Cottrell
4-9. R. D. Foley
10. R. O. Hultgren
11-14. C. A. Johnson
15. S. V. Kaye
16. A. P. Malinauskas
17. M. E. Murray
18. P. T. Owen
19. D. A. Roberts
20. R. E. Rodriguez
21. P. S. Rohwer
22-24. R. E. Swaja
25. M. S. Uziel
26. J. K. Williams
27. Central Research Library
28-29. Laboratory Records
30. Laboratory Records-RC
31. ORNL Patent Section
32. ORNL Technical Library, Y-12
33-38. MAD Records Center
39. J. D. Berger, Oak Ridge Associated Universities, E/SH Division, Environmental Survey and Site Assessment Program, P.O. Box 117, Oak Ridge, TN 37831-0117
41-43. G. K. Hovey, Bechtel National, Inc., FUSRAP Department, Oak Ridge Corporate Center, 151 Lafayette Drive, P.O. Box 350, Oak Ridge, TN 37831-0350
44. L. K. Price, Director, Former Sites Restoration Division, Oak Ridge Field Office, U.S. Department of Energy, P.O. Box 2001, Oak Ridge, TN 37831-8723
45. James W. Wagoner II, Director, Division of Off-Site Programs, Office of Eastern Area Programs, Office of Environmental Restoration, U.S. Department of Energy, (EM-421), Trevion II, Washington DC 20585
51. C. D. Young, Office of Technical Services, Roy F. Weston, Inc., 12800 Middlebrook Road, Suite 207, Germantown, MD 20874
END

DATE

FILMED

9/11/92