RADILOGICAL SURVEY RESULTS
AT 9 PORTER STREET,
BEVERLY, MASSACHUSETTS
(VB020)

R. D. Foley
C. A. Johnson
HEALTH AND SAFETY RESEARCH DIVISION

Environmental Restoration and Waste Management Non-Defense Programs
(Activity No. EX 20 20 01 0; ADS3170000)

Radiological Survey Results at 9 Porter Street, Beverly, Massachusetts (VB020)

R. D. Foley and C. A. Johnson

Date Issued — July 1992

Investigation Team

R. E. Swaja — Measurement Applications and Development Manager
W. D. Cottrell — FUSRAP Project Director
R. D. Foley — Survey Team Leader

Survey Team Members
J. F. Allred M. E. Murray
A. C. Butler* V. P. Patania
R. D. Foley D. E. Rice
D. Mackenzie† D. A. Rose
W. H. Shinpaugh*

*D. R. Stone and Associates, Inc.
†H&R Technical Associates

Work performed by the
MEASUREMENT APPLICATIONS AND DEVELOPMENT GROUP

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U. S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SURVEY METHODS</td>
<td>2</td>
</tr>
<tr>
<td>SURFACE RADIATION MEASUREMENTS</td>
<td>2</td>
</tr>
<tr>
<td>SOIL SAMPLING AND ANALYSES</td>
<td>2</td>
</tr>
<tr>
<td>SURVEY RESULTS</td>
<td>3</td>
</tr>
<tr>
<td>SURFACE RADIATION MEASUREMENTS</td>
<td>3</td>
</tr>
<tr>
<td>SOIL SAMPLES</td>
<td>3</td>
</tr>
<tr>
<td>SIGNIFICANCE OF FINDINGS</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>4</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1 Diagram showing general location of the former Ventrion site 5
2 Diagram showing relative location of 9 Porter Street, Beverly, Massachusetts, to the former Ventrion site ... 6
3 View of the front of the property at 9 Porter Street, Beverly, Massachusetts .. 7
4 View of the rear of the property at 9 Porter Street, Beverly, Massachusetts .. 7
5 Surface gamma exposure rates and soil sampling locations at 9 Porter Street, Beverly, Massachusetts .. 8
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Applicable guidelines for protection against radiation</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Background radiation levels and concentrations of selected radionuclides in soil in the Beverly, Massachusetts, area</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Concentrations of radionuclides in soil samples from 9 Porter Street, Beverly, Massachusetts</td>
<td>11</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

Research for this project was sponsored by the Office of Environmental Restoration, U.S. Department of Energy, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. The authors wish to acknowledge the contributions of R. F. Carrier, W. D. Cottrell, M. S. Uziel, D. A. Roberts, D. A. Rose, V. P. Patania, J. F. Allred, and T. R. Stewart of the Measurement Applications and Development Group for participation in the sample preparation and analyses, editing, graphics, and reporting of data for this survey.
ABSTRACT

At the request of the U.S. Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at 9 Porter Street, Beverly, Massachusetts. The survey was performed in May 1991. The purpose of the survey was to determine if uranium from work performed under government contract at the former Ventron facility had migrated off-site to neighboring areas. The survey included a surface gamma scan and the collection of soil samples for radionuclide analyses.

Results of the survey demonstrated no radionuclide concentrations or radiation measurements in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines.
INTRODUCTION

The Metal Hydrides Corporation facility in Beverly, Massachusetts (which became the Ventron Corporation in 1965), was one of many companies performing work during the 1940s associated with the development of nuclear energy for defense-related projects under contract to the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC). Operations conducted under government contract at such sites included the procurement, storage, and processing of uranium oxides, salts, and metals, and the subsequent machining of these products. As a result of activities involving these materials, equipment, buildings, and land at some of the sites became radiologically contaminated with small amounts of the material resulting in low levels of contamination on the properties. At contract termination, release limits and decontamination operations were typically applied in conformance with standards currently deemed adequate for purposes of health and environmental protection. Subsequent to original assessments and the release of these facilities, new research and information have resulted in the development of more stringent guidelines for release of such facilities for unrestricted use. Furthermore, in some instances, documentation is limited or nonexistent, and conditions at a specific site may be unknown. It is the policy of the Department of Energy (DOE) to verify that radiological conditions at such facilities comply with existing guidelines. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established by DOE in 1974 to assist in assessment and cleanup activities at these sites.

The radiological survey detailed in this report was performed under the FUSRAP program and is one of several conducted in May, 1991, on properties in the vicinity of the former Ventron facility by members of the Oak Ridge National Laboratory (ORNL) at the request of DOE. The city of Beverly lies on Beverly Harbor approximately 15 miles northeast of the central Boston area. The former Ventron facility, now owned by Morton International, Inc., is located at the confluence of the Bass and Danvers rivers on Congress Street near the Beverly-Salem bridge (Fig. 1 p. 5).

From 1942 through 1948, the Metal Hydrides Corporation (later to become the Ventron facility), converted uranium oxide to uranium metal powder at the facility under contract to the MED in support of the war effort. Other operations conducted at the facility included the recovery of uranium from scrap uranium and turnings from the slug fabrication plant at Hanford, Washington. Contracts between Metal Hydrides and the government were completed in 1954.

*The survey was performed by members of the Measurement Applications and Development Group of the Health and Safety Research Division of Oak Ridge National Laboratory under DOE contract DE-AC05-84OR21400.
Following a radiological screening survey at the site in 1977, a comprehensive survey was performed in 1982. In 1987, DOE contractors removed the uranium-contaminated roof from a Ventron building, which had begun to leak. Radioactive materials remaining on the site do not pose a health hazard under present use conditions, but could cause radiation exposure to workers if excavation or major renovation took place on the property. DOE plans a complete characterization study of the site in 1992 and the initiation of remedial action soon thereafter.

The survey of the property reported in this document and of other surrounding properties is part of DOE’s continuing program to assess the former Ventron site and plan for remedial action. The objective of the surveys was to determine if uranium from plant operations had migrated offsite to neighboring areas including Beverly Harbor, and if so, to what degree. The relative location of this vicinity property to the former Ventron site is shown in Fig. 2 (p. 6). The radiological surveys consisted of measurements of radiation levels over the ground surface of the properties and analysis of soil, sediment, and other material samples for the presence of radionuclides in concentrations exceeding guidelines.

Views of the vicinity property at 9 Porter Street are shown in Figs. 3 and 4 (p. 7).

SURVEY METHODS

A comprehensive description of the survey methods and instrumentation used in this survey is given in Procedures Manual for the ORNL Radiological Survey Activities (RASA) Program, ORNL/TM-8600 (April 1987).

SURFACE RADIATION MEASUREMENTS

Gamma radiation levels were determined using a portable NaI gamma scintillation meter. Because NaI gamma scintillators are energy dependent, measurements of gamma radiation levels in counts per minute (cpm) are normalized to pressurized ionization chamber (PIC) measurements to estimate gamma exposure rates in μR/h.

SOIL SAMPLING AND ANALYSES

Surface and subsurface soil samples were systematically collected over the property in a pattern sufficient to obtain a characterization of the radionuclide content of the soil. Surface and subsurface soil samples were also collected in areas of elevated gamma exposure rates. Such samples are referred to as biased samples and are more likely to contain elevated concentrations of radionuclides than are systematically chosen samples. All soil samples were analyzed to determine \(^{238}\text{U}\), \(^{232}\text{Th}\), and \(^{226}\text{Ra}\) concentrations.
SURVEY RESULTS

Current guidelines for sites included within the FUSRAP are summarized in Table 1 (p. 9). Typical background radiation levels for the Beverly, Massachusetts, area are presented in Table 2 (p. 10). These data are provided for comparison with the survey results presented in this section. All direct measurements presented in this report are gross readings; background radiation levels have not been subtracted. Similarly, background concentrations have not been subtracted from radionuclide concentrations in soil, debris, and other samples.

SURFACE RADIATION MEASUREMENTS

A general gamma scan was conducted at this property where exposure rates at the ground surface ranged from 7 to 12 µR/h, with a maximum of 16 µR/h measured on contact with a granite wall in the back yard. These values are slightly higher than the typical background measurements in the Beverly, Massachusetts, area (6 to 9 µR/h, Table 2), but well below DOE guidelines. Concrete, brick, and granite were present over most of the property. These materials typically contain slightly higher concentrations of naturally occurring radionuclides than soil, and contributed to the higher gamma readings. Results of the gamma scan over the ground surface of the property are shown on Fig. 5 (p. 8).

SOIL SAMPLES

Soil sample locations are shown in Fig. 5, and results of analyses are listed in Table 3 (p. 11). The soil over most of this property has been disturbed and graded within the last 10-15 years, and rocks and granite were encountered in much of the soil. Maximum concentrations of 226Ra and 232Th in surface soil (0-15 cm) were 1.1, and 1.6 pCi/g, respectively. In subsurface soil, maximum values were 1.1 pCi/g for 226Ra and 1.2 pCi/g for 232Th. These values are only slightly above typical background levels in the Beverly area (Table 2), and well below DOE guidelines (Table 1). Although potassium-40 (40K), was not associated with any MED operations or processing activities at the Ventron site, samples are routinely analyzed for its presence. These analyses showed that samples B1A, B1B, and S5A contained 29, 34, and 32 pCi/g 40K, respectively, while all other samples from this property ranged from 14 to 18 pCi/g. Potassium-40 is a naturally occurring radionuclide found in many normal biological and environmental materials, including food and human tissues. Worldwide, the concentration of 40K in soil ranges from 3.5 to 22 pCi/g; an individual weighing 70 kg (~188 lb) would normally contain about 140 pCi/g.4 Potassium is added in large amounts as potash to fertilizers and frequently results in increased concentrations of 40K in locations subjected to agricultural activities, including areas impacted by runoff or gardening.

Maximum 238U concentrations in surface soil were 3.4 pCi/g in systematic samples and 2.9 pCi/g in biased samples. Subsurface 238U concentrations ranged from 1.3 to 2.5 pCi/g in both systematic and biased samples. All 238U concentrations were near or slightly above
typical background soil concentrations in the Beverly area (Table 2), but well below guidelines of 35 to 40 pCi/g that have been applied at other FUSRAP sites (Table 1).

SIGNIFICANCE OF FINDINGS

The results of the radiological survey at 9 Porter Street, Beverly, Massachusetts, demonstrated no radionuclide concentrations or radiation measurements above established DOE guidelines.

REFERENCES

Fig. 1. Diagram showing general location of the former Ventron site.
Fig. 2. Diagram showing relative location of 9 Porter Street, Beverly, Massachusetts, to the former Ventron site.
Fig. 3. View of the front of the property at 9 Porter Street, Beverly, Massachusetts.

Fig. 4. View of the rear of the property at 9 Porter Street, Beverly, Massachusetts.
Fig. 5. Surface gamma exposure rates and soil sampling locations at 9 Porter Street, Beverly, Massachusetts.
Table 1. Applicable guidelines for protection against radiation
(Limits for uncontrolled areas)

<table>
<thead>
<tr>
<th>Mode of exposure</th>
<th>Exposure conditions</th>
<th>Guideline value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma radiation</td>
<td>Indoor gamma radiation level (above background)</td>
<td>20 μR/h<sup>a</sup></td>
</tr>
<tr>
<td>Radionuclide concentrations</td>
<td>Maximum permissible concentration of the following radionuclides in soil above background levels, averaged over a 100-m<sup>2</sup> area</td>
<td>5 pCi/g averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over 15 cm-thick soil layers > 15 cm below the surface</td>
</tr>
<tr>
<td></td>
<td>226 Ra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>232 Th</td>
<td></td>
</tr>
<tr>
<td></td>
<td>230 Th</td>
<td></td>
</tr>
<tr>
<td>Derived concentrations</td>
<td>238U</td>
<td>Site-specific<sup>b</sup></td>
</tr>
<tr>
<td>Guideline for non-homogeneous contamination</td>
<td>Applicable to locations with an area ≤25 m<sup>2</sup> with significantly elevated concentrations of radionuclides (“hot spots”)</td>
<td>(G_A = G_i \left(\frac{100}{A} \right)^{1/2}), where (G_A) = guideline for “hot spot” of area (A) (G_i) = guideline averaged over a 100-m<sup>2</sup> area</td>
</tr>
</tbody>
</table>

^aThe 20 μR/h shall comply with the basic dose limit (100 mrem/yr) when an appropriate-use scenario is considered.

^cDOE guidelines specify that every reasonable effort shall be made to identify and to remove any source that has a concentration exceeding 30 times the guideline value, irrespective of area (adapted from Revised Guidelines for Residual Radioactive Material at FUSRAP and Remote SFMP Sites, April 1987).

<table>
<thead>
<tr>
<th>Type of radiation measurement or sample</th>
<th>Radiation level or radionuclide concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Gamma exposure rate at ground surface (μR/h)a</td>
<td>6-9</td>
</tr>
<tr>
<td>Concentration of radionuclides in soil (pCi/g)a</td>
<td></td>
</tr>
<tr>
<td>226Ra</td>
<td>0.70-0.94</td>
</tr>
<tr>
<td>232Th</td>
<td>0.76-0.94</td>
</tr>
<tr>
<td>238U</td>
<td>0.69-1.05</td>
</tr>
</tbody>
</table>

aValues obtained from three locations in the Beverly area.
Table 3. Concentrations of radionuclides in soil samples from 9 Porter Street, Beverly, Massachusetts

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Depth (cm)</th>
<th>Radionuclide concentration (pCi/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>226Ra</td>
</tr>
<tr>
<td>S1A</td>
<td>0-15</td>
<td>0.94 ± 0.02</td>
</tr>
<tr>
<td>S2A</td>
<td>0-15</td>
<td>1.1 ± 0.03</td>
</tr>
<tr>
<td>S2B</td>
<td>15-30</td>
<td>1.1 ± 0.04</td>
</tr>
<tr>
<td>S3A</td>
<td>0-15</td>
<td>0.94 ± 0.03</td>
</tr>
<tr>
<td>S3B</td>
<td>15-30</td>
<td>0.98 ± 0.02</td>
</tr>
<tr>
<td>S4A</td>
<td>0-15</td>
<td>1.0 ± 0.03</td>
</tr>
<tr>
<td>S4B</td>
<td>15-30</td>
<td>0.96 ± 0.03</td>
</tr>
<tr>
<td>S5A</td>
<td>0-15</td>
<td>0.89 ± 0.02</td>
</tr>
<tr>
<td>B1A</td>
<td>0-15</td>
<td>1.0 ± 0.02</td>
</tr>
<tr>
<td>B1B</td>
<td>15-30</td>
<td>0.98 ± 0.02</td>
</tr>
</tbody>
</table>

- **Systematic samples**
- **Biased samples**

*a*Locations of soil samples are shown on Fig. 5.
b*Indicated counting error is at the 95% confidence level ($± 2\sigma$).
c*Systematic samples are taken at locations irrespective of gamma exposure rates.
d*Biased samples are taken from areas with elevated gamma exposure rates.*
INTERNAL DISTRIBUTION

1. B. A. Berven
2. R. F. Carrier
3. W. D. Cottrell
4-9. R. D. Foley
10. R. O. Hultgren
11-14. C. A. Johnson
15. S. V. Kaye
16. A. P. Malinauskas
17. M. E. Murray
18. P. T. Owen
19. D. A. Roberts
20. R. E. Rodriguez
21. P. S. Rohwer
22-24. R. E. Swaja
25. M. S. Uziel
26. J. K. Williams
27. Central Research Library
28-29. Laboratory Records
30. Laboratory Records-RC
31. ORNL Patent Section
32. ORNL Technical Library, Y-12
33-38. MAD Records Center

EXTERNAL DISTRIBUTION

39. J. D. Berger, Oak Ridge Associated Universities, E/SH Division, Environmental Survey and Site Assessment Program, P.O. Box 117, Oak Ridge, TN 37831-0117
41-43. G. K. Hovey, Bechtel National, Inc., FUSRAP Department, Oak Ridge Corporate Center, 151 Lafayette Drive, P.O. Box 350, Oak Ridge, TN 37831-0350
44. L. K. Price, Director, Former Sites Restoration Division, Oak Ridge Field Office, U.S. Department of Energy, P.O. Box 2001, Oak Ridge, TN 37831-8723
45. James W. Wagoner II, Director, Division of Off-Site Programs, Office of Eastern Area Programs, Office of Environmental Restoration, U.S. Department of Energy, (EM-421), Trevion II, Washington DC 20585
51. C. D. Young, Office of Technical Services, Roy F. Weston, Inc., 12800 Middlebrook Road, Suite 207, Germantown, MD 20874