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REGENERATOR OPTIMIZATION FOR STIRLING CYCLE
REFRIGERATION II

Stirling A. Colgate and Albert G. Petschek
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

A cryogenic regenerator for a Stirling cycle is discussed using fractional loss or entropy
gain as the criterion of performance. The gas losses are treated separately from heat storage
medium losses. We argue that the optimum design corresponds to uniform channel flow with
minimum turbulence where the gas velocity and channel width are optimized as a function of gas
temperature. The maximization of heat transfer from the gas to the wall and the minimization of
entropy production by friction leads to a gas flow velocity equal to sound speed times loss

fraction, 1/6. This velocity and an axial thermal conductivity in the gas leads to a minimum
channel width and characteristic length, L=T(dz/dT). A particular scaling of width, W2 =
W,2T1/2, and length, L = L, T-1/2 leads to a design where longitudinal conduction decreases as
T3/2 and the remaining two losses, transverse conduction and friction are equal and constant.

The loss fraction, 1/0, must be made quite small, ~(1/60) in order that the cumulative losses for a
large temperature ratio like 300K to 4K, be small enough, like 20% to 40%. This is because half
the entropy generated as a loss must be transported first to the cold end before returning to the
hot end before being rejected. The dead volume ratio then determines the minimum frequency
and with it and the pressure the necessary wall properties. The thermal properties of the channel
wall must then accommodate this cyclic heat flow without substantially increasing the loss
fraction. This generation of entropy in the walls is derived in terms of the wall heat capacity and
thermal conductivity

I. Introduction

Regenerators in Stirling refrigeration store and return the heat of the working fluid, a gas,
during each of two phases of the cycle. The design objective, for high efficiency, is to transfer a
given heat mass from one temperature to another with the minimum change in entropy. If the
temperature difference of the refrigerator is small, relative to absolute temperature, as in
domestic heat pumps, the regenerator is simpler to design because the thermal properties of the
materials and of the gas remain nearly constant throughout tae regenerator. In cryogenic
refrigerators where the temperature ratio is large, and where one hopes to achieve the low
' temperature without intermediate expansion and compression volumes, the regenerator is more
complex and the efficiency more sensitive to its properties.
In the previous paper (Colgate and Petschek, 1992, hereafter CP I) we addressed
primarily the efficiency of the regenerator as determined by the gas properties. This led to
1



several relationships between dimensions, velocity, gas properties and losses. The wall
properties were not considered and hence were assumed ideal. In this paper we will address first
the overall efficiency as determined by the integral effect of many infinitesimal stages or sections

of regenerator in series. Knowing the efficiency desired as a function of temperature and the
dimensions and velocities that result in the desired gas efficiency, we will then consider the
problem of the wall materials that satisfy the gas boundary conditions. There are, however,
several important additional components to a cryocooler that will affect its efficiency. We
assume that our regenerator is bounded at each end by isothermal compression and expansion
volumes. These volumes will have their own losses although we expect that the use of special
metal bellows (Colgate 1986) can keep these losses small. Similarly, radiation and conduction to
the regenerator as a function of length and hence, temperature should be intercepted at as high a
temperature as possible so that the entropy gain will be a minimum.

Sullivan, Radebaugh, Daney, and Zimmerman (1982) considered a similar design
problem, but did not include the entropy gain from the frictional heat of the gas flow. With the
inclusion of this loss, the geometry restrictions are altered. In addition we will consider the dead
volume of the regenerator as one constraint because it affects the losses as well as the useful
refrigeration. Minimizing the dead volume along with the entropy gain will dictate the channel
geometry of the regenerator.

In Section II we will review the assumptions of CP I with initial emphasis on the question
of why we choose a smooth wall channel of nearly constant width instead of the frequently used
geometries of wire mesh or spheres of heat mass material. In addition, we will review the effect
on overall efficiency of staging where before we divided conceptually the regenerator into
discreet stages and now consider a continuum of properties. We derive the limiting loss for this
continuum and thus establish a goal for the desired efficiency at every point of the design.. We
will then review from CP I each of the gas losses using as the non-dimensional loss, the
fractional addition of entropy per unit of entropy transferred. This allows one to relate
frequency, channel length, temperature, dead volume ratio, and non dimensional loss.

In Section III using this desired efficiency we consider a design of the gas flow geometry
that optimizes the dead volume and therefore the geometry in the cold end where material
properties are most limiting.

In section IV we consider the desired properties of wall materials and by considering how
the heat flow within these materials adds to the losses that occur purely within them. Section V
is the conclusion.

I1. Regenerator Gas Efficiency
Channel Geometry

Classically, regenerators in Stirling cycle heat pumps are heterogeneous, typically made
of wire mesh, spheres, or random wires (see Walker 1980). Radebaugh and Louie (1984) and
independently Colgate (1986) have pointed out that the smooth wall channel is a far better
geometry for efficient heat transfer. This is based upon the extensive measurements of transient
heat flow by Coopage and London (1956). A quantitative comparison is complex and given in
the above references. The additional dead volume penalty for a random matrix regenerator giving
the same heat transfer and friction loss compared to a uniform width channel is large, >10 but
this has not yet been proven experimentally (Radebaugh, 1992, pvt. communication). We
proceed with a design based upon uniform channel flow with the expectation of performing such
a comparison. A qualitative argument is that if one channel width is optimum, a different one is
not. A heterogeneous material defines a channel that varies in width, and so cannot be optimum.
It results in an increased dead volume, which causes an unnecessary cycle loss.

In addition one questions whether turbulence induced by the irregularities will be an
advantage. If eddy motion decayed only by friction with the walls, then the effect of turbulence
might possibly be beneficial. However, the Prandtl number (ratio of thermal to viscous
diffusivity) is reduced from 1.66 for a monatomic gas, i.e. helium, to 1.0 for turbulence, i.e. an
eddy transports heat and momentum macroscopically and thus equally. Thus the particular
advantage of larger thermal diffusivity is lost. We therefore choose channel flow as the optimum
regenerator configuration.

Regenerator ion
2



For practical reasons of material properties and fabrication, in CP I we imagined sections
of one given wall material and constant channel width for a finite temperature difference of an
individual section. In terms of the coefficient of performance (COP) of one stage and its Carnot
value (CCOP) we define a normalized COP (NCOP) as NCOP = COP/CCOP. The Carnot
coefficient of performance is the ideal value with no losses. Hence, NCOP is a measure of how
close to ideal has been achieved. We then wanted to know how the set of NCOP's should be
combined. Fig. ! shows a schematic refrigerator with our definition of variables.

Q4 =Q1 + wl + w2 +w3

|

(z| Q3=Q1 +wl +w2
2
Q@ -— W
4' Q2= Q1 + wi
- W1

Q1

Figure (1) shows a sequence of individual sections, i=1, 2, 3, connected in series and
schematically varying in size as would be the case for a cryocooler. The purpose of the
refrigerator is to remove a heat Qy and transfer it out of Q3 by a sequence of processes each
doing work of wi, wp, and w3. The heat transferred stage to stage is augmented by the
work performed in the previous stage. Thus the final stage must reject a total heat of Q4 =

Qi + wy + w2 + w3. The normalized COP is defined as nj = I'i/['¢c where I'j = Qj/wj, the
actual COP for each stage and I'c is the Carnot COP. In CP I, nj is derived for j stages of

each of normalized COP, i and where each stage has a constant temperature ratio of
TyTG+1)=2,sothatTj = 1.

For the three such stages of Fig. 1, the NCOP becomes:

Ni3=7/3

N12N3 = 7“1 N2 N3 (1)
M2/ N3+ 1+ N1+ N2+ N3 4 N2 N34N2N3

with more complicated expressions for additional stages. We note that each combination of
efficiencies is greater than the simple product, which is more favorable than one might have
thought, and that if all nj = 1, then the combined efficiency is also equal to 1 as it should be. In

addition this analysis gives assurance that one inefficient section does not disproportionately
effect the over all efficiency.
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We now extend this concept of discreet stages to a continuous refrigerator of infinitesimal
sections of temperature increment, 8T.

Let the heat transferred out at temperature T+8T be Qr.s1. Then
Qr+8r=Qr+W=Qr(1+fl_-)=QT(l+%), ¥

where n is defined as above as the NCOP and I' is the CCOP. The entropy for the same
infinitesimal change in temperature then becomes:

oT ST
(1+Tn) (1+24)

_ QrisT_ _ ™ — 1{ T,1 ]
Sy = Or- = S1— = s 1+8LL ) (3)
TTUneT oTHT &) T

or taking the limits:

ds _§.1. integrating § = S, (L) D
dT %(n 1) and by integrating S s°(To)n . 4)

Thus for example, if | = 0.96 and T/T, = 75, corresponding to a temperature ratio of 4 K to 300
K, then S/S, = 1.2; that is, the overall COP is only 20% greater than Carnot. This is a reasonable
objective for the design of a regenerator, provided there is not some other larger penalty in
efficiency required in order to remove this extra entropy.

A Stirling cycle refrigerator removes heat or entropy from a cold load and deposits it in a
hot reservoir as in Fig. 1. This processes of pumping entropy at the expense of work is described
by the Sachur-Tetrode equation:

3. ln[ _m_)3/2 (__.__kTPPn “ . 5)

S = Nk
2 h22n

Hence the energy removed from a cold terminal, TAS, is just NkT In (Pmax/Pmin), or NKT times
the compression ratio, provided, of course that this compression (expansion) process occurs at
constant T, i.e., isothermal. Since no entropy is removed except by expansion of compression,
the regenerator, being constant volume, may modify the entropy within it, but not remove or add
entropy from the outside. Therefore the extra entropy created in the regenerator must be
removed at either end. The addition of entropy or removal of entropy from the system depends
upon both the compression and expansion only. The Sachur-Tetrode equation above, applied to
the Stirling engine, assumes an isothermal process, (T remains constant during a change in P.). It
is thermal conduction that maintains the constant temperature that adds or removes entropy.
During expansion at the cold end, heat must flow into the gas in order to maintain a constant
temperature as the density is decreased, i.e., an increased entropy of the gas at the cold end
because of the removal of entropy from a load. Conversely at the hot end, a compression would
heat the gas, but conduction of heat into the reservoir reduces the entropy as the density is
increased, thereby pumping entropy to the "universe". An ideal Stirling cycle compresses the gas
only at the hot end and expands it only at the cold end. The transfer ideally occurs reversibly so
that gas transferred from hot to cold and back again from cold to hot returns with the original
entropy. The addition to this entropy by the transfer process alone within the regenerator is the
subject of this paper.




When compressed gas of entropy, Si, enters the regenerator at the hot end, it exits the
regenerator at the cold end at the ideal entropy of Sj, there has been added an entropy AS due to

the imperfection of the regenerator. This extra entropy, AS; =S - S of Eq. (4) must be removed
from the gas by conduction to the cold reservoir. Only after this can expansion in the cold end
remove entropy from the cold reservoir. Thus the total entropy that can be removed is reduced

by AS+. Conversely on the reverse transfer half of the cycle an entropy, AS., will be added due
to the imperfection of the regenerator and again it must be removed by conduction to the
reservoir before compression commences. In this later case, however, there is no penalty in PdV
work required to remove the extra entropy at the hot end, provided the extra heat of the gas is
removed before the start of compression. The change in temperature of the regenerator itself

within a half cycle is second order in AS, and so not considered. Instead the mean temperature of
the regenerator will equilibrate such as to satisfy this condition for removing the extra entropy of
the expanded state transfer to the hot end. This equilibrated state will add entropy to the
subsequent compressed state transfer etc. Therefore both entropy gains will add to the
inefficiency of the refrigerator, and so the total loss in COP will be assumed to be the sum of that
occurring in both transfers.

We now wish to relate NCOP, 1, to the extra entropy generated in the regenerator due to
irreversible processes in the working fluid such as finite conduction and friction.

II1. Working Fluid Losses

Measure of Refrigeration

The refrigeration work required to transfer an amount of heat Q from T to T+dT is
Q(T/T), proportional to Q and inversely proportional to the temperature past which it is
transferred. Thus, a measure of refrigeration performance, or heat transfer difficulty is Q/T or the
entropy transferred per cycle or unit of time. The coefficient of performance is the ratio of heat
transferred, Q, to the PdV work required to transfer it. The Carnot COP is T/dT, while the actual

COP is Q/(PdV) so that the local efficiency is QdT/(TPdV). This is what we have defined as 1.
This efficiency is a measure of the extra PdV work required to transfer a given entropy Q/T
through dT. Losses (inefficiencies) are due to the production of entropy by friction and

conduction. Our purpose is to minimize the entropy gain in each stage in the spirit of Minta and
Smith (1984).

Heat Exchange-Working Fluid to Wall

The primary purpose of a regenerator is to exchange heat reversibly between a moving
working fluid, i.e. gas for the Stirling cycle, and a stationary heat mass. The lack of perfect heat
exchange leads to a mean temperature difference between the gas and the wall. The gradient of
this temperature difference both drives the heat flow from the gas to the wall and also leads to an
irreversible loss, that is, an entropy gain, or equivalently extra PdV work per cycle. This
transverse heat flow takes place in the y direction in a channel of width W and in the axial
direction due to a temperature gradient, dT/dz = T,' Here the characteristic length, L = T/T;.
The gas flows in the z direction and the extent in the x direction is the dimension, B. In addition
there will ag entropy gain due to thermal conduction along the length as well as friction with the
walls, Fig. 2.

—Z
v <4————L =T/(dT/dz) ———>

i w gas flow ————p2

A

channel width, W wall thickness, w



Figure (2) shows a idealized channel of width W and temperature gradient, T;' . The gas
flows in the z direction, and the heat flows both transversely in the y direction to and from
the walls as well as in the z direction. The extent of the channel into the paper is B. The

temperature is T and the change in temperature is 8T. The characteristic length L = T/T;.
The mean velocity, half cycle average is, v, the density p, and so the mass throughput is
BWvp = dM/dt.

Heat flow generates entropy as analyzed by Kittel (1992). Here, instead of a heat flux that
is harmonic in time we consider a steady, average value during each half of the cycle. For a

temperature gradient, grad (T), we have a heat flux (x grad (T) A) through an area A and over a
distance Ax. (Here x is a generalized coordinate, not the direction B.) The temperature goes from
T to T-grad (T) Ax so that the entropy change rate in a volume AV=AAx is:

2
A$ = (VA -——l-——~-l) = YTI’ AV (6)

T-VTax T

Assuming grad (T) is independent of the coordinates in the B and L directions, we have

Wi
$-_BL | YT q )
W2

We now must substitute for the two temperature gradients where the longitudinal one is AT/L.
Transversely, T is nearly parabolic, the deviation going from 3T at the center to O at the wall, i.e.

T(y) = T +8T(1- 4y2/W2) and so gradT = - §T(8y/W2). The net heat advection must equal the
heat flow to the walls, so that

- pve, W2
T =(1/2) AT-——E“—MSKL(W/Z) 8
and
VT, = aTEZEL ©)

If we use the longitudinal and this transverse gradient in the integral of Eq(7), then the entropy
generation becomes:

$ = x AT+ Ly
M VvpL T)[1+12 K 1. (10)
Wall Friction

We must now must add the entropy generated by the frictional work of the gas with the
walls. The work is AP W v B, generating an entropy (AP W v B)/T so that

K%%% (11)



Poiseuille flow in a channel gives VP = AL—P— = ugi% , which gives v(y) = vinax(1-4y2/W2) and so
y

vmax = (W2/8)(AP/uL). If we average v(y) from 0 to W/2, then v = (2/3)vmax = (1/12) W2

(AP/uL) . Then for the friction loss we have

Combined Losses

We must add this entropy generation to that associated with the heat flow of Eq. (10). In terms
of these variables adding the three losses gives

_ S _ 2 12LDv
o= =Dy yW- 13
Mcy(aT/T) v 121D wc )

or; fractional loss = parallel conduction + perpendicular conduction+ friction

The left hand side of Eq. (13) is just the ratio of the entropy generated in losses to the
useful entropy transferred through the regenerator. It is therefore just the fractional loss, or
o, fora given AT/T or (1 - NCOP) = 1-n. For small ¢ thisis ~ (1/m-1) of Eq. (4).

If we assume that the working fluid is helium at or below atmospheric pressure and for
temperatures above 4K, then the diffusion coefficient, D, can be give as (Do/P) T3/2 and

similarly cs2 = T co2 where T is in units of To, the high temperature, so that the loss fraction
becomes:

___§  _|D,T*? ypw2T32 | 12LVD,T!?
o= — = . + (14)
Mc,(AT/T) PLv 12LD, W2c2P

In CP I we showed that if ¢ were expressed in terms of the dimensionless variables,
Reynolds number, Prandtl number and Mach number, that we can make this fractional loss
arbitrarily small. However, in order to minimize the dead volume of the regenerator, the velocity
should be as high as possible so that at a given frequency, the maximum volume is transferred
within a cycle. On the other hand the heat capacity of the solid wall materials becomes so small

at low temperature, = T2. that there is a strong motivation to increase the surface area at low
temperature. An approximate minimum can be obtained by just setting all three losses equal.
Then there is a particular scaling of L. W, and v that results in near constant loss fraction at lower
temperatures, and increases the surface area at the expense of dead volume at low temperatures.
The increased wall area is desirable in order to have enough accessable wall heat mass at low
temperature. This particular scaling is:

L=Lo T-12 ;W2=W2 T2 ;v=v,TI2, (15)
When this scaling is substituted into Eq. (14), it results in the loss fraction :

o= § _|DeT?2 | v,PWZ 4 12L4voD,
MCP(AT/T) PLovo, 12LD,g W3c2p

(16)

or; fractional loss = parallel conduction + perpendicular conduction+ friction



The first term in the bracket, the loss due to longitudinal conduction in the gas, decreases
as T3/2 and the remaining terms remain constant independent of temperature. One therefore
neglects the first term, recognizing that the efficiency of the high temperature end will be
reduced for the first factor of 2 change in temperature. (This can be compensated for by a small
change in parameters for the first, highest temperature stage, without compromising the more
demanding, low temperature design.) One then sets the last two terms equal for a minimum loss
design. The result is;

L Pc
e SRR « B -1
% 12D, 7.5x103P cm-l, an

where we have evaluated ¢y and Dy at 300K for helium. We note that this ratio is then

independent of ¢ and v,, and demands a large aspect ratio for the channel dimensions. In
addition using this result in Eq. (16) defines the velocity of the flow as:

Vo =0Cy2 =4.5x10* 6 cms-l. (18)
for helium at 300. In this case the Mach number is just half the fractional loss.

Dead Volume

The remaining constraint is the dead volume ratio, Rygldeag- This ratio is a measure of
the mass of the gas within the regenerator compared to the mass within the compression or
expansion volumes at either end. It is therefore an integral property of the regenerator, but it

affects the differential loss 6. For the scaling of Eq. (15), all the dead volume will be
concentrated at the cold end (see Eq. (19) below). Then for the ideal refrigerator one would
desire that the mass of gas transferred to the cold end expansion volume be larger than the gas
remaining in the regenerator since the only useful cold mass that can remove entropy from a load
or heat source is that within the cold expansion volume or equivalently that which is transferred
from the regenerator. In addition the gas remaining in the regenerator adds to the entropy
produced due to the heat transfer within the gas to and from the walls as from the second term in
the brackets of Eqgs. (13 or 16). There will also be a further entropy gain due to the finite heat

mass of the walls and conduction within the wall material. Therefore we expect ¢ to be
effectively increased by roughly (1+Rvyogldead). The dead volume ratio is

% T
-1l 2p(T- 171
Rvoldead = f dl = @_L&[ T-2dT = zﬂ‘O(T 'T-O ) - waP(T TO ) (19)

v oC, oCo - 6D,0 ’

To

and so in order to maintain a small value of Ryoldead at low temperature, we desire a low
frequency, a small channel width, and modest loss fraction. These are all features that compete
in the design of the regenerator.

Wall Material Losses
The wall acts as a heat source and sink by transferring a heat, AQ into and out of a

uniform material of specific heat cyw, and conductivity Xy, within a half cycle time, 1/2f. The
wall losses are made up of the time dependent heat flow in and out of, i.e., transverse to, the wall
and the near steady state parallel conduction within the wall material. In addition if the heat

mass of the wall either because of finite skin depth, A, within the cycle time, or because the wall
thickness, w, is in itself too small, then there will be an additional loss in the gas because the
boundary temperature of the wall oscillates whereas a constant temperature boundary condition
has been assumed. Treating the first two losses first, we note that they are entirely analogous to
the entropy generated in the gas for nearly identical reasons. Similar to Eq. (7) the rate of
entropy generation per unit of mass flow is calculated in a wall of width, w. Then for two walls
the entropy production becomes:

8



2
§ - 2BL _V_I) dy . (20)

As before we now must substitute for the two temperature gradients where the longitudinal one is
T/L. Transversely, T is nearly gaussian which we approximate by parabolic, the deviation going

from 8T at the wall to nearly O at depths greater than A, where A, the thermal skin depth =
[(k/cyw)(172D]172, and so T(y) = T+8T,(1- y2/2A2)). Then gradT = - 8T, (y/A2). The net heat
advection must equal the heat flow to the walls, where the heat advected is (pvepWAT)(1/2f) and
the heat flow within the walls in this time is wLCyy 0Tw.

so that

- pvcpWAT
8Tw =(1/2) Wicew(20) (21)

and

_ APYe Wy
vt ] AT P (22)

where cyw A2 (2f) = Kw
If we use the longitudinal and this transverse gradient in the integral of Eq(20), then the entropy
generation becomes:

—§ =2(ATI){———»-ME—‘”.“W M ] 23)
MCc,(AT/T) ML w

fractional loss = longitudinal conduction + transverse conduction

Longitudinal conduction loss takes place regardless of mass transfer, and so the fractional
loss decreases with useful refrigeration and decreasing length. The transverse loss increases with
mass transfer, but also decreases with length. Both losses are decreased by reducing the
thickness or heat mass of the regenerator. However the limit of reduced heat mass is no
regenerator at all.

Finite Heat Mass

To these losses we must consider the entropy generation in the gas due to the fluctuating
wall boundary condition, +38T,. The effect of this fluctuating boundary condition is not the
obvious one of generating entropy within either the gas or wall material, because neither one

experiences an increase in grad T. Instead, an increase in 8Ty , which occurs due to insufficient
heat mass of regenerator material, behaves in the limit as if there were negligible heat mass to the
regenerator. The consequence is that the axial temperature gradient occurs alternately at one end
and then the other as the heat is carried, without thermal lag to each isothermal compression and
expansion volume. The entropy generated to first order will then correspond to that produced by
a decrease in the effective value of L. This in turn affects the transverse heat conduction terms of
both Eq. (13 and 23), but without changing the friction term, proportional to L of the last term in
Eq. (13). These effects are then an augmentation of losses already accounted for rather than a
new and independent loss. On this basis, but without a detailed analysis, the finite heat mass
condition becomes from Eq. (21):

9



8Tw _ pve,W Mg
AT _( 1/2) WLCVW(ZD - (WLva)(Zf) <<l (24)

That is, the heat mass of the gas advected in a half cycle time must be small compared to the heat
mass of the wall.

Material Limits and Design Ie
The limiting useful thickness of the wall material is the thermal skin depth, A, and so w <

A. If A is substituted for w in condition (24) then this determines the maximum heat mass of the
wall and therefore determines whether a given wall material can satisfy the necessary boundary
condition.

The design procedure therefore starts with the scaling conditions of Eq. (15) and the
choice of a temperature ratio, presumably large like 75 in order to perform the cryogenic

refrigerator function. Then a value of ¢ must be chosen, which must be large, like 50 to 60 since
the extra entropy is both generated and first transferred to the cold end and then transferred back
to the hot end with further augmentation. . Also a pressure must be chosen, but in general since
the objective is a temperature close to liquid helium temperature, the operating pressure can not
be much greater than one atmosphere. One must then satisfy the dead volume relation of Eq.
(19). In order for this ratio to be small enough, < 10% to 20% so that the other regenerator losses
are not amplified, this sets a maximum frequency, f. With this value of frequency, the wall
materials can be investigated. In general insulator materials like plastic or glass are satisfactory
down to temperatures such as 10 to 20K, but below this temperature, higher conductivity and
higher specific heat materials are desired. These conditions can be most readily satisfied by
making the regenerator wall smooth but heterogeneous as for example of alternating conducting
high heat capacity material and thermal insulator as in Colgate (1986). Such an analysis will be
published in a subsequent paper, where one of us. SAC, plans an experimental test of the design

IV Conclusion

An analysis of the entropy generated by conduction and friction in a regenerator leads to
a design that minimizes these losses as well as dead volume. This design maintains the Mach

number of the flow constant, decreases the channe} width as T1/2 and increases the characteristic

length, L= T(dz/dt) as T-1/2. Under these conditions the transverse conduction loss and friction
loss remain constant and equal as a function of temperature and are therefore a relative
minimum. The longitudinal loss decreases rapidly as T3/2, and therefore can be neglected.
These boundary values to the wall of a regenerator specify a range of wall material properties
and frequency from which compromises must be chosen. This analysis also leads to a parallel
channel design with small length and channel width.
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