Centimeter

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

Inches

1.0 2.5 2.0

1.1 2.2 2.0 1.8

1.25 1.4 1.6

MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.
Selective Methane Oxidation Over Promoted Oxide Catalysts

Quarterly Report
March - May 1994

Kamil Klier
Richard G. Herman
Chunlei Shi
Qun Sun

June 1994

Work Performed Under Contract No.: DE-FG21-92MC29228

For
U.S. Department of Energy
Office of Fossil Energy
Morgantown Energy Technology Center
Morgantown, West Virginia

By
Zettlemoyer Center for Surface Studies and
Department of Chemistry
Lehigh University
Bethlehem, Pennsylvania

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, 175 Oak Ridge Turnpike, Oak Ridge, TN 37831; prices available at (615) 576-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161; phone orders accepted at (703) 487-4650.
Selective Methane Oxidation Over
Promoted Oxide Catalysts
Selective Methane Oxidation Over
Promoted Oxide Catalysts

Quarterly Report
March - May 1994

Kamil Klier
Richard G. Herman
Chunlei Shi
Qun Sun

Work Performed Under Contract No.: DE-FG21-92MC29228

For
U.S. Department of Energy
Office of Fossil Energy
Morgantown Energy Technology Center
P.O. Box 880
Morgantown, West Virginia 26507-0880

By
Zettlemoyer Center for Surface Studies and
Department of Chemistry
Lehigh University
6 East Packer Drive
Bethlehem, Pennsylvania 18015

June 1994
SELECTIVE METHANE OXIDATION OVER PROMOTED OXIDE CATALYSTS

SUMMARY OF PROGRESS

Experimental work aiming at developing active catalysts for selective oxidation of methane to methanol was started in this quarter. Some of the experiments used a double catalyst bed design and with H2O as cofeed. The first catalyst bed, which serves as CH3 radical generator, was chosen to be 1 wt% SO4^2-/Sr/La2O3, as this catalyst exhibits remarkable activity and selectivity at lower temperature (500°C-550°C). A few transition metal oxides were used as the second catalyst bed to react with CH3 to form CH3OM^{+} species, which was then hydrolyzed to form CH3OH.

As part of the preparatory work, the effect of H2O feeding on the activity and selectivity of the 1 wt% SO4^2-/Sr/La2O3 catalyst was studied. It was found that in the presence of 90 Torr of H2O, the activity of the SO4^2-/Sr/La2O3 catalyst decreased to the activity level that was seen at a reaction temperature roughly 50°C lower without the presence of H2O. The partial pressure of H2O was also studied as a variable, and it was found that there was a maximum H2O content of the reactant before a significant decrease in activity was observed. In addition, the reactor was also redesigned so as to minimize the further oxidation of CH3OH while it exited the catalyst bed by using a capillary quartz tube at the exit.

It was found that unsupported metal oxides ZrO2, Y2O3, SrO; Fe2O3, MnO2, Cr2O3, CaO, and MgO did not produce CH3OH between 430°C and 600°C when used as the only catalysts, while MoO3 supported on silica produced CH3OH in the temperature range of 430°C-480°C under the current single-bed reactor configuration. However, when the double-bed configuration was used with the 1 wt% SO4^2-/Sr/La2O3 as the first methyl radical generating catalyst bed, CH3OH was observed when ZrO2 and Y2O3 were used as the second bed catalysts. Preliminary quantitative analysis showed that the ability of producing CH3OH was in the order of unsupported Y2O3 > unsupported ZrO2 > MoO3 on silica. For all of these cases, the CH3OH space time yield was within a dozen grams per kilogram catalyst per hour.

Using the double-bed reactor design, experiments were carried out to study the ability of the ion pair Fe^{3+}/Fe^{2+} to oxidize CH3 radicals to form surface methoxide species by analyzing the production of CH3OH. ZrO2 was used as the support. Preliminary results showed marginal enhancement of CH3OH production by the ion pair Fe^{3+}/Fe^{2+} supported on ZrO2.
SELECTIVE METHANE OXIDATION OVER PROMOTED OXIDE CATALYSTS

OBJECTIVES OF THE RESEARCH

The objective of this research is the selective oxidative coupling of methane to C_2 hydrocarbons (Equations 1-3) and oxygenates, in particular formaldehyde and methanol as represented by Equations 4 and 5. Air, oxygen, or carbon dioxide, rather than nitrous oxide will be utilized as the oxidizing gas at high gas hourly space velocity, but mild reaction conditions (500-700 °C, 1 atm total pressure). All the investigated process are catalytic, aiming at minimizing gas phase reactions that are difficult to control.

$$2\text{CH}_4 + \frac{1}{2}\text{O}_2 \Leftrightarrow \text{C}_2\text{H}_4 + \text{H}_2\text{O} \quad (1)$$
$$2\text{CH}_4 + \text{O}_2 \Leftrightarrow \text{C}_2\text{H}_4 + 2\text{H}_2\text{O} \quad (2)$$
$$2\text{CH}_4 + 2\text{CO}_2 \Leftrightarrow \text{C}_2\text{H}_4 + 2\text{CO} + 2\text{H}_2\text{O} \quad (3)$$
$$\text{CH}_4 + \text{O}_2 \Leftrightarrow \text{CH}_2\text{O} + \text{H}_2\text{O} \quad (4)$$
$$\text{CH}_4 + \frac{1}{2}\text{O}_2 \Leftrightarrow \text{CH}_3\text{OH} \quad (5)$$

Oxide catalysts have been chosen for this research that are surface doped with small amount of acidic dopants. It was thought that, for example, the very basic Sr/La$_2$O$_3$ catalyst which is active in the formation of methyl radicals and therefore C$_2$ products, can be doped with some Lewis acidic oxides or other groups to increase further its activity and selectivity to C$_2$ products.

The research to be carried out under U.S. DOE-METC contract is divided into the following three tasks:

Task 1. Maximizing Selective Methane Oxidation to C$_2$ Products Over Promoted Sr/La$_2$O$_3$ Catalysts.

Task 2. Selective Methane Oxidation to Oxygenates.

Task 3. Catalyst Characterization and Optimization.

Task 1 deals with the preparation, testing, and optimization of acidic promoted lanthana-based catalysts for the synthesis of C$_2$ hydrocarbons. Task 2 aims at the formation and optimization of promoted catalysts for the synthesis of oxygenates, in particular CH$_2$O and CH$_3$OH. Task 3 involves characterization of the most promising catalysts so that optimization can be achieved under Task 1 and Task 2.
SELECTIVE METHANE OXIDATION OVER PROMOTED OXIDE CATALYSTS
RESEARCH PROGRESS

Experimental

The 1% $\text{SO}_4^{2-}/\text{Sr}/\text{La}_2\text{O}_3$ was prepared under Task 1 as designated in earlier progress report. The unsupported metal oxides ZrO_2, Y_2O_3, SrO, Fe_2O_3, MnO_2, Cr_2O_3, CaO, and MgO were obtained from Aldrich and were calcined at 600°C for 6 hr and sieved into 20/40 mesh particles. The $\text{Fe}^{3+}/\text{ZrO}_2$ catalyst was prepared by wet impregnation of the ZrO_2 by equal molar of $\text{Fe(NO}_3)_2$ and $\text{Fe(NO}_3)_3$ (prepared by dissolving Fe_3O_4 with HNO_3) at 50°C under constant stirring until dry and the the solid was calcined at 750°C for 6 hr.

The experiments were carried out both in the absence and presence of H_2O. The typical temperature range was 400-600°C and the gas hourly space velocity (GHSV) was 20,000 - 100,000 L/kg.cat.hr. The analyses of the feed and product gases were done by using a Hewlett Packard 5890 gas chromatograph with a molecular sieve column and a capillary column in parallel and TCD detectors. The liquid products CH_3OH and HCHO were trapped at 0°C and analyzed by a Hewlett Packard 5970 MSD detector.

Results and Discussion

Effect of H_2O feeding on the activity of the first bed catalyst

As it was usually observed that cofeeding H_2O significantly affected activities and selectivities of many oxidative coupling catalysts, it was necessary to study the effect of H_2O cofeeding on the performance of the first bed catalyst, the 1% $\text{SO}_4^{2-}/\text{Sr}/\text{La}_2\text{O}_3$, particularly under conditions where CH_3OH was to be produced. The information obtained was to be used to optimize the ability of the first bed to generate CH_3 radicals. Experiments were carried out at 1 atm over 0.10 g of the 1% $\text{SO}_4^{2-}/\text{Sr}/\text{La}_2\text{O}_3$ catalyst at a methane-to-air ratio of 1:1, a total flow rate of 120 cc/min, and a fixed

![Figure 1 Effect of H2O feed on the activity of SO4^2-/Sr/La2O3 as a function of temperature.](image-url)
H₂O partial pressure of 90 Torr.

As shown in Figure 1, within the entire range of temperature, the activity of the catalyst in the presence of the cofeed water decreased to the level that was seen at temperatures 50°C to 70°C lower than the activities observed before the water was added to the reagents. This behavior is expected because the presence of H₂O or hydroxyls on the surface would interfere with the methane activation process and, as a result, fewer CH₃ radicals were generated. The selectivity was observed to be slightly higher (<10%) if compared at the same level of conversion. These observations were consistent with fact that the generation of CH₃ radicals occurs on the surface while the coupling of CH₃ radicals occurs in the gas phase. The higher C₂ selectivity can be explained by interference with the secondary reaction of C₂ on the surface.

In order to find the optimum partial pressure for H₂O cofeeding with minimum sacrifice in activity, a series of H₂O partial pressures was employed and the activity measured. Results are plotted in Figure 2. It is evident from this figure that the maximum partial pressure of H₂O that can be employed in a double-bed experiment without significant decrease in activity is around 20 Torr under the chosen conditions. The use of the maximum H₂O partial pressure may be necessary depending on the nature of the second bed.

CH₃OH production over metal oxides using a single bed reactor

Experiments were carried out to test the background production of CH₃OH by the 1% SO₄²⁻/Sr/La₂O₃ catalyst in the single-bed reactor, which was to be used as the first bed catalyst. The tests were carried out under typical double-bed experimental condition and the results are shown in Figure 3. It can be seen that the production of CH₃OH by the 1% SO₄²⁻/Sr/La₂O₃ catalyst was nearly at a constant low level of about 1 g/kg.cat/hr in the temperature range employed.

As the first step for the double bed experiment, metal oxides such as MoO₃, ZrO₂, Y₂O₃, SrO; Fe₂O₃, MnO₂, Cr₂O₃, CaO, and MgO that were to be used as the second
bed catalysts were tested for CH₃OH production in the single bed reactor. Since MoO₃ was unstable under the reaction temperatures studied, it was put on silica support. Results showed that except for MoO₃ supported on silica, which produced only a small amount of CH₃OH in temperature range of 430-480°C with H₂O as cofeed (≈1 g/kg·cat·hr), none of the metal oxides produced detectable CH₃OH in the temperature range of 400-600°C. The experiments were carried out both with and without H₂O as cofeed.

CH₃OH production over metal oxides using double bed reactor

The experiments on CH₃OH production by double-layered catalyst beds were started in this quarter, and the studies have concentrated on using Y₂O₃ and ZrO₂ as the second bed, particularly ZrO₂. Variables such as temperature and H₂O partial pressure were explored, and a set of typical results are shown in Table I.

(i) Effects of Temperature

As indicated by the second and third rows in Table I, there is a decrease of CH₃OH production with increasing temperature. This can be explained by the fact that at higher temperature, CH₃OH oxidation to secondary products becomes more important.

(ii) Effects of H₂O Cofeed

An important concept was that the CH₃ radicals trapped on the surface could be hydrolyzed to form CH₃OH when H₂O was present. As shown by the second and last rows in Table I, there was a slight decrease in CH₃OH production when H₂O was not used as a cofeed. However, a better experiment to investigate the role of H₂O would be at very low CH₄ conversion because at higher conversions the amount of H₂O produced by the reaction can not be neglected. To achieve that goal, a single-bed of the less active 1% MoO₃/SiO₂ catalyst was used. Results obtained are shown by the fifth and sixth rows in Table I, and it is evident that H₂O cofeeding was instrumental in CH₃OH production even over the single-bed 1% MoO₃/SiO₂ catalyst.
Table I CH$_3$OH Production over Double-bed Catalysts

<table>
<thead>
<tr>
<th>Row No.</th>
<th>First beda</th>
<th>Second beda</th>
<th>P(H$_2$O)</th>
<th>Temp. b</th>
<th>CH$_4$ Conv. c</th>
<th>C$_2$ Sel. c</th>
<th>CH$_3$OH STY c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SO$_4$/Sr/La$_2$O$_3$</td>
<td>Y$_2$O$_3$</td>
<td>40</td>
<td>600</td>
<td>12.7</td>
<td>45.5</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>SO$_4$/Sr/La$_2$O$_3$</td>
<td>ZrO$_2$</td>
<td>40</td>
<td>550</td>
<td>11.5</td>
<td>40.8</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>SO$_4$/Sr/La$_2$O$_3$</td>
<td>ZrO$_2$</td>
<td>40</td>
<td>600</td>
<td>13.4</td>
<td>38.8</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>MoO$_3$/SiO$_2$</td>
<td>-</td>
<td>100</td>
<td>480</td>
<td>0.1</td>
<td>0</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>MoO$_3$/SiO$_2$</td>
<td>-</td>
<td>100</td>
<td>430</td>
<td>0.1</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>6</td>
<td>MoO$_3$/SiO$_2$</td>
<td>-</td>
<td>0</td>
<td>430</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>ZrO$_2$</td>
<td>80</td>
<td>600</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SO$_4$/Sr/La$_2$O$_3$</td>
<td>SrO</td>
<td>40</td>
<td>550</td>
<td>10.2</td>
<td>37.8</td>
<td>0.4</td>
</tr>
<tr>
<td>9</td>
<td>SO$_4$/Sr/La$_2$O$_3$</td>
<td>ZrO$_2$</td>
<td>0</td>
<td>550</td>
<td>13.9</td>
<td>36.4</td>
<td>1.6</td>
</tr>
</tbody>
</table>

a Typical bed sizes: first bed = 0.10 g, second bed = 0.20 g.
b H$_2$O partial pressures shown are those in the feed.
c CH$_3$OH space time yield (STY) was obtained by trapping and analyzing liquid products.

(iii) **Comparison of Results Over Unsupported Y$_2$O$_3$ and ZrO$_2$**

As shown by the first and third rows in Table I, there was an observed increase of CH$_3$OH production when the second bed metal oxide was switched from ZrO$_2$ to Y$_2$O$_3$ under identical conditions. However, under the same conditions, when the second bed was SrO, there was essentially no CH$_3$OH detected. At the present stage, it is not clear how these results should be explained. Obviously, more experimental work is needed before these results can be understood.

Study of supported Fe$^{3+}$/Fe$^{2+}$ catalysts

As shown in Figure 4, using the double-bed reactor design, experiments were carried out to study the ability of the ion pair Fe$^{2+}$/Fe$^{3+}$ to oxidize CH$_3$ radical to form surface CH$_3$O-M$^+$ species, with subsequent the production of CH$_3$OH. Literature data indicate that ion pairs Fe$^{3+}$/Fe$^{2+}$ and Cu$^+$/Cu$^{2+}$ are excellent redox systems for oxidizing CH$_3$ radicals to surface methoxides. However, neither of them were studied in a double-bed setting. Experiments were carried out in this quarter to dope Fe$^{2+}$/Fe$^{3+}$ into ZrO$_2$ by wet impregnation of ZrO$_2$ with Fe(NO$_3$)$_2$/Fe(NO$_3$)$_3$ and calcining at 750°C. The idea was to see if the ion pair could function...
as promoter to ZrO$_2$, or alternatively, if ZrO$_2$ could function as a good support for the redox pair Fe$^{3+}$/Fe$^{2+}$. Preliminary results as indicated in Figure 4 showed enhancement of CH$_3$OH production by the ion pair Fe$^{3+}$/Fe$^{2+}$ supported on ZrO$_2$. This indicated that the redox system of Fe$^{3+}$/Fe$^{2+}$ may have come into play for generation of CH$_3$OH.

Figure 4 Comparison of ZrO$_2$ and Fe$^{3+}$/ZrO$_2$ as the second-bed catalyst.