"POST WATERFLOOD CO2 MISCELLY BLEED FLOOD IN LIGHT OIL, FLUVIAL–DOMINATED DELTAIC RESERVOIR"

DE–FC22–93BC14960

Texaco Exploration and Production Inc.

July 15, 1993

Government Award for Current Fiscal Year $3,424,258.00

Award Date Completion Date
June 1, 1993 December 31, 1997

Project Manager (Texaco) Darrell W. Davis
CRC (DOE) Chandra Nautiyal
Contract Specialist (DOE) John N. Augustine

U.S./DOE Patent Clearance is not required prior to the publication of this document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>2. Technical Progress Report</td>
<td>2</td>
</tr>
<tr>
<td>3. Management Summary Report</td>
<td>15</td>
</tr>
<tr>
<td>(F1332.2)</td>
<td>15</td>
</tr>
<tr>
<td>4. Milestone Status</td>
<td>16</td>
</tr>
<tr>
<td>(F1332.3)</td>
<td>16</td>
</tr>
<tr>
<td>5. Financial Status Report</td>
<td>18</td>
</tr>
<tr>
<td>(SF–269A)</td>
<td>18</td>
</tr>
<tr>
<td>(SF–272)</td>
<td>19</td>
</tr>
<tr>
<td>7. Technical Publications</td>
<td>20</td>
</tr>
<tr>
<td>8. Appendix (June 30th Submittals)</td>
<td>22</td>
</tr>
<tr>
<td>A. Notice of RD&D (F1430.22)</td>
<td>22</td>
</tr>
<tr>
<td>B. Milestone Plan (F1332.3)</td>
<td>24</td>
</tr>
<tr>
<td>C. Cost Plan (F1332.7)</td>
<td>26</td>
</tr>
</tbody>
</table>
"POST WATERFLOOD CO₂ MISCELLY FLOOD IN LIGHT OIL FLUVIAL
DOMINATED DELTAIC RESERVOIR"

DE-FC22-93BC14960

Executive Summary

The selection of the Port Neches CO₂ miscible flood project by DOE on April 22, 1992 has allowed Texaco the opportunity to further the development of a technology which may hold the most promising future for the increase of domestic oil reserves within the next decade. Texaco's objective on this project has been to utilize all available technologies, and to develop new ones, to design a CO₂ flood process which is cost effective and can be applied to many other reservoirs throughout the United States. This project will determine the recovery efficiency of CO₂ floods in waterflooded and partial waterdrive reservoirs. A PC-based CO₂ screening model will be developed and a database will be generated to show the utility of this technology throughout the U. S.

After Pre-award costs were approved on September 15, 1992, Texaco proceeded with the implementation phase of the project so that new data could be gathered and necessary steps required to initiate CO₂ injection could be accomplished. An expenditure of $7,080,191 has put Texaco in a position where CO₂ injection can begin by September 1, 1993. The following tasks have been accomplished:

1. 10 workovers (4 injection, 6 producers) are complete. Production has increased from 78 BOPD to 183 BOPD.

2. Reservoir pressure has been increased from 1850 psi to 2700 psi by injecting saltwater.

3. Compressors, a CO₂ injection pump, and separators have been installed on a floating barge, and is being transported to the field by a tug boat.

4. 3 miles of the 4.5 mile CO₂ pipeline has been installed.

5. A residual oil saturation of 30% to 35% has been measured from a new conventional core. A set of relative permeability curves have been developed.

6. Categorical exclusion to NEPA regulations is nearing completion.

These are but a few of the milestones reached thus far. Texaco invites DOE to the initiation of CO₂ injection!
Objectives

This Class I Mid-Term Oil project for fluvial dominated deltaic (FDD) sandstone reservoirs, centers around the field implementation of a carbon dioxide (CO₂) miscible flood project in the Port Neches Field in Orange County, Texas. The primary objectives of the Pre-award activities, and those which have occurred since the effective date of the Cooperative Agreement, June 1, 1993, have been centered around the necessary work required to allow for CO₂ injection to begin by September, 1993. This work has involved five major tasks associated with Phase II of the project. These Implementation and Demonstration project tasks are:

1. Recording Daily Production Rates
2. Reservoir Characterization
3. Site Operation and Field Work
4. CO₂
5. Environment, Health, and Safety Monitoring and Compliance

This early initiation of Phase II work on the Project was made possible by Texaco having completed a major portion of Phase I, the planning and analysis portion of the project, prior to the release of DOE's Class I Oil Program Opportunity Notice. The Department of Energy's (DOE's) selection of this project on April 22, 1992 has reduced the economic risk associated with this tertiary oil recovery project, thus allowing Texaco the opportunity to conduct this project.

Phase I work involved the geologic and engineering reservoir characterization of the Marginulina sandstone reservoir at a depth of 6000'. Texaco's objective during this phase was to use all available technologies present in the industry to develop the most effective project design. This work focused in on four (4) major areas of design:

1. Field monitoring and evaluation,
2. Laboratory testing.
3. Reservoir simulation and
4. Project design.

These tasks were performed to indicate the success probability of utilizing the process. An oil and CO₂ (gas) production forecast was developed and estimates were made on total project costs. From this information, an economic forecast was developed, thus leading to Texaco management approval.

The primary work since DOE's selection of this project has been
in all work required to expedite the injection of CO₂. These Phase II, Implementation and Demonstration tasks are as follows:

Task 2.1 - Recording Daily Production Rates, had two (2) major objectives:
1. Record Daily Production Rates to monitor waterflood performance and
2. Meet all DOE requirements to insure milestones of the project are met.

Task 2.2, Reservoir Characterization, had two (2) major objectives:
1. Pressure up reservoir with water to 2700 psi and
2. Obtain conventional core data to be used in reservoir simulation model.

Task 2.3, Site Operation and Field Work, had four (4) major objectives:
1. Workover II wells during 1993,
2. Drill horizontal CO₂ injection well during 1993,
3. Install compressor barge and production facility and
4. Install flowlines and injection lines.

Task 2.4, CO₂, had two (2) major objectives:
1. Secure CO₂ contract and
2. Install CO₂ pipeline.

Task 2.5, Environment, Health, and Safety Monitoring and Compliance, had five (5) major objectives:
1. Determine future air emissions and obtain air permit from Texas Air Quality Control Board (TACB) if necessary,
2. Obtain Army Corps of Engineers permits for CO₂ pipeline, facility installation, and drilling location,
3. Prepare Department of Transportation (DOT) manual for CO₂ pipeline,
4. Secure categorical exclusion to NEPA requirements and
5. Prepare Hazardous Substance Plan.

In addition to Phase I and Phase II work, Technology Transfer (Phase III) has begun. Objectives for 1993 are:
1. Develop strategy and theory for CO₂ Screening Model and
2. Begin compiling data to screen FDD reservoirs for their CO₂ applicability.

A discussion of the status of this work is included in the section to follow.
Summary of Technical Progress

Phase I - Planning and Analysis

As stated previously, Texaco has classified geologic and engineering reservoir characterization and design work prior to September 15, 1992 as Phase I tasks. This work generated the following deliverables:

* New structure maps were developed for the Marginulina sandstone reservoir,
* Reservoir fluid properties in the presence of CO₂ were measured in the laboratory and
* A reservoir simulation model was developed.

The structure map, as shown in Figure 1, indicates that complex faulting exists in the reservoir, with an isolation of two fault blocks occurring in the project area. Historical reservoir pressure data obtained from these two fault blocks indicate that the fault which separates them is a sealing fault. Material balance and volumetric calculations applied to these two areas suggest that the large waterflooded fault block of the reservoir initially had 10.4 MMSTBO in place and the small fault block had 1.4 MMSTBO. The recoveries of 5.7 MMSTBO and 0.6 MMSTBO from these large and small fault blocks respectively, indicate that remaining oil saturations are 30.5% and 45.4% respectively.

Laboratory slimtube tests indicate that the reservoir oil will become miscible with CO₂ at 3310 psia, the minimum miscibility pressure (MMP). For vaporization of the light components of the oil, an optimum vaporization pressure (OVP) of only 2740 psia must be achieved. In the design of this project, a reservoir pressure of 3400 psia, 90 psia above the MMP, is assumed.

It is important that we emphasize to DOE in this report the project design of the waterflooded fault block. Phase I work, and data gathered thus far during the implementation process, has resulted in the following design recommendations for the 235.1 acre waterflooded fault block:

* Raise the reservoir pressure from 1850 psi to 2700 psi, the original reservoir pressure, by injecting water in the Stark "B" No's 7 and 10, and in the Kuhn Tract 1 No's 17 and 36.
* Once the CO₂ pipeline, injection facility, and production battery are completed, shut-in all producers and raise reservoir pressure from 2700 psi to 3400 psi by injecting CO₂ in the Stark "B" No's 7 and 10, the Kuhn Tract 1 No's 17 and 36, and in the Port Neches
* Once at 3400 psi, continue pure CO$_2$ injection, operating the following injection, production, and monitor wells:

<table>
<thead>
<tr>
<th>CO$_2$ Injection Wells</th>
<th>Producing Wells</th>
<th>Monitor Wells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal No. 1-H</td>
<td>Stark "B" No. 8</td>
<td>Stark "B" No. 7</td>
</tr>
<tr>
<td>Stark "B" No. 10</td>
<td>Kuhn Tr. 1 No. 14</td>
<td></td>
</tr>
<tr>
<td>Kuhn Tr. 1 No. 17</td>
<td>Kuhn Tr. 1 No. 15-R</td>
<td></td>
</tr>
<tr>
<td>Kuhn Tr. 1 No. 36</td>
<td>Kuhn Tr. 1 No. 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kuhn Tr. 1 No. 38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kuhn Tr. 2 No. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polk "B" No. 2</td>
<td></td>
</tr>
</tbody>
</table>

* 4.3 MMCFPD (250 tons/day) of liquid CO$_2$ will be purchased, with a total purchase volume of 8.5 BCF (494,186 tons).

* A peak recycle of 15 MMCFPD of gaseous CO$_2$ will be handled by compression and dehydration equipment.

This raising of the reservoir pressure from 2700 psia to 3400 psia with CO$_2$ will allow the CO$_2$ to contact a larger area of the reservoir over that which would have been contacted at a higher pressure. CO$_2$ was not used from the start of pressure buildup due to the large fillup volume required and associated production downtime. The fillup from 2700 psia to 3400 psia will take approximately 45 days.

Drilling of the horizontal CO$_2$ injection well will be coordinated with a 3-D seismic survey being shot in the field under a geological initiative to further develop the field. The noise of the drilling rig may affect the acquisition of the 3-D data. Workover of the Polk "B" No. 2 as a producing well will also be performed during the time of drilling.

The project design developed for the small partial waterdrive fault block is as follows:

* Drill vertical CO$_2$ injection well J. V. Polk "E" No. 39 during 1994.

* Workover J. V. Polk "B" No. 5 as a producing well during 1994.

* Increase reservoir pressure from 2200 psi to 3400 psi by injecting CO$_2$ into J. V. Polk "B" No. 39.

* Produce J. V. Polk "B" No. 5, with fluid withdrawals (oil, water, gas, and CO$_2$) being replaced by CO$_2$ injection into J. V. Polk "B" No. 39.
Phase II - Implementation and Demonstration

The attached Financial Status Report for this project shows that $7,080,191 has been spent from September 15, 1992 to June 30, 1993 on this project, with a DOE share of $2,521,256, or 35.61% of total cost. These expenditures can be broke out as follows:

Well Workovers $3,248,957 (46%)
Well Drilling 215,619 (3%)
Facilities 2,840,156 (40%)
CO\textsubscript{2} Pipeline 467,554 (7%)
Operating Exp. 307,905 (4%)

Total $7,080,191

An additional $300,000 will be spent to sidetrack the J. V. Polk "B" Well No. 2 and $1,200,000 more will be required to drill the horizontal CO\textsubscript{2} injection well. The remaining expenditures during this fiscal year will be costs to complete the facilities and CO\textsubscript{2} pipeline, to purchase CO\textsubscript{2}, and the operating costs associated with fuel and field maintenance.

Task 2.1 - Recording of Daily Production Rates

As a result of workover activity on these Marginulina wells and a change in the injection pattern, production from the project area has been increased from 78 BOPD, 1819 BWPD to 183 BOPD, 4119 BWPD. The additional water injection wells added are displacing moveable oil towards the producing wells. Before and after well tests for the producing wells and injection rates and surface tubing pressures for the water injection wells are as follows:

Producing Wells

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuhn No. 6</td>
<td>8 BOPD, 51 BWPD</td>
<td>0 BOPD, 960 BWPD</td>
</tr>
<tr>
<td>Kuhn No. 14</td>
<td>Shut-in</td>
<td>0 BOPD, 800 BWPD</td>
</tr>
<tr>
<td>Kuhn No. 15-R</td>
<td>17 BOPD, 494 BWPD</td>
<td>106 BOPD, 777 BWPD</td>
</tr>
<tr>
<td>Kuhn No. 33</td>
<td>20 BOPD, 557 BWPD</td>
<td>55 BOPD, 729 BWPD</td>
</tr>
<tr>
<td>Kuhn No. 38</td>
<td>14 BOPD, 279 BWPD</td>
<td>15 BOPD, 156 BWPD</td>
</tr>
<tr>
<td>Stark No. 8</td>
<td>19 BOPD, 438 BWPD</td>
<td>7 BOPD, 697 BWPD</td>
</tr>
<tr>
<td>Polk "B" No. 2</td>
<td>Shut-in</td>
<td>Workover Pending</td>
</tr>
</tbody>
</table>

Water Injection Wells

<table>
<thead>
<tr>
<th>Well Name</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuhn No. 17</td>
<td>1800 BWPD, 700 psi</td>
<td>394 BWPD, 890 psi</td>
</tr>
<tr>
<td>Kuhn No. 36</td>
<td>Shut-in</td>
<td>2085 BWPD, 890 psi</td>
</tr>
<tr>
<td>Stark No. 7</td>
<td>Shut-in</td>
<td>200 BWPD, 890 psi</td>
</tr>
<tr>
<td>Stark No. 10</td>
<td>Shut-in</td>
<td>1007 BWPD, 890 psi</td>
</tr>
</tbody>
</table>

Further discussion of this waterflood response will be addressed
under Task 2.2, Reservoir Characterization.

Under Task 2.1, Texaco carries cost for all administrative work associated with the project. Objectives under this task were met both by Texaco and DOE. Deliverables under this category are:

(1) Prepare Detailed Cost Proposal,
(2) Secure subcontractor contracts,
(3) Secure Patent Waiver,
(4) Finalize Cooperative Agreement,
(5) Prepare Project Management Plan and
(6) Unitize project area as required.

The only tasks not completed are (2) and (3). The last subcontractor is signing the revision requested by DOE and will provide a completed copy within two weeks. The patent waiver is also being completed by Mr. Hugh Glenn with DOE.

The Detailed Cost Proposal was completed in August, 1992 and an audit by DCAA was conducted during October. After review by DOE, a total estimated project cost of $23,934,388 was agreed upon by Texaco and DOE, and the Cooperative Agreement was executed on June 1, 1993. It was determined in these negotiations that DOE's cost-share percentage would be 35.61% on all project related costs for budget periods 1 and 2, for a total DOE contribution of $8,523,824. These periods are as follows:

Pre-award Period - September 15, 1992 to May 31, 1993
Budget Period 1 - June 1, 1993 to December 31, 1994
Budget Period 2 - January 1, 1995 to December 31, 1997

On June 30, 1993, Texaco submitted the Project Management Plan, the Cost Plan, the Project Milestone Plan, and a Notice for RD&D work. These documents are included in the Appendix of this document.

The Port Neches (Marg. Area 1) unit was approved on February 22, 1993 by the Railroad Commission of Texas. With CO₂ injection scheduled to begin on approximately September 1, 1993, Texaco will notify the Railroad Commission of Texas that the effective date of the unit is September 1, 1993. This unit encompasses only the 235.1 acre waterflooded portion of the reservoir where CO₂ injection will begin. Under the new Port Neches (Marg. Area 1) Unit designation, well names will be changed to reflect that they are unit wells, therefore Kuhn No. 15-R will become Port Neches (Marg. Area 1) Unit Well No. 15-R.

Unitization, if required for the small fault block, will take place during 1994.
Task 2.2 - Reservoir Characterization

In the area of reservoir characterization, project milestones were reached and valuable data obtained. The reservoir was successfully pressurized up with saltwater to 2700 psi. A conventional core was cut during the sidetrack of the W. H. Stark "B" No. 10. Rock properties such as porosity and permeability were measured on selected core plugs, relative permeability curves were developed for the reservoir rock, and connate water and residual oil to waterflood endpoints were established. It appears that the sand may be an oil wet reservoir, as evidenced by a high residual oil saturation to waterflood of 34.6% and a connate water saturation of 10.9%. Wettability tests are currently being run and capillary pressure curves are being developed on six core plugs of this sandstone reservoir.

Future reservoir characterization work involves the placement of a tritium radioactive tracer in the injected water of H. J. Kuhn Tract 1 Well No. 36 to determine if a fault exists in the reservoir between Kuhn No. 36 and Kuhn No. 33. All of the original maps of the reservoir showed a fault running through the large waterflooded fault block, which may support why Kuhn No. 9 is faulted out or shaled out. The response of the Kuhn No. 33 to injection seems to indicate, however, that the fault is not sealing, if in fact there is one. The radioactive tracer will provide valuable information about the flow paths which are developing in this area of the reservoir.

Task 2.3 - Site Operation and Field Work

A major part of task 2.3 has been completed since Pre-award funds were authorized on September 15, 1992. Ten workovers of existing wells were completed in April, 1993 which allowed for the reservoir pressure to be increased and for improvements in the sweep efficiency of the reservoir to be made. In addition to well work, major subtasks were accomplished in the construction of surface facilities, with the compressor barge completed and currently in route via water to the Port Neches Field. The CO₂ injection pump, low pressure compressor, high pressure recycle compressor, production manifold, and production separators all rest upon this two story compressor barge. A new production platform was constructed in the field, with oil and water tanks being erected and hooked up. Fiberglass flowlines and steel CO₂ injection lines have been purchased and are soon to be installed. The high pressure water injection pump was successfully hooked up on February 10, 1993 and water injection was established at a rate of 3000 BWPD.

The horizontal CO₂ injection well has been staked and is ready to be drilled. Texaco has designed the well to have 1500 feet of horizontal displacement through the Marginulina sand, with a series of 20' prepacked screens to be run inside a slotted liner.
for sand control, as shown on Figure 2. These prepacked screens will be spaced approximately 120' apart, thus acting as though vertical wells are drilled every 120' along the horizontal section. It currently looks as though the well will be drilled in September or October to avoid disturbing a 3-D seismic survey Texaco is conducting in the field, as the drilling rig noise may affect the survey.

Task 2.4 - CO₂

The major objectives of Task 2.4 have also been accomplished. A contract with Liquid Air, parent company to Cardox, has been executed and the installation of the CO₂ pipeline is progressing well. Approximately 3 miles of the 4.5 mile 4 inch line has been laid and buried. The remaining line will be laid across the Port Neches marsh within two weeks. Mitigation for damages caused by the installation of this line were negotiated with the Texas Parks and Wildlife and will be accomplished by the closing of an existing canal in the field which is no longer being used. The cost of mitigation for this pipeline will be considered a project cost.

Task 2.5 - Environment, Health, and Safety Monitoring

All state and local regulatory requirements for the project have been met, and DOE is finalizing the paperwork necessary for a categorical exclusion to NEPA, the National Environmental Protection Act. Milestones accomplished during this initial reporting period are:

1. All anticipated compressor, pump, separator, and storage tank emissions for the project were registered with the Texas Air Quality Control Board (TACB). The emission levels fell below the threshold level where an air permit is required. The TACB approved our application during June, 1993.

2. Army Corps of Engineers permits were received for the disturbance of wetlands by the CO₂ pipeline and for dredging required for the new compressor and production facility and for both new wells anticipated to be drilled during this project.

3. An Operations and Maintenance Department of Transportation manual was prepared for the CO₂ pipeline and sent to the Railroad Commission of Texas in June, 1993.

4. The Hazardous Substance Plan for the project was completed and sent to DOE on June 30, 1993.

Texaco was notified on July 12, 1993 by DOE that the public notice which was issued for the CO₂ pipeline and facility on
April 8, 1993 by the Army Corps of Engineers, may satisfy NEPA requirements for public notice, thus expediting the categorical exclusion process. Texaco will not be paid for work performed on the CO₂ pipeline or drilling until NEPA requirements are met.

Phase III - Technology Transfer

The objectives of Phase III work during this initial reporting period have been focused primarily upon the development of a PC-based screening model by Texaco's research center, EPTD. The occasion did arise however, where Texaco had the opportunity of presenting our project design before an SPE Improved Oil Recovery luncheon on November 6, 1992. From this presentation, Mr. Guntis Moritis of the Oil and Gas Journal and Texaco prepared a paper for the journal's March 1, 1993 edition. This paper is included in this document.

Task 3.1 - CO₂ Screening Model Development

Work performed under this task has been primarily involved in the development of a PC-based screening model which uses parameters which are readily available to oil producers. The finished product will generate an oil, water, and gas (CO₂ and methane) production profile which can be utilized in an economics evaluation program. Texaco EPTD will make use of information gained from DOE's CO₂PM 5-spot prediction program to develop a model where the user can select from a number of injection patterns, such as an isolated 2-spot, special West Texas 7-spot, line drive, and others, or can generate his own injection and production scheme. The program will make use of the technologies present which utilize streamlines and streamtubes. By performing the calculations along the streamtubes, the flow patterns developed by injection and production, empirical correlations will not have to be used to calculate areal sweep efficiency.

The PC model should be developed by the end of 1994 and will be released to the public in Spring of 1995.

Task 3.2 - Environmental Analysis and Reporting

Work involved in the areas of air emissions, mitigation, and hazardous substances will be incorporated in a topical report during 1994. During the drilling and facility startup phases of this project, information will be gathered to characterize drilling solids and air emissions. A report will be completed by December 31, 1994.

Task 3.3 - FDD Database and Model

Limited work has been performed on this task due to the summer break at Louisiana State University. A meeting will be held with LSU in August to discuss the strategy of this work. LSU will
utilize the Louisiana Office of Conservation database to screen reservoirs for their CO₂ applicability, and will identify nearby CO₂ sources. By utilizing Texaco's access to production records, fluvial-dominated deltaic reservoirs listed in DOE's TORIS database will also be screened. A topical report will be compiled during 1995 to assemble this data into a format where oil producers can evaluate their use of this technology.

Task 3.4 - Technical Publications

As previously stated, an article appeared in the Oil and Gas Journal on March 1, 1993 which described the work which Texaco has performed. This article introduced the concept of a horizontal CO₂ injection well to the oil industry, thus generating interest by some operators of CO₂ floods in West Texas to look into the advantages of horizontal wells.

Objectives For 4th Quarter, 1993

The major objectives for the next three months of this project have been discussed previously, but will be reiterated here. These objectives are:

1. Texaco will receive DOE's approval to initiate CO₂ injection.

2. Radioactive tracer will be placed in the Kuhn No. 36 to monitor the fluid flow which is occurring in the reservoir.

3. The Port Neches (Marg Area 1) Unit Well No. 1-H will be drilled and completed as a horizontal CO₂ injection well.

4. The Polk "B" No. 2 will be sidetracked and completed as a producing well.

5. The CO₂ pipeline will be completed and CO₂ purchases will begin.

6. A categorical exclusion to NEPA requirements will be received.

7. Further development of a PC-based CO₂ screening model will occur, and a database of fluvial-dominated deltaic reservoirs in Louisiana will be developed.

In addition to these, improvements in the reservoir model will be made by incorporating new relative permeability curves and productivity indices into a compositional model which incorporates a larger number of grids and layers. By December 31, 1993 this model should be complete.
PORT NECHES FIELD
ORANGE COUNTY, TX
CO2 PROJECT AREA

UNIT 1 #1
SL
HORIZONTAL CO2 INJECTOR

BHL

MAP NOT TO SCALE

FIGURE 1
PORT NECHES FIELD
HORIZONTAL CO2 INJECTION WELL

FIGURE 2

PREPACKED SCREENS

SLOTTED LINER
Wtr–Oil Relative Permeabilities

<table>
<thead>
<tr>
<th>Water Saturation</th>
<th>Krw</th>
<th>Krow</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>31.5</td>
<td>0.0270</td>
<td>0.3680</td>
</tr>
<tr>
<td>35.5</td>
<td>0.0350</td>
<td>0.2890</td>
</tr>
<tr>
<td>39.6</td>
<td>0.0420</td>
<td>0.2200</td>
</tr>
<tr>
<td>45.8</td>
<td>0.0550</td>
<td>0.1360</td>
</tr>
<tr>
<td>53.2</td>
<td>0.0730</td>
<td>0.0610</td>
</tr>
<tr>
<td>59.7</td>
<td>0.0900</td>
<td>0.0190</td>
</tr>
<tr>
<td>63.5</td>
<td>0.1030</td>
<td>0.0057</td>
</tr>
<tr>
<td>65.6</td>
<td>0.1100</td>
<td>0.0020</td>
</tr>
<tr>
<td>67.4</td>
<td>0.1140</td>
<td>0.0003</td>
</tr>
<tr>
<td>68.0</td>
<td>0.1160</td>
<td></td>
</tr>
</tbody>
</table>

Sor = 34.6%
Permeability to air = 3730 md
Effective Permeability to Oil = 2580 md
Porosity = 31.4%
Initial Water Saturation = 13.3%

Gas–Oil Relative Permeabilities

<table>
<thead>
<tr>
<th>Gas Saturation</th>
<th>Krg</th>
<th>Krog</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>3.5</td>
<td>0.0045</td>
<td>0.7300</td>
</tr>
<tr>
<td>5.4</td>
<td>0.0082</td>
<td>0.6200</td>
</tr>
<tr>
<td>7.6</td>
<td>0.0130</td>
<td>0.5200</td>
</tr>
<tr>
<td>10.5</td>
<td>0.0210</td>
<td>0.4200</td>
</tr>
<tr>
<td>13.8</td>
<td>0.0300</td>
<td>0.3200</td>
</tr>
<tr>
<td>18.4</td>
<td>0.0470</td>
<td>0.2230</td>
</tr>
<tr>
<td>22.5</td>
<td>0.0670</td>
<td>0.1610</td>
</tr>
<tr>
<td>26.8</td>
<td>0.0900</td>
<td>0.1120</td>
</tr>
<tr>
<td>29.9</td>
<td>0.1090</td>
<td>0.0840</td>
</tr>
<tr>
<td>33.7</td>
<td>0.1390</td>
<td>0.0580</td>
</tr>
<tr>
<td>35.7</td>
<td>0.1550</td>
<td>0.0480</td>
</tr>
<tr>
<td>38.4</td>
<td>0.1850</td>
<td>0.0360</td>
</tr>
<tr>
<td>41.2</td>
<td>0.2200</td>
<td>0.0260</td>
</tr>
<tr>
<td>43.0</td>
<td>0.2400</td>
<td>0.0200</td>
</tr>
<tr>
<td>44.5</td>
<td>0.2700</td>
<td>0.0160</td>
</tr>
<tr>
<td>46.5</td>
<td>0.2900</td>
<td>0.0140</td>
</tr>
<tr>
<td>47.8</td>
<td>0.3350</td>
<td>0.0080</td>
</tr>
<tr>
<td>53.2</td>
<td>0.4770</td>
<td></td>
</tr>
</tbody>
</table>
DATE
FILMED
8/30/93
END