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Abstract
ti

When restricted to cost arrays possessing the sum Monge property, many combinatorial opti-
mization problems with sum objective functions become significantly easier to solve. (An array
A = {ali, j]} possesses the sum Monge property if for ali i < k and j < g, a[i,j] + a[k,_] <_
a[i,e] + a[k,j].) Examples include the usual _um-objective-function versions of the assignment
problem, the transportation problem, the traveling-salesman problem, and several shortest-path
problems. Furthermore, the more general algebraic assignment and transportation problems,
which are formulated in terms of an ordered commutative semigroup (H,., _), are similarly
easier to solve given cost arrays possessing the corresponding algebraic Monge property, which
requires that for ali i < k and j < g, a[i, j] • a[k, g] -< a[i, g] • a[k, j].

In this paper, we show that Monge-array results for two sum-of-edge-costs shortest-path prob-
lems can likewise be extended to a general algebraic setting, provided the problems' ordered com-
mutative semigroup (H,., _) satisfies one additional restriction. Specifically, we require that for
ali a, b, c E H, a -< b implies c • a -< c • b. In addition to this general result, we also show how
our algorithms can be modified to solve certain bottleneck shortest-path problems, even though
the ordered commutative semigroup (_, max, <) naturally associated with bottleneck problems
does not satisfy our additional restriction. The bottleneck shortest-path problems we can solve
are those with cost arrays possessing what we call the strict bottleneck Monge property, which
requires that for'all / < k and j < g, either max{a[i,j],a[k,£]} < max{a[i,g],a[k,j]} or both
max{a[i,j],a[k,g]} = max{a[i,t],a[k,j]} and min{a[i,j],a[k,t]} <_min{a[i,_],a[k,j]}. We also
provide improved algorithms for several other bottleneck combinatorial optimization problems
whosc cost arrays possess the strict bottleneck Monge property. Finally, we show how our bottle-
neck shortest-path techniques can be used to obtain fast algorithms for (1) a variant of Hirschberg
and Larmore's optimal paragraph formation problem, (2) a processor-allocation problem first, for-
mulated by Bokhari, and (3) a special case of the bottleneck traveling-salesman problem

Many combinatorial optimization problems with sum objectives have efficient algorithms for

algebraic objective functions, see e.g. Burkard and Zimmermann [10], Burkard [7], Burkard [8],

Seiffart [18]. In the sum case often substantial efficiency gain is possible when the underlying costs

have the Monge property. In this paper we will derive such results for two path problems with
algebraic cost arrays.

Consider here the complete directed acyclic graph G = (V, E), i.e. G has vertices V = {1,...,n}

and edges (i,j) E E ifr i < j. Associated with the edges are costs a[i,j], which are drawn from an
ordered commutative semigroup (H,., _). We require that the internal composition , be strictly
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compatible with the order relation _<, i.e., for all a,b,c E H, a .e, b implies c, a -< c, b (this
additional property is essential, as we will see later.) The algebraic shortest-path problem is the

problem of finding the shortest path from vertex 1 to vertex n whereas the k-edge algebraic shortest-
path problem is the problem of finding such a path that has exactly k edges. We also show how our

results relate to bottleneck objective functions for these problems; see Gabow and Tarjan [13] tbr
background concerning bottelneck shortest path problems.

Considering the ordered commutative subgroup (_, max, <) naturally associated with bottleneck
combinatorial optimization problems we note that the composition max is compatible with the order

relation _< but not strictly compatible with it. (For example, 5 < 7 but max{8,5} _ max{8, 7}.)
For an example of an ordered commutative semigroup (H, ,, 5) whose internal composition , is

strictly compatible with its order relation 5, consider the set T of ordered tuples (r_, r_,..., r,_) such
that n >_0, r; E _ for 1 _<i _<n, and rl _<r2 _< ... _<rn, Furthermore, suppose we define _ so that

(ql,q2,...,qm)_(rl,r2,...,rn) = (,sl,s2,...,sm+,_),

where _'1, s2,..., sm+,_ is the sorted sequence obtained by merging the sequences (ql, q2.... , q,,_) and
(rl, r2,.., rh), and -.<so that

(qa,q2,...,qm) _ (rl,r2,...,rn)

if and only if there exists an i in the range 1 _< i _<m such that qi < r_ and qj = rj for 1 _<j < i or
m < n and qj = rj for 1 _<j gm. It is not hard to see that (T, @, ___)is art ordered commutative
semigroup and _ is strictly compatible with 5. As we will see later this semigroup can be used to

model strict bottleneck Monge conditions.
We will now show that both the unrestricted and k-edge variants of the algebraic shortest-path

problem for an ordered commutative semigroup (H, ,, 5) are significantly easier to solve given edge

costs with the algebraic Monge property, provided the internal composition • is strictly compatible.

(An array A = {a[i,j]} possesses the algebraic Monge property if for all i < k and j < _, a[i,j],
a[k,t] _ a[i,i], a[k,j].) Strict compatibility is necessary to insure that every array possessing the

algebraic Monge property also exhibits total monotonicity, 1 the crucial property exploited by our
algorithms. The following lemma makes this last claim precise.

Lemma 1 Let (H,,, 5) denote an ordered commutative semigroup whose internal composition ,

is strictly compatible with its order relation _, and let A = {a[i,j]} denote an array whose entries
are drawn from (H, ,, --<). If A possesses the algebraic Monge property, then A is totally monotone.
ml

Note that if the semigroup's composition • is compatible with its order relation _ but not strictly
compatible with it, then an array whose entries are drawn from the semigroup may possess the

algebraic Monge property without being totally monotone. For example, consider again the ordered

commutative subgroup associated with bottleneck combinatorial optimizatio-_ problems. The array

1 1 1 1
1 1 0 1

1 1 1 1

1 1 1 1

satisfies the inequality max{a[i,j],a[k,e]} <_max{a[i,i.],a[k,j]} for ali i < k and j < _, but it is nol
totally monotone.

_An rn × n array A = {a[i,j]} is called totally monotone if for ali i, j, k, and t_satisfying 1 < i < k < rn and
1 < 3< t < n, either a[i,i] < a[i,t] or a[k,j] > a[k,t].
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The total monotonicity of arrays possessing the algebraic Monge property allows us to locate these

arrays' smallest entries using the array-searching algorithms of Aggarwal et al. [3] and Larmore and

Schieber [15]. However, before we can obtain the desired shortest-path algorithms, we need one more
lemma. (Note that this lemma does not require the strict-compatibility assumption.)

Lemma 2 Let (H, ,, _) denote an ordered commutative semigroup whose internal composition ,
is compatible with its order relation __, and let A = {a[i,j]} denote an array whose entries are drawn

from (H, ,, _<). Furthermore, let B = {b[i]} denote any vector, and let C = {c[i,j]} denote the array

given by c[i,j] = b[i], a[i,j]. If A possesses the algebraic Monge property, then so does (7. []

Theorem 3 Let (H,., _) denote an ordered commutative semigroup whose internal composition ,

is strictly compatible with its order relation _, and let G denote a complete directed acyclic graph on

vertices 1,..., n whose edge costs are drawn from H. If G's edge costs possess the algebraic Monge

property, then the algebraic k-edge shortest-path problem for G can be solved in O((ta +tc)kn) time.
where ta is the worst-case time required for computing dt-l[i] * c[i,j] and tc is the worst-case time

required :[br comparing two entries of At. []

Theorem 4 Let (H, ,, __2)denote an ordered commutative semigroup whose internal composition •
is strictly compatible with its order relation _<,and let G denote a complete directed acyclic graph on

vertices 1,..., n whose edge costs are drawn from H. If G's edge costs possess the algebraic Monge

property, then the algebraic unrestricted shortest-path problem for G can be solved in O((t_ + t_)n)
time, where ta is the worst-case time required for computing diii, c[i,j] and tc is the worst-case time

required for comparing two entries of A. m

As mentioned earlier, the ordered commutative subgroup (N, max, _<) naturally associated with
bottleneck combinatorial optimization problems has a composition that is not strictly compatible

with its order relation. Nevertheless, we will show how our two algebraic shortest-path algorithms

can be modified to handle bottleneck shortest-path problems. Furthermore, we will present a second

algorithm for the bottleneck k-edge shortest-path problem that in some sense generalizes Aggarwal,

Schieber, and Tokuyama's [5] algorithm. This algorithm is based on a O(n)-time query subroutine
for determining whether the graph contains a k-edge 1-to-n using only edges whose costs are less

than or equal to some threshold T. To obtain our results we assume that the cost array possesses

what we call the strict bottleneck Monge property, which requires that for all i < k and j < t,

either max{a[i,j],a[k,i,]} < max{a[i,e],a[k,j]} or both max{a[i,j],a[k,t]} = max{a[i,t],a[k,j]}
and min{a[i,j],a[k,t]}< min{a[i,t],a[k,j]}.

Theorem 5 The bottleneck unrestricted shortest-path problem for an n-vertex graph whose edge

costs possess the strict bottleneck Monge property can be solved in O(n) time. []

Theorem 6 The bottleneck k-edge shortest-path problem for an n-vertex graph whose edge costs

possess the strict bottleneck Monge property can be solved in O(kn) time. []

Theorem 7 The bottleneck k-edge shortest-path problem for an n-vertex graph whose edge costs

possess the strict bottleneck Monge property can be solved in O(n 3/2 lg5/2 n) time (or in O(n lg2 n)

time if the problem's cost array is also bitonic). 2 []

Using a similar query technique, we can also obtain the following result, for transportation prob-

lems with more total supply than demand.

2An n-entry vector B = {b[i]}is called bitonic if there exists an i satisfying 1 _<i _<n such that b[1] _>... >
b[i- 1] _>b[i] <_b[i+ 1]_<... _<b[n]. We call a 2-dimensional array bitonic if its rows or its columns are bitonic.
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Theorem 8 The bottleneck (unbalanced) transportation problem for an m x n, bipartite graph
(m _<n) whose edge costs possess the bottleneck Monge property can be solved in O((mv/K]g m +
n) lg2 n) time (or in O(m lg2n) time if the problem's cost array is also bitonic). []

We conclude with three applications of our bottleneck-shortest-path techniques. The first is a

variant of Hirschberg and Larmore's optimal-paragraph-formation problem [14]. They considered

the problem of breaking a sequence of words wl,..., wn into lines (i.e., subsequences) in order to

form a paragraph. Roughly speaking, they defined the cost f(i,j) of a line consisting of words u,i

through wj_l to be the square of the difference between this line's length and the ideal line length,
and their objective was to construct a paragraph minimizing the sum of the paragraph's line costs.

This problem is easily transformed into an instance of the sum unrestricted shortest-path problem

with edge costs possessing the sum Monge property, and thus it can be solved in O(n) time. (Credit
for the linear-time algorithm belongs to Wilber [19].) If we instead seek to minimize the maximum

line cost, we obtain an instance of the bottleneck unrestricted shortest-path problem with edge
costs possessing the strict bottleneck Monge property; thus, by Theorem 5, this natural variant of

Hirschberg and Larmore's problem can also be solved in O(n) time. Furthermore, this last result can
be generalized by observing that the shortest-path problem's edge costs possess the strict bottleneck

Monge property for any line cost function ](i, j) that is strictly bitonic (i.e., strictly decreasing then
strictly increasing) in both i and j. We can also handle a variant of the bottleneck problem th;_t
allows hyphenation (with a penalty, of course), even though the associated line cost function may
not be bitonic.

Our second application involves a processor-allocation problem tirst formulated by Bokhari [6].
We are given a chain of ra modules (corresponding to a parallel or pipelined computation), and we

want to map these modules onto a chain of 7_processors, where m > n. We assume that processor
k can execute modules i through j - 1 in tk[i,j] = ck[ii + ck[j] + _Je=i wk[f,] time, where u,k[i] is the
time to execute the ith module on processor k and ck[ii is the the communication cost associated

with mapping modules i - 1 and i to different processors, and we seek to minimize the maximum

of the processor execution times. Bokhari gave an O(man)-time algorithm for this problem, and

Nicol and O'Hallaron [16] improved its running time to O(m2n). Nicol and O'Hallaron also gave
an O( mn lg m )-time algorithm for a special case where (1) the processors and their communication

links are homogeneous (i.e., wk[i] = w[i] and ck[ii = c[i] for all i) and (2) there exist constants )4'

and C such that w[i] > l'Y > 0 and 0 _< c[i] < C for an i. We will show that Bokhari's problem
can be solved in O(mn + m lg rh) time (without any assumptions) using a slight generalization of

Theorem 6. The key to obtaining this result is rearranging the rows and columns of Tk = {tk[i, j]}

to obtain an array possessing the strict bottleneck Monge property. (A similar technique is used by
Aggrawal and Park [4].)

For our final application, we consider a special case of the bottleneck traveling-salesman problem.

Given a complete directed graph G on vertices {1,...,n} and a cost array C = {c[i,j]} assigning
cost c[i,j] to the edge (i,j), we seek a tour of G that visits every vertex of G exactly once and
minimizes the maximum of the tour's edges' costs. In [9], Burkard and Sandholzer identified several

families of cost arrays corresponding to graphs containing at least one bottleneck-optimal tour that
is pyramidal. (A tour T is called pyramidal if (1) the vertices on the path T follows from vertex 7_

to vertex 1 have monotonically decreasing labels, and (2) the vertices on the path T follows ft'ore

vertex 1 to vertex rt have monotonically increasing labels.) Thus, since there is a simple O(7_2)-

time dynamic-programming algorithm for computing a pyramidal tour whose maximum edge cost
is minimum among all pyramidal tours, the bottleneck traveling-salesman problem for any graph

whose cost array is a member of one of Burkard and Sandholzer's families can be solved in O(n 2)
time. Using a generalization of Theorem 5, we will show that if a graph's edge cost array possesses

the strict bottleneck Monge property, then it is possible to find the graph's best pyramidal tour in

O(n) time. Thus, since one of Burkard and Sandholzer's families consists of arrays possessing the
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bottleneck Monge property (see Corollary 4.5 of their paper), we can solve the bottleneck traveling-

salesman problem for any graph with edge costs possessing the strict bottleneck Monge property in

O(n) time. (This result is analogous to the result proved by Park [17] for the usual sum traveling-

salesman problem.)
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manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
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