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EFFECTS OF CAPILLARY HETEROGENEITY ON
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!
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ABSTRACT

Based on a continuum description, the effect of capillary heterogeneity, induced by vari-

ation iu permeability, on the steady state, countercurrent, vapor-liquid flow in porous media

is analyzed. It is shown that the heterogeneity acts as a body force, that may enhance or

diminish gravity effects on heat pipes. Selection rules that determine the steady states reached

in homogeneous, gravity-driven heat pipes are a.lso formulated. It is shown that the "infinite"

two-phase zone may terminate by a substantial cha,lge iii the permeability somewhere in the

medium. The two possible sequences, liquid - liquid dominated - dry, or liquid - vapor do,ni-

hated - dry find applications in geothermal systems. Finally, it is shown that although weak

heterogeneity affects only gravity controlled flows, stronger variations i,l permeability can give

rise to significant capillary effects.



1 INTRODUCTION

Countercurrent vapor-liquid flows in porous media has been the subject of many recent studies

due to its relevance to geothermal processes, boiling, thermal methods for oil recovery and

nuclear waste disposal [1],[2],[3],[4],[5]. Of particular interest are steady state heat pipes driven

by gravity. Current theory dictates that in homogeneous systems an infinitely long two-phase

zone of constant saturation develops if the heating rate is low enough (below a critical value).

Two such states are predicted, one corresponding to low liquid saturation (vapor-dominated,

VD) and one corresponding to high liquid saturation (liquid-dominated, LD). In a recent note

[6], we conjectured that the particular solution is selected based on the past history of the

system. For instance, in boiling (bottom heating) it is the LD branch that is followed. While,

in condensation of a superheated vapor (top cooling), it is the VD branch that is selected [7].

In either case, however, capillarity is necessary to connect the constant saturation profiles to

the subcooled or dry regions, respectively.

In practice, of course, all systems are finite and heterogeneous. The two-phase zone must

terminate at a finite location, where the "infinite" extent results of the homogeneous case

break down. Termination of the two-phase zone must be obtained by smoothly merging the

two-phase region with either a subcooled liquid or a dry region, in the two cases respectively

(otherwise, non-zero vapor and liquid fluxes would exist at the impermeable boundary [6]).

It has been tacitly implied in previous studies that this can be accomplished with a sharp

permeability change. Analogous considerations apply to the gravitational stability of vapor-

liquid counterflow, when a vapor-rich region underlies a subcooled liquid layer [8],[9]. The

present consensus is that unconditional stability is possible only if a permability heterogeneity

exists somewhere in the two-phase region.

tteat pipe instability in the much different context of the sensitivity of steady, lD profiles

to the boundary conditions, has also been considered, lt was suggested [10] that, under cer-

tain boundary conditions, a VD solution is unconditionally "unstable" and must revert to a

"stable" LD configuration, or vice versa, if the boundary conditions are reversed. While not

immediately apparent, this problem is actually related to effects of heterogeneity. Indeed, for

non-condensing fluid flows in porous media, boundary conditions can be successfully treated

as effects of heterogeneity, where the change in permeability is abrupt and very large [11].



Analogous considerations apply for the countercurrent flow case, as discussed below.

Effects of heterogeneity on vapor-liquid concurrent flow were studied in [12], where a pre-

vious work on the steady state, two-phase flow of non-condensing fluids [11] was extended.

Heterogeneity effects on countercurrent vapor-liquid flows, however, have not been systemati-

cally addressed (see also [13]) and they are currently poorly understood. As briefly described

above, cases in point are the issues of the termination of the "infinite" two-phase zone, of the

gravitational instability and of the sensitivity to boundary conditions. This paper aims at re-

solving some of these issues. Based on the key assumption that capillarity and permeability

are interrelated, we theoretically investigate various effects of heterogeneity. We find that in

1-D vapor-liquid counterflow, permeability (capillary) heterogeneity acts much like a body force

(e.g. gravity), with the additional property that it is spatially varying. Such heterogeneity may

thus enhance or counterbalance gravity effects, depending on amplitude and variation.

The paper is organized as follows: We first consider the horizontal case, which allows for

capillary effects only to be studied and for an exact solution to be developed. Then, we consider

effects of gravity. Selection rules are developed for a homogeneous heat pipe when the heat flux is

below critical. Next, we address heterogeneous gravity heat pipes at conditions of both slow and

fast permeability variation. In all cases, heat conduction is neglected. The description is based

on a continuum formalism and employs the concepts of equilibrium, saturation-dependent only,

capillary pressure and relative permeability. Whether this formalism is adequate for rapidly

varying permeabilities is not questioned. It is conceivable that, at least in the case of sharp

heterogeneities, some of the results may need further support, e.g. from more detailed pore

network-level analysis.

2 FORMULATION

Preliminaries

The heterogeneous variable of interest to this work is permeability [11],[12]. As a result of the

Leverett J-function representation, the variable mostly affected in the present lD counterflow

is capillary pressure
nj(,5')

Pc= v_ (1)

:kit l_ollxh the dimensioxlless function J (as w('ll _s thr celative permeabilities) may also be weakly



varying with permeability, it is the dimensional v/k-dependence that controls the capillary

variation (see also [11] for a mort, detailed discussion). This decoupling of saturation and

permeability on the capillary pressure is key to the present investigation.

In heat pipes, the importance of conduction is expressed through the dimensionless group

kL_,MwPopv
[7] ItR,, = ,_,xR_? Typically, h'R,_ is large (equal to 518,1 for the conditions in [3]) and

conduction is negligible. Conduc_ ion must be retained, lmwever, in systems with low k or high ,k

values, although such cases may be of lilnited practical interest (but see [6]). Conduction is also

important in the geothermal systems of the type discussed by Schubert gz Straus [14], where

its inclusion is necessary in order to sustain the counterflow. Regardless of the application,

however, the relevance of conduction to a study of capillary heterogeneity should be small.

In its absence, saturation and temperature are decoupled from each other and the solution

is obtained by simple means. Following [7], a straightforward manipulation of mass, momentum

and energy balances yields the simple equation:

j, dS dr (k,e +/3k,_) + sinO r 2 (2)
r -_-J-_=_ k,.ek,_

Here r - v/-k-/k" is the heterogeneity variable which is spatially varying, k* denotes a constant
I

reference permeability and superscript indicates derivatives with respect to S. The notation

follows [7] except for T, which here measures permeability rather than temperature. The di-

mensionless coordinate _ increases such that liquid velocity is positive, and vapor velocity and

heat flux are negative, while the dimensionless heat flux _o = Iql#v/k'Lvg_ppv is normalized

with a reference permeability. In this notation, therefore, different permeability regions have

the same value of co, but not the same critical values (see also below). The angle 0 is measured

with respect to the horizontM in a counterclockwise sense (Fig. 1).

Equation (2) must be generally solved numerically. Preliminary insight can be obtained by

an analytical solution, which is possible for a special case in horizontal counterflow. This case

also highlights important effects of capillary heterogeneity.

A. Horizontal Counterflow

In a horizontal system (0 = 0) counterflow is driven by capillarity alone [5] and (2) yields:

j, dS ( kre + [3krv ) j dr
r _ = a., k_tk_,, + d( (3)

It is instructive to compare (3) with the equation corresponding to a homogeneous gravity heat



pipe (0 = 3rr/2, r = 1), which reads

, dS (k,._.+/3k_u)

J _ = a., k,.,:,k,.,, - 1 (4)

Then, it becomes clear that capillary heterogeneity and gravity (second terins on the RttS of

(3) and (2)) play similar roles. To explore this similarity, we consider the special case of (3)

where r is piecewise linear (Figure 2)

1 ; (<0

r = a{+ 1 ; 0<{ <d (5)

r+ ; d<{

where r+ =_ ad + 1. In the above, the spatial extent of the heterogeneity was denoted by d > 0,

while a indicates the direction of change (a > 0 fm an increase, a < 0 for a decrease of r).

In the homogeneous region, { < 0 or d < {, the solution is a continuously decreasing

saturation obtained from (3) by setting r = 1. Inside the heterogeneity, 0 < _¢ < d, the

saturation satisfies

k_ek_Y' dS d_
= (6)

_o(kre + _krv)+ krek,.va J a_ + 1

which can be readily integrated. Because of qualitatively different responses, two different cases

will be considered.

1. a > 0 (Figure 2a)

tlere, the permeability is increasing and we obtain the straightforward result"

fs s k_ek_vY'dS = lln(a_ + 1) (7)o w(k,.e +/3k,.,_) + k,.ek,._,a J a

where So is the saturation at 0. Because of a > 0, the saturation decreases steadily also within

the region of heterogeneity (Figure 2b). The downstream value $1 satisfies:

s s'_ k_ek,,_g'dS = lint+ (8)

provided that a solution to the latter exists. This requires:

j[o_ k_ek>_(-J')dS > l lnr+ (9)w( k,.e +/3k_,) + k,.gk,.va J - a

Otherwise, single-phase flow conditions may develop inside the region of heterogeneity. The

particular saturation profile depends on the conditions imposed outside this region. If the lo-

cation of the subcooled liquid boundary on the left or the dry boundary on the right is known,



then integration occurs from left to righi or vice-versa, and So,,._1 etc. can be determined

sequentiMly. The analogy of this result homogeneous gravity heat pipes is evident. The cor-

responding probleln is top heating (0 = _) with vapor at the top and liquid at the bottom.

Continuously decreasing saturation profiles for this problem with features qualitatively similar

to the middle portion of Fig. 2b have been derived before in [3] and [7].

Of special interest is the case of a sharp discontinuity (a >> 1). Then, (8) yields:

J(SI) h'_J(So) - r+ = (10)

whict is the condition of constant capillary pressure, implying a saturation jump across the

discontinuity. This well known static (no flow) condition differs from the case of concurrent

flow [11]. In the latter, a build-up of the wetting phase saturation is necessary before a high

permeability region is entered.

2. a<0

),lore interesting results arise in the case of a permeability decrease. Indeed, when a < 0, the

denominator in (6) may vanish, if w is small enough. For this to occur, the following equation

must admit a real solution:

k,.ek_v
w = -a d (11)

The RHS of (11) is schematically plotted in Figure 3 for a = -1. We note that there exists a

critical value,

wc,-,t-l= (-a)m_x k_e + flk,-v (12)

above which a real solution to (11) does not exist. The maximum is equal to 0.7, hence the

critical value is proportionM to the heterogeneity intensity (-a). Equation (12) suggests the

existence of a critical heat flux

(lc,.,H = 0.7aLvPv ( dv/k '_p,_ dx ] (13)

the value of which increases with sharper changes in permeability. It follows that the saturation

profile depends on the relative value of ,,,:

(i) For w :> _o.,tt, equation (11) has no solulioIi. '[he effect of heterogeneity is identical to the

previous (a, > 0), tl,e solution described as in the schenlatic of Figure 2b.

(ii) l"(,r w < _-'.,..11."_1_lal.i_*l_(l l)lias tw_, _'_,,_1.,._I_'11(,I_,(1l)v .¢,'t'll alid Sl, li (0 "( ,_'t'tt <: .b'Llt < 1),

1_ _)I,_,of _vt,i('t, 111_,._l_lTi_,tl is atlra('lo_l. _l'lLi,_i._in rC.rv (:lose a11alo_y witll the vapor-dolnillat_,d



or liquid-dominated regimes of homogeneous gravity heat pipes. In the latter, the two attractors

Svc and SLa are solutions of the equation

7-2 krgkrv= (14)
k,-e + f3k,.v

which gives rise to a critical value wcr,c (equal to 0.3063 [3] for r = 1 (Fig.3)). The corresponding

critical heat flux is

qcr,a = 0.3 L'p'gkAp (15)
#v

By a comparison of (15) with (13) it is evident that capillary heterogeneity a(da-_xk) plays a

role identical to gravity gkAp. Tiffs similarity is further discussed later. As in gravity heat

pipes, the saturation integral in (6) diverges at the two saturations SVH and SLH, thus nearly

flat saturation profiles (either VD or LD) develop to span tile region of heterogeneity. Here,

however, it is capillary heterogeneity, with the permeability decreasing in the direction of liquid

flow and not gravity, that sustains the constant saturation profiles. The particular solution

selected depends on tile direction of integration as shown in the following.

Consider, first, integration from the vapor side. This requires that superheated vapor exists

somewhere on the right so that we may integrate from the location S = 0 in the negative

direction. The saturation, Sn, reached at _ = d, dictates how the solution behaves inside the

heterogeneity:

If $1 < SVH, then dS/d_ < 0, and the saturation is rapidly attracted to the asymptotic value

SVH (Figure 4a). This is a vapor-dominated regime. Outside the heterogeneity, _ < 0, the

integration is straightforward:

s k,.ek,._,d'dSvH (k,.e +/3k_o) = w( (16)

This solution applies until conditions of subcooled liquid are reached (S = 1).

If Svt-t < Sl < SLH, then dS/d_ > O, and the saturation becomes again asymptotic to SVH,

except that the saturation is now decreasing in the short region before the asymptote is reached

(Figure 4b).

Finally, if SLH < Sn, then dS/d_ < 0. but the saturation cannot be attracted to a flat profile.

The latter does not develop, instead the saturation is described by the previous equations

(7)-(9), much like case A.1 (Figure 4c).

Consider, next, integration from rh,: liquid side. We assume that subcooled liquid exists

somewhere on the left, such that we can proceed integrating from the location S = 1 in the



positive direction. If we denote by So the saturation at _ = 0, the following options are possible:

- If SLH < So, then dS/d_ < 0, and the solution is attracted to the (liquid-dominated) value

SLH (Figure 4d). After exiting the heterogeneity, further integration proceeds normally, much

like in (16) until superheated vapor conditions are eventually reached (S = 0).

- If SVH < So < SLH, then dS/d_ > 0, and the solution is attracted to the same liquid-

dominated asymptote, except t.hat now the saturation increases in the short region before this

asymptote is reached (Figure 4e).

- Finally, if So < SVH, then dS/d_ < 0, but the solution is not attracted to a flat profile.

Instead, it decreases relatively fast, much like the homogeneous case (Figure 4f).

Thus, depending on the direction of integration, two different solutions (a VD and an LD)

emerge. This feature is particular to vapor-liquid counterflow. The selection was shown to be

determined from the direction of integration, or equivalently from the past history of the system,

which therefore attributes a large scale hysteresis [6]. The VD solutions of Figure 4 correspond

to steady states reached by a system which is initially vapor-occupied and subsequently cooled

from the left, while suI)erheated conditions are maintained somewhere on the right. This is a

condensation process (akin to imbibition). The LD solutions of Figure 4 correspond to steady

states reached by an initially liquid-occupied system which is subsequently heated from the

right, while subcooled conditions are maintained somewhere on the left. This corresponds to

a boiling process (akin to drainage). We point out that hysteresis effects, but at the pore

level, are routine in displacement processes. For the present case of vapor-liquid counterflow,

however, the hysteresis (evaporation - condensation) also involves large scale aspects (indeed,

in the present work k_., k_t. and J were taken invariant to direction).

Before we proceed further, it is worthwhile to consider the limit of a steep discontinuity

(a < 0 and lal >> 1). As readily confirmed, the two roots approach the respective limits

SvH _ 0 and SLH _ 1 in this case. Because singularities are not encountered, one may

formally take the limit of (8) at large lal. The result is the previous condition of capillary

pressure continuity (10), provided that the new saturation values do not lie close to either of

the two extreme values, 0 or 1. Otherwise, the term co(k,.e+/3k_,)/k_ek_ can become comparable

to -aJ and the saturation jumps do not correspond to capillary pressure continuity alone.

The above analysis also applies when the heterogeneity is slowly varying. As shown below,

the solution is still a VD or LD branch, although of variable saturation values. When the r



profiles are arbitrary, however, a numerical solution is necessary.

B. Vertical Counterflow

We consider, next, the case of vertical counterflow, tiere, two generic configurations are possible,

heating from the top (0 = 7r/2, sinO > 0), and heating from the bottom (0 = 37r/2, sinO < 0).

Because it is more commonly encountered, we address tlle bottom heating case first.

1. Bottom Heating

Under this condition, equation (2) yields:

j, dS (kre + /3k_o)
-d-g k,.ek o Ja) (17)

where a(() is the heterogeneity gradient, a - drd(. Clearly, capillarity augments or diminishes

(a < 0 or a > 0, respectively) the effects of gravity (second term on the RHS of (17)). In the

homogeneous case (r - 1, a - 0), the RHS above vanishes for the two saturation values

Sya and SLa that solve equation (14), provided that w < wcr,a _ 0.3. We recall that a

similar condition was also encountered ill heterogeneous, horizontal counterflow. The selection

mechanisms of the horizontal case are therefore very much appropriate for homogeneous, gravity

driven heat pipes as well. This is considered below where we use similar arguments, now for a

homogeneous medium. As in [10], a crucial role is played by the boundary conditions imposed.

(i) Homogeneous Systems : Steady State Selection

When the integration proceeds from the bottom (the "vapor side") upwards, it is the VD branch

Sya which is selected, if the starting saturation $1 lies to the left, $1 < SLa (Figure 5a). This

would be the case if superheated vapor existed somewhere below, as in the bottom curve of

Figure 5a (note also that because of (10), any desired saturation value is possible as a starting

point, see top curve of Figure 5a). In the interpretation of [6] this case could result from an

initially superheated system that partly condenses due to top cooling. If $1 > SLG, on the other

hand, a flat profile does not develop and the saturation rapidly converges to S = 1 (Figure 5b).

By contrast, when the integration proceeds from the top (the "liquid side") downwards,

it is the LD branch, SLa, which is selected, if the starting saturation So lies to the right,

So > .9'va (Figure 5c). This is the case of subcooled liquid somewhere at the top, a typical

application being boiling [6]. If So < Src, a flat profile does not develop, the saturation rapidly

approaching the dry regime, S = 0 (Figure 5d). \\e conclude that it is the past history of the

system that determines the steady state solution. Evidently, all such saturation profiles are

int rinsically stable.

10



(ii) Sharp Discontinuitu : Termination of an "Infinite 't Two- Phase Zone

Consider next the case of an abrupt discontinu__ty (lal >> 1). This analysis is necessary to

ex,_lain how the VD or LD constant saturation profiles of heat pipes can merge with subcooled

liquid or superheated vapor, respectively, thus how the theoretical "infinite" two-phase zone

can terminate in practice.

Consider, first, integration from the bottom within a constant permeability region (such

that _._< toc,,a). Then, a VD regime is rapidly reached. For a homogeneous medium, this

regime is predicted to continue inde_n_tely (but see also [6] and [7]). Can this profile merge

with another LD regime or with a region of subcooled liquid? The answer is negative to the first

part, but not to the second. In either case, for a change in the regime the permeability must

decrease to a lower value kt somewhere at the top. Becau_,e a is positive and large, tile response

is as in the horizontal case and capillary pressure continuity (10) applies. If kt _s such that w

remains below critical at the top (recall that the critical flux is proportional to k), the previous

scenario (pertaining to Figures 5a-Sb) applies and the solution is either another VD region or

a rapid approach to subcooled liquid, depending or the particular conditions. If w > to_,a at

the top, only a finite two-phase zone develops that rapidly ends by merging with a subcooled

liquid region. From the previous analysis, quantitative estimates can be readily obtained.

If integration proceeds from the top, an LD region is rapidly approached, assuming to <

-_-_,a. For this flat profile to change, and for a dry region to be eventually encountered, two

possibilities exist: If the bottom is at a low enough permeability, kb, such that to < to_,,a, the

solution would rapidly approach dryout, after a short increase in the liquid saturation right

after the discontinuity. Dryout may also be reached, however, if thc bottom is at a higher

permeability, such that the saturation j_,r_d across the discontinuity would result into low

enough saturation values (smaller than SvG). We can employ the previous scenario of Figure

5d to infer that there will be a relatively fast approach to a superheated (dry) regime under

such conditions.

In sumrnary, for a gravity driven VD heat pipe to terminate, it is necessary that the per-

meability increases somewhere in the downwards direction. A VD region exists at the bottom,

while subcooled liquid dominates the top. If the change of permeability is in the opposite di-

rection, capillary pressure continuity cannot bring a qualitative change in the saturation state.

In that case, the regime would always remain vapor-dominated. For a LD heat pipe, on the

11



other hand, termination is possible by either a permeability decrease or a permeability increase,

provided that they are both sufficiently high. Significantly, LD and VD branches never merge

with each other, regardless of the heterogeneity. This contrasts some of the arguments of [10]

in which an "unstable" VD regime becomes connected to a "stable" LD regime, and vice versa.

(iii) General Heterogeneity Effects

Consider, next, general heterogeneity effects with normal variations in r. Equation (17) suggests

that heterogeneity enhances (makes more vapor-rich or liquid-rich) the respective VD or LD

regimes when a < 0, and acts to diminish them in the opposite case. In the numerical solution

below we used r profiles that satisfy a correlated fractional Brownian motion (iBm) in the

spatial interval [0.1] with H = 0.8, which appears to be the natural heterogeneity in many

rocks [15]. Two cases were studied, a slow and a normal variation in heterogeneity. By a simple

rescaling of the equations it can be shown that the first can be represented by a signal of the

same variation as the second, except that the levels of v must be higher.

Before we proceed, it is instructive to provide order of magnitude estimates on the impor-

tance of caI)illary heterogeneity relative to gravity. From either (2) or from (13) and (15) it is

readily shown that gravity effects would predominate when the following is satisfied

(-AV_'/Ax) << Apgkla ----NB (18)

where NB is the Bond number. For permeabilites in the order of 1 darcy (10-Sem 2) and

for a steam-water system, the above condition requires permeability variations much smaller

than 1 darcy/lm. Capillary heterogeneity is even more enhanced when permeabilities are lower,

for example in the order of 1 rndarcy (10-11cm2), where the above requires variations much

sm_tller than 0.1 mdarcy/m, lt follows that in many practical cases, capillary effects will not

be negligible, particulary when permeability decreases in the direction of liquid flow, where the

gravity eff_,.cts predicted by homogeneous heat pipes theory may be substantially altered.

Consider a normal variation of r (Figure 6a). lIere, the combination r 2 - aJ changes sign

often within the interval. The solution displays hysteresis again, depending on the direction of

integratiori. Capillary effects are quite significant and a one-to-one correspondence with r((_) is

not obeyed. In fact, for rel_ttively steep increases in r, capillary pressure continuity may be in

effect, as discussed above, resulting in lower saturation values. For an LD state this is contrary

to ¢:ommon gravity effects. Consider, for instance, integration from the left, where an LI) regime

12



is obtained provided that w is low enough (Figure 6b). As long as tile r variations are not too

great, the saturation values are relatively constant (early part of Figure 6b). The saturation

variation is mild even though regions of relative large increase in r are traversed. This behavior

is similar to the horizontal counterflow for a negative and large. At the point where a sharp

increase is encountered and a becomes large (around the mid-point of Figure {ia), capillarity

dominates, capillary pressure continuity is enforced and the saturation falls significantly. If this

decrease is not too large, a lower saturation state, but still of the VD type, will be followed in

the remaining part.

Ur.der the same conditions in w, a VD regime arises, when the integration is from the right

(Figure 6c). The first part of the profile (_¢ roughly between 0.5 and l) corresponds to het-

erogeneity with generally positive slope (a > 0), thus capillary pressure continuity applies, the

saturation rising as lower permeabilities are encountered. The second part of the heterogeneity,

however, involves a rather steep negative slope (between 0.15 and 0.4). After the saturation falls

rapidly (( between 0.3 and 0.4), further large changes in permeability do not induce significant

saturation response. This interpretation is supported by the variation of the capillary pressure

(Figure 6d), where the regime of capillary pressure continuity at the right half of the interval is

evident. When the heat flux increases, a transition to single phase region is possible, the LI) or

VD states reaching dryout (Figure 7a) or subcooled liquid (Figure 7b), respectively, in a short

region. This occurs first near the location with the highest positive slope in r (mid-point of

the (interval). We emphasize that no transition from an LD to a VD state or vice versa was

noted, while the two regimes maintain their identity in regions of r decreases, no matter how

sharp the latter are.

Consider, next, a case of much slower variation, where gravity effects are likely to predom-

inate. This case can also be analyzed asymptotically. We take V =_T(_'/g), where g _,:>1, and

rescale the spatial variable using g as the characteristic length, s¢ -= t_(:, to obtain:

1 ( k_ek_ ) (j, .dS' dr) krtk_r2(_)k_e +/3k_, r(¢')_-_ - Jc-_ = co - k_e +//k,_, (19)

Since e _.> i, the solution is the saturation 5'(_) that makes the RHS vanish, thus representing

a gravity driven process in a weakly heterogeneous medium. This is similar to homogeneous

heat pipes, except that, because r is now variable, there exists a continuum of curves similar

to Figure 3, each for a fixed r (or (_). Their intersection with the line of constant co defines

a continuum of oc(r) values, which when plotted in a S(() diagram give the solution to the

1:1



problem. As before, there are two possible branches, a VD and an LI), to wlLich tile s_,llltioTi is

always attracted (much like the cases irl [7] and [12]). Again, VD and LD sequences are t'ollowe_t

closely without the branches ever becoming intertwined. It follows that given a direction of

integration, there is a direct one-to-one correspondence between the heterogeneity r and the

saturation, .5'.

F'or a numerical exalnple we used the profile of Figure 8a. Because the combination r 2 - aJ

is always positive, it is possible for the RHS of (17) to vanish for all r provided that w is low

enough (aJ < co_,,,,i,,, where w,_,mi, must be obtained numerically). According to (19), the

solution must follow closely the variation of r 2, resulting into either an LD or a VD branch,

depending on the direction of integration. Numerical results shown in Figures 8b and 8c for

the respective regimes verify the theoretical predictions. After a short interval, the profiles are

attracted to the asymptotic states and, with a small spatial delay (of about 0.05), mimic the

variation of r _. The VD solution shows a weaker sensitivity due to the relatively narrower range

of saturation values allowed. As predicted, saturations in the LD regime increase or decrease

as r increases or decreases, respectively, while the saturations in the XrD regime follow opposite

t rends.

When the heat flux acquires larger values (co > co=,,,un), there are spatial locations where

the local critical values may be exceeded (co > co_(s¢)). Then, the saturation departs from the

corresponding regimes and becomes rapidly attracted to a single phase region (dryout in the

case of an LD state or subcooled liquid in the case of a VD state). By contrast, for the verb'

low values of co typical of geothermal reservoirs, all saturation values in the VD regime are very

low. hence the profile is very nearly flat (Figure Sd) despite the permeability variations, lt is

(:lear that the existence of a flat profile should not be taken to imply a homogeneous medium.

2. Top He(_ti_9

We close by briefly noting that similar results are obtained for the case of top heating (sinO = 1).

Now, equation (1) yields:

, dS.' k_: +/3k,._

r J -_ = _ k,.:k,.v + (r:_ + Ja) (1_)

l"_r a .> O. t},_,1_dS"/d( < (1 th:'_,u_l_(_ut, and tile solution follows in a straighlfrJrward fash-

i:,r_, l,ik,.wi_,,, a n_¢,1_otr)nic profil-(q_Jit_, _itnilar to tile horizontal cas_) is ¢)l)taitled ft_r a < (1

arid _._ffici,,rjtlv lar_:, ._'. If th_, laTt,,r i._ I,,w ;,I_ou_,l_, llow,,w,r, ll|e ll_'ter_,g_'Jh,'ilv _ay load _,



gravity-like VI) and I,D regimes, nluch likein tile horizontal case. The various sul_cas_,._ were,

_'xl_austively treated, and we shall not elaborate furlller.

3 CONCLUSIONS

Within the framework of a continuum description, effects of permeability heterogeneity on

_teady state, vapor-liquid countert'tow in porous media were exanlii_ed. Permeability variations

ai[ect two processes, gravity-driven flow and capillarity. The variations of the latter can I_,,

significant. It was shown that capillary heterogeneity acts like an external body force (such as

gravity), with the additional property that it also varies spatially. A multiplicity <>fsteady states

sinlilar to gravity-driven heat pipes was found for decreasing permeabilities in horizontal coun-

terflow and for heat fluxes lower than a critical value. Vapor-dominated and liquid-dominate<l

regimes were obtained using selection rules that were postulated to depend on the past history

(transient state) of the system. The analysis was aided by an exact solution obtained for a

special heterogeneity profile.

In retrospect, the analogy between capillary heterogeneity af_d gravity is not unexpected.

In capillary-controlled displacements in pore networks, effects of either gravity or pore size

heterogeneity can both be successfully described by the gradient percolation approach of [16].

In terms of continuum models, the analogy between capillary heterogeneity and gravity was

noted in the concurrent flow study of [11]. In the latter case, however, the curve corresponding

to co(S) (which represented an augmented fractional flow curve) admits only one root, therefore

there was stable attraction to a single root only. In [J 1], steady state saturation profiles were

obtained by backwards integration starting from the outlet end (opposite to the flow direction),

since the solution was ill-posed and rapidly diverged if integration started from the opposite

end. In the present case of countercurrent flow, both sides can be used as starting points for the

integration. As shown above, which end is taken is decisive on the selection of the particular

solution. This was implicitly contained also in [10].

The selection rules were next applied to determine the steady state regimes in gravity-driven

heat pipes in homogeneous systems. It was shown that the different regimes may never connect

with each other, thus retaining their identity as long as the system remains in a two-phase state.

The issue of the termination of the infinite two-phase zone was next analyzed, i"or VD systelns

15



il w_ts show_l that termination requires a sharp increase in the pertlleability (iii the dire¢ti_,r_

,,f ilt_l_'a._iI_g d_'plh) soll_'whex'e in the nlecliuln. Across tills _lisc_Jlllilluily l lte Ull¢t_'I'lvi_J_ \l)

sta_,, is rapidly coltvelled Io a subcooled liquid. For l,l) systems on the olher hand, dryou_ cazl

I_, r_.ached a.s depth increases by either a sharp increase or a sharp docrease of permealfililv.

"l'h_, elnerging picture froln lop-to-botlom is ihus, subcooled liquid - (discontinuity)- \;I) - dry

I,,v.i,_n or s_lbcooled liquid - LD - {discontinuity)- dry' region, ill lho re.spective cases. Tills

ordering may be helpful in the interpretation of geothermal systems.

The importance of capillary heterogeneity relative to gravity was demonsl rated in a study of

two different heterogeneity modes, a slow and a normM variation. For permeabilities thai vary

slowly, the main effect is due to gravity, and the saturation response may follow the permeability

va.riation depending on heat flux values. Larger variations in permeability induce significant

capillary effects. Often, capillary pressure continuity across a sharp permeability charge may

lead to dryout or to subcooled liquid. Capillary pressure continuity is not necessarily the only

apI)ropriate condition relevant to a decrease in permeability. Such effects attribute a significant

large scale ]_ysteresis on the saturation profiles.
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Figure 1. Schematic of counterflow geometry.

18



a>0

So

T 5;

Sl

t

0 d 0 d

(a) (b)

Figure 2. Horizontal counterflow with a > 0: (a) r (permeability) profile; (b)

Saturation response.
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Figure 3. The function _(S) for capillary heterogeneity heat pipe (solid

curve) and for gravity heat pipe (dashed curve).
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Figure 4. Saturation profiles for ct < O: (a) $1 < Sv'tr ; (b) SVH < Sl < SLIt ;

(c) ,5'I.u < ,5'1 ; (d),5'1./I < ,5'o; (e) SvH < So < ,5't.tt ; (f),5'o < ,5'rH.

Arrow denotes direction of integration.
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Figure 5. Steady-state selection in homogeneous heat pipes: (a) $1 < SL6 ;

(b) $1 > SLG ; (c) So > SVG ; (d) So < Src. Arrow denotes direction

of integration.
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Figure 6. Normal heterogeneity: (a) r profile; (b) LD regime, w -- 0.02; (b)

VD regime, w -- 0.02; (d) dimensionless capillary pressure for the

LD regime.
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Figure 8 Weak heterogeneity: (a) r profile; (b) LD regime, w -- 23.0; (c)

VD regime, w -- 23.0; (d) VD regime, w -- 0.6.
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