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ABSTRACT

Bioticdiversityis a topicof increasingconcern,but currenttoolsfor

quantifyingdiversityat the landscapelevelare inadequate. A new index is

proposed.Beginningwith a classifiedrasterimage ofa landscape,each habitat

type is assigneda valuebased on an ordinationaxisdistance.The change in

valuefrom onepatchtothenextdependson how similarthetwo patchesare.An

informationmeasure dl isused to evaluatedeviationfrom uniformityofthe

ordinationvaluesat differentscales.Differentareascan be compared ifhabitat

valuesare based on the same ordinationscale.This new method providesa

powerfultoolforbothdisplayingand calculatinglandscapehabitatdiversity.

INTRODUCTION

Biotic diversity is a topic of increasing concern in relation to conservation

and land management efforts (Noss, 1983). To preserve the maximum possible

amount of our natural heritage of biological diversity, it is necessary to

understand how human disturbance affects natural communities at the

landscape level. Optimal design of nature reserves must take into account not

only reserve size but also the diversity of habitats within a reserve and their

spatial juxtaposition. For example, stands of forest in Wisconsin that are isolated

by agricultural development may lose the expected relationship of increasing

numbers of species on larger "islands" because the topography of remnant stands

is uniform and because of disturbance histories (Dunn and Loehle, 1988). Many

species of wildlife require a mix of habitats, often with defined spatial

relationships (e.g., Wheelwright, 1983). Rex and Malanson (1990) documented

historical changes in riparian forest habitat in Iowa and showed that forest

remnants are largely narrow strips along the major watercourses. These studies

and many others (e.g., O'Neill et al., 1988a; Gardner et al., 1989; Krummel et al.,

-1-



s

1987; Wiens and Milne, 1989) point to the importance of spatial processes and

relationships at the landscape level.

Several studies have used habitat fragmentation to quantify human impact,

predict wildlife effects, or describe various landscape features (De Cola, 1989;

Gardner et al., 1987, 1989; Krummel et al., 1987; Lain, 1990; Milne, 1988; O'Neill

et al., 1988a, 1988b; Palmer, 1988; Rex and Malanson, 1990; Senti; et al., 1987).

Most of these have used a black-and-white-photo approach to the landscape. For

example, if all wetland habitats on a map are colored black and the other habitats

white (whether represented as polygons or as pixels), then we can easily look at

fragmentation of the natural habitats. The black part of the map is the only part

of interest, and we may look at its fragmentation, area/perimeter ratio, or

connectivity. Studies conducted using this framework have been instrumental in

launching landscape ecology and in developing various new quantitative tools.

This framework, however, is not adequate for dealing with the problem of habitat

diversity because we must consider the complexity of mixes of different types, not

just single types at a time. Scale-specific analyses are needed both because self-

similarity does not necessarily hold and because different ecosystem elements

(e.g., several endangered species) may have different requirements for habitat

patch size, dispersal distances, or habitat diversity. Analysis of distributions of

single types at a time (as in De Cola, 1989) provides only partial information for

meeting these objectives.

Several indices have been developed that attempt to evaluate multiple

habitat types simultaneously. O'Neill et al. (1988b) developed two measures of

pattern based on information theory. Their first index D1 is a measure of

dominance:

N

D1= In(N) + ]_Piln(Pi), (1)
i=1
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where Pi is the proportion of grid cells on the landscape in land use i and N is the

total number of land use categories in a particular scene. When it is applied to

data sets at a coarse scale of resolution with land use categories well defined (e.g.,

agriculture, pasture, urban, forest), this type of index is more or less valid.

Consider, however, a less disturbed landscape with a wide variety of plant

communities. Whereas in species diversity calculations the classes involved are

natural categories because species are defined with respect to morphology and

genetics, landscape habitat classes are not natural categories but are rather based

on artificial classification schemes. The case considered by O'Neill et al. (1988b)i

approaches the ideal of objective, discrete (even though not natural) categorization

because many of the land use types they considered are maintained by humans

for discrete uses (e.g., urban, agriculture). The habitat types in more natural

landscapes are not discretely definable, however. At one scale we could pick out

"forest" as a type, but upon closer examination we might decide that "pine,"

"oak," and "bottondand" were distinct enough to serve as types. There is no "best"

or objective criterion for defining these types because they are continuous. One

must, therefore, consider how different (e.g., in species composition, successional

stage, or productivity) the types are from one another. A landscape consisting of

marsh and forest along a stream in the middle of a desert is far more diverse than

an oak forest adjacent to a hickory forest. The index D1 of O'Neill et al. (1988b)

would not distinguish these two cases if N was the same and if the distribution of

area "_nthe N classes was the same in the two landscapes. Thus, a criterion for a

habitat diversity index is that it takes into account the degree of similarity between

the classes (categories, patches).

The contagion index D2 of O'Neill et al. (1988b) quantifies the extent to

which different types are intermingled. It is given by
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N N
D2 = 2N In(N) + X X Pij ln(Pij), (2)

i=lj=l

where Pij is the probability that a grid point of land use i is found adjacent to a

grid point of land use j. Again, this index assumes that the N classes (types) are

distinct. All of the problems pointed out above again apply.

O'Neill et al. (1988b) developed a third measure of landscape pattern that is

based on a regression of polygon area against perimeter for all patches on the

landscape, from which a fractal dimension is calculated. This approach has two

problems. First, calculation of a single value for the fractal dimension on the

basis of area/perimeter ratios assumes that the fractal dimension d is the same at

all scales (i.e., that the object is self-similar). This is rarely true for natural

features and should not be assumed without testing. Objects that are not self-

similar are technically not pure fractals (Hutchinson, 1981), but they may have

fractional dimensions that vary with scale. Such objects have multifractal

scalings. Second, the method assumes that edges between types are sharp, well

defined, and a priori (as in the edge between pasture and woodlot). Such is not the

case for natural landscapes. At the scale of "forest" one might draw one large

polygon, but when "oak," "hickory," and "pine" types are distinguished, far more

polygons must be drawn. Thus, the degree of polygonization of the map (and

hence the length of edges) depends on the level of resolution at which classes are

defined. Many other fractal analyses of landscapes that have been done either

have the same flaws pointed out above (i.e., use of area/perimeter ratios and the

assumption that edges are sharp) or consider only single categories at a time (De

Cola, 1989; Krummel et al., 1987; Gardner et al., 1987, 1989; O'Neill et al., 1988a;

Wiens and Milne, 1989). While the above cited works are roughly valid in the
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contextof human-managed landscapes(farmvs.forestvs.urban) where edges

betweentypesaresharp,theyarenotgenerallyapplicabletonaturallandscapes.

A NEW INDEX

The goalofthe currenteffortisto derivean index thatincorporatesthe

number of differenthabitattypes,theirspatialinterpenetration(contagion,

adjacency),and the extenttowhich the typesare differentfrom one another(in

speciescomposition,biomass,physiognomy,wildlifesuitability,etc.).

Consider a classifiedpixel-basedlandscapescene. When habitatshave

been definedon the basisofground-truthdata,colorsare typicallyassignedto

each habitattype so that key featuresare distinguishable.Examining such a

color-codedimage givesan intuitivefeelforthecomplexity(pattern,diversity)of

the landscape.Unfortunately,colorchoiceisarbitrary.Very similarhabitats

canbe givenhighlycontrastingcolorsthatgivetheappearanceofgreatlandscape

complexity.Furthermore,colorpicturescan be compared onlyintuitivelywith

one another.Quantificationisrequired.

Ifthe colorsrepresentedelevations(ason an atlasmap),then one might

conceiveof calculatingthe "rou&'hness"and patterningof the topography to

quantifylandscapediversity.Highlydissectedlandscapeswould be classifiedas

more diverse.The roughnessvaluesatdifferentscaleswould giveinformationon

processes(e.g.,fire,blowdown, human management, soiltypes)operatingat

differentscaleson the landscapeand quantifythe scalesat which the habitatis

uniform or heterogeneous.One approach is to base "elevations"on degreeof

similarity.This providesinformationwhich may be analyzedforcomplexity.

Thisistheapproachwe developinwhat follows.

Assume thatallplantcommunities(habitattypes)in the area ofconcern

(includingthosefrom allsitestobe compared)can be ordinatedalonga single
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axis (e.g., wettest to driest) by some method (Principal Component Analysis,

Detrended Correspondence Analysis, etc.). Assume also that this axis is

approximately linear. Extension to two-dimensional ordination or curved

ordination axes is also possible and is discussed later. Assign to each pixel an

"elevation" corresponding to its location along the ordination axis. The ordination

axis must be shifted to give all positive values, with a lowest elevation = 0. This

procedure produces a pixel-based "elevation" map (or maps) that may be analyzed

for roughness and patchiness by using a fractal measure (developed below).

Different maps can be compared if the community types are all classified

according to the same procedure (if the same ordination axis is used for assigning

elevations). The "elevations" are such that if adjacent habitats are very different,

then vertical relief will be large; if not, the relief (the "edge" between the habitats)

will be detectable only at the finest resolution. Thus, gradients will show up at

intermediate scales as edges and at fine scales as smooth slopes. This method

has the desirable property of using the degree of similarity between types rather

than assuming that all types are distinct. It also makes the "edges" or

boundaries between types specifically scale dependent during the analysis.

Resolving more habitat types will give more gradations of "elevation" and soften

sharp boundaries, but it will not fundamentally change the diversity profile except

by extending resolution to finer scales. Thus, this approach is robust with respect

to taxonomic resolution of habitat types.

We are interested in computing the fractal dimension of the map of

pseudoelevations in order to quantif_ the roughness. The difficulty here is that

ordinary fractals require that the x, y, and z dimensions all be in the same metric

(e.g., meters). This condition is not met here because the elevation dimension is

in ordination axis units, not planar map units. Farmer et al. (1983) provided a

solution to this problem. They pointed out that dimension has several definitions,
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which fall into two general classes: those that depend only on metric properties

(capacity and Hausdorff dimensions, which are generally referred to as fractal

dimensions) and those that depend on the frequency with which a function visits

different regions of the space (several measures generally referred to as the

dimension of natural measure). Here we use the information dimension dI,

which is of the latter type. The information dimension quantifies the degree of

deviation from uniformity over space of the probabilities of occurrence of the

function. It is given by

z(e)
di = lim , (3)

e-_ log(l/e)
where

k(e)
l(e)= Y.Pi log(I/Pi) (4)

i=l

where Pi is the probability of occurrence of the function within the ith map

square, and K(e) is the r,umber of map squares having sides of length e pixels.

For a box e pixels on a side, all the Pi values for pixels within the e-width box are

summed to give the Pi value used to compute the sum I(e). We are concerned

here with deviations of the ordination values Zi from the mean value at different

scales. The mean is given by

M

Zzi
Z =i=__L (5)

M '

where M is the number of pixels in the map and pixels that are not ordinated are

skipped in computing Z. To convert the ordination scale into a useful measure,

we shift the axis (which may span 0) to positive values and then subtract the

mean:
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Z i = (Z i + Zmin)- Z (6)

This createsa map with positiveand negativehillswith respecttoa zeroplane,

such that

M

=o. (7)
i=1

In thiscase,pixelsthatcannotbe ordinated(notnativevegetation)are givena

valueofzero.This isequivalentto a Bayesianapproach,which assignsunknown

pixelsa valueequivalenttothepriorsdefinedby theaverageofthe known data.

Thus, the effectofgaps in the vegetationisto smooth out the data toward the

averagevalue,which by therescalingiszero.The Zivaluesare averagedwithin

boxesofwidthe. When e exceedsthemap extent,thesum goestozero,as itmay

withinsmallerboxesifpositiveand negativeZipixelvaluescancelone another.

In ordertoconvertthe Zivaluestoprobabilities,we notethatsincetheZisum to

zerooverthe map and representdeviationsfrom the mean, P fora singlemap

squarecanbe givenby

Izl
P =-_--.

Izl
i=1

and Pi within a box e by

_(e)l

Pi= M

 lzi]
i=1
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where we notethattheabsolutevalueoftheZiwithina box istakenaftertheyare

summed overthebox extent.

In thepresentcontextwe have no reasontosuspectthatthelimitdefining

dl iswelldefinedfora landscapebecause a landscapeisnot necessarilyself-

similar(i.e.,dl is not constant acrossscales).We thereforecompute the

informationdimensiondiscretelyata seriesofscalesusing

dt(e ) = l(e,)- t(e + ?') (8)
log/I/el- log/I/(e + ?')]

Equation 8 computes dl as the slope of the line, at each scale, given by I(e) vs. log

(l/e). This expression allows us to take advantage of a convenient computational

nesting for computing d! at a series of scales within a single loop, as in Loehle

(1990).

We can see that the information dimension dI is based on an information

theory calculation of uniformity Pi log (lfPi); as such, dI is related to the standard

diversity indices used in ecology and is also a natural extension of the indices of

O'Neill et al. (1988b). The index dI is also a dimension related to fractal

dimensions. For a flat map where all pixels are assigned to a type (value = 1) or

not (value = 0), giving a black and white image, d! = df for all cases. Thus, a

uniform map with a distinct linear feature such as a river will have a dI = df= 1.

For the case studied here, where pixels are assigned probabilities corresponding

to an ordination score, however, d! ¢ df because in fact df can not be computed.

Here d! measures deviation from uniformity, with the following behavior. For a

totally uniform map, d! = 0. As the habitat becomes more diverse at a particular

scale, d! increases. At a particular scale, large patches that differ from each

other only slightly in relief will give dI near 2. Patches that differ from their
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neighborsby a largeAz willbeintherange2 < dl< 3. Whether a highdiversityis

"good"or not depends on the scaleand one'sobjectives.As Noss (1983)pointed

out,management aimed at maintaininghigh diversitybelow the kilometerscale

may actuallyput rare and endangeredspeciesat riskand favorweedy species

thatdo not need protection.Values fordl below 1.0indicatewidelyscattered

patchesofdifferenthabitat(dl<<1)orlinearfeatures(dl= 1).

To use this method with ordinationdata,certaincautionsapply. A

co_mon prob_.emwith ordinationisthattwo standswith no speciesin common

have zerosimilarityand arethereforeinfinitelydistant,but allstandssharingno

speciesare equallydissimilar.To get around thisproblem,ifa map coversan

area sufficientlywide thatsome standsare completelydissimilar,axesshouldbe

constructedon the basisofindirectscalessuch as moisturestatus,productivity,

or successionalstageratherthan speciescompositiondirectly.The choiceof

ordinationmethod isalsoofconcern.The method chosenshouldbe robustand

theaxesinterpretable.Experiencewithordinationisprobablyalsoadvisable.The

method can alsobe used forotherordinalrankingssuch as contaminantlevels

and wildlifesuitabilityindices.

CASE STUDY

The scene selectedforthe case study is a portionof the Hatchie River

watershed,locatedin western Tennessee near the river'sconfluencewith the

MississippiRiver. The image used in thisanalysiswas generatedfrom 20-rn

multispectralSPOT datacollectedon April9,1988.Allanalysesused ERDAS ver.

7.5. A map extentof 251 x 251 pixelswas chosen. An initial,unsupervised

classificationofthe study area was conductedthrough a clusteranalysisthat

generated50 clusters.The covertypeofeach oftheseclusterswas determined

from aerialphotography (USGS NationalHigh AltitudePhotography, 1985).



These 50 clusterscorrespondedtoeightforesttypes,agriculturalland,abandoned

farmland,and water. Vegetationdata foreach of the eightforesttypeswere

gatheredby samplinga 20 x 50 m plot.Thisplothad 10 subplots(10x 10 m),in

which alltreesgreaterthan 2.5cm dbh were identifiedtospecies,and theirbasal

diameterswere determined.

Absoluteand relativedensity,dominance,and frequencywere calculated

separatelyfortreeplotswithina site.Importancevalues(IV),sums ofrelative

density,dominance,and frequency,were calculatedforthe treedata. These IVs

were usedtodescribetheforesttypeateachoftheidentifiedareas(Table1).

A final supervised GIS image was generated within ERDAS by

incorporatingboth the fielddata and the originalunsupervisedGIS image. In

thisfinalimage,onlysixforestcovertypeswere delineated.Because ofground

truthingand the sample plots,the finalGIS image more accuratelyrepresents

theforestcovertypesoftheimage;thisimage was usedinthe finalcalculationof

the dl.

Importancevaluesforallcanopy treespecieswithinthe sixforesttypes

were ordinatedby using a PrincipalComponents Analysis (PCA) (Table2,

Figure1)withinCANOCO (terBraak,1992)toprovidetheZ valuesfortheanalysis

ofdl. The PCA scoreswere standardizedtothe origindefinedby the mean, as

describedabove.The resultsofthe ordination(Figure2)oftreespeciesfrom the

sixstudyareasindicatethat the two generalcommunity assemblagesare the

Loessbluffand the HatchieRiveralluvialforest.The Loessbluffsare a beltof

Pleistoceneand Tertiaryaeoliandepositsalongtheeastbank ofthe Mississippi

River(Braun,1950).Thesebluffsprovidefertilesoilsand abundant soilmoisture

suitableformixed mesophyticforests(Millerand Neiswender,1987). The bluff

forestsampledin thisstudy,dominatedby two Quercus species,ischaracteristic

ofthetreespeciesassemblageMillerand Neiswender(1987)foundon theridges
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and southeastfacingThirdChickasaw Bluffseveralkilometerstothesouthofthe

• sampled area.The otherforesttypesampledin thisstudy,a successionalstand,

issimilartoa forestcommunity Millerand Neiswender(1987)foundon northeast

facingslopes.

The image analysisindicatesthatfourforesttypesareassociatedwith the

alluvialdepositsofthe HatchieRiver.The sampledvegetationcommunitiesare

similartothedrybottomlandand cypressforestsoftheMississippiRiveralluvial

plaininnearbyShelbyCounty (Millerand Neiswender,1987).Three ofthe sites,

BLH 1,2,and 3,aresimilarcommunities(Figure1)and may representsiteswith

differentdisturbancehistoriesorhydrologicpositionswithinthe floodplainofthe

HatchieRiver(Miller,1985)•The bottomlandsassociatedwith thesiteareowned

or were owned by Anderson-Tully,a localtimbercompany, and have a historyof

loggingatdifferentintensities.These siteshave similarspeciescompositions,but

themajordominantineachsiteisdifferent(Table1).The fourthsiteisassociated

with two smalllakeswithinthe alluvialplain.This sitewas floodedwhen the

SPOT imagery was acquired,providinga uniquespectralimage. The plotdata

from thissitealsoindicatethatthesitewas harvestedfortimberatsome timein

the recent past. The site was dominated by a dense stand of Nyssa aquatica,

approximately 2260 stems/ha, with most stems less than 20 cm dbh.

_TS

The ordination values for axis 1 were rescaled as described (Figure 2) and

analyzed to obtain dI. A flat map analysis was done to evaluate the effect of

fragmentation of the forest by agriculture. All forested pixels were assigned a

value of 1; agriculture, old field, and water categories were assigned a value of 0.

The results (Figure 4a) indicate a modest degree of fragmentation of the forest.

The horizontal axis in Figure 4 is in pixel units to the power of 2 for box width. A
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value of 2 means boxes of size 22 x 22 pixels or 4 pixel x 4 pixel (= 80 x 80 m or 6400-

m2 patches). Because d! is estimated as a slope based on change in the measure

with a change in scale, e = 0 (on the x axis), which corresponds to boxes 1 pixel

wide, is actually the dl determined between the 1 x I pixel and 2 x 2 pixel box sizes.

The dI values ("Flat map" in Figure 4a, circle symbol) cluster around 1.8 at all

scales, indicating that forest vs. nonforest areas form a similar pattern of

fragmentation at all scales. This self-similar pattern (the dI profile is fiat)

indicates only moderate fragmentation. This basic level of fragmentation

influences the other analyses performed.

When the axis 1 PCA values are analyzed with nonforest areas assigned to

the mean (= 0, so that they are treated like blanks) the result (Figure 4a, "Ag as

blank" line, square symbol) shows that up to the 8 x 8 pixel box size, the forest

areas exhibit some diversity, but above this scale they closely resemble the flat-

map fragmentation pattern, indicating little diversity.

We might speculate about the character of this area before farming. If the

agricultural and old field areas were orginally in bottomland hardwood type 3, we

get the "Ag as BLH3" line (diamond symbol in Figure 4a) which indicates

considerably more diversity at the finer scales (d! > 2.5). At the 25 pixel box width

(patches 640 x 640 m), the d! value has fallen to near 1.5, below the flat map value.

This observation indicates that much of the diversity is in patches below this scale

and that patches at opposite ends of the ordination scale adjoin each other in boxes

2 5 pixels wide, thereby averaging to nearly 0 in the box and adding to

fragmentation. This is an indicator of contagion (very different types adjacent to

one another) below this scale.

We may also wonder how this area would look if all farmland were

abandoned and reverted to successional forest similar to the bluff successional

stands. (No bottomland successional forest data were available.) Equating all
_
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agricultural and old field pixels to the bluff successional class (Figure 4a,

x symbol) gives a much higher level of diversity at intermediate scales than the

other curves.

It is also useful to compare the results for the second PCA axis (Figure 4b).

The results here are broadly similar, except that the basic map CAg as blank")

exhibits far more diversity at finer scales and contagion at coarser scales. This is

because of the dominance on axis 2 of the flooded forest type that exists as

scattered high-contrast patches in the forest.

The results of this analysis indicate that the method developed meets the

goal criteria for a measure of landscape habitat diversity. When ordination is

used to define the map metric, map classes are no longer arbitrary but rather are

based on the degree of compositional similarity. The dI profile provides a scale-

dependent analysis and does not assume self-similarity a priori. The dI profile

can, however, detect self-similarity as a fiat profile (dI constant across scales).

Patch size of habitats is evaluated as a function of scale. Habitat diversity is

quantified by dI as a function of scale, which it surely must be in reality. The dI

measure of diversity has a natural topographic interpretation (fiat = uniform,

rough = diverse). Finally, contagion is evident when the dI profile falls

precipitously at larger scales, indicating that adjacent patch values average out to

the map average (= O) at these scales. Overall, this index is informative and easy

to calculate, and it reflects the real biological properties desirable in a habitat

diversity index.

CONCLUSIONS

The methodology developed here has great potential for providing

information about habitat biodiversity at the landscape level. It provides a means

for quantifying something that has been largely qualitative in the past. This
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technique could be useful for quantifyingwildlifehabitat by ordinating

communities on attributesrelevantto wildlifespeciesof interest.Different

landscapemanagement regimes can be compared. Environmentalimpact can

alsobe assessedby comparing diversityprofilesofdisturbedand undisturbed

areas.Furtherwork withthemethod willrevealitsfullutility.
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Figure 1. Ordination of tree data, first two axes, from Principal Components
Analysis.
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Figure 2. Classified SPOT image of a portion of the Hatchie river floodplain,
Tennessee. Elevations and colors correspond to first PCA axis
values. Green is the zero plane and corresponds to agricultural, old
field, and water sites. Elevations sum to zero.
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Figure 3. DI profile of the ordinated data fl-om Figure 2.
(a) PCA axis 1, (b) PCA axis 2.
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TABLE 1. Absolute and relative density, dominance, and frequency values
for the tree species in each of six 20 x 50 m sample plots with the two highest
importance values (IV). The IVs are a sum of relative density, dominance, and
frequency. The IVs were used in the ordination analysis. The total row
represents values for all trees sampled in each sample plot. Values in
parentheses after the category name represent the percent of the map. In
addition, 43% of the total area was agriculture and old fields, and 3.1% was water.

i i i i

Tree species Abs Abs Rel
Den Rel Dom Dom Abs Rel

(#/ha) Den (m2) (%) Freq Freq IV

Bottomlandhardwoods-1 (25.5%)
Acer saccharinum 340 39.5 0.66 24.1 10.0 25.0 88.2

Quercus lyrata 60 7.0 0.87 31.7 5.0 12.5 51.2
Total 860 - 2.75 - 40.0 - -

Bottomlandhardwoods-2 (3.8%)

Fraxinus pennsylvanica 960 41.9 0.33 6.4 10.0 16.7 65
Nyssa aquatica 390 17.0 0.59 11.7 10.0 16.7 45
Total 2290 - 5.08 - 6_ - -

Loess bluff forest (9.3%)
Quercus alba 160 29.6 0.85 34.4 6.0 16.7 81
Quercus rubra 80 14.8 0.89 36.1 7.0 19.4 70
Total 540 - 2.46 - 36 - -

Bottomland hardwoods - 3 (6.4%)
Acer saccharinum 240 33.3 0.81 21.0 13.0 20.5 75
Populus deltoides 60 8.3 1.88 48.8 {3.0 15.4 72
Total 740 - 3.85 - 39 - -

Bottomland hardwoods- flooded (5.6%)

Nyssa aquatica Z260 92.6 2.94 90.1 10.0 47.6 230
Fraxinus pennsylvanica 100 4.1 0.19 5.7 5.0 23.8 34
Total 2440 - 3.26 - 31 - -

Successional loess bluff forest (2.1%)
Liquidarnber styraciflua 470 43.1 0.62 62.5 8.0 20.0
Acer saccharum 210 19.3 0.15 15.4 9.0 22.5 57
Total 1090 _ 1.00 _ 40 - -
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Table 2. Principal components analysis of tree community composition.

i J| vl i . i, iw i i i i i i i i

Axis 1 Axis 2 Axis 3 Axis 4
,i,|, i H,

Eigenvalue 0.4882 0.2163 0.1597 0.0816
Bottomland hardwood 1 -0.4628 -0.8743 -0.5041 -1.0827

Bottomland hardwood 2 0.1994 -0.4497 0.0476 -1.3587

Bottomland hardwood 3 -0.6104 -1.1761 -0.5417 1.6436

Floodplain forest 2.1342 0.2547 -0.1043 0.4547
Bluff forest -0.5195 0.3932 2.1056 0.2576

Bluff successional -0.7,,08 1.8522 -1.0030 0.0855

Origin ......... -0.3322 ....0.0704 0.3049 ....-0.1608
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