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Developments in the Gyrofluid Approach to
Tokamak Turbulence Simulations

G W Hammett, M A Beer, W Dorland, S C Cowleyt
and S A Smith

Princeton University Plasma Physics Laboratory,
P.O. Box 451, Princeton, NJ 08543 USA

$ Dept. of Physics, University of California, Los Angeles, CA 90024 USA

Abstract. A status report is given on recent developments in the
gyrofluid approach to simulating tokamak turbulence. "Gyrofluid" (or
"gyro-Landau fluid") equations attempt to extend the range of valid-
ity of fluid equations to a more collisionless regime typical of tokamaks,
by devbloping fluid models of important kinetic effects such as Landau-

, damping and gyro-orbit averaging. The fluid moments approach should
converge if enough moments are kept, though this may require a large
number of moments for some processes. Toroidal gyrofluid equations

* have been extended from 4 to 6 moments, and to include the #_TB mag-
netic mirroring force. An efficient field-line coordinate system for toroidal
turbulence simulations (useful for both particle and fluid simulations) is
presented. Nonlinear 3-D simulations of toroidal ITG-driven turbulence
indicate that turbulence-generated sheared flows playan important role
in the development and saturation of the turbulence. There is a strong
enhancement of the flows when the electrons are assumed adiabatic on

each flux surface, which is partially offset by toroidal drift effects which
reduce the flows.

1. Introduction

Fluid equations have long been used to gain insight into plasma instabilities and turbu-
° lence. Our aim is to build on this by developing fluid models of important kinetic effects

which are thought necessary for more realistic simulations of plasma turbulence in toka-
, maks. The "gyrofluid" equations provide the dynamics of a few moments (typically 4-6

moments, for density, parallel flow, parallel and perpendicular pressure, parallel and
perpendicular heat flux, etc.) of the gyrokinetic equation, expressing fundamental non-
linear conservation laws which the turbulence must satisfy. Closure approximations for
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the highest moments are made which provide improved fluid models of kinetic effects

such as wave-particle resonances (Landau-damping and its inverse)[1, 2], gyro-radius
orbit-averaging[a], and the dominant nonlinearities[a]. [Sometimes they are called the
"'gyro-Landau" fluid equations to emphasize the Landau-damping model as well as
the gyro-radius effects.] These equations provide n-pole approximations to the plasma 0
dispersion function Z, and usually provide a fairly good approximation to the linear
eigenfrequencies and eigenmodes for both unstable and damped modes. A nonlinear
saturated state is achieved when the /_ x /? nonlinearity (including b.-'LRcorrections)
couples these various modes together. Nevertheless, a finite set of fluid moment equa-
tions represents an approximation which certainly breaks down in some regimes, and
so some care must be exercised. Detailed comparisons between nonlinear gyrokinetic
and gyrofluid simulations need to be carried out. Interesting things can be learned
from both areas of agreement or disagreement, since much of our existing understand-
ing about plasma turbulence is based on analogies with neutral fluid turbulence and
on fluid-like models of plasmas (such as Hasegawa-Mima and Terry-Horton drift-wave
models, Kadomtsev trapped-particle models, MHD, etc.).

In Sec. :2 we discuss how the fluid moments should converge if enough moments
are kept, and how this sheds light on some processes which may not be adequately
represented by just a few moments. Sec. 3 summarizes the recent extension of the
gyrofluid equations to 6 moments in toroidal geometry, including the magnetic mirroring
force. Sec. 4 describes a fieldqine coordinate system proposed by Cowley et al [4] (which
has some similarities to the ballooning transformation) as an efficient way to represent
short-wavelength turbulence. Sac..5 presents results from toroidal nonlinear calculations
which indicate the dominant role that turbulence-generated sheared flows .have on the
dynamics and saturation of the turbulence. In particular, the (usually) proper form of

the adiabatic electron response causes a large enhancement in the perpendiculaff flows.
[The talk on which this paper is based included a discussion of nonlinear E x B phase-
mixing (a little-studied but potentially important nonlinear process) as an example of
our approach to fluid models of phase-mixing. The reader interested in that topic is
referred to [3].]

2. Resolution limits and higher order Landau-fluid equations

In our previous work[l, 2] we presented 2, 3, and 4-moment variations of fluid equa-
tions with models for Landau damping, and mentioned that one could extend this to
an arbitrary number of moment equations, providing more information about the dis-
tribution function f(v) and providing a more accurate n-pole approximation (where n
is the number of moments kept) of the plasma dispersion function Z. We have recently
completed a study of the convergence properties of such higher order fluid moment
equations, and have tested them on the nonlinear plasma echo problem. Details of this
calculation will appear in a future paper[5], but we summarize some of the results here
for the insight they provide on the resolution limits of a truncated set of fluid moment 6

equations.
The mathematics for higher moments becomes more tractable if one uses Hermite

polynomials in velocity when taking moments of the Vlasov equation, rather than using
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the llsual f dr, vef or f dr(v- u)ef fluid moments. The gth Hermite moment is defined
as

/ae(x,t) = dv He(-_vt)f(x,t,,t),__ (1)

where _-'tis a constant thermal velocity (mvt 2 = To) which sets the velocity scale, and
° He is ttle gtt_ Hermite polynomial,

• He(v) = (-1)ee _a dedr--ge-_'_. (2)

The first g Hermite moments and the first g fluid moments contain exactly the same
information, since the polynomials 1, v, (v - u),..., (v- u) e span the same space as
H0(v), Hl(v),..., He(v). The orthogonality properties of the Hermite polynomials then
allow us to expand f in a Hermite polynomial series:

f(x,v,t)= 1 e__=/2_,=_° ae(z,t) v2ee---7- (3)g-0

This provides a direct link between the "fluid" approach of evolving n fluid moment
equations, and the "kinetic" approach of solving the Vlasov equation with n Hermite
polynomials. The usage of Hermite polynomials for solving the Vlasov equation was in-
troduced independently by Armstrong et al [6], Grant and Feix[7],and by Sadowski[8].
This approach was used to study a number of early plasma problems (linear and non-
linear Landau damping, two-stream instabilities, plasma echoes, etc.). The Hermite
polynomials provide a complete basis set, and so should converge if enough moments
are kept. As pointed out on p.67 of the review article by Armstrong[6], the nature

• of the resolution limits of a truncated Hermite expansion can be illustrated by just
considering the free streaming equation

Of Of
0--7+ = 0. (4)

We will compare Hermite-based solutions of this with the exact solution, which is just

f = fM(v)e ikO:-'t), (5)

for the initial condition f = fM(v)e _k_, where fM is a Maxwellian. Even though f is
initially a smooth function of velocity, it eventually becomes a very oscillatory function
of v for large enough t (this is responsible for the phase-mixing decay of the density
n = f drf), and therefore requires a large number of Hermite polynomials to accurately
represent it.

Operating on Eq. (4) with fdr Ht, and using the recursion relation Ht+x(x) =
2xHt(x) - 2gHg__(z), yields

o-7-+ + = o. (6)- Ox 2 Ox
B

Like the usual fluid moments equations, this is an infinite set of coupled equations,
each expressing a conservation law, but which requires some closure approximation in
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practice, and one must consider resulting truncation errors. Taking a time derivative
of Eq. (6), Fourier transforming in x, and normalizing time to 1/(k_t, tv/2_), leads to

Ot2 +((g-1)ae_2+ g+ ae+_ae+2=0.
0

Scaling the coefficients by c_u(t) = (-1)e2e(2g - 1)!!xe(t) (note the factor of '2 difference
in the c_ and x indices), it is possible to rewrite this in the form

d2xe

Me dt2 - ke+l(xe+1- xe)- ke(xe-xe_t).

I.e., this provides a precise mechanical analog to Eqs.(6) in terms of a infinite set of
masses Me at positions ze (for g = 0, l, 2,...) each coupled to its nearest neighbors Me-l
and Me+l by springs with spring constant ke and ke+l. (A solution for the coefficients
is ke = aM, and Me = =)~ An initial density perturbation, i.e.,
an initial perturbation in the lowest moment ao, can be thought of as a perturbation in
the position xo of the first mass in the mechanical system. This then produces a wave
in the coupled springs which propagates to high g. One can take Hermite moments of

the exact solution f = fM(v)exp(ik(z - vr))and show that[6]

ae(t) <xtee -(k_'t)2/_.

The peak of the wax_ethus reaches the g'th moment (i.e., the g/2 mass) at t = x/_/(kvt).
After that time, most of the energy in the wave will have propagated to higher g's.
Truncating the Hermite expansion by setting O_n -- 0 corresponds to replacing the L/2
mass with a fixed wall (i.e., setting XL/2 = 0) which reflects the energy back to lower •
springs (i.e., to lower moments). There is no damping mechanism in this mechanical
system, so the wave energy is trapped and bounces around between g = 0 and g =
L/2 - 1. The density (ao) will appear to phase-mix for short times as the wave energy
propagates to higher g's, but the system has no dissipation in it, and it will periodically
reconstruct the initial perturbation (see Fig. 1 in Ref.[2] for examples of this). To
rectify t.his problem, the early computational studies[6] would sometimes include a weak
amount of velocity-space diffusion (which might arise either from particle collisions or
from wave-induced quasilinear diffusion) in the Vlasov equation. For example, using the
Lenard-Bernstein model collision operator[9], C(f) = O/Oy(avf + vv_Of/Ov), adds the
term -vgc_t to the right-hand-side of Eq. (6), thus providing larger damping at higher
moments. For low collisionality problems, this requires a large number of Hermite
moments (and the stiffness of the equations increases as more moments are kept). The
early computational studies[6] frequently kept ten's or hundred's of Hermite moments.

In the framework of the above mechanical analogy, our fluid model of Landau
damping[l, 2] can be interpreted as providing damping for the highest-g spring in the QP

system to reduce artificial reflection of the wave back to the lower springs. I.e., our
closure approximation for the highest moment C_Lintroduces damping into the equation
for OaL_l/Ot which models the rate at which energy is flowing from the resolved lower
moments g < L to unresolved higher moments g > L, where it is presumed to be
eventually damped at high. enough g by collisions. This simplifies the problem and
allows the use of fewer moments than would be required if one had to resolve ali the
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way up to the collisional scale. While this assumption works in many cases, there are
certainly some cases where it breaks down, where some additional effect causes the
information to be reflected back down to low P.'s before the information had propagated
to high enough _.'s to be damped. One example of this is the nonlinear plasma echo.

In the classic plasma echo problem[10, III, one considers the response of the plasma
• to an electric field of the form E = E1 cos(klx)a(t) + E2cos(k2z)a(t- t2). Linearly these

two electric pulses produce density perturbations at wavelengths/q and k2 which then
, decay in time due to phase-mixing. The nonlinear interaction between the E2 pulse

and the fl :x Etvf.w(v)cos(kl(x-vt))produces a perturbation in f at the wavenumber
k2 -/cl which "un-phase-mixes" in time producing a maximum density perturbation
(an "echo") around the time t_cho= t21¢.2/(k2- kl). Numerical solutions of Landau-fluid
equations are easily able to reproduce the phase-mixing decay of the linear perturbations
at kl and k2 even with just a few (2-4) moments (as they were designed to do), however
we have found that one must keep of order (klvtt2) 2 moments in order to reproduce the
echo (details of this calculation will be reported later[5]). This is consistent with the
number of Hermite moments needed to represent the highly oscillatory fl at the time
t2 of the second pulse.

Ion Compton scattering (ICS) is another process which may, in some cases, require
more moments. Mattor[12] has carried out a weak-turbulence analys}s of a simplified
version of gyro-Landau fluid equations (with 3 moments). The range of va!idity of
weak-turbulence theory for ITG modes is fairly narrow[la], but it does provide a useful
analytic test of nonlinear effects. The a-moment fluid approach successfully[12, 14]

, reproduces ion Compton scattering for drift-waves with oa >> k, vt. However, for ITG
modes very near marginal stability, with low frequencies oa << k,ot, Mattor found that
the ICS rate predicted by the fluid approach is too small by a factor of (oa/k, vt) 2. Thus

• one needs to be cautious with Landau-fluid equations in cases where significant ICS
might be expected. Based on the above discussion about resolution limits of Hermite
polynomial representations, one might conjecture that in order to properly reproduce
ICS one needs to follow the evolution of f_ cx exp(ik,(z - v,t)) for a time t -_ 1/oa, so
that the number of moments needed might scale as L ._ (k,v#) 2 .._ (k,v,/oa) 2. This is a
large number in the particular regime of near-marginal stability for low-frequency ITG
modes investigated by Mattor. Further from marginal stability, one frequently finds
that the fastest growing ITG modes (which may or may not dominate the nonlinear
spectrum) typically have oa -_ k, vt, so that perhaps a few moments will be sufficient
(as suggested by the successful drift wave results where k,v,/oa was small). These are
conjectures, however, and further study of these issues should be carried out.

3. Toroidal Gyrofluid Equations

The toroidal gyrofluid equations are derived by taking velocity moments f day ..%_..%2_of
" the nonlinear electrostatic gyrokinetic equation in toroidal geometry:Ii5, 16, 17]

0_.FB + V . [FB(v,fa + JoVE + v,_)]d Ot

+z-- rB( •VYo¢- ,f,. VB+ Vg). - C(F).
oy,
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The toroidal effects are contained in vg (the curvature and _TB drifts), a modifica-

tion to the parallel acceleration (the 1_. Vb term), the mirroring force #t_. V'/3, and
the non-zero divergence of vE = cE × B/B 2 in toroidal geometry. The highest mo-
ments introduced are approximated in terms of lower moments to accurately model the

linear kinetic response. In the parallel terms, this is accomplished by adding damp-
ing proportional to [/,:11],[1]while in the toroidal terms the damping is proportional to
1_,',_].[18]For the #1_. VB terms, the higher moments are approximated as Maxwellian
perturbations, without dissipation. These terms incorporate trapped particle effects,
reproducing the CGL pressure balance equation. The collision operator is modeled by
a number, momentum, and energy conserving Krook operator, ignoring FLR correc-
tions which give rise to classical transport, but roughly capturing neoclassical effects
from ion-ion collisions (u,). Taking moments of the JoG terms introduces FLR approx-
imations (not shown here) as discussed in [3]. We summarize these equations here; a
complete derivation will be presented in a future paper.

dn u, Pl, + P±
7[ + Bfi. V_ -iw.¢ + i_.'d( 2 + _) = 0

du, + Bb . _7p" P± g . _TB + iwg( % + q±dt B + I_. VG + _ 2 + 2u,) = 0

dP,d__../.+ BtU. _7(q" +B3u" ) + 2(q± B+ u")l_' V'B- i¢o.(1 + q)G
1 2

+ icod_(7p, + p± -- 4n + 4G) + ¢odl(vxT, + v2T_) = -_vii(p, - p±)

dp± q± + u,
d--7- + B2g' V( B2 )-iw.(t +r/)G

. 1 1
+ _Wd-_(hp±+ p,,- an + aG)+ IWd(uaT., + u,T_) = -_uii(p,,- p±)

q,
dql---2dt+ (3 +/3,)!_. VT, + v_BD, Ik, -_

1
+ ZC0d_(--3q,- 3q± + 6u,) + ]wdl(uhu, + u6q, + urq,) = -uiiq,

dq±d__t_ B2g VTJ_ q± 3T_ - T,)g. VB+ . + v'2B2D±lk,,I--ff+( B
1

+ iwd'_(--q,i -- q.t. + ull) + + ueq, + u, oq.) = -uiiq± .

dO 2pivti[cosO0 OIdt- Ot + rE. V + FLR Corrections iwd = R r O0 + sin0

The parallel closure coefficients are DII = 2_/'_/(3rr - 8),/3,1 = (32 - 9rr)/(37r - 8),
D, = V/'_/2. The toroidal closure coefficients are of the form u = (u_,ui) = ur +
iuilwdl/Wd, where Ux = (1.9,-1.3), u2 = (.43,1.2), ua = (-.46, 1.1), u4 = (-.10,-1.5),
us = (-8.1, 12.6), u6 = (6.4, 13.0), ur = (7.6,6.2), us = (3.5,-7.0), u9 = (3.4,-4.9), b
u,o = (8.9,-6.7). This large number of coefficients is due to the fact that the toroidal

4 _ 2 4 a 2 v,v 4, The gyrokinetic quasineu-drifts introduce v,, v,v,, v_, v_, v,v,, and moments.
trality constraint is discussed in Sec. 5. The gyrofluid model agrees well with the linear



"[._, i ], t , ] i i i I 1 ' ' I 'l' ' ' I '.

0.2 _ _ KineticGyrofluid"I
: 0.15 o°°o ° -

> L=3 -

°o
oo

• Q

0
0 0.2 0.4 0.6 0.8 1

k_Pt

Figure 1. Comparison of linear growth rates with the kinetic ballooning
results of Ref.[19] for the toroidal ITG mode for q = 2.4, _ = l, L,/R = 0.2,
T, = T_. The solid circles are with the new 6-moment equations, the open
circles are with 4-moment equations and the closure in Ref.[18].

growth rates (and eigenmode structure) from fully kinetic integral calculations[19] of
• the toroidal ITG mode (assuming i_. _TB = 0), as shown in Fig. 1.

4. An efficient field-line coordinates representation

Cowley et al [4] proposed the use of a field-line coordinate system as an efficient and
natural geometry for tokamak turbulence simulations. This approach has advantages
for both particle and fluid simulations. The basic idea is to take advantage of the short
perpendicular correlation lengths of tokamak turbulence, while still allowing for long
parallel correlation lengths and rapid parallel propagation, by simulating a thin flux
tube which is extended along the field lines. The most efficient computation possible
would use the smallest simulation volume necessary. I.e., the size of the simulation

volume may only need to be a few decorrelation lengths in each direction, and it would
seem unnecessary to simulate the whole tokamak to reproduce small-scale, locally-
driven turbulence. [Ultimately, this hypothesis should be tested by varying the size of
the simulation region to see if the character of the turbulence is indeed independent

* of the box size once the box is large enough. Also, the assumption of "locally-driven"
turbulence is another important caveat which may need investigation. An analogy

• might be drawn with the ocean, where waves 20 miles apart are statistically uncorrelated
(they have random phases), yet the average amplitude of the waves on the beach will be
larger if there is a storm 20 miles out at sea. It is usually thought that magnetic shear,
the radial variation of w., and other effects probably localize tokamak turbulence, but
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experiments and nonlinear theoretical investigations of this may be interesting.] The
use of a field-line following coordinate system also allows the use a coarse grid in the
parallel direction, providing further computational savings.

BES measurements in the TFTR experiment[90] indicate that the perpendicular
correlation lengths are of order 2 cm (for a particular set of experimental conditions).
Though this is much longer than the ion gyroradius pi "" 0.15 cm, it is still much
smaller than the 80 cm plasma minor radius, so it would seem unnecessary, to simulate
the whole plasma to reproduce this short-scale phenomena. We have done simulations
in a flux tube of dimensions 9 cm radial x15 cm pol_.,dal x27rqR along the field line, i.e.,
the simulation box is 4-7 times wider than the experimentally measured decorrelation
length, Some initial nonlinear results are reported in the next section.

The essential features of the field-line approach recommended by Cowley et al [4]
can be illustrated in a simple sheared slab geometry with the magnetic field /3 =
B0(_ + sxO). Define the coordinate transformation

z' = z, y' = V - szz, z' = z. (7)

Using the chain rule, derivatives are transformed by

0 0 0 0 0 0 0 0
Ox - Ox' sz'_ = _ - (8)Oy' _y Oy' Oz Oz' sz'--.' ' Oy'

In the new primed coordinates, magnetic field lines are straight and are labeled by a
particular value of (x', y'). Derivatives along the field line become simply b. V = (_ +

sz_l).V = O/Oz'. Fourier transforms are related by ky = k'yand k,: = k'-sz'k'_. Note the
similarity between this expression for k_:and the expression for k, in the usual ballooning

I

transformation k,. = ko,_(O- 00). Thus, the above coordinate transformation can be

related to the usual ballooning transformation by relating ke = k'u, Oo= -k'/(k'_a) (one
must be careful with modes with k'_ = 0 and finite k'_they are physically meaningful
components of the fluctuations although they have an infinite 00), and the poloidal
angle is related to the distance along the field line by 0 = z'/(qR).

The surprise is that the nonlinear terms remain easy to evaluate in the new field-
line coordinate system[4]. The/_ x/3 nonlinearity operating on some field A is usually
written using the Poisson bracket notation:

O0 OA 0¢ OA

× VO. VA = Ox Oy Oy Ox = {O,A}.

Transforming to the field-line coordinates yields

O0 OA O_ OA O0 OA 0¢ OA

{O, A } = Ox Oy Oy Ox = Ox,'Oy' Oy' Ox' (9)
D

This can be easily evaluated in numerical codes using finite-differences or Fast Fourier
Transform techniques. This is in contrast to the usual way in which the nonlinearity is
written for the ballooning representation[15]:

(bxV¢ VA)k,,0o(0) rr _ y_ _.-i,,"q2.pt.,z.,,_t,)_.. , ,,• = _ _0_oo_,-,,v + 0o- 0o) x
_ I li __ I I li li

ko-ko+k e koOo-koOo+koOo P



r ](o+ '2rtp) .4_;,e;,(0) - Ak;,o,°(0 + 2np) _k_'.o;'(O) (lOi

While the _lsual sial) nonlinearity (kl' x kl") can be efficiently evaluated with [:FT's.
it was not obvious that the ballooning nonlinearity, with its sum over p, can be. As
we show below, the field-line coordinate transformation can be made equivalent to the

• ballooning representation (with certain boundary condii_ion in 0), so that Eq. (9) is the
fast way to evaluate Eq. (10).

Periodic radial boundary conditions are easy to implement in these field-line coot-
• dinates even in a sheared magnetic field. Perturbations in the plasma tend to be highly,

elongated along nlagnetic field lines. Because the magnetic field points in a different
direction at x = 0 than at x = L_:, it is not appropriate to impose x-periodicity in
the unprimed coordinates _(x = 0, y,z) = _(a: = L_:,y,.r.) (for example, see Fig.:} of
Ref.[14]). However, one can use periodicity in a:', _'(x' = 0, y', z') = _'(x' = L_:,y',z'),
since the field-line coordinate transformation takes care of the magnetic field direction.
One should note x' is not a physically periodic variable (unlike 0 or ¢ in a torus). In-
stead we are assuming that the statistical properties of the fluctuations at x = L_ are
the same as at a: = 0, and that if L: is much larger than the radial correlation length
we can can assume they are in fact identical at every instant. This "statistical period-
icity" allows one to avoid edge effects associated with _ = 0 boundary conditions at the
edges of a bounded box. Periodic radial boundary conditions allow the self-consistent
evolution of the (k_, = 0, k_ = 0) components of the fluctuations (which were set to zero
in some previous simulations in a bounded box to avoid flattening of the background
gradient) which play a dominant role in the nonlinear turbulent state since they are

' responsible for the sheared poloidal flows (see Sec. 5). The precise choice of boundary
conditions shouldn't matter much if the box is large enough so that there is a separation

, of time scales between the turbulence saturation time and the profile flattening time
(and if the rational surfaces are close enough together[14] so that flattening around
individual surfaces doesn't dominate), though periodic boundary conditions should be
a bit more efficient by allowing a somewhat smaller box.

Periodicity in the y' direction is the same as in the unprimed coordinates,
¢'(x', L_, z') = ¢'(z', 0, z'). However, the along-the-field-line periodicity assumption
should be imposed in physical coordinates, not field-line coordinates directly. The
reason for this is that in the (x,y) plane, the computational box is twisting into a
parallelogram as it follows the field lines along z'. If the eddies tend to be elon-
gated in the z direction at z = 0 (perhaps because of "ballooning" to take ad-
vantage of the bad curvature drive at 0 = 0), then they should also tend to be
elongated in the physical z direction (not the x' direction) at L, (assuming L, is
some multiple of 2rrqR). Using the mapping from real-space to field-line coordi-
nates _(x, y, L_) = _'(x', y', L,) = _'(x, y - sxL,, L_), and expanding _' in Fourier

I I I I I

components as • (x ,y ,z ) = Ek, Ek, Ck, k,(z)exp( ik'x' + ik'_y'), it can be showny =' y .

that the parallel periodicity assumptmn translates to the field-line coordinates as

" _,,,k_(L_) = ¢_,,_k_L,N,(0). If L_ = 2rrqR, this translates into the usual balloon-
ing representation as Cko,0o(0= 27r) = _ko,0o-2,_(0). In general, L, should be chosen to

, be several times the parallel decorrelation length rather than just 2rrqR. If one follows
a very thin flux tube a distance of 2rtqR along the field, it will come back to the same
poloidal angle but usually a different toroidal angle (unless one is near a low-order
rational surface), and it hasn't yet "bitten it's tail'[4] to require periodicity. (Careful
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convergence studies need to be done, but in practice Lz = 2rrqR may be ,;ufficient.
particularly if the box is thick enough in the x' and y' directions.)

In a later paper we will present the field-line-following coordinate transformation
in more detail, including more details on its relation to the usual ballooning transfor-
mation. There are also similarities between this field-line transformation[4] and some
other :pproaches[21, 22] also proposed for efficient simulations of small-scale turbulence,
though in each case one needs to think carefully about the relative advantages of various
approaches, and the effects of boundary conditions on correlation lengths. J.B. Taylor "
et al [23]have recently discussed some potentially significant subtleties which result
from including the radial variation of ._.(r) _. w.0(1 + z/L.) (one should also consider
q, vs. r). When Fourier-transformed, this would lead to new terms involving -iO/Ok_,
which could be included in the field-line approach, though more thought perhaps needs
to be given to the radial boundary conditions in this situation.

5. Self-generated sheared rotation and nonlinear results

We have implemented this coordinate system in 3-D nonlinear gyrofluid simulations of
toroidal ITG turbulence. We present early results here; more detailed studies will follow.

. Fig. 2 shows typical nonlinear results from a relatively low resolution run, showing that
a saturated state is only reached with the proper adiabatic electron response, n,l/no =
e(rb-(rb))/Tr, where (rb)is the flux-surface-averaged potential. When n¢x/no = erb/T_

: is used, the turbulence does not saturate: streamer-like (radially elongated) structures ,
form and grow indefinitely. With the (usually) proper electron response cx rb - (¢),
sheared poloidal E x B flows (potential perturbations with (ky = 0, kz = 0), but k_ 7_0)
are nonlinearly generated by the turbulence. These sheared flows have a stabilizing
influence on the turbulence and play an important role in regulating the saturated
state. However, if n,l/no = e_b/T, is used, then electrons are allowed to flow radially
in response to the (ky = O, kz = 0) component of rb, thus shorting out the radial
electric field associated with the sheared rotation. (This may actually occur if the
magnetic fields were completely stochastic allowing rapid radial electron transport.)
To see this mathematically, consider the gyrokinetic quasineutrality condition, which
in our notation[3] is n, = fii + n0(r0 - At long wavelengths this becomes
n_ = hi- k_.pon,oe_/T,.'22 The electron response for most Fourier components is just
n_ = n_oerb/T,, so that the quasineutrality constraint reduces to the familiar form

2 2
oc hi/(1 + kj.po). However, the (k_ = O,kz = 0) component of n_l should be zero so

- 22 22
kxP°that the quasineutrality constraint becomes ¢0,0 cx ni/k_,p°. For << 1 this gives a

large enhancement of the poloidal flow. This effect had been missed in most previous
ITG simulation,_ because of limitations in the adiabatic response, or in the treatment

- of the (k u = 0, k.. = 0) mode and boundary conditions.
Since the sheared poloidal flow has such a strong effect on ghe turbulence, it is

important to include all of the proper drives and sinks for this flow. Poloid_d flows are
: damped only weakly by collisions in slab geometry, and we have observed some cases

where the flows grow to very large amplitudes causing complete stabilization of the
- turbulence for a long time, and leading to a bursting behavior in the turbulence[14].

In toroidal geometry, neoclassical poloidal flow damping may play en important role
(work in progress), but we have found that the toroidal drifts of particles off of their
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Figure 2. 3-D nonlinear gyrofluid simulations of toroidal ITG turbulence
for rh = 4,._ = 1.5, L,/R = 0.4, Ti = Tc, and q = 2. (a) Xi vs. tir6efor
n_/no = e@/T_ (dashed) and n_/no = e(@- (@))/T_ (solid). A saturated
state is reached only when self-generated poloidal flows are allowed. (b) Time

• averaged saturated energy spectrum vs. k0 for n_/no = e(¢-(d_))/T_, showing
that the spectrum is downshifted from the fastest growing linear mode.

flux surfaces (modeled by the wd and [wallterms of the gyrofluid equations of Sec. 3)
cause enough smoothing of the radial density perturbations that the radial electric field
does not grow too large and steady state turbulence is achieved. This is a banana-orbit-
averaging effect which is analogous to the smoothing provided by gyro-orbit-averaging.
Further study of the level of accuracy of our models of these toroidal effects needs to
be carried out.

The generation of poloidal flow and subsequent reduction in fluctuation levels is
similar to that observed in simulations by Hasegawa and Wakatani[24] for resistive drift
waves and by Carreras et a/.[25] for resistive pressure gradient driven turbulence, and

predicted to play an important role in generating L to H-mode transitions by Diamond
and Kim.[26] These earlier works tended to emphasize the edge, while the present results
suggest that this may also be an important effect in the plasma interior, and for all
modes with near-adiabatic electron response.

The time averaged energy spectrum is shown in Fig. 2b for the saturated case in
. Fig. 2a. Although the maximum linear growth rate is at kopi _. 0.4, the peak in the

energy spectrum is shifted to longer wavelength. This is in agreement with general
trends observed in BES measurements[20], but detailed comparisons need to be done

" for the actual experimental parameters vs. radius (the peak kopi varies with minor
radius in the BES measurements). Future simulations will investigate the processes
which determine the dominant scale of the fluctuations.
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6. Conclusions

Recent advances in gyrofluid modeling include (1) a better understanding of the conver-
gence properties of higher order fluid moment equations and of why a limited number
of fuid moments may be inadequate for some nonlinear processes, (2) an extension
of the toroidal gyrofluid equations to 6 moments, including CGL-like terms from the
magnetic mirroring force responsible for trapped particles, (3) the implementation of a
toroidal 3-D nonlinear gyrofluid code using a field-line coordinate system for efficient •
representation of small scale turbulence, (4) the observation of the major role that
self-generated sheared flows play in determining the saturated turbulent state. Future
work is needed to (l) study further the analytic weak-turbulence limit where difficulties
have been observed for lower-frequency (_o << kllvti ) ITG modes very near marginal
stability[12], (2) study the accu:acy of gyrofluid models of various neoclassical effects
which may affect the self-generated sheared flow, (3) carry out higher resolution nonlin-
ear simulations and look for what controls the long wavelength scale of the spectrum,
(4) perform careful nonlinear comparisons with gyrokinetic particle simulations, and
(5) compare with experimental measurements of turbulence and transport in tokamak
plasmas, our ultimate goal.
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