
Centimeter
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mm

illll''° ullInches 0 ,,_
• ,_111113.___--2ILIII_

ILIII_

Itlll_II111_11111'=_=6





Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

TITLE' STATISTICAL MECHANICAl, THEORY OF LIQUID ENTROPY

AUTHOR(S): Duane C. Wallace

SUBMITTED TO: Proceedings of the ist Congress of the International

Society for Theoretical Chemical Physics

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- ,
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or . "'*-
process disclosed, or represents that its use would not infringe privately owned rights. Refer- ' _' _ '
ence herein to any specific commercial product, process,or service by trade name, trademark, ,' -- _i.... '
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- '_.'i *_'_ : -'
mendation, or favoring by the United States Government or any agency thereof. The views ,
and opinions of authors expressed herein do not necessarily state or reflect those of the .... ,/

United States Governmentor any agency thereof. '"" _" i_' ' n

By acceplance of tins article, the publisher recogmzes that the U.S. Government retains a nonexcluswe, royalty-free license to publish or reproduce

the published form of th,s contnbuhon, or to allow others to do so, for U.S Government purposes.

The Los Alamos Nabonat Laboratory requests that the publisher identify this article as work performed under the auspices of theU.S. Department of Energy

IVlASTER
Lo8  os ,a os at,o a,,a o a,oLosAlamos,New Mexico 87545

FORM.o 038_4 DISTRIBUTION OF THIS DOOUM IL'NT IS UNLIM_
S] NO 26295/81 --



• •

STATISTICAL MECHANICAL THEORY OF LIQUID ENTROPY

Duane C. Wallace

Los Alamos National Laboratory

Los Alamos, NM 87545

The multiparticle correlation expansion for the entropy of a

classical monatomic liquid is presented. This entropy expresses

the physical picture in which there is no free particle motion,

but rather, each atom moves within a cage formed by its neighbors.

The liquid expansion, including only pair correlations, gives an

excellent account of the experimental entropy of most liquid

metals, of liquid argon, and the hard sphere liquid. The pair

correlation entropy is well approximated by a universal function

of temperature. Higher order correlation entropy, due to

n-particle irreducible correlations for n_3, is significant in

only a few liquid metals, and its occurrence suggests the presence

of n-body forces. When the liquid theory is applied to the study

of melting, we discover the important classification of normal

and _nomalous melting, according to whether there i_ or is a

significant change in the electronic structure upon melting, and

we discover the universal disordering entropy for melting of a

monatomic crystal. Interesting directions for future research

are: extension to include orientational correlations of

molecules, theoretical calculation of the entropy of water,

application to the entropy of the amorphous state, and

correlational entropy of compressed argon. We clarify the

relation among different entropy expansions in the recent

literature.



I. Physical Interpretation of Entropy Formulas

Our goal is to present and evaluate the multiparticle

correlation expansion of the entropy of a classical monatomic

liquid. Since this entropy formulation is not well known, it is

helpful to contrast it with the virial expansion for a classical

monatomic gas. Let us consider a system of N like atoms in a

volume V, with particle density p = N/V. The entropy S in the
1

classical canonical ensemble is

S=-kV_f(1)in(h3f(1))dp-k(pN/N!)_..._g(N)in g(N)drl...drN. (i)

Here k is Boltzmann' s constant, h is Planck' s constant,

f(1) = f(1) (p) is the one-particle momentum distribution, where

p = momentum, and g(_9 = g(N)(rl...rN ) is the N-particle correla-

tion function, where r i = particle positions. Equation (i) is

valid at all temperatures T and densities @. However, the N-par-

ticle correlation integral in (i) is generally intractable, so it

is useful to develop approximations for this integral, appropri-

ate to the gas and liquid regimes.

Henceforth we work with entropy in units of k per particle.

The one-particle term in (i) is S I,

S I =-p-1_f(1)in(h3f(1))dp, (2)

and the integral can be done because f(1) (p) is the normalized

Boltzmann distribution, yielding 1

SI = 3_in(pA 3) (3)2

where A = h(_/2_M) 1/2 is the deBroglie wavelength, and _ = (kT) -I.

The N-particle correlation entropy in (1 ) is SN . The

correlation function g(_O (r 1...rN) depends on the total system

potential _)(rl...rN), which may contain n-particle potentials for

n = 2,3, .... In the physically realistic case, where Coulomb forces

are screened, and where there are no infinite hard cores, all of

these n-particle potentials are spatially integrable, and this

means the gas regime is reached both at low density (p-90), and

at high temperature (_-9 0).
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Let us examine SN for the gas regime. In the partition

function, the expansion can be made exp[-_(rl...r N)] = i+...,

where equivalence of the expansion at p-_ 0 and at _-_ 0 has been

discussed. 2 This leads to g(N)(rl...rN ) = (N_NN)+..., and hence

SN = i-..., (4)

where -... represents a power series in p, which is the virial se-

ries. The complete gas entropy is therefore

Sgas = S l+l-... (5)

The value 1 expresses that each particle moves freely throughout

the entire system volume; the series -... expresses interference of

this free motion, from the atomic interactions, and is negative,

hence reduces the entropy from the ideal gas value Si+i. The vir-

3 which presumably doesial expansion has a radius of convergence,

not extend to the liquid regime.

Before we can derive the correlation entropy for a liquid, we

need to recognize the physically spurious long-range correlations

present in constant-N ensembles. First, in any ensemble, there

exists a correlation length 1c, normally a few nearest neighbor

distances, beyond which the two-particle correlation vanishes, as

indicated by the condition g(2)(r) = constant for r>l c. In the

grand canonical ensemble this constant is 1, and the

normalization of g(2) is

p_[g(2) (r)-l]dr =- 1 +(z, (6)

where (z = pKkT, and K is the isothermal compressibility. (_ is a

measure of density fluctuations; (z is positive, and for a liquid

(z<<l. In the canonical ensemble, g(2) (r) has a nonphysical long

range correlation because, given a particle at any positi<n, the

number of remaining particles is exactly N- 1. Thus

g(2) (r) = i-((Z/N) for r>l c, and the normalization of g(2) is

p_[g(2) (r) -l]dr = -i. (7)

To obtain the same normalization_in n_D_y ensemble, we limit the

integration to r<l c, denoted by j|cdr' and find

3



pi[g(2) (r)-l]dr = -l+@+O(gE1) . (S)

This result is valid for all ensembles, since g(2)(r) is the same

to order /¢-I in all ensembles. 4 Analogous properties hold for the

higher order correlation functions g(n) (rl...rn) .

To establish the correct approximation for SN for-a liquid, we

first note that the motion of particles in a liquid represents an

opposite extreme from a gas. In a liquid there is no free particle

motion; instead, each particle moves within a cage formed by its

neighbors. Hence in a liquid, the important correlation

information is contained in the g(n) for small n, specifically for

n = 2,3, .... This concept led H. S. Green 5 to the multiparticle

correlation expansion of in g(N) in the canonical ensemble, in

the first term is _N(N-I)In g(2) . However, the spatial
which

integral of Green's expansion contains the nonphysical long range

correlations resulting from the constant-N condition. In the past

we have corrected this problem by using grand canonical

correlation functions. I'6 Here we will limit the integrations to

within the correlation length, giving results valid in all

ensembles:

SN= S2+S3+..., (9)

where

1 f _2) g(2) (r) dr, (i0)
S2 = -_p (r) in

c

and where Sn contains only n-particle correlation functions.

The complete liquid entropy is then

S1i q = SI+ S2+ $3+ .... (ii)

As shown in the next Section, experimental data confirm that the

series (ii) is rapidly converging for liquids. For a monatomic

liquid at melt, $1=I0, $2=-2.6, and the higher order terms, if

significant, are negative. Hence as the atoms move in a liquid,

the interatomic potentials interfere with the kinetic energy, and

reduce the entropy from the one-particle (kinetic) contribution

S l •
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2. Comparison with Experiment for Liquids

For real monatomic liquids, it is currently possible to

evaluate the entropy contributions S I and S2, but no higher order

contributions can be directly evaluated, because the higher order

correlation functions are not available. SI depends only on

density and temperature. To evaluate S2, we used experimental

data for g(2)(r), from neutron scattering and x-ray scattering. A

representative curve of g(2)(r) is shown in Figure I; the integral

S 2, equation (i0), depends mainly on g(2)(r) in the neighborhood

of the first two peaks and valleys. Let us denote the higher order

correlation entropy by Sx,

Sx = $3+$4+ .... (12)

For the liquid metals there is also an electronic excitation con-

tribution SE, so that the total theoretical entropy is

S = SI+S2+Sx+S E. (13)

We have compared this theory with the experimental entropy for

liquid argon, 7 the hard sphere liquid, I and for 22 nearly free
8

electron liquid metals.

The first i_ortant finding is that S2 displays approximately

universal behavior for most liquids. The range S 2 = -2.6± 0.3 at

the melting temperature _ includes argon, the hard sphere

liquid, and all the metals except for six which undergo anomalous

melting (described in the next Section). The temperature

dependence of S2 is also universal, as shown in Figure 2. The

trend of S 2 with temperature is easily understood: as temperature

increases, thermal kinetic energy increasingly overcomes the

caging effect of the interatomic potentials, hence the magnitude

of S 2 decreases.

The second important finding is that the theoretical entropy,

with Sx = 0, is accurate for most liquids.8 For Li, Na, K, Rb, Cs,

Al, Mg, and Si, the quantity S I+ S2+ SE agrees with the

experimental entropy to approximately ±0.i, which is around 1% of

the experimental entropy, and which is the magnitude of the

combined errors in the analysis. Hence for these metals, the
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theory with Sx = 0 is essentially exact. The comparison for liquid

sodium is shown in Figure 3. 9

In general, then, it makes sense to use equation (13),

together with the experimental entropy, to infer the value of Sx.

For the liquid metals, this procedure tells us that Sx, when it is

significant, is negative. For Cd, Pb, and Ge, Sx at Tm is around

-0.3, which is small. But the six elements Sh, Bi, In, Hg, Ga,

and Sn have large negative values of Sx, suggesting the operation

of strong many-body potentials in these liquids. However, as

shown in Figure 4, the magnitude of Sx decreases with increasing

temperature. The physical process here is the same as in the pair

correlation entropy S2: increasing the thermal kinetic energy

overcomes more of the confining effect of the interatomic

potentials, hence decreases the magnitude of Sx.

The remaining liquid metals Cu, Ag, Au, Zn, and TI, and the

hard sphere liquid, fall into the category of Sx = 0 within error

estimates. Only one instance of a positive Sx has been found. An

accurate analysis of argon, at 85K on the liquid-vapor

equilibrium curve, yielded Sx = 0.38 .7 But argon at this point is

a highly expanded liquid. It would therefore be of interest to

measure g(2)(r), and calculate S2, for argon at a pressure of say

i0 kbar, where we expect Sx=O.

3. Application to Melting

Having an accurate theory for the entropy of a classical

monatomic liquid allows us to learn much about the processes

involved in the melting of elements, lO,ll Here we present some of

the interesting results of the melting analysis.

Consider the entropy of melting. AS* = AS* (Pm, Tm) is measured

at constant pressure and temperature, and corresponds to S a-S c in

Figure 5. The entropy change at constant volume is

AS = AS(_,,,Tm), corresponding to S a - Sb in Figure 5. We have

evaluated AS from the measured AS*, by calculating the

thermodynamic correction Sb-S c, for all the elements for which

accurate data are available. 10 Note AS and AS* are significantly

different quantities, and only AS provides direct understanding

of the melting process.
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Figure 6 shows a graph of S 2 at T=T m, as a function of AS. The.

cluster of points at the smallest AS represents elements which

are simple metals in both crystal and liquid phases. Of the six

separated points, we know that Si and Ge melt from a polar

crystal to a metal liquid, Sb and Bi melt from a semimetal

crystal to a metal liquid, and we assume that Sn and Ga likewise

have a change in electronic structure upon melting. This leads to
I0

our most important classification of melting processes:

(a) Normal elements have no significant change in electronic

structure upon melting, and have AS in the narrow range 0.80 ±

0.17.

(b) Anomalous elements have a significant change in electronic

structure upon melting, and have AS much larger than normal. For

the six anomalous elements in Figure 6, AS = 1.48-3.85.

Let us consider specifically the normal elements, and use the

empirical value of AS to construct a melting rule. The liquid

entropy, denoted by a superscript Z, is from (13),

The crystal entropy is denoted by a superscript c, and from lat-

tice dynamics theory at high temperatures,

C C

S c = 3 [in(T@ o) +i] +SA+S E, (15)

C

where the first term is the quasiharmonic contribution, SA is the

anharmonic contribution, and S_ is the electronic contribution.

The characteristic temperature @0 is defined in terms of the

quasiharmonic phonon frequencies _K,

in(k@o ) = <In_>BZ , (16)

where < >sz represents a Brillouin zone average. From (14) and

(15), along with (3) for 4, we find for AS = _-S c,

3 3 c c

AS = [InL--_+_+_x--SA+_E--SE, (17)

where

L = Mk@_/2_2p2/3Tm. (18)
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Now for normal melting, where crystal and liquid have essentially

cthe same electronic structure, we have --SE= 0, AS= 0.8, and

_2 =-2.6 at Tm. With these results, (17) becomes the normal melt-

ing rule,

_ c _x (19)31nL= 4 9+S A- .2

C

For most elements we expect the further simplification SA= 0, and

_x = 0.

In our melting study of 36 elements, 10 for which sufficient

data are available, all of the normal elements follow the melting

rule (19). It is therefore clear that we have a quantitative

understanding of the normal melting process. The constant-volume

entropy difference, AS= 0.8, is identified as the entropy

required to dissolve the long range order of the crystal, leaving

the short range order about the same in crystal and liquid.

We have also achieved a quantitative understanding of the

anomalous melting process.l° In this case, AS contains the

universal long range disordering entropy of 0.8, plus a large

positive contribution corresponding to the change of electronic

groundstate, at the melting temperature Tm. As an exercise, use

Figure 7 to figure out why anomalous melting requires AS larger

than normal, and IS21 smaller than normal, as observed in Figure 6.

4. Directions for Future Research

When you learn something new, questions for further

investigation spring up like mushrooms. Let me mention three

interesting applications of the liquid entropy theory.

(a) It would be valuable to consider molecular liquids, and

extend the entropy theory to include angular correlations among

molecules. Lazaridis and Paulaitis 12 have made a good beginning in

this direction, studying the entropy of solution of simple

molecules in water. Of course, water itself is a most interesting

molecular liquid, and apparently the entropy of water is not well

understood. 13 An application of the liquid correlation expansion

to water would be very revealing.
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(b) When a liquid is cooled, it can sometimes pass into an

amorphous state. Does the multiparticle correlation expansion

remain valid for the amorphous state? This is an ideal problem to

study by computer simulations, since the amorphous state is

easily achieved, and the correlation functions are directly

accessible. Such a study might shed light on the nature of the

glass transition.

(c) As mentioned in Section 2, it would be of interest to

measure the pair correlation function, and calculate S2, for

liquid argon at a pressure of around i0 kbar. This would provide

an important check on the property Sx=O for liquids without

strong n-particle forces, for n_3.

5. Relation Among Different Entropy Expansions

Concerning entropy expansions, the recent literature contains

a number of errors, hence a clarification of the relation among

different expansions is needed.

In H. S. Green's original expansion, 5 the one-particle term is

undefined, 6 while the multiparticle terms contain the physically

spurious long range correlation of the canonical ensemble. To

eliminate this long range correlation, Nettleton and M. S. Green 14

constructed a grand canonical expansion in powers of the density,

and in the process they fixed the one-particle term at the ideal

gas value $I+I. This expansion was also discussed by Yvon. 15 An

alternate derivation was given by Ravech6,16 and was evaluated for

liquid models by Ravech4 and mountain. 17 The Nettleton

M. S. Green-Ravech4 (NGR) expansion is reducible, in the sense

that Sn contains correlation of all orders _n. The NGR expansion

has the correct limit in the gas regime. In the liquid regime,

aside from some very small terms in _, the NGR expansion differs

by the amount n-I, in order n, from the liquid correlation

expansion. 1 Hence while the two expansions converge to the same

limit, the difference n-I is crucial in any practical application;

note the liquid correlation expansion in second order is often

accurate to around ±0.i.

I. Z. Fisher 18 derived an entropy expansion in which the one-

particle term is Si+i, while the two-particle term is S2. Faber 19
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tested this expansion for AI and Hg, and concluded correctly that

it is inaccurate. Baranyai and Evans 20'21 express the opinion that

the liquid correlation expansion must be wrong, because it

differs term by term from the NGR expansion. Indeed, the liquid

correlation expansion is correct, precisely because of this

difference.
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FIG. i. The pair correlation function for liquid sodium at 378 K

(Tm is 371 K).
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FIG. 2. Pair correlation entropy S2 against ln(T/Tm), showing ap-

proximately universal behavior, as represented by the dotted

line. Sn and Ga are anomalous. [E'roc. R. Soc. Lond. A_, 615

(1991)].
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FIG. 3. Entropy of sodium. Solid line is experiment, and crosses

are the theoretical expression S I+S 2+S E. [Phys. Lett. A122, 418

(1987)].
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FIG. 4. Higher order correlation entropy Sx against ln(T/T m) .

[Proc. R. Soc. Lond. A433, 615 (1991)].
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FIG. 5. S(V) at the constant temperature Tm. At constant pres-

sure, AS* = Sa-S c, while at constant volume, AS = S a-S b.
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FIG. 6. The correlation between S 2 at T-T m, and AS. The points

in the cluster are normal elements, and the six separated points

are anomalous elements. [Proc. R. Soc. Lond. A433, 631 (1991)].
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FIG. 7. The Gibbs free energy G as function of T, at a constant

P. Anomalous melting occurs at Tm, from the crystal with elec-

tronic structure O, to the liquid with electronic structure _.

[Proc. R. Soc. Lond. A433, 631 (1991)].






