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Configuration Interaction in LTE Spectra of Heavy Elements

• A. Bar-Shalom and J. Orcg
Nuclear Research Center Negev, P. O. Box, Beer Sheva Israel

and

W. H.Goldstein
L-Division, Lawrence Livermore National Laboratory, Livermore, CA 94550

Abstract

' We present a method for including the effects of configuration interaction (CI) between

relativistic subconfigurations of an electron configuration in the calculation of emission and

absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions

for the correction to the intensities, owing to CI, of an unresolved transition array (UTA) and of a

supertransition array (STA) are obtained when the correction is small compared to the spin-orbit

splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working

formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects

are significant. Examples of the effect are presented.

I. Introduction

The supertransition array(STA) model provides a method for simulating the spectra of of

LTE plasmas, under the assumption that j-j coupling is a good approximation. The model was

formulated in terms of transitions between j-j coupled electron sub-configurations, and

configuration interaction (CI) was neglected. To include CI the energy matrices for levels

involved in transitions must be diagonalized. This approach is impractical for the case of LTE

• spectra of complex atoms because immense numbers of levels contribute. In this work we

_IP demonstrate a method to bypass the need for matrix diagon_izations and include the dominant

effects of CI within the STA model. (1'2'3)This dominant effect is the interaction between

relativistic sub-configurations of the same LS configuration.

The CI effect on radiative transition arrays was first investigated by Bauche et al.(4) As

indicated in Ref. 4, the effects of CI can be separated into a small, second order, energy shift, and

a possibly large change in intesity. In this work we obtain analytic expressions for the latter

correction in the unresolved transition array (UTA) and STA models. These expressions serve
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both to supply working formulas for STA calculations and give practical rules for determining a

priori when CI is important.

• We fin'st show that although the number of "relativistic," or j-j, UTAs (called SOSAs by

Bauche et al. (5)) contained within a single "non-relativistic," or LS, UTA may be very large, in

general each non-relativistic UTA splits into only three sub-arrays, which we call J-Transition

Arrays (JTAs). Similarly a "non-relativistic" STA splits to only three "extended" JTAs. The

effect of CI is mainly to redistribute intensity among the three JTAs.

Section II containes a short theoretical background. In section III we define the JTAs and

present the analytic expressions for their moments (intensities and average energies). The

• average energy of a "non-relativistic" UTA is then expressed in terms of the moments of the

three JTAs. Section IV presents the expression for the CI-induced correction in the average

' energy of a "non-relativistic" UTA. The effect of CI on the JTA intensities is analyzed in section

V, where we present the analytic expressions for the corrected JTA intensities, and demonstrate

the effect in specific simple examples. In section VI we extend the treatment to the STA model.

Section VII presents calculations of LTE spectra showing the effect of CI under various

conditions. All detailed derivations relegated to the appendices.

II. Theoretical Background

The STA model has been presented in several previous works. (1'2'3) The reader is refe:,'red to

these references for further details. In this section we mention only briefly the most relevant

points. A superconfiguration is a collection of configurations constructed by distributing the

electrons occupying a super-shell amongst its constituent electron shells or sub-shells in ali

possible ways. UTAs and STAs are the sets of transitions between two configurations and two

superconfigurations, respectively. The STA model is fully relativistic and, as previously

mentioned, is based on configurations that are manifolds of pure j-j coupled basis states.

In the development that follows, it will be neccessary to compare transition array moments

expressed in terms ofj-j coupled states to those expressed in terms of the physical states of an LS

lt coupled configuration. Note that the latter are generally linear combinations of the former. In
t

preparation, we present here several definitions, and a simple rule involving partial averag_::g.

The average energy of a transitien array is defined as

w..E..
i,j tj tjE=

W..

i,j tj (1)



where Eij the energy difference between states i and j and the weight wij is transition line

intensity,

x

w..= N.f..
_J _ _J (2)

in terms of the initial population Ni and the transition probability, f ii" In the UTA model, the

population distribution within a configuration is assumed to be statistical and the weights are

simply wij = g i f ij where g i is the statistical weight of i.

• We denote by EJcaj _ the average energy of the j ct =# J 13UTA between two j-j

configurations, c and c', where ja-'-(nctlajct),and

qj qj qj qj qj +1
...... ,C'= qJ2

c=(Jl) 1(J21 2(Ja)""(J[_) _ (Jl) l(J2)"'(Ja) ""(J _ (3)

Similarly, the average energy of a "non-relativistic" UTA between the two configurations

ql qf3 q2 qff 1 ql3+1

A=(nlll) (n212)?.2.(nal_._..(n_l_) ,A'= (nllI)q1(n212)...(nctla) ...(n_l_)

(33

characterized by the single orbital transition n a I ct =_ n I_1I_ is

W

ECRU=keA IeA' kl Ekl
A - Z WklkmA IEA'

• (4)

, where k and I are physical states contained in A and A' respectively, and include therefore the CI

between j-j sub-configurations.

The results of Bauche et al. (5,6)for these average energies can be written in a compact form
as

,J



JaJl3 J{xJ13 Jc_J_

- _a -8 ) D ...Ec -Do + " (qJa JaJ Ja (5)

Gt_

CTO13 - 8aot)t)
c_

EA=D + Y'(qa a
a (6)

where the ordinary D's and italic D"s are independent of the occupation numbers and given

explicitly in Appendix A in terms of radial integrals. In Eq. (6), and hereafter, a non-relativistic

• orbital n a I a will be denoted simply by a.

The result (6) was given by Bauche et al. (6) only in the non-relativistic limit. It is shown in

' Appendix A, though, that Eq. (6) holds true to a very good approximation also in a fully

relativistic treatment where the "non-relativistic" radial integrals in (6) are taken as specific

averages of the relativistic ones.

We will use quite frequently the following simple rule. Let G be a group of numbers Ei and

g non overlapping subgroups comprising G.. The average of the Ei weighted by wi in G, defined

as

E G = _ w E /w G WG= _ w.
i eG i i , i eG _ (7)

can be written in terms of the partial averages

= Y. w E /wg , wg .Eg ii = _ w.

i eg i eg (8)

as

EG= Y_ wgEg /wG , wa= E wg
g eG g EG (9)

III. J-Transition Arrays
t

Consider the "non-relativistic" UTA, A _ A' defined by Eq. (3'). Each shell (ni) q

containing q electrons is in fact a union of ali subshells (nii),

(ni)q= X [(nl+)q++(hl _)q-]

{ q-+ q+= q} (10)



where ni±--nii, 0=15:1/2). Of course, the 15:1/2subshells become degenerate in the non-

relativistic limit.

Depending on the number of partitions of q, the number of relativistic UTAs c =_ c' (Cf. Eq.

(3)) in contained in A =_ A' may be very large. However, the mean energies of these UTAs

naturally cluster into three, dinstinct arrays characterized by the three suborbital transitions (the

principal number n is omitted hereafter when convenient) j a =_ J 13' with

_1 and IIi a._l 9- for 0<1 ct<1
• I a__l 9- ,I a+ _+ L cc-_l 1_+for 0<11_<1 a (I1)

. The fourth possibility

II a+ _11_- for 0<1 _<l_xa-=_l 9+ 0<1 ct<l _ (12)

is eliminated by the selection rule

, 1,=-, (13)

When an active orbitals hasl---0these selection rule yields only two arrays. Each array j a :=_J 9

- which will be called a J-Transition Array (JTA) - is actally an STA that includes many

relativistic UTAs with nearly the same mean energy.

As an example consider the "non-relativistic" UTA

qa

qa A' I a) 3d24fA= I'I (nal a) 3d3 =_ = rI (n a
a,3d,4f a¢3d,4f (14)

, for the orbital transition 3d :=_4 f. This transition array comprises relativistic UTAs c _ c',

where

qa+(n qa. I-I X (n I ) la) -
c _a ac:3d,4f {qa++ q._= qa} a+ a+ a_ _

[(3d+) 3 + (3d+)2(3d-) + (3d+) (3d_) 2 + (3d_) 3]



q qa

C'E A" I'I _ (n I a+) a+(n [ a ) -
-, + qa = qa} a+ a_ _a#3d,4f {qa+ _

. [(3d+)2(4f_) + (3d_)2(4f_) + (3d+) (3d_)(4f-)

+ (3d2+) (4f+) + (3d2--) (4f+) + (3d+) (3 d_)(4 f+)]

and the 3 JTAs comprise ali transitions from c to c' with 3d__4f-, 3d+=_4f- and 3d+=#4f+.

In Appendix B it is shown that the normalized JTA intensity is simply

2

• Jt' -- Jig IX

JctJB 1 gJ i j
W

"2"g t_ 13 13 (15)

and its average energy is

J c_J[_ J cLJ13 J ctj {3

EA =Do + Y'(qa-_act) Da qtx>O ' q13<g13 (16)a

where the barred D's are defined in Appendix B. The remarkable feature of Eq. (16) is that,

although it holds for transitions between relativistic sub-configurations, it is expressed in terms

of the orbital occupation numbers of the "non-relativistic" A =_ A' UTA.

IV. The CI Shift in the Average Transition Energy of a "Non-Relativistic" UTA

The average transition energy of the A _ A' UTA, without CI effects, can be written

_ gi f E.

, Ect13_ c_A c'_A' i _cj'_c' ij tj

A - _ _ gifij
oEA CeA i ec j'ec' (17)

lt follows from Eq. (9) that



JaJ[3 JaJ_

E?'- )-'.V¢ E A

JcJI3 (18)

The CI-induced shift in the average energy of the A =_ A' UTA follows from a comparison of

Eqs. (4) and (18), or, equivalently, (6) and (16):

JaJ[3 JaJ[3] [D:[3 JaJp JotJ[3SEA [3-'-EA_- E?= [D; _'" Z V¢ DO + _(qa-Saa) _ Vhf ffa ]
JaJ[_ a jajl 3

- (19)

By substituting explicit forms for the expressions appearing in (19) and rearranging terms, it is

possible to show that

qa- 1+ _Sqa,0 qB-8q[5, (41 1_+2)}SEAl3= I 41a+1 - 4l 13+1 FaD (20)

where Fa_ is independent of the occupation numbers.Since Eq. (20) is one of our main results
R

we write here the detailed form of F a_"in terms of the relativistic Slater imegrals:
D

Ja+J_

ra[3=O 0 Z (- 1) FO(j a Jl3)+
JaJl3

• [ X ckcj a j Fk(j + tgjagj_k¢0 \ , _) a,Jl3) T(Jot,J[_) Gl(jot,Jl 3)
J a,J 13 _.even . (21)

i,

where Fk(j a,J i_) and G k(j a,J 13)are the direct and exchange Slater integrals,

f JaJl3] 211 a(I ct + 1)+[ B(I IB+ 1)- 2
0 0 Ja+J gJagJl_ -_vV =

-(- 1) 'gag_ ga g_



(10 kl,(i 10 0 AO0
" a J kj ak IJa k J 13 Ja k Ja1 1

. 1 ag I 1 1 1 j + li ,(k#k')
x7 "_'gjagj_ i 13._.1a Ti 131[j 13 13 13

(22)

and

gag13(' ali _2IJa 11 J_} 1 1 J a 1 j
= - 11

_/(J a,J 13) 12 LO 0 :) [I [_"_" _'gJagJ_ I 132" (23)

,

The following features of Eq. (20) should be noted: the selection rule (13) is inherent in the n-j

symbols; only the active orbitals appear; the exchange part includes only G1(j a,l_13) ;

Fa13depends on the overlap between the active orbitals mainly through the dominant

G l(j a,J 13)integral; and the sum in Eq. (21) is over the 4 possibilities of JaJb"The four

contributions of F0(j a j _) cancel each other owing to the alternating signs; in the linear

approximation of Bauche et al.(7) the cancellation is exact, while in general the total contribution

is negligible.

The analytic expression (20) yields two simple rules for identifyinga priori the cases where CI

" is significant. (1) The CI effect increases as the occupation number of the active shell _ increases

and that of [3decreases; the strongest effect occurs when the shell a is full and 13is empty; and

(2) the effect is increases with increasing overlap between the active orbitals. Thus ls-2p, 2p-3d,

3d-4f, transitions will have the strongest effect while for the 3d-4p transition the effect is

expected to be small. These rules are demonstrated below in examples.

=

V. The Effect of CI on the JTA Intensities "_

The normalized JTA intensities in pure j-j coupling, Eq. (15), is summarized for the strongest

transitions in Table 1. Evidently only two JTAs have significant stength for each type of

transition. For the s -p transition only the ++ and +- combinations exist, while for others the +-

transitions are very weak.

Configuration interaction shifts level energies and redistributes oscillator strength. If the

interaction is very strong compared to the spin-orbit interaction, the three JTAs will completely



intermix, forming a single structure. In this case the intensity redistribution will have no effect on

the transition array. We are therefore primarily interested in cases where the CI is strong enough

to cause an apparent effect, but not strong enough to actually merge the distinct JTA structures.

" In these cases individual transition lines are shifted to Eij=_ F ij = E ij + AEij' and their

intensities are changed by N. f.. =:, S but the JTA structure still exists and each individual linet Ij ij'

can still be attributed to one of the three JTAs.

++ -- +-
ii

s-p 2/3 0 1/3

p-d 9/15 5/15 1/15III

d-f 20/35 14/35 1/35

f-_ 35/63 27/63 1/63

Table 1: Pure j-j JTA intensities

Using again Eq. (9) we can write the "non-relativistic" UTA average energy (cf. Eq.(20)) in

terms of the CI-corrected JTA energies and intensities as

J aJ 13EJ aJ[_£ s..E.. X SA A

Ea[__ ieAj_A' Ij ij _ jaJl_

A - X S.. - JaJ_
iCAjCA' 1.1 )". S A

JaJ[_ (24)
where the CI-corrected JTA intensities are

JaJl3
S = X S..

A iea j cA' ij

J cx_J_ (25)

and the their shifted average energies are

JaJl3 JaJl3

= E A' SijE /SEA i_Aj_ ij A

J a_J 13 • (26)



The sums in (25) and (26) arc over ali transitions contained in the j (x =:_J 13JTA.

JaJ_
We will consider the corrected YrA intensifies S A as unknowns to be solved for under the

following assumptions. Since each YrA is distinct from others, and unresolved within itself, and

since the CI effect on level energies is small (second order), we can approximate

J(xJ_ JaJ_
!: = E

A A (27)

yielding

• ct_ JaJ_ JaJl3
= Z gA EA

l= A J cxJ [3 (28)

where the normalized intensifies are

J (xJl3 J (zJ13 JotJ_g =s / Z s
A

A A J aJ _ . • (29)

From (28) and (18) we can now write the following equation for the intensifies

a.[_ J aj[_ - J(zJ_ JcxJl3
= Z (SA -W )E A

_E g J ctJ 13 (30)

Further, as shown in Table 1, the intensity of the + - transition is very small. We shall see

below that the CI effect tends to elirr2,_ate it almost completely. We therefore ignore it and
assume

_Ct + _ + Ct _ __

S A + S A = 1

Explicitly we have

_Ct+P+ a+13+ -a+l_+)Eh-l_- El+ (32)S A E A +(1-S A = 6EA13 ,

10



leading to the following analytic expressions for the CI-corrected intensities:

A_ ct+jt+" .ct-B- ct-13- 5E tx_13_ E -. E A _ a-13-
_A =q)A +- -- _ --_-Wct___ ct+_+, cpA ct-13- ct+_+

E -E E -EA A A A (33)

A_ ct-_--E °_ ct+l_+ct+_+ ct+J3+_ 8E _ ct+_+__ EA A =_
A = q)A ct___ ct+_+ q)A ct_Ii_ ct+_+

E -E ' E -EA A A A . (34)

It should be pointed out here that we have obtained the Cl-corrected JTA intensities without

diagonalizating the energy.

Before considering the effect o STA intensifies of CI, we present simple examples in closed

shell systems where direct diagonalization is compared with the pure j-j intensities of Table 1.

(The use of closed shell examples simplifies the line spectrum sufficiently to clearly demonstrate

the CI effect; he scaling of the effect with the occupation numbers of the active shells is given

exactly by Eq. (20).) The upper drawing of Fig.1 represents the spectrum of the 3d-4f transition

in nickelike Tta. In this case the active electron is promoted from a closed shell to an empty one.

In addition, the 3d and 4f orbitals strongly overlap. As expected from the rules obtained above,

this case exhibits a strong CI effect. The heavy and thin traces in the figure describe the

transitions with and without CI, respectively. Note that the CI shifts are indeed small, but the

JTA intensities invert. Another interesting point is that the weak +- transition disappears almost

completely. This effect is observed in ali other examples, as weil, and was used to simplify the

equations for the corrected intensities, (33) and (34). The second and third drawings in Fig 1.

present the results for the 2p-3d transition in neonlike and argonlike Fe, respectively. Ali the

arguments used in the previous case hold true also here, and we obtain again a strong effect. The

lower drawing of Fig. 1 is the 3d-4p transition in nicklelike Tm. Since, in this case, the active

orbitals do not significantly overlap, the effect is small and the JTA intensities are similar to their

pure j-j values.

VI. The effect of CI on the STA spectra

The STA model is fully relativistic, and describes transitions in terms of j-j configurations.

The three STAs corresponding to the three sub-orbital transitions j a =:' J [l , ct _ [_ , of

Eq.(l 1), we define as "extended" JTAs. Taken together, these three STAs form an extended,
"non-relativistic" STA, corresponding to the orbital-to-orbital transition o__ [_.

II



Despite the vast number of overlapping UTAs in such an extended STA, in many cases the

JTA structure remains apparent, and the effect of CI again redistributes the intensities among

these extended JTAs. We will develop analytic expressions for the corrected STA intensities
-.

similar to (33) and (34) following the same steps.

. Using the mean average rule, (9), we write the average transition energy of an extended STA
without CI in terms of those of the three STAs it includes:

J_J_ J o_J13
E_ = Z_ E

STA STA STA

J _J_ (35)

-- JctJ_

where W STA is the normalized intensity of the j a _ J 13STA, and is given in terms of the

J_J_

average transition probability f A of the JTA, obtained analytically in Appendix B,

J ctJl_ J (zJ 13 J (zJ i_ JaJl3

JctJl_---- Z N _v' / Z W STA

W STA - Ae SC A fA ' STA - W STA J ctJ_ , (36)

The average energy of the JTA is

J ctJ13
" J otJl_EAY- NAf AJ ctJl3 AeSC

E =
STA J (xJ13

Z Nhf A
A_ SC (37)

The populations NA of the configurations A are not removed by the normalization as in the

UTA case since the energy difference between configurations within a super configuration may

be large compared with the corresponding Boltzmann factors. (1)

Equations (35) and (36) assume statistical populations within the "non-relativistic"

configurations A. Making this assumption only within relativistic configurations, as is done in

the STA model, we have instead of (36) and (37)

JczJ_ J_J_
=- Z Z Ncf c

W STA Ae SC oa A (38)

12



J o_J[3 JotJ_
Y- _ Ncfc E c

JaJ[ 3 A_SC ceaE =
.. STA j otj

Y. 5".Ncf c
A_ SC ceA (39)

..

SincetheextendedJTAsaresimplyrelativisticSTAs,explicitformulasfortheirintensitiesand

averageenergy,(38)and(39),havealreadytbeenpresented.(I'3)

As forUTAs we canwritetheaverageenergyoftheextendedSTA,includingCI,intermsof

theCI-correctedintensitiesandenergies.UsingtheextendedJTA moments,

JaJ_
S = E S..

STA i ,j eSTA zJ

(j o=_j [_) (40)

for the corrected intensity,and

J otJ [3 Jo_J_= 2 sE /s
E STA ida STA ij _j STA

fortheaverageenergy,themeanaverageruleyields

Y" Y" A' S..E.. Jo_J JcxJal3 AeSC ieA je _J _J _ 13
E = = E g E

STA _ _ S STA STA

AESC i_AjeA' ij Jaj_

J aJ [3 J ¢xJ[3

S STA = _ S STA

J ¢xJl3 (42)

Assuming again that the average JTA energy is little affected by CI we can write

J °tj 13 J ctJ 13
E = E

STA STA (43)

and the CI shift in the average energy of the extended STA will be

13



JaJp JaJl3 JaJl3

8Es_TA= E (_ STA- _ STA)ESTA
JaJ_ (44)

.. Now, using the (very good) statistical approximation for ali levels iE C¢ A,

N.

NA Nc t

gA _ "_i NO (45)

• where the N's and g's are the corresponding populations and statistical weights, respectively, the

shift, Eq. (44), is simply the sum of the shiftS, (20), of the included UTAs. Therefore, from (20),

we obtain the expression

Y. NA fASE A_A_ SC

8E S_BTA-- _ NAf A
A_ SC

[ < qa- 1 + 8qa ,0 > < qB - 8ql] (41 15+2)>STA !

l SrA_ '= 41a+l 41 13+1 (46)

where

JaJ_

•" fA - y" fA

J aJ 13 (47)

with the occupation number averages given by

NAfAq aA_ STA

< qa > STA - _ NA fA
A_STA (48)

These occupation number averages, in both "non-relativistic" and relativistic representations, are

easily obtained within the STA model as, respectively,

gaaX a U Q_2(g al]a) Es-_t

-- CX_) X s = e kT< qaa > STA U Q_l(g

14



and

2

. {Ja 1/21 IJ_} J J Ja JaJ[ 3ja

g_ g_ Z g. X U g ) _.
1_ a [3JaEa la Ja Q-2(jaj[ 3 _- I s

" <q_>STA=_ 2 X. ---e kTJs

'Ja 1 j jaJl3)
Y g'c ×. u g

JaJ[3 [3 Ja Q-l(

where the quantities UQ-1, UQ-2 are reduced partition functions as defined in Ref. 1.

Know_'ng the CI shift (41) we can now use (40) to solve for the corrected FFA intensities.

Following the same steps that led to Eqs. (33) and (34) in the UTA case, we obtain for the

corrected STA intensities

a+13+
a___ a-B- 8Ea_ EaI3 - E a_i3-
STA = _ STA + STA a ___ STA STA -

ot_[3_ a +_3+ , CpSTA - ct _[3_ a +13+ = W STA
E -E E -E

STA STA STA STA (49)

a_13_
' + STA -- STA - a+13+_a + 13+ a +13+ 8E STA a +13 E E

S STA = cpSTA - ct _IS_ ot+_3+, _ STA -- a _[3_ ct +13+
W

STA
E -E E -E

.. STA STA STA STA (50)

where b'E is given by (42) and the E's are STA average energies as given by the STA theory.(1-3)

VII. Examples of STA spectra demonstrating the CI effect

We conclude with several examples demonstrating the effect of CI on STA spectra for four

cases. In Fig.2 we present the 3d-4f transition of Er in LTE at temperature T= 60 eV and density

9--0.04 grn/cc. Under these conditions the average 3d occupation number is close to 10 while the

4f shell is on the average half empty, leading to a strong CI effect. The intensities of the ++ and

-- STAs are indeed exchanged. In Fig.3 we present a Gd spectrum at 60 eV and 0.04 grn/cc.

Here, the overlap of the JTAs is much larger since Z is smaller. Still we note a change in the

spectrum owing to CI. Finally, for Xe at 60 eV and 0.04 gm/cc we see in Fig.4 that the JTAs are

almost completely overlapping and CI merely shifts the entire array with no effect on the internal
structure.

*Work performed under the auspctes of the U.S.Dept. of Energy by the Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.
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Captions

.. Fig. 1 The CI effect in closed shell systems: comparison of direct diagonalization and with pure

j-j results

Fig. 2 The 3d-4f transition of Er LTE spectra

Fig. 3 The Gd spectrum

Fig. 4 The Xe spectrum
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Appendix A. Average UTA energies

The results of Bauehe et al. (5) for the average energies of the UTA between the relativistic

configurations C and C' of Eq, (3) connected by the orbital transition j ct :=z j 13can be written

in a compact f0rm as follows:

" J o_J[3 Jo_J
Jctl[3-_ _ w..E.. / _ w.. =D + Y_(qj -8. . )D. 13Ec i_ cje c' !1 Ij iE cj_ c' Ij 0 " a lala laJa A.1

where

J o.J[3

DO = (J 1_)- (J(xl A.2

{J a)-- {J alhDlJa) A.3

with the Dirac single particle Hamiltonian hD,

_ija jJ {xJ[3 J ccJ13 J (xJ13 8JaJct 13
D. -D .+A {' 2j }

Ja Ja 2Jo_ [3 A.4

J_J[_

D.j a - {Ja,J 13I - (J a,J _) A.5

s Gk(jr, j s)
{Jr'Js)=F0(jr'Js)- (gJs-8.. ) _ 1/2 0 -1/JrJs A.6

• / )2A F +X, gJ_ Jtx k Jl_
= G k(j o_,J13)

k 3 1/2 0 -1/2 A.7

Jc_J[3 k Ja Ja a k Jcz J_ k J[3 k(ja, j l_)
F _-k_ y" gjagJ 1 j[_j[3 /2 0 -1/ 1/2 0 -i/2g

even A.8
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where Fk and (3k are the Slater integrals and gj s - 2j s + 1.

We turnnow to Eq. (6) and show that this equation holds true also in the fully relativistic

" treatment using averaged radial integrals. The results of ref. (6) for the non relativistic average

energy of the UTA between the two configurations A and A' of F-xi.(3') connected by the orbital

transition nal I3=, ni31 13 (a =, 15) can be written in a compact form as:

etl3

CtOi3 - 8 aa) D
(xi3

E A =D + _(qa aa A.9

where

D? -- (_) -lot) A.10

{a)--Ialhla)

with the Schrodinger single particle Hamiltonian h

8

a_ _a _iaaa+l 41alBD 13= D 13+ A a13{'41 -+I}
_ A.12

Daa13- {a,13}- {a,al A.13

/ ,_k Gk(la'lb)(a'b)-FO(I a'l b)- 2 ga-8ab 0 0 0 A.14

gaglBy(I kl01312 2 }Gk(lal 13). A o._ _=FOCI3+ 4 k_0 0 {28k'1- "gag IB ' A.15

gagl3 2 f[ ak[ a I3 a II3)Fa13= 4 k¢O\0 0 0 0 0 0 131I Fk(I a.
even A.16

where Fk and Gk are here the non-relativistic Slater integrals.
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In a fully relativistic treatment, the non-relativistic expression A.9 can be related to the

relativistic analog A. 1, by comparing the corresponding configuration average energies, which,

unlike transition energies, are independent of CI. In this way, we obtain

ZgjOa)
Ja a

la)-- ga A.17

J_J[3 D?which relates D 0 to , and, for the two-body contributions,

j_agja(gj b- _j ajb_Ja _ b)
{a,b) =

ga(gb- 8ab) A.18

Using A.6 and A.14, this leads to

2

= G k(j a ,J b)
ja E a Jb_bTgJagJ I b I a2J • A.19

Radial integrals of the type Fk (kt0) do not appear in the expressions for the configuration

average energies. However, since they depend only weakly on j we can safely use the linear

. approximation of Bauchc et al. U) to obtain

_- g bFk(j j b)ja e aJb_ bgja j a,
Fk(I a,[ b) =

g gj
ja _ aJb_ bgja b A.20

These averages, unlike transition average energies, are independent of CI. Since the single

electron parts DOin Eq. (A.9) is a difference of configuration average energies, it represents the

exact relativistic single particle contibution when expressed in terms of the relativistic quantities

as in A.17. For the two-body parts of (A.9) we take again the averages (A.18) or, equivalently,

(A.19) and (A.20), since usually the relativistic slater integrals depend only weakly on j (though

they can differ greatly from their non-relativistic analogs) and in that case the result is exact.
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Appendix B. The intensity and average energy of a JTA

The total intensity of therelativistic UTA between the configurations C and C°of Eq. (3),

" connected by the orbital trmisition j cx=# J 13is given by

JcxJ_ J_J_

W c - _. Nifo=Ncf c
i_cj_c' B.1

where N._ is the population of level i (assumed statistical, Ni = N og i , within a configuration),

Nc= _N i
i_ c B.2

is the population of the configuration C, and the average transition probability is

J_J_ 1 f.
fc -- _ gi lj

gci_c j_c' B.3

with the statistical weight

gc = y.g.= a
ice i qJa B.4

The analytical result for the average transition probability is (8)

J _tJ 13 J IxJl3 J ocJ13

' fc = cp Qc B.5

where

2

fJ l 0cp =tcocI_gcxg I 1/2 I
B.6
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with

2

' aB (1),2_ a 1 I 131zg (M'gs)[0o o ,

Jail3 _ .
wherek'isa constantdefinedbythechosenunits,E _-E Isanaveragetransitionenergy,

Mt(l) ,(1) j ctjl3

J aJ 13= M ccfl is an average radial transition integral, and Q c is given in terms of the

occupation numbers of the active orbitals in C:

• JocJi_
Qc -qj (gj -qj )

a 13 13 B.7

Assuming statistical level populations within the configuration A,

N A N c N i
-----=.----=--..-=No
gA ge gi , B.8

we obtain for the total j cc=_ J 13JTA intensity

J(_J_ N A J(_J_ Jo_Jl3

JocJl3"- _ N f.. = e_Agcfc =NWA -ieAj_A' i U "_"Ac AfA B.9

where

JocJ13 JocJB J ocJ13
JaJ[_ 1 _ gcfc = 9 QA

• fA = g"A"o_A B.10

and, using standard binomial relations,
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JaJl3 JaJl3 qa(gl3- q13)

QA - g-_A gcQc =gJagJl3"" gagl3
B.11

Using the identity

2

gjagj _ 1 = 2
JaJ{3 13'_'1 B.12

we obtain for the total UTA intensity
t

JaJl_

fA = 2 _:a13q a(gl_- q 13)
J °_J13 ' B.13

The normalized JTA intensity is therefore obtained from the relations between n-j symbols

yielding

i- JaJl3 fA 1 I_

W - jaJl 3 =_'gj gj.. a 131/2 0 -1/2
Y'fA

JaJl3 B.14

The following relations are easily verified

gJ JaJ gjJail3 13 13Y r,v Y,r,v
' - ga

" = _ J13 B.15
, Ja

From Eq. (9) we obtain for the JTA's average energy
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JaJ "aJp
gcfc 13Elc

JaJp _A

E A = jajp
" _ gcfc

cEA B.16

JaJpD J aJ_
5". Y.(qj -8 )gcQc a

JaJ_ c_A Ja " JaJa J

=Do + JaJp

gAQA B.17

Again usingbinomialrelations,we obtain

J aJ _ J aJ I?, JaJ
E A - D 0 + Z(qa - 8 ac_)D-aa B.18

where the barred D's are averages of the form

J aJ
_ JaJf_D. fiJaJ[3 I _,

Da - --"-- _'Ja
ga°_ Ja Je B.19

lt should be emphasized that although Eq. B. 16 contains only j-j occupation numbers, the result

B. 18 is given in terms of the "non-relativistic" occupation numbers.
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