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Configuration Interaction in LTE Spectra of Heavy Elements

A. Bar-Shalom and J. Oreg
Nuclear Research Center Negev, P. O. Box , Beer Sheva Israel

and

W. H.Goldstein
L-Division, Lawrence Livermore National Laboratory, Livermore, CA 94550

Abstract

We present a method for including the effects of configuration interaction (CI) between
relativistic subconfigurations of an electron configuration in the calculation of emission and
absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions
for the correction to the intensities, owing to CI, of an unresolved transition array (UTA) and of a
supertransition array (STA) are obtained when the correction is small compared to the spin-orbit
splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working
formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects
are significant. Examples of the effect are presented.

L. Introduction

The supertransition array (STA) model provides a method for simulating the spectra of of
LTE plasmas, under the assumption that j-j coupling is a good approximation. The model was
formulated in terms of transitions between j-j coupled electron sub-configurations, and
configuration interaction (CI) was neglected. To include CI the energy matrices for levels
involved in transitions must be diagonalized. This approach is impractical for the case of LTE
spectra of complex atoms because immense numbers of levels contribute. In this work we
demonstrate a method to bypass the need for matrix diagonzlizations and include the dominant
effects of CI within the STA model.(!2?) This dominant effec is the interaction between
relativistic sub-configurations of the same LS configuration.

The CI effect on radiative transition arrays was first investigated by Bauche et al® As
indicated in Ref. 4, the effects of CI can be separated into a small, second order, energy shift, and
a possibly large change in intesity. In this work we obtain analytic expressions for the latter
correction in the unresolved transition array (UTA) and STA models. These expressions serve
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both to supply working formulas for STA calculations and give practical rules for determining a
priori when CI is important.

We first show that although the number of "relativistic," or j-j, UTAs (called SOSAs by
Bauche et al.®)) contained within a single "non-relativistic,” or LS, UTA may be very large, in
general each non-relativistic UTA splits into only three sub-arrays, which we call J-Transition
Arrays (JTAs). Similarly a "non-relativistic" STA splits to only three "extended" JTAs. The
effect of CI is mainly to redistribute intensity among the three JTAs.

Section II containes a short theoretical background. In section III we define the JTAs and
present the analytic expressions for their moments (intensities and average energies). The
average energy of a "non-relativistic”" UTA is then expressed in terms of the moments of the
three JTAs. Section IV presents the expression for the CI-induced correction in the average
energy of a "non-relativistic" UTA. The effect of CI on the JTA intensities is analyzed in section
V, where we present the analytic expressions for the corrected JTA intensities, and demonstrate
the effect in specific simple examples. In section VI we extend the treatment to the STA model.
Section VII presents calculations of LTE spectra showing the effect of CI under various
conditions. All detailed derivations relegated to the appendices.

I1. Theoretical Background

The STA model has been presented in several previous works.(1:2:3) The reader is referred to
these references for further details. In this section we mention only briefly the most relevant
points. A superconfiguration is a collection of configurations constructed by distributing the
electrons occupying a super-shell amongst its constituent electron shells or sub-shells in al}
possible ways. UTAs and STAs are the sets of transitions between two configurations and two
superconfigurations, respectively. The STA model is fully relativistic and, as previously
mentioned, is based on configurations that are manifolds of pure j-j coupled basis states.

In the development that follows, it will be neccessary to compare transition array moments
expressed in terms of j-j coupled states to those expressed in terms of the physical states of an LS
coupled configuration. Note that the latter are generally linear combinations of the former. Tn
preparation, we present here several definitions, and a simple rule involving partial averages.

The average energy of a transiticn array is defined as

i )



where Ejj the energy difference between states i and j and the weight wj; is transition line

intensity,
i = Nify @)

in terms of the initial population N. and the transition probability f i In the UTA model, the
population distribution within a configuration is assumed to be statistical and the weights are
simply W;; = 8;f}; where &; is the statistical weight of i.

We denote by E"C“JB the average energy of the J o = J B UTA between two j-j

configurations, ¢ and c', where j 0tE(nmlmj c[), and

qj qj q qj qj q‘l -1 qj +1

q.la A a
=G U e PP o= Gy e TGP .

Similarly, the average energy of a "non-relativistic" UTA between the two configurations

q 9, q qp ‘ q, q, q-1 q,+1
A=(nl) (n,l, )...(nql0,)?‘--(!1‘3I B) ,A= () (ﬂ2|2)...(nal o) a...(nﬁl B)ﬁ
(3"
characterized by the single orbital transition nal o= nBl B is
2 w_E
£ _keaiea K M
A Lowy
keAleA’ (4)

where k and | are physical states contained in A and A’ respectively, and include therefore the CI
between j-j sub-configurations.

The results of Bauche et al. 9 for these average energies can be written in a compact form
as
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E =D, + 2(q, -8. .)D, ..

C 0 jg ‘Iﬂ Jaja Jn (5)
of of of
EA =D0 + Za(qa-58a) D, ©

where the ordinary D's and italic D"s are independent of the occupation numbers and given
explicitly in Appendix A in terms of radial integrals. In Eq. (6), and hereafter, a non-relativistic
orbital n,l , will be denoted simply by a.

The result (6) was given by Bauche et al.© only in the non-relativistic limit. It is shown in
Appendix A, though, that Eq. (6) holds true to a very good approximation also in a fully
relativistic treatment where the "non-relativistic" radial integrals in (6) are taken as specific
averages of the relativistic ones.

We will use quite frequently the following simple rule. Let G bea group of numbers Ej and
g non overlapping subgroups comprising G.. The average of the Ej weighted by wj in G, defined

as

E.= X w.E./w W, = w.
G jegg 117G ’ ieG ! 7

can be written in terms of the partial averages

E,= 2 w.E./w , W, = X w,

4 ieg i1 g 8 ieg (8)
as

E.= Y w_E_/w , W.= X W

G g €G 8 8 G G ¢ €G 8 (9)

HI. J-Transition Arrays

Consider the "non-relativistic" UTA, A = A’ defined by Eq. (3'). Each shell (nl) 1

containing q electrons is in fact a union of all subshells (nlj),

(nl )q= Y [(nl +)q”+ (nl _)q‘]
{9-+ q,=q} (10)



where nl,=nlj, (j=I+1/2). Of course, the |+1/2 subshells become degenerate in the non-
relativistic limit.

Depending on the number of partitions of q, the number of relativistic UTAs ¢ = ¢' (Cf. Eq.
(3)) in contained in A = A' may be very large. However, the mean energies of these UTAs

naturally cluster into three dinstinct arrays characterized by the three suborbital transitions (the
principal number n is cmitted hereafter when convenient) j o = j B with

|
| N ] N ; 'a+=°|[s_for0<la<
o- B ' oy B, " Im_=>|B for0<|[5<|0!
+ (11)
The fourth possibility
'a+=>'3_ for 0<|B<|a
| = 0<!| <l
- " 8B, * B (12)

is eliminated by the selection rule

fa-ig<t - fa-tg=t (13)

When an active orbitals hasl=0 these selection rule yields only two arrays. Each array Jo = j'B

- which will be called a J-Transition Array (JTA) —is actally an STA that includes many
relativistic UTAs with nearly the same mean energy.
As an example consider the "non-relativistic" UTA

qa 3 qa 2
A= II (ngly 3d° = A'= II (n,l, 3d°af
az3d,4f a#3d.4f (14)

for the orbital transition 3d => 4f . This transition array comprises relativistic UTAs ¢ = C',

where

I1 2 (ny, 1,)
ceA: ‘ar3d,4f £, +4, =4,} fa,la, - A
2

[(3d+) + (3d,))"(3d-)+ (3d,) (3d ) +(3d )]



q, q
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c'e A 3q.41 {90, * %= 4} T e - A

[3d )%(4f-) + Bd0)’(4£2) + (3d,) (Bd)(4f.)
+ (3d%) (4f,)+ (3d%) (4£,) + (3d,) (Bd)(4f,)]

and the 3 JTAs comprise all transitions from ¢ to ¢' with 3d-=4f., 3d+=>4f. and 3d+=>4f+.
In Appendix B it is shown that the normalized JTA intensity is simply

jaj 3 l L
- B J a2
W =78 gj{lajl}
* "Bl BB (15)
and its average energy is

Joly  dody o
E =D + 2(q,-0,,) D >0 <

A 0 ) a aa a ’ qq y qB gB (16)

where the barred D's are defined in Appendix B. The remarkable feature of Eq. (16) is that,
“although it holds for transitions between relativistic sub-configurations, it is expressed in terms
of the orbital occupation numbers of the "non-relativistic" A = A" UTA.

IV. The CI Shift in the Average Transition Energy of a "Non-Relativistic" UTA

The average transition energy of the A = A' UTA, without CI effects, can be written

x 2 g.f.E.
of  ceAckeA’ iecjec ! yu
A 2' _ Z" "gifij

cc=AceA ie€cjec (17)

It follows from Eq. (9) that
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The Cl-induced shift in the average energy of the A = A' UTA follows from a comparison of
Eqgs. (4) and (18), or, equivalently, (6) and (16):

o dalp dg o _alp Jadp
sg*P = iB‘EiB':[DO—Z-W D, p]+)3a(qa—8w)[DaB_.>:w D, 1

j“’B "“jﬁ

(19)

By substituting explicit forms for the expressions appearing in (19) and rearranging terms, it is
possible to show that

- q,— 9
[qa 1+8qa,0 B qﬂ’(‘“ +2)] U'B

aB_\ _ B
oF “1 4 ,+1 4IB+1 r

A
(20)

where FaB is independent of the occupation numbers.Since Eq. (20) is one of our main results

we write here the detailed form of I"mB in terms of the relativistic Slater iniegrals:

o
r?=0’ 3 (-1 PFgipt

k, . . k,. . .. 1.. .
jfjbgjagjﬂ{kgom (adg) Fiaip) +¥(iaip) G'(J a,,ﬁ)}
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even

where Fk( igd B) and Gk(.i ol B) are the direct and exchange Slater integrals,
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and
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The following features of Eq. (20) should be noted: the selection rule (13) is inherent in the n-j
symbols; only the active orbitals appear; the exchange part includes only Gl( Jod B) ;

rop depends on the overlap between the active orbitals mainly through the dominant

Gl(j o, J B) integral; and the sum in Eq. (21) is over the 4 possibilities of j, j,. The four
contributions of Fo(j od B) cancel each other owing to the alternating signs; in the linear

approximation of Bauche et al.(7) the cancellation is exact, while in general the total contribution
is negligible. ‘

The analytic expression (20) yields two simple rules for identifyinga priori the cases where CI
is significant. (1) The CI effect increases as the occupation number of the active shell o increases
and that of B decreases; the strongest effect occurs when the shell o is full and f is empty; and
(2) the effect is increases with increasing overlap between the active orbitals. Thus 1s-2p , 2p-3d,
3d-4f, transitions will have the strongest effect while for the 3d-4p transition the effect is
expected to be small. These rules are demonstrated below in examples.

V. The Effect of CI on the JTA Intensities

The normalized JTA intensities in pure j-j coupling, Eq. (15), is summarized for the strongest
transitions in Table 1. Evidently only two JTAs have significant stength for each type of
transition. For the s -p transition only the ++ and +- combinations exist, while for others the +-
transitions are very weak.

Configuration interaction shifts level energies and redistributes oscillator strength. If the
interaction is very strong compared to the spin-orbit interaction, the three JTAs will completely



intermix, forming a single structure. In this case the intensity redistribution will have no effect on
the transition array. We are therefore primarily interested in cases where the Cl is strong enough

to cause an apparent effect, but not strong enough to actually merge the distinct JTA structures.
In these cases individual transition lines are shifted to Eij=:~E §= E i + AE i and their

intensities are changed by N, f i = S ij? but the JTA structure still exists and each individual line

can still be attributed to one of the three JTAs.

Table 1: Pure j-j JTA intensities

Using again Eq. (9) we can write the "non-relativistic" UTA average energy (cf. Eq.(20)) in
terms of the Cl-corrected JTA energies and intensities as

) S.E. Z Sa EA
EaB_ icAjea U U Jalg
AT S s, T o
icAjea' Y s,

B

Talp (24)
where the CI-corrected JTA intensities are

s, '= X s,
icA jea' Y
fi°‘=>jB (25)

and the their shifted average energies are

jajp Z jqu
E = S.E../S
A icAjea U U A
1oy . (26)



The sums in (25) and (26) are over all transitions contained in the J o = J B JTA.
Jod B
We will consider the corrected JTA intensities S A asunknowns to be solved for under the
following assumptions. Since each JTA is distinct from others, and unresolved witk:in itself, and
since the CI effect on level energies is small (second order), we can approximate

jGjB jajs
E, = E, X))
yielding
Jodg Jgl
off - B _Jaip
EA =j5.l} SA EA
“8 (28)

where the normalized intensities are

i Jai Jod
= B o’p o’p
A = S A / ; 5{'. S A
a8 (29
From (28) and (18) we can now write the following equation for the intensities
igd Jadg Jgi
ap = B TR _Tolp
SEA_J_)% S, -W )HE,
“B (30)

Further, as shown ir: Table 1, the intensity of the + - transition is very small. We shall see
below that the CI effect tends to eliminate it almost completely. We therefore ignore it and
assume

__a+B+ __a_B_
S, +S§, =1
Explicitly we have
_a+B+ a+’3+ ...a+B+ 0._[’).. QB Q'B
S, E, '+0-5, )HE,TT=E, +8, . (32)



leading to the following analytic expressions for the CI-corrected intensities:

of of _o.B,
S‘a—B_:(Pa—ﬁ—'i' SEA (Pa-B—= EA mEA z-wa"ﬁ_
A A Ea_p__Eu+B+ , A G—B—_ (::Jr|3+
A A A A (33)
o-B-
§a+B+=(Pa+B+— SE‘ZB (pa+B+= EA B —EQAIs z_wa+B+
A A pocBo_pebe TA o B obs
A A A A . (34

It should be pointed out here that we have obtained the Cl-corrected JTA intensities without
diagonalizating the energy.

Before considering the effect o STA intensities of CI, we present simple examples in closed
shell systems where direct diagonalization is compared with the pure j-j intensities of Table 1.
(The use of closed shell examples simplifies the line spectrum sufficiently to clearly demonstrate
the CI effect; he scaling of the effect with the occupation numbers of the active shells is given
exactly by Eq. (20).) The upper drawing of Fig.1 represents the spectrum of the 3d-4f transition
in nickelike Tm. In this case the active electron is promoted from a closed shell to an empty one.
In addition, the 3d and 4f orbitals strongly overlap. As expected from the rules obtained above,
this case exhibits a strong CI effect. The heavy and thin traces in the figure describe the
transitions with and without CI, respectively. Note that the CI shifts are indeed small, but the
JTA intensities invert. Another interesting point is that the weak +- transition disappears almost
completely. This effect is observed in all other examples, as well, and was used to simplify the
equations for the corrected intensities, (33) and (34). The second and third drawings in Fig 1.
present the results for the 2p-3d transition in neonlike and argonlike Fe, respectively. All the
arguments used in the previous case hold true also here, and we obtain again a strong effect. The
lower drawing of Fig. 1 is the 3d-4p transition in nicklelike Tm. Since, in this case, the active
orbitals do not significantly overlap, the effect is small and the JTA intensities are similar to their
pure j-j values.

V1. The effect of CI on the STA spectra

The STA model is fully relativistic, and describes transitions in terms of j-j configurations.
The three STAs corresponding to the three sub-orbital transitions j, = J B ,o=p,of

Eq.(11), we define as "extended" JTAs. Taken together, these three STAs form an extended,
“non-relativistic" STA, corresponding to the orbital-to-orbital transition o = B.

11



Despite the vast number of overlapping UTAs in such an extended STA, in many cases the
JTA structure remains apparent, and the effect of CI again redistributes the intensities among
these extended JTAs. We will develop analytic expressions for the corrected STA intensities
similar to (33) and (34) following the same steps.

Using the mean average rule, (9), we write the average transition energy of an extended STA
without CI in terms of those of the three STAs it includes:

Sado Joi
af o B _T%'p
Egra = I Ej WstaEsta
*°8 (35)
JaJB
where W sTA IS the normalized intensity of the j, => § B STA, and is given in terms of the
Jol
average transition probability f A Oof the JTA, obtained analytically in Appendix B,
Jol §ol Jal Jod Jod
B_ g = BB o’p
Wsta = AGZSCNAfA ’ Wsta = Wsra /jEj W sta
B , (36)

The average energy of the JTA is

5 : .imj'3 jajfi
P N, f E
E’“’B_ AesCc A A A
STA = Todg
> N.f
Aesc  AA 37)

The populations N A of the configurations A are not removed by the normalization as in the
UTA case since the energy difference between configurations within a super configuration may
be large compared with the corresponding Boltzmann factors. (!

Equations (35) and (36) assume statistical populations within the "non-relativistic"
configurations A. Making this assumption only within relativistic configurations, as is done in
the STA model, we have instead of (36) and (37)

J“jB JaJB

W = 2 X Nf
STA AeSC = A cc (38)
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s 3 Jod B Jol B
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Jodg  AcSC cen ©°©
STA ~ Jolg
T TN,
AeSC ceA (39)

Since the extended JTAs are simply relativistic STAs, explicit formulas for their intensities and
average energy, (38) and (39), have alreadyt been prcsented.(l'3)

As for UTAs we can write the average energy of the extended STA, including CI, in terms of

the Cl-corrected intensities and energies. Using the extended JTA moments,

c

E

igl B
S = X .
STA jjesta U
(Ja=iy) “
for the corrected intensity, and
Jol ol
B *°p
E = X S.E./S
STA i,je STA i ij° ~ STA
(a=dp) (41)
for the average energy, the mean average rule yields
( 2z )) S.E. Sode Joi
EaB _ AeSC ieAjea W U 5 .S.“BE o’g
STA — pX X S.. ‘j j ~STA " STA
AeSC icAjeA' Y o’'p
§i alg Jadg
STA — i S STA
L o’p (42)
Assuming again that the average JTA energy is little affected by CI we can write
iod i
E STAB = Eg ’
TA (43)

and the CI shift in the average energy of the extended STA will be
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Jadg oy Jaly
STA Wsta JEsta
Jalp (44)

Now, using the (very good) statistical approximation for all levels ie Ce A,

NA__Nc= Ni:=N
gA_gc E;

° (45)

where the N's and g's are the corresponding populations and statistical weights, respectively, the
shift, Eq. (44), is simply the sum of the shifts, (20), of the included UTAs. Therefore, from (20),
we obtain the expression

S N, f,8E%
5E°D _ AesC
STA — Xz N,f,
Ae SC
<q,—1+3d > <Ag=8 4 42)”sTA
=[ o qa.O STA _ B CIB’( $+) ]F“B
1 4,+1 4 +1
P (46)
where
Jod
_ p
f,= ; Zj £,
o’ B 47)
with the occupation number averages given by '
X N,f,q
cq >  ohesta A AT
Qa”sTa=" 3 N, f,
AeSTA (48)

These occupation number averages, in both "non-relativistic" and relativistic representations, are
easily obtained within the STA model as, respectively,
ax U ofa
g a‘™a Q-—Z(g )

<43 >t = oB X;=¢
S
Ug(8™)
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and

2
Ja 1 JB ax U jajﬂja)
135 g2 1, gjagjﬂ.véag"ﬂ i, EP
- —a kT
<93 >g1a = : 2 X; =¢
5 jo 1 JB} jajp ?
g, g. X, U, (g8 )
jajB I ﬁ1/2 I 0. Ja JB J Q-1

where the quantities UQ-1, UQ-2 are reduced partition functions as defined in Ref. 1.

Know:ng the CI shift (41) we can now use (40) to solve for the corrected JTA intcnsities.
Following the same steps that led to Egs. (33) and (34) in the UTA case, we obtain for the
corrected STA intensities

af of o, B,
. OF 1A ap._ Esta “Esta W“ -B-
sta = PstA Lo B 0B Psta T 5 5 B
STA STA STA ~ T STA (49)
of a_B_ _of
_“+B+_ a,B, "SESTA o,B, Esra ~Esta WaB
sTa ~ PstA o B 0B, PSTA T o 5. a.B,
Esta ~Esta Esta ~Esta (50)

where JE is given by (42) and the E's are STA average energies as given by the STA thcory.(1'3)
VII Examples of STA spectra demonstrating the CI effect

We conclude with several examples demonstrating the effect of CI on STA spectra for four
cases. In Fig.2 we present the 3d-4f transition of Er in LTE at temperature T= 60 eV and density
p=0.04 gm/cc. Under these conditions the average 3d occupation number is close to 10 while the
4f shell is on the average half empty, leading to a strong CI effect. The intensities of the ++ and
-- STAs are indeed exchanged. In Fig.3 we present a Gd spectrum at 60 eV and 0.04 gm/cc.
Here, the overlap of the JTAs is much larger since Z is smaller. Still we note a change in the
spectrum owing to CI. Finally, for Xe at 60 eV and 0.04 gm/cc we see in Fig.4 that the JTAs are
almost completely overlapping and CI merely shifts the entire array with no effect on the internal

structure.

*Work performed under the auspcies of the U.S.Dept. of Energy by the Lawrence
Livermore National Laboratory under Contract No. W-7405-Eng-48.
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Captions

Fig. 1 The CI effect in closed shell systems: comparison of direct diagonalization and with pure
j-j results

Fig. 2 The 3d-4f transition of Er LTE spectra

Fig. 3 The Gd spectrum

Fig. 4 The Xe spectrum
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Appendix A. Average UTA energies

" The results of Bauche et al.’%) for the average energies of the UTA between the relativistic
configurations C and C' of Eq. (3) connected by the orbital transition Jo => J p can be written

in a compact form as follows:

jaiB jajp jujp
E, = 2, w.E../ > W =D0 + X(q, =98, . )D,
iecjec v iecjec J Ja Ja Jadoo Ja Al
where
badg
Do =<"B)_(J°‘) A2

(ia)= (j AIh Dlj a) A3

with the Dirac single particle Hamiltonian hpy,

. . . . . S
Jalg  Jodg  Jalg Sjaja Jag

Dja EDja + A Zj(x - 2Jﬁ) Al
jmj‘3
DB N
ja (’a"B) (iada) | A5
. 2
g; J.o k]
. . 0,. . J r s k. .
(Jr’-’s)':F (J p]s) - Tg—_:g—_—;z( J G (.'r’.' S)
Js jrjs kA1 0 -y A.6
o . . g g. 8, .-3 . 2
AJaJB_FJaJﬂ 5 jg Cig kl jo kK g Lk
= +k 3 G(JaJB)
72 0 -112 A7
. Kigdo| (1q % Ja)(lg * Jp ). .
= gj g.i 1 (Ja'JB)
k#0 ‘o - BBz 0 -112/\yy2 o -in
cven A.8
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where F¥ and G¥ are the Slater integrals and g; = 2jg+ 1.
s

We turn now to Eq. (6) and show that this equation holds true also in the fully relativistic
treatment using averaged radial integrals. The results of ref. (6) for the non relativistic average
energy of the UTA between the two configurations A and A’ of Eq. (3)) connected by the orbital

transition n ! B=:~ n l3I B (0. = B) can be written in a compact form as:
e 0% 45, -8,90F
A 0 a a ao a A.9
where
of _
DO =(ﬁ)_(a) A.10
)= (an [2) Al
with the Schrodinger single particle Hamiltonian h
PO _pB, 0B Baa _
a ~Fa tar 41 4l )
' B A.12
aff
D, = (a,8) - () A13
2
| k | .
0 g
(a,b)=F( I W~ -}Z——_—_—%—'Z( b] Gk(I | v
Ba”%bk\o o0 o A.14
2a8q (1 kI Y
of __of "¢ BZ( B) 2
AP =F "+ (%8, —=——]}G )
000 ) 3kl gg L 'o A.15
£,8
af °o B (l
F = F(I
4 k#0\000 000 ){ } 'p
even A.16

where Fk and Gk are here the non-relativistic Slater integrals.
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In a fully relativistic treatment, the non-relativistic expression A.9 can be related to the
relativistic analog A.1, by comparing the corresponding configuration average energies, which,
unlike transition energies, are independent of CI. In this way, we obtain

jzgj a(j a)

)= €a A.17

i
which relates D 0 P to DO? , and, for the two-body contributions,

( j%gj a(gj b_ Sj o) b)(ja ’j b)
,b) =
~ CHEREE N At

Using A.6 and A.14, this leads to

jadyk)’
k 1 a’b k,. .
Gl ,ly=" X 78; 8; {I | L}G(Jagb)
j,€a jbEb a bl p! a7 A.19

Radial integrals of the type Fk (k+0) do not appear in the expressions for the configuration
average energies. However, since they depend only weakly on j we can safely use the linear
approximation of Bauche et al." to obtain

' k. .
X gog FG, iy
, jeajebla Jp ’
(N IE 5
' g. g.
J,€ ajbeb"a Iy

A.20

These averages, unlike transition average energies, are independent of CI. Since the single
electron parts D in Eq. (A.9) is a difference of configuration average energies, it represents the
exact relativistic single particle contibution when expressed in terms of the relativistic quantities
as in A.17. For the two-body parts of (A.9) we take again the averages (A.18) or, equivalently,
(A.19) and (A.20), since usually the relativistic slater integrals depend only weakly on j (though
they can differ greatly from their non-relativistic analogs) and in that case the result is exact.
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Appendix B. The intensity and average energy of a JTA

The total intensity of the relativistic UTA between the configurations C and C' of Eq. (3),
connected by the orbital transition j o = J  is given by

Jodg 1o}
We = 3 Nif =N,

c T
iecjec

p
B.1

where Ni is the population of level i (assumed statistical, Ni = Nogi , within a configuration),

Nc= .Z Ni
iec B.2

is the population of the configuration C, and the average transition probability is

| P
B_ 1
f == > g.f.
¢ gciecjec' ty B.3

with the statistical weight -

§;
g.=2xg. =01 °
© jec i al9;

Ja B4
The analytical result for the average transition probability is @)
fj"‘jﬂ_ JaJB Jolg
S A B.S
where
) 2
Jolg {J o 1 JB}
¢ =K 808
af BIl 172 1
B « B.6
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with

2
1 o 11
K aB = K'EaB (M U.B){‘ P
0 0 o/,
1,3 o8
where k' is a constant defined by the chosen units, E ~E  is an average transition energy,
M,(1) _ M,(1) i o
jgd off is an average radial transition integral, and Q is given in terms of the

B
occupation numbers of the active orbitals in C:

o]

B_

B B B.7

Assuming statistical level populations within the configuration A,

€, "B B "o B.8

Jod Jds N 1] i3
W, '= I N& B:f"— S g f, =N,
icA jea” 'Y AceA B.9
where
1) Sodo I 4, Jol
B_ 1 ' a’p "B
f, =52 8f; =0 'Q,
AxcA B.10

and, using standard binomial relations,
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jalg ) jalg qa(ga-qﬁ)
Q, =5-28.Q =8, 8; —-ngr

B.11

Using the identity

) )
JmlJB

1

2 g g
JBI[32 o

. =2
Jodg 7@

£
B.12

we obtain for the total UTA intensity
J'QLJ'B
> f =2x -
5 A an“(gB ap)
*°B | B.13

The normalized JTA intensity is therefore obtained from the relations between n-j symbols
yielding

.. jajB" . . 2
_W“O.Jﬂ_ fA —1 Ja lJB
= Jod. 28 8j
B @ P12 0 -12
)X £,
Jod
B ' B.14

The following relations are easily verified

g

jaj j JaJ g.
- B = *B
YW =_E. , W =_.J_°L
: g : g
‘o ' s - B.15

From Eq. (9) we obtain for the JTA's average energy
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Jm.iB XAgcfc E.
Ey, = Jnjp
2 g.f;
EA

Z(q° —‘sjj )gch D,
a’t

B.16
jolg
ia

=Dg '+ Tl
8AQ4
Again using binomial relations, we obtain
Jodg by Jalg

EA =D0 +§(qa_8aa)"5-a

where the barred D's are averages of the form

Z e—e— a D
a ] i
g:ﬁ iy Ja Ja

B.17

B.18

B.19

It should be emphasized that although Eq. B.16 contains only j-j occupation numbers, the result
B.18 is given in terms of the "non-relativistic" occupation numbers.
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