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Abstract 

The prothestic heart valve has improved the length and quality of life for people 
with serious heart conditions. Even though the designs are extremely reliable, the valves 
are mechanical and operating continuously over a long period, therefore, structural 
failures can occur. Lawrence Livermore National Laboratory is performing the research 
and development necessary to construct an algorithm capable of non-invasively 
classifying the condition of the outlet struts of implanted Bjork-Shiley Convexo-Concave 
(BSCC) heart valves. This technique will analyze acoustic signals that are caused by the 
heart valve's disc striking the outlet strut when the valve opens. Since the disc is 
activating the outlet strut directly, the condition of the strut will have the greatest 
influence on the radiated acoustic signals. These acoustic signals are recorded in vivo 
from functioning heart valves. Our approach is to apply the signal processing necessary 
to extract pertinent information from the acoustic data and develop BSCC heart valve 
classification algorithms based on features of the enhanced acoustic signals. We have 
assembled the hardware and software needed to extract opening sounds from acoustic 
data sets, perform quality control on the signals, reduce the size of the data set by various 
transformations, extract features from the transformed signals, select the optimal features 
for classification, and build classification algorithms to determine the condition of the 
valve from its acoustic signature. We have identified several parameters (features) of the 
opening signals which we process with neural network classifiers to predict heart valve 
condition. These algorithms have proven effective for classifying a limited number of 
explanted heart valves . We continue to expand our heart valve data set and refine the 
classification techniques. 

DISTRIBUTION OF THIS DOCUMENT IS UNLIMIED 
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Introduction 

PROCESSING 
Shiley Bad Beat Spectrograms 

ACQUISTION EXTRACTION 

The goal of this research project is to develop a technique to non-invasively monitor the 
acoustic signals produced by BSCC heart valves to determine the structural condition of 
the valves. Since intact valves radiate different acoustic signals then single leg separation 
(SLS) valves, a detailed analysis of the acoustic radiation will indicate the condition of 
the valve. Before a heart valve classifier can be developed, it is necessary to minimize 
the adverse distortions (Le. noise) in the acoustic signals (Candy, 1994). Once the 
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signal processing techniques have been developed and the characteristics of the acoustic 
signals that identify intact and SLS heart valves are determined, we will build a software 
protocol to automaticgly classify the BSCC heart valve condition. A statistically 
significant amount of acoustic data will be processed to confirm the required performance 
of the classification techniques. 

CLASSIFIER .* SELECTION 
pdfs, clusters statistical 

Early studies conductkd by UNL have proved that it is possible to determine valve 
condihon from the acoustic signal radiating from functioning heart valves in sheep and in 
people. The program first conducted on ovine. acoustic data provided valuable insight for 
our recent studies on clinical data (Mullenhoff, 1993, Crawford, 1993, Buhl, 1993). 
There are differences in the acoustic signals generated by BSCC heart valves with SLS 
and intact outlet struts. Through careful analysis, one may non-invasively determine the 
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condition of an implanted BSCC valve by interpreting these sounds and resonant 
frequencies. 

The classification process consists of two main steps: the training phase and the testing 
phase. The goal of the training phase is to learn as much as possible about the process 
from a known set of data (training data). This data was obtained from explanted valves, 
and therefore their condition was positively known. The goal of the testing phase is-to 
use the information learned in the training phase to classify a "blinded" (unknown to the 
processor) data set. 

Features can be selected from a priori knowledge (Le., pulse duplicator studies), from 
computer modeling of the acoustic response of heart valves, and from human 
interpretation. The signal processing prototyping tool developed by LLNL provides a 
means of interactively manipulating heart valve acoustic data. Since the human brain is 
an excellent pattern recognizer, it is important to visualize the data and discern the best 
processing techniques. The acoustic heart valve data will be processed to recognize 
trends and correlations between SLS and intact valves. The features to be investigated 
will include the following: frequency spectra, coefficients from spectral models 
(including lattice parameters, predictor parameters, correlation coefficients, and others), 
fmt-order statistical features, texture features (second-order), and other representations of 
the data (del Grande, 1991, Ballard, 1982, Jain, 1989, Weschler, 1990, Duda, 1973, 
Kohonen, 1989, Marr, 1982, Pratt, 1978, Rosenfeld, 1988). It is anticipated that LLNL 
will be able to use these feature types both individually and in concert to maximize 
classification performance. LLNL will work with SHVRC and other collaborators to 
identify viable features of the acoustic signals. 

e S w  
We use both automatic and manual feature selection procedures. We have advanced 
algorithms for automatically searching through the set of features and ranking them in 
order of importance. For example, some algorithms rank the features one by one in order 
of a statistical measure of distance between cluster centers in feature space. Other 
algorithms produce a list of the optimal set of features (given a number of features to 
choose a priori). After using feature selection algorithms, we generally perform a manual 
inspection of the one- and two-dimensional cluster plots in feature space to further reduce 
the feature set, to gain physical insight and to allow the insertion of valuable human 
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judgment into the process. We choose the number of features according to the method 
that says that the number of independent training samples (feat& vectors) should be 
greater than or equal to approximately 5 times the number of features contained in a , 

feature vector. Thus the number of features we can us is - .  limited by the nupber of 
training samples (valves) available. . ?  

- 2  

c -  

The goal of the classification task is 
(intact or SLS) h r n  characteristics or features of the acoustic si@ genetated by the 
functioning valje, A wide wuietyof classifiers is a+iiW&ich&n~: - & -.-- =.:. neiresthei&b~r - 
(Duda et. al., 1973), lineat di&nanE (Duda, et. ai., 19?3), back-propagdon neural 
networks (Ru@har& ti& 3986) and probabilistic n&.m%korks.(specht, _. 1990). 
These classifier$ infr=r the valve condition by comp&g tlx&twes &racted from.its - I  . 
opening sounds with those f a m e s  extracted from openiiigi of known vdv&- . 

Neural networks are parallel, distributed information processing structures consisting of 
interconnected processing elements. The processing elements can possess a local 
memory and can carry out localized information processing operations. Neural networks 
have been applied to many pattern classification, communication, and control problems. 
Most neural network algorithms anz adaptive systems which use heuristic approaches to 
discover underlying class statistics. The heuristic approaches usually involve making 
many small changes to the system parameters that gradually improve system 
performance. An example of this type of neural network is the back propagation neural 
network (BPNN) (Rummelhart et. al., 1986). 

determine the stag &.'an unlcno6n.heartvalve - 

. .  
~ .- .;. - -+ --.e 

Recently, a different neural network paradigm called the Probabilistic Neural Network 
(Specht, 1990). The PNN, while having interconnection structures similar to the BPNN 
are based upon statistical principles. Instead of minimizing a performance criterion such 
as mean-square error between known and estimated system outputs (as the BPNN does), 
The PNN estimates probability density functions of the random variables involved in the 
process being modeled. It has the unique property that under certain easily met 
conditions, the decision surface estimated by the PNN asymptotically approaches the 
Bayes optimal surface, as the sample size increases. 

The Probabilistic Neural Network (PNN) has several advantages over the BPNN, making 
it a very effective classifier for most applications. Among these are the following: (1) it 
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requires much less training time (many orders of magnitude) for many problems. (2) 
unlike the BPNN, the PNN cannot converge to poor solutions corresponding to local 
minima of the error criterion, because it is not an adaptive technique. It is a 
nonparametric estimator of the probability density functions of the random variables 
representing the classes of interest, given the observed samples. (3) it has better 
generalization capability than the PNN. (4) it learns in just one pass through the data and 
can generalize from examples as soon as they are stored. (5 )  unlike the BPNN, the PNN 
often performs very well when the set of training patterns is sparse, with a smooth 
transition from one sample point to another. The main drawback of the PNN is that all 
training samples must be stored and used in classifying new patterns. However, this is 
not a serious problem, because once the decision boundary has been formed, it can be 
approximated by polynomial hypersurfaces of sufficiently large degree (Specht, 1990) 
and then the coefficients of these polynomials instead of the actual samples can be stored. 
Furthennore, these stored coefficients are easily updated as new samples arrive. Because 
memory is inexpensive, storage is not a problem for moderate size applications, such as 
the heart valve analysis problem. 

LLNL feature based classification protocol is based on two sets of acoustic data. The 
first set of data trains the feature extraction and pattern recognition system. This training 
data set is made up of acoustic signals from each class of heart valve tested. 
Classification algorithms are calculated by the computer based on the expected results 
from the training data. The confidence in the classification results becomes greater as the 
size of the training set increases. An iterative process is invoked on the training data until 
an acceptable algorithm is derived from a combination of the best acoustic signal features 
and the best pattern recognition algorithm. The performance of the classification 
algorithm is measured by classifying the acoustic signals from a set of test data. 
Classifying the condition of the heart valves represented in this test set determines the 
specificity and sensitivity of the classifier. As the heart valve classification algorithm 
builds on growing sets of training and test data, more confidence is realized in its 
classification ability. The result of the signal processing, feature extraction and pattern 
recognition will be an complete system to classify heart valve outlet strut condition from 
its acoustic signature. 

Our approach is to begin the study by limiting the signal variables to just those caused by 
the valve. In this phase nearest neighbors and linear discriminants are adequate for SLS 
detection. Then as the classification requirements become more complicated (Le. 
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different size valves, patients with double valves, and various heart conditions), advanced 
algorithms such as neural networks will be implemented to detect SLS. Because both 
neural network algorithms make no prior assumptions about what features are relevant to 
the classification, the networks produce non-intuitive boundaries which would be very 
difficult for a human to realize. .Since these decision boundaries are developed 
automatically, they will recognize the different valve size as well as the condition of the 
valve. 

Since the heart valve classifiers, both classical and adaptive, require large amounts of 
independent data sets (different heart valves) for the design and performance analysis, we 
propose to develop a heart valve synthesizer. This beat synthesizer will generate the 
necessary number of independent acoustic data sets. The synthesizer will be based on 
actual data extracted from the clinical studies. This synthesizer will provide us with an 
enlarged ensemble of acoustic data that represents realistic signals to improve the training 
of the classifiers. Also modifying the synthetic data to represent acoustic signals outside 
the range of actual data, helps determine the robustness of the classifier. 

Results 

Our study of clinical acoustic data has demonstrated the feasibility of extending the 
techniques developed for ovine heart valves to human heart valves. We have conducted 
an organized protocol for classifying heart valve condition from its acoustic signature, see 
,Figure 1. The data acquisition and signal processing efforts are described in a paper by 
Candy and Jones (Candy, 1994). The classification portion of this work is presented in 
this paper. 

The first study of the clinical data demonstrated that there is information in the opening 
acoustic signal which indicates the heart valve condition. A set of data from nine 
confirmed heart valves was processed as the training data for a Fisher Linear 
Discriminant classifier (Duda, 1973). Each opening signal was considered a separate data 
due to the limited amount of data. The feature source was spectrogram data files 
calculated with a Lattice spectral estimation technique after high pass filtering and beat 
rejection. The SLS data was combined into one file and the intact data was combined 
into another file. These two data sets were processed with feature extraction and pattern 
recognition algorithms which had proven valuable for classifying the ovine data. The 

6 



features selected represented energy in 1 KHz bands over the 10 to 24 KHz range, see 
Table 1. 

Table 1. Features selected for phase one clinical data classification, 
represent energy in 1 KHz bands over the 10 to 24 KHz range. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

, 11 
12 
13 
14 

- 
Energy in the frequency band from 10 to 11 KHz 
Energy in the fxeq&ncy band- I1 to 12 Kfiz 
Energy in thefxque.n& -- - band fgm 12 to 13 KHz 
Energy in t h&&x&e&y~ fttl_m I.3.to-14 & 
Energy m the fhqumcy -@& 14 to 15 KHZ 
Energy Tn the fi.equenc$-W from k o  16 KHz 
Energy in the frequency- band %Dm 16 to 17 KHz 
. Energy in the frequent$ &in@ from 17 to 18 KHz 
Energy in the mpxiy b h  fmm  to 19 KHZ 
Energy in the frequency band fmm 19 to 20 KHz 
Energy in the frequency band from 20 to 21 KHz 
Energy in the frequency band from 21 to 22 KHz 
Energy in the frequency band from 22 to 23 KHz 
Energy in @e - frequency band from 23 to 24 KHz 

- 

Note: High lited features hrrd-fhe best c~neiatiO~~.with _ _  heart valve condition in this 
phase I study. . 

The average feature values fb?intact& SLS data is p l ~ d  in Ei&e 2. The error bars 

- - -. - .?. .. - - .  .. -- . _ -  . 
. . -  , - . -  
. -  . I  

, ._  1'. . . . . .,. i . ~ 

L -. t&- . 
- w . .  - - = .  . . .: . - -  .. - 

c . . a % .  .- . .~ y . ;?.+-... - 5:: -. -A*. 

represent one standanideation. The average SLS and intact spectrum are plotted in 
Figure 3. Highlighted in Figure 3 are the two bands of energy which performed best in 
discriminating between intact and SLS valves. From the spectra it appears that the 
energy in the 14 to 15 KHz range (Feature 4) would be a good discriminator but looking 
at the average and standard deviation values for this corresponding feature, one notes a 
large standard deviation associated with the SLS data for this feature (see Figure 2). Thus 
this feature was not included in the classification procedure. In processing the data 
during the training phase, the features are analyzed individually and then in 
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combinations. Feature 7 , l l  and 12 performed the best on an individual basis. The 
results are displayed in Table 2: 

I 
. ........................................................... T: ................................................................................................... 

. P  

-... ............................................... < 

1 Average Intact Valuo 

-i. ..... ........ .........- .... ................-.- __. ............. 

&.....4.&.&+..-” .-............... .......... ,- ............ --[ . _ ’  ,.. -1 - .. 

1 2 -  3 .  4 5 6 7 8 cc 9 10 11 12 13 14 
Feature Number 

Figure 2 .  Feature values averaged from 923 intaamd - I  I782 SLS heart beats (4 intact 
valves and 5 SLS valves). Features 7, I I ,  and 12 have discrimination value. 

J 
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Figure 3. Frequency analysis of the opening sounds displays a distinction between 
SLS and intact valves. Note: Difference in energy content between SLS 
and intact valve sounds in the 16-1 7 KHz and 20-21 KHz bands. 

Table 2. Classification results for phase one clinical study. 

Feature Intact Data SLS Data 
Number classified1 class ifiedsLs ck3ssifiedI ck3ssifiedsIs 

7 828 (89 %) 95 
11 92 1 2 
12 76 1 162 

7&11 849 (92 %) 74 

36 1746 (98 %) 
969 813 

1033 749 
36 1746 (98 96) 
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Figure 4.  ROC display of results for a Fisher Linear Discriminant classifieryor feature 7, 
(energy in the 16-1 7 KHz region) - 

. e  

From these results one notes- that-the intact'data&mnectIyclsSed~by all thieeTeatures 
while dm SLS data& konyctlycliyi&-only . __. . by&e-7. .- 'Bpth _ -  feat&ty. i-.&, . l-Lkrd - **. f2 b i s -  ~ - r I .... I e- . 
c l ~ s i f y . ~ ~  .swza&&aw+- - gkneraid-kr &=. 7ima w G  .u.EWe ..- 
4. At i w h o i d  6i0;i.k - ~ ~ t i ~ , C i i r o ~ a ~ ~ - = ~ d e t e c t i ~ n )  isgg.j$ a& .?.- . 

(prbbability 9ffalse aiei 1 -: specifici'ty, is%. When f k  11 a@ 13 are used 
together the &brxnan& is improved slightly. At a 0.5 threshold the sensitivity is 92.0% 
and the false alarm is 2.0%. The correspon'ding ROC curve is shown in Figure 5 ,  (page 
11). Two space plots can show the clustering or separation of the SLS and intact data 
based on the feature values. The best two space plot for this data set is obtained by 
plotting feature 7 data against feature 11 data and is shown in Figure 6, (page 12). The 
green stars represent the centers of the intact and SLS data. The line drawn is the 
perpendicular bisector which aides the visualization of natural clustering of the data. 

, .- .. -- . . ... .- . . - - --- . .. .. 
'ir ;-?I.- .-L.:'s--: -.-. I;. - - e t  --.. 

- -- ---? - -. .* -..- *.+- - .--. . 
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Figure 5. ROC display of the results of a Fisher Linear Discriminant classifier for features 7 

and 12, (energy in the 20-21 and 21-22 KHz region.) 

The previous study demonstrated the feasibility of classifying heart valve condition from 
acoustic signatures, we expanded the fggme q d  extended k data set tqinclude 
test data. A neural networb classifier was developed’on the p&viously mentic?& nine, 
confirmed data sets. Each of 21 additional unconfmed heart valve data was processed 
in a hold one out procedure to test the performance of the neural network classifier. 
These unconfmed data sets had been classified SLS maximum negative by x-ray 
analysis. A narrower frequency band (93 Hz) was considered and the optimal features 
were selected. Our resulp for these heart valves which are considered intact, are shown 
in Figure 7, (page 13). There is a correlation between the performance of the neural 
network classifier and the quality of the acoustic data. Noisier acoustic signals from 
valves 5 - 15 did not produce the expected classification results. We do not know if the 
mis-call is caused by the noise in the data or if the valves were truly SLS. 
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Figure 6. Cluster diagram displaying natural grouping of acoustic data for features 7 and I I .  
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Figure 7. Neural network results for 93 Hz wide frequency features (phase II) .  For example, 
a threshold set at 30% would miss-call 7 of the 21 SLS maximum negative by x-ray 
analysis values. 
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These previously described studies bracketed the extremes in feature selection (phase I 
was 1 KHz wide frequency bands and phase 11 was 93 Hz wide frequency bands). The 
more robust features would fall in between these band widths. The third study we 
conducted was to determine the optimal features for classifying clinical data. The 
spectral features and the reflection coefficients were both extracted because previous 
research had indicated that these two features separated the intact and SLS valves 
relatively well. The spectral features consist of power centered at various frequencies in 
spectral bins of varying widths. Because the sampling frequency was 48 KHz and the 
number of points in each opening was 512, the smallest spectral bin width was 93.75 Hz 
(48000 / 512). Along with this bin width, bin widths of 187.50 Hz, 281.25 Hz, 375.00 
Hz, 468.75 Hz, 562.50 Hz, 656.25 Hz, 750.00 H z ,  843.75 Hz, 937.50 Hz, 1031.25 Hz 
were also included. TheSe are all multiples of the smallest bin (93.75.H~). The reflection 
coefficients were generated using Burg's algorithm with a20h order modeL The data 
used for the training phase consists of features extracted from explanted valves. For the 
normal heart condition cases, there were four intact valves and six SLS valves. For the 
case of all heart conditions, there were four intact valves and seven SLS valves. In an 
attempt to avoid bias, an equal number of openings (or feature vectors) were chosen for 
each valve. The number decided upon was 100 openings per valve. Additionally, since 
our training set was very small, we decided to limit ourselves to only two features in the 
feature selection process. 

The feature selection process determines which subset of features provide the greatest 
separation between the intact and the SLS valve classes. This is accomplished by 
computing a probabilistic distance measure between the classes. The feature subset 
which results in the greatest distance measure will tend to provide the greatest separation 
between the classes. The algorithm implemented to accomplish this is the sequential 
forward selection algorithm with the Mahalanobis distance. Because the sequential 
forward selection algorithm is sub-optimal, it does not always select the features subsets 
which provide the largest distance measure. For this reason, the sequential forward 
selection algorithm was used as a first step in the feature selecGon process. The second 
step was to analyze one-dimensional and two-dimensional feature space distributions for 
features-selected by the feature selection algorithm in an attempt to select features which 
provide the greatest separation between the intact and the SLS valves. The two features 
selected were the spectral power in a band whose width is 500 Hz centered at 22.6 KHz 
and the spectral power in a band whose width is 500 Hz centered at 16.6 KHz. 
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As an example of the feature space distributions, the one-dimensional probability density 
functions for the first case is displayed in Figure 8. The red distributions represent the 
SLS densities, and the green distributions represent the intact densities. The top graph 
display the density functions 

. .  .. 

.-. . - -. I 

Figure 8. Probability density distribution for the two OJ the best features for this phase 111 study. 
This is part of the protocol for selecting feature for chsipcation. 
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Figure 9. Cluster diagram for two optimized features for the phase 111 study. The natural 
clustering indicates classiJication potential for these. features. 
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for the power centered at 16.6 KHz within a bandwidth of 500 KHz. The bottom graph 
display the density functions for the power centered at 11.3 KHz within a bandwidth of 
200 KHz. From these graphs, class separation is clearly apparent with the upper plot 
showing better separation. The two-dimension feature space distributions for these 
features are shown in Figure 9. Again, the red represents the SLS features, and the green 
represents the intact features. For this figure, the separation between the classes is again 
evident. 

After the feature selection has been performed, a probabilistic neural network is tuned 
using the "hold-one-out" procedure (Crawford, 1993, Buhl, 1993). This procedure trains 
a neural network with the chosen features for all training valves, except for one which has 
its feature vectors held out. Next, the feature vectors for the "held-out" valve are 
classified. This procedure is repeated for all valves and a sensitivity and a specificity are 
computed. If the results are unsatisfactory, this process is repeated using different neural 
network parameters (Buhl, 1993). This continues until the neural network has been 
tuned. These tuned neural networks then. classify the "blinded" data set. The results of 
this process are shown in Figure 10, for valve numbers 1-4 and 26-31. 

When the training phase produces acceptable results, the classification procedure is tested 
on a separate data set. Features determined in the training phase along with the "tuned" 
neuraI networks classify all the feature vectors extracted from the valves of the unknown 
condition. After this has been done, a percentage is computed which represents the 
percent of feature vectors classified as SLS. If the percentage of SLS vectors for a single 
heart valve is greater than 50 percent then the valve is called SLS. The higher the 
percentage of SLS calls for a particular valve, the greater the confidence in the prediction. 
We tested our classification algorithm on the "SLS max neg" data set which had not been 
confirmed by explant. These results are shown in Figure 10 for valves 5-25. 

Conclusions 

We have demonstrated that the acoustic signatures of the functioning heart valve provides 
information as to the condition of the outlet strut. Our research is based on the opening 
sou~lds. We have developed advanced signal processing techniques to extract the 
opening signals and transform those signals into the frequency domain to provide features 
for classification of the heart valve. Our classification procedures have produced 
excellent results on a limited number of heart valves. We will increase the confidence in 
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the predictive capabilities of the heart valve classification algorithms as we process 
additional clinical data. 
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