FINITE DIFFERENCE PROGRAM FOR CALCULATING HYDRIDE BED WALL TEMPERATURE PROFILES (U)

by J. E. Klein
Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808
Other Authors:

This paper was prepared in connection with work done under Contract No. DE-AC09-89SR18035 with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available -m (615) 576-8401.

Available to the public from the National Technical Information Service, U. S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

To: J.R. Knight, 773-A

From:
J.E. Klein, 773-A 2 CL

FINITE DIFFERENCE PROGRAM FOR CALCULATING HYDRIDE BED WALL TEMPERATURE PROFILES (U)

SUMMARY

A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis.

INTRODUCTION

This purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The two materials in contact with one another may have concentric geometries (egg. a cylinder in a cylinder) or contacting geometries (e.g. a cylinder in contact with a sphere). This program was written so analysis on systems other than the hydride beds may be performed.

Derivative Classifier

DISCUS8ION

Heat Conduction Difference Equations

Heat conduction equation for material "i", with constant thermal conductivity, k_{i},

$$
\begin{equation*}
\rho_{i} C_{p i} \frac{\partial T_{i}}{\partial t}=k_{i} \nabla^{2} T=k_{i}\left[\frac{\partial^{2} T_{i}}{\partial r_{i}^{2}}+\frac{\Omega_{i}}{r_{i}} \frac{\partial T_{i}}{\partial r_{i}}\right] \tag{1}
\end{equation*}
$$

where $\Omega_{i}=0,1$, or 2 for planar, cylindrical, or spherical geometries, respectively.

For finite difference approximations, let $T_{i, j}{ }^{n}$ be the temperature of material i, at the j th spacial node and nth time step for $j=0, \ldots, M_{i}$ and $n=0, \ldots, N$. The following finite difference approximations were used to approximate the derivatives:

$$
\begin{gather*}
\frac{\partial T_{i}}{\partial t} \approx \frac{T_{i, j}^{n+1}-T_{i, j}^{n}}{\Delta t} \tag{2}\\
\frac{\partial T_{i}}{\partial r_{i}} \approx \frac{T_{i, j+1}^{n}-T_{i, j-1}^{n}}{2 \Delta r_{i}} \tag{3}\\
\frac{\partial^{2} T_{i}}{\partial r_{i}^{2}} \approx \frac{T_{i, j-1}^{n}-2 T_{i, j}^{n}+T_{i, j+1}^{n}}{\left(\Delta r_{i}\right)^{2}} \tag{4}
\end{gather*}
$$

Using the Crank-Nicolson method with these finite difference expressions, the differential equation becomes

$$
\begin{align*}
& {\left[-\boldsymbol{\gamma}_{i}+\boldsymbol{\delta}_{i}\right] T_{i, j-1}^{n+1}+\left[2+2 \boldsymbol{\gamma}_{i}\right] T_{i, j}^{n+1}+\left[-\boldsymbol{\gamma}_{i}-\boldsymbol{\delta}_{i}\right] T_{i, j+1}^{n+1}} \tag{5}\\
& \quad=\left[\boldsymbol{\gamma}_{i}-\boldsymbol{\delta}_{i}\right] T_{i, j-1}^{n}+\left[2-2 \boldsymbol{\gamma}_{i}\right] T_{i, j}^{n}+\left[\boldsymbol{\gamma}_{i}+\boldsymbol{\delta}_{i}\right] T_{i, j+1}^{n}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{\alpha}_{i}=\frac{k_{i}}{\rho_{i} C_{p i}}, \quad \gamma=\frac{\alpha_{i} \Delta t}{\left(\Delta r_{i}\right)^{2}}, \quad \delta_{i}=\frac{\alpha_{i} \Delta t \boldsymbol{\Omega}_{i}}{2 I_{i} \Delta I_{i}} \tag{6}
\end{equation*}
$$

At the internal boundary $(j=0)$, the boundary condition is given by

$$
\begin{equation*}
-k_{i} \frac{\partial T_{i}}{\partial r_{i}}+h_{i, i n} T_{i}=f_{i, i n^{\prime}} \quad \text { at } r_{i}=I_{i, i n} \tag{7}
\end{equation*}
$$

and at the external boundary, $\left(j=M_{i}, r_{i, e x}>r_{i, i n}\right)$, the boundary condition is given by

$$
\begin{equation*}
k_{i} \frac{\partial T_{i}}{\partial r_{i}}+h_{i, \theta x} T_{i}=f_{1, \theta x \prime} \quad \text { at } r_{i}=r_{i, \theta x} \tag{8}
\end{equation*}
$$

where $f_{i, b}$ is the heat transfer function at the boundary of material i. For constant, convective heat loss, $f_{i, b}=h_{i, b} T_{\infty b}$ where $T_{\infty b}$ is the bulk temperature for convective heat transport.

To satisfy the finite difference equation at the boundaries, fictitious temperature values $\mathrm{T}_{\mathrm{i},-1}$ and $\mathrm{T}_{\mathrm{i}, \mathrm{Mi+1}}$ where defined. Using the boundary condition at $r_{i}=r_{i, i n}$,

$$
\begin{equation*}
T_{i,-1}^{n}=\frac{-2 \Delta r_{i} h_{i, i n}}{k_{i}} T_{i, 0}^{n}+T_{i, i}^{n}+\frac{2 \Delta r_{i}}{k_{i}} f_{i, i n}^{n} \tag{9}
\end{equation*}
$$

Similarly, using the boundary condition at $r_{i}=r_{i, e x}$,

$$
\begin{equation*}
T_{i, M+1}^{n}=T_{i, M-2}^{n}+\frac{-2 \Delta r_{i} h_{i, \theta X}}{k_{i}} T_{i, M_{1}}^{n}+\frac{2 \Delta r_{i}}{k_{i}} f_{i, \theta x}^{n} \tag{10}
\end{equation*}
$$

Matrix system for a single Material

System of Equations

The finite difference expression and these boundary conditions form the following system of equations:

$$
\begin{equation*}
A T^{n+1}=B T^{n}+C=D \tag{11}
\end{equation*}
$$

where

$$
\boldsymbol{B}=\left[\begin{array}{cccccc}
2-2 \boldsymbol{\gamma}_{i} \beta_{i, i n}+2 \delta_{i} \lambda_{i, i n} & 2 \gamma_{i} & 0 & \cdots & 0 & 0 \\
\gamma_{i}-\delta_{i} & 2-2 \gamma_{i} & \gamma_{i}+\delta_{i} & \cdots & 0 & 0 \\
. & \cdot & \cdot & \cdot & . & . \\
\cdot & \cdot & \cdot & \cdot & \cdot & . \\
. & \cdot & \cdot & \cdot & \cdot & . \\
0 & 0 & \cdots & \gamma_{i}-\delta_{i} & 2-2 \gamma_{i} & \boldsymbol{\gamma}_{i}+\delta_{i} \\
0 & 0 & \cdots & 0 & 2 \gamma_{i} & 2-2 \gamma_{i} \beta_{i, \theta x}-2 \delta_{i} \lambda_{i, \theta x}
\end{array}\right]
$$

$$
T^{\mathbf{n + 1}}=\left[\begin{array}{c}
T_{i, 0}^{n+1} \tag{14}\\
T_{i, 1}^{n+1} \\
\cdot \\
\cdot \\
\cdot \\
T_{i, M_{1}-1}^{n+1} \\
T_{i, M_{1}}^{n+1}
\end{array}\right], \quad \boldsymbol{T}^{\mathbf{n}}=\left[\begin{array}{c}
T_{i, 0}^{n} \\
T_{i, 1}^{n} \\
\cdot \\
\cdot \\
\cdot \\
T_{i, M_{1}-1}^{n} \\
T_{i, M_{1}}^{n}
\end{array}\right], \quad C=\left[\begin{array}{c}
4\left(\gamma_{i}-\delta_{i}\right) \mu_{i, i n} \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0 \\
4\left(\gamma_{i}+\delta_{i}\right) \mu_{i, \theta x}
\end{array}\right]
$$

The system of equations are solved as follows. At time zero ($\mathrm{n}=0$), the initial temperature distribution in the material is known, $\mathbf{T}^{\mathbf{n}},(\mathrm{n}=0)$ so vector D can be calculated using $\mathrm{D}=\mathrm{BT}^{\mathrm{n}}+\mathrm{C}$. The temperature at the next time step, T^{n+1}, is obtained by solving the system of equation $A T^{n+1}=D$. These steps are repeated for each time step. The matrix system is similar to that derived by Özişik ${ }^{1}$ for a rectangular geometry.

Seven different boundary conditions can be applied at each interior and each exterior boundary. These options and how they affect the system of equations to solve are discussed below.

Case 1. Constant Surface Temperature

For a constant internal surface temperature at $r_{i}=r_{i, i n}$, element $a_{0,0}$ is set equal to 1 and $a_{0,1}$ is set equal to $0, b_{0,0}$ is set equal to 1 and $b_{0,1}$ is set equal to 0 , and $c_{0}=0$. similarly for a constant external surface temperature at $r_{i}=r_{i, e x}$, element $a_{\text {mi,M-li }}$ is set equal to 1 and $a_{\text {mi,Mi }}$ is set equal to $0, b_{M i, M-1 i}$ is set equal to 0 and $b_{\text {mi,Mi }}$ is set equal to 1 , and $c_{\mathrm{Mi}}=0$. The surface temperatures are set to their respective values at time $=0$ and are constant throughout the computation.

Case 2. Perfectly Insulated Boundary

For a perfectly insulated surface, the terms $h_{i, b}$ and $f_{i, b}$ are set to zero. This gives $\lambda_{i, b}=0, \beta_{i, b}=1$, and $\mu_{i, b}=0$ for the appropriate boundary.

Case 3. Constant Boundary Heat Flux

For a constant heat (energy) flux at a boundary, $h_{i, b}$ is set to zero. The term $f_{i, b}$ is set to a positive value for energy going into the material and to a negative value for energy leaving the material.

Case 4. Constant Convective Heat Flux

For a constant convective heat flux at a boundary, $f_{i, b}$ is set equal to $h_{i, b} T_{\infty, b}$. This gives the familiar convective heat loss expression which can be seen by examining the boundary conditions.

Case 5. Variable Surface Temperature

For a surface temperatures as a function of time, the matrix elements of A and B are modified as was done in the case for a constant surface temperature (case 1). Instead of a surface temperatures being constant, the surface temperature as a function of time is entered into a subroutine of the program and the temperature values updated at each time step.

Case 6. Variable Surface Heat Flux

Parameters for the system are treated as they were for the case of constant heat flux for a surface. In this case, $f_{i, b}$ is a function of time, positive for energy going into the material, negative value for energy leaving the material, and is updated at each time step.

Case 7. Variable Convective Heat Flux

For a variable convective heat flux at a boundary, $f_{i, b}$ is set equal to $h_{i, b} T_{\infty, b}$ where $T_{\infty, b}$ is a function of time. The value of $\mathrm{T}_{\infty, b}$ is updated at each time step.

Matrix Eystems for Composite (Two) Materials

Equations for Concentric Geometries

For two concentric geometries, such as cylinder 1 inside and in thermal contact with cylinder 2 , the boundary condition is

$$
\begin{equation*}
-k_{1} A_{1, e x} \frac{\partial T_{1}}{\partial r_{1}}=-k_{2} A_{2, \text { in }} \frac{\partial T_{2}}{\partial r_{2}} \tag{15}
\end{equation*}
$$

Since these two cylinders are concentric with one another, $A_{1, \mathrm{xx}}=A_{2 \text {,in }}$. Use a backward-difference operator for the derivative for materiai 1 and a forward-difference operator for the derivative in material 2 , the finite-difference equation is

$$
\begin{equation*}
-\epsilon_{1, e x} T_{1, M_{1}}+\epsilon_{1, \theta x} T_{1, M_{1}-1}=-\epsilon_{2, i n} T_{2,1}+\epsilon_{2, \text { in }} T_{2,0} \tag{16}
\end{equation*}
$$

Using the assumptions that the points of contact are in thermal equilibrium, $T_{1, M 1}=T_{2,0}$, we have

$$
\begin{equation*}
+\epsilon_{1, \theta x} T_{1, M_{1}-1}-\left(\epsilon_{1, \theta x}+\epsilon_{2, i n}\right) T_{1, M_{1}}+\epsilon_{2, \text { in }} T_{2,1}=0 \tag{17}
\end{equation*}
$$

Averaging the equation at time-steps n and $n+1$ for the CrankNicolson method yields

$$
\begin{align*}
& \epsilon_{1, \boldsymbol{x}} T_{1, M_{1}-1}^{n+1}-\left(\epsilon_{1, \theta x}+\epsilon_{2, i n}\right) T_{1, M_{1}}^{n+1}+\epsilon_{2, i n} T_{2,1}^{n+1} \tag{18}\\
& =-\epsilon_{1, \theta x} T_{1, M_{1}-1}^{n}+\left(\epsilon_{1, \theta x}+\epsilon_{2, i n}\right) T_{1, M_{1}}^{n}-\epsilon_{2, \text { in }} T_{2,1}^{n}
\end{align*}
$$

The system of equations to solve are similar to those derived for a single material except at the boundary where the two materials come in contact with one another. For the case of concentric materials, the matrices A, B, C, T^{n}, and T^{n+1}, become
$A=\left[\begin{array}{cccccc}2+2 \gamma_{1} \beta_{1, i n}-2 \delta_{1} \lambda_{1, i n} & -2 \gamma_{1} & 0 & \ldots & 0 & 0 \\ -\gamma_{1}+\delta_{1} & 2+2 \gamma_{1} & -\gamma_{1}-\delta_{1} & \cdots & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \epsilon_{1, e x} & -\epsilon_{1, e x}-\epsilon_{2, i n} & \epsilon_{2, i n} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & -\gamma_{2}+\delta_{2} & 2+2 \gamma_{2} & -\gamma_{2}-\delta_{2} \\ 0 & 0 & \cdots & 0 & -2 \gamma_{2} & 2+2 \gamma_{2} \beta_{2, \theta x}+2 \delta_{2} \lambda_{2, \theta x}\end{array}\right]$
(19)
$B=\left[\begin{array}{cccccc}2-2 \gamma_{1} \beta_{1, i n}+2 \delta_{1} \lambda_{1, i n} & 2 \gamma_{1} & 0 & \cdots & 0 & 0 \\ \gamma_{1}-\delta_{1} & 2-2 \gamma_{1} & \gamma_{1}+\delta_{1} & \cdots & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -\epsilon_{1, e x} & \epsilon_{1, e x}+\epsilon_{2, i n} & -\epsilon_{2, i n} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & \gamma_{2}-\delta_{2} & 2-2 \gamma_{2} & \boldsymbol{\gamma}_{2}+\delta_{2} \\ 0 & 0 & \cdots & 0 & 2 \gamma_{2} & 2-2 \gamma_{2} \beta_{2, e x}-2 \delta_{2} \lambda_{2, e x}\end{array}\right]$
(20)

$$
\boldsymbol{T}^{\mathbf{n + 1}}=\left[\begin{array}{c}
T_{1,0}^{n+1} \tag{21}\\
T_{1,2}^{n+1} \\
\cdot \\
T_{1, M_{2}-1}^{n+1} \\
T_{1, M_{1}}^{n+1} \\
T_{2,0}^{n+1} \\
\cdot \\
T_{2, M_{2}-1}^{n+1} \\
T_{2, M_{2}}^{n+1}
\end{array}\right], \quad \boldsymbol{T}^{\mathbf{n}}=\left[\begin{array}{c}
T_{1,0}^{n} \\
T_{1,1}^{n} \\
\cdot \\
T_{1, M_{1}-1}^{n} \\
T_{1, M_{1}}^{n} \\
T_{2,0}^{n} \\
\cdot \\
T_{2, M_{2}-1}^{n} \\
T_{2, M_{2}}^{n}
\end{array}\right], \quad \boldsymbol{C}=\left[\begin{array}{c}
4\left(\gamma_{1}-\delta_{1}\right) \mu_{1, i n} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
4\left(\gamma_{2}+\delta_{2}\right) \mu_{2, e x}
\end{array}\right]
$$

Contacting Geometries

For two geometries touching one another, such as part of the external surface of cylinder 1 in thermal contact with the external surface of cylinder 2 , the boundary condition is

$$
\begin{equation*}
-k_{1} A_{1, \theta x} \frac{\partial T_{1}}{\partial r_{1}}=+k_{2} A_{2, \theta x} \frac{\partial T_{2}}{\partial r_{2}} \tag{22}
\end{equation*}
$$

where it is implied that the areas represent the thermal contact areas for the materials. Since these two cylinders are not concentric, in general we have $A_{1, \text { ex }} \neq A_{2, \text { ex }}$. Use a backwarddifference operator for the derivative for material 1 and material 2, the finite-difference equation is

$$
\begin{equation*}
-\epsilon_{1, \theta x} T_{1, M_{1}}+\epsilon_{1, \theta x} T_{1, M_{1}-1}=+\epsilon_{2, \theta x} T_{2, M_{2}}-\epsilon_{2, \theta x} T_{2, M_{2}-1} \tag{23}
\end{equation*}
$$

Using the assumptions that the points of contact are in thermal equilibrium, $T_{1, \mathrm{M} 1}=\mathrm{T}_{2, \mathrm{M} 2}$, we have

$$
\begin{equation*}
+\epsilon_{1, \theta x} T_{1, M_{1}-1}-\left(\epsilon_{1, \theta x}+\epsilon_{2, \theta x}\right) T_{1, M_{1}}+\epsilon_{2, \theta x} T_{2, M_{2}-1}=0 \tag{24}
\end{equation*}
$$

Again, averaging the equation at time-steps n and $n+1$ for the Crank-Nicolson method yields

$$
\begin{align*}
& \epsilon_{1, \theta x} T_{1, M_{1}-1}^{n+1}-\left(\epsilon_{1, \theta x}+\epsilon_{2, \theta x}\right) T_{1, M_{1}}^{n+1}+\epsilon_{2, \theta x} T_{2, M_{2}-1}^{n+1} \\
= & -\epsilon_{1, \theta x} T_{1, M_{1}-1}^{n}+\left(\epsilon_{1, \theta x}+\epsilon_{2, \theta x}\right) T_{1, M_{1}}^{n}-\epsilon_{2, \theta x} T_{2, M_{2}-1}^{n} \tag{25}
\end{align*}
$$

The system of equations to solve are similar to those derived for contacting geometries: the major difference is the changing of the subscripts at the boundaries of material 2. For this case, the matrices A, B, C, T^{n}, and T^{n+1}, become
$\mathbf{A}=\left[\begin{array}{cccccc}2+2 \gamma_{1} \beta_{1, \text { in }}-2 \delta_{1} \lambda_{1, \text { in }} & -2 \gamma_{1} & 0 & \ldots & 0 & 0 \\ -\gamma_{1}+\delta_{1} & 2+2 \gamma_{1} & -\gamma_{1}-\delta_{1} & \cdots & 0 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \epsilon_{1, e x} & -\epsilon_{1, e x}-\epsilon_{2, e x} & \epsilon_{2, \text { ex }} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & -\gamma_{2}+\delta_{2} & 2+2 \gamma_{2} & -\gamma_{2}-\delta_{2} \\ 0 & 0 & \cdots & 0 & -2 \gamma_{2} & 2+2 \gamma_{2} \beta_{2, \text { in }}+2 \delta_{2} \lambda_{2, \text { in }}\end{array}\right]$
(26)
$B=\left[\begin{array}{cccccc}2-2 \gamma_{1} \beta_{1, \text { in }}+2 \delta_{1} \lambda_{1, \text { in }} & 2 \gamma_{1} & 0 & \cdots & 0 & 0 \\ \gamma_{1}-\delta_{1} & 2-2 \gamma_{1} & \gamma_{1}+\delta_{1} & \cdots & 0 & 0 \\ . & \cdot & \cdot & . & \cdot & \cdot \\ \cdot & \cdot & -\epsilon_{1, e x} & \epsilon_{1, e x}+\epsilon_{2, e x} & -\epsilon_{2, e x} & \cdot \\ . & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdots & \gamma_{2}-\delta_{2} & 2-2 \gamma_{2} & \gamma_{2}+\delta_{2} \\ 0 & 0 & \cdots & 0 & 2 \gamma_{2} & 2-2 \gamma_{2} \beta_{2, i n}-2 \delta_{2} \lambda_{2, i n}\end{array}\right]$

$$
\mathbf{T}^{n+1}=\left[\begin{array}{c}
T_{1,0}^{n+1} \\
T_{1,1}^{n+1} \\
\cdot \\
T_{1, M_{1}-1}^{n+1} \\
T_{1, M_{1}}^{n+1} \\
T_{2, M_{2}-1}^{n+1} \\
\cdot \\
T_{2,1}^{n+1} \\
T_{2,0}^{n+1}
\end{array}\right], \quad \boldsymbol{T}^{\mathbf{n}}=\left[\begin{array}{c}
T_{1,0}^{n} \\
T_{1,1}^{n} \\
\cdot \\
T_{1, M_{1}-1}^{n} \\
T_{1, M_{1}}^{n} \\
T_{2, M_{2}-1}^{n} \\
\cdot \\
T_{2,1}^{n} \\
T_{2,0}^{n}
\end{array}\right], \quad C=\left[\begin{array}{c}
4\left(\gamma_{1}-\delta_{1}\right) \mu_{1, i n} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
4\left(\gamma_{2}+\delta_{2}\right) \mu_{2, i n}
\end{array}\right]
$$

Computer Program Testing

Steady-State Testing

To the test program's ability to calculate a steady-state temperature profile for a material, the initial temperature of a material was set to $150^{\circ} \mathrm{C}$. Next, boundary conditions were applied such that the boundaries temperature values should be constant at $150^{\circ} \mathrm{C}$. The program was started and run to see how accurately the program would maintain this initial temperature.

For example, a cylinder had its internal surface temperature set to $150^{\circ} \mathrm{C}$ and had constant, convective heat loss at its external boundary to a bulk temperature of $150^{\circ} \mathrm{C}$. The program was run knowing that the temperature at all grid points should start at $150^{\circ} \mathrm{C}$ and maintain this temperature as the program marches through time steps.

The program was run with all 7×7 combinations of boundary conditions to see how accurately the program would maintain this initial temperature profile of $150^{\circ} \mathrm{C}$. Testing the program in this manner gave temperature errors of less than $0.0015^{\circ} \mathrm{C}$ and gave confidence that the algorithm would give correct steadystate temperature profiles.

Transient Testing

The program was tested on the conduction equation in rectangular coordinates for a single material with the following boundary conditions:

$$
\begin{equation*}
\frac{\partial T_{i}}{\partial r_{i}}=0, \quad \text { at } r_{i, i n}=0, \quad \frac{\partial T_{i}}{\partial r_{i}}+7 T_{i}=0, \quad \text { at } r_{i, \theta x}=1 \mathrm{~cm} \tag{29}
\end{equation*}
$$

At time zero, the material was at $150^{\circ} \mathrm{C}$, and the solution compared to the analytical solution for the problem. After 20 time steps, temperature errors between the analytical and numerical solution of up to $0.04{ }^{\circ} \mathrm{C}$ were obtained, but decreased as additional time steps were taken. The accuracy of the numerical technique is considered excellent. Transient testing along with the steady-state testing satisfactorily demonstrates the ability of the program to calculate transient temperature profiles.

CONCLOEIONS

Equations were derived and a computer program was written to solve simultaneous finite difference heat conduction equations for the transient analysis of one-dimensional heat conduction using the Crank-Nicolson algorithm. The program written is an interactive, versatile prngram which can analyze planar, cylindrical, or spherical geometries. A total of 7x7 combinations of boundary conditions can be chosen for the thermal analysis of a single material. A total of $2 \times 7 \times 7$ different analyses can be performed on a two material systen: the materials may be concentric with one another or have their external surfaces in thermal contact with one another.

The program has been tested on its ability to calculate steadystate and transient temperatures. For the steady-state testing performed, errors in calculating steady-state temperatures were less than 0.001% of the known value. Comparison of the result from the numerical method versus the results obtained from the analytical solution show errors well below the accuracy required for thermal fatigue analysis.

REFERENCES

1. M. Necati Özişik. Heat Conduction. p. 502. John Wiley \& Sons, Inc., New York (1980).

NOTATION
subscripts
i $=$ material index, $=1$ or 2
b $=$ boundary index, $=$ in for interior boundary, ex for exterior boundary

symbols

$a_{p, q}=$ element of matrix $A, p=0, \ldots, M$ and $q=0, \ldots, M$
A = matrix of coefficients, defined in text

```
A
b
B = matrix of coefficients, defined in text
cp = element of vector c, p = 0,\ldots,M
c = vector, defined in text
Cin = neat capacity for material i, cal/g-0}
D = vector, = BTM}+\mathbf{C
f
hi,b}= heat transfer coefficient for material i at boundary b
        watts/m}/\mp@subsup{m}{}{-
j = spacial parameter index, 0,\ldots.,M
ki = thermal conductivity for material i, watts/m- }\mp@subsup{\textrm{o}}{\textrm{i}}{
M}={\quad\mathrm{ number of spacial grid points for material i
n = time step index, 0,...,N
N = number of time steps
ri = spacial distance for material i, cm
ri,b}= radius of material i at boundary b (I.R. and O.R. for
        the material), cm
t = time, seconds
T}\mp@subsup{T}{i,j}{n}=\mathrm{ temperature of material i, at spacial node j, at time
        step n
T
```


Greek

$\alpha_{i}=$ thermal diffusivity for material $i,=k_{i} / \rho_{i}-C_{p i}, \mathrm{~cm}^{2} / \mathrm{sec}$
$\beta_{\mathrm{i}, \mathrm{b}}=1 \quad 1+\lambda_{\mathrm{i}, \mathrm{b}}$
$\gamma_{i}=$ dimensionless time for material $i,=\alpha_{i} \Delta t /\left(\Delta r_{i}\right)^{2}$
$\delta_{i}=\alpha_{i} \Delta t \Omega_{i} /\left(2 r_{i} \Delta r_{i}\right)$
$\Delta r_{i}=$ radial coordinate spacing for material $i, c m$
$\Delta t=$ time step size, sec
$\epsilon_{i, b}=k_{i} A_{i, b} / \Delta r_{i}$
$\lambda_{i, b}=\Delta r_{i} \mathbf{h}_{\mathrm{i}, \mathrm{b}} / \mathrm{k}_{\mathrm{i}}$
$\mu_{i, b}=\Delta r_{i} / \mathbf{k}_{\mathbf{i}}\left(f_{i, b}{ }^{n+1}+f_{i, b}{ }^{\mathrm{a}}\right) / 2$
$\rho_{i} \quad=$ density for material i, g / cm^{3}
$\Omega_{i} \quad=\quad$ geometric parameter for material $i:=0$ for planar, 1 for cylindrical, or 2 for spherical geometry

APPENDIX A. COMPUTER PROGRAM LIETING

DECLARE SUB BASICINPUT (APPL!, GEOM! (), CONFIG!, ICOND\% (), BCIN!(), BCOUT!(), MTLTYPE\%()) DECLARE SUB BCMENU (I\%, J\%, BC!) DECLARE SUB BCONDITION (M\% (), TIN! (), TOUT! (), HIN! (), HOUT! () FIN! (), FOUT! (), TOLD! ()) DECLARE SUB BCUPDATE (I\%, M\% (), T!, TOLD! ())
DECLARE SUB DATAFROM (IZINPUT\%, ZINPUT\$)
DECLARE SUB DATATO (IZOUTPUT\%, ZOUTPUT\$)
DECLARE FUNCTION FFIN! (I\%, TIME!)
DECLARE FUNCTION FFOUT! (I\%, TIME!)
DECLARE FUNCTION FICOND! (I\%, X!)
DECLARE FUNCTION FSAMPLE1! (T!, X!)
DECLARE FUNCTION FSAMPLE2! (T!, X!)
DECLARE FUNCTION FTIN! (T!)
DECLARE FUNCTION FTOUT! (T!)
DECLARE SUB ICONDITION (APPL!, ICOND\% (), M\% (), MTOT\%, R! (), TOLD!()) DECLARE SUB MATRIXA (MTOT\%, AA! (), AB! (), AC! ()) DECLARE SUB MATRIXB (MTOT\%, BA! (), BB! (), BC! ())
DECLARE SUB MATTERMS (GAMMA! (), EPS! (), DELTA! (), LAMIN! (), LAMOUT! (), BETAIN! (), BETAOUT! ()) DECLARE SUB MTLPROP (APPL!, MTLTYPE\% (), K! (), ALPHA! ())
DECLARE SUB PAUSE ()
DECLARE SUB SIZE (APPL!, GEOM! (), CONFIG!, THICK! (), RIN! (), ROUT! (), M\% () , DR! (), R! ()) DECLARE SUB SOLVE (M\% (), MTOT\%, TNEW! (), AA! (), AB! (), AC! (), D!()) DECLARE SUB TIMEPARMS (DR! (), ALPHA! (), DT!, N!, TMAX!)
DECLARE SUB VECTORC (MTOT\%, TIME!, C! ())
DECLARE SUB VECTORD (M\% (), TOLD! (), BA! (), BB! (), BC! (), C! (), D! ())
'TCOND. BAS. 7 /92
'FINITE-DIFFERENCE HEAT CONDUCTION PROGRAM DEVELOPED AT:
'SAVANNAH RIVER TECHNOLOGY CENTER, AIKEN SC 29808 (BY JE KLEIN)

DEFINT I, M

```
M1 = 20 'NUMBER OF SPACIAL GRID POINTS FOR MATERIAL 1
M2 = 5 NUMBER OF SPACIAL GRID POINTS FOR MATERIAL 2
DEBUG = 0
MMAX = M1 + M2
DIM M(2)
DIM GEOM(2), ICOND(2), BCIN(2), BCOUT(2), MTLTYPE(2)
DIM RIN(2), ROUT(2), THICK(2), DR(2), R(2, MMAX)
DIM TOLD(MMAX), TNEW(MMAX), TZERO(2)
DIM TIN(2), TOUT(2), HIN(2), HOUT(2), FIN(2), FOUT(2)
```

```
DIM K(2), ALPHA(2), GAMMA(2), DELTA(MMAX), LAMIN(2), LAMOUT(2)
DIM BETAIN(2), BETAOUT(2), AREA(2), EPS(2)
DIM AA (MMAX), AB (MMAX), AC (MMAX)
DIM BA(MMAX), BB(MMAX), BC(MMAX)
DIM C(MMAX), D(MMAX)
*********** 'CORE PROGRAM
CONST PI = 3.141592654*
M(0) = 0
M(1) = M1
M(2) = M2
CLS
CALL DATAFROM(IZINPUT, ZINPUT$)
,
'BASIC INPUT TO PROGRAM
CALL BASICINPUT(APPL, GEOM(), CONFIG, ICOND(), BCIN(), BCOUT(),
MTLTYPE())
'SET MAXIIfUM SIZE OF MATRIX SYSTEM
IF (APPL = 1) THEN
    MTOT = M(1)
ELSE
    MTOT = M(1) +M(2)
END IF
!
'PHYSICAL SIZE OF MATERIAL(S)
CALL SIZE(APPL, GEOM(), CONFIG, THICK(), RIN(), ROUT(), M(),
DR(), R()) '
'PHYSICAL PROPERTIES OF MATERIAL(S)
CALL MTLPROP(APPL, MTLTYPE(), K(), ALPHA())
!
'SET INITIAL TEMPERATURE OF MATERIAL(S)
CALL ICONDITION(APPL, ICOND(), M(), MTOT, R(), TOLD())
'SET BOUNDARY CONDITIONS
CALL BCONDITION(M(), TIN(), TOUT(), HIN(), HOUT(), FIN(), FOUT(),
TOLD())
'SET TIME-STEP FOR PROBLEM
CALL TIMEPARMS(DR(), ALPHA(), DT, N, TMAX)
'CALCULATE CONSTANT TERMS IN MATRICIES
CALL MATTERMS(GAMMA(), EPS(), DELTA(), LAMIN(), LAMOUT(),
BETAIN(), BETAOUT())
'CALCULATE MAXTRIX CORRESPONDING WITH VECTOR[TOLD]
CALL MATRIXB(MTOT, BA(), BB(), BC())
'CALCULATE MAXTRIX CORRESPONDING WITH VECTOR[TOLD]
CALL MATRIXA(MTOT, AA(), AB(), AC())
```

```
CALL DATATO(IZOUTPUT, ZOUTPUT$)
'CALCULATE NUMBER OF TIME STEPS
N = INT(N) + I
IF N < 20 THEN N = 20
DELTAMAX = 0!
IF (M(1) > 10) THEN PSTEP1 = INT(M(1) / 10)
FOR TSTEP = 1 TO N-1
    TIME = TSTEP * DT
    IF (TSTEP > 0) THEN TIMEOLD = (TSTEP - 1) * DT
    CALL VECTORC(MTOT, TIME, C())
    'UPDATE B.C. IF TEMP. IS FUNCTION OF TIME
        I = 1 ,FOR MATERIAL MME
        IF (BCIN(I) = 5) THEN
            CALL BCUPDATE(I, M(), TIMEOLD, TOLD())
        END IF
        I = APPL
IF (BCOUT(I) = 5) THEN
            CALL BCUPDATE(I, M(), TIMEOLD, TOLD())
    IF (DEBUG = 2) THEN
        PRINT "TOLD"
        FOR J = 0 TO M(1)
            PRINT TOLD(J)
        NEXT J
        CALL PAUSE
        IF (APPL = 2) THEN
            FOR J = M(1) TO M(2)
                PRINT TOLD(J)
            NEXT J
        END IF
```

 END IF
 ' CALCULATE VECTOR D: VECTOR[D] = MATRIX[B] * VECTOR[TOLD] +
 $\operatorname{VECTOR[C]} \operatorname{CALL} \operatorname{VECTORD(M(),~TOLD(),BA(),BB(),BC(),C(),~}$
' CALCULATE TEMPERATURES AT NEW TIME: SOLVE FOR VECTOR[TNEW]
'MATRIX[A]* VECTOR(TNEW) $=$ VECTOR[D] $=$ MATRIX[B] * VECTOR[TOLD] +
VECTOR[C] CALL SOLVE(M(), MTOT, TNEW(), AA(), AB(), AC(), D())
CLS
DELTAT $=$ TNEW (M(1)) - TNEW (0)
IF (ABS (DELTAT) > ABS (DELTAMAX)) THEN
DELTAMAX = DELTAT
TIMEDTMAX $=$ TIME

END IF
PRINT "TIME = "; TIME; "DELTAT $(C)=" ;$ DELTAT; "DTmax = "; DELTAMAX; "AT T = "; TIMEDTMAX, FOR J = 0 TO M(1) STEP PSTEP1

FOR $J=0$ TO M(1) STEP 2
SELECT CASE ISAMPLE CASE 1

TANAL = FSAMPLE1 (TIME, R(1, J)) CASE 2

TANAL = FSAMPLE2 (TIME, R(1, J))
END SELECT
IF (ISAMPLE <> 0) THEN PRINT J, R(1, J), TNEW(J), TANAL ELSE

PRINT J, R(1, J), TNEW(J)
END IF
NEXT J
IF (APPL = 2) THEN
PRINT ""
FOR $J=M(1)$ TO MTOT STEP 2
PRINT J, R(2, J - M(1)), TNEW(J)
NEXT J
END IF
' CALL PAUSE
IF (DEBUG $=2$) THEN CALL PAUSE
'PRINT TSTEP; TIME; TNEW(1, 0); TNEW(1, M/4); TNEW(1, M/2); TNEW (1, M*3/4); TNEW(1, M)
'SET TEMPERATURE VALUES FOR NEXT TIME STEP
FOR $J=0$ TO MTOT
TOLD (J) $=$ TNEW (J)
NEXT J
NEXT TSTEP

END

```
'OUTPPUT OF
DATA
PRINT SPC(7); "Program TCOND.BAS...................."; DATE$;
CHR$(13) PRINT SPC(7); "Identification:"; DENT$
PRINT SPC(7); "Material:":
SELECT CASE GEOM(1)
    CASE 0
        PRINT SPC(7); "Plane Sheet"
        PRINT SPC(10); "Wall thickness (in.)="; THICK(1)
```


WSRC-TR-92-501

```
    CASE 1
        PRINT SPC(7); "Cylinder"
    PRINT SPC(10); "Inner radius (in.)="; RIN(1), "Outer radius
(in.)="; ROUT(1) CASE 2
    PRINT SPC(7); "Sphere"
    PRINT SPC(10); "Inner radius (in.)="; RIN(1), "Outer radius
(in.)="; ROUT(1) END SELECT
\prime********************************************************************
********* '
START INPUT DATA HERE
*********
DEFINT J
SUB BASICINPUT (APPL, GEOM(), CONFIG, ICOND(), BCIN(), BCOUT(),
MTLTYPE()) SHARED ZINPUT$, DENT$, ISAMPLE
' FUNDEMENTAL INPUT FOR PROGRAM
CLS
SELECT CASE ZINPUT$
CASE IS = "KYBD:"
ISAMPE = 0
INPUT "COMPARE TO ANALYTICAL SOLUTION? (Y/N): ", A$
IF (A$ = "Y" OR A$ = "Y") THEN
    INPUT "ENTER SAMPLE PROBLEM NUMBER ", ISAMPLE
END IF
CLS
PRINT "PROGRAM TCOND.BAS FOR DIFFUSION CALCULATIONS "; DATE$;
CHR$(13) SELECT CASE ISAMPLE
    CASE 0
INPUT "Identification name and/or number for analysis"; DENT$:
PRINT "" PRINT " APPLICATION DESIRED"
PRINT "1. Single Material Conduction (Default)"
PRINT "2. Coupled Material Conduction"
'PRINT "3. ": PRINT ""
INPUT "OPTION"; APPL: PRINT ""
IF (APPL = 0) THEN APPL = 1
    CASE 1
APPL = 1
    CASE 2
APPL = 1
END SELECT
CONFIG = 0
IF (APPL = 2) THEN
    PRINT " COUPLED CONDITION APPLICATION"
    PRINT "1. Concentric Layers (Default)"
    PRINT "2. Contacting Geometrys "
    'PRINT "3. ": PRINT ""
    INPUT "OPTION"; CONFIG: PRINT ""
```

```
    IF (CONFIG = 0) THEN CONFIG = 1
END IF
CLS
SELECT CASE ISAMPLE
    CASE O
FOR I = 1 TO APPL
    PRINT "GEOMETRY FOR MATERIAL "; I: PRINT ""
    PRINT "1. Plane sheet"
    PRINT "2. Cylinder (Default)"
    PRINT "3. Sphere"
    INPUT "OPTION"; GEOM(I): PRINT "": PRINT ""
    IF (GEOM(I) = 0) THEN GEOM(I) = 2
    IF (CONFIG = 1) THEN
        GEOM(2) = GEOM(1)
        I=I+1
    END IF
NEXT I
CIs
    CASE 1
GEOM(1) = 1
    CASE 2
GEOM(1) = 1
END SELECT
```

'SET PARAMETERS DESCRIBING INITIAL CONDITIONS
SELECT CASE ISAMPLE
CASE 0
FOR I $=1$ TO APPL
PRINT "INITIAL CONDITION FOR MATERIAL "; I: PRINT ""
PRINT "1. Constant Temperature Profile (Default)"
PRINT "2. Variable Temperature Profile (User Entered)"
PRINT "3. Variable Temperature Profile (Function Generated)"
INPUT "OPTION"; ICOND(I): PRINT "": PRINT ""
IF $(\operatorname{ICOND}(I)=0)$ THEN $\operatorname{ICOND}(I)=1$
NEXT I
CLS
CASE 1
$\operatorname{ICOND}(1)=3$
CASE 2
$\operatorname{ICOND}(1)=1$
END SELECT
'SET PARAMETERS DESCRIBING BOUNDARY CONDITIONS
SELECT CASE ISAMPLE
CASE 0
FOR I = 1 TO APPL
IF (CONFIG $=0$) THEN
CALL BCMENU(1, 1, BCIN(1))

```
        PRINT "": PRINT ""
        CALL BCMENU(1, 2, BCOUT(1))
    ELSE
    IF (I = 1) THEN
            J = 1
            CALL BCMENU(I, J, BCIN(I))
            PRINT ""
            PRINT "Material 1. in Conductive Contact with Material 2"
            PRINT ""
            BCOUT(I) = 8
        ELSE
            J=2
            BCIN(I) = 8
            CALL BCMENU(I, J, BCOUT(I))
        END IF
    END IF
NEXT I
CLS
    CASE 1
BCIN(1) = 1
BCOUT(1) = 1
    CASE 2
BCIN(1) = 2
BCOUT(1) = 4
END SELECT
'SET PARAMETERS DESCRIBING MATERIAL PROPERTIES
SELECT CASE ISAMPLE
CASE 0
FOR \(I=1\) TO APPL
PRINT "MATERIAL "; I; " OPTIONS"
PRINT "1. 304L (default)"
PRINT "2. 21-6-9"
PRINT "3. Copper alloys"
PRINT "4. Aluminum alloys"
PRINT "5. UNITY VALUES (For testing program)"
PRINT "6. Other"
INPUT "OPTION"; MTLTYPE(I)
IF (MTLTYPE \((I)=0\) ) THEN MTLTYPE (I) \(=1\)
PRINT " \({ }^{\prime \prime}\)
NEXT I
CLS
CASE 1
MTLTYPE(1) \(=5\)
CASE 2
MTLTYPE(1) \(=5\)
END SELECT

READ DENT\$
CASE ELSE
INPUT \#1, DENT\$
END SELECT

END SUB
SUB BCMENU ( \(I, J, B C\) )
'MENU FOR INPUT OF BOUNDARY CONDITIONS
IF ( \(J=1\) ) THEN
'DEFAULT MENU FOR INSIDE B.C. (EDIT AS NEEDED)
PRINT SPC(10); "INSIDE BOUNDARY CONDITION FOR MATERIAL "; I
PRINT " "
TO USE IF (BC <> 8) THEN
PRINT "1. Constant Temperature (Default)" 'TIN
PRINT "2. Insulated Surface"
PRINT "3. Constant Energy Flux" 'QIN
PRINT "4. Constant Convective Energy Flux" 'HIN,TIN
PRINT "5. Variable Surface Temperature" 'FTIN
PRINT "6. Variable Surface Energy Flux" 'FFIN
PRINT "7. Variable Convective Flux" 'HIN,FTIN
INPUT "OPTION"; BC
IF ( \(\mathrm{BC}=0\) ) THEN \(\mathrm{BC}=1\)
ELSE
PRINT "Internal Boundary Condition for Material"; I; ":
Conductive" END IF
ELSE
'DEFAULT MENU FOR OUTSIDE B.C. (EDIT AS NEEDED)
PRINT SPC(10); "OUTSIDE BOUNDARY CONDITION FOR MATERIAL "; I
PRINT " " 'VARIABLE/FUNCTION
TO USE IF (BC <> 8) THEN
PRINT "1. Constant Temperature (Default)" 'TOUT
PRINT "2. Insulated Surface"
PRINT "3. Constant Energy Flux" 'QOUT
PRINT "4. Constant Convective Energy Flux" 'HOUT,TOUT
PRINT "5. Variable Surface Temperature" 'FTOUT
PRINT "6. Variable Surface Energy Flux" 'FFOUT
PRINT "7. Variable Convective Flux" 'HOUT,FTOUT
INPUT "OPTION"; BC
IF ( \(\mathrm{BC}=0\) ) THEN \(\mathrm{BC}=1\)
ELSE
PRINT "External Boundary Condition for Material"; I; ":
Conductive" END IF
END IF

END SUB
SUB BCONDITION (M(), TIN(), TOUT(), HIN(), HOUT(), FIN(), FOUT(), TOLD()) SHARED APPL, BCIN(), BCOUT(), ISAMPLE, CONFIG, AREA()
```

 SELECT CASE ISAMPLE
 CASE 0
 CLS
FOR I = 1 TO APPL
PRINT SPC(10); "BOUNDARY CONDITIONS FOR MATERIAL"; I
FOR J = 1 TO 2
IF (J = 1) THEN
PRINT "INTERNAL BOUNDARY CONDITION"
TEST = BCIN(I)
ELSE
PRINT "EXTERNAL BOUNDARY CONDITION"
TEST = BCOUT(I)
END TF
SELECT CASE TEST
CASE IS = 1 ' CONSTANT TEMPERATURE
IF (J = 1) THEN
INPUT "Enter Constant INTERNAL Temperature (C)"; TIN(I)
TOLD(0) = TIN(I)
ELSE
INPUT "Enter Constant EXTERNAL Temperature (C)"; TOUT(I)
TOLD(M(I)) = TOUT(I)
END IF
CASE IS = 2 ' INSULATED BOUNDARY
IF (}J=1\mathrm{) THEN
PRINT "Internal boundary insulated"
HIN(I) = 0!
FIN(I) = 0!
ELSE
PFINT "External boundary insulated"
HOUT(I) = 0!
FOUT(I) = 0!
END IF
CASE IS = 3' CONSTANT HEAT FLUX
IF (J =. 1) THEN
HIN(I) = 0!
PRINT "ENTER CONSTANT INTERNAL ENERGY FLUX (WATTS/CM^2)"
INPUT " (+ FOR HEAT INTO MATERIAL, - FOR HEAT OUT OF
MATERIAL) "; FIN(I) ELSE
HOUT(I) = 0!
PRINT "ENTER CONSTANT EXTERNAL ENERGY FLUX (WATTS/CM^2)"
INPUT "(+ FOR HEAT INTO MATERIAL, - FOR HEAT OUT OF
MATERIAL) "; FOUT(I) END IF
CASE IS = 4 ' CONVECTIVE HEAT FLUX
IF (J = 1) THEN
INPUT "ENTER CONVECTIVE HEAT TRANSFER COEFFICIENT
(WATTSS/M^2-C) "; HIN(I) 'CONVERT FROM (WATTS/M^2-C) TO
(WATTS/CM^2-C)
HIN(I) = HIN(I) / 10000!

```

INPUT "ENTER CONSTANT CONVECTIVE 'BULK' TEMPERATURE
(C) "; TIN(I)

ELSE
'FIN(I) \(=\) HIN(I) * TIN(I)
(WATTS/CM^2)
INPUT "ENTER CONVECTIVE HEAT TRANSFER COEFFICIENT
(WATTS/M^2-C) "; HOUT (I) 'CONVERT FROM (WATTS/M^2-(WATTS/CM^2-C)

HOUT (I) \(=\) HOUT (I) / 10000!
INPUT "ENTER CONSTANT CONVECTIVE 'BULK' TEMPERATURE
(C) " \({ }^{\prime \prime}\) TOUT (I)
' (WATTS / CM^2)
END IF
CASE IS \(=5\)
IF \((J=1)\) THEN
PRINT "Internal surface temperature as a function of time must be" PRINT "entered into subroutine FTIN. VERIFY BEFORE CONTINUING" TOLD (0) \(=\operatorname{FTIN}(0!)\)
ELSE
PRINT "External surface temperature as a function of time must be" PRINT "entered into subroutine FTOUT.
VERIFY BEFORE CONTINUING" \(\operatorname{TOLD}(M(I))=F T O U T(0!)\)
END IF
CALL PAUSE

END IF
CASE IS \(=6\)
IF ( \(J=1\) ) THEN
PRINT "Internal surface ENERGY flux as a function of time must be" VERIFY BEFORE CONTINUING" ELSE

CALL PAUSE
PRINT "External surface ENERGY flux as a function of time must be"
VERIFY BEFORE CONTINUING" PRINT "entered into subroutine FFOUT.

END IF

\section*{CALL PAUSE}

CASE IS \(=7\)
IF \((J=1)\) THEN
INPUT "ENTER CONVECTIVE HEAT TRANSFER COEFFICIENT
(WATTS/M^2-C) "; HIN(I) 'CONVERT FROM (WATTS/M^2-C) TO (WATTS/CM^2-C)

HIN \((I)=\) HIN(I) / 10000!
PRINT "Internal convective temperature as a function of time must be" PRINT "entered into subroutine FTIN. VERIFY BEFORE CONTINUING" CALL PAUSE

ELSE
INPUT "ENTER CONVECTIVE HEAT TRANSFER COEFFICIENT
(WATTS \(\left./ M^{\wedge} 2-C\right)\)
\((W A T T S / C M \wedge 2-C)\)\(\quad\) 'CONVERT FROM (WATTS \(/ M^{\wedge} 2-C\) ) TO (WATTS/CM^2-C)

HOUT (I) \(=\) HOUT (I) ! 10000!
PRINT "Internal surface temperature as a function of time must be"

PRINT "entered into subroutine FTOUT.
```

VERIFY BEFORE CONTINUING"
END IF
CASE IS = 8
PRINT "Coupled Froblem Chosen - B.C. fixed"
IF (I = 1) THEN
AREA(1) = 1!
IF (CONFIG = 2) THEN
INPUT "Enter EXTERNAL conductive area for material
1 (CM^2/CM)"; AREA(1)
END IF
ELSE
AREA (2) = 1!
IF (CONFIG = 2) THEN
INPUT "Enter EXTERNAL conductive area for material
2 (CM^2/CM)"; AREA(2)
END IF
END IF
PRINT ""
END SELECT
PRINT ""
NEXT J
NEXT I
CASE 1
TOLD(0) = 0!
TOLD(M(1)) = 0!
CASE 2
HIN(I) = 0!
FIN(I) = 0!
HOUT(1) = 70000!
HOUT(1) = HOUT(1) / 10000!
TOUT(1) = 0
FOUT(1) = HOUT(1) * TOUT(1) '(WATTS/CM^2)
END SELECT
END SUB
DEFSNG J
SUB BCUPDATE (I, M(), TIME, TEMP())
SHARED BCIN(), BCOUT()
'UPDATE B.C. TEMP. WHEN TEMP. IS A FUNCTION OF TIME
IF (BCIN(1) = 5) THEN
TEMP(0) = FTIN(TIME)
END IF
IF (BCOUT(I) = 5) THEN
IF (I = 1) THEN
TEMP(M(I)) = FTOUT(TIME)
ELSE
TEMP(M(I)) = FTOUT(TIME)

```
```

 END IF
 END IF
END SUB
DEFINT J
SUB DATAFROM (IZINPUT, ZINPUT$)
,
'DETERMINE IF DATA IS FROM KEYBOARD, PROGRAM DATA STATEMENTS, OR
DATA FILE
 PRINT "PRCGRAM INPUT DATA FROM"
 PRINT " 1 - KEYBOARD (** DEFAULT **) "
 PRINT " 2 - PROGRAM DATA STATEMENTS "
 PRINT " 3 - DATA FILE "
 INPUT "ENTER CHOICE (1-3) :", IZINPUT
IF IZINPUT = 0 THEN IZINPUT = 1
SELECT CASE IZINPUT
 CASE 1
 ZINPUT$ = "KYBD:"
CASE 2
ZINPUT\$ = "PRGM"
CASE 3
PRINT " "
INPUT "ENTER INPUT DATA FILE NAME: ", ZINPUT\$
OPEN ZINPUT\$ FOR INPUT AS \#1
END SELECT
PRINT " "
PRINT " "
END SUB
DEFSTR Z
SUB DATATO (IZOUTPUT, ZOUTPUT$)
!
'DETERMINE IF OUTPUT IS TO SCREEN, PRINTER, OR DATAFILE
',
 PRINT "PROGRAM OUTPUT TO: "
 PRINT " 0 - SCREEN (** DEFAULT **) "
 PRINT " 1 - LPT1 (DEFAULT PRINTER) "
 PRINT " 2 - LPT2 "
 PRINT " 3 - LPT3 "
 PRINT " 4 - COM1 "
 PRINT " 5 - COM2 "
 PRINT " 6 - DATA FILE "
 INPUT "ENTER CEOICE (0-6) :", IZOUTPUT
, IF ((IZOUTPUT < 0) OR (IZOUTPUT > 6)) THEN GOTO 205
SELECT CASE IZOUTPUT
 CASE O
 ZOUTPUT$ = "SCRN:"

```

CASE 1
ZOUTPUT\$ = "LPT1:"
CASE 2
ZOUTPUT\$ = "LPT2:"
CASE 3
ZOUTPUT\$ = "LPT3:"
CASE 4
ZOUTPUT\$ = "COM1:"
CASE 5
ZOUTPUT\$ = "COM2:"
CASE 6
PRINT " "
INPUT "ENTER OUTPUT DATA FILE NAME: ", ZOUTPUT\$
END SELECT
OPEN ZOUTPUT\$ FOR OUTPUT AS \#2
PRINT " "
PRINT " "
END SUB
```

DEFINT K-L, N
DEFSNG Z
SUB DESCRIPT
'RIN = INSIDE RADIUS
'ACTD = ACTIVATION ENERGY FOR D2 DIFFUSION IN METAL
(CAL/MOLE) 'ACTS = ACTIVATION ENERGY FOR HYDROGEN ISOTOPE**
SOLUBILITY IN , METALS (INDEPENDENT OF ISOTOPE)
(CAL/MOLE)
'APPL = APPLICATION
, = 0: LIFE STORAGE
, = 1: STANDARD RECLAMATION
, = 2: MULTIPLE-EXPOSURE RECLAMATION
, = 3: FULL CAPABILITIES
'AREA = PERMEATION SURFACE AREA (CM^2)
'AREACONF = SURFACE AREA OF DIAPHRAM FOR CONFINED VOLUME (CM^2)
'ROUT = OUTSIDE RADIUS
'CONTAM = CONTAMINATION RATE (CURIES/YEAR)
'DEIN() = DETERIUM FILL DATA (ATM)
'DIFF = DIFFUSIVITY IN METAL (CM^2/SEC) = PRED * EXP(-ACTD /
R1 / TEMP(KL)) 'GEOM = GEOMETRY
, = 0: PLANE SHEET
, = 1: CYLINDER
, = 2: SPHERE
GGHYD = GRAMS HYDRIDE
GTYPE = GEOM + 1 TYPE PROBLEM ??????
'HYIN() = HYDROGEN FILL DATA (ATM)
'ISO = ISOTOPE TYPE
, = O: D\&T
, = 1: H
, = 2: D
, = 3:T

```
```

'KLMAX = NUMBER OF EXPOSURE/OFFGASSING STEPS
'MTLTYPE = MATERIAL TYPE
, = 0: 304L
, = 1: 21-6-9
\prime, = 2: COPPER ALLOYS
, = 3: ALUMINUM ALLOYS
'N = NUMBER OF TIME STEPS
'PERM = PERMEATION RATE (CC/CM/CM/SEC)
'PRED = PRE-EXPONENTIAL FOR ARRHENIUS FORM OF DIFFUSIVITY
(CM^2/SEC) 'PRES = PRE-EXPONENTIAL FOR ARRHENIUS FORM OF
SOLUBILITY BASED ON ISOTOPE ' PARTIAL PRESSURE ([CC
ISOTOPE]/[CC-METAL]/[ATM^0.5]) 'R1 = IDEAL GAS CONSTANT
(CAL/MOLE-K)
'TEMP() = TEMPERATURE (C OR K)
'THICK = MATERIAL THICKNESS
'THOURS = NUMBER OF HOURS PER DAY AT PERMEATION TEMPERATURE
(HOURS/DAY) 'TINPUT = O: GRAMS
, = 1: ATMOSPHERES
'TINSIDE = B.C. ON INSIDE OF CONTAINER
\prime}=0: TRITIUM IN GAS BOTTLE
, = 1: TRITIUM IN A SOLID STORAGE?
\prime = 2: TRITIUM FLOW THROUGY INSIDE STRUCTURE
'TOUT = B.C. TYPE ON OUTSIDE OF CONTAINER
, = 0: CONC. OUTSIDE 0
, = 1: CONC. OUTSIDE CONSTANT
, = 2: CONFINED EXTERNAL VOLUME
\prime}= 3: DIFFUSION FROM INSIDE AND OUTSIDE
'TRIN() = TRITIUM FILL DATA (ATM)
'U(O) = INTERIOR SURFACE CONCENTRATION (CC DISSOCIATED
ISOTOPE/CC METAL) , IF BASED ON ISOTOPE PARTIAL
PRESSURE,
\prime}\operatorname{TEMP(KL) U(O) = SQR(PARTIAL PRESSURE) * PREXPS * EXP(-ACTS / R1
/ TEMP(KL)) 'VOL = VOLUME OF VESSEL (CC)
END SUB
DEFSNG J-N
FUNCTION FFIN (I, TIME)
SHARED BCIN(), FIN(), HIN(), TIN()
'SET INTERNAL B.C. "FORCING FUNCTION"
SELECT CASE BCIN(I)
CASE IS = 1 'CONSTANT SURFACE TEMP.
PRINT "ERROR IN FFIN: BCIN = 1": END
CASE IS = 2 'INSULATED SURFACE
FFIN = 0!
CASE IS = 3 'CONSTANT ENERGY FLUX = FIN(I)
FFIN = FIN(I)
CASE IS = 4 'CONSTANT CONVECTIVE HEAT LOSS
FFIN = HIN(I) * TIN(I)
CASE IS = 5 'SURFACE TEMP. A FUNCTION OF TIME IN SUB
"FTIN" PRINT "ERROR IN FFIN: BEIN = 5": END

```
```

 CASE IS = 6
 (WATTS/CM^2)
CASE IS = 7
SUB "FTIN"
CASE IS = 8
PRINT "ERROR IN FFIN: BCIN = 8": END
END SELECT
END FUNCTION
FUNCTION FFOUT (I, TIME)
SHARED BCOUT(), FOUT(), HOUT(), TOUT(), RIN(), ROUT(), MTOT,
TOLD() 'SET EXTERNAL B.C. "FORCING FUNCTION"
SELECT CASE BCOUT(I)
CASE IS = 1 'CONSTANT SURFACE TEMP.
FFOUT = 0!
CASE IS = 2
FFOUT = 0!
CASE IS = 3 'CONSTANT ENERGY FLUX = FOUT(I)
FFOUT = FOUT(I)
CASE IS = 4 'CONSTANT CONVECTIVE HEAT LOSS
FFOUT = HOUT(I) * TOUT(I)
CASE IS = 5
'SURFACE TEMP. A FUNCTION OF TIME (C)
FFOUT = -9999!
CASE IS = 6 'ENTER DESIRED FLUX AS A FUNCTION OF TIME
(WATTS/CM^2)
N = 9
Q 2.5 '.408 'LIQUID FLOW, L/MIN
A = PI * 2 * RIN(2) * (PI * 2 * ROUT(1) * 1.25 * N) 'COIL
AREA, CM^2
HEATVAP = 199.1 'J/G
DEN = . 808 'G/CM^3
CP = . 25
' CAL/G-C
TN2 = -196
'C
M=Q * 1000 * DEN / 60! 'MASS FLOW (G/SEC)
QLOAD = M * (HEATVAP + CP / . 23901 * (TOLD(MTOT) - TN2))
'HEAT LOAD (WATTS) F = -QLOAD / A
HEAT FLUX (WATTS/CM^2) FFOUT = F
PRINT "FFOUT = "; F
CASE IS = 7 'BULK' CONVECTION TEMP. AS A FUNCT OF TIME IN
SUB "FTOUT" FFOUT = HOUT(I) * FTOUT(TIME)
CASE IS = 8
PRINT "ERROR IN FFOUT: BCOUT = 8": END
END SELECT
END FUNCTION
DEFINT M
FUNCTION FICOND (I, X)
SHARED THICK()
' ENTER INITIAL CONDITION FUNCTION AS A FUNCTION OF POSTION
' (ADDITIONAL VARIABLES NEEDED CAN BE ADDED TO SHARE STATEMENT)

```
```

IF (I = 1) THEN
FICOND = 100! * SIN(4 * PI * X / THICK(1))
ELSE
FICOND = 0!
END IF

```

END FUNCTION
FUNCTION FSAMPLE1 (T, X)
SHARED THICK(), ALPHA ()
```

FSAMPLE1 = 100! * EXP(-16! * PI ^ 2 * ALPHA(1) * T / THICK(1)^
2) * SIN(4! * PI * X / THICK(1))

```

END FUNCTION
FUNCTION FSAMPLE2 (T, X)
SHARED APPL, PLPHA(), HOUT(), THICK(), TZERO()
DIM B(6)
'ANALYTICAL SOLUTION FOR PROBLEM IN RECTANGULAR COORDINATES ,
\(D T / D X=0\) AT \(X=0\), DT/DX+H2T \(=0\) AT \(X=L, T=T O\) AT \(T=0\)
' (K IS ASSUMED TO BE 1, THICK \(=0.3937 \mathrm{IN}=1 \mathrm{CM}\) )
'FIRST SIX ROOTS ARE FOR SOLUTION WHEN L \(=.3937\) IN (1CM) AND ,
\(\mathrm{H} 2=7 \mathrm{E}+4\) WATTS \(/ \mathrm{M}^{\wedge} 2-\mathrm{C}\)
\(B(1)=1.3766\)
\(B(2)=4.1746\)
\(B(3)=7.064\)
\(B(4)=10.0339\)
\(B(5)=13.0584\)
\(B(6)=16.1177\)
SUM \(=0\)
FOR I = 1 TO 6
\(\operatorname{COEF}=(\mathrm{B}(\mathrm{I}) \wedge 2+\mathrm{HOUT}(1) \wedge 2) /(\operatorname{THICK}(1) *(\mathrm{~B}(\mathrm{I}) \wedge 2+\)
HOUT(1) ^2) + HOUT(1)) FUNCS \(=\operatorname{SIN}(B(I) * \operatorname{THICK}(1)) / B(I) *\) \(\cos (B(I) * X)\)

TERM \(=\operatorname{EXP}(-\operatorname{ALPHA}(1) * B(I) \wedge 2 * T) * \operatorname{COEF} *\) FUNCS
SUM \(=\) SUM + TERM
IF (DEBUG \(=1\) ) THEN
PRINT "FSAMPLE2 OUTPUT"
PRINT "COEF = "; COEF
PRINT "TERM \(=1\); TERM
PRINT "SUM = "; SUM
CALL PAUSE
END IF
NEXT I
IF (ABS (TERM) / ABS (SUM) < .01) THEN
FSAMPLE2 \(=2 *\) TZERO (APPL) \(*\) SUM
ELSE
'OUTPUT ZERO IF SERIES DOES NOT CONVERGE FSAMPLE2 \(=0\)
END IF

\section*{END FUNCTION}
```

FUNCTION FTIN (TIME)
SHARED HIN(), TZERO(), TOLD(), RIN()
'ENTER INTERNAL BOUNDARY CONDITION AS A FUNCTION OF TIME
'ADD VARIABLES NEED TO SHARE STATEMENT
I = 1
THEATA = 4! * HIN(I) / 4.2 / (RIN(I) * 2!) / . 8 / . 1 * . 23901
FTIN = (TZERO(I) - TOLD(0)) * EXP(-THEATA * TIME) + TOLD(0) END
FUNCTION FTOUT (TIME)
SHARED ISAMPLE, TZERO(), TOLD(), MTOT
'ENTER EXTERNAL BOUNDARY CONDITION AS A FUNCTION OF TIME
'ADD VARIABLES NEED TO SHARE STATEMENT
'FTTOUT = (TZERO(1) - -200) * EXP(-.29 * TIME) + -200
TN2 = -196
FTOUT = (TOLD (MTOT) + TN2) / 2!
END FUNCTION
DEFINT J
SUB ICONDITION (APPL, ICOND(), M(), MTOT, R(), TOLD())
SHARED ZINPUT$, THICK(), TZERO(), DEBUG
CLS
SELECT CASE ZINPUT$

```
    CASE IS = "KYBD:"
FOR I = 1 TO APPL
    SELECT CASE ICOND(I)
    CASE IS \(=1\)
        PRINT "INTIAL CONDITION FOR MATERIAL"; I
        INPUT "Enter Initial Material Temperature (C)"; TZERO(I)
IF (I = 1) THEN
        FOR J = 0 TO M(1)
                TOLD \((J)=\operatorname{TZERO}(I)\)
            NEXT J
        ELSE
            FOR J = 1 TO M(2)
                    \(\operatorname{TOLD}(\mathrm{M}(1)+\mathrm{J})=\operatorname{TZERO}(\mathrm{I})\)
            NEXT J
        END IF
    CASE IS \(=2\)
    PRINT "REGION IS DIVIDED INTO"; M(I); "SECTIONS"
        PRINT "ENTER TEMPERATURE AT EACH LOCATION": PRINT ""
        IF (I = 1) THEN
```

 FOR J = O TO M(1)
 PRINT "J = "; J; ", R (CM) = "; R(1, J)
 INPUT "TEMPERATURE (C) AT R = "; TOLD(J)
 PRINT " "
 NEXT J
 ELSE
 FOR J = 1 TO M(2)
 PRINT "J = "; J; ", R (CM) = "; R(2,J)
 INPUT "TEMPERATURE (C) AT R = "; TOLD(M(1) + J)
 PRINT " "
 NEXT J
 END IF
    ```
CASE IS \(=3\)
    IF ( \(I=1\) ) THEN
    FOR \(J=0\) TO M(1)
        TOLD \((J)=\operatorname{FICOND}(1, R(1, J))\)
        NEXT J
    ELSE
        FOR J = 1 TO M(2)
            \(\operatorname{TOLD}(M(1)+J)=\operatorname{FICOND}(1, R(2, J))\)
        NEXT J
    END IF

END SELECT
PRINT "": PRINT ""
NEXT I
CLS
CASE IS = "PRGM"
READ DENT\$
CASE ELSE
INPUT \#1, DENT\$
END SELECT

IF (DEBUG \(=1\) ) THEN
FOR I \(=1\) TO APPL
PRINT "INITIAL CONDITIONS"
FOR \(J=M(I-1) T O M(I-1)+M(I)\)
PRINT "J = "; J; ", R (CM) = "; R(I, J - M(I - 1));"
TOLD \(=1\); TOLD(J) NEXT J
CALL PAUSE
CLS
NEXT I
END IF
END SUB
```

SUB MATRIXA (MTOT, AA (), AB(), AC())
SHARED APPL, M(), BCIN(), BCOUT(), DEBUG, EPS()
SHARED GAMMA (), DELTA (), LAMIN(), LAMOUT (), BETAIN(), BETAOUT()
'SET-UP MATRIX OF COEFFICIENTS FOR KNOWN TEMPERATURES
' FOR J=0
IF $(\operatorname{BCIN}(1)=1 \operatorname{OR} \operatorname{BCIN}(1)=5)$ THEN
$A B(0)=1!$
$A C(0)=0!$
ELSE
$\mathrm{AB}(0)=2!*(1!+\operatorname{GAMMA}(1) * \operatorname{BETAIN}(1)-\operatorname{DELTA}(0) * \operatorname{LAMIN}(1))$
$\operatorname{AC}(0)=-2!* \operatorname{GAMMA}(1)$
END IF
FOR $J=1$ TO M(1) - 1
AA $(J)=-\operatorname{GAMMA}(1)+\operatorname{DELTA}(J)$
$\mathrm{AB}(\mathrm{J})=2!*(1!+\operatorname{GAMMA}(1))$
$\operatorname{AC}(J)=-\operatorname{GAMMA}(1)-\operatorname{DELTA}(J)$
NEXT J
IF (APPL = 1) THEN
' FOR $J=M(1)$
IF (BCOUT(1) = 1 OR BCOUT(1) = 5) THEN
$A A(M(1))=0!$
$A B(M(1))=1!$
ELSE
AA (M(1)) $=-2!*$ GAMMA (1)
$\mathrm{AB}(\mathrm{M}(1))=2!*(1!+\operatorname{GAMMA}(1) * \operatorname{BETAOUT}(1)+\operatorname{DELTA}(\mathrm{M}(1))$ *
LAMOUT(1)) END IF
ELSE
' FOR J=M(1)
$\mathrm{AA}(\mathrm{M}(1))=\operatorname{EPS}(1)$
$\mathrm{AB}(\mathrm{M}(1))=-(\operatorname{EPS}(1)+\operatorname{EPS}(2))$
$A C(M(1))=\operatorname{EPS}(2)$
FOR $J=M(1)+1$ TO MTOT - 1
AA $(J)=-\operatorname{GAMMA}(2)+\operatorname{DELTA}(J)$
$\mathrm{AB}(\mathrm{J})=2!*(1!+\operatorname{GAMMA}(2))$
AC $(J)=-\operatorname{GAMMA}(2)-\operatorname{DELTA}(J)$
NEXT J
' FOR J=MTOT
IF (BCOUT (2) $=1$ OR BCOUT(2) = 5) THEN
$A A(M T O T)=0!$
$\mathrm{AB}(\mathrm{MTOT})=1!$
ELSE
AA (MTOT) $=-2!*$ GAMMA (2)
$\mathrm{AB}(\mathrm{MTOT})=2!*(1!+\operatorname{GAMMA}(2) * \operatorname{BETAOUT}(2)+\operatorname{DELTA}(M T O T) *$
LAMOUT(2)) END IF
END IF
IF (DEBUG $=1$) THEN
PRINT "AA,AB,AC VECTORS, BETAOUT(1)="; BETAOUT(1)
FOR J = 0 TO M(1)
PRINT J, AA(J), AB(J), AC(J)
NEXT J

```
```

 CALL PAUSE
 IF (APPL = 2) THEN
 PRINT "AA,AB,AC VECTORS, BETAOUT(2)="; BETAOUT(2)
 FOR J = M(1) TO MTOT
 PRINT J, AA(J), AB(J), AC(J)
 NEXT J
 CALL PAUSE
 END IF
 END IF
END SUB
SUB MATRIXB (MTOT, BA(), BB(), BC())
SHARED APPL, M(), BCIN(), BCOUT(), DEBUG, EPS()
SHARED GAMMA(), DELTA(), LAMIN(), LAMOUT(), BETAIN(), BETAOUT()
'SET-UP MATRIX OF COEFFICIENTS FOR KNOWN TEMPERATURES
' FOR J=0
IF (BCIN(1) = 1 OR BCIN(1) = 5) THEN
BB(0) = 1!
BC(0) = 0!
ELSE
BB(0) = 2! * (1! - GAMMA(1) * BETAIN(1) + DELTA(0) * LAMIN(1))
BC(0) = 2! * GAMMA(1)
END IF
FOR J = 1 TO M(1) - 1
BA(J) = GAMMA(1) - DELTA(J)
BB(J) = 2! * (1! - GAMMA(1))
BC(J) = GAMMA(1) + DELTA(J)
NEXT J
IF (APPL = 1) THEN
'FOR J=M(1)
IF (BCOUT(1) = 1 OR BCOUT(1) = 5) THEN
BA(M(1)) = 0!
BB}(M(1))=1
ELSE
BA(M(1)) = 2! * GAMMA(1)
BB(M(1)) = 2! * (1! - GAMMA(1) * BETAOUT(1) - DELTA(M(1)) *
LAMOUT(1)) END IF
ELSE
'FOR J=M(1)
BA(M(1)) = - EPS(1)
BB(M(1)) = EPS(1) + EPS(2)
BC(M(1)) = - EPS(2)
FOR J = M(1) + 1 TO MTOT - 1
BA(J) = GAMMA(2) - DELTA(J)
BB(J) = 2! * (1! - GAMMA(2))
BC(J) = GAMMA(2) + DELTA(J)
NEXT J
' FOR J=MTOT
IF (BCOUT(2) = 1 OR BCOUT(2) = 5) THEN

```
```

 BA(MTOT) = 0!
 BB(MTOT) = 1!
 ELSE
 BA(MTOT) = 2! * GAMMA(2)
 BB(MTOT) = 2! * (1! - GAMMA(2) * BETAOUT(2) - DELTA(MTOT) *
 LAMOUT(2)) END IF
END IF
IF (DEBUG = 1) THEN
PRINT "BA,BB,BC VECTORS, BETAOUT(1)="; BETAOUT(1)
FOR J = O TO M(1)
PRINT J, BA(J), BB(J), BC(J)
NEXT J
CALL PAUSE
IF (APPL = 2) THEN
PRINT "BA,BB,BC VECTORS, BETAOUT(2)="; BETAOUT(2)
FOR J = M(1) TO MTOT
PRINT J, BA(J), BB(J), BC(J)
NEXT J
CALL PAUSE
END IF
END IF
END SUB
SUB MATTERMS (GAMMA(), EPS(), DELTA(), LAMIN(), LAMOUT(),
BETAIN(), BETAOUT()) SHARED APPL, M(), MTOT, GEOM(), AREA(),
ALPHA(), DT, HIN(), HOUT(), K() SHARED R(), DR(), DEBUG
FOR I = 1 TO APPL
GAMMA(I) = ALPHA(I) * DT / DR(I) ^ 2
LAMIN(I) = DR(I) * HIN(I) / K(I)
LAMOUT(I) = DR(I) * HOUT(I) / K(I)
BETAIN(I) = 1! + LAMIN(I)
BETAOUT(I) = 1! + LAMOUT(I)
IF (I = 1) THEN
EPS(1) = 0!
EPS(2) = 0!
ELSE
EPS(1) = K(1) * AREA(1) / DR(1)
EPS(2) = K(2) * AREA(2) / DR(2)
END IF
SELECT CASE GEOM(I)
CASE 1
OMEGA = 0!
CASE 2
OMEGA = 1!
CASE 3
OMEGA = 2!

```

\section*{END SELECT}

IF (I = 1) THEN
FOR \(J=0\) TO M(1)
IF (OMEGA \(=0!\) ) THEN
DELTA (J) \(=0!\)
ELSE DELTA \((J)=\) OMEGA * ALPHA (1) * DT / R(1, J) / DR(1)
END IF
NEXT J
ELSE
FOR \(J=M(1)\) TO MTOT
IF (OMEGA \(=0!\) ) THEN
DELTA (J) \(=0\) !
ELSE
DELTA (J) \(=\) OMEGA * ALPHA(2) * DT /R(2, J - M(1)) /
END IF
NEXT J
END IF
NEXT I
IF (DEBUG \(=1\) ) THEN
PRINT "MTOT = "; MTOT
FOR I \(=1\) TO APPL
PRINT "ALPHA \(="\); ALPHA (I)
PRINT "GAMMA \(=" ;\) GAMMA(I)
PRINT "LAMIN \(=" ;\) LAMIN (I)
PRINT "LAMOUT \(=\) "; LAMOUT (I)
PRINT "BETAIN \(=\) "; BETAIN(I)
PRINT "BETAOUT \(=\) "; BETAOUT (I)
PRINT "EPSILON ="; EPS (I)
CALL PAUSE
PRINT ""
PRINT "DELTA TERMS"
FOR \(J=0\) TO M(1)
PRINT "J = "; J; " R = "; R(1, J); " DELTA = "; DELTA (J)
NEXT J
CALL PAUSE
FOR \(J=M(1)\) TO MTOT
PRINT "J = "; J; " \(R=" ; R(2, J-M(1)) ; " D E L T A=" ;\)
DELTA(J) NEXT J
CALL PAUSE
NEXT I
END IF
END SUB
SUB MTLPROP (APPL, MTLTYPE(), K(), ALPHA()) SHARED DEBUG
'DEFINE PROPERTIES FOR MATERIALS SECLECTED
' \(\mathrm{K}(\mathrm{I})=\) THERMAL CONDUCTIVITY (WATTS/M-C)
```

\prime, DENSITY = MATERIAL DENSITY
(G/CM^3)
' HEATCAP = MATERIAL HEAT CAPACITY (CAL/G-C)
FOR I = 1 TO APPL
SELECT CASE MTLTYPE(I)
CASE 1
K(I) = 16.26
DENSITY = 7.83
HEATCAP = . }1
\prime9.4 BTU/HR-FT^2-F/FT
'7.83 G/CM^3
'.12 CAL/G-C FOR STEEL
CASE 2
K(I) = 0
DENSITY = 0
HEATCAP = 0
CASE 3 'COPPER
K(I) = 398
DENSITY = 8.92
HEATCAP =.0924 '5.44+0.001462*T(K) (CAL/MOLE-C) /
CASE 4 'ALUMINUM
K(I) = 273
DENSITY = 2.7
MEATCAP =.214 '4.80+0.00322*T(K) (CAL/MOLE-C) /
26.97(G/MOLE)
CASE }
INPUT "INPUT THERMAL CONDUCTIVITY (WATTS/M-C) "; K(I)
INPUT "INPUT MATERIAL DENSITY (G/CM^3) "; DENSITY
INPUT "MATERIAL HEAT CAPACITY (CAL/G-C) "; HEATCAP
END SELECT
'CONVERT MATERIAL PROPERTIES
\prime, K FROM (WATTS/M-C) TO (WATTS/CM-C)
, HEATCAP FROM (CAL/G-C) TO (WATT-SEC/G-C)
, 100 CM/M
, 0.23901 CAL/WATT-SEC
K(I) = K(I) / 100!
HEATCAP = HEATCAP / . 23901
SELECT CASE MTLTYPE(I)
CASE 5
K(I) = 1!
DENSITY = 1!
HEATCAP = 1!
END SELECT
' COMPUTE ALPHA = K/RHO-CP (CM^2/SEC)
ALPHA(I) = K(I) / DENSITY / HEATCAP
IF (DEBUG = 1) THEN
PRINT "MATERIAL "; I

```
```

 PRINT "K = "; K(I)
 PRINT "DEN="; DENSITY
 PRINT "CP ="; HEATCAP
 PRINT "ALPHA = "; ALPHA(I)
 PRINT ""
 CALL PAUSE
 END IF

```
```

NEXT I
END SUB

```
DEFINT K-L, N
SUB PAUSE
PRINT "PRESS ANY KEY TO CONTINUE PROGRAM"
DO
LOOP WHILE INKEY\$ = \(\quad=1\)
    PRINT " "

END SUB
SUB PCALC (GTYPE, \(A(), B(), C(), D(), X(), Y(), P(), U())\)
'subroutine for \(X, Y, P\) and \(U\)
calculations.................................. \(X(M-1)=(D(M-1)+A(M\)
- 1) * \(P(M)\) ) / \(B(M-1)\)
\(Y(M-1)=C(M-1) / B(M-1)\)
FOR I \(=M-2\) TO 1 STEP -1
\(X(I)=(D(I)+A(I) * X(I+1)) /(B(I)-A(I) * Y(I+1))\)
\(Y(I)=C(I) /(B(I)-A(I) * Y(I+1))\)
NEXT I
FOR I = 1 TO M - 1
\(P(I)=X(I)+Y(I) * P(I-1)\)
\(U(I)=P(I)+U(I)\)
NEXT I
END SUB
DEFSNG K-L, N
SUB SIZE (APPL, GEOM(), CONFIG, THICK(), RIN(), ROUT(), M(), DR(), R()) SHARED ZINPUT\$, ISAMPLE
DIM THICKO(2), RINO(2), ROUTO(2)
THICKO (1) \(=1\)
RINO (1) \(=.805\)
ROUTO (1) \(=.95\)
THICKO (2) \(=1\)
RINO (2) \(=.1575\)
ROUTO (2) \(=.1875\)

\section*{CASE IS = "KYBD:"}

SELECT CASE ISAMPLE
CASE 0
PRINT "
IF GEOM (1) \(=1\) THEN
PRINT "Input material 1 wall Thickness (in.) (Default ="; THICKO (1); " inch)" INPUT ""; THICK(1): PRINT ""

IF (THICK (1) \(=0\) ) THEN THICK (1) \(=\) THICKO (1)
ELSE
PRINT "Input material 1 Inner Radius (in.) (Default = ";
RINO(1); " in)" INPUT ""; RIN(1): PRINT ""
IF (RIN (1) \(=0\) ) THEN RIN (1) \(=\) RINO (1)
PRINT "Input material 1 Outer Radius (in.) (Default \(=\mathbf{N}\);
ROUTO(1); " in)" INPUT ""; ROUT(1)
IF (ROUT (1) \(=0\) ) THEN ROUT (1) \(=\) ROUTO (1)
END IF
IF (APPL > 1) THEN
PRINT ""
PRINT " DIMENSIONS OF STRUCTURE 2"
IF GEOM (2) \(=1\) THEN
PRINT "Input material 2 wall Thickness (in.) (Default =";
THICKO(2); " inch)" INPUT ""; THICK(2): PRINT ""
IF (THICK (2) \(=0\) ) THEN THICK (2) \(=\) THICKO (2)
ELSE
IF (CONFIG \(=1\) ) THEN
RIN (2) \(=\) ROUT(1)
PRINT ""
PRINT "Inner Radius for material 2 set equal to Outer
Radius of material 1" PRINT " (Concentric geometry
chosen)"
PRINT " "
ELSE
PRINT "Input material 2 Inner Radius (in.) (Default \(=\) ";
RINO (2); " in)" INPUT ""; RIN(2): PRINT ""
IF (RIN (2) \(=0\) ) THEN RIN (2) \(=\) RINO (2)
END IF
PRINT "Input material 2 Outer Radius (in.) (Default = ";
ROUTO (2); " in)" INPUT ""; ROUT(2)
IF (ROUT (2) \(=0\) ) THEN ROUT (2) \(=\) ROUTO (2)
END IF
END IF
PRINT "": PRINT ""
CASE 1
\(\operatorname{RIN}(1)=0!\)
THICK(1) \(=.3937\)
CASE 2
RIN(1) \(=0\) !
THICK (1) =. 3937
END SELECT
```

 CASE IS = "PRGM"
 READ THICK
READ RIN, ROUT
CASE ELSE
INPUT \#1, THICK
INPUT \#1, RIN, ROUT
END SELECT
'geometric information
FOR I = 1 TO APPL
IF GEOM(I) = 2 OR GEOM(I) = 3 THEN
THICK(I) = ROUT(I) - RIN(I)
ELSE
RIN(I) = 0!
END IF
NEXT I
'CONVERT DIMENSIONS TO CM
FOR I = 1 TO APPL
THICK(I) = THICK(I) * 2.54
RIN(I) = RIN(I) * 2.54
ROUT(I) = ROUT(I) * 2.54
DR(I) = THICK(I) / M(I)
IF (I = 1) THEN
FOR J = O TO M(I)
R(I, J) = RIN(I) + J * DR(I)
NEXT I
ELSE
IF (CONFIG = 1) THEN
FOR J = O TO M(I)
R(I, J) = RIN(I) + J * DR(I)
NEXT J
ELSE
FOR J = 0 TN M(I)
R(I, J) = ROUT(I) - J * DR(I)
NEXT J
END IF
END IF
NEXT I
,
END SUB
DEFSNG J
SUB SOLVE (M(), MTOT, TNEW(), AA(), AB(), AC(), D())
SHARED APPM, DEBUG
DIM WORK(100) 'WORK SPACE VECTOR
'FOR I = 1 TO APPL

```
```

 IF (AB(O) = 0) THEN PRINT "ERROR 1 IN SOLVE ROUTINE": END
 BET = AB (0)
TNEW(0) = D(0) / BET
FOR J = 1 TO MTOT
WORK(J) = AC(J - 1) / BET
BET = AB(J) - AA(J) * WORK(J)
IF (BET = 0) THEN PRINT "ERROR 2 IN SOLVE ROUTINE": END
TNEW(J) = (D(J) - AA(J) * TNEW(J - 1)) / BET
NEXT J
FOR J = MTOT - 1 TO 0 STEP -1
TNEW (J) = TNEW (J) - WORK (J + 1) * TNEW (J + 1)
NEXT J
'NEXT I
IF (DEBUG = 2) THEN
PRINT "TNEW VALUES"
FOR J = 0 TO M
PRINT J, TNEW(J)
NEXT J
CALL PAUSE
IF (APPL = 2) THEN
PRINT "TNEW VALUES"
FOR J = 0 TO M
PRINT J, TNEW(J)
NEXT J
CALL PAUSE
END IF
END IF
END SUB
DEFINT J
SUB TIMEPARMS (DR(), ALPHA(), DT, N, TMAX)
SHARED ZINPUT$, APPL
'subroutine for time step and totol time
SELECT CASE ZINPUT$
CASE IS = "KYBD:"
DTMIN = 2! * DR(1) ^ 2 / ALPHA(1)
IF (APPL > 1) THEN
DT = 2! * DR(2) ^ 2 / ALPHA(2)
IF (DT < DTMIN) THEN DTMIN = DT
END IF
CLS
PRINT "TIME STEP AND TOTAL TIME"
PRINT ""
PRINT "MAXIMUM ESTIMATED TIME STEP TO USE (SEC) = "; DTMIN
INPUT "Enter time step (sec) ", DT
IF (DT = 0) THEN DT = DTMIN

```
```

PRINT "|
INPUT "Enter total analysis time (minutes) (Default = 1 minute)";
TMAX IF (TMAX = 0) THEN TMAX = 1!
PRINT "*"
N = TMAX * 60! / DT
PRINT "NUMBER OF TIME STEPS = "; N
INPUT "CHANGE TIME STEPSIZE? (Y/N) ", A\$
IF (AS = "Y" OR AS = "Y") THEN
INPUT "Enter time step (sec) ", DT
END IF
PRINT "N: PRINT "N
CASE IS = "PRGM"
READ DT
READ THOURS
CASE ELSE
INPUT \#1, THOURS
END SELECT
'SCALE TIME
' CONVERT TIME TO SECONDS
TMAX = TMAX * 60
END SUB
SUB VECTORC (MTOT, TIME, C())
SHARED APPL, M(), BCIN(), BCOUT(), DEBUG
SHARED GAMMA(), DELTA(), DT, DR(), HIN(), HOUT(), K()
I=1 ' FOR INSIDE B.C. OF MATERIAL 1
SELECT CASE BCIN(I)
CASE IS = 1, 2, 5
VMUIN = 0!
CASE IS = 3, 4, 6,7
VMUIN = DR(I) / K(I) * (FFIN(I,TIME) + FFIN(I, TIME + DT))
/ 2!
END SELECT
I = APPL 'FOR EXTERNAL B.C.
SELECT CASE BCOUT(I)
CASE IS = 1, 2,5
VMUOUT = 0!

```
```

 CASE IS = 3, 4, 6, 7
 VMUOUT = DR(I) / K(I) * (FFOUT(I, TIME) + FFOUT(I, TIME +
 DT)) / 2!
END SELECT
' FOR J=0
C(0) = 4! * (GAMMA(1) - DELTA(0)) * VMUIN
FOR J = 1 TO MTOT - 1
C(J)=0!
NEXT J
I = APPL
' FOR MTOT
C(MTOT) = 4! * (GAMMA (I) + DELTA(MTOT)) * VMUOUT
IF (DEBUG = 1) THEN
PRINT "C VECTOR, VMU = "; VMUIN; " VMUOUT ="; VMUOUT
FOR J = 0 TO M(1)
PRINT J, C(J)
NEXT J
CALL PAUSE
IF (APPL > 1) THEN
PRINT "C VECTOR"
FOR J = M(1) + 1 TO MTOT
PRINT J, C(J)
NEXT J
CALL PAUSE
END IF
END IF
END SUB
DEFSNG J
SUB VECTORD (M(), TOLD(), BA(), BB(), BC(), C(), D())
SHARED APPL, DEBUG, MTOT
'CALCULATE VECTOR D: VEC[D] = MAT[B] * VEC[TOLD] + VEC[C]
'FOR J = 0
D(0) = BB(0) * TOLD(0) + BC(0) * TOLD(1) + C(0)
IF (APPL = 1) THEN
I = 1
ELSE
I=2
END IF
FOR J = 1 TO MTOT - 1
D(J)=BA(J) * TOLD(J - 1) + BB(J) * TOLD(J) + BC(J) * TOLD(J

```
```

+ 1) + C(J) NEXT J
'FOR J = MTOT
D(MTOT) = BA(MTOT) * TOLD(MTOT - 1) + BB(MTOT) * TOLD(MTOT) +
C(MTOT)
IF (DEBUG = 1) THEN
PRINT "D VECTOR"
FOR J = 0 TO M(1)
PRINT J, D(J)
NEXT J
CALL PAUSE
IF (APPL > 1) THEN
PRINT "D VECTOR"
FOR J = M(1) TO MTOT
PRINT J, D(J)
NEXT J
CALL PAUSE
END IF
END IF
END SUB

```
```

