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UNDERSTANDING CORRELATION COEFFICIENTS
IN TREATY VERIFICATION

.... by

A, DeVolpi

ABSTRACT

When a pair of images are compared on a point-by-point basis,, the linear-

correlation coefficient is usually used as a measure of similarity or

dissimilarity. This paper evaluates the theoretical underpinnings and limitation

of the linear-correlation coefficient, as well as other related statistics,

particularly for cases where inherent white noise is present. As a result of the

limitations in linear-correlation, an additional step has been derived-- local..

sum clustering -- in order to improve recognition of small dissimilarities in a

' pair of images. Results show that a three-stage procedure, consisting of first

establishing congruence of the two images, then using the linear-correlation

coefficient as a test of true negatives, and finally qualifying a true positive by

using the cluster (local-sum) method. These algorithmic stages would be

especially useful in arms control treaty verification.
2
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INTRODUCTION

Statistical methods have a potentially important role in validating collectect arms control treaty

verification data and in optimizing time and resources. A comparison of two images is a

good example; such image pairs are often formed or reconstructed fi'om tamper-resist,ant seals

or tags used as unique identifiers of arms control u'eaty-limited equipment An initial image

is created when the seal or tag is placed on the item, and another image is collected when the

item is verified, possibly years later. In order to quantify the image comparison, thereby

removing subjective human judgment as a evaluation factor, a normalized correlation

coefficient is usually created. This coefficient is expected to have a value close to unity

when the two images _u'e essentially the same and close to zero when they are entirely

different images. The purpose of this paper is to focus and extend the theory and application

of correlation coefficients so their uses and limitations can be better understood in a treaty
verification context.

The result of this analysis is a three-stage process for a verification algorithm that provides

more utility than the linear-correlation coefficient alone.

Amklysis of Correlations

Let us start by reviewing the simplified rnathematical treatment of two directly measured

results A and B, whose re!'ationship is anticipated by the theoretical expression

(1) F = F[.A(x,y,z),B(x,y,z)],

where A and B are functionally dependent on the causative parameters x, y, and z. [I! These

parameters could be the measures (vector components) of a voxel in three-dimensional space.

For simplicity in notation, the third parameter will henceforth be omitted without loss in

generalization. Thus,

(2) F = F[A(x,y),B(x,y)l

From statistical theory, the best estimates ofx and y are their mean values

for i=l,N where N is the size of the sample population:

,__. --j ,.--., ")

(3) <x> = z.xi/N {and <x'> = {',>__xi-)/N)



..

(4) <y> = _Yi/N.

Also,

(5) <F> = EFi/N

is the minimum-variance unbiased estimate of F.

Next we evaluate the computed covariance of A and B, which would be

(6) tAB = <A'B> - <A><B> = _(Ai*Bi)/N - (]_Ai*EBi)/N 2,

The correlation coefficient, which normalizes the covariances to the range (-1 <_PAB <-1), is

(7) PAB = rAB/_ACrB, where the standard deviations in A and B are o A and o B, which are

measurable from the samples.

Ai and Bi are pixel values for images A and B at identical coordinates i, each pixel having a

normalized value or magnitude (intensity or grey scale) represented by Ai and Bi. If the two

images A and B are identical, but their grey scales are uniformly displaced by some linear

correction factor, then we could write a relationship such that the values of B are linearly

related to the values of A. The linear correlation coefficient PAB iS the usual statistical

measure of' that relationship. Procedurally, one can first search to ensure that two images are

in registration (pixel congruence) by finding the highest value of the linear correlation

" coefficient of the images or of some fiducials in the images.

To estimate the standard deviation, let us assume that the images represented by the

populations Ai and Bi each have their own random and completely independent (instrument)

white noise values ai and b i respectively and that B is linearly related to A, such that

(8) A i = x i + ai and
_

-

(9) Bi = Yi + bi = k + mx i + b i, where k and m are constants.
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In this case,

2 2 2
(10) o A = o x .,- o a

2 ,2(11) OB - m'o x + _ ,

which means that the ,,:lopeof the linear relationship would in the absence of noise be

(12) m = OB/O A.

The autocorrelation in A can be computed, giving

(13) I"AA = <A.A>- <A>*<A>-. o_ ,,, <x2>- <x>2, SO that another way of

computing m is

(14) m" = o B - o a FAA if the variance of the noise were equal for A and B.

The autocorrelation in B would be

'_ 2
(1 5) FBB = <B* B> -- <B>*<B> = m'cy x ,

arid without any loss in generality,

(16) m2 = FBB/I"AA'

The covariance in angle-bracket notation is

(17) FAB = <A'B> - <A>*<B>.



.

Even if there is noise in the naeasurement, the (linear) covariance of Eq. 17 becomes from

Eqs. 8 and 9

,? 3 ) ")
(18) I"'AB = I"I1<Xi'> - <,Xi>" = lllO'x

With these assumptions the linear cross-correlation coefficient becomes

Equation 19 corresponds tc) the coefficient for linearly cross-correlated functions A and B

which each have random errors in their measurenaent, and o x is a measure of the inherent

deviation between pixel (intensities) in images A and B.

We can also look at the linearly correlated difference image, that is the subtraction of A-B:

(20) VA_ B =" <(A-B)*(A.-B)>- <A-B>*<A-B> = (1-m)2c_, and

Observe that the correlation difference coefticient vanishes as ttle slope m --+ 1 but could

become very large if m and o b --.40.

lt is assumed that the two images are represented by N sets of data Ai and Bi, where each set

of xi and Yi are pixel locations on a two-dimensional plane, and the values of Ai and Bi are

the components that contain the values to be compared at each point. The sets of data A and

B might be values sensed by a scanning electron microscope (SEM) of electrical current that

would be related to the depth of the point of electron scattering from a reference plane. Or

:hey might be sorne other quantification of pixel values, such as the consolidated area of a

reflecting contour point in the reflective-particle tag image. Optimization of the correlation

coefficierit ,,viii minimize systematic si_il'ts, rotations, and distortions iri the comparison of tw()

images. Having carried ()cii that n_inimizati()n, .:'.,w the question is whether the tw() images
are identical.
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Applications of Correlati()n Coefficietats

To assist in interpreting Etl. 19, first note that t)---) + 1 as o a -+ 0 and o b .---)0. In other

words, a perfect correlation (,or anti-correlation) is approached as two noiseless or identical

images are compared by a system that introduces no noise, randomness, or bias in the

measured values of the image amplitudes. Also note that if the linear displacement m

between images is small, 9 _ 0, as expected,

Let us consider further some cas,'s where k -_ () and m --_ 1, that is, A and B are congruent

except for noise jitter. This ought to be the case for accurate digitization for two sets of data

tzd<enf,om the same original image. Then, [9AB-+ 1, and any differential short of unity is a

measure of the noise introduced in the image comparison. If we go one step further and

choose one image A as a reference or baseline image, to be compared with the other image

B, we could stipulate that all the net (comparative) systematic and random differences reside

in the second image. Then

(22) PAB = l+a_/ax for aa=()and m=1).

This expression has an interesting node at ob -: o x, namely the value of 0.707. This function

is plotted in Figure 1, Figure I can bc useful in estimating the relative signal-to-noise-ratio

from the measured correlated coefficient, or vice versa, if the signal-to-noise ratio corresponds
to the variance ratio,

Another interesting case is where both images are unifonn (,essentially featureless) throughout

-- that is, there is no vltriation fr(>_npixel tc>pixel in either inaage. In that situation, any

variances in the image are due to random noise, and the covariance and correlation

coefficients would be zero. A very small number of non-uniform features could result in a

correlation coefficient slightly greater than zero, but the variance in that coefficient might be

large en(>ugh to mask the true value of the correlation coefficient. In effect, o x would then be

a measure of intrinsic image dispersion or non-uniformity of features,

For each sector of an image, similar conclusions regarding variances and covariances can

expected, gut its the nurnber of pixels in each sector becomes smaller, the variance in the

correlation coefficient will increase. If, for example, a bubble or defect in replication casting

occurs in a scct()r, the c()clTicient l"(>rlhat sector will become smaller, defining a "bad" sector.

F()r two im:_ges t_ be c(>n_ictercd idcfl[ical, a '_t;trldal'd will have t(> be set for the number of

acceptable k>_tdsectors.
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When two entirely different images are compared with each other, the linear cross-correlation

coefficient is expected to go to zero; however, the coefficient is a statistic that is subject to

variance, and for a small number of pixels subject only to white noise the estimate of 9 might

exceed the null value. To test the null hypothesis that p = 0, the parameter

(23) t p(N-2)1/2(1 p2)-1/2- - can be used for the tabulated Student's distribution.

The number of samples N needed to achieve different probabilities that t9 = 0 is given in

Table I as a function of the measured values of 9. When only a half-dozen pixels are

compared, there is a 10% chance of getting a false positive (9>0,6). Even a 50-pixel

comparision could yield an ambiguous result (9>0.3) once in a hundred times.

Figure 2 schematically indicates two image-generalized pathways that occur, for example, in

surface-image verification, resulting when plastic casting (fingerprints) are made of the

intrinsic surface roughness. In the first case, there is a surface S which contains the intrinsic

signature. The surface features could be measured directly with an SEM and used as a

reference for comparing the plastic castings. In that case, possible non-linearities in the two

pathways would have to be investigated. More routinely, two castings A and B made from

the same surface S will be compared, with A being taken during the baseline and therefore

becoming defined as the reference image. In fact, the sets of data for A and B are derived

from a mensuration process using an SEM_ In order to determine if this conversion process

introduces noise into the comparison, the sample A could be digitized twice, resulting in data

sets A 1 and A2 which could be cross-correlated. This cross-correlation coefficient should

give a measure of the instrument noise, while the correlation between A and B will give a

combined measure of casting effects and instrument noise. In the pathway where two

different surfaces S and S' are to be compared, here we expect to test the null hypothesis for

the correlation coefficient between A and B'. As additional measures of confidence, it would

be useful to calculate the autocorrelations and difference correlations as a matter of routine

practice.

As shown ira Table II, the value of the correlation coefficient indeed departs from one as

computer-generated (white) noise is added to images (of Fig. 3) without changing their

inherent correlation. Figure 3b indicates that care was taken to place the artificial noise

within the digitization range of the system. The data tabulated from Fig. 3 also confirm the

relationship of signal/noise and variance ratio expressed in Etl. 22 and depicted ira Fig. 1.
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Figure 2. Patllways for Comparing It]lage.';
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]'ABLE I

APPROXIMATE NUMBER OF PtXELS REQUIRED

TO CONFIRM A NULL HYPOTHESIS*

PROBABILITY THAT TRUE VALUE OF Pah IS ZERO
.. J ., ...... ,, ,........ ,., ,, ,, _

Measured 10"l I0"2 I0 "3 10.4 10-5 10-6 10-7

Pah
......... , ....

0.9 4 5 8 11 13 16 17

0.8 4 8 12 16 20 25 28
i .... = :.. _ ........ ,,,

0.7 5 10 16 21 28 36 43

0.6 6 16 24 32 43 53 63
........ ,_,, _ ,,, ........ , .............

0.5 8 20 35 50 65 80 95
:.o . - ,, , ,,,

0.4 12 30 55 80 105

0.3 20 5"7 100
' " .............. I .... ' ........ I ......

0.2 45 135

.................. I ...................

*The true correlation coefficient is zero -- Pab=0) when the measured coefficient is 9ab'
-- ,....................................... - ...........

This table applies when two images are known or expected to be entirely different (null

hypothesis that the true correlation coefficient is zero, i.e., Pah=0). The question answered by

this table is, what actual values of 9ab would be obtained if only a small number of pixels are

compared? The table shows that unless man3, pixel values are compared, conelation

coefficients significantly greater than zero can be cornputed; in fact, with just a few pixels

intercornpaxed, there would be a fairly high probability of getting a correlation coefficient
close to 1.0.

As a rule of thumb, to avoid a false positive (or ambiguous) conclusion about the similarity

of two imae.es., at a hi,,h= (1-10 "6) Ic,,el, of confidence requires at least I00 pixels to be

compared. On the other hand, ii"the measured value of Pah = 0.9, then 16 pixels would give

the same high level of confidence.
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' ' ..... I........ '_','"'" ,,

JTABLE II
.....

COMPARISON OF COMPUTER-GENERATED NOISE-ADDED EFFECTS

ON LINEAR CROSS-CORP, ELATION COEFFICIENT

WITH CALCULATED COEFFICIENT BASED ON EQ. 22
,i _ , , ,",, ....... --

_,,..

Estimated Estimated

Sample Case Measured Noise Noise/Signal Measured Calculated
Number Variance Variance Variance Correlation Correlation

..... , ,

5321 reference 711 10.4 0.015 0.985 0.99

5322 reference 674 10.4 0.016

5342 noise 992 310.0 0.45 0,809 0.83

added
,,,

5352 noise 1679 997.0 1,46 0.618 0.64

added

5362 noise 3678 2996.0 4,39 0.423 0.43

added
I

,, , --- m .... ,.,'-a'r-'-"'**-_- ..............

Mean-Square-Deviation

A statistic sometimes used is called the "mean-square-distance" (MSD), which is related to the

mean-square-deviation:

(24) MSD = 1 _-, (Aij _ Bij)2 . 1 _-' (A- Bi/2
2N U Z.,IR

This expression's relationship to the linear correlation coefficient can be detemfined by converting

it to nomenclature used in this paper by setting the mean vahaes <A> and <B> exactly to zero and

the v_u'iances o a = o B = 1.

Then,

(25) F' = /2_. A Bi /N,,_B --- <,,t., B> = P.,_B i
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(26) _;2,.,,,=. ,__X""NAi'' - (/_-''-INAt_) = /-'<;....NA'7 = I,

E A, E B,
and. likewise for Crl_because <A> - and <B> ,-N N

Hence,

2
E A_ 2EAiBi _ 13,

(27) MSD = - + = 1- PAB"
21',/ 2N 2N

Consequently the MSD is subject not only to the two given prescriptions for the mean and variance

of each image-normalized distribution, but als() to the limitations of the linear cross-correlation

coefficient expressed through Et t, 19.

' The MSD could be a useful tool for simply forcing the best congruence of two images that arez

: subject to various relative transformations: Its calculation in a computer can usually be performed

faster than the linear correlation coefficient because differences execute faster than multiplications.

- However, the MSD contributes nothing more to the understanding of image similarity beyond the=

linear cross-correlation coefficient as zt normalized measure of c()rrelation.
_

Verification Algorithm
=

, For actual application to treaty-verification analysis of images, a two-step process appears optimal.

= The first step is to use Eq. 18 or 19 or the MSD (Eq. 24) to find the minimum bias registration of

= images. That is, the tw() images should first be overlayed into as good, a degree of congruence as
=

possible. After this has been accomplished, for the second stage the difference correlation (Eq, 21)

can be computed in order to highlight significant differences in images, e.g., identify counterfeit

__ attempts. [21
_

In actual practice, data might be avail:tble in the form of a set of numbers for each pixel position

i,j. The values in the matrix A might tel)resent grey levels or other amplitude infom-mtion, or they

- might be quantizcd into binary valuers.

=

=
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After optimized registration of two images A and B, tw'o data matrices ,Aij,and Bij would exist. A

normalized difference-cotTelation coefficient QA-B can then be compumd in any of three ways,

depending on whether or when the values are quantized to a binary set. If threshold values Ath

and Bm are first determined, then sets of binary values can be created'

(28) lij = (Aij - Ath)/<A> and '

(29) Jij = (Bij " Bth)/<B>, such that Iii and Jij equal 1 if the differences are positive and 0 if the
differences are zero or negative.

Another way would be to compute the average <Ai] - Bij> and quantize each difference value by a
similar process into binary numbers:

(30) Kij,-[Ai)- Bij)/<Ai.j - Bij> .

Ali of these methods should be evaluated to achieve ol.,timal computer processing.

Clustering For Local-Sums

By clustering data into local-sums, the second stage of the verification algorithm is likely to yield

results more sensitive to counterfeit attempts. If i,j are the elements of a square matrix of N*N

pixels, divided into a square matrix of M*M pixel clusters of size c'c, where M is the truncated

integer resulting from dividing N/c, then the value of each normalized-difference local-sum
coefficient D is

where i ranges from (k-1)c+l to kc+l, j ranges from (_-l)c+l to _.c+l, and both k and _ range
from 1 to M.

The normalized sum of the nonnalized-difference local-sum coefficient is therefore:

Computationally, rather than u:_e the binary values of differences between grey-scale values, it is

more convenient to first quantize the grey-scale values and then subtract the binary values in the

cluster. In that case, we derive alocal-sum for the cluster Kk_'
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(33) Kki = _ij (Iii " Jij)2, where I and J are defined as in Eqs. 28 and 29, and the normalized- total
binary local-sum C becomes

(34) CA.B = CM = _k_(Kk,_/c')/M"'

For subtraction and summing of binary values, the sum Kk_ in Eq. 33 has the same result as the

absolute value of tile unsquared differences, wt_ich computationally might be easier to program and
execute.

Figure 4 shows ,:ome sample results from 3 by 3 clusters. The expected features of counterfeits

would have relatively high scores (which coulct be normalized to 1 by if divided by 9). With a pair

of images in good correlation, most of the difference clusters will score 0. Random noise can

create a single point difference in A or B, resulting in scores of 1, and occasionally a cluster score

of 2 if single-point noise is in both clusters. In effect, this will establish a threshold of low average

scores that would be considered below the threshold of true-negative significance.

A true negative would normally have cluster scores of 3 or more. For example, any three points in

B but not A would suggest a narrow crack..like feature. A narrow feature that is broadened might

have a score (.)fas much as 6, and a microbubble might cause a cluster score of up to 9.121

If higher weights are be given to line broadening and microbubbles that are likely to occur in

counterfeit attempts using casting techniques, the differences could be deliberately exaggerated,

especially if the inmges are not too noisy. For example, the cluster difference correlation

coefficient could be squared:

: This would result in a greater separation of values between noisy pixels and systematic deficiencies.

Appendix A provides supporting data for the clustering/local-sum method.
_
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Figure¢#. Cluster Scores for Difference Correlations
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Calibration Errors

The expressions derived above implicitly take into account calibration errors, whether random or

systematic.

If the error is purely random, it can be considered explicitly by, for example, adding a component

2
ci to Eq. 8, and the equivalent to Eq. 9, such that o a is really the sum of the variances of

instrument and calibratie,:_, noise temls.

On the other hand, if the calibration error might be systematic, as a result of bias in the

measurement xi or Yi or a relative error between the two, then it can be treated in the same way as

Eq. 9, where a linear relationship is assumed.

It is this linear relationship which underlies the linear correlation coefficient, and the explicit

inclusion of a calibration bias will not change the results. On the other hand, if the calibration bias

(or tile fundamental linear assumption of the primary data) is invalid, so then becomes inadequate

the correlation result, which would have to be derived for some other known or unknown

relationship between the two blocks of data. Because of the unpredictability of such non-linear

relationships, it is not particu]arly productive to go beyond the linem" correlation coefficient, but

potential non-linearities are a reminder of the limits of this commonly used measure.

Summary

There are a number of statistical measures to help assess the validity of data. Autocorrelations,

cross-correlations (covariances), and the normalized covariance, usually called the correlation

coefficient, are minimum-variance unbiased statistics. Each of these can play a role in finding the

optimum result (that is, in helping to correct fox' linear shifts, rotatiot_s, magnifications, and

distortions) and in guiding conclusions after the optimum value is attained. Each has its own level

of uncerl:ainty that depends largely on the number of sample points (or pixels for images). In every

case, the random "noise" or uncorrelated component must be taken into account as well as the

systematic effects. The linear cro:;s-correlation and difference-correlation coefficients can be

computed with explicit attention to inherent noise.

The MSD is a computatior_ally useful measure of congruence of two image matrices,

mathematically being a mirror-image of the line:tr-correlation coefficient. A linear correlation

coefficient that does not take into account sample noise might be useful for comparing results for
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data of consistent origin, but the linear coefficient should be used with caution in compm'ing data of

different origin. Moreover, the linear cross-correlation coefficient does not take into account higher-

order effects (such as image warpage and other non-linearities). A constructive operational

approach would be to plot results from false positives and negatives along with true positives and

negatives. There should be a comparison of at least 100 pixels when two images are to be

accepted as true positive based solely on the linear-correlation coefficient.

One strategy designed to differentiate between similar (true positive) and dissimilar (true negative)

images is a three-stage procedure consisting of separate registration and verification algorithms:

first, a linear cross-co_Telation coefficient or a mean-square-deviation is used to optimize the

congruence between two pixel image arrays; second, the highest value obtained for the linear cross-

correlation coefficient is compared against a value (_.<0_,_'that defines a true negative result; third, if

the correlation coefficient exceeds the true negative threshold, the cluster (or local-sum) method is

invoked as a further test to qualify a true positive.

g

; I." f
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APPENDIX A

DATA IN SUPPORT OF LOC,_L-SUM CORRELATION

R.G. Palm

As described ira the main body of the report, clustering data after carrying out some earlier image-

data manipulations has the potential of yieldi_'_gan objective measure of differentiation between two

images, one of which differs in small but systematic ways from each other. The linear correlation

coefficient (LCC) fails to provide objective discrimination scores in such cases. Although the

method is illustrated in this Appendix with images produced by a scanning-electron microscope

(SEM), the algorithm is applicable to any generic situation where two images need to be compared.

Both gray scale and binary images can be compared to determine tag authenticity. These tests for

agreement are described in Section 1 of this appendix. Proposed acceptance criteria for sub-regions

of images obtained for an SEM-authenticated tag are also presented in Section 1. The verification

algorithm has been implemented using SEMPER 6.2 image-processing software. Congruent

registration of the images is necessary before the tag images can be numerically compared; this

process is described in Section 2.

1. Image Registration and Correlation of Gray-Scale Images

Before two digital images can be compared, a certain anaount of processing is necessary to

• piace them in congruent registration. Details of this registration process as implemented by the

SEMPER software are described in a Section 2. In the case of two digital images A(x,y) and

B(x,y), registration is achieved when the x,y addresses of each image correspond to the same point

: on the scene being compared. One measure of image agreement known as the linear correlation

coefficient can be calculated from the registered images. An LCC of 1.0 indicates perfect

,_m'eement while an LCC near 0.0 would be expected for totally uncorrelated images. Figure A1

illustrates two pairs (A,B) of gray-scale images (256 gray levels) that correlate to 0.919 and 0.875

respectively. Visual inspection shows the left-hand pair agrees better in the brighter areas than the

pair on the right. In fact, the images oa the left are two castings of the same surface, while the

images on the right are an original (top) and a attempted counterfeit of the original (below). The

- LCC by itself provides essentially no discrimination ability.
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Figure Al. Local-Sums and Linear Correlation Coefficient Comparison (risht side)
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Figure Al. Lo,cni.Surn._ and l_in_.-ur(i(Jrrelatior'_ c_j,_:rricient (i_'om_}urisonfleft side)
_
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Figure A2 presents two pairs of original and attempted counterfeit images, illustrating

disagreement among the brightest pixels, lt is possible to extract sub-areas around the peaks

(brightest pixels) to detemline the correlations between areas. Thel_e sub-areas are shown in the

lower part of this figure',, taken from the areas marked irl the top. Figure A2 shows that the

sub-area isolated ira the lower left of Figure A2 agrees to 0.828, only 5% less than the LCC for the

whole image comparison above. In the lower fight is a narrower s_:b-area comparison with a rather

low LCC of 0.414, coinciding better with visual observation of the disagreement. The LCC of the

original and attempted counterfeit images markedly smaller if one carefully chooses small

'_ub-regions for correlation. However, choosing such small regions is difficult to implement.

From examining Figures A1 and A2 it is apparent that the LCC reported on the whole date

set is a rather insensitive indicator of image agreement. Nevertheless, the data suggests that

sensitive and computationally simple means to score a tag based upon only its brightest pixels
could be devised.

2. Binary-.Image _ariso

It is possible to fo)rn binary images from the gray-level images thresholded according to

some characteristic of the image, such as its brightness. In this case the binm'y images I(x,y) and

Jfx,y) derived from the gray-scale images A(x,y) and B(x,y) are compared to determine a numerical

score for tag comparison. Figure A3 shows binary images derived from an original and an

attempted counterfeit. The binary images are set to pixel values equal to one if they are part of the

brightest 15% set of pixels; otherwise they are zero. Inspection of Figure A3 shows that the ridge

features of the counterfeit are wavy and discontinuous compared to the original. The binary

brighmess-threshold process captures the differences between the original and counterfeit.

2a. Absolute-Difference Ima g..,.¢

The simplest way to compare the bin_y images is to form the absolute-difference image K

from images I and J according to the foilowing formula:

C = I(x,y)-J(x,y)

Image C gives a binary indication of the brighmst pixels in I and J that disagree. The

authentication score derived from C is simply its mean averaged over ali x,y. Low mean values

(i.e., small differences)indicate good agreement and ,,'ice versa. The mean of C can span from 0.0

(perfect agreement) to 1.0.
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Figure A2. Correlation is Low Near Image Peaks
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2b. Local-Sum Image

Another way to define the image-comp_trison score is to process image C further to define a

local-sum image. The local-sum image gives a gray-scale rendition of the disagreement between

images A and B. This local-sum image, referred to as image D, renders in terms of a gray scale

the degree of disagreement of local p x p pixel clusters in C.

The local-sum image D(x,y) is produced by summing each pixel ill C(x,y) with its p x p

nearest neighbors and placing the sum in position x,y of D. Because the pixels within a distance

p-2 of the border of C(x,y) can't be summed, the local-sum image has dimensions M-p+l by N-p+l

if the image C has dimensions M x N. The pixel values of' the local-sum image can span the range

from 0 (complete agreement) to p2 (complete disagreement).

Figure A3 shows the local-sum image formed from comparison of an original and a

counterfeit. Disagreement amongst the brightest pixels is highlighted by a local-sum gray-scale
image. For the 3 x 3 local-sum image shown in Figure A3, the local-sum pixel values range from

0 to 9. The score derived ft'ore local-sum image D is simply its mean value averaged overall (x,y).

Low mean values indicate good agreement (small differences). The mean of D is about nine times

the mean of C for 3 x 3 local-sum images.

3. Tentative Acceptance Criteria ti)r Sub-areas

The adopted tentative criteria are to accept the images in a sub-areas if the LCC > 0.7 and

the l(x'al-sum mean is < 0.6. When the images are overlaid, the LCC is determined before the

local-sum mean. If LCC < 0.7, the sub-area would fail to pass, and the local-sum need not be

calculated. Figures A1 and A2 show that despite visual differences it is relatively easy to satisfy

the LCC part of the acceptance criteria. However, meeting the local-sum criterion is much more

demanding; only image pairs with their bright pixels in registration can satisfy it.

Two general kinds of images were compared to formulate these empirical acceptance

criteria. For two castings taken from the same original surface, acceptance criteria were fonnulated

that ali of the casting image comparisons had passing scores. For originals and positive

counterfeits of the original, the acceptance criteria were formuiated so that all but one of these

image comparisons at high magnifications had failing scores. At low magnifications the originals

and counterfeit attempts had passing scores. This is reasonable, as differences in the finer features

that can distinguish the originuls fr<mathe counterfeits were not resolved at the low magnifications.



Figure A3. Steps lllu.str:_ting Calculation of Local-Sum Image
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Table A shows the results for several image comparisons reporting both LCC and mean

values D of the two images based upon binary thresholds, Ali images in Table A were 128 x 128

pixel images. Note that Table A also gives the magnification of the images being compared. Six

of seven original-versus-counterfeit comparisons of images acquired at a magnification of 5500 fail

to meet the LCC acceptance criteria. The left side of Figure A4 shows the one counterfeit sub-area

that passed the acceptance criteria. However, note that the original and counterfeit set on the fight-

hand side of Figure A4 did not have a passing score, Both counterfeit images in this figure were

from the same counterfeit, and the two sub-areas were located only 10 microns from each other, It

is also important to note that each of the sub-areas in Figure A4 represent only 10.7 of a 1 cm 2

authentication surface. It is expected that the great majority of the sub-areas in each counterfeit

attempt will fail to meet the local-sum acceptance criteria.

One further acceptance criterion must be developed as more data is examined. This

criterion would average the sub-area pass/fails to provide a overall score, An example of an overall

authentication criterion would be to accept the item as genuine if 90% of the sub-areas passed.

Figure A5 shows that three attempts to counterfeit the same surface failed the acceptance

criteria. One of the three counterfeit attempts passed the LCC criteria.

4. Processin_ Software

The gray-scale and binary-image processing have been implemented in the SEMPER 6.2

image processing software. This software is a product of Synoptic's Ltd. Most of the computer

effort is spent in overlaying the images, which is described in this section. As previously

mentioned, the overlay process provides the LCC value used as the first acceptance criterion. The

binary-image processing is straightforward and its SEIVtPER implementation will not be discussed
further.

: All image matching must undergo a certain ::mount of processing before the two images can

be compared mathematically. In general, two images of the same or similar scenes would, of

course, be slighlly dissimilar if the imaging device or the scene is changed between acquiring the

images. These dissimilarities can be described either as translation, rotation, or magnification

differences. In the case of digital images acquired by a scanning electron microscope, ali the
differences must be correcteci before authentication.
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Figure A4. Comp'are Two Sub-regions from a Regional and ;l Counterfeii
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Figure AS. Compare an Original and Three Counterfeit
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The initial goal of the image correlation is to adjust one or both of the images, so the

images overlay or are in registration. In the case of two digital images A(x,y) and B(x,y), overlay

is achieved when the x,y addresses of each image correspond to the same point on the scene being

compared.

A program has been written that uses several SEMPER commands or routines to accomplish

overlay using standard Fourier techniques. Fourier techniques are used because they are much

more computationally efficient for the large images being compared. The most important

correlation routine translates two images over each other and reports the x,y shift that provides the

best overlay, which is determined when the linear correlation coefficient is maximized. Stated in

terms familiar to Fourier analysis, this command the convolutes the two images. Another SEMPER

correlation routine determines the rotational correlation between two images; this routine as

implemented in this program operates on the real images rather than their Fourier power spectra.

The last important SEMPER routine extracts shifted, rotated, and translated sub-images from the

as-acquired images.

As impl,emented in the program, three overlays with successively higher correlations are

computed. The first overlay corrects for shift differences and is used as input into the second

overlay. The second overlay corrects for magnification differences and is used as input into the

third overlay. Finally, the third overlay corrects for rotational differences completing all

adjustments.

The LCC's reported in Table A are for the third correlation. This correlation is computed to

within 0.5 pixel and 0.1 degree of the theoretically best overlay; it is precise to at least the third

decimal point. The casting images could be overlaid by a less resource-inteo.sive process;

however, false maximum correlations might then occur.
1
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