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UNDERSTANDING CORRELATION COEFFICIENTS
IN TREATY VERIFICATION

by

A. DeVolpi

ABSTRACT
When a peair of images are compared on a point-by-point basis, the linear-
correlation coefficient is usually used as a measure of similarity or
dissimilarity. This paper evaluates the theoretical underpinnings and limitation
of the linear-correlation coefficient, as well as other related statistics,
particularly for cases where inherent white noise is present. As a result of the
limitations in linear-correlation, an additional step has been derived -- local-
sum clustering -- in order to improve recognition of small dissimilarities in a
pair of images. Results show that a three-stage procedure, consisting of first
establishing congruence of the two images, then using the linear-correlation
coefficient as a test of true negatives, and finally qualifying a true positive by
using the cluster (local-sum) method. These algorithmic stages would be

especially useful in arms contro! treaty verification.



INTRODUCTION

Statistical methods have a potentially important role in validating collected arms control treaty
verification data and in optimizing time and resources. A comparison of two images is a
good example, such image pairs are often formed or reconstructed from tamper-resistant seals
or tags used as unique identifiers of arms control treaty-limited equipment An initial image
is created when the seal or tag is placed on the item, and another image is collected when the
item is verified, possibly years later. In order to quantify the image comparison, thereby
removing subjective human judgment as a evaluation factor, a normalized correlation
coefficient is usually created. This coefficient is expected to have a value close to unity
when the two images are essentially the same and close to zero when they are entirely
different images. The purpose of this paper is to focus and extend the theory and application
of correlation coefficients so their uses and limitations can be better understood in a treaty
verification context.

The result of this analysis is a three-stage process for a verification algorithm that provides
more utility than the linear-correlation coefficient alone.

Analysis of Correlations

Let us start by reviewing the simplified mathematical treatment of two directly measured
results A and B, whose relutionship is anticipated by the theoretical expression

(1)  F = FlA(x,y,2),B(x.y,2)],
where A and B are functionally dependent on the causative parameters x, y, and 2.1 These
parameters could be the measures (vector components) of a voxel in three-dimensional space.

For simplicity in notation, the third parameter will henceforth be omitted without loss in
generalization. Thus,

(2) F = F[A(x,y).B(x,y)]

From statistical theory, the best estimates of x and y are their mean values
for i=1 N where N is the size of the sample population:

o)
(3) <x> = ¢.x /N (and x> = (2 X )N)



4 <y>=Ly/N.

Also,

(5) <F>=L1F/N

is the minimum-variance unbiased estimate of F.

Next we evaluate the computed covariance of A and B, which would be

(6) Tap = <A*B> - <A><B> = I(A*B)/N - (ZA*IB,)/N?.

The correlation coefficient, which normalizes the covariances to the range (-1 S pyg S 1), 18

(7)  pap = [ Ap/G50g, Where the standard deviations in A and B are ¢, and Op, which are
measurable from the samples.

A, and B, are pixel values for images A and B at identical coordinates i, each pixel having a
normalized value or magnitude (intensity or grey scale) represented by A; and B;. If the two
images A and B are identical, but their grey scales are uniformly displaced by some linear
correction factor, then we could write a relationship such that the values of B are linearly
related to the values of A. The linear correlation coefficient p,pg is the usual statistical
measure of that relationship. Procedurally, one can first search to ensure that two images are
in registration (pixel congruence) by finding the highest value of the linear correlation
coefficient of the images or of some fiducials in the images.

To estimate the standard deviation, let us assume that the images represented by the
populations A; and B, each have their own random and completely independent (instrument)
white noise values a; and b; respectively and that B is linearly related to A, such that

(8) A =x;, +a and

(9)  By=y; +b; =k +mx + b, where k and m are consiants.



In this case,
) 2 2 2
(10) ©y = o, o,

2 2.2 2
(1 Cg = M°0, + Oy,

which means that the clope of the linear relationship would in the absence of noise be
The autocorrelation in A can be computed, giving

2 2

(13) Ty = <A*¥A> - <A>*<A> = 0'3 = <x“> - <x>“, so that another way of

computing m is

(14) m- = (cé - Gi)/I“AA if the variance of the noise were equal for A and B.

The autocorrelation in B would be

2
x b

(15) Tpgp = <B*B> - <B>*<B> = m?c
and without any loss in generality,
(16) m? = [p/Tha.

The covariance in angle-bracket notation is

(17) Ty = <A*B> - <A>*<B>.
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Even if there is noise in the measurement, the (linear) covariance of Eq. 17 becomes from
Egs. 8 and 9

/

2 2 2
(18)  Typ = mi<x;> - <x> | = mog .
With these assumptions the linear cross-correlation coefficient becomes

2 [T T
(19)  pap = MO /0,0 = 0/ [ch/ox [n1‘+ob/0x) :

Equation 19 corresponds to the coefficient for linearly cross-correlated functions A and B
which each have random errors in their measurement, and o, i$ a measure of the inherent
deviation between pixel (intensities) in images A and B.

We can also look at the linearly correlated difference image, that is the subtraction of A-B:

(20) T, g = <(A-B)*x(A-B)> - <A-B>x<A-B> = (I-m)’c’ , and

12
2 . L) 2000
2D pyp -t (1~m)2c5:/0A0B - (L-nx)z/{l~+[05/0;)(:112f05/0;)] :

Observe that the correlation difference coefficient vanishes as the slope m -» 1 but could
become very large it m and o, — 0.

It is assumed that the two images are represented by N sets of data A; and B;, where each set
of x; and y; are pixel locations on a two-dimensional plane, and the values of A, and B; are
the components that contain the values to be compared at each point. The sets of data A and
B might be values sensed by a scanning electron microscope (SEM) of electrical current that
would be related to the depth of the point of electron scattering from a reference plane. Or
they might be some other quantification of pixel values, such as the consolidated area of a
reflecting contour point in the retlective-particle tag image. Optimization of the correlation
coefficient will minimize systematic shifts, rotations, and distortions in the comparison of two
images.  Having cawrried out that minimization, cow the question is whether the two images

are 1dentical.



Applications of Correlation Coefficients

To assist in interpreting Eq. 19, first note that p— £ 1 as o, = 0 and oy — 0. In other
words, a perfect correlation (or anti-correlation) is approached as two noiseless or identical
images are compared by a system that introduces no noise, randomness, or bias in the
measured values of the image amplitudes. Also note that if the linear displacement m
between images is small, p — 0, as expected.

Let us consider further some cascs where k — () and m — 1, that is, A and B are congruent
except for noise jitter. This ought to be the case for accurate digitization for two sets of data
taken from the same original image. Then, pap — 1, and any differential short of unity is a
measure of the noise introduced in the image comparison. If we go onc step further and
choose one tmage A as a reference or baseline image, to be compared with the other image
B, we could stipulate that all the net (comparative) systematic and random differences reside
in the second image. Then

2

- I

-1/
(22)  pup = 1+0‘§/Gi) \for 0,=0 and m=1

This expression has an interesting node at o = ©

o namely the value of 0.707. This function
is plotted in Figure 1. Figure | can be useful in estimating the relative signal-to-noise-ratio
from the measured correlated coefficient, or vice versa, if the signal-to-noise ratio corresponds

to the variance ratio,

Another interesting case is where both images are uniform (essentially featureless) throughout
-- that is, there is no variation from pixel to pixel in either image. In that situation, any
variances in the image are due to random noise, and the covariance and correlation
coefficients would be zero. A very small number of non-uniform features could result in a
correlation coefficient slightly greater than zero, but the variance in that coefficient might be
large enough 10 mask the true value of the correlation coefficient. In effect, o, would then be
a measure of intrinsic image dispersion or non-uniformity of features,

For each sector of an image, similar conclusions regarding variances and covariances can
expected.  But as the number of pixels in each sector becomes smaller, the variance in the
correlation coefficient will increase. If, for example, a bubble or defect in replication casting
oceurs in a sector, the coelficient for that sector will become smaller, defining a "bad" sector.
For two imuages 10 be considered identical, a standard will have 1o be set for the number of

acceptable bad sectors.
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When two entirely different images are compared with each other, the linear cross-correlation
coefficient is expected to go to zero; however, the coefficient is a statistic that is subject to
variance, and for a small number of pixels subject only to white noise the estimate of p might
exceed the null value. To test the null hypothesis that p = 0, the parameter

23 t = p(N—2)1/2(1~- pz)_m can be used for the tabulated Student’s distribution.

The number of samples N needed to achieve different probabilities that p = 0 is given in
Table I as a function of the measured values of p. When only a half-dozen pixels are
compared, there is a 10% chance of getting a false positive (p>0.6). Even a 50-pixel
comparision could yield an ambiguous result (p>0.3) once in a hundred times.

Figure 2 schematically indicates two image-generalized pathways that occur, for example, in
surface-image verification, resulting when plastic casting (fingerprints) are made of the
intrinsic surface roughness. In the first case, there is a surface S which contains the intrinsic
signature. The surface features could be measured directly with an SEM and used as a
reference for comparing the plastic castings. In that case, possible non-linearities in the two
pathways would have to be investigated. More routinely, two castings A and B made from
the same surface S will be compared, with A being taken during the baseline and therefore
becoming defined as the reference image. In fact, the sets of data for A and B are derived
from a mensuration process using an SEM. In order to determine if this conversion process
introduces noise into the comparison, the sample A could be digitized twice, resulting in data
sets Ay and A, which could be cross-correlated.  This cross-correlation coefficient should
give a measure of the instrument noise, while the correlation between A and B will give a
combined measure of casting effects and instrument noise. In the pathway where two
different surfaces S and S’ are to be compared, here we expect to test the null hypothesis for
the correlation coefficient between A and B’. As additional measures of confidence, it would
be useful to calculate the autocorrelations and difference correlations as a matter of routine
practice.

As shown in Table II, the value of the correlation coefficient indeed departs from one as
computer-generated (white) noise is added o images (of Fig. 3) without changing their
inherent correlation.  Figure 3b indicates that care was taken to place the artificial noise
within the digitization range of the system. The data tabulated from Fig. 3 also confirm the
relationship of signal/noise and variance ratio expressed in Eq. 22 and depicted in Fig. 1.



Figure 2. Pathways for Comparing Images
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Figure 3A. Output of SEMPER Noise Command,
Showing Etfects of Increasing Computer-Generated White Noise

(Adding Gaussian and Poisson Noise)
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Figure 3B, Effect of Added Noise on Variance (VAR)
and Lineuar-Correlation Coefficient (t)
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TABLE |
APPROXIMATE NUMBER OF PIXELS REQUIRED
TO CONFIRM A NULL HYPOTHESIS*
PROBABILITY THAT TRUE VALUE OF p,, IS ZERO
Measured | 107! 102 1073 1074 10° 106 10”7
Pab
0.9 4 5 8 11 13 16 17
0.8 4 8 12 16 20 25 28
0.7 5 10 16 21 28 36 43
0.6 6 16 24 32 43 53 63
0.5 8 20 35 50 65 80 95
0.4 12 30 55 80 105
0.3 20 57 100
0.2 45 135
0.1 165
*The true correlation coefficient is zero -- p,,,=0) when the measured coefficient is p,.

This table applies when two images are known or expected to be entirely different (null
hypothesis that the true correlation coefficient is zero, ie., py=0). The question answered by
this table is, what actual values of p,, would be obtained if only a small number of pixels are
compared? The table shows that unless many pixel values are compared, conelation
coefficients significantly greater than zero can be computed; in fact, with just a few pixels
intercompared, there would be a fairly high probability of getting a correlation coefficient
close to 1.0.

As a rule of thumb, to avoid a false positive (or ambiguous) conclusion about the similarity
of two images at a high (1-10%) Jevel of confidence requires at least 100 pixels to be
compared. On the other hand, if the measured value of p,, = 0.9, then 16 pixels would give

the sarne high level of confidence.
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TABLE 1I
COMPARISON OF COMPUTER-GENERATED NOISE-ADDED EFFECTS
ON LINEAR CROSS-CORRELATION COEFFICIENT
WITH CALCULATED COEFFICIENT BASED ON EQ. 22
Estimated Estimated
Sample Case Measured Noise Noise/Signal Measured Calculated
Number Variance Variance Variance Correlation Correlation
5321 reference 711 10.4 0.015 0.985 0.99
5322 reference 674 10.4 0.016
5342 noise 992 310.0 0.45 0.809 0.83
added
5352 noise 1679 997.0 1.46 0.618 0.64
added
5362 noise 3678 2996.0 4.39 0.423 0.43
added

Mean-Square-Deviation

A statistic sometimes used is called the "mean-square-distance” (MSD), which is related to the
mean-square-deviation:

1 2 1 < 2
(24) MSD - .Z_N.%“ Ay - By - o (A, - B

This expression’s relationship to the linear correlation coefficient can be determined by converting
it to nomenclature used in this paper by setting the mean values <A> and <B> exactly to zero and
the variances G, = g = 1.

Then,

(25) T, = <AxB> - py = )

S A, BN
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and likewise for o because <A> = _ﬁw_l and <B> = ——

Hence,

A A B, B:
(27) MSD - - R NS

Consequently the MSD is subject not only to the two given prescriptions for the mean and variance
of each image-normalized distribution, but also to the limitations of the linear cross-correlation
coefficient expressed through Eq. 19.

The MSD could be a useful tool for simply forcing the best congruence of two images that are
subject to various relative transtormations: Its calculation in a computer can usually be performed
faster than the linear correlation coefficient because differences execute faster than multiplications.
However, the MSD contributes nothing more to the understanding of image similarity beyond the

linear cross-correlation coetficient as a normalized measure of correlation.

Verification Algorithm

For actual application to treaty-verification analysis of images, a two-step process appears optimal.
The first step is to use Eq. 18 or 19 or the MSD (Eq. 24) to find the minimum bias registration of
images. That is, the two images should first be overlayed into as good a degree of congruence as
possible. After this has been accomplished, for the second stage the difference correlation (Eq. 21)
can be computed in order to highlight significant differences in images, e.g., identify counterfeit
attempts. !

In actual practice, data might be availuble in the form of a set of numbers for each pixel position
1j. The values in the matrix A might represent grey levels or other amplitude information, or they

might be quantized into binary values.
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After optimized registration of two images A and B, two data matrices A‘vj‘u‘nd By, would exist. A
normalized difference-correlation coefficient py_ g can then be computed in any of three ways,
depending on whether or when the values are quantized to a binary set. If threshold values Ay
and By, are first determined, then sets of binary values can be created:

(29)  Jjj = (Byj - By)/<B>, such that I and J;; equal 1 if the differences are positive and 0 if the
differences are zero or negative. ' ‘

Another way would be to compute the average <A - Bif’ and quantize each difference value by a

similar process into binary numbers:

All of these methods should be evaluated to achieve optimal computer processing.

Clustering For Local-Sums

By clustering data into local-sums, the second stage of the verification algorithm is likely to yield
results more sensitive to counterfeit attempts. If i,j are the elements of a square matrix of N*N
pixels, divided into a square matrix of M*M pixel clusters of size ¢*c, where M is the truncated
integer resulting from dividing N/c, then the value of each normalized-difference local-sum
coefficient D is

(31 Dy = o, {(AU - B«-)zlcz] 0D 1),

l
L

where i ranges from (k-1)c+1 to ke+1, j ranges from (2-1)c+1 to Pc+1, and both k and ! range
from 1 10 M.

The normalized sum of the normalized-difference local-sum coefficient is therefore:

2) Dy =Dy = [y DalM*  [0sDyst).

W

(

Computationally, rather than use the binary values of differences between grey-scale values, it is
more convenient to first quantize the grey-scale values and then subtract the binary values in the

cluster. In that case, we derive a local-sum for the cluster Kyp:



- 16 -

(33) Ky = ZU ”U - Jit)z, where | and J are defined as in Egs. 28 and 29, and the normalized- total

binary local-sum C becomes
(38) Cop = Cyy = Lyp (Kyp/eHM?,

For subtraction and summing of binary values, the sum K,y in Eq. 33 has the same result as the
absolute value of the unsquared differences, which computationally might be easier to program and
execute.

Figure 4 shows some sample results from 3 by 3 clusters. The expected features of counterfeits
would have relatively high scores (which could be normalized to 1 by if divided by 9). With a pair
of images in good correlation, most of the difference clusters will score 0. Random noise can
create a single point difference in A or B, resulting in scores of 1, and occasionally a cluster score
of 2 if single-point noise is in both clusters. In effect, this will establish a threshold of low average
scores that would be considered below the threshold of true-negative significance.

A true negative would normally have cluster scores of 3 or more. For example, any three points in
B but not A would suggest a narrow crack-like feature. A narrow feature that is broadened might
have a score of us much as 6, and & microbubble might cause a cluster score of up to 9.[2]

If higher weights are be given to line broadening and microbubbles that are likely to occur in
counterfeit attempts using casting techniques, the differences could be deliberately exaggerated,

especially 1f the images are not too noisy. For example, the cluster difference correlation
coefficient could be squared:

. - 2 2 :
(33) pM = {Z-k,l pk.Q )/M (OSPMS})
This would result in a greater separation of values between noisy pixels and systematic deficiencies.

Appendix A provides supporting data for the clustering/local-sum method.
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Calibration Errors

The expressions derived above implicitly take into account calibration errors, whether random or
systematic.

If the error is purely random, it can be considered explicitly by, for example, adding a component

C.

2 . .
; o Eq. 8, and the equivalent to Eq. 9, such that o, is really the sum of the variances of

instrument and calibration noise terms.

On the other hand, if the calibration error might be systematic, as a result of bias in the
measurement x; or y; or a relative error between the two, then it can be treated in the same way as
Eq. 9, where a linear relationship is assumed.

It is this linear relationship which underlies the linear correlation coefficient, and the explicit
inclusion of a calibration bias will not change the results. On the other hand, if the calibration bias
(or the fundamental linear assumption of the primary darta) is invalid, so then becomes inadequate
the correlation result, which would have to be derived for some other known or unknown
relationship between the two blocks of data. Because of the unpredictability of such non-linear
relationships, it is not particularly productive to go beyond the linear correlation coefficient, but
potential non-linearities are a reminder of the limits of this commonly used measure.

Summary

There are a number of statistical measures to help assess the validity of data. Autocorrelations,
cross-correlations (covariances), and the normalized covariance, usuvally called the correlation
coefficient, are minimum-variance unbiased statistics. Each of these can play a role in finding the
optimum result (that is, in helping to correct for linear shifts, rotations, magnifications, and
distortions) and in guiding conclusions after the optimum value is attained. Each has its own level
of uncertainty that depends largely on the number of sample points (or pixels for images). In every
case, the random "noise" or uncorrelated component must be taken into account as well as the
systematic effects. The linear cross-correlation and difference-correlation coefficients can be
computed with explicit attention to inherent noise.

The MSD is a computationally useful measure of congruence of two image matrices,
mathematically being a mirror-image of the linear-correlation coefficient. A linear correlation
coefficient that does not take into account sample noise might be useful for comparing results for
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data of consistent origin, but the linear coefficient should be used with caution in comparing data of
different origin. Moreover, the linear cross-correlation coefficient does not take into account higher-
order effects (such as image warpage and other non-linearities). A constructive operational
approach would be to plot results from false positives and negatives along with true positives and
negatives. There should be a comparison of at least 100 pixels when two images are to be
accepted as true positive based solely on the linear-correlation coefficient.

One strategy designed to differentiate between similar (true positive) and dissimilar (true negative)
images is a three-stage procedure consisting of separate registration and verification algorithms:
first, a linear cross-correlation coefficient or a mean-square-deviation is used to optimize the
congruence between two pixel image arrays; second, the highest value obtained for the linear cross-
correlation coefficient is compared against a value (<0 3 that defines a true negative result; third, if
the correlation coefficient exceeds the true negative threshold, the cluster (or local-sum) method is
invoked as a further test to qualify a true positive.
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APPENDIX A
DATA IN SUPPORT OF LOCAL-SUM CORRELATION
R.G. Palm

As described in the main body of the report, clustering data after carrying out some earlier image-
data manipulations has the potential of yielding an objective measure of differentiation between two
images, one of which differs in small but systematic ways from each other. The linear correlation
coefficient (LCC) fails to provide objective discrimination scores in such cases. Although the
method is illustrated in this Appendix with images produced by a scanning-electron microscope
(SEM), the algorithm is applicublé to any generic situation where two images need to be compared.

Both gray scale and binary images can be compared to determine tag authenticity. These tests for
agreement are described in Section 1 of this appendix. Proposed acceptance criteria for sub-regions
of images obtained for an SEM-authenticated tag are also presented in Section 1. The verification
algorithm has been implemented using SEMPER 6.2 image-processing software.  Congruent
registration of the images is necessary before the tag images can be numerically compared; this
process is described in Section 2.

1. Image Registration and Correlation of Gray-Scale Images

Before two digital images can be compared, a certain amount of processing is necessary to
place them in congruent registration. Details of this registration process as implemented by the
SEMPER software are described in a Section 2. In the case of two digital images A(x,y) and
B(x,y), registration is achieved when the x,y addresses of each image correspond to the same point
on the scene being compared. One measure of image agreement known as the linear correlation
coefficient can be calculated from the registered images. An LCC of 1.0 indicates perfect
agreement while an LCC near 0.0 would be expected for totally uncorrelated images. Figure Al
illustrates two pairs (A,B) of gray-scale images (256 gray levels) that correlate to 0.919 and 0.875
respectively. Visual inspection shows the left-hand pair agrees better in the brighter arsas than the
pair on the right. In fact, the images on the left are two castings of the same surface, while the
images on the right are an original (top) and a attempted counterfeit of the original (below). The
LCC by itself provides essentially no discrimination ability.
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Figure Al. Local-Sums and Linear Correlation Coefficient Comparison (right side)
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ure Al. Local-Sums and Linear Correlation Coefficient Comparison tleft side)
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Figure A2 presents two pairs of original and atterapted counterfeit images, illustrating
disagreement among the brightest pixels. It is possible 0 extract sub-areas around the peaks
(brightest pixels) to determine the correlations between areas. These sub-areas are shown in the
lower part of this figure, taken from the areas marked in the top. Figure A2 shows that the
sub-area isolated in the lower left of Figure A2 agrees to 0.828, only 5% less than the LCC for the
whole image comparison above. In the lower right is a narrower sith-ar¢a comparison with a rather
low LCC of 0.414, coinciding better with visual observation of the disagreement. The LCC of the
original and attempted counterfeit images markedly smaller if one carefully chooses small
sub-regions for correlation. However, choosing such small regions is difficult to implement.

From examining Figures Al and A2 it is apparent that the LCC reported on the whole date
set is a rather insensitive indicator of image agreement. Nevertheless, the data suggests that
sensitive and computationally simple means to score a tag based upon only its brightest pixels
could be devised.

2. Binary-Image Comparison

It is possible to form binary images from the gray-level images thresholded according to
some charactenstic of the image, such as its brightness, In this case the binary images I(x,y) and
J(x,y) derived from the gray-scale images A(x,y) and B(x,y) are compared to determine a numerical
score for tag comparison. Figure A3 shows binary images derived from an original and an
attempted counterfeit. The binary images are set to pixel values equal to one if they are part of the
brightest 15% set of pixels; otherwise they are zero. Inspection of Figure A3 shows that the ridge
features of the counterfeit are wavy and discontinuous compared to the original. The binary
brightness-threshold process captures the differences between the original and counterfeit.

2a. Absolute-Difference Image

The simplest way to compare the binary images is to form the absolute-difference image K
from images I and [ according to the foilowing formula:

C= Ixy)-Jxy)

Image C gives a binary indication of the brightest pixels in 1 and J that disagree. The
authentication score derived from C is simply its mean averaged over all x,y. Low mean values
(i.e., small differences) indicate good agreement and vice versa. The mean of C can span from 0.0
(perfect agreement) to 1.0,



B g b e wenn el i b e e o e e il il Co ek

Figure A2, Correlation is Low Near Image Peaks
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2b. Loca!-Sum Image

Another way to define the image-comparison score is to process image C further to define a
local-sum image. The local-sum image gives a gray-scale rendition of the disagreement between
images A and B. This local-sum image, referred to as image D, renders in terms of a gray scale
the degree of disagreement of local p x p pixel clusters in C,

The local-sum image D(x,y) is produced by summing each pixel in C(x,y) with its p x p
nearest neighbors and placing the sum in position x,y of D. Because the pixels within a distance
p-2 of the border of C(x,y) can’t be summed, the local-sum image has dimensions M-p+1 by N-p+1
if the image C has dimensions M x N. The pixel values of the local-sum image can span the range
from O (complete agreement) to p2 (complete disagreement).

Figure A3 shows the local-sum image formed from comparison of an original and a
counterfeit. Disagreement amongst the brightest pixels is highlighted by a local-sum gray-scale
image. For the 3 x 3 local-sum image shown in Figure A3, the local-sum pixel values range from
0 to 9. The score derived from local-sum image D is simply its mean value averaged overall (x,y).
Low mean values indicate good agreement (small differences). The mean of D is about nine times
the mean of C for 3 x 3 local-sum images.

3. Tentative Acceptance Criteria for Sub-areas

The adopted tentative criteria are to accept the images in a sub-areas if the LCC > 0.7 and
the local-sum mean is < 0.6. When the images are overlaid, the LCC is determined before the
local-sum mean. If LCC < 0.7, the sub-area would fail to pass, and the local-sum need not be
calculated. Figures Al and A2 show that despite visual differences it is relatively easy to satisfy
the LCC part of the acceptunce criteria. However, meeting the local-sum criterion is much more
demanding; only image pairs with their bright pixels in registration can satisfy it.

Two general kinds of images were compared to formulate these empirical acceptance
criteria. For two castings taken from the same original surface, acceptance criteria were formulated
that all of the casting imuage comparisons had passing scores.  For originals and positive
counterfeits of the original, the uacceptance criteria were formuiated so that all but one of these
image comparisons at high magnifications had failing scores. At low magnifications the originals
and counterfeit attempts had passing scores. This is reasonable, as differences in the finer features

that can distinguish the originals from the counterfeits were not resolved at the low magnifications.

P
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Figure A3. Steps Hlustrating Caleulation of Local-Sum Image
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Table A shows the results for several image comparisons reporting both LCC and mean
values D of the two images based upon binary thresholds. All images in Table A were 128 x 128
pixel images. Note that Table A also gives the magnification of the images being compared. Six
of seven original-versus-counterfeit comparisons of images acquired at a magnification of 5500 fail
to meet the LCC acceptance criteria. The left side of Figure A4 shows the one counterfeit sub-area
that passed the acceptance criteria. However, note that the original and counterfeit set on the right-
hand side of Figure A4 did not have a passing score. Both counterfeit images in this figure were
from the same counterfeit, and the two sub-areas were located only 10 microns from each other. It
is also important to note that each of the sub-areas in Figure A4 represent only 107 of a 1 cm?
authentication surface. It is expected that the great majority of the sub-areas in each counterfeit

attempt will fail to meet the local-sum acceptance criteria.
One further acceptance criterion must be developed as more data is examined. This
criterion would average the sub-area pass/fails to provide a overall score. An example of an overall

authentication criterion would be to accept the item as genuine if 90% of the sub-areas passed.

Figure AS shows that three attempts to counterfeit the same surface failed the acceptance
criteria. One of the three counterfeit attempts passed the LCC criteria.

4, Processing Software

The gray-scale and binary-image processing have been implemented in the SEMPER 6.2
image processing software. This software is a product of Synoptic's Ltd. Most of the computer
effort is spent in overlaying the images, which is described in this section. As previously
mentioned, the overlay process provides the LCC value used as the first acceptance criterion. The
binary-image processing is straightforward and its SEMPER implementation will not be discussed
further.

All image matching must undergo a certain cmount of processing before the two images can
be compared mathematically. In general, two images of the same or similar scenes would, of
course, be slightly dissimilar if the imaging device or the scene is changed between acquiring the
images. These dissimilarities can be described either as translation, rotation, or magnification
differences. In the case of digital images acquired by a scanning electron microscope, all the
differences must be corrected before authentication.
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Figure A4, Compare Two Sub-regions from a Regional and a Counterfeit
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Figure A5, Compare an Original and Three Counterfeit
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The initial goal of the image correlation is to adjust one or both of the images, so the
images overlay or are in registration. In the case of two digital images A(x,y) and B(x,y), overlay
is achieved when the x,y addresses of each image correspond to the same point on the scene being
compared.

A program has been written that uses several SEMPER commands or routines to accomplish
overlay using standard Fourier techniques. Fourier techniques are used because they are much
more computationally efficient for the large images being compared. The most important
correlation routine translates two images over each other and reports the x,y shift that provides the
best overlay, which is determined when the linear correlation coefficient is maximized. Stated in
terms familiar to Fourier analysis, this command the convolutes the two images. Another SEMPER
correlation routine determines the rotational correlation between two images; this routine as
implemented in this program operates on the real images rather than their Fourier power spectra.
The last important SEMPER routine extracts shifted, rotated, and translated sub-images from the
as-acquired images.

As implsmented in the program, three overlays with successively higher correlations are
computed. The first overlay corrects for shift differences and is used as input into the second
overlay. The second overlay corrects for magnification differences and is used as input into the
third overlay.  Finally, the third overlay corrects for rotational differences completing all
adjustments,

The LCC’s reported in Table A are for the third correlation. This correlation is computed to
within 0.5 pixel and 0.1 degree of the theoretically best overlay; it is precise to at least the third
decimal point. The casting images could be overlaid by a less resource-intensive process;
however, false maximum correlations might then occur.
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DISTRIBUTION FOR ANL/ACTV-91/4

Internal;

ANL Patent Department
ANL Contract File
TIS Files (3)

S. Bhattacharyya
F. Cafasso

. Boyar

. Braid

. DeVolpi (28)
Dickerman
Doerner
Gaines

. Goldman

. Herzenberg

. Houser (3)

. Johnson

J. Marchaterre

R. Palm

S. Pratt

A. Raptis

E. Rhodes

N. Sather

G. Stanford

R. Stajdohar

J. Tykla

A. Travelli

T. Wolsko

RAS Files: 54920
RAS Tagging File

NONPCrEAPAR

External:

DOE/OSTI (2)

Manager, Chicago Operations, DOE

ANL Library

J. Fuller, U. S. Department of Energy, Washington, DC (10)

R Ry RUEN R

[
|

TN1‘]?“"\NMu"\@\ut!‘WW qwn‘w-n W [ "w’!\“

&

3



(1N




.\ \ f B ‘s TR A e R R U TR Ul e 1 1) PR LLAAI



