
H?.43;-CATI_--10183

DE92 017982

Independent Verification and Validation of Large
Software Requirement Specification Databases

A Thesis 'Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Science with a Major in Computer Science

in the College of Graduate Studies, University of Idaho

Kevin E. Twitchell
4,

Published April 1992

Idaho National Engineering Laboratory
EG&G Idaho, inc.

Idaho Falls, Idaho 83415

Prepared for the
" U.S. Department of Energy

Under DOE Idaho Field Office
Contract DE-AC07-761D01 5'70

DISTRIBIJT_ONOF "]'HISDOCUMENT iS UNLiMiTED

iii

ABSTRACT

. 'ro enhance quality, an independent verification and

validation (IV&V) review is conducted as software requirements

, are defined. Requirements are inspected for consistency and

completeness. IV&V strives to detect defects early in the

software development life cycle and to prevent problems before

they occur_ The IV&V review process of a massive software

requirements specification, the Reserve Component Automation

System (RCAS) Functional Description (FD), is explored.

Analysis of the RCAS FD error history determined that there

are no predictors of errors. The size of the FD mandates

electronic ana±ysis of the databases. Software which

successfully performs automated consistency and completeness

checks is discussed. The process ot verifying the quality of

analysis software is described.

The use of intuitive ad hoc techniques, in addition to

the automatic 9.:Lalysis of the databases, is required because

of the varying content of the requirements databases. The ad

hoc investigation process is discussed. Case studies are

provided to illustrate how the process works.

This thesis demonstrates that it is possible to perform

an IV&V review on a massive software requirements

specification. Automatic analysis enables inspecting for

completeness and consistency. The work with the RCAS FD

clearly indicates that the IV&V review process is not static;

it must continually grow, adapt, and change as conditions

warrant. The ad hoc investigation process provides this

required flexibility. This process also analyzes errors

discovered by manual review and automatic processing. The

• analysis results in the development of new algorithms and the

addition of new programs to the automatic inspection software.

The results of the work from this thesis are also

relevant to quality reviews of smaller software requirements

specifications.

iv

CONTENTS

Authorization to Submit Thesis ii.

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

INTRODUCTION 1

i.i Overview 1

1.2 Independent Verification and Validation 2

1.2.1 Verification 2

1.2.2 Validation 4

]..2.3 Verification and Validation 5

1.2.4 Independent Verification and Validation . . . 7

1.3 Requirements Verification and Validation 8

1.3.1 Need for Requirements 8

1.3.2 Requirements V&V Criteria and Attributes . . 9

1.3.3 Requirements v&v Activities ii

1.3.4 Requirements V&V Techniques ii

" 1.3.5 Requirements V&V Tools and Techniques 12

THE RESERVE COMPONENT AUTOMATION SYSTEM 17

• 2.1 Project Environment 17

2.1.i Reserve Component Automation System 17

2.1.2 Computer-Aided Software Engineering Tools . . 17

2.2 RCAS Functional Description 21

2.2.1 Overview 21

2.2.2 PSL/PSA Database Structure 24

2.2.3 Error Predictors 26

THE IV&V REVIEW PROCESS 42

3.1 IV&V Review Process Overview 42

3.1.1 Processing of the FD Part B SAW Database . . 43

. 3.1.2 Processing of the FD Part C PSL/PSA Databases 43

3.1.3 Comparison of Part B and Part C 44

3.2 Preliminary Investigation of PSL/PSA Database(s) . . 44

3.2.I High Level Review of Databases 44

3.2.2 simple Arithmetic and Number Comparisons . . 46

3.3 Obstacles to Automatic Analysis of the Databases . , 4]

3.3.1 Unknown Database Contents 48

, 3.3,2 Multiple Databases for a Given Appendix . . . 49

3.3.3 Accessing Data in the PSL/PSA Databases , . . 51,

, 3.4 Automatic Analysis of the PSL/PSA Part C Databases . 52

3.4.1 Preparation for Automatic Analysis 53

3,4.2 Standard Suite of Automatic Checks for Errors 54

3.5 Ad Hoc Investigations 61

3,5.1 Overview of Ad Hoc Investigations 61

3.5.2 Ad Hoc Investigation Process 61

3.5.3 Examples of the Ad Hoc Investigation Process 63

3.6 Verifying Software Used to Analyze Databases 67

3.6.1 Reasonableness of Output 67

3.6.2 Consistency with Previously Reported Data . . 67

3.6.3 Consistency with Other IV&V Reviews 68

CONCLUSIONS 69

4.1 Summary and Conclusions 69

4.2 Problems and Future Research '70

REFERENCES AND BIBLIOGRAPHY 71

APPENDIX A. Database Content 74

APPENDIX B, Changes in Databases 78

APPENDIX C, Errors in Databases 82

APPENDIX D. Differences from Final Release 86

APPENDIX E. Results of Data Normalization 90

vi

FIGURES

. Figure i. Verification in the Software Development Process 3

Figure 2. Validation in the Software Development Process . 4

. Figure 3. Validation in the Software Development Process

(revised) 5

Figure 4. Verification and validation in the Software

Development Process 6

Figure 5. Problem Statement Language / Problem Statement

Analyzer (PSL/PSA) 19

Figure 6. Report Specification Interface (RSI) 21

Figure 7. Parts of the Functional Description 24

Figure 8. RCAS PSL/PSA Databases 25

Figure 9. Errors and Changes Normalized Dy Simple object

Sum 34

Figure i0. Errors and Changes Normalized by Comprehensive

Object Sum 34

Figure ii. Errors and Changes Normalized by Modified Bang

Metric 35

Figure 12. Errors and Changes Normalized by Modified Bang

" Metric (enlarged) 35

Figure 13_ Differences Normalized by Simple Object Sum . 37

Figure 14o Differences Normalized by Comprehensive object

Sum 37

Figure 15. Differences Normalized by Modified Bang Metric 38

Figure 16. Changes Normalized by Simple Object Sum _ . . 38

Figure 17. Changes Normalized by Comprehensive Object Sum 39

Figure 18. Changes Normalized by Modified Bang Metric . . 39

Figure 19. Errors Normalized by Simple object Sum 40

Figure 20. Errors Normalized by Comprehensive Object Sum 41

Flgure 21. Errors Normalized by Modified Bang Metric . . 41

Flgure 22. Ad Hoc Investigation Process 62

vii

TABLES

Table i. RCAS Functional Description Organization . . . 22

Table 2. Functional Description Part C Releases 25

. Table 3. Comparison of Data Normalizations 32

Table 4. Comparison of SA 1.2 and SAW Generated Data Flow

Relationships 40

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States G,_vernment nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its u_ would not infringe privately owned righu_. Refer.

" ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Chapter 1

INTRODUCTION

I.i Overview

An early phase of software development is requirements

definition. Requirements for a system include anticipated

inputs, mandatory outputs, and the requisite processing to

trans£orm the input data stream into the output data stream.

O_=e method of defining requirements is to use data flow

diagrams supplemented with descriptive text. Data flow

diagrams graphically depict the inputs, processing (or

transformation) of the inputs, and the resulting outputs.

Supplementary text provides additional detail, such as

narrative describing the transformation.

The requirements specification must accurately document

the needs of the user. In addition, it must possess quality

attributes such as completeness and consistency. A

requirements specification is complete to the extent that all

of its components are present and fully developed. It is

consistent to the extent that none of its provisions conflict

with other provisions within the specification or with other

related specifications. If a requirements specification is

not complete and consistent, subsequent development activities

will be faulty. To minimize r,_work costs, a verification and

validation (V&V) review is conducted as the software

requirements are defined. This review inspects the

requirements _pecification to ensure that qua]ity attributes

are present. If the nature of the system requires increased

confidence in its operation (e.g., for safety reasons),

independent verification and validation (IV&V) is appropriate.

IV&V is V&V performed by an agency independent from the

development organization.

. IV&V, as with development, increases in difficulty as the

size and complexity of the developnent effort increases.

Requirements IV&V of a small system is relatively simple.

IV&V of the requirements for a large system is more complex

but still manageable. However, some systems are massive in

- scale and cost billions of dollars. One such project, the

Reserve Component Automation System (RCAS), has a 35,000 page

. Functional Description (FD), or software requirements

specification. The FD consists of data flow diagrams, process

descriptions, and a data element dictionary. IV&V of a

requirements specification of this size is necessarily

difficult.

The question is, then, how does anyone perform an IV&V

review of such a massive functional description? This thesis

reviews the concept of V&V in general and requirements V&V in

particular. An overview of the RCAS project and FD are

provided. This thesis also investigates the IV&V review

process of an immense software requirements specification, the

RCAS FD. Because of the size of the FD, much of the IV&V

review is performed electronically; a complete manual review

is simply not possible. The scope of the IV&V review is

limited to completeness and consistency for the RCAS FD.

Work to find predictors of areas in the FD which require
w

closer scrutiny is reported. A suite of software proxliding

automatic consistency and completeness checks is discussed.

Automatic checks are not sufficient to complete an IV&V review

of the FD. A single collection of predetermined automated

checks does not locate all of the errors. The process of

conducting ad hoc, or intuitive, investigations are detailed.

1.2 £ndependent Verification and validation

1.2.1 Verification

Verification is an activity which occurs throughout the

- software development process. The generally accepted

definition of verification is provided in the IEEE Standard

- Glossary Qf Software Engineering Term_nolog_ [IEEE83].

"Verification is the process of determining whether or not the

products of a given phase of the software development cycle

. Requirements

. Design

,_ • _ , _.,_,..._ ,,,..-,"'-_ , ,

Design gpecificaUon y _k

to Requirements
Specification Installation

Verificat L_

Source Code to

Design Specification _..____. Y
Verification of

Installed System
to Source Code

. Figure i. Verification in the Software Development
Process.

" fulfill the requirements established during the previous

phase." Thus, the design specification is verified against

requirements specification, the source code is verified

against the design specification, etc. (see Figure I). In

addition, verification "determines that each phase and

subphase product is correct, complete, and consistent with

itse]_ and with its predecessor product" [Andr86].

The Department of Defense Standard DOD-STD-2168 comDines

these two aspects of verification in its definition.

"Verification is the process of evaluating the products of a

given phase of the software development cycle to ensure

correctness and consistency with respect to the products and

. standards provided as input to that phase" [Schu87]. Perhaps

the simplest and best definition for ve_<_fication is given by

Boehm: "Am I building the product right ii" [Boeh84].

\

\

\

L

,m 11, "' ,r_"" rn' _,irql,_i..... P11p_rll_i,., ,,I_ , ", ,_Irllr ' 'l_'l_qll, II_II''.

Requirements i_ Validation ofInstalled System

/ _Against Requirements
]

Design J

...., +5_
Installation

. Figure 2. Validation in the Software Development Process.

1.2.2 Validation

Validation is traditionally viewed as determining, at the

end of the software development process, if the completed

system fulfills the original requirements (see Figure 2). The

IEEE Standard Glossary of Software Engineering Terminology

[IEEE83] defines validation as "the process of evaluating

software at the end of the software development process to

ensure compliance with software requiremeDts."

However, determining that a completed system does not

meet requirements results in expensive modifications and

costly delays. Some authors suggest that validation should

t_ke place at each phase of the software development life

cycle (see Figure 3) [Deut88, Evan87, and Andr86]. As with

" verification, Boehm succinctly summarizes validation: "Am I

building the right product?" [Boeh84].

Validation of

LA Installed System
. _ _ Against Requirements

Requirements 1"_ "_ Va!idation of

-! "_ Design Specification \
L. \ Against Requirements

_" _Specification

Validation of

Design] Source Code
Against Requirements

t ,, Specification

Code

Installation i

Figure 3. Verification in the Software Development Process

(revised).

- 1.2.3 Verification and Validation

Verification and validation (v&v)is more than just the

simple combination of verification and validation activities

(see Figure 4). It is a process of continual review [Andr86].

V&V determines if the developing software will perform its

intended functions and helps ensure the quality of the

resulting software [Deut88 and Schu87]. lt provides feedback

to management regarding the achievement of quality goals as

the product is being developed [Deut88]. !'V&V comprehensively

analyzes and uests software to determine that it performs its

intended functions correctly, to ensure that it performs no

unintended functions, and to measure its quality and

. reliability" [Wall89].

As a quality function, V&V strives to detect defects

early in the software development life cycle and to prevent

Validation of

., Each Phase Against

[_-.._. Requirements

Requirements "_ _ _ . n

,lh, ! -- _De - " - |
T

Verification of _ yJlk i

Each Phase to the k Installation
Preceding Phase

) -
. Figure 4. Verification and Validation in the Software

Development Process.

problems before they occur [Deut88].

The benefits of verification and validation are [Wall89]:

• improvement in quality

• more stable requirements

• more rigorous development planning

• errors caught earlier

• better schedule compliance and progress monitorinq

• project management more aware of interim quality ancl

progress

• better criteria and results for decision making at

formal reviews and audits

There are also disadvantages to verification and

- validation [Wall89]:

• adds i0 to 30 percent to the development cost

• requires additional interfaces between project groups

• lowers developer productivity if p[ogrammers aud

engineers spend time explaining the system to V&V

analysts

• adds to the documentation requirements if the V&V

. group is receiving incremental program and

documentation releases

• requires the sharing of computing facilities and

classified data with the V&V group

• increases ti%e paperwork to provide written responses

to the v&V group's error reports and other v&v data

requirements

Wall su._ge_ts fw... the number of discrepancies detected

in software and the improvement in documentation quality

resulting from error correctional suggest that V&V costs are

offset by the resulting more reliable and maintainable

software." [Wall89]

1.2.4 Independent Verification and Validation

Quality is the responsibility of the producer of a

product. Verification and validation, as a quality function,

" is no exception. V&V "is the responsibility of all elements

on the software project to perform it" [Deut88].

However, there may be a problem in giving the sole

responsibility of V&V to the software developer. Given the

impact of V&V f11nctions on cost and schedule, the manager of

development could put pressure on V&V personnel to be less

stringent in their reviews. Consequently, many ho].d that v&v

activities should be conducted by a group with at least

nominal independence from the development group [Schu87]. As

"Verification and validation activitiessummarized by Boehm,

produce their best results when performed by a V&V agent who

operates independently of the developer or specification

. agent" [Boeh84].

The level of independence of those performing V&V work is

a function of the importance of the software being developed

[Schu87]. "Independent verification and validation (IV&V) is

employed when added insurance is required for the functioning

- and performance of the system" [Deut88]. IV&V is performed by

"an organization that is technically and managerially separate.

. from the organization responsible for developing the product

or performing the activity being evaluated" [DOD-STD-2168 in

Schu87]. The reason for the independence is to ensure the

"disinterest in the outcome of the evaluation, i.e._ the agent

performing the validation should have no stake in the resu].ts

and should be free of influence from those who do" [Deut88].

IV&V should not preclude V&V activities in the

development organization. Ratller, IV&V is a supplement to

software quality assurance activities in the development

organization. "The objective of IV&V is not necessarily to

avoid all errors, but rather' to eliminate, to a high degree o_

certainty, those errors that can result in catastrophic

results" [Deut88].

1.3 Requirements Verification and Validation

1.3.1 Need for Requirements V&V

Requirements verification and validation benefits the

schedule and budget of a development project [Deut88]. Errors

detected early in the life cycle require fewer resources,

i.e., time and money, to effect a repair [Deut88].

"The basic objectives in verification and validation of

software requirements and design specifications are to

identify and resolve software problems and high-risk issues

early in the software life cycle for large projects, the

savings of up to i00:i are possible by finding and fixing

problems early in the life cycle For' smaller projects, the

savings are more on the order of 4-6:1, but this still

provides a great deal of leverage for' early investment in V&V

- activities. Besides the major cost savings, there are also

significant payoffs in improved reliability, maintainability,

'_,,I,......,x'.lql" r!IIpFII rl_l_lllllV i,. ',,al',I,'PIP"IIr'rmPIIa'l',rr q ,,,,,I i_Ipa,_' ' ' r111_.....II.......lt....,I_"II...... Hlq_Tli,.,l_l_,,iiiiiI.....Ifrllmm,jill,I,,,r,lppl, ' rPl'_l'lP "'IW' II""'I'I(l'q iiI, Ii_,lq " 11111,_llr

and human engineering of the resulting software product"

[Boeh84].

1.3.2 Requirements V&V Criteria am_ Attributes

. Boehm maintains that the four basic requirements

verification and validation criteria are completeness,

consistency, feasibility, and testability. The following is a

summary of his classic article on requirements verification

and validation [Boeh84].

Completeness. A requirements speciflcation is complete

to the extent that all of its components are present and fully

developed. A specification is complete if:

• there are no to-be-determined's (TBDs)

• all processes, data flows, etc. which are referenced

actually exist and are defined

• all items required by the standard format of the

specification are present

• all necessary functions and products, e_g., recovery

functions and test tool products, are defined or

called for

" The first two items above can be verified automatically; the

remaining two items require human intuition.

Consistency. A requirements specification is consistent

to the extent that none of its provisions conflict with other

provisions within the specification (internal consistency) or

with other specifications (external consistency), if items in

the specification clearly indicate the items from which they

were derived, the specification is said to have traceability.

Feasibility. A requirements specification is feasible to

the extent that the system's benefits are expected to exceed

its costs over its lifetime. Verification and validation of

feasibility requires examination of:

. • human engineering issues -- how the system will

function witl% users

_,1 ,ijll 1pllr ,, u.,

l0

. resource engineering -- Plow the system fulfills th_

requirements

- • program engineering -- cost-effectiveness of the

system over its life

. Feasibility also requires identifying and resolving any

l_igh-risk issues before committing resources to development.

The four major sources of risk are technical, cost/schedule,

environment, and interaction effects.

Testability. A requirements specification is testable to

the extent that one can develop a reasonable means for

determining whether the finished system fulfills the

requirements. This requires that the specification be

specific, unambiguous, and quantitative wherever possible.

Evans and Marciniak assert that the attributes of a

requirements specification which are critical to the quality

of the system are nonambiguity, traceability, testability,

implementability, completeness, reality, acceptability, user

responsiveness, and design free [Evan87]_ A requirements V&V

should check {or the Presence of these attributes.

Nonambiguity. Each requirement is clear and the meaning

is obvious.

Traceability. Each requirement is uniquely specified and

is traceable throughout the development project.

Testability. Each requirement can be verif'ed by later

testing, measurement, observation, or analysis.

Implementability. All requirements can be completed

given the ability of the development staff. Each requirement

is technically achievable.

Completeness. All aspects of the system are described.

Reality. The requirements are within the technical

scope, limitations, and constraints of the project.

Acceptability. A system based on the specified

- requirements is acceptable to the user.

ii

User responsiveness. The requirements are responsive to

the needs of the user and the environment in which the system

will be used.

Design free. The requirements specify what the system

should do (requirements) rather than how the system will do it

(design).

Zave states that "the things we do with requirements

specifications are i) use them as vehicles for communication,

2) change them, 3) use them to constrain target systems, and

4) use them to accept or reject final products" [Zave82]. For

the first two items, the requirements must be understandable

and modifiable. For the third item, they must be precise,

unambiguous, internally consistent, complete, and minimal.

For the final item, requirements should be formally

manipulable (for verification) and testable (for acceptance

testing).

1.3.3 Requirements V&V Activities

There are two basic requirements V&V activities [Deut88].

One is conducted in parallel with the generation of the

" requirements specification. This activity helps create

desirable characteristics such as completeness, consistency,

feasibility, and testability. It involves systematic methods,

such as structured analysis, that emphasize human reasoning.

The other activity is conducted after the requirements

specification is generated (e.g., in draft form). This after-

the-fact activity is characterized by reviews and inspections.

The two activities are iterative and continue until all

known deficiencies are corrected and no new deficiencies are

discovered.

1.3.4 Requirements V&V Techniques

. Boehm suggests several techniques for performing a

requirements verification and validation [Boeh84]. These

12

include simple manual, simple automated, detailed manual, and

detailed automated techniques.

Simple manual techniques include reading, manual cross-

referencing, interviews, checklists, manual models, and

uncomplicated scenarios. Simple automated techniques consist

of automated cross-referencing and basic automated models.

Detailed manual techniques entail extensive scenarios and

mathematical proofs. Detailed automated techniques include

complex models and prototypes.

For large systems, the most effective V&V technique for

completeness and consistency is automated cross-referencing.

Also very effective are detailed automated models and

prototypes. Manual cross-referencing, interviews, and

detailed scenarios are also helpful. Checklists are also

beneficial for completeness V&V.

Boehm recommends the following for large specification

V&V [Boeh84]:

• use automated cross-referencing

• use simple-to-detailed manual and automated models for

critical performance analyses

" • use simple-to-detailed scenarios for critical user

interfaces

• prototype high-risk items that cannot be adequately

verified and validated by other techniques

1.3.5 Requirements V&V Tools and Techniques

Most of the tools and techniques which could be used tor

requirements V&V were developed during the mid-1970's

[Deut88]. Indeed, with the exception of the proliferation o_

Computer-Aided Software Engineering (CASE) tools, there have

been few innovations since then. Tools and techniques

developed in the mid-1970's include Information Systems Design

. and Optimization Systems (ISDOS), Requirements Engineering and

Validation System (REVS), and Structured Analysis and Design

Technique (SADT). "All provide a disciplined framework for

]3

expressing requirements and thus aid in the checking of

consistency and completeness. Although these tools provide

only rudimentary validation procedures, this capability is

greatly needed and is the subject of current'research."

• [Andr86]

The following is a summary of tools and techniques which

are used for requirements specification. The main

characteristics of each tool and technique are provided. Most

of the following tools and techniques do not provide specific

capabilities for performing requirements V&V_ However, the

techniques do supply a structure for the requirements

specification which can be checked in a requirements V&V

review. For example, a transform (process) in a structured

analysis data flow diagram is not complete if it does not have

both inputs and outputs. The automated tools are used to

extract data for V&V analysis and review. Thus a tool could

be used to generate a list of data flows without defining data

elements, a deficiency in completeness.
b

Information Systems Design and Optimization Systems

(ISDOS). Problem Statement Language / Problem Statement

° Analyzer (PSL/PSA) was created as a result of the ISDOS

project. It is one of the first CASE tools and was developed

in the mid-1970's. PSL is the formal language used to specify

the software system. PSA processes the PSL statements and

stores the corresponding information in a database. PSA also

provides a user interface facilitating retrievals of

information from the database. PSL/PSA is the CASE tool[for

the RCAS project and is discussed in detail in Section 2.1.2,

RCAS Computer-Aided Software Engineering Tools.

Structured Analysis and Design Technique (SADT) [RoSc77

• and Ross77]. SADT is SofTech's proprietary methodology for

handling complex system problems. It is based on Structured

. Analysis (see Section 2.1.2, RCAS Computer-Aided Software

Engineering Tools) and the maxim, "Everything worth saying

about anything worth saying sometl%ing about must be expressed

14

in six or fewer pieces." It consists of techniques for

performing system analysis (e.g., structured decomposition)

and provides a process for applying these 'techniques in

requirements definition. It uses graphics and text to

communicate the elements of the requirements specification.b

An automated tool such as PSL/PSA is compatible with the SADT

methodology.

Computer-Aided Design and Specification Analysis Tool

(CADSAT) [Deut88]. CADSAT is also based on structured

analysis and is a tool which provides automated checking of

the forms and structures in a requirements specification° It

is a direct descendant of PSL/PSA. Requirements are defined

in a formal language (graphic and textual) with a precise

syntactical structure• CADSAT automatically checks the

relationships between data and functions for consistency. It

generates reports that assist the analyst in better

understanding system flow, system structure, data structure,

and data derivation.

Process-oriented, Applicative, Interpretable

Specification Language (PAISLey) [Zave82]. PAISLey is

• process-oriented, or operational, in that it emphasizes

constructing an operating model of the system functioning in

the system's environment. PAISLey is intended to specify the

requirements for embedded systems (such as process control

applications). Embedded systems require the specification of

asynchronous parallel activities and crucial performance

requirements. PAISLey is based cn applicative, or functional,

language theory and is interpretable (executable). As such,

it is a language with a precisely defined grammar and syntax.

SOFSPEC [Nyar83]. SOFSPEC is a system for the automatic

verification of commercial application specifications. It is

part of the SOFTING Software Engineering System [Snee83]. The

. SOFSPEC specification schema is based on the entity-

relationship model, including entities, relationships, and

attributes• SOFSPEC checks for completeness by determining if

15

ali declared entities and relationships have been fully

defined. It does not check for completeness by determining if

. all essential entities and relationships have been included;

this requires human involvement. SOFSPEC provides 16

. consistency checks including checking objects against their

relationships, analyzing data and function trees for internal

consistency, and checking the consistency between function and

data definitions and their structural characteristics. A set

of reports are automatically generated to aid the user in

determining that the specification meets the actual

requirements.

System Verification Diagram (SVD) [Deut88]. An SVD is a

manual technique based on the concept of threads• A thread is

a path through a system that connects an external event or

stimulus to an output event or response An SVD consists of

graphical representations of functional requirements from the

requirements specification. The SVD exhibits a sequence of

stimulus-response elements. A stimulus is an input event and

a response is an output event. The SVD procedure focuses

additional attention on the content of the requirements.

Because of "the graphical nature of an SVD and because

requirements are viewed in a parallel manner, the analyst's

attention is directed to detect possible inconsistencies,

redundancies, and omissions.

Re_lirements Engineering and validation System (REVS)

[Alfo77, Bell77, Davi77, and Boeh84]. REVS is part of the

Software Requirements Engineering Methodology (SREM). REVS

accepts Requirements Statement Language (RSL) as input. RSL

is a formal language used to document requirements using

elements, relationships, attributes, and structures. REVS

- checks the requirements for completeness and consistency by

automatically searching for errors such as undefined,

• incomplete, and unused elements. It maintains traceability to

originating requirements and simulations. REVS generates

simulations to aid validation of the correctness of

16

requirements. REVS contains a reporting system and provides

data extraction and analysis capabilities. REVS software

• includes an interactive graphics package to aid in the

specification of flow paths.

I Jh,iL ,,

\
\
i 17

Chapter 2 \

THE RESERVE COMPONENT AUTOMATION SYSTEM

2.1 Project Environment "L
!

2.1.1 Reserve Component Automation System
t_

The Reserve Component Automation System (RCASI) is a 1.6

billion dollar information system intended to mode_nize the

operations of the Army National Guard and the U.S. Army
1

Reserve. lt provides hardware and software for reserve units

in thousands of locations throughout the United Sta_,,es and the
]

world. RCAS supports daily administrative tasks as _ell as

the mobilization of forces. It encompasses office automation,

telecommunications, data processing, and exchange of data with

related Army information systems.

RCAS work is directed by the RCAS Program Management

office (PMO). The PMO is responsible for the development,

acquisition, implementation, and fielding of RCAS. Assisting

the PMO are several contractors, tasked with individual

responsibilities. One contractor is tasked with the

preparation of the Functional Description (FD). Another

" contractor is tasked with performing independent verification

and validation reviews of the FD.

2.1.2 Computer-Aided Software Engineering Tools

Final work on the FD is being completed using two

Computer-Aided Software Engineering (CASE) tools. One of the

CASE tools executes on a personal computer (PC) and primarily

serves an input function. The other CASE tool executes on a

Digital Equipment Corporation (DEC) VAX. The full information

of the FD appendices resides in the databases of this VAX CASE

- tool. Both CASE tools are products of Meta Systems, Ltd.

The PC CASE tool is Structured Architect. Initially,

Structured Architect (SA) 1.2 was used to prepare the FD.

Meta Systems replaced SA 1.2 with Structured Architect

Workbench (SAW), which is currently used to prepare the FD.

18

Structured Architect is a CASE tool which is based on

structured analysis [Stru86 and Intr89]. Structured analysis

is an approach to requirements specification developed and

popularized in the 1970s [DeMa78]. It combines graphic

illustrations (data flow diagrams) and textual descriptions

(structured English) to specify the processing of data within

the system being defined. It emphasizes a hierarchical, or

top-down, approach to decomposition and partitioning.

The DEC VAX tool is Problem Statement Language / Problem

Statement Analyzer (PSL/PSA). Unlike SA 1.2 and SAW, it does

.not enforce any particular methodology [Teic77]. PSL/PSA was

developed by the Information Systems Design and optimization

Systems (ISDOS) Project at the University of Michigan

[Intr87]. It consists of two parts, PSL and PSA. PSL is the

fonilal language used to describe components of the system.

Since the language has a limited vocabulary and a controlled

syntax, it can be processed by the analyzer, PSA (see Figure

5). PSA also processes user requests for information and

generates reports.

PSL/PSA is based on entity-relationship modeling in which

a system is defined using entities, relationships between and

among entities, and attributes of the entities [Intr87 and

Mapp87]. In simple terms, entities are "things,"

relationships are "connections between things," and attributes

are "characteristics of things" [Mapp87]. In the RCAS FD, an

entity is a process, data flow, data store, or data element.

Relationships connect data flows to processes and data stores.

Relationships also link data flows and data elements (a data

flow CONSISTS OF data elements). Attributes are defined for

processes (e.g., process number and description) and data

" elements (description, long name, data type, and length).

PSL/PSA provides 19 object types, 102 relation types, and

• general provisions for attribute definitions [Intr87].

Fortunately, when SA 1.2 and SAW generate PSL, they use a

defined subset of these objects, relations, and attributes.

19

PSA Commands

b

Problem Statement Reports, Responses
Analyzer (PSA) _ to Queries, etc.

Statements in/_t
the Problem _-_

Statement _ i k
Language (PSL)

Figure 5. Problem Statement Language / Problem Statement

Analyzer (PSL/PSA).

This simplifies the analysis of the PSL/PSA databases.

To aid understanding of later discussion, the following

" definitions are offered:

objects. A functional primitive is the lowest-level

- decomposition of a process. A functional primitive has the

PSL/PSA object type of PROCESS. A data flow represents the

data transferred from a source to a destination. Sources and

destinations of data flows can be processes, data stores, or

non-existent (e.g., to a process not on the data flow

diagram). A data flow has the PSL/PSA object type of ELEMENT

in the main database and GROUP, ENTITY, INPUT, or OUTPUT in

the data flow dictionary. An intermediate entity is an

optional link between data flows and data elements; it is an

additional grouping of data elements. A data flow may consist

of other data flows, intermediate entities, and data elements.

An intermediate entity may consist of the same items. The

difference between the two is that the data flow appears on

the data flow diagram while the intermediate entity is part of

the textual description. An intermediate entity has the

2O

PSL/PSA object type of GROUP, ENTITY, INPUT, or OUTPUT. A

data element is the smallest stand-alone component of a data

flow and is represented in PSL/PSA as an ELEMENT in both the

data flow and data element dictionaries. A data store is a

place to temporarily or permanently store data. In the RCAS

FD, a data store is also used to represent some external

interfaces such as the user. The data store has the PSL/PSA

object type of SET.

Relations. Data flows are identified by their

relationships with processes and data stores. If a data flow

is an input to a process, the relationships used are RECEIVES,

EMPLOYS, REFERENCES, and OBTAINS. The relationships used for

output data flows are GENERATES, DERIVES, MODIFIES, UPDATES,

and SENDS. A data flow FLOWS from one entity (process or data

store) to another entity. CONSISTS OF is the relationship

used to link data flows, intermediate entities, and data

elements. For example, a data flow CONSISTS of data elements.

SATISFIES is the relationship used to associate echelon,

• classification, frequency, and sensitivity data to functional

primitive processes and external interface information to data

flows.

Attributes. Processes have attributes of process number

and textual description. Data elements have attributes of

long name, description, data type, length, proponent, and

information class. Data flows, intermediate entities, and

data stores do not possess attributes.

PSA is capable of generating 37 pre-formatted reports

[PSAR87]. Two of these reports, N_66me Selection and Selected

Formatted Statements, are significant in the analysis of the

PSL/PSA databases.

The _ame s_l_gec___ report extracts a list of names

typically based on a PSL/PSA object type such as PROCESS.

These names provide an entry into the PSL/PSA databases for

analysis.

21

RSI Scurce

Code
Report Specification
.Interface (RSI) _....... " _ Output

Input Fiie(s) _" Compiler l lnterpreter
1

____/

,Compiler Output Fil_

Figure 6. Report Specification Interface (RSI).

The Select.ed FQrm_tte____._g__. report generates the

PSL from a database, This is useful in comparing the contents

of databases and in extracting general information from a

database.

Another component of the PSL/PSA CASE tool is the Report

Statement Interface (RSI) Language used to generate customized

reports [Refeg0]. RSI is an e×ecutable language and provides

interface to PSL/PSA databases (see Figure 6). RS[is the

primary tool used to automatica].ly analyze the PSI,,/PSA

databases.

2.2 RCAS Functional Description

2,2.1 Overview

° The RCAS FD conforms to DOD-STD-7935A, DOD Automated

Information Systems (AIS) Documentation Standards [Mill88].

It consists of 26 volumes (see Table I), The FD proper,

22

because of where it resides, is commonly referred to as Volume

i. Appendix E contains the definition of External Interfaces

• of the RCAS with other Army information systems. Appendix T

specifies the echelon, classification, frequency, and

sensitivity associated with each FD functional primitive.

Appendices F through I, K through S, and W through AB contain

process descriptions and data flow diagrams. The RCAS Data

Element Dictionary is a PSL/PSA database.

A subset of the FD functional primitives have been

defined as "critical elements." These processes are to be

Volume El___em_ent Title

1 FD Functional Description

Appendix A References

Appendix B Glossary

2 Appendix C Mobilization Stations

Appendix D The Developmental Army Readiness and

Mobilization System

3 Appendix E Interface Systems

4 Appendix F Mobilization Planning Management

5 Appendix G Mobilization Execution Management

6 Appendix H ARNG Force Authorization Management
'7 Appendix I ARNG Human Resources Management

8 Appendix J deleted; merged into Appendix P

• 9 Appendix K ARNG Financial Management

I0 Appendix L ARNG Logistics Management

ii Appendix M ARNG Installations Management

12 Appendix N USAR Force Authorization Management

13 Appendix O USAR Human Resources Management

14 Appendix P ARNG/USAR Training Management

15 Appendix Q USAR Resource Management

16 Appendix R USAR Logistics Management

17 Appendix S USAR Engineering Management

18 Appendix T Index ot Functions

19 Appendix U Workload Analysis

20 Appendix V Site Inventory

21 Appendix W ARNG Aviation Management

22 Appendix X ARNG Safety Manageme:']t

23 Appendix Y USAR Safety Management

- 24 Appendix Z USAR Aviation Management

25 Appendix AA ARNG Information Management

26 Appendix AB ARNG Internal Review Management

. n/a nED RCAS Data Element Dictionary

Table I. RCAS Functional Description Organization

[RCAS91].

23

implemented by the development contractor first. Critical

elements are defined in Volume 1 of tl%e FD. Actual

. implementation of the FD has been broken into three phases

designated as Blocks i, 2, and 3.

The first phase, Block i, includes approximately half of

tl_e critical elements. Block 1 provides functionality for

force authorization and human resources. The FD definition of

Block 1 processes was released to the development contractor

on 01 Oct 1991. The second phase, Block 2, consists of all

critical elements not included in Block 1. Areas of Block 2

functionality include training, logistics, additional human

resources and force authorization, mobilization, finance,

aviation, and engineering. The third phase, Block 3, consists

of all remaining FD functional primitive processes.

The FD is composed of three parts, designated as Part A,

Part B, and Part C (see Figure 7). Part A consists of textual

description and data flow diagrams. It constitutes the hard

copy portion of the FD and is the standard against which parts

" B and C are compared for accuracy. To facilitate maintenance,

Part A is being replaced by reports generated from the Part C

PSL/PSA databases.

Part B is developed using a CASE tool resident on an IBM-

compatible personal computer• Up to and including the 04 Feb

1991 release, Structured Architect (SA) 1.2 was used. At that

time, the SA 1.2 databases were converted to Structured

Architect Workbench (SAW).

Part C of the FD is generated from Part B. PSL is

generated from the Structured Architect dataDases and loaded

into PSL/PSA databases. In addition, synonyms of process

names, consisting of process numbers, are added in a "post-

processing" step.

The historical study of the FD covered the Ii electronic

releases of the VAX-based PSL/PSA databases (see Table 2).

The first three releases were prepared by a contractor other

than the one currently preparing the FD.

24

Part B E //'_ rt'_'_

" (_o generates

0
Hardcopy of Structured Architect PSL/PSA
Data Flow SA 1.2, SAW
Diagrams

Figure 7. Parts ot the Functional Description.

until the 07 May 1991 release_ all Part C PSL/PSA

databases were generated from SA 1.2. Part C PSL/PSA

databases were generated from SAW starting with the 07 May

1991.

2.2.2 PSL/PSA Database Structure

Each release of Part C (PSL/PSA databases) includes as a

minimum at least one PSL/PSA database file. This database, or

the main database, contains information regarding processes,

data flows, and data stores (see Figure 8). Data flows are

further defined in the data flow dictionary (DFD). The DFD

defines data flows with respect to data elements. Data

elements are defined in the Data Element Dictionary (DED).

In addition, the releases of the Part C databases include

any combination of the foilowing databases:

The main database information has been included in:

• a single database containing information for only

one appendix

• a single database containing information for

multiple appendices

- • multiple a_tabases containing information for only

one appendix

25

ii
Release Comments

" 02 Nov 1989 first FD prepared using PSL/PSA on the VAX
...............

29 Nov 1989 identical to 02 Nov 1989 for Block 1
,,,

26 Feb 1990 last release by the previous contractor

06 Apt 1990 first release by the current contractor

14 May 1990 intermediate re].ease for IV&V review

19 Nov 1990 identical to 14 May 1990 for Block 1

22 Dec 1990 intermediate release for IV&V review prior to

issuing the 04 Feb 199]. baseline

04 Feb 1991 hard copy and electronic baseline; identical to

22 Dec 1990 for Block I; last Part C generated
from SA 1.2

I

,,

07 May 1991 _irst pass of refinement effort £or the entire :!

FD; _irst Part C generated from SAW !I

03 Jul 1991 Block 1 only; continuation of refinement

24 Jul 1991 effort; issued to proponents for review

16 Aug 1991

01 Oct 1991 Block 1 only; released to development

contractor and is therefore correct by
definition

Table 2. Functional Description Part C Releases.

,_Data Flow

Dictionary I Dicti°nary I

(DFD) L[DED) ..J

Contains Contains Contains

Processes _..-_Data Flows .l_Data Elements

. /\ /i\ / \
Data Data ,q-" I Intermediate { Definitions

Stores Flows t/ _/,I Enfties)
I

Data Elements'q---

Figure 8. RCAS PSL/PSA Databases.

26

The DFD (data flow dictionary) information has been

included in:

• the main database

• a separate file dedicated to a single appendix

• a separate file common to multiple appendices

The DED (data element dictionary) information has been

included in:

• the main database

• a separate file dedicated to a single appendix

• a separate file common to multiple appendices

2.2.3 Search for Error Predictors

Data from the various releases of the RCAS FD were

analyzed to determine if error predictors exist in tl_e FD

data. A predictor would indicate where errors are more likely

to occur in the FD and would facilitate improving the way the

IV&V review of the FD is conducted. With a predictcr, those

portions of the FD which are more likely to contain errors

would undergo a more intense review than those portions which

are not as likely to contain errors.

The first step to locating error predictors is to gather

data. The content of the releases of the FD is recorded.

Historical FD data are reviewed for error content. The types

and quantities of errors are noted. In addition, the

differences between a given release and the final release are

also counted. These differences represent the evolution of

the FD over time. In addition to enumerating errors and

differences, changes from one release to the next are also

cataloged.

The next step is to analyze the data. Normalization of

the data is necessary to facilitate comparisons of data from

the various FD Appendices and releases. If patterns or

. correlations are found in the data, then an error predictor

exists. The absence of a pattern or correlation may signal

27

the presence of some other factor which prevents the existence

of an error predictor.

2.2.3.1 Functional Description Data

The historical study of the releases of the FD Part C

PSL/PSA databases is restricted to Block I functional

primitive processes. Three of the II releases are excluded

because the content, for Block 1 functional primitive

processes, is identical to that in the previous release (see

Table 2).

The study includes Block 1 functional primitive processes

from Appendices N, H, I, and O. In addition, the four

appendices are considered as a whole (Block I). Consideration

of Block 1 allows for the sharing of data flows, data stores,

and data elements among the four appendices. However,

processes are kept distinct even though process names may be

shared.

Appendix A of this thesis summarizes the content of the

releases databases according to the number of databases in the

release including the main database, the DFD, and the DEDo In

" addition the number of functional primitive processes, data

flows, intermediate entities, data elements, and data stores

are listed.

Appendix B of this thesis summarizes changes in a given

release from the previous release with regard to:

• lists of functional primitive process, data flow,

intermediate entity, data element, and data store

names.

• process descriptions for each and every process.

Comparisons are made on a line by line basis. Thus

changes include formatting changes as well as textual

changes.

• • data element definitions for each and every data

element. A change is noted if any portion of the data

element definition is modified.

28

Appendix C of this thesis enumerates errors in each o£

the releases. Appendix D of this thesis summarizes the

differences from the final (01 Oct 1991) release over time.

These differences represent one of two things. One is that

the differences are the result of a gradual evolution of the

FD over time. Changes are made to the FD as more is learned

about the RCAS or as the users change the definition of how

the RCAS should function. The other is that the differences

are actually errors in the FD which are corrected over time.

Differences include not only the existence (or non-existence)

of objects but the names of objects.

2.2.3.2 Data Normalization

Block 1 Appendix N consists of one functional primitive

while Block 1 Appendix O consists of 933 functional

primitives. In order to compare errors and changes over time,

it is necessary to normalize the data for each appendix and

for Block 1 as a whole. Data are normalized using three

values: simple object sum, comprehensive object sum, and

modified Bang metric.

2.2.3.2.1 Simple Sum of Objects

The first value used to normalize the data is the sum of

the number of unique names of functional primitive processes,

data flows, data elements, and data stores. These are the

elements which appear on the FD Part B data flow diagrams.

The simple object sum excludes multiple use of data flows,

intermediate entities, data stores, and data elements which

are defined only once in the PSL/PSA database. Any subsequent

changes or correction of errors are made in only one place in

the database_

" 2.2.3.2.2 Comprehensive Sum of Objects

The simple sum of objects has deficiencies. It does not

include intermediate entities, the building block of data

29

flows. It also excludes data flows which are used more than

once but have the same name. This occurs when a given process

outputs the same information to multiple destinations or when

the same information is processed by more than one process. A

data flow should be counted each time it is used since it is

the connecting relationship between functional primitives and

data stores or other functional primitives. The comprehensive

sum of objects, then, is the sum of functional primitive

processes, each occurrence of each data flow, intermediate

entities, data stores, and data elements.

2.2.3.2.3 Modified Bang Metric

DeMarco formulated a metric, called Bang, to forecast the

cost and duration of a software project using the requirements

specification as input [DeMa82]. The metric is intended to

measure system functionality and is not specifically intended

to be used to normalize data. However, it is a useful tool

for comparing software projects and as such, should be

practical for normalizing data.

DeMarco defines two types of systems. One is function-

" strong. This is a system which can be thought of almost

entirely in terms of the operations performed upon data. The
i

other type of system is data-strong. This system is one that

must be thought of in terms of the data it acts upon rather

than the operations upon the data. RCAS, as defined in the

FD, is a function-strong system.

DeMarco maintains that the principal indicator _or most

_unction-strong systems is the functional primitive (FP).

DeMarco's functional primitive is the lowest level of

decomposition of function and is equivalent to an RCAS PSL/PSA

functional primitive. However, DeMarco recognizes tl_at not

all functional primitives are equal. Some functional

primitives require more effort to implement than others.

Normalization of the RCAF FD data using a simple FP count is

not realistic. A significant number of errors and changes in

3O

the FD come from data flows and data elements, not just from

functional primitives. Accordingly, the FP count requires

modification.

DeMarco recommends first correcting for variations in

functional primitive size. This is accomplished by using the

data token count (TC) for each functional primitive as an

approximation of size. DeMarco's data token is equivalent to

an RCAS PSL/PSA data flow. The token count is the sum of

input and output data flows. Thus, if a functional primitive

has three input data flows and two output data flows, the TC

"is five.

The Corrected FP Increment (CFPI) for a given functional

primitive is calculated using the formula

CFPI = 0.5 * TC * logs(TC)

The sum of all CFPIs is the Corrected FP (CFP).

The CFP can be used to normalize data. Since the number

of data flows for any given functional primitive in the

PSL/PSA databases varies from one release to the next,

adjusting the FP count using data flows provides a better

basis for comparing errors and changes in the various

appendices.

DeMarco next recommends correcting for variations in

complexity. This is achieved by classifying each functional

primitive and then by multiplying the CFPI for that functional

primitive by a weighting factor appropriate for the class

assigned to the functional primitive.

Complexity is a significant factor in software

development and thus is an important part of the Bang metric.

Correction for complexity, however, has little value for

normalizing the RCAS data. There is virtually no variation in

number of functional primitives in an appendix from one

release to the next. There is very little variation in

" function of functional primitives from one release to the

next. Consequently, complexity essentially remains a

31

constant. No correction is made for complexity and a modified

Bang metric is used.

• To verify the assumption that complexity is not a major

factor in normalizing the RCAS data, the functional primitives

. for Appendices N and H were classified. CFPIs were calculated

and modified for complexity. A Bang metric was determined for

the two appendices combined. The combined data for the two

appendices were normalized using several techniques. Table 3

summarizes the normalization of the data using the simple

object sum, comprehensive s u_, FP count only, modified Bang

' (CFP without modification for complexity), and Bang (CFP with

modification for complexity). To facilitate comparison of the

different normalization methods for the various releases, the

data have been scaled for each method using ti%e maximum value

for the set of releases as the divisor. Three observations

are made from Table 3. First, the scaled normalized values

for simple, comprehensive, and FP only are very similar.

Second, the scaled normalized values for modified Bang and

Bang are also very similar. Finally, the values for the first

group (simple, comprehensive, and FP only) are approximately

twice the value of those of the second group (modified Bang

and Bang). This is especially evident in the ratios of scaled

normalized changes to scaled normalized errors. Compensating

for complexity does not appear to make a significant

contribution to normalizing the data.

2.2.3.2.4 The Normalized Data

Appendix E contains the results of data normalization

using the simple sum of objects, the comprehensive sum of

objects, and the modified Bang metric. Change counts, error

counts, and difference counts are normalized. The normalized

data are used as input to determine if predictors of errors in

- the functional description can be found.

_2

Appendices 02 26 06 14 22 07 03 Ol
N andH Nov Feb Apr May Dec Hay Jul Oct

• 89.... 90 90 9090 91 91 91

• totalehanqes n/a 92 228 968 29 66 i05S 1064

. totalerrors 934948 1034 66 141 ii0 2 0

normalizedchanqes

simple 0,0 0,i 0.2 0.9 0,0 0.i 1,0 1,0

comprehe_Isive 0.0 0.i 0,2 0.9 0,0 0,i 1.0 1,0

EP only 0.0 5,8 14,3 60.5 1.8 4.1 66,0 56,0

modifiedBanq 0.0 1,3 3.3 14.2 0,4 0,9 15,8 32,0

Banq 0.0 2,0 5.i 21.7 0,6 1,5 25.9 47.3

normalizederrors

simple 1.0 1.0I 0.9 0.i 0.i 0.i 0.0 0.0

comprehensive 1,0 1,0 . 0,9 0,i 0,i 0,! 0,0 0,0

FP only 58.4 59,3 64,6 4,1 8.@ 6,9 0,i . o,0

modifiedBanq 14.3 13,6 15.2 1.0 2.1 1.6 0,0 0,0

Banq 21.0 20.9 23.1 1.5 3.2 2.5. Q,o _ o,o

normalizedehanqessealedto ranqefrom0,0 to 1.0

simple 0.0 0.I 0.2 0,8 0.0 0.i 1,01.0

comprehensive 0.0 0.i 0,2 0.9 0.0 0,i 1,0 1,0

• , FPonly 0.0 0,i 0,2 0,9 0,0 0.i 1.0 0.8

modifiedBanq 0.0 0.0 0,i 0.4 0,0 0.0 0,5 1,0

....... Banq 0.0 0.0 0.1 0.5 0,0 0,0 0.5 1.0

normalized errors scaled to ranqe from 0,0 to 1.0

simple 1.0.... 1.0 1,0 ,0,I 0,i 0,i .0.0 0,0

comprehensive 1.0 1.0 1,0 .0.I 0,I 0,1 0,0 __ 0:0

.......... EPonly 0,9 0.9 1.0 0,i 0.I 0,i 0,0 0,0

moditiedBanq 0,9 0.9 1,0 0,i 0,i..... 0,i0,0 ,._,0

Banq 0,9 0.9 1,0 0.i 0,i 0,i0,00.0

ratioo_ scalednormalizedchanqesto sealednormalizederrors

, simple 0.0 0.i 0,2 13.7 0,2 0.6 492.1 n/a

. comprehensive 0.0 0.i 0,2 14.7 0,2 0,6 528,1 n/a

.... EP only 0.0 0.i 0,2 14.4 0.2 0,6517.0 n/a
Q

modifiedBanq 0,0 0.0 0,i 6,9 0,i 0,3 250.2 n/a

........ Banq 0.0 0.0 0.i7.2 0,i 0,3 258,2 n/a

Table3. Comparisono£ Data_Iormalizations,

33

1
2.2.3.3 Analysis of the Norm_lized Data

The primary reason for normalizing the data is to

. facilitate analysis of errors and changes of the various

appendices of Block i. Changes in the FD are relatively

easily detected using the CASE tools and custom written

software on the host computers. One would normally expect

that as the number of changes increases, the number of errors
i

also increases. Figures 7 through l0 show the relationship

between the number of normalized changes and the number of

normalized errors. If there is a correlation between the

number of changes and the number of errors, one should see a

distinct pattern to the data points on the figures.

Unfortunately, the data points appear to be randomly placed on

the graph, suggesting there is no correlation between the

number of errors and the number of changes in the Block 1

data.

One would also expect that as the number of processes,

data flows, data stores, and data elements (i.e., the size of

the appendix) increases, the number of errors per object also

increases. This is based on the assumption that complexity

• increases with size and that complex tasks are more error

prone than simple tasks. However, there appears to be no

correlation between the size of the appendix and the number of

errors, as shown in Appendix E (Normalized Errors).

Appendices N and H, the smallest Block 1 appendices, generally

show the highest error rate.

Thus there appear to be no predictors of errors.

Historical information cannot De used to select areas in the

FD for closer scrutiny.

2.2.3.4 FD Preparation Process Stability

Ali processes vary. A process is stable if the variation

. is random and displays no identifiable pattern of change.

Random variation is usually the result of internal factors

rather than external factors which can be manipulated.

34

. 1,8

.,_ 1.6 i
f.2 I
D

- o 1.4 n
[]

1.2
CD
c- n u

,- D.,

,C 0 8 I I• I
®

._N0.61
© II I

_ 0.4 I I
0 I' II
C"

0.2' I i
U

0 lH I I j l____

(? 0 1 0 2 0:5 0 4 0 5 0.6 (_ ' {; _ 0 ,:_ 1
I'Iotr?_GI}T_E{J error c,:;.;nr

Figure 9. Errors and Changes Normalized by Simple
Object Sum.

1.6
g

1.4
C

m
0

1,2
II

(D m

0 w
/2 m m
u 0.8

m I

I-, . .
C 0 2 n i

m B

0 Om ii I
0 0,1 0,2 0,3 0,4 0.5 0,6 0.7 0,8 0.9 1

normalized error counf

Figure lO. Errors and Changes Normalized by
Comprehensive Object Sum.

35

Figure ii. Errors and Changes Normalized by Modified
Bang Metric.

O
_ 2.4

... ,r..Z
_. ml
r_...j

"" m u mm

li m
ii

i i

"". Z. ,,_ mm
m lm

ml l
,, .J

,:J 0 2' 0 4 r).6 0 '_ 1 1.2 I _ I.F,• , ._ ..,T ,,

r_orr,-_o,ized err_:>r cot_r,f

i,

Figure 12. Errors and Changes Normalized by Modified
Bang Metric (enlarged).

36

A stable process is required to see a correlation in the

data generated from that process. Analysis of historical FD

" data reveals that the FD preparation process lacks stability.

Statistical analysis is not used because of the small number

" of data points (there are only eight releases). Instead, the

data is displayed graphically to illustrate trends. The lack

of process stability is most clearly seen in Figures 11

through 13 which show normalized difference counts over time.

One would normally expect that the number of differences from

the final release would continually decrease over time. As

seen in the figures, this is not the case. Lack of stability

is also illustrated in Figures 14 through 16. One would

normally expect tha_ the number of changes would decrease over

time as the product neared its final form. The figures

illustrate that this is also not true.

One cause of instability is the change of the contractor

tasked with preparing the FD. Releases prior to 06 Apr 90

. were prepared by one contractor. The 06 Apr 90 and subsequent

releases were prepared by the current contractor.

Another cause of instability is the change in PC-based

CASE tools, from SA 1.2 to SAW. Releases prior to the 07 May

91 release were prepared using SA 1.2. The 07 May 91 and

subsequent releases were prepared using SAW. The conversion

from SA 1.2 to SAW was neither painless nor without error.

Many errors were introduced into the FD as a result of the

conversion (see Figures 17 through 19). SAW uses an entirely

different structure than SA 1.2. The magnitude ot the

di£ferences in the PSL/PSA database data flow relationships

generated from SA 1.2 and SAW is illustrated in Table 5.

As seen in Figures ii through 13, the 22 Dec 1990 (SA

1.2) release is more similar to the final release than is the

subsequent 07 May 1991 (SAW) release. Error counts also

" increased from the 22 Dec 1990 release to the 07 May 199].

release (see Figures 17 through 19). Conversion from SA 1.2

to SAW is the primary cause of instability during this period.

3'7

o

lm

1.8 "' ,, _pF_.endi_N

• t.6 Appendix t4

1.4. ,- "
Appendix I

1.2 .._

1 --,. Appendix O

0.8 ' ; Blocl,: 1
x

0.6 x
u

0.4-
i

•'1'- ,"+-
0.2 ',

.i iii ii iii-- . m I_ u

()"N,,v_ :_ OF,"l_rq(b " ""[i,_.:QO ;_Ji .,s,,." -• ;Cl'd

26 --eb90 14Ma,90 07 Ma/£J! 010 _:!9 1

Figure 13. Differences Normalized by simple Object
Sum.

2 D

1.8 m Appendix rl

1.6 Appendix H

14
Appendix

12 .i

, ,.,i-,Fond;. ,_

,:,.: ; !

0.6 ,:.
:;4

0.,,t ,.

0 2 .,_.............. , t, _ /

O '::--:::::-:i_ -::-......."!I,-----.. m
02NovS9 06_pr90 22Dec90 Jul'Aug92

" 26':eh90 14.Mm/90 07May91 010cf9 !

Figure 14. Differences Normalized by Comprehensive

object Sum.

38

• 16 m
i-

Appendi,, N!4
4-.

D

1? Appendix H
.._

Appendix I1(? ,

8 Appendix O
X

6 Block 1

2 I

...... . + + :
n "-II- B--.-_-'" +,., 1,_ m

r_2'-]ovi__ /",_ ,,_:r9 (:) ° 2D_.,.:90],,I /,,,,,"9"
26F_b90 1,¢Ma_,90 07May9 I 010ct9]

Figure 15. Differences Normalized by Modified Bang
Metric.

.8 m

1.6 -,,, Appendix N
i -,I-

,,1. .:: Appendix H

.2 Appendix I

_'" t ' '

.... ,_ x i ,,,.

i

0.6 , _"
/ k

\\0.4 /
X

02 + "
' "Jl-r lid

,,,,\ ,

" 02Nov89 06Apt90 22Dec90 ,jul]"Augg 2
26:eb90 14Ma/90 07k4ay91 01 Oct91

Figure 16. Changes Normalized by simple Object Sum.

39

1,6 u
" m

Appendi:, N
1,4

.+

Appendix H" 1.2

;,._. Appendix I
1 .',' +-.............m

' ' 't..t " {:;,+

_' ..w, Appendix O0.8
II X - _< -
X

' Block, 10.6
, ...- / '\ ',

0.4. " \ 'i
×

0.2 +
'111_ !!

f' "4'-

P,":'l,, .;:".'.q ;_r'::...si.-,rqt, _"_.n_cqrl .,_jl ,L_Jj,:_?iT.
" tS--eb90 14t,.ia ,'9C' :37k,l,:.ly91 01 Oc_9 1

Figure 17. Changes Normalized by Comprehensive

Object Sum.

60 mm _

Appendix N
III

50 .-
Appendix H/

._,

40 Appendix In

+ Appendi, C)

L.; .q
,.,

2(_]
+ -I.,-

10 "
B_

" ,+ ""i

0 _I""'_ _'_ "-_':_-"_.........._"_-=;;;_'="-'_
02'40','89 06Aprg0 22Dec90 JuI,Aug92

. 26Feb90 14Ma/g0 07May91 010cf91

Figure 18. Changes Normalized by Modified Bang
Metric.

4O

SA 1.2 SAW

" no process-to-process direct process-to-process

communication; all data pass communication

through an intermediate data
store

receives (not generated)

employs employs

generates (not generated)

derives derives

modifies (not generated)

updates (not generated)

references (not generated)

(not generated) sends / flows / obtains

Table 4. Comparison o£ SA 1.2 and SAW Generated Data FLow

Relationships.

I N

. Appendix N
0.9 m

0.8 m Appendix I-4

0,7 ' "
-- m _a Appendix

._._n,_, x ,' d n

- ,'_{:_5<-'r,c i
, . .4

O. 4- ,' , 5:1(. ': k ',

0..5 ____

,2

O,2 ::_..... . ×
_,r"

0,1 " +-.
" .a _t-

.

" 02Novg9 06 _pr90 22Dec90 Jul Aug92
"'6-ebg0 14Ma/90 07May91 01Oct91

Figure 19. Errors Normalized by simple Object Sum.

4].

. I

Appendix I',10,9 u
4-

. 0.8 m Appendix H

0,7
" _ AppendixI

0.6 .,:-_
,:3 ,e

x c_ Appendix 00,5 .. '*

0.4 _ _ ' ' " Block 1
, , L'.

0.3 _, / "
i' 'L

0.2 ; -*::_ '":_'-
,! X \0.1 +'

._. -'t-*

02r4uvS9 06 nprg0 2 " D_.{.90 .!u ' n,u_j9_
26:eb90 14Ma/90 071vlav91 010c19 I

Figure 20. Errors Normalized by Comprehensive Object
Sum.

. 40 m
I

, Appendix N .
35

, Appendix H30

Appendi× i
25 n ,, ..

2I2 i ADr:er,d:, ("

m

,:? + • + c! ', !
.+.

10
R

5

'

0 _J'--_'--_"aaJ--_" -........= ' m.......
02qov89 06Apr90 22Dec90 Jul/Aug92

" 26Feb90 14Ma/90 07May91 01 Oct9 1

Figure 21. Errors Normalized by Modified Bang
Metric,,

42

Chapter 3

THE IV&V REVIEW PROCESS

3.1 IV&V Review Process Overview

. The RCAS Program Management office (PMO) provides the

following items for IV&V review:

• Part B SAW database(s) containing processes, process

descriptions, data flows, data stores, external

interface information (associated with data flows),

and information regarding echelon, classification,

. frequency, and sensitivity (associated with functional

primitive processes)

• Part C PSL/PSA databases containing the same

information as the SAW database(s) as well as data

flow definitions (to the data element level) and data

element definitions

• hard copy reports generated from the PSL/PSA databases

by the preparer of the FD

• error reports based on data in the PSL/PSA databases

generated by the preparer of the FD

" • control reports documenting changes made to the SAW

and PSL/PSA databases generated by the preparer of the

FD

As shown in Appendix A, the RCAS PMO can deliver multiple

databases for any given appendix. To simplify matters, the

following discussion assumes that only one SAW database and

only three PSL/PSA databases are delivered. The three PSL/PSA

databases are:

• main database -- the con_uents of the SAW database

• DFD -- the data flow dictionary; data flows are

defined to the data element level

• DED --- the data element dictionary; data elements are

. defined with a description, a long name, a data type,

a length, a proponent, and an information class

43

3.1.1 Processing of the FD Part B SAW Database

The SAW database received from the RCAS PMO is loaded

onto the host machine, a personal computer. Data flow

diagrams are printed for later manual comparison to the Part A

• hard copy of the baseline FD.

Using a capability of SAW, PSL is generated from the Part

B SAW database. The PSL is uploaded to the VAX and into a

PSL/PSA database. This PSL/PSA database is created to

facilitate comparison between the supplied Part B SAW database

and the supplied Part C PSL/PSA main database. The comparison

of the Part B and Part C PSL/PSA databases should yield no

significant differences.

Selected Formatted Statements (SFS) are generated from

the Part B PSL/PSA database for later comparison with the

delivered Part C PSL/PSA database. Lines containing date and

time information are stripped from the Part B SFS file. The

date and time of processing are automatically inserted into

the PSL/PSA database upon loading of the PSL. Since the Part

C PSL/PSA was created at a different time, the date and time

information interferes with direct comparison of information

from the two databases.

3.1.2 Processing of the FD Part C PSL/PSA Databases

The PSL/PSA databases received from the RCAS PMO are

loaded onto the host machine, a DEC VAX. Selected Formatted

Statements (SFS) are generated from the Part C PSL/PSA

databases. SFS from the main PSL/PSA database are used tor

comparison with the generated Part B PSL/PSA database. Lines

containing date and time information are stripped from this

SFS file. In addition, process synonym information is also

" removed from the file. Process synonyms, consisting of

process numbers, are added as a post-processing step by the

" preparers of the FD. These synonyms do not exist in the SAW

database and as such, hinder direct comparison of the

information in the Part B and Part C databases.

44

The Part B and Part C databases are compared to verify

that their content is essentially identical (see Section

" 3.1.3). Automatic analysis of the Part C PSL/PSA databases is

performed. This entails the application of the suite o9

" automatic checks discussed below in Section 3.4. Finally, ad

hoc investigations are conducted as discussed in Section 3.5.

3.1u3 Comparison of Part B and Part C

The stripped Part B and Part C SFS files are

electronically compared using the VAX/VMS difference utility.

There should be no significant differences between the two

since Part C should have been generated from Part B. Any

differences are the result of uncontrolled editing of either

part B, Part C, or both.

Detected differences are evaluated for significance.

Insignificant differences are items such as changes in textual

descriptions which do not alter the meaning. For example, the

• deletion of blank lines in process descriptions may indicate

that independent editing of Part C has occurred, but the

results are not consequential. Another example of an

insignificant difference is the occurrence of identical

statements but in a different order. PSA retains the order in

which objects and relationships are entered. If the order is

different between t1%e two databases, there was at least one

independent modification to a database.

Significant differences include the presence or absence

of new objects (e.g., data flows) and the modification of

PSL/PSA relationships between objects. Significant

differences are analyzed as errors as discussed below.

3.2 Preliminary Investigation of PSL/PSA Database(s)

3.2.1 High Level Review of Databases

' The primary assumption regarding newly delivered

databases is that they are significantly different from

previously delivered databases. Previous analysis techniques,

45

both manual, and automatic, may fail or, worse yet, provide

invalid results. Consequently, a high level review of the

• recently delivered databases is necessary before any analysis

can take place.

The first activity is to execute a PSA function to

generate database summaries of eacl% of the PSL/PSA databases.

The database summary lists each PSL/PSA object type which

occurs in the database. "New" object types, those which have

not been encountered in previous releases, may require

modifications to the automatic check software prior to

proceeding with ti%e automatic analysis. The new object types

may also indicate the presence of errorS.

Examining the database summary may quickly indicate the

presence of major errors in the database. This activity may

also indicate the need to modify subsequent analysis

activities. For example, the 07 May 1991 release of Appendix

M contained 1190 undefined objects. This was the result of an

attempt to "populate" the data flows with data elements
i

following the uploading of the Part B SAW database into the

Part C PSL/PSA database. The data flows contained what were

" intended to be data elements, but the data elements had not

been properly defined in the PSL. It became necessary to make

special provision to extract the undefined objects and use

them as data elements.

The next activity is to determine the set of PSL/PSA

relationships for the database. "New" relationships probably

require modifications to the automatic check software prior to
Q

automatic analysis. A prime example of this is found in the

transition from SA 1.2 to SAW. As shown in Table 4, SA 1.2

generates a different set of PSL relationships than does SAW.

- Software developed to analyze PSL/PSA databases generated from

SA 1.2 is not effective in analyzing databases generated from

• SAW.

As with new objects, new relationships may indicate

errors. For example, if SAW encounters a data flow with no

46

origin and a data store as the destination, it generates 'the

INCLUDE relationship in PSL. Consequently, the INCLUDE

relationship is not one of the standard set of relationships

one would expect to see in an RCAS FD PSL/PSA database. Its

- presence is an indication of an error (an unconnected data

flow).

Following the high-level review of the databases,

required modifications, if any, are made to the existing

software used in the suite of automatic checks.

3.2.2 Simple Arithmetic and Number Comparisons

Many errors can be discovered using simple arithmetic and

number comparisons. For example, the number of data flows in

the main database should equal the number of data flows in the

DFD file. similarly, the number of data elements in the DFD

file should equal the number of data elements in the DED file.

If either of these pairs of numbers is not equal, there is a

consistency error.

One example of this type of error is in the 24 Jul 1991

release of Appendix I. There are 901 data flows in the main

database, but only 900 data flows in the DFD file. The

missing data flow is actually defined as a data element in the

DFD and the DED files. The missing data flow had been omitted

from the previous release but was added to the 24 Jul 1991

release. However, the name assigned to it was identical to

the name of a non-Block 1 data element (which was not included

in the 24 Jul 199]. release). When the preparer of the FD

extracted information from the databases of the previous

release to prepare the 24 Jul 1991 re].ease, information was

extracted by name rather than by function. As discussed in

Section 3o3.3.1, PSA requires inputs of name lists.

Consequently, the data element information was extracted for

• the data flow.

Another example of an error detected using simple

arithmetic and number comparisons is in the 22 Mar 1991

47

release of Appendix N There are 1081 items of object type

ELEMENT in the PSL/PSA database created from the Part B SAW

database. There are 1049 items of object type ELEMENT in the

delivered Part C PSL/PSA database. The cause of this problem

was that all of the 30-character names were truncated to 29

characters. Many of these names were identical except for the

thirtieth character. The difference in the counts is the

result of the loss of uniqueness of these names.

A package detailing the Block 2 functional primitive

processes was provided to facilitate the preparation for

review of the Block 2 FD. A total of 1135 functional

primitives was specified. The package included a list of

functions with the number of processes for' each function.

This totaled to 1155 functional primitives. However, there

were 1136 processes specifically enumerated in the list, two

of which were erroneously duplicated, leaving a total of 1134

processes. This left the following questions to be resolved:

Was the specific list of processes correct (except for the

obvious error)? Was the total of 1135 correct meaning that

there was only one process excluded from the list? Had 21

processes been excluded from the list and was the correct

count 1155?

Simple arithmetic and comparing counts of PSL/PSA objects

is an inexpensive yet powerful method in detecting errors.

3.3 Obstacles to AutomaticAnalysis of the Databases

The FD does not lend itself easily to automatic analysis.

As explained earlier, the process used to generate the FD is

not stable. Indeed, the major assumption in analyzing any

given release of the FD is that there are significant

" differences between it and previous releases. Even appendices

within a given release may be significantly different. The

. input to the analysis process is never the same. In additicn,

there may be a single database to process or there may be

multiple databases (as shown in Appendix A). Several of the

48

obstacles to automatic analysis are discussed. These include

unknown database contents, multiple databases for a given

" appendix, and the means of _ccessing data in the databases.

3.3.1 Unknown Database Contents

The contents and structure of each newly received PSL/PSA

database is unknown. A given appendix may be different from

other appendices. The current appendix may be different from

previous releases of the same appendix. These differences may

cause the software used to automatically analyze the databases

to fail. For example, software created for Appendices N and H

may not execute correctly against Appendices I and O because

there are new PSL/PSA object types, INPUT and OUTPUT, , for data

flows. The Block 2 Appendix P databases also use the PSI./PSA

object types INPUT and OUTPUT for data flows. In addition,

whereas all other appendices use the object type ENTITY for at

least some of the data flows, Appendix P does not use ENTITY

at all. Instead, it uses another new object type, GROUP.

Consequently, most of the software used to evaluate the

databases has been modified to avoid dependence on object

type.

Other problems in the databases can cause establfshed and

tested software to fail. For example, the software which

creates a list of data elements associated with data flows

abnormally ended. The problem was that one of the

intermediate entities containing data elements also contained

itself. The software, which used a recursive procedure to

track through intermediate entities to data elements, became

locked in an infinite loop. The program terminated after a

stack overflow.

Unfortunately, because the content of the current

databases are unknown and because they may be significantly

• different from other databases, experience from previous

database investigations may not be applicable for the current

databases. Many of the programs used to automatically analyze

49

the databases must be used to generate data _ior manual

analysis and ad hoc investigations (discussed in Section 3.5).

3.3.2 Multiple Databases for a Given-Appendix

. There may be only one database or there may be multiple

databases for a single appendix in a given release. In _he

event of multiple databases for a single appendix, it must be

determined which of the databases contain data relevant to the

current analysis. For example, in the 07 May 199]. release

only two of tl%e three Appendix H, 16 of the 19 Appendix I, and

four of tl%e nine Appendix O databases contain Block 1

information. Thus the software used for automatic analysis of

the databases must not only make accommodations for the

multiple databases, it must also make allowance for some of

the databases not having any pertinent data.

The software uses lists of names (e.g., process names) as

input. With multiple databases for a single appendix, the

software must use either a single list of names which cover

all databases or it must use multiple lists of names, one for

each database. There are disadvantages to each approach.

" With the single list of names approach, the software must

determine if each name is in the database prior to processing

the name. While this is good programming practice, the

software must also _ generate an error message for each name

which is <lot in the database. This carl result in faulty

analysis, for it assumes that all of the names are present and

accounted _or in at least one ot the databases.

With the multiple lists of names approach, provision must

be made for the software to associate the correct list with

the current database being analyzed. While error messages may

be generated if the name is not in the database, extra work

must be performed to ensure that all of the names (e.g., data

• flow names) are present for the entire appendix. Regardless

of the approach, additional processing is required.

5O

Special handling is also necessary if the same

information is contained in multiple databases. Additional

study is necessary to make sure that overlapping objects are

consistently defined. For example, a parent process in one

database may be a functional primitive in another database.

This happens when the process is decomposed to functional

primitives in one database but not in the other. Since

analysis is conducted on functional primitives, care must be

taken to make sure this parent process is not included in the

list of functional primitives for either database.

Another problem with multiple databases is that analysis

of the databases results in multiple output files, one for

each database. The information from these output files must

be merged into a single output file for input into other

programs or to facilitate manual analysis an(] error reporting.

Normally, this merged information must be sorted re.g., by

process number)to simplify further processing. This can

cause problems if more than one line is used for each piece of

output information.

Special handling is necessary when the same output

information is generated from multiple databases. The output

must be checked to ensure that the overlapping information is

consistent.

Having multiple databases for a single appendix in one

release increases the difficulty in comparing current data

with data from a previous release which lacks an identical

organization. This may be due to a different number of

databases or to a different allocation of data to the multiple

databases. The comparison of current data to previous data is

necessary to determine the changes from the previous release

to the current release. In this situation, one must determine

where (i.e., in which database) the data item to be compared

- is located for each release. This adds significant complexity

to processing, whether it be automatic or manual.

51

3.3.3 Accessing Data in the PSL/PSA Databases

3.3.3.1 Process Numbers and Process Names

" Analysis of information in a database begins with

processes. Functional primitives are a subset of all

processes in the database. Data flows and data stores are

determined by their relationships with the functional

primitives. However, PSL/PSA requires process names to access

related data. Block 1 (and Block 2) functional primitives are

defined using process numbers and not process names. Indeed,

process names change over time and as a result, one cannot

search the database using the same name used in a previous

release. Process numbers, on the other hand, remain fairly

stable.

In the PSL/PSA database, the process number is an

attribute of the process name. Given a process name, the

process number can be determined. Unfortunately, the inverse

is not true. Given a process number, one cannot directly

access the process name or any related information.

Somehow, one must be able to cross the bridge from

process numbers to process names in order to analyze the

information in the database. The contractor creating the

databases has attempted to do this by defining PSL/PSA

synonyms° Synonyms are commonly used in the databases to

associate process names and process numbers. One can directly

access the process using a process number synonym. The

synonym is added after loading PSL generated from Structured

Architect. However, synonyms are not always used in the

databases and there is no consistency as to when or where the

synonyms are included.

Another complication is that process numbers may, in rare

cases, change over time. In other situations, further

decomposition may result in additional processes. Functiona].

° primitives may be consolidated resulting in fewer processes.

T_ ts when given a new database, searches using process numbers

may not be without error.

52

In Order to correctly and automatically analyze the

information in a newly delivered database, it is critical that

" the process numbers be correctly converted to PSL/PSA process

names for that database.

3.3.3.2 Full Appendix or Subset

During the concentrated refinement effort of Block I, the

releases contained only Block 1 processes and related data

flows, etc. In creating the suite of software for automatic

analysis, one could thus make assumptions about the content of

the databases which simplified the software and other aspects

of processing. However, the Block 2 databases delivered for

review contain information for the entire appendix and not

just for Block 2 processes. The IV&V review process is

restricted to Block 2 processes and their associated data

flows, intermediate entities, data stores, and data elements.

Assumptions about the nature of the Block 1 databases are not

valid for Block 2 databases.

The unknown content of the databases makes fully

automatic processing of the information in those databases

impossible.

3.4 Automatic Analysis of the PSL/PSA Part C Databases

The following discussion details the processing of newly

received PSL/PSA databases. To simplify discussion, the

following assumptions are made. Since typically only one

appendix is processed at a time, the discussion assumes that

the new databases are for one appendix only. The discussion

also assumes that there is only one main database for the

appendix. If there are multiple main databases, the software

uses separate lists of names, each list being restricted to a

single database. The software also generates an output file

" for each database. These output files are automatically

merged to create one output file for the appendix.

53

3.4.1 Preparation for Automatic Analysis

The following steps are necessary before executing the

" suite of software which performs the automatic analysis of the

databases. Some of these activities have been automated and

may also be considered part of the suite of software.

However, their prime function is to generate information as

input to additional processing.

A list of the databases for the release is created. This

list contains the VAX directory name where the database is

located and the name of the database. One list contains

information on the main database, the database which contains

processes, data flows, and data stores. A second list

contains information on the DFD, data flow dictionary,

database. The third list contains information on the DED,

data element dictionary, database. These lists are used by

all downstream processing of the databases to ensure that each

and every database is processed. [Ising these lists

accommodates those situations when there are multiple

databases for a single appendix or when it is desired to

process multiple appendices (such as the same appendix but

from different releases).

PSA is used to create a list of all process names in the

main database. A program uses this list as input and

generates a list of process numbers and names. This list is

manually checked to verify that all processes have associated

process numbers. This list is also used to manually verify

hard copy reports and for general reference.

The next program which is executed determines i_ an input

process is a functional primitive process of interest (e.g.,

Block i). A list of process numbers and names for these

functional primitives is generated. A manual check is made

here to verify that all functional primitives are present and

- accounted for.

Using the functional primitives as input, a program finds

all associated data flows and outputs their names. Another

54

program uses the same input and finds and outputs all

associated data stores. A third program uses the data flow

" names as input, finds all associated data elements, and

outputs a list of names.

. These five lists of names of processes, specific

functional primitives, data flows, data stores, and data

elements, are the primary inputs for automatic analysis of the

contents of the databases.

3.4.2 Standard suite of Automatic Checks for Errors

3.4.2.1 Completeness

Completeness checks consist primarily of determining if

items are missing from the requirements specification.

Specific completeness criteria for the RCAS FD include

• no missing functional primitive processes

• no incomplete process descriptions

• no processes lacking inputs or outputs

• no data flows without data elements

• no undefined data elements

• no missing echelon, classification, frequency, and

sensitivity information

Missing functional primitive processes. The first check

for completeness is to verify that all processes meeting a

specified criteria, e.g. Block 1 functional primitive

processes, are present in the database. A list of the process

numbers of processes meeting the required criteria is

generated. This is compared with a list o_ process numbers ot

processes which should be in the database and whici% has been

previously verified for accuracy. Processes on the verified

list but not in the database are considered missing.

Processes in the database which meet the criteria but are not

on the verified list are considered extra. Both missing and

" extra processes are investigated further using the ad hoc

investigation process (see Section 3.5).

55

Some "missing" processes may actually be in the database.

Extraction of processes from the database is by process

• number. If a Block 1 process has been defined without the

PROCESS-NUMBER attribute, it is listed as a missing process

• even thougl_ it is in the database. Thus if a process is

missing, additional checks are necessary to be sure that the

process truly is missing.

One might think tl_at selecting processes by name rather

than by process number resolves the above problem. However,

process names are not as stable as process numbers. Selecting

processes using names rather than numbers increases the number

of "misses" and thus makes the selection process more error

prone. In either case, the list of missing processes must be

verified for accuracy.

Incomplete process descriptions. The next check for

completeness concerns process descriptions. Each process

should have a description contained in a PSL/PSA DESCRIPTION

text field. The first check for the completeness of the

process description occurs when the PSL from the Part B SAW

database is loaded into a PSL/PSA database. PSA uses semi-

colons as delimiters for the description text field. If the

process description contains an embedded semi-colon (which is

not intended to be a delimiter), PSA truncates the description

at that semi-colon. The following text will usually be

meaningless to the PSA parser and error messages will be

generated. Thus the error log indicates the presence of a

truncated process description.

The absence of the description field indicates that the

process lacks a description• However, there are occasions

where the field is present, but it is empty or contains

nothing but new line characters. Consequently, the contents

of the field must be checked to verify that there is some text

- present. The meaningfulness of that text is not checked.

In addition, some appendices include additional process

description text irl the PSL/PSA PROCEDURE text field. A list

56

of these processes is generated. The information tor these

processes in the supplied hard copy reports is manually

" verified to ensure that the PROCEDURE information is included

with the process description.

Processes lacking inputs or outputs. Another

completeness check is to determine that each functional

primitive process has inputs an__ddoutputs. Data must flow into

the process, be transformed, and flow out of the process. The

directional data flow relationships are examined to determine

if a process has both inputs and outputs. For example, a

process EMPLOYS an input and DERIVES an output. A process

SENDS (outputs) data to another process which OBTAINS (inputs)

the data. The data FLOWS from the first process to the second

process. A process without either input or' output

relationships is in error.

Data flows without data elements. Data flows are checked

to verify that they are "populated" with data elements. That

. is, they must have contents, or structure. This is determined

using the PSL/PSA CONSISTS OF relationship; a defined data

flow consists of data elements. A data flow is without data
¢

elements if the CONSISTS OF relationship is absent or if the

data flow is not defined in the data flow dictionary.

However, a data flow may have a CONSISTS OF relationship

and still not contain any data elements. A data flow may

consist of one or more levels of intermediate entities which

ultimately are devoid of data elements. Thus each data flow

must be checked past the intermediate entities to the data

element level of decomposition to determine if any data

elements exist. A data flow which ultimately does not have at

least one data element is in error.

Undefined data elements. The next completeness check is

for data elements without complete definitions. A complete

" definition consists of a long name, a description, a data

type, and a length. A data element lacking any one of these

minimally required definitions is considered to be undefined.

57

The long name and the description are textual fields, just as

the process description discussed above• The completeness

check includes determining that the textual fields exist and

that each one contains at least some text. As with the

process description, there is no check for the meaningfulness

of thetextual content.

The data type and length are attributes of the data

element, just as the process number is an attribute of the

process. Unlike the long name and description textual fields,

either these attributes are present or they are not. Their

absence constitutes an error. In addition, the data type is

expected to consist of an established code, such as AN for

alpha-numeric. A data element with a TYPE attribute value

which does not match any of the established codes is output as

undefined. There are no specified limits for the length

value.

Missing echelon, classification, frequency, and

sensitivity information. Each functional primitive process

must have echelon, classification, frequency, and sensitivity

information. Echelon is the organizational level at which the
b

information is processed. Classification refers to the

security classification, e.g. secret, of the data being

processed. Frequency indicates how often the data are

received for processing. Sensitivity indicates if the data

are protected by the Privacy Act. This information is encoded

using the PSL/PSA REQUIREMENTS object type with the SATISFIES

relationship to the process. The absence of a SATISFIES

relationship indicates that the process is missing the

required echelon, classification, frequency, and sensitivity

information. In addition, the contents of these REQUIREMENTS

fields are extracted and sorted for manual review of

correctness.

• Isolated (unused) objects. Typically, a full set of

completeness checks would include a search for' unused objects

in the PSL/PSA database_ These isolated objects indicate the

58

presence of a possible error in that the object was included

in the database but erroneously not connected to any other

object. However, the IV&V review of the PSL/PSA databases is

limited to those processes and related objects which satisfy a

specified criteria, such as being a Block 1 functional

primitive process. Thus, an isolated object is by definition

excluded from the review since it does not belong to a process

meeting the specified criteria.

The absence of a specific check for unused objects does

not negatively impact the IV&V review process. Unused objects

which should be associated with a process under investigation

and are not connected to that process are detected by the

other completeness and consistency checks.

3.4.2.2 Consistency

There are two aspects to consistency: internal and

external. Internal consistency exists when none of the

. information within any of the databases for a newly received

appendix contradicts other data for that appendix in those

databases. External consistency exists when none of the

information within any of the databases for the newly received

appendix contradicts the data contained in the databases for

previously released appendices.

Internal consistency checks consist of external interface

flow in the correct direction, data flows not in the data flow

dictionary, data elements not in the data element dictionary,

and uniqueness of object names. The external consistency

check is verification of the external interface information in

the supplied appendix as compared with the information in

Appendix E of the FD.

External interface flow in the correct direction. For

Block 1 processes, external interfaces are indicated in the

" PSL/PSA main database using the REQUIREMENTS object type with

the SATISFIES relationship to the data flow. This is the same

mechanism used to indicate echelon, classification, frequency,

59

and sensitivity information for functional primitive

processes. The first character of the REQUIREMENT SATISFIES

value is an I if the data flow is an input and an O if the

data flow is an output. This is followed by a hyphen and the

abbreviated name of the external interface. A check is made

to verify that if the data flow is from an external interface,

it has an I if it is an input to a process and an O if it is

an output from a process. Outputs with an I indicator and

inputs with an O indicator are incorrect].y labeled. In

addition, the names of the external interfaces are extracted

and sorted for manual review of correctness.

Data flows not in the data flow dictionary. All data

flows in the main database should also appear in the data flow

dictionary. Data flows which do not appear in the DFD are

detected during the completeness check of searching [or data

flows without data elements.

Data elements not in the data element dictionary. All

data elements in the data flow dictionary should also appear

in the data element dictionary. Data elements which do not

appear in the DED are detected during the completeness check

of searching for undefined data elements.

Uniqueness of object names. Object names within the

appendix must be unique. For example, a data element cannot

have the same name as a data store. The difficulties in this

check are that the same item, e.g. a data flow, legitimately

appears in more than one database and that each object name

must be classified as to what it represents, e.g. a data

store.

Processes and data stores should only be found in the

main database. Data flows are found in both the main and DFD

databases. Data elements are found in both the DFD and DED

databases. Consequently, simple lists of names from each

• database cannot be used to check uniqueness of names.

Determining what an object represents is simple for the

main database file. In the main database, an object of type

6C)

PROCESS is a process, of type ELEMENT is a data flow, and oi

type SET is a data store. This is even more simple for the

data element dictionary. In the DED, an object of type

ELEMENT is a data element. It is noted that object types are

not uniquely used; object type ELEMENT is used for both data

flows and data elements. The problem in classifying the

objects in the databases is in the data flow dictionary, An

object of type ELEMENT is usually a data element [)ut it also

might be a data flow without data elements. A data flow in

the DFD may have at, object type ENTITY, GROUP, INPUT, or

OUTPUT. But not all objects with these object types are data

flows. Some may be intermediate entities.

PSA provides the capability to extract objects by object

type from a database. Ho_,,ever, because objects of the same

type are used to represent different components of a data flow

diagram, comparisons of list of objects are not effective in

determining uniqueness of names.

. Another problem with the two possible approaches to

verifying uniqueness of names discussed above is that the IV&V

review is limited to Block 1 or Block 2 functional primitive

processes and related data flows, data stores, and data

elements. Both of the above approaches use all of the data in

the databases and not the required limited portion.

The automatic check for uniqueness of names then, must

take data generated during the preparatory phase of data

analysis (see Section 3.4.1). In this phase, lists of

functional primitive processes, data stores, data _lows,

intermediate entities, and data elements are created. Each of

these lists are compared with the remaining lists to verif:y

that all names are unique.

External interface information consistent with Appendix E

of the FD. As discussed earlier, external interface

information is associated with the appropriate data flows

using the REQUIREMENT object and the SATISFIES relationship.

Information is extracted from the main database and manually

61

compared to Appendix E. This information includes the

associated process number, the direction of the data flow, and

• the name of the data flow. The comparison consists of two

activities. The first activity verif{es that all information

in the PSL/PSA databases is also in Appendix E. The second

activity verifies that all relevant information in Appendix E

is included in the databases for the appendix being reviewed.

3.5 Ad Hoc Investigations

3.5.1 Overview of Ad Hoc Investigations

Predictors of errors in the databases could not be found

(see Section 2.2.5). One reason for tl%e lack of correlation

between changes and errors is that the development of the FD

is not a stable process. This lack of stability requires the

use of ad hoc techniques in addition to the automatic analysis

of the databases.

As the name suggests, ad hoc investigations are not

directed at the appendix as a whole, at least not initially.
u

Ad hoc techniques are used when something doesn't "look"

right. That particular item is investigated until it is

determined that either there is no aberration or until the

probable cause of the aberration is discovered. If a cause is

discovered, the ad hoc investigation may result in additional

software being added to the automatic analysis of the

databases.

The ad hoc investigation is essentially an intuitive

process. The success of ad hoc techniques are highly

dependent on the skill and experience of the investigator. A

pictorial representation of the ad hoc investigation process

is presented in Figure 22.

3.5.2 Ad Hoc Investigation Process

- Figure 22 illustrates the ad hoc investigation process.

The process typically starts with the discovery of errors,

either manually or automatically. However, these are not the

62

Figure 22. Ad Hoc Investigation Process.

. only starting points for the process. Errors are usually

located by manual review of hard copy portions of the FD and

of automatically generated reports. The software used to

perform automatic analysis also detects and reports errors.

Regardless of how the error was discovered, each error

(or class of errors) is investigated to determine the

correctness of the error reporting and analyzed to determine a

probable cause of the error. Verification of error reporting

correctness is necessary because of the constantly changing

nature of the databases. There is no guarantee that software

• which was effective on the last set of databases is effective

on the current set of databases. Determination of probable

causes of errors is useful in gaining a greater understanding

of the databases, of the process used to prepare the FD, and

in discovering additional errors.

63

Part of the error analysis process is to searc]] for

similar errors. The techniques used in searching for like

- errors are the basis of algorithms for new software for

automated analysis of the databases. These new analysis tools

are added to the software suite. During testing and execution

of the new software, additional errors may be discovered which

are in turn analyzed.

Error analysis may result in the incidental discovery ,)f

new, unrelated errors. These new errors are analyzed as

described above.

3.5.3 Examples of the Ad Hoc Investigation Process

The ad hoc investigation process can best be understood

from examples. Four examples are provided to illustrate how

the process works.

3.5.3.1 undefined Data Element

I_cate errors by automated analysis. In Block 2 Appendix

P, the preparers of the FD reported 434 undefined data

elements in the Data Element Definition Report. The automatic

analysis of the databases discovered 435 undefined data

elements. The additional undefined data element, CONUSA-ID,

was a data element specified in the DFD but not included in

the DED.

_lalyze errors. Why did the preparers of the FD miss

this data element? Part of the investigation was to check a

hard copy report qenerated by the preparers ot the FD. This

report, the Data Flow Contents Report, lists all data flows

and their contents to the data element level. In addition, it

indicates which data elements lack complete definitions and

thus serves as a double check to the Data Element Definition

Report. The PSL/PSA databases were checked to determine which

. data flows are associated with CONUSA-ID. These data flows

were then checked in the report. CONUSA-ID was not listed as

a data element for any of the data flows. However, a CONUSA

64

was listed for each of the data flows. CONUSA is not in the

DFD. The report indicated that CONUSA was a fully defined

• data element, which fact was confirmed by searching the DED

database. It appears that CONUSA-ID and CONUSA represented

• the same data element.

Why then did the hard copy reports indicate CONUSA and

the DFD database contain CONUSA-ID? A clue was found when the

full entry for CONUSA-ID in the DFD was examined. The date of

last change for the data element was 17 Dec 1991. The Data

Flow Contents Report was generated on Ii Dec 1991. Thus it is

probable that the name of the data element was changed after

the report was generated. And why was the name of the data

element changed? The name change was probably the result of

the discovery of a conflict with a data store in the main

database which was also named CONUSA (Block 1 Appendix O also

has a data store named CONUSA). The data store was probably

named CONUSA because of a change in the approach to indicating

some of the external interfaces. External interfaces not

explicitly defined in Appendix E of the FD are represented by

a data store with the name of the external interface. For

example, a process with an interactive dialogue with a user

would have data flows to and from a data store named USER.

CONUSA is one such non-Appendix E external interface.

Search for similar errors. Now that a probable cause has

been established, similar errors are searched for. In this

situation, the error is best found by searching the dates of

last change. Changes made after the reports are generated may

be the source of errors. Tn addition, one of the IV&V review

tasks is to verify that the reports were generated from the

supplied databases. Obviously, a report generated after the

creation of the source database fails this test.

Develop new automated analysis software. Software is

• cre_ted to extract the date of last change for each object in

each database. The dates are sorted and duplicates are

removed. In addition, the frequency of each date is

65

determined. Frequency helps determine the extent ot

modifications to the database. The software is run against

' all of the delivered PSL/PSA databases. No new errors were

discovered, but a new check has been added to the suite of

automated analysis software.

3.5.3.2 Empty Descriptions

Locate errors by manual review. While looking through

the hard copy of Selected Formatted Statements reports, it was

noted that many processes had a DESCRIPTION keyword with which

the process description should be associated. However, there

was no text even though there were several blank lines. This

problem had not been detected by the automatic analysis.

Analyze errors. A detailed analysis revealed that the

description field contained new line characters. The

description field was present and technically it was not

empty. However, it contained no meaningful text.

Search for similar errors° other occurrences of

descriptions containing nothing but new line characters were

found. During this process, it was discovered that the length

of each of these empty text lines was one.

Develop new automated analysis software. Existing

software was modified to not only search for the DESCRIPTION

field but to also test it to verify that it contained

something other than new line characters. This modification

became part of the automated analysis software suite.

3.5.3.3 Empty Descriptions Continued

Analyze errors. While solving the above problem, it was

reasoned that if process descriptions could contain only new

line characters, so could two of the four minimally required

definition fields of data elements. The long name and

- description are both textual fields used to define data

elements.

66

Develop new automated analysis software. The same test

for new line characters in process descriptions was added to

' existing software used to determine if data elements are fully

defined.

3.5.3.4 Incomplete Process Descriptions

Discover unrelated errors. Part of the process of

investigating a problem with a SAW data flow diagram is to

print out an object summary of one of the processes. It was

noticed that the definition of the process included a section

. titled "structured English." This information has not been

seen in any ether appendix.

Analyze errors. Other processes in this appendix were

checked and they too contained the Structured English section.

The text in this section supplemented the process description

by providing specific information regarding the processing of

data. This information did not appear in the process

. description and was not included in any of the supplied hard

copy reports. The question remained if exclusion of this text

constituted an error.

Search for similar errors. During the manual comparison

of the SAW data flow diagrams with the 04 Feb 1991 baseline

data flow diagrams, it was noted that the baseline diagrams

indicated that the destination of two data flows were to

processes in another appendix• The S._W diagrams did not

contain this information. This information was not contained

in any of the hard copy reports supplied with the appendix.

The intormation had been completely lost except for the

textual description in the Structured English section. Thus

omission of the Structured English text was an error because

information had been lost as a result.

Develop new automated analysis software. The check for

• the existence of the Structured English text was added to the

automated analysis software. A list of processes containing

the Structured English text is generated. The information for

67

these reports is manually verified to ensure that this

information is included with the process description.
t

3.6 Verifying Software Used to Analyze Databases

There is justifiable concern regarding the quality ot the

analysis software. The software is developed and tested on

unknown inputs (the PSL/PSA databases, see Section 3.3.1).

consequently, the correct outputs are also unknown. There are

three steps taken to verify the quality of the analysis

software. The first is a check for the reasonableness of the

output. The second is a check for consistency with previously

reported data. The third is a check for consistency with data

generated by other IV&V reviews.

3.6.1 Reasonableness ot Output

The first check is to compare the volume of the output

with what one would intuitively expect. Is the number of

errors discovered reasonable? For example, if the software is

to search for undefined data elements and the output contains

all of the data elements in the DED, one may quickly assume

that there is a major problem in the software. The same

assumption is valid if no undefined data elements are

reported. The problem occurs when half the data elements are

reported as undefined.

3.6.2 Consistency with Previously Reported Data

The preparers ot the FD generate reports specitying

"known" errors to the RCAS PMO and to the proponents reviewing

the FD. The purpose of these reports is to alert

knowledgeable personnel who can resolve these errors.
a

Normally, the number of reported errors is close to the number

of actual errors. If the number of errors uncovered by the

- analysis software significantly differs from the number of

reported errors, further investigation is necessary.

68

In addition, the results from the analysis software a_e

compared with the reports of known e_:rors. A reported error

which is also detected by the analysis software is probably a

valid error and no further verification is needed. On-the

" other hand, each reported error not discovered by the analysis

software and each unreported error discovered by the analysis

software requires specific investigation to determine if the

error is valid. The process of ad hoc investigation of errors

(see Section 3.5.2) is followed during this error

investigation•

3.6.3 Consistency with Other IV&V Reviews

The final test of the validity of the output, and hence

the quality ot the software generating that output, is the

comparison ot the output with results generated by another

member of the IV&V review team. The other person searches for

the same errors but uses different tools and techniques. The

o Outputs from the two different approaches to the same problem

are compared. As above, errors detected by both approaches

are considered to be valid and additional verification is not

necessary• Errors which are found by only one of the

approaches are individually investigated. The process of ad

hoc investigation of errors is followed during this

investigation•

69

Chapter 4

CONCLUSIONS

4.1 Summary and Conclusions

This thesis examines the process of performing

independent verification and validation (IV&V) reviews of

databases containing a massive software requirements

specification, the Reserve Component Automation System (RCAS)

Functional Description (FD). The FD is the equivalent of

35,000 printed pages consisting of data f].ow diagrams, process

descriptions, and a data element dictionary. The size of the

FD mandates electronic analysis of the databases.

Analysis of the history of RCAS FD errors determined that

there are no predictors of errors. A predictor would indicate

where errors are more likely to occur in the FD. Those areas

would be subjected to more intense scrutiny during a review.

However, because the process of preparing the FD is not

. stable, predictors of errors within the FD do not exist.

A stable process is one which displays no identifiable

pattern of change; variation is normally limited to
t

statistically defined bounds. The FD preparation process

shows significant variations as a result of changes in

contractors preparing the FD and in one of the CASE tools.

The research for this thesis demonstrates that it is

possible to perform an IV&V review on a massive software

requirements specification for aspects of completeness and

consistency. A suite of software is used to automatically

inspect the contents of the FD databases.

Each new release of the FD is different from the previous

release. Consequently, an ad hoc investigation process is

used to supplement the automatic analysis of the FD databases.

The ad hoc investigative process analyzes errors discovered by

manual review and automatic processing. This analysis results

in the development of new algorithms and the addition of new

programs to the automatic inspection software.

7O

The automatic analysis software enables inspecting for

completeness and consistency. The work with the RCAS FD

" clearly indicates that the IV&V review process is not static;

it must continually grow, adapt, and change as conditions

warrant. The ad hoc investigation process provides the

required flexibility in performing IV&V reviews.

4.2 Problems and Future Research

One problem with the ad hoc investigation process is

that, as a result of the process, new software is continually

added to the suite of automatic checks. There is no

assessment of the value of the additional check compared with

the cost to fully execute that check. Additional research is

necessary to determine if there is a means of applying a

cost/benefit analysis to a new automatic check.

The work of this thesis has been limited to the

requirements defined in the RCAS FD. The approach taken in

. this thesis should be corroborated by applying the aspects of

the automated analysis software and the ad hoc investigation

process to work involving other large software requirement

specifications. In addition, research to determine if this

same approach would be effective in conducting IV&V reviews in

other phases of the software development process (e.g.,

design) would be beneficial.

The work with the RCAS FD uses the PSL/PSA CASE tool,

which was developed in the mid-seventies. Many of the newer

CASE tools have built-in completeness and consistency checks.

The approach used in this thesis should be applied to work

using newer CASE tools to determine how best to supplement the

inherent quality checks of these tools.

More research into the ad hoc investigation process would

be beneficial. Understanding the process would help analysts

" gain skill and experience more quickly (and perhaps without as

much pain). Additional research could result in improved

techniques being used in the process.

'71

REFERENCES AND BIBLIOGRAPHY

[Alfo77] Afford, M. W., "A Requirements Engineering
Methodology for Real-Time Processing Requirements,"

!EEE Transactions on Software Engineerinq, volume

- SE-3, number i, January 1977, pages 60-68.

[Andr86] Andriole, S. J., editor, Software Validation__

Verification_ Testing, and DoGumentation,
Petrocelli Books, Princeton, New Jersey, 1986.

[Bell77] Bell, T. A., Bixler, D. C., and Dyer, M. E., "An

Extendable Approach to Computer-Aided Software
" IEEE Transactions onRequirements Engineering,

Software_n_ineering, volume SE-3, number i,

January 1977, pages 49-60.

[Boeh84] Boehm, B. W., "Verifying and Validating Software

Requirements and Design Specifications," IEEE

Software, volume i, number I, January 1984, pages
75-88.

[Davi77] Davis, G. G. and Vick, C. R., "The Software
" _EEE Transactions on SoftwareDevelopment System,

Engineering, volume SE-3, number i, January 1977,

- pages 69-84.

[DeMa78] DeMarco, T., structured Analysis and System

Specification, Yourdon, Inc., New York, New York,
1978.

[DeMa82] DeMarco, T., C__oDtrolling Software Project___s, Yourdon

Press (Prentice-Hall, Inc.), Engiewood Cliffs, New

Jersey, 1982.

[DeutS8] Deutsch, M. S. and Willis, R. R., Software__Quality

Engineer_nq: a Total Technical and Management

Approach, Prentice-Hall, Inc., Englewood Cliffs,

New Jersey, 1988.

[EvanS7] Evans, M. W. and Marciniak, J. J., Software 0ualit_

Assurance @hd Managemen__t, John Wiley & Sons, New

York, New York, 1987.

[IEEE83] Software Engineering Technical Committee of the

IEEE Computer Society, IEEE Sta_ndard G!ossary of

Software En__g_neering Termminolog_y, IEEE-STD-729-

" 1983, IEEE_ New York, New York_ 1983.

[Intr87] Introduction_ to PSL/PS_, Meta Systems, Ltd., Ann

Arbor, Michigan, 1987.

72

[Intr89] Introduction to Structured Analysis Using
Structured Architect Workbench, Meta Systems, Ltd.,

Ann Arbor, Michigan, 1989.

[Mapp87] Mapping and conversion Techniques_or PSL/PSA 6.0,

Meta Systems, Ltd., Ann Arbor, Michigan, 1987.

[Mili88] Military Standard,DOD Automated Information

Systems IAIS) Documentation Standards,

DOD-STD-7935A, 31 Oct 1988.

[Nyar83] Nyari, E. and Sneed, H., "SOFSPEC: A Pragmatic

Approach to Automated Specification verification,"

The Journal of Systems and Software, volume 3,

number 3, September 1983, pages 193-200.

[PSAR87] PSA Reports Over___vie___w_,Meta Systems, Ltd., Ann
Arbor, Michigan, 1987.

[PSLL87] PSL Lanquage Structure, Meta Systems, Ltd., Ann

Arbor, Michigan, 1987.

[RCAS91] Reserve Component Automation System (RCAS)

Functional Des__cription, ADSM 18-J04-HVR-XXX-FD,

volume i, Reserve Component Automation System

Program Management office, Newington, Virginia, 04
" Feb 1991.

[Refe90] "Reference Guide," Report Specification Interface
User Reference, Meta Systems, Ltd., Ann Arbor,

Michigan, 1990.

[RoSc77] Ross, D. T. and Schoman, K. E. Jr., "Structured

Analysis for Requirements Definition," IEEE
Transactions on Software EngineeriD_q, volume SE-3,

number i, January 1977, pages 6-15.

[Ross77] Ross, D. T., "Structured Analysis (SA): A Language

for Communicating Ideas," IEEE Transactions on

Software Engineerinq, volume SE-3, number I,

January 1977, pages 16-34.

[Schu87] Schulmeyer, G. G_ and McManus, J. I., editors,
Hand__book Qf Software Quality Assurance, Van

. Nostrand Reinhold Company, New York0 New York,
1987.

"Softing Software Engineering System,[Snee83] Sneed, H.,

" The Journal of Systems and Software, volume 3,

number i, March 1983, pages 63-76.

73

[Stru86] Structured Architect User's Guide (Version 1.2_.,

Meta Systems, Ltd., Ann Arbor, Michigan, September
1986.

[Stru89] Structured Architect Workbench General User,si

Guide, Meta Systems, Ltd., Ann Arbor, Michigan,
. 1989_

[Teic77] Teichroew, D. and Hershey, E., "PSL/PSA: A
Computer Aided Technique for Structured

Documentation and Analysis of Information
" IEEE Transactions on SoftwareProcessing Systems,

Engineering, volume SE-3, number i, January 1977,

pages 41-48_

[WallS9] Wallace, D. and Fujii, R., "Software Verification
" IEEE Software, Mayand Validation: An Overview,

1989, pages 10-17.

[YueK89] Yue, K., "validating System Requirements by

Functional Decomposition and Dynamic Analysis,"

Proc________edingsof the Eleventh International

C__onference on Software Engineering, May 15-18,

1989, Pittsburgh, Pennsylvania, pages 188-196.

[Zave82] Zave, P., "An Operational Approach to Requirements
• " IEEESpecification for Embedded Systems,

Transactions on software Engineering, volume SE-8,

number 3, May 1982, pages 250-269.

,.

74

APPENDIX A

Database Content

75

!

AppendixN 02 26 06 14 22 07 03 Ol

Nov Feb Apr May Dec May Jul Oct
_' 89 90 90 90 90 91 91 91

databasesin releaseI i i i 2 2 2 . 3 3

• processes 1 1 1 1 1 1 1 1, ,. ,,, ,,,

dataflows 2 2 2 2 2 2 2 2
, __-- ,,,,,

intermediateentities 0 0 0 0 0 0 0 0
,,,

dataelements 44 57 57 57 57 57 57 5'/
, _, , i

datastores 3 1 1 1 l 1 I 2 2
,,,,,, -- _ ,,,]

simplesumof objects 50 61 61 61 61 61 62 62, ,,, - .

comprehensivesumof objects 50 61 61 61 61 61 62 62
..................

modifiedBangmetric 5.8 2.4 2.4 2.4 2,4 1.0 1,0 1,0
.... _

......... _ ,

AppendixH 02 26 06 14 22 07 03 Ol

Nov Feb Apr May Dec May Jul Oct
89 90 90 90 90 91 91 91

....... : ":::; ,,, "; , "' "

databasesin release 1 1 1 2 2 2 3 3
" ,I ,- ,,

b

processes 15 15 15 15 15 15 15 18

dataflows 39 39 40 40 40 56 54 44
__ -'. !,,....

" intermediateentities 0 0 29 29 29 16 12 17
, I . ,,,

dataelements 860 860 977 977 977 977 960 960
' "" ""' ' ' _ ' -- "' I -- ' -

datastores_j 2 _ 2 2 2 I 2 2 8 9,,, ,, ,

simplesum of objects 916 916 1034 1034 1034 1050 1037 1031
.........

comprehensivesum of objects 918 918 1063 1063 1063 1066 1049 1049
....... -- I

modifiedBangmetric 56.5 64,1 62,7 62,7 62.7 66,7 62.9 52.2..... -

76

Appendixi 02 26 06 14 22 07 03 Ol

Nov Feb Apr May Dec May Jui Oct
- , 89 90 90 90 90 91 91 91

"',' ,,, , ,,, ,,, , , ,,,

databasesin release 1 1 1 2 2 16 3 3
-- , 4L ,....

" processes 333 333 333 333 333 333 333 333

dataflows 884 884 882 882 882 883 883 883
,,, ,,,

intermediateentities 2 2 0 0 0 0 0 0.....

dataelements 1354 1354 1596 1596 1596 0 1596 1597

datastores 5 5 8 8 8 8 15 15
,m

simplesu_of objects 2576 2576 2819 2819 2819 !224 2827 2828,,,

comprehensivesum of objects 2919 2919 3164 3164 3164 1572 3177 3178
,,.,. ,

modifiedBangmetric 2037,3 2037,3 2051.0 2051.0 2051.0 1240,1 1240.8 1240,8

Appendix0 02 26 06 14 22 0'7 03 Ol

Nov Feb Apr May Dec May Jul Oct
89 90 90 90 90 91 91 91

.... _i '"

databasesinrelease 1 1 1 2 2 5 3 3
,., ,.

b

processes 930 929 933 933 933 933 933 933
.. ,,,

dataflows 2128 2199 1844 1844 1844 2221 2174 2188
' ,,Jn ,,

intermediateentities 5 i0 0 0 0 0 0 0
..... ,.. ,.... ______

dataelements 2060 3375 2926 2926 2924 0 2919 2920
.,.,,,

datastores 145 145 41 41 41 158 187 195
,.. ,,,.....

simplesum of objects 5263 6648 [5744 5744 5742 3312 6213 6236....., ,,, -

comprehensivesum of objects 6329 7617 7051 7051 7049 4347 7262 7286

modi_j.edBangmetric 5387,2 5283,4 5181,8 5181,8 5181,8 3262,9 3147,0 31/b,9

'77

B]ock i 02 26 06 14 22 07 03 Ol

Appendices_l,H, i, ._,_0 1_ov Feb Apr May Dec I May dul Oct- 89 90 90 90 90 91 91 91

databasesin rglease 2 3 3 4 4 24 i0 6
,,, , ,. _ , , ,, |, ,,

" processes 1279 1278 1282 1282 1282 1282 1282 1285,,,, , , ,, , , ,.,,,

Oata flows 3012 3082 2735 2735 2735 3120 3071 3115
_. _ ,.,.,,,, , , ,, , , _ ,. __

intermediateentities 7 ii 29 29 29 16 12 17

data elements 3286 4471 4151 4151 4149 1031 41.27 4129
,, , , , ..._, , , ,

data stores 154 152 49 49 49 167 209 218
, , ,, ,

simplesumofobjects 7731 8983 821.7 B217 8215 5600 8689 8747
,,. . ,,, -.,,, _ . ___

comprehensivesum of objects 9183 10338 9931 9931 9929 7041 10142 10167
, ,,., .,,, .___

modifiedBang metric 7486.8 7387.2 7297.9 7297.9 7297.9 4570.7 4452.3 4450.9
, ,

?'ta,1pl,"tr ,,_a'',_' _lp,r",,rl'rl,,,_r,i_ll,r, ,_I,HIr,l,,rla,1i,

78

APPENDIX B

" Changes in Databases

79

AppendixN 26 06 14 22 07 03 Ul

Feb Apt May Dec May Jul Oct
" 90 90 90 90 91 91 91

, ,,
,,, ,

processnames
, ,,,

dataflownames 4

intermediateentitynames
..p,,, T ,,

dataelementnames 75 30
'"' I - ' __

datastorenames 4 1 2
.' ' 'q u__

processdescriptions 1 1 1

dataelementdefinitions 8 14 17 9 9 51 57
, , ,, j , ', , ___

l totalchangesI[92 45 17 9 J i0 52 59

.... _._

AppendixH 28 06 14 22 07 03 (31

FeD Apr May Dec 1day Jui Oct
90 90 90 90 91 91 91

,, , , ,,.,,,, ,

processnames 4 2 2 3
,,

dataflownames 17 18 4 20
,.,,, ,,, ,,,

intermediateentitynames 29 13 4 5
,L

dataelementnames 147 17
, , , , ,,,, ,, ,

datastorenames 6 7

processdescriptions 15 15 15 15
.-. , , ,,

dataelementdefinitions 951 20 21 960 960

totalchanges 0 212 951 20 69] I010

i

8O

, , . , ,, _

AppendixI 28 06 14 22 0'7 03 Ol

Feb Apr May Dec May Jul Oct
" 90 90 90 90 91 91 91

" '"_' ' ' 7_" "" _

processnames 28
, , L ,L,

dataflownames 20 1 82
_-- , ,,, ,,

intermediateentitynames 2
,, ,,i, ,, . i ,, _ ,,, ,,,

dataelementnames 2418 1596 1596 1
.... .,.

datastorenames 3 7
.........

processdescriptions 332 333 332 2

dataelementdefinitions 1595 163 65 1596 1597

totalchangesII 0 2i75 1595 163 1995 3559 1682,,,,,
""i ' "_' " ., i ,

,. ,,, ,,, . ,,,, , ,.,..... . ;

Appendix0 28 06 14 22 07 03 Ol

FeD Apr May Dec May Jul Oct
90 90 90 90 91 91 91

' '_ , , ,,, , , ,L,,. '"% _: • ll_ .__

processnames 211 12 116 4
i i, i,, I ,," • " . - , -

dataflownames 255 449 409 159 106
, ,

intermediateentitynames 5 i0
- ' -- i , _._

dataelementnames 1479 3959 2 2924 2919 1
. , .,, , , , ,,

datastorenames 50 ii0 125 99 i0
I

processdescriptions 908 929 933 393 1
.__ , , ,, -- ,

dataelementdefinitions 27 554 1"707 172 97 2915 2867
........ [_ i i, i,, _, ',.,, " ' ""' i., , ,

I..... totalchangesII,.........2935I 602_3_I 1707 1'7444881 6601 2989]

81

Blocki 2_ O6 14 22 07 O3 01fl,
AppendicesN,H, i, and0 Feb Apr May Dec May Jul Oct I

" 90 90 90 90 91 91 91 IJ, ,, , ',,_ ,.,,

processnames 209 16 2 141 7

dataflownames 258 477 419 163 168
,. , ,, ,

intermediateentitynames 4 40 13 4 5
, _

dataelementnames 1383 4453 2 3115 3127 2
___ _ ,,,, , , ,,,,,

datastorenames 54 iii 124 iii 17
.,,

processdescriptions 1241 945 1282 740 18
,,,

dataelementdefinitions 34 641 2864 218 123 4114 4073
'_ , , , , ,..., _ ,,,, _II

totalchangesII 3183 6683 2864 220 5078 8400 4290

82

+

/

i

(,

I

iI , +

APPENDIX C

q

Errors in Databases

83

AppendixN 02 2g 06 14 22 07 03 Ol

Nov Feb Apr May Dec May Jul Oct
• 89 90 90 90 90 91 91 91

processnumbers

- processesw!odescriptions 1

processesw/o inputs&

outputs
_ ,,., .., ,,,, ,. | ,,, .

processesw/o inputsonly

processesw/ooutputsonly
_ • ,, .,, ,,, _ ,

dataflowsnot in the DFD
k-----.,.,., , , : ,.. -- -

dataflowsw/odataelements
'-- -- ' ' - -- ' -- " I '

dataelementsnot in theDED 40

undefineddataelements 44 57 57 49 40

1i
:....... .i',, '_:" '.',,, ,

totalerrorsH 44 58 57 40 49 40 0 | 0

.........

AppendixH 02 28 06 14 22 0'7 03 Ol

Nov Feb Apr May Dec May Jul Oct
. 89 90 90 90 90 91 91 91

...... _ .,T_ ,,. , 2:2 .., " " T_ c

processnumbers
__ ..,., ,, .,, -- , --

• processes%'/0descriptions
I

processesw/o .inputs&

outputs
,,,,,

processesw/o inputsonly
• -- , ,,,, , --

processesw/ooutputsonly

data£1o,,:snot in the DFD
_

datatio'_s'_/odataelements 30 30
..... • _ - . ,...... -- •

dataelementsnot in tna DED 26 "11

r
.....,. _ ,,, ,.r :,,

I

undefineddataelements . 860 860977 21 70 I 2

84

AppendixI 02 28 06 14 22 07 03 01
Nov Feb Apt May Dec May Jul Oct
89 90 90 90 90 91 91 91

, ,, , ,, ,,,, _,
_

processnumbers 1 " 1 1 1 I 1,, ,,

processesw/odescriptions 1 1 1 11 ,, _L- ''

processesw/o inputs&

outputs .,

processesw/o inputsonly

processesw/ooutputsonly i 1 i ... 1 1 1 _ _
,, ,

dataflowsnotin theDFD i
....... ,,

dataflowsw/odataelements 883 1 ,,
,, ,, i_ . ,,

dataelementsnot in theDED 1
,,,,,,, ,,,

undefineddataelements 1354 1354 1596 164 ?

totalerrors/j[1357,i 135'7|ID_ I q 167 885 1 i 1, -- _ _---

....

AppendixO 02 28 06 14 22 07 03 Ol
Nov Feb Apr May Dec Hay Jul Oct

" 89 90 90 90 90 91 91 91

__ "" ,,,, '"' _ ,-,, ,_]

processnumbers ._.
'' I

" processesw/o descriptions 18 929 18 18 18 18 1 1,, L ,,,

processesw/o inputs& 3 3
outputs

....

processesw/o inputsonly 1 1..,

processesw/ooutputsonly 2 4

dataflowsnotin theDFD
, .. ,,, . -- .

dataflo_s_./odataelements 425 2221 I 6

dctaelementsnotin theDED 1219 4
. ,j __ ,,

undefineddataelements 2060 3375 2926 1389L, ? 57 57,,,, ,,, L,I
71,,, ' _ , ,,,,_ ,, '"' , • "' ' '

totalerrorsil 2509i4312 2944 1237 1411i 2239I59 64,,,,,,,

85

Block1 02 28 06 14 22. 07 03 Ol

AppendicesN, H, I, and0 Nov Feb Apr May Dec May Jul Oct
89 90 90 90 90 91 91 91

__ ,,,,,,__ ,, , _ " ' , ,, " _" ', ,. ;,7 --- .-,_,.

processnumbers 1 1 1 1 1 1..... H, ,-, ,,, ,,

processesw/odescriptions 19 931 19 19 19 18 1 1, ,,, H H

processesw/o inputs& 3 3

outputs ..,

processesw/o inputsonly 1 1

processesw/ooutputsonly 3 5 1 1 1 1
-- .,, __ _ .. _ i, ,,H __

dataflowsnotin tileDFD 15
,,, H,

dataflowsw/odataelements 468 43 3062 2 .6
__ ,-,, , _._ .., .,.,

dataelementsnotin the DED 1284 75

undefineddataelements 3284 4469 4148 1471 ll0 59 57
....H, " '""" I', .'......

- il 1 1 1totalerrors 3779 5453 4169I 13051567 3192 7'764

86

APPENDIX D

Differences from Final Release

87

....... ... ,,,, ...

AppendixN 02 28 06 14 22 07 03

Nov Feb Apr May Dec May Jul
89 90 90 90 90 91 91

..... ,., . ,,, ,,- _J , ,,,

processnames
.,,,, ,,,, _ _

- missingprocesses
,, , ,., , , ,.,

extraprocesses
.,,, .,,,

missingdataflows 2
,, i, ,,

extradataflows 2
,,,, ,.,. ,,,,,, ,".,,

missingintermediateentities
,,,ii ,,,. ..,

extraintermediateentities
.i , ,,,,

missingdataelements 48 15
,,,

extradataelements 35 15

missingdatastores 2 1 1 1 1 I 1
-- ,...........

.............extradatastores 3 L. 1,,__, ,,,

,,, ,,, ,

,,,,,, ,,,, _,,, ,

• I AppendixH 02 28 06 14 22 07 03
Nov Feb Apr May Dec May Jul

I - 89 90 90 90 90 91 91
...... , L ,"' :S _'_ '' '

" I
I

processnames 3 3 2 2 2 i
-- ..,.I ,,,, _.

missingprocesses 3 3 3 3 3 3
,,, ,,, ,

extraprocesses
, i[,, ,,

missingdataflows 17 17 9 9 9 5 5
-- .,

extradataflows 12 12 5 5 5 17 15
_ _ ,,,, ,,,, __

missingintermediateentities 17 17 5 5

extraintermediateentities 12 12 12 4
-- .. .,.,, ,, .,,, h,,, ,,,,

missingdataelements 132 132

extradataelements 32 32 17 17 17 17
-- .,, ,, , ,,,

missingdatastores 7 7 7 7 7 7 4
,.. , ,

extradatastores 3
_.,, , ,,

totaldifferences _ 223 223 55 55 55 I 59 32]

88

AppendixI 02 28 06 14 22 07 03

Nov _'eb Apr May Dec May Jui
89 90 90 90 90 91 91

._,_ ,.,,'.-

processnames 13 13 13 13 13 13
,

missingprocesses
, , ,,,

extraprocesses

missingdataflows 50 50 41 41 41 41 41
, , .,,,, , mL ,,,,,

extradataflows 51 51 40 40 40 41 41
.... ,....

missingintermediateentities
,,

extraintermediateentities 2 2
,,,.,, ,,, ,. ,

missingdataelements 1330 1330 2 2 2 1597 1
,,,........

extradataelements 1087 1087 1 1 1
.....,

missingdatastores i0 i0 7 7 7
,,.

extradatastores
, , ,, .L , ,, _,,. ,,,,, , ,

totaldifferences 2543 2543 104 I104 I 104 I 1692I -_ li

,-- ..,., ,.,,

Appendix0 02 28 06 14 22 07 03

Nov Feb Apr May Dec May Jul
89 90 90 90 90 91 91

• , , , , ,

proces_names 147 58 56 56 56 56 2
..... , ,, ,,,

missingprocesses 7 8 4 4 4 4
.,

extraprocesses 4 4 4 4 4 4

missingdataflows 278 145 429 429 429 96 60
,.... ,,,, ,,,., ,.. ,

extradataflows 218 156 85 85 85 129 46

missingintermediateentities
.........

extraintermediateentities 5 i0
,., , ,.. .,,,

missingdataelements 2201 1753 1 1 1 2920 1
....

, extradataelements 1341 2208 7 7 5

missingdatastores 92 95 167 167 167 72 9.,,.,

extradatastores 45 45 13 13 13 35 1

[" ' " I766 764 1 .3316I, •
totaldifferences 4338 4482 766 , I.

119 I

89

Block 1 02 28 06 14 22 07 03

AppendicesN, H, I, and0 Nov Feb Apr May Dec May Jul
89 90 90 90 90 91 91

.....'. J

" pr_essnames 163 74 71 71 71 70 2
...... ,. ,,

" , ,, missingprocesses i0 ii 7 7 7 7 3

extraprocesses 4 4 4 4 4 4
, , ,, ,

missingdataflows 347 212 479 479 479 142 106
,,,,,, ., , , , ,. ,,,

extradataflows 244 179 99 99 99 147 62
,.,. ,,,, ,,.

missingintermediateentities 17 17 5 5
.......... ,,,

extraintermediateentities 7 ii 12 12 12 4
-,, ,,

missingdataelements 2483 2065 2 2 2 3112 2
, ,,,. , .

extradataelements 1641 2408 24 24 22 17
,,, ,.......

missingdatastores 108 ii0 180 180 180 85 13
.",I i

extradatastores 45 45 12 12 12 35 4
....

lJ.....r I rtotaldifferencesIi 5069 5136 890 890 888 3628 197.........

9O

APPENDIX E

Results of Data Normalization

91

Normalized Changes

" J • _ ,#'_'_V.--;;._._,_ _''"_.....,..._,___ _ __._

Appendix't_ 28 I 06 14 22 0'7 03 Ol

Feb i . ADr I May Dec May Jul I Oct

90 i 90 90 90 .91. 91 91ii --_[_ ? ,._ ,_lJ, [ii J ,fT I i J llh .ii ,, ,i :'

implesum of objects 1.51 i 0.74 0,28 0.15 0.16 0,84 0.95,,,,,,,, .,,,

coml nsivesum of objec_.tL=i.51 O,74 O,28 ,O,15 O,16 O.84 O,95

modifiedBangmetric 38.33 1,8.75 7,08 3,75 i0.00 52.0'0 59,00
'- '*'----.7---- i_ ±. -- ,.,i,,q_.. , , , i]1]1.1 L| ILl I III i ! , i ' ! U, i' , _'_

Feb Apt May Dec May dul Oct
90 90 90 90 91 91 91

objecT=s _ -,- _,,, _,,,===== ==-.== r,-,,,-_-
_ S#m_Lesumo_ 0.00 0.21 0.92 0,0;:0.07 0,97 0.98
Icom reIlensivesumof objects 0.00 0,20................,. 0.89 0.02 0,06 0 96 0.96

F modiZiedBangnetric 0,00 3,38 15,1'7 0,32 1,03 16,03 31,37

-_,,,--,.---,,-.,¢. , , _,_.,.,..._ . ,

ApiendixI 28 06].4 22 07 03 01

Feb Apr May Dec May Jul Oct
90 90 90 90 91 91 91

l

____su__._m o_[fobjects 0,000,98 , 0,57 0.06 1,63 1.26 0,5.9

...co.£1_rehensivesu,mof objec%s0,00 0.88 0.50 0.05 1.27 1,12 0,53

] ,iimodifiedBangmetric 0.00 1.35 0.78 0.08 1.61
• :'_ ,,, , , ,,,H, " " ._......._._ _.._. _,_

Appendix0 28 u6 I 14 22 07 I 03 01 1

Feb Apt [May Dec May I Jul
90 90 ! 90 90 91 ! 91 '.___

umof 0.44 05 0.30 0.03 1.36 1.060..!8_
comrehensivesumofobjectsII 039I 0.8510.24 ,<,z 31 0.41[................ o ,1.__0_oo.91'

modi£ied Bang 0 56 3 0.03 ___1.38 _ 2.10 0.94 i

Blocki 28 06 i4 22 07 03 Ol

Appendices_i,M, I, and0 Feb Apt May Dec May dul Oct
90 90 90 90 91 91 91

---+- :-+ ,l _ : ::: ::_.._

" simplesu.o___f_ts 0.35 0.81 0.35 0,03 0,91 0.9"2 0,49!

_rehensi'_esu_of objects 0.31 0.67 0.29 0,02 0,72 0.83 0.421

modiZiedBa=nn__metr_!ic__0,43 0.92 0.3,9 0,03 i.ii 1,89 0,96 I

92

Normalized Errors

AppendixH 02 28 06 14 22 07 03 01
Nov Feb Apr May Dec May JuJ. Oct
89 90 90 90 90 91 91 91

'_.'-"'- _T,_- _, I ' " ' :' '" _ - , !,, _" " ,,,'I -'_ ' ' m----..

o,

slm)lesum of objects 0.88 _0,95_ 0.93 0.66 0.80 0.66 0.00 0.00

orehensb'esLum_of objects_ 0.88 0.95 0.93 0.66 0,80 0.66 0,00 0,00

modifiedBangmetric 7,59 24,17 23,75 16.67 20.42 40.00 0.00 0.00
',, .: ,.<. ,,, , ,, , ,

AppendixH 02 j 28 06 14 22 07 03 01

[

l{ovI Feb Apr May Dec May Jul Oct
89 1 90 90 90 _ 90 91 91 91 'I

. ,, _ "',,I'.., - , , %_ _- , , _ T_- i I,: ,--,,...--.....,...--.

simples'mO_,_ 0___._.9_7,.....0.9,! 0.94 0,03 0.09 0.07 0.00 0,00 !i

_!ves_Lm__o_oD_iect._L . 0,97 0,97 0,9_/_0,02 0,09 0.07 0,00 0.00!
modifiedBangmetric 15.75 13,88 15.58 0.41 1.47 1.05 0.03 o.ou f

..... :__JL___ i,,_ _ _ ,._'__ "= : :,.,,._ ' ,"==h: , ,.d

......................... • .= --_

AppendixI 02 28 06 14 22 07 03 0l
Nov Feb Apt May Dec May Jul Oct
89 90 90 90 90 91 91 91

• _ simplesum of objects__ 0.53- 0.53 0.57 0.00 0.06 0.72....0,00 0,00

mprehensivesum of objects 0.46 0.46 0.51 0.00 0.05 0.56 0.00 0,00.........- I' , ' ,, _ ,, L , , ,,, __

modifiedBangmetric 0.67 0.67 0.78 0.00 0.08 0.71 0,00 0,00
I. _ _ i,i ' "" "......... "" - '"

, , .II, mJ'm _. I i ' ,,, I"I'' , "PammmL_al i i ', ,1..,, . , _,_.amm _.,_

I

AppendixO 02 28 I 06 14 22 07 03 Ol i
Nov Feb I Apr May Dec May Jul Oct I
89 90] 90 90 90 91 91 9! !', ,,,_',"-"..--' 'I "'" _''"'_" , L, r, Cr[": -"-'----'''

sinll_uumm.mo[__ob_ 0,4_..._.__L0.65 0.51 0,22 0,25 0.68 0,01 _ 0,01___

_nsive s.. u_of objects 0,40 _0,57 0.42 (1.18 0,20 0.52 0,01_ 0.0_____i_
[

modifiedBangmetric 0.47] 0_.820.57 0.24 0.27 0.69 0.02 0.02

[.........]Blocki 02 l 28 06 14 22 07 o3 01

I AppendicesN, H, I, andO Nov l FebI Apr Ma'/ Dec May Jul Oct891 90L_ 90 90 90 91 91 91

F_s _ ...,_1.o.61! _---___-_ i__,_
Lm of objects _._i.49 0.51 0.16 0.19 0,57 0.01 0,01

 vesu, o o
I o, I[modified Bangmetric _- 0.50 0.57 0,18 ___0:21 0,70 0,02 O.0LI

h

93

Normalized Differences

' AppendixN 02 28 06 14 22 07 03
Nov Feb Apr May Dec May Jui
89 90 90 90 90 91 91

T'--" ii ,,,,,,L,,' , '......__ ,,','_'I"_ _" ,, , '"' , '"' --

" simplesumof objects!,84 0.51 0,02 0,02 0,02 0,02 0.03

compr_ensivesumof obiects!,,84 0.51 0,02 0,02, _ 0,02 0,02 9.03

modifiedBangmetric 15.86 12.92 0.42 0,42 0,42 1,00 2.00

', LI, ' -. _ ,,i,- ,,,,,, ' ', ' , ' '._' .-_.

AppendixH 02 28 06 14 22 07 03
Nov Feb Apr May Dec May Jul
89 90 90 90 90 91 91

.... simplesum of obiects 0,24 0.24 0.05 ,0,05 0,05 9,06 9.03

comprehensivesu_ of objects.li 0,24 0,24 0,05 0,05 0,05 0.06 0.03

modifiedBangmetriciL _3,95 3,48 0,88 0,88 0,88 0,88 0.51

Appendix1 I[02 I 28 06 14 [22 07 03 i
II NovI Feb Apt May I Dec May Jul I

....... !! 89 I 90 90 90 I._ 90 91 = 911

. , simple sumof object 0,99 0.99 0.04 0,04 0.04 1,38 0,0._._._./_3!II

comprehensivesumofob_ectsl, 0.87 0,87 0,03 0.03 0.03 1,08 0.03.__.__.__I
II

modified._Ban__metricII 1.25 1,25 0,05 0,05 0.05 1,36 .0.0'I

AppendixO 02 28 06 14 22 07 03
Nov Feb Apr May Dec Hay Jul
89 90 90 90 90 91 91

simple lmpf objects_ 0,82 O.670,13 0,13 0,!3 1.00 0.02

comprehensivelmof obj@cts 0.69 0.59 _ 0.ii 0,ii 0,11 0.76 or02

modifiedBangmetric 0,81 0,85 0.15 0.i5 0.15 1,02 0.04
"°- , i" "'.... " ': •

l

Block1 02 28 06 14 22 U7 U5

AppendicesN, H, i, andO Nov Feb Apr May Dec May Jui
89 90 90 90 90 91 ! 91

, ,: _J__,.u. ,,,_, : ,' ,,,, , , ,,, ' ', ,,, ; I, . ,,,,,, _= -

• simplesumof objects 0.66 0.57 0,ii 0,II....0.ii 0,65, 0.02

comprehensives_,gf objects 0,55 ,0.50 0,09 0.09 9.090.52 _ 0.02

_ modifiedBangme,tric 0.@8......0.70, 0.12 0,12 0.12 0,79 0.04

