
Relating Boolean Gate Truth Tables to One-Way Functions

Mahadevan Gomathisankaran∗ Akhilesh Tyagi†

March 3, 2008

Abstract

We present a schema to build one way functions from a fam-
ily of Boolean gates. Moreover, we relate characteristics of
these Boolean gate truth tables to properties of the derived
one-way functions. We believe this to be the first attempt
at establishing cryptographic properties from the Boolean
cube spaces of the component gates. This schema is then
used to build a family of compression functions, which in
turn can be used to get block encryption and hash func-
tions. These functions are based on reconfigurable gates.
We prove cryptographically relevant properties for these
function implementations. Various applications incorporat-
ing these one-way functions, specifically memory integrity
in processor architecture, are presented.

1 Introduction

One way functions are at the heart of cryptography. In
this paper, we explore a Boolean cube space schema and
a hardware implementation for a preimage-resistant func-
tion, which we call one-way function, within the bounds
of acceptable notational abuse. The primary motivation for
our research arose in the realm of secure processor architec-
ture. One of the desirable properties for a secure execution
environment is data or memory integrity. Simply stated,
memory integrity implies that a memory read from address
A at timeT, M[R,A,T], must return the latest written value
into addressA, M[R,A,T] =V iff ∃M[W,A,V,T ′] for T ′< T
and∀t ∈ [T ′+1,T−1], 6 ∃M[W,A,∗, t]. HereM[R,A,T is a
memory read from addressA at timeT, andM[W,A,V,T]
is a memory write of valueV at addressA at timeT. The
trust boundary is assumed to be within the processor, the
memory is untrusted. Aegis [8] provides such memory in-
tegrity by maintaining a Merkle hash tree [5] for the entire
protected address space. The root of the hash tree is main-
tained within the trusted processor boundaries, but the rest
of the tree nodes can be kept in the untrusted memory. Suh

∗Department of Electrical Engineering, Princeton University, Prince-
ton, NJ 08536. email:mgomathi@princeton.edu

†Department of Electrical and Computer Engineering, Iowa State
University, Ames, IA 50011. email:tyagi@iastate.edu

et al. [8] use a general hash function such as SHA-1 with
the assumed latency of 160 cycles. A general hash func-
tion has to provide collision resistance when the adversary
has access to the hash function oracle. We note however
that in the memory integrity scenario, the adversary only
gets to see the hashed valueHK(V). It does not have ac-
cess to a hash oracle, wherein,HK function can be exer-
cised and observed at many different domain points. The
secure processor environment prevents adversary access to
the plain-text input. The hashed digestsHK(V) resident in
untrusted memory are however observable. In such a sce-
nario, the property of interest is really preimage or inversion
resistance. This research was motivated by this scenario in
order to provide an efficient, low-latency implementation of
an inversion resistant function.

The design objective for an inversion resistant function
f : {0,1}m→ {0,1}n for m> n is to distribute the preim-
agesf−1(y) as uniformly as possible. We state this objec-
tive in terms of two properties of the truth tables for individ-
ual output bits ofy, yn−1, yn−2, . . . , y0. One of these proper-
ties ensures equal frequency for 0s and 1s in a variable, and
the other one guarantees equal frequency for all the four
outcomes 00, 01, 10, 11 when two variables are instanti-
ated simultaneously. The first property isbalanceor lack of
bias in 0s and 1s, and the second property isindependence.
Balance and independence together maintain uniform dis-
tribution for all the output bit sequencesy

R
d{0,1}n. In-

dependence also assures that even if a small number of
input-output relationships(x,y) | f (x) = y are exposed to
an adversary, the damage is limited to only these instances.
It does not leak any information about other input-output
relationships. We then explore the properties required of
smaller, physically realizable Boolean gates (of fanin of the
order of 4) that lead to balance and independence in the out-
put bitsyi ’s. These Boolean gates are also called balanced
or unbiased and independent. Finally, we develop a compo-
sition mechanism for these unbiased and independent gates
that propagates these properties into larger functions. We
describe these gates and composition in Sections2 and3.
Analysis of the preimage resistance for this schema is also
presented in Section3. The memory integrity application
and other uses for this one way function are described in

1

Section4. We conclude the paper in Section5.

2 Building Blocks: Leaf Gates & Switch-
box Gates

We describe the building blocks of the proposed one way
functions in this section. A one way function will be
composed from many fixed-arity gates with a set of pre-
specified properties. We call these functionsleaf gates. We
first define two properties of Boolean functions that are of
interest to us.

Definition 2.1 (Unbiased Function). A Boolean function
f : {0, 1}n→ {0, 1} is said to beunbiasediff P(f = 0) =
P(f = 1). We will usebalancedandunbiasedinterchange-
ably.

Definition 2.2 (Independence). Let fi , f j : {0, 1}n→{0, 1}
be two functions with an identical support set. fi and fj are
said to beindependentiff P((fi = x)∩ (f j = y)) = P(fi =
x) ·P(f j = y), for x,y∈ {0,1}.

An unbiased function outputs both 0 and 1 with equal
frequency over a uniformly distributed support set. Two
independent functions, when randomly sampled, show all
four output combinations(0,0), (0,1), (1,0), (1,1) with
the same likelihood (probability 1/4 each). These two prop-
erties capture theoblivious-nessof gates which indicates
their potential for information leak. In the following,Φ
will denote a set of properties. These properties could be
specified as predicates or some other form of a characteris-
tic function. φ will refer to a specific property inΦ. We use
/0 to denote an empty property which is satisfied by every
function.

Definition 2.3 (n-to-1 leaf gates). LetG(n,Φ) be the set of
all n-to-1 Boolean functions from{0,1}n→{0,1} that sat-
isfy properties in the setΦ. The two properties of interest
to us areunbiasdenoted byφub and independencedenoted
by φin. We will writeG(n,φub), G(n,φin), andG(n,φub−in)
to indicate set of all n-input Boolean functions that are un-
biased, independent, and unbiased & independent respec-
tively.

These leaf gates, specifically 4-to-1 leaf gates, will be
used to build the larger one way functions. They would be
wrapped into another switchbox as shown in Figure1. The
wrapper function performs an exclusive-or (xor) of the out-
put from the leaf gate with another input, which we callcon-
trol input. Depending on the value of the control inputxn,
the outputy is either f (n,φub−in) or f (n,φub−in). Note that
f (n,Φ) denotes a specific gate from the familyG(n,Φ). A
formal definition follows.

n−to−1 leaf gate

x x xx 1 n−10 2

xn
switchbox

y

f(n, φ)

Figure 1: Switchbox Wrapper forn-to-1 functions

Definition 2.4 (n + 1-to-1 switchbox gates). S(n +
1,G(n,Φ),xn) is the set of(n+1)-to-1 Boolean functions
from {0,1}n+1 → {0,1} derived from G(n,Φ) as fol-
lows. A function s(f ,n + 1) ∈ S(n,G(n,Φ),xn) is con-
structed from f∈ G(n,Φ) and a control input xn as
s(x0,x1, . . . ,xn−1,xn) = xn⊕ f (x0,x1, . . . ,xn−1). Note that
we have madeG and control input xn implicit in the defini-
tion of s in order to reduce the clutter in notation.

We claim that theswitchboxgates so defined are both un-
biased and independent provided their inputs are unbiased
and independent.

Lemma 2.1 (unbiased switchbox gate). A switchbox gate
s(f ,n+1) is unbiased if its inputs x0, x1, . . .xn−1, xn are un-
biased.

Proof. Note that we have not made any assumptions on the
balance of the leaf gatef (n,Φ) that is embedded inside the
given switchbox gates(f ,n+ 1) (along the lines of Fig-
ure 1). In other words, the leaf gates come from the set
G(n, /0). We do however insist on balance (between 0s and
1s) in the inputsx0, x1, . . .xn−1, xn.

Let xn be the control input for the switchboxs. Sincexn is
unbiased (balanced), the probabilities ofxn = 0 andxn = 1
are equal,P(xn = 0) = P(xn = 1) = 1/2. Let the truth table
for f (n, /0) be given byT(f) = [f0, f1, . . . , f2n−1], where f
evaluates tof j on input [xn−1 . . .x0] equal to j. The truth
table fors (outputy) is given by[T(f) T(f)] taking xn to
be the most significant bit. This is because the xor gate ins
acts as identity forxn = 0 and as inverse (not) forxn = 1. Let
the number of 0’s inT(f) ben0(T(f)) and the number of
1’s ben1(T(F)) = 2n−n0(T(f)). We also know the num-
ber of 0’s and 1’s inT(f) to be n0(T(f)) = n1(T(f))
and n1(T(f)) = n0(T(f)). Hence n0(T(s)) =
n0(T(f)) + n0(T(f)) = n0(T(f)) + n1(T(f)) and
n1(T(s)) = n1(T(f)) + n1(T(f)) = n1(T(f)) + n0(T(f)).
This implies that n0(T(s)) = n1(T(s)) leading to
P(y = 0) = P(y = 1) = 1/2, which holds under the
assumption thaty = f with probability 1/2 andy = f with
probability 1/2 implied by the balance ofxn.

2

Lemma 2.2 (switchbox gate independence). Switchbox
gates s0(f0,n+ 1) and s1(f1,n+ 1) are pairwise indepen-
dent over the support set{x0, x1, . . .xn−1}, with unbiased
and independent control inputs x0

n and x1n respectively, as-
suming f0 6= f1 and f0 6= f1.

Proof. Note that for disjoint support sets fors0 ands1, the
independence follows trivially. Hence, we consider the case
where the support set{x0, x1, . . .xn−1} is shared. The in-
dependence fors0 and s1 holds iff f0 6= f1, f0 6= f1, and
the control inputsx0

n andx1
n are unbiased and independent.

Recall that independence ofs0 (output y0) and s1 (out-
put y1) is equivalent to showing thatP(y0 = 0,y1 = 0) =
P(y0 = 0,y1 = 1) = P(y0 = 1,y1 = 0) = P(y0 = 1,y1 =
1) = 1/4. If we consider the joint truth table of(y0,y1),
denoted byT(s0,s1), assumingx0

n as the most significant
bit and x1

n as the next significant bit, we getT(s0,s1) =
[T(f0, f1) T(f0, f1) T(f0, f1) T(f0, f1)]. Let n0,0(T(f0, f1))
denote the number of(0,0) rows out of 2n truth table en-
tries. Similarly definen0,1(T(f0, f1)), n1,0(T(f0, f1)), and
n1,1(T(f0, f1)).

Next consider n0,0(T(f0, f1)), n0,1(T(f0, f1)),
n1,0(T(f0, f1)), and n1,1(T(f0, f1)). Note that all in-
stances of(0,0) in T(f0, f1) will be transformed into(0,1)
instances inT(f0, f1). This implies that

n0,0(T(s0,s1)) = n0,0(T(f0, f1))+

n0,0(T(f0, f1))+

n0,0(T(f0, f1))+

n0,0(T(f0, f1))

Moreover, this same argument also leads to

n0,1(T(s0,s1)) = n0,0(T(f0, f1))+

n0,1(T(f0, f1))+

n1,0(T(f0, f1))+

n1,1(T(f0, f1))

In general, this shows that

n0,0(T(s0,s1)) = n0,1(T(s0,s1))

= n1,0(T(s0,s1))

= n1,1(T(s0,s1))

= 1/4

This establishes the independence of switchbox functions.

We will need another stronger notion of independence
for the later proofs of compression function independence.

Lemma 2.3 (switchbox gate independence under shared
control). Switchbox gates s0(f0,n+1) and s1(f1,n+1) are

pairwise independent over disjoint support sets{x0
0, x0

1,
. . .x0

n−1} and {x1
0, x1

1, . . .x1
n−1} respectively, with shared

control input xn, assuming unbiased and independent f0

and f1.

Proof. We need to prove thatP(s0 ∩ s1) = P(s0)P(s1).
Given disjoint support sets, the only intersection occurs
with respect toxn For a fixed value ofxn (xn = 0 orxn = 1),
the functions f0 and f1 are equally likely to be 0 or 1
given their balance and independence. Hence forxn = 0,
P(s0 = 0,s1 = 0) = P(s0 = 0,s1 = 1) = P(s0 = 1,s1 = 0) =
P(s0 = 1,s1 = 1) = 1/4. The same situation holds for
xn = 1.

We will next show a constructive schema for the pro-
posed family of one-way functions based on the switchbox
gates.

3 One Way Function Schema

In this section, we will show a construction for an unbiased,
independent Boolean function over 128 input bits from the
switchbox gatesS(5,G(4,φub),x4) (derived from the leaf
gatesG(4, φub)). This function will only use 85 of the 128
input bits.

Definition 3.1 (scalable one-way function). A scalable one-
way function F: {0, 1}N ×{0, 1}(N−1)/(k−1) → {0, 1} is
built from switchbox gatesS(k + 1,G(k,φub),xk) as fol-
lows. The primary inputs come from a setI of cardinality
N and the control inputs come from a setC of cardinal-
ity (N− 1)/(k− 1). F is built as a tree of gates sF

i, j for
0≤ i < logkN and0≤ j ≤ (N/ki+1) as shown in Figure2.
The level number within the tree is captured by i, and j
is the index within the level. The inputs to the N/k gates
at Level 0 come from the input setI . All the other inputs
into the f gates are internal. The control inputs come from
an additional source of unbiased, independent variablesC .
Let F (N,S) be the set of all scalable N-input functions re-
alized from the switchbox gatesS . We will often omitS to
denote this family byF (N).

Now we construct a family of compression functions to
compress a set of 128-bits into 64-bits built from scalable
one-way functions fromF (64).

Definition 3.2 (compression function). K (N,k) is a fam-
ily of compression functions. A compression functionκ :
{0, 1}N×{0, 1}N → {0, 1}N ∈ K (N,k) can be built with
the scalable one-way functions from the familyF (N,S)
as follows. The set of2N input bits is partitioned into
(I , C) of cardinality N each. We select N unique func-
tions from G(k,φub): { f0, f1, . . . , fN−1} randomly. Let

3

xI
i0−3

xC
i0

xI
i4−7

xC
i1

xI
i8−11

xC
i2

xI
i12−15

xC
i3

xI
i48−51

xC
i12

xI
i52−55

xC
i13

xI
i56−59

xC
i14

xI
i60−63

xC
i15

xC
i16

xC
i19

xC
i20

sFi

0,0 sFi

0,1 sFi

0,2 sFi

0,3 sFi

0,12 sFi

0,13 sFi

0,14 sFi

0,15

sFi

1,0 sFi

1,3

sFi

2,0

Output

Figure 2: Construction ofFi from switchgates over the input
domain(I ,C)

I = {xI
0,x

I
1, . . . , xI

N−1} andC = {xC
0 ,xC

1 , . . . , xC
N−1}. We con-

struct N unique, unbiased and independent, scalable one-
way functions Fi for 0≤ i < N. Each function Fi contains
(N− 1)/(k− 1) leaf gates. Let Fji be the jth gate of Fi in
row-major order for0≤ j < (N− 1)/(k− 1). F j

i corre-
sponds to sFi

i′, j ′ from Definition3.1as follows: j=
(

N−1
k−1

)

−
(

klogkN−i′−1−1
k−1

)

−
(

N
ki′+1 − j ′

)

. F j
i (as in Figure2) is bound

to f(i+ j)%N. The control input for the gate Fji is selected
from C as xC(i+2 j)%N. LetCi = {xl | l = (i +2 j)%N,0≤ j <

(N−1)/(k−1)} denote the set of control variables used in
Fi. We note that Fi : I ×Ci→{0, 1} for 0≤ i < N.

This construction ensures that each of theFis is unbiased
and independent.

3.1 Analysis

In this section, we establish that the compression functions
from 2N to N bits constructed withk-bit gates given by
K (N,k) in Definition 3.2are unbiased and independent.

Lemma 3.1 (compression function balance). A compres-
sion functionκ ∈ K (N,k) is unbiased.

Proof. Assume that all the primary inputs(I ,C) are unbi-
ased and independent. It suffices to show that each scalable
function Fi (from Definition 3.1) is unbiased. The proof
then is by induction on the level number in the construction
for F. The induction basis is for the output of Level 0 gates
(whosek inputs come from the setI). Lemma2.1 estab-
lishes that these outputs are unbiased. Note that the Level 0
outputs feed Level 1 switchbox gates.

The inductive hypothesis is that the outputs of Levell ,
l > 0 switchbox gates are unbiased. In order to establish
that the outputs of Level(l +1) gates are unbiased, we ob-
serve that the inputs to Level(l + 1) gates are unbiased.
Lemma2.1argues as a subcase that for unbiased inputs, the
output of a switchbox gate is also unbiased. Note that the
control inputxC

n from C is unbiased. Recall that the truth
table fors is given by[T(f) T(f)]. A simple counting ar-
gument establishes thatP(y = 0) = P(y = 1) = 1/2 only
assuming thatP(xn = 0) = P(xn = 1) = 1/2.

We prove two notions of independence for the compres-
sion function output bitsFi. The black-box independence
assumes that the adversary has access to only the output
bits Fis, and hence independence only with respect to the
eventFi ∩Fj is required. On the other hand, if the adver-
sary can have white-box access to the compression func-
tion, wherein, all the internal gates are also observable,
independence will have to be established with respect to
the eventF p

i ∩ Fq
j for arbitrary internal gates 0≤ p,q <

(N−1)/(k−1).

Lemma 3.2(compression function independence). A com-
pression functionκ ∈ K (N,k) is both blackbox and white-
box independent.

Proof. We need to show thatFi andFj are pairwise inde-
pendent for 0≤ i 6= j < N. The proof will again be by
induction. The induction basis is that the corresponding
Level 0 outputs,sFi

0, j ′ ands
Fj

0, j ′ for 0≤ j ′ < N/k, are pair-
wise independent, which follows from Lemmas2.2 and
2.3. For Lemma2.2, we need the following two assump-
tions. The two assumptions in Lemma2.2 are f Fi

0, j ′ 6= f
Fj

0, j ′

(or f Fi
0, j ′ 6= f

Fj

0, j ′) and independence ofxFi
C

0, j ′ andx
Fj

C

0, j ′ . In other
words, we need to show that these assumptions hold for
all gatesF p

i and F p
j for 0 ≤ p < (N− 1)/(k− 1). Re-

call from Definition 3.2 that GateF p
i (F p

j) is bound to
the truth tablef(i+p)%N (f(j+p)%N) respectively. Note that
(i + p)%N 6= (j + p)%N for i 6= j. Similarly, the control in-
put forF p

i (F p
j) is xC

(i+2p)%N (xC
(j+2p)%N) respectively, which

are different fori 6= j. The inductive hypothesis is thatsFi
i′, j ′

ands
Fj

i′, j ′ are pairwise independent for 0≤ i′ ≤ l . This has
established only that each pairF p

i andF p
j are independent.

In order to ascertain that the outputs across a level are inde-
pendent, we also need Lemma2.3 to cover the case when
the two gatesF p

i andFq
j share the same control inputxn for

p 6= q andi 6= j. Note that this is the reason why in Defini-
tion 3.2we insisted on unbiased leaf gatesf . The mapping
for truth tablesfis and control inputsxC

i s in Definition3.2
ensures that an arbitrary pair of gatesF p

i andFq
j are dis-

joint in at least two of the following three parameters: sup-

4

port set, control input, and truth tables. Hence, Lemmas2.2
and2.3together cover the universe.

The inductive step again follows from Lemmas2.2 and
2.3 since the independence of the inputs to Levell + 1 is
established by the inductive hypothesis.

We now need to prove preimage resistance for the com-
pression functionsκ in K (N,k). An intuitive estimate of
number ofκ-oracle queries needed of an adversary to de-
termine an elementx ∈ {0, 1}2N in the preimage of a ran-
domly selectedy

R
d{0, 1}N, κ(x) = y is 22N/2N = 2N. We

adopt the Shannon blackbox model, specifically, Black, Ro-
gaway, Shrimpton version [1] for this purpose. We quantify
the adversary advantage overq oracle queries. We will use
the functionAdvPre

f (A) from Rogway, Shrimpton [7]. We

will usex
$
← Sto denote a random selection ofx from setS.

The definition we use is as follows.

Definition 3.3 (preimage resistance). AdvPre
κ (A) =

P(I
$
← {0,1}N; C

$
← {0,1}N; κ $

← K (N,k); σ ←
κ(I ,C); (I ′,C′)

$
← A(σ) | κ(I ′,C′) = σ).

The one-way functionκ ∈ K (N,k) is chosen. Specif-
ically, the truth tables of all the gates (fis) constitute the
secret. We will allow the adversary to pick twoN bit inputs
I ∈ I andC∈ C . The oracle returns aY ∈ {0, 1}N such that
Y = κ(I ,C). We repeat this experimentq≤ 2N−1 times, and
quantify the information the adversary collects over these
repeated experiments.

Theorem 3.1 (preimage resistance). Fix N, k, and κ ∈
K (N,k). AdvPre

κ (q)≤ q/2N−1 for any q≥ 1.

Proof. Once again, along the lines of Black et al. [1], let
A? be an adversary, where ? denotes a query to theκ ora-
cle. A is allowed exactlyq such queries. A’s behavior is
identical to the following. Initially,i ← 0 andκ(I ,C) =
undefinedfor all (I ,C) ∈ {0,1}N × {0,1}N. Let A? be
run as follows. On a query(I ,C), i ← i + 1; Ii ← I ;

Ci ← C; Yi
$
← Range(κ); κ(I ,C) ← Yi ; return Yi to A.

Range(κ) is the set whereκ(I ,C) is no longerundefined,
andRange(κ) = {0,1}N−Range(κ). Note that the implicit
assumption here that learning one association(Ii ,Ci ,Yi)
does not help predict any other future associations forκ
is grounded in independence argument from Lemma3.2.
WhenA halts outputtingout, the oracle simulator program
returns((I1,C1,Y1), . . . ,(Iq,Cq,Yq), out) along the lines of
[1]. If A succeeds, it outputs(Ii,Ci ,Yi), 1≤ i ≤ q such
that κ(Ii ,Ci) = Yi = σ. Let Si be the event that(Ii ,Ci ,Yi)
satisfiesκ(Ii ,Ci) = Yi = σ. However, the simulation of
A’s oracle assignsYi randomly from a set of size at least
2N− (i− 1). HenceP(Si) ≤ 1/(2N− (i− 1)). P((I ,C)←
Aκ(σ) | κ(I ,C) = σ)≤ P(S1∨S2∨ ·· · ∨Sq) ≤ Σq

i=1P(Si) ≤

Σq
i=1

1
2N−(i−1)

≤ q
2N−2N−1 for q≤ 2N−1. This is bounded by

q/2N−1.

4 Application

The primary application for the proposed compression
functions is memory integrity in tamper-evident architec-
tures. A tamper-evident architecture provides an execution
environment for a program which detects any tampering.
AEGIS [8] offers such an architecture. XOM [4] is an ex-
ample of tamper-resistant architecture, which lacks in mem-
ory integrity verification. Memory integrity verification [3]
is provided with Merkle hash trees. We first define memory
integrity property. A processor communicates with memory
M. MemoryM has two attributes, addressesA and contents
V. It maintains associations between addresses and con-
tents. A read of memory at addressA denoted byM[R,A]
returns the value associated withA. A write into memory
addressA of valueV is denoted byM[W,A,V]. A write of A
with valueV immediately followed by a read of addressA
must return valueV. If we need to argue about temporal se-
quences of reads and writes, we will need to associate time
T with reads and writes asM[R,A,T] andM[W,A,V,T].

Definition 4.1 (memory integrity). A read of address A at
time T should return the value written to address A at time
T ′< T such that no other write to A occurs between time T′

and T. In other words: M[R,A,T] = V iff ∃M[W,A,V,T ′]
for T ′ < T and∀t ∈ [T ′+1,T−1], 6 ∃M[W,A,∗, t]. We can
assume that each address has a write to it at time T= 0 of
value 0.

A Merkle hash tree of address range[A,A+ k] creates a
tree of hashes withk+1 leaves corresponding to addresses
A, A+ 1, . . . , A+ k. Any write to an addressA+ i in this
address space can modify all the hash values from the leaf
node corresponding toA+ i upto the root of the tree. Any
read from addressA+ i needs to check the hash values along
the path from the leaf nodeA+ i upto the root of the tree.
The root of the tree is stored in the trusted processor stor-
age, so that it cannot be tampered. All the other tree nodes
along with the leaf nodes can be kept in the untrusted mem-
ory. The overhead of such integrity verification architecture
is several hashing operations, logN for N leaf nodes. One
can cache some of these hash tree nodes to increase the effi-
ciency. The granularity of a leaf node can be increased be-
yond a single word to an entire cache block. Despite these
optimizations, such hash trees are expensive primarily due
to the cost of the underlying hash function cost. AEGIS [8]
charges 160 cycles for each hashing operation presumably
at a cost of 2 cycles per round for 80 rounds of SHA. This
is a very high cost for a memory integrity architecture that

5

spawns many hash function instantiations for each read and
write. AEGIS optimizes by assuming that a large Level-2
cache is part of the trusted processor boundary. This al-
lows one to perform memory integrity verifications only
when a read or write crosses the L2 cache to main mem-
ory boundary. Even with that, the performance penalty is
of the order of 25%. In an embedded processor, L2 cache
in not even likely to be integrated into the trusted processor
core. Hence, more efficient mechanisms for hashing mem-
ory contents are desirable.

Adversary Model: The traditional adversary model for
a hash function collision resistance, preimage and second
preimage resistance assumes that the adversary has oracle
access to the hash function. This is a valid model for a
publicly available hash functionHK instantiated with a se-
cret keyK, which can be repeatedly exercised by an ad-
versary. In a trusted processor, where a personalized hash
function per process can be selected, the adversary does not
have a mechanism of exercising this hash function, unless
s/he has control of the executing process. In such a case,
the adversary has no need to tamper with the memory resi-
dent data! An outsider adversary, one who does not control
the process, can only observe hashed values,HK(V), of the
Merkle tree stored in the untrusted memory. Hence, the rel-
evant problem for the adversary is to guess the real memory
contents associated with the hash. The adversary may also
have access to the memory contents whose hash is under
attack. In memory integrity verification architectures, how-
ever, the memory contents are also encrypted with a block
cipher function such as AES. Figure3 shows this adversary
model. Given this, we assume that the adversary’s goal is
to derive the preimage of a hash value.

The proposed family of compression functionsK (64,4)
offers good preimage resistance as shown in Theorem3.1
which is all that is needed for the memory integrity verifi-
cation.

� �� � � � � � � � 	
 � � � �
 � � � �� 	 � �
� � � �
 � � � � �
 � � � � � �

Figure 3: Memory Integrity Verification Adversary Model

4.1 Encryption

One can construct a block cipher functionκ(I ,C) from
K (64,4) as a Feistel network [2]. In these cases, the
input C can serve as a key to select a specific function
κC : {0,1}N→{0,1}N. Two stages of Feistel network may
suffice for such a construction. We need to analyze the
properties of such an encryption function.

4.2 Hash Function

If one viewsκC : {0,1}N→{0,1}N as a compression func-
tion, then iterated hashes of Preneel, Govartes, Vendewalle
[6] from any of the Group 1 schemes [1]. Collision resis-
tance and second preimage resistance ofκC needs to be an-
alyzed for this application.

5 Conclusions

We started out with the goal of developing a inversion re-
sistant function with a low latency and low area hardware
implementation. We based such a function on two proper-
ties of truth tables: balance and independence. We demon-
strated that a composition schema of unbiased and indepen-
dent 4-input gates leads to unbiased and independent com-
pression functions.

References

[1] John Black, Phillip Rogaway, and Thomas Shrimpton.
Black-box analysis of the block-cipher-based hash-
function constructions from pgv. InCRYPTO ’02:
Proceedings of the 22nd Annual International Cryp-
tology Conference on Advances in Cryptology, pages
320–335, London, UK, 2002. Springer-Verlag.

[2] H. Feistel. Cryptography and computer privacy.Sci-
entific American, 228(5):15–23, May 1973.

[3] B. Gassend, G. Suh, D. Clarke, M. van Dijk, and
S. Devadas. Caches and merkle trees for efficient
memory integrity verification. InProceedings of Ninth
International Symposium on High Performance Com-
puter Architecture, 2003.

[4] David Lie, Chandramohan A. Thekkath, Mark
Mitchell, Patrick Lincoln, Dan Boneh, John C.
Mitchell, and Mark Horowitz. Architectural support
for copy and tamper resistant software. InArchitec-
tural Support for Programming Languages and Oper-
ating Systems, pages 168–177, 2000.

6

[5] R. C. Merkle. Protocols for public key cryptography.
In Proceedings of the IEEE Symposium on Security
and Privacy, 1980.

[6] Bart Preneel, Ren Govaerts, and Joos Vandewalle.
Hash functions based on block ciphers: A synthetic
approach. InProceedings of Crypto ’93, volume Lec-
ture Notes in Computer Science, Volume 773, pages
368–378, 1994.

[7] Phillip Rogaway and Thomas Shrimpton. Cryp-
tographic hash-function basics: Definitions, impli-
cations, and separations for preimage resistance,
second-preimage resistance, and collision resistance.
In Proceedings of Fast Software Encryption: 11th
International Workshop, FSE 2004, volume LNCS-
3017, pages 371–388. Springer-Verlag, 2004.

[8] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. aegis: Architecture for tamper-evident
and tamper-resistant processing. InProceedings of the
17 Int’l Conference on Supercomputing, pages 160–
171, 2003.

7

