Relating Boolean Gate Truth Tables to One-Way Functions

Mahadevan Gomathisankaran Akhilesh Tyagl
March 3, 2008

Abstract et al. [8] use a general hash function such as SHA-1 with
the assumed latency of 160 cycles. A general hash func-
We present a schema to build one way functions from a fagign has to provide collision resistance when the adversary
|Iy of Boolean gates. Moreover, we relate characteristfcsrqis access to the hash function oracle. We note however
these Boolean gate truth tables to properties of the deriyggt in the memory integrity scenario, the adversary only
one-way functions. We believe this to be the first attemgéts to see the hashed valdg (V). It does not have ac-
at establishing cryptographic properties from the Boolegsss to a hash oracle, whereky function can be exer-
cube spaces of the component gates. This schema is #i68d and observed at many different domain points. The
used to build a family of compression functions, which iSecure processor environment prevents adversary access to
turn can be used to get block encryption and hash futige plain-text input. The hashed digetg(V) resident in
tions. These functions are based on reconfigurable gaggfrusted memory are however observable. In such a sce-
We prove cryptographically relevant properties for theg@rio, the property of interest is really preimage or inigers
function implementations. Various applications incogger resistance. This research was motivated by this scenario in

ing these one-way functions, specifically memory integrig¢der to provide an efficient, low-latency implementatién o
in processor architecture, are presented. an inversion resistant function.

The design objective for an inversion resistant function
1 Introduction f:{0,1}™ — {0,1}" for m > n is to distribute the preim-
agesf~—1(y) as uniformly as possible. We state this objec-
One way functions are at the heart of cryptography. time in terms of two properties of the truth tables for indivi
this paper, we explore a Boolean cube space schema wadutput bits of/, yn_1, Yn—2, - .., Yo. One of these proper-
a hardware implementation for a preimage-resistant futies ensures equal frequency for Os and 1s in a variable, and
tion, which we call one-way function, within the bound#he other one guarantees equal frequency for all the four
of acceptable notational abuse. The primary motivation fautcomes 00, 01, 10, 11 when two variables are instanti-
our research arose in the realm of secure processor archiaged simultaneously. The first propertybslanceor lack of
ture. One of the desirable properties for a secure executias in Os and 1s, and the second propertgdependence
environment is data or memory integrity. Simply stateBalance and independence together maintain uniform dis-
memory integrity implies that a memory read from addreg#ution for all the output bit sequencegg d{0,1}". In-
AattimeT, M[R A, T], must return the latest written valuglependence also assures that even if a small number of
into addres#\, M[R A, T| =V iff IMW,A)V, T'[for T’ < T input-output relationshipsx,y) | f(x) =y are exposed to
andvt € [T'+1,T —1], AMW,A x,t]. HereM[R A, T isa an adversary, the damage is limited to only these instances.
memory read from addregsat timeT, andM|W, AV, T] It does not leak any information about other input-output
is a memory write of valu¥ at addres#\ at timeT. The relationships. We then explore the properties required of
trust boundary is assumed to be within the processor, imealler, physically realizable Boolean gates (of fanirhef t
memory is untrusted. Aegis [8] provides such memory inrder of 4) that lead to balance and independence in the out-
tegrity by maintaining a Merkle hash tree [5] for the entingut bitsy;’s. These Boolean gates are also called balanced
protected address space. The root of the hash tree is mainmnbiased and independent. Finally, we develop a compo-
tained within the trusted processor boundaries, but thte ig8on mechanism for these unbiased and independent gates
of the tree nodes can be kept in the untrusted memory. $udt propagates these properties into larger functions. We
*Department of Electrical Engineering, Princeton Univgr$?rince- descrlb.e these gatgs and CO.mpOSltlon n _Secﬂbalsd 3
ton, NJ 08536. ema”:mgomathi@princet(’)n_edu Analysis of the preimage resistance for this schema is also

tDepartment of Electrical and Computer Engineering, lowatest Presented in Sectio. The memory integrity application
University, Ames, IA 50011. email:tyagi@iastate.edu and other uses for this one way function are described in

Xy X Xp e Xn-1

Section4. We conclude the paper in Sectibn

2 Building Blocks: Leaf Gates & Switch-

f(n, 9

box Gates

switchbox
We describe the building blocks of the proposed one way 5
functions in this section. A one way function will be y
composed from many fixed-arity gates with a set of pre-
specified properties. We call these functideaf gates We Figure 1: Switchbox Wrapper for-to-1 functions
first define two properties of Boolean functions that are of
interest to us.

Definition 2.4 (n + 1-to-1 switchbox gates) $(n +
1,G(n,®),x,) is the set of(n+1)-to-1 Boolean functions
from {0,1}"1 — {0,1} derived from G(n,®) as fol-
lows. A function &f,n+ 1) € S(n, G(n,®),x,) is con-
structed from fe G(n,®) and a control input X as
Definition 2.2 (Independence)Let f, fj : {0, 1}" — {0, 1} S(X0,X1,---,Xn-1,%) = Xn & f(X0,X1,...,Xn-1). Note that
be two functions with an identical support sqtard f; are We have made and control input ¥ implicit in the defini-
said to beindependentiff P((fi = x)N (f; =y)) = P(fi = tion of s in order to reduce the clutter in notation.
X)-P(fj =vy), for x,y € {0, 1}.

Definition 2.1 (Unbiased Function) A Boolean function
f: {0, 1}" — {0, 1} is said to beunbiasediff P(f = 0) =
P(f =1). We will usebalancedand unbiasednterchange-
ably.

We claim that theswitchboxgates so defined are both un-

An unbiased function outputs both 0 and 1 with equiiased and independent provided their inputs are unbiased
frequency over a uniformly distributed support set. Twand independent.
independent functions, when randomly sampled, show all . . .
four output combinationg(0,0), (0,1), (,0), (1,1) with Lemma 2.1 (unbiased switchbox gateA switchbox gate

the same likelihood (probability/s each). These two prop- 1»1+1)is unbiased ifits inputspoxy, . .. X1, Xy are un-
: " L biased.
erties capture theblivious-nesof gates which indicates

their potential for information leak. In the followingP proof. Note that we have not made any assumptions on the
will denote a set of properties. These properties could fgance of the leaf gatE(n, ®) that is embedded inside the
specified as predicates or some other form of a charact%ﬁen switchbox gates(f,n+ 1) (along the lines of Fig-

tic function. g will refer to a specific property i. We use yre 1). In other words, the leaf gates come from the set
0 to denote an empty property which is satisfied by evegyn 0). We do however insist on balance (between 0s and
function. 1s) in the inputst, X1, - .. Xn_1, Xn.

_r L Let x, be the control input for the switchbax Sincex, is
Definition 2.3 (n-to-1 leaf gates)Let G(n, @) be the set of unbiased (balanced), the probabilitieswt= 0 andx, — 1

-to- i n :
a” n-to-1 qulegn functions from0, 13" — {0.’ . tha.lt sat are equalP(x, = 0) = P(x, = 1) = 1/2. Let the truth table
isfy properties in the seb. The two properties of interest, ' £(n.0) be given byT () — [, f 1], wheref
to us areunbiasdenoted byp,, and independenceenoted ’ : 0, 1L, ---» 7201,

by @n. We will write G(n, @), G(n, @), and G (N, Guo_in) evaluates tof; on input [)_(n,l...xo] equal toj. The truth
to indicate set of all n-input Boolean functions that are urtf?ble fors (outputy) is given by[T(f) T(f)] taking x, to

biased, independent, and unbiased & independent respbe(_:é,[:[he most _3|gn|f|cant bit. Th'.s is because the xor gate in
tively, acts as identity fox, = 0 and as inverse (not) fop = 1. Let

the number of 0's ifl (f) beny(T(f)) and the number of
These leaf gates, specifically 4-to-1 leaf gates, will Bes ben(T(F)) =2"—no(T(f)). We also know the num-
used to build the larger one way functions. They would B&r of 0's and 1's inT(f) to be no(T(f)) = m(T(f))
wrapped into another switchbox as shown in Figurdhe and m(T(f)) = no(T(f)). Hence mno(T(s)) =
wrapper function performs an exclusive-or (xor) of the oute(T(f)) + no(T(f)) = no(T(f)) + mu(T(f)) and
put from the leaf gate with another input, which we calh- N1(T(S)) = nu(T(f)) +m(T(f)) = ny(T(f)) + no(T(f)).
trol input. Depending on the value of the control inpwt This implies that no(T(s)) = ny(T(s)) leading to
the outputy is either f (n, @up_in) of F(N, Quo_in). Note that P(y = 0) = P(y = 1) = 1/2, which holds under the
f(n,®) denotes a specific gate from the famijyn, ®). A assumption thay = f with probability 1/2 andy = f with
formal definition follows. probability 1/2 implied by the balance &f. O

Lemma 2.2 (switchbox gate independencepwitchbox pairwise independent over disjoint support selé,x(l),
gates g(fo,n+1) and g(f1,n+ 1) are pairwise indepen-...x2 ;} and {x§, X, ...x} ,} respectively, with shared
dent over the support s€ko, X1, ...Xn—1}, with unbiased control input X%, assuming unbiased and independegt f
and independent control input§ &and X, respectively, as- and f.

suming § # f1 and § # f1.

9670 *h Proof. We need to prove thaP(spNs;) = P(so)P(s1).
Proof. Note that for disjoint support sets feg ands;, the Given disjoint support sets, the only intersection occurs
independence follows trivially. Hence, we consider thecagith respect tox, For a fixed value ok, (X, = 0 orx, = 1),
where the support sgo, X1, ...X,-1} is shared. The in-the functionsfo and f; are equally likely to be 0 or 1
dependence fosp ands; holds iff fo # f1, fo # f1, and given their balance and independence. Hencexfet 0,
the control inputsxﬁ andxﬁ are unbiased and independenl;?(s0 =0,5=0=P(5=0,5=1)=P(s59=1,5=0) =
Recall that independence & (outputyp) and s; (out- P(so = 1,51 = 1) = 1/4. The same situation holds for
puty) is equivalent to showing tha(yo =0,y1 =0) = x,= 1. O
Pyo=0y1=1) =P(Yo =Ly1 =0) =P(yo = 1,y1 = _ _

1) = 1/4. If we consider the joint truth table d¥po,y1), We will next show a constructive schema for the pro-
denoted byT (sp,51), assumingd as the most significantposed family of one-way functions based on the switchbox
bit and x} as the next significant bit, we gét(sp,s1) = 9gates.

[T(fo, fl) T(fo, fl) T(fo, fl) T(fo, fl)] Let no’o(T(fo, fl))

denote the number dD,0) rows out of 2 truth table en-

tries. Similarly definengs (T (fo, f1)), no(T (fo, 7)), and S ONE Way Function Schema

nlvll\l(T(fO’ f1))- " Tt T T T In this section, we will show a construction for an unbiased,
eTth f_COﬂSI e(; nQOT(f(Of_’l))’ N ?Qlfh (t 0 ”1).)’ independent Boolean function over 128 input bits from the
Mio(T(fo, f1)), and m(T(fo, f1)). Note that all in- g sopp oy gatess (5, G(4,@up), Xa) (derived from the leaf

stances 0{0,0) in T (fo, f1) will be transformed intd0,1) - 5064,). This function will only use 85 of the 128
instances ifT (fo,). This implies that gatesg (4, qup))- y

input bits.
Noo(T(s0,81)) = nOvO(T(_ 1)+ Definition 3.1 (scalable one-way function)A scalable one-
noo(T (fo, f1)) + way function F: {0, 1}N x {0, 1}(N-D/(1) _, 10 1} is
No.o(T (fo, f1)) + built from switchbox gates(k + 1, G(k, @), X) as fol-
no;o(T(f_ 1)) lows. The primary inputs come from a seof cardinality
' N and the control inputs come from a s@tof cardinal-
Moreover, this same argument also leads to ity (N—1)/(k—1). F is built as a tree of gatesfp for
0<i<logN and0 < j < (N/k*1) as shown in Figure.
No1(T(s0,81)) = Moo(T(fo, f1)) + The level number within the tree is captured by i, and |
o1 (T (fo, f1)) + is the index within the level. The inputs to the¢k\gates
nyo(T (o, f1)) + at Level 0 come from the input sét All the other inputs
e (T (fo, 1)) into the f gates are internal. The control inputs come from
' an additional source of unbiased, independent varialgles
In general, this shows that Let 7 (N,.5) be the set of all scalable N-input functions re-
alized from the switchbox gates We will often omits to
Noo(T(s0,51)) = noa(T(s0,51)) denote this family by (N).
= Mmo(T(0,51))

= nga(T() Now we construct a family of compression functions to
= Mmili%,5 compress a set of 128-bits into 64-bits built from scalable
= 1/4 one-way functions fron¥ (64).

This establishes the independence of switchbox functiopgfinition 3.2 (compression function) % (N, k) is a fam-
O ily of compression functions. A compression functon

N N N T wi
We will need another stronger notion of mdependen({,g 117 {0,137 — {0, 1}V € K(N, k) can be built with

for the later proofs of compression function independence. e scalable one-way functions from the fangfyN, 5)
as follows. The set 02N input bits is partitioned into

Lemma 2.3 (switchbox gate independence under sharéfl C) of cardinality N each. We select N unique func-
control) Switchbox gatesyéfp,n+ 1) and g(f1,n+1) are tions from G(K,@up): {fo, f1,..., fn—1} randomly. Let

3

The inductive hypothesis is that the outputs of Level
I > 0 switchbox gates are unbiased. In order to establish
that the outputs of Level + 1) gates are unbiased, we ob-
serve that the inputs to Levél + 1) gates are unbiased.
Lemma2.1argues as a subcase that for unbiased inputs, the
output of a switchbox gate is also unbiased. Note that the
control inputx§ from C is unbiased. Recall that the truth
table fors s given by[T(f) T(f)]. A simple counting ar-
gument establishes th&y = 0) = P(y=1) = 1/2 only
assuming thalP(x, =0) =P(x, =1) =1/2. O

We prove two notions of independence for the compres-
sion function output bit$5. The black-box independence
Output assumes that the adversary has access to only the output
bits Fs, and hence independence only with respect to the
Figure 2: Construction df from switchgates over the inputeventF NF; is required. On the other hand, if the adver-
domain(l,C) sary can have white-box access to the compression func-
tion, wherein, all the internal gates are also observable,
independence will have to be established with respect to

the eventF" N F for arbitrary internal gates & p,q <
L= oo g} 0C = (G). Wecon- oy)
struct N unique, unbiased and independent, scalable one-

way functions Ffor 0 < i < N. Each function Fcontains | emma 3.2(compression function independence) com-

(N—1)/(k—1) leaf gates. Let [be the jth gate of Ain pression functiork € % (N, k) is both blackbox and white-
row-major order for0 < j < (N—1)/(k—1). FiJ corre- hoxindependent

sponds to 8, from Definition3.1as follows: j= (}5F) —

(k'ogk“lij/il—l) _ (ki'l\il _ j’). F/ (as in Figure?2) is bound Proof. We need_to s_how thef; and F; are pairwise inde-

. pendent for 0< i # j < N. The proof will again be by
to fi.jjon-_The control input for the gate;Fis selected jnquction. The induction basis is that the corresponding
from C as §) ooy LetG = {X [1= (i+2))%N,0< < | g1 g outputs s, andsy;, for 0 < j’ < N/k, are pair-
(N—1)/(k—1)} denote the set of control variables used ij§jse independent, which follows from Lemmas and
Fi. We note thatF I x G — {0,1} for 0<i <N. 2.3 For Lemma2.2, we need the following two assump-

tions. The two assumptions in Lemria? are fg}, # fo,

This construction ensures that each of ffeis unbiased - . 3
and independent. (or foy # fgjj,) and independence af | andngj,. In other
words, we need to show that these assumptions hold for
all gatesk” andFP for 0 < p < (N—1)/(k—1). Re-
call from Definition 3.2 that GateR" (F) is bound to
In this section, we establish that the compression funstidghe truth tablef; 5o (f(j1pjoen) respectively. Note that
from 2N to N bits constructed wittk-bit gates given by (i + p)%N # (j + p)%N for i = j. Similarly, the control in-

% (N, k) in Definition 3.2are unbiased and independent. put for " (FP) is X((:i+2p)%N (x‘(3j+2p)%N) respectively, which

are different fon # j. The inductive hypothesis is thsﬁ. i

3.1 Analysis

Lemma 3.1 (compression function balanceA compres- F
i irwise i il i
sion functionk € % (N,K) is unbiased andg,’j, are pairwise independent for<Qi’ <|. This has

established only that each p&P andF are independent.
Proof. Assume that all the primary inputd, C) are unbi- In order to ascertain that the outputs across a level are inde
ased and independent. It suffices to show that each scalabledent, we also need Lemrda&8 to cover the case when
function F (from Definition 3.1) is unbiased. The proofthe two gatesls:iIO and qu share the same control inp for
then is by induction on the level number in the constructigrs£ g andi # j. Note that this is the reason why in Defini-
for F. The induction basis is for the output of Level 0 gateé®mn 3.2we insisted on unbiased leaf gatesThe mapping
(whosek inputs come from the sef). LemmaZ2.1 estab- for truth tablesf;s and control inputsx?s in DefinitiorB8.2
lishes that these outputs are unbiased. Note that the Leveh8ures that an arbitrary pair of galé% and qu are dis-
outputs feed Level 1 switchbox gates. joint in at least two of the following three parameters: sup-

port set, control input, and truth tables. Hence, Lemghas Ziqzlsz%.f iy < o 2N : for g < 2N-1. This is bounded by

and2.3together cover the universe. q/2N1, n
The inductive step again follows from Lemmas and

2.3 since the independence of the inputs to Ldvell is o

established by the inductive hypothesis. 0o 4 Application

We now need to prove preimage resistance for the contre primary application for the proposed compression
pression functionk in % (N,k). An intuitive estimate of functions is memory integrity in tamper-evident architec-
number ofk-oracle queries needed of an adversary to deres. A tamper-evident architecture provides an exegutio
termine an element € {0, 1}?N in the preimage of a ran-environment for a program which detects any tampering.
domly selecteq [d{0, 1}N, k(x) = yis 2N /2N =2N. We AEGIS [8] offers such an architecture. XOM [4] is an ex-
adopt the Shannon blackbox model, specifically, Black, Rémple of tamper-resistant architecture, which lacks in mem
gaway, Shrimpton version [1] for this purpose. We quantifty integrity verification. Memory integrity verificatior8]
the adversary advantage owporacle queries. We will useis provided with Merkle hash trees. We first define memory
the funcﬂonAvare(A) from Rogway, Shrimpton [7]. Weintegrity property. A processor communicates with memory
will use x & Sto denote a random selectiomofrom sets. M. MemoryM has two attributes, addresseand contents

The definition we use is as follows. V. It maintains associations between addresses and con-
o _ tents. A read of memory at addre&gdenoted byM[R, A]

Definition 3.3 (preimage resistance) Advi"®(A) = returns the value associated with A write into memory

P(I & {o1N; c & {o,1}N; « & K(N,k); o « addres® of valueV is denoted byM[W,AV]. A write of A

k(1,C); (I,C) 3 A(o) | k(I,C)) = o). with valueV immediately followed by a read of addreas

must return valu¥'. If we need to argue about temporal se-
The one-way functiorx € X (N, k) is chosen. Specif- quences of reads and writes, we will need to associate time
ically, the truth tables of all the gatedi§) constitute the T with reads and writes &d[R A, T] andM[W, AV, T|.

secret. We will allow the adversary to pick tWbbit inputs
| € I andC € C. The oracle returns¥ € {0, 1}N such that Definition 4.1 (memory integrity) A read of address A at
Y =k(I,C). We repeat this experimeqt< 2N~ times, and time T should return the value written to address A at time

quantify the information the adversary collects over theSe< T such that no other write to A occurs between time T
repeated expenments_ and T. In other words: N’R A T] V iff E”Vl[W A V T]

for T <T andVt € [T"+1,T — 1], AM|W, A, x,t]. We can
Theorem 3.1 (preimage resistancefFix N, k, andk € assume that each address has a write to it at time U of
K(N,k). AdvE™(q) < q/2N~1 for any g> 1. value O.

Proof. Once again, along the lines of Black et al. [1], let o Merkle hash tree of address range A+ K| creates a

A’ be an adversary, where ? denotes a query tXthe- tree of hashes witk+ 1 leaves corresponding to addresses
cle. Ais allowed exactlyg such queries. As behavior |sA A+1,...,A+k Any write to an addresé+i in this
identical to the following. Initially,i <— 0 andk(l, C) address space can modify all the hash values from the leaf
undefinedfor all (1,C) € {0,1}" x {0,1}". Let A’ be node corresponding & +i upto the root of the tree. Any
run as follows. On a queryl,C), i < i+1; li — . readfrom addres&-+ineeds to check the hash values along
G—C Y& Rangék); k(1,C) < Y; returnY; to A. the path from the leaf nod&+ i upto the root of the tree.
Rangék) is the set where(1,C) is no longerundefined The root of the tree is stored in the trusted processor stor-
andRangék) = {0,1}N — Rangék). Note that the implicit age, so that it cannot be tampered. All the other tree nodes
assumption here that learning one associatibrC;,Y;) along with the leaf nodes can be kept in the untrusted mem-
does not help predict any other future associationskfoory. The overhead of such integrity verification architeetu

is grounded in independence argument from Leniia is several hashing operations, Mdor N leaf nodes. One
WhenA halts outputtingout, the oracle simulator programcan cache some of these hash tree nodes to increase the effi-
returns((11,Cq,Y1),...,(l4,Cq,Yg), out) along the lines of ciency. The granularity of a leaf node can be increased be-
[1]. If A succeeds it outputdl;,C;,Yi), 1 <i < q such yond a single word to an entire cache block. Despite these
thatk(l;,C) =Y, = 0. Let S be the event thatl;,Ci,Y;) optimizations, such hash trees are expensive primarily due
satlsfleSK(I.,C.) Y; = 0. However, the simulation ofto the cost of the underlying hash function cost. AEGIS [8]
A’s oracle assignd; randomly from a set of size at leastharges 160 cycles for each hashing operation presumably
2N — (i —1). HenceP(S) < 1/(2N (' 1)). P((1,C) «— ata cost of 2 cycles per round for 80 rounds of SHA. This
A%(0) |k(1,C) =0) <P(SIVS V.- V) < =1 |P(S) < is avery high cost for a memory integrity architecture that

spawns many hash function instantiations for each read dnti Encryption

write. AEGIS optimizes by assuming that a large Level-2])

cache is part of the trusted processor boundary. This @M€ can construct a block cipher functiarl,C) from
lows one to perform memory integrity verifications onlyt(644) as & Feistel network [2]. In these cases, the
when a read or write crosses the L2 cache to main mdRRUt C can serve as a key to select a specific function
ory boundary. Even with that, the performance penalty'ﬁ§ :_{07 1N — {0, 1}". Two S'Fages of Feistel network may
of the order of 25%. In an embedded processor, L2 cadiffice for such a construction. We need to analyze the
in not even likely to be integrated into the trusted proces§6°pert'es of such an encryption function.

core. Hence, more efficient mechanisms for hashing mem-

ory contents are desirable. 4.2 Hash Function

Adversary Model: The traditional adversary model forit gne viewskc : {0,1}N — {0,1}N as a compression func-

a h_ash functi(_)n collision resistance, preimage and sec@gfl then iterated hashes of Preneel, Govartes, Vendewall
preimage resistance assumes that the adversary has ofgffeom any of the Group 1 schemes [1]. Collision resis-

access to the hash function. This is a valid model folighce and second preimage resistanaecaieeds to be an-
publicly available hash functiohik instantiated with a se-ajyzed for this application.

cret keyK, which can be repeatedly exercised by an ad-

versary. In a trusted processor, where a personalized hash

function per process can be selected, the adversary doegnotConclusions

have a mechanism of exercising this hash function, unless

s/he has control of the executing process. In such a cage,started out with the goal of developing a inversion re-
the adversary has no need to tamper with the memory regtant function with a low latency and low area hardware
dent data! An outsider adversary, one who does not coniraplementation. We based such a function on two proper-
the process, can only observe hashed valdgsV), of the ties of truth tables: balance and independence. We demon-
Merkle tree stored in the untrusted memory. Hence, the r&tkated that a composition schema of unbiased and indepen-
evant problem for the adversary is to guess the real mem@gnt 4-input gates leads to unbiased and independent com-
contents associated with the hash. The adversary may pig&sion functions.

have access to the memory contents whose hash is under

attack. In memory integrity verification architecturesywho

ever, the memory contents are also encrypted with a bldReferences

cipher function such as AES. Figuseshows this adversary

model. Given this, we assume that the adversary’s goal i§] John Black, Phillip Rogaway, and Thomas Shrimpton.
to derive the preimage of a hash value. Black-box analysis of the block-cipher-based hash-

))) function constructions from pgv. ICRYPTO '02:
The proposed family of compression functiofig64,4) Proceedings of the 22nd Annual International Cryp-

offers good preimage resistance as shown in Thed&dm tology Conference on Advances in Cryptologgiges
which is all that is needed for the memory integrity verifi- 320-335, London, UK, 2002. Springer-Verlag
cation. ' o ' '

[2] H. Feistel. Cryptography and computer privaSci-

Secure Environment entific American228(5):15-23, May 1973.

[3] B. Gassend, G. Suh, D. Clarke, M. van Dijk, and
Hx » MAC S. Devadas. Caches and merkle trees for efficient
memory integrity verification. IiProceedings of Ninth
International Symposium on High Performance Com-
puter Architecture2003.

4

Plaintext > Ex Ciphertext

[4] David Lie, Chandramohan A. Thekkath, Mark
Mitchell, Patrick Lincoln, Dan Boneh, John C.
Mitchell, and Mark Horowitz. Architectural support
for copy and tamper resistant software. Architec-
tural Support for Programming Languages and Oper-
ating Systemgages 168-177, 2000.

Figure 3: Memory Integrity Verification Adversary Model

[5] R. C. Merkle. Protocols for public key cryptography.
In Proceedings of the IEEE Symposium on Security
and Privacy 1980.

[6] Bart Preneel, Ren Govaerts, and Joos Vandewalle.
Hash functions based on block ciphers: A synthetic
approach. IrProceedings of Crypto '93/0lume Lec-
ture Notes in Computer Science, Volume 773, pages
368-378, 1994.

[7] Phillip Rogaway and Thomas Shrimpton. Cryp-
tographic hash-function basics: Definitions, impli-
cations, and separations for preimage resistance,
second-preimage resistance, and collision resistance.
In Proceedings of Fast Software Encryption: 11th
International Workshop, FSE 20040lume LNCS-
3017, pages 371-388. Springer-Verlag, 2004.

[8] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. aegis: Architecture for tamper-evident
and tamper-resistant processingPhoceedings of the
17 Int'l Conference on Supercomputingages 160—
171, 2003.

