From self-organized to extended criticality

PDF Version Also Available for Download.


Article discussing the criticality of transition processes in neurophysiology.

Physical Description

9 p.

Creation Information

Lovecchio, Elisa; Allegrini, Paolo; Geneston, Elvis L.; West, Bruce J. & Grigolini, Paolo April 26, 2012.


This article is part of the collection entitled: UNT Scholarly Works and was provided by the UNT College of Arts and Sciences to the UNT Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 204 times. More information about this article can be viewed below.


People and organizations associated with either the creation of this article or its content.



Provided By

UNT College of Arts and Sciences

The UNT College of Arts and Sciences educates students in traditional liberal arts, performing arts, sciences, professional, and technical academic programs. In addition to its departments, the college includes academic centers, institutes, programs, and offices providing diverse courses of study.

Contact Us


Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information


Article discussing the criticality of transition processes in neurophysiology.

Physical Description

9 p.


Abstract: We address the issue of criticality that is attracting the attention of an increasing number of neurophysiologists. Our main purpose is to establish the specific nature of some dynamical processes that although physically different, are usually termed as "critical," and we focus on those characterized by the cooperative interaction of many units. We notice that the term "criticality" has been adopted to denote both noise-induced phase transitions and Self-Organized Criticality (SOC) with no clear connection with the traditional phase transitions, namely the transformation of a thermodynamic system from one state of matter to another. We notice the recent attractive proposal of extended criticality advocated by Bailly and Longo, which is realized through a wide set of critical points rather than emerging as a singularity from a unique value of the control parameter. We study a set of cooperatively firing neurons and we show that for an extended set of interaction couplings the system exhibits a form of temporal complexity similar to that emerging at criticality from ordinary phase transitions. This extended criticality regime is characterized by three main properties: (i) In the ideal limiting case of infinitely large time period, temporal complexity corresponds to Mittag-Leffler complexity; (ii) For large values of the interaction coupling the periodic nature of the process becomes a predominant while maintaining to some extent, in the intermediate time asymptotic region, the signature of complexity; (iii) Focusing their attention on firing neuron avalanches, We find two of the popular SOC properties, namely the power indexes 2 and 1.5 respectively for time length and for the intensity of the avalanches. We derive the main conclusion that SOC emerges from extended criticality, thereby explaining the experimental observation of Plenz and Beggs: avalanches occur in time with surprisingly regularity, in apparent conflict with the temporal complexity of physical critical points.


  • Frontiers in Physiology, 3(98), Frontiers Research Foundation, April 26, 2012, pp. 1-9


Item Type


Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: Frontiers in Physiology
  • Volume: 3
  • Issue: 98
  • Peer Reviewed: Yes


This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?


Dates and time periods associated with this article.

Creation Date

  • April 26, 2012

Added to The UNT Digital Library

  • Jan. 16, 2013, 12:47 p.m.

Description Last Updated

  • Dec. 1, 2023, noon

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 204

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Lovecchio, Elisa; Allegrini, Paolo; Geneston, Elvis L.; West, Bruce J. & Grigolini, Paolo. From self-organized to extended criticality, article, April 26, 2012; [Lausanne, Switzerland]. ( accessed May 21, 2024), University of North Texas Libraries, UNT Digital Library,; crediting UNT College of Arts and Sciences.

Back to Top of Screen