

Association for Information and Image Management

1100 Wayne Avenue. Suite 1100 Silver Spring, Maryland 20910 301/587-8202

MANUFACTURED TO AIIM STANDARDS BY APPLIED IMAGE, INC.

Conf-9405144-3

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory requests that the publisher identify this article as worked performed under the auspices of the U.S. Department of Energy.

Proposal for Experiments with Actinide Elements

It is well known that actinides with even number of neutrons, for example $_{93}Np^{237}$, $_{94}Pu^{238}$, $_{94}Pu^{240}$, $_{95}Am^{241}$, $_{95}Am^{243}$, and $_{96}Cm^{244}$, can most probably be made critical with fast neutrons. Computer calculations and replacement measurement techniques have predicted that critical masses for these elements may be in kilogram quantities. Nonetheless, no direct measurements have been performed to estimate the critical masses for these elements.

Similarly, other actinides such as $94Pu^{241}$, $95Am^{242m}$, $96Cm^{243}$, and $96Cm^{245}$ among others with odd number of neutrons more likely can be made critical because they exhibit high fission cross sections at low neutron energies. Analytical studies indicate that when these elements are mixed and reflected with water, their critical masses may be in gram quantities. However, no experiments have been performed to confirm these results.

Thus, we have completed an analytical study where critical masses for some of these elements were calculated with the Monte Carlo Neutron Photon (MCNP) Transport computer code. For each case, a total of three-hundred-thousand source histories was run and continuous energy cross section data used.

For those actinide elements with even number of neutrons, the computer model consisted of a sphere which was assumed to contain any of the even-neutron nuclides in a metal form. This sphere was surrounded in some cases by a reflector which was assumed to be beryllium, steel, or water. On the other hand, for those actinides with odd number of neutrons, the computer model consisted of a sphere in which any of those odd-neutron nuclides was assumed to be idealized metal-water mixtures. The sphere was surrounded by a 20 cm thick water or beryllium reflector. The computer models are shown in Fig. 1 and 2.

Table 1 shows the critical masses obtained in this analytical study for some of the actinide elements. In addition, critical masses that have been deduced from indirect data from reactivity coefficient measurements are presented in this table.

It is important to point out that for those actinide elements with even number of neutrons, there are significant uncertainties in the critical masses predicted by computational calculations compared to those estimated by the data from the reactivity coefficient measurements as seen in table 1 and reported in Ref. 1. No experiments have been performed involving actinide elements with odd number of neutrons. Therefore, we strongly believe that an experimental program for actinides should be established so that we can address the inadequacies seen in table 1 and be able to benchmark our computational calculations against well-characterized experiments.

and the second second

Figure 1 Computer model used for actinide elements with even number of neutrons.

Figure 2 Computer model used for actinide elements with odd number of neutrons.

Even-neutron Nuclides					
<u>95-1</u> p	Computational	Results	Indirect Experimental Measurements		
Type of Reflector	Total Np-237 Mass (kg)	keff	Type of Reflector	Critical Mass (kg)	
Bare	55.9	0.992 ± 0.0023	Bare	88	
Steel	33.0	0.988 ± 0.0028	Steel	55	
Water	51.1	0.992 ± 0.0029	Water	83	
Beryllium	33.0	0.953 ± 0.0027	Beryllium	N/A	
Nat. Uranium	33.0	0.993 ± 0.0024	Nat. Uranium	N/A	
94Pu ²⁴²					
Computational Results			Indirect Experimental Measurements		
Type of Reflector	Total Pu-242 Mass (kg)	keff	Type of Reflector	Critical Mass (kg)	
Bare	85.0	0.994 ± 0.0014	Bare	90	
Water	80.0	0.997 ± 0.0014	Water	84	
Steel	50.0	1.000 ± 0.0018	Steel	56	
Beryllium	60.0	0.995 ± 0.0016	Beryllium	N/A	
95Am ²⁴¹					
	Computational	Results	Indirect Experimental Measurements		
Type of Reflector	Total Am-241 Mass (kg)	keff	Type of Reflector	Critical Mass (kg)	
Bare	110.0	0.999 ± 0.0015	Bare	58	
Steel	62.0	0.995 ± 0.0018	Steel	34	
Water	95.0	0.993 ± 0.0017	Water	51	
Beryllium	80.0	0.995 ± 0.0016	Beryllium	N/A	
95Am ²⁴³					
Computational Results			Indirect Experimental Measurements		
Type of Reflector	Total Am-243 Mass (kg)	keff	Type of Reflector	Critical Mass (kg)	
Bare	150.0	0.993 ± 0.0014	Bare	N/A	
Steel	95.0	0.996 ± 0.0017	Steel	N/A	
Water	140.0	0.997 ± 0.0019	Water	N/A	
Beryllium	110.0	0.995 ± 0.0019	Beryllium	N/A	

Table 1 Critical masses for actinide elements.

,

•

94Pu ²⁴¹								
Computational Results								
Metal (kg)			Solution (g)					
Type of Reflector	Total Pu-241 Mass (kg)	keff	Type of Reflector	Total Pu-241 Mass (g)	keff			
Bare	13.0	1.005 ± 0.0014	Water	270.0	1.000 ± 0.0016			
Water	5.7	0.994 ± 0.0016	Beryllium	105.0	0.995 ± 0.0017			
Beryllium	3.0	0.999 ± 0.0019	-	-	-			
95Am ^{242m}								
Computational Results								
Metal (kg)			Solution (g)					
Type of Reflector	Total Am-242m Mass (kg)	keff	Type of Reflector	Total Pu-241 Mass (g)	keff			
Bare	9.0	0.991 ± 0.0012	Water	20.0	0.999 ± 0.0020			
Water	3.25	1.007 ± 0.0020	Beryllium	6.6	0.995 ± 0.0018			
Beryllium	1.55	0.997 ± 0.0021	-	-	-			

Table 1 Critical masses for actinide elements (cont.)

.

References

• . • •

1 C. C. Byers, G. E. Hansen, et al, "Reactivity Coefficients of Heavy Isotopes in LASL's Fast Critical Assemblies," Trans. Am. Nucl. Soc., 28, 295 (1978).

DATE FILMED 6/28/94

