PNL-3826 UC-11

ATMOSPHERIC RADIONUCLIDE CONCENTRATIONS MEASURED BY PACIFIC NORTHWEST LABORATORY SINCE 1961

J. A. Young C. W. Thomas

March 1981

Prepared for the U.S. Department of Energy . under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory Richland, Washington 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

AT MOSPHERIC RADIONUCLIDE CONCENTRATIONS MEASURED BY PACIFIC NORTHWEST LABORATORY SINCE 1961

ABSTRACT

The atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, radon and thoron decay and the SNAP-9A burn-up (238 Pu) have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. Following the U.S.A.- U.S.S.R. test series of 1961-62 the concentrations of the longer lived nuclear weapons radionuclides reached a maximum in the spring of 1963. The concentrations then decreased until 1967, when the Chinese conducted their first high-yield atmospheric nuclear test. In recent years, the frequency of high-yield Chinese tests has decreased, so by 1979 the average 137 Cs (30 yr) concentration had fallen to 1.3% of the 1963 concentration. However, in October of 1980 the Chinese conducted a fairly high-yield test, so the concentrations will increase again in the spring of 1981.

The measurement of atmospheric radionculide concentrations during the past several years has produced considerable valuable information on the rates of atmospheric mixing and deposition processes which can be used to predict the behavior of other particulate pollutants. The measurements have shown, for example, that the ground-level concentrations of radionuclides released into the stratosphere increase to a maximum each spring and eventually begin to decrease with an 11-month half-time. Only the time delays before the appearance at ground-level and before the beginning of the concentration decrease depend upon the release location in the stratosphere, with middleand high-latitude lower stratospheric releases showing the shortest delay time, and equational upper stratospheric releases showing the longest delay time. The concentrations of cosmogenic and nuclear weapons radionculides averaged more than twice as high at Richland, Washington, than at stations at about the same latitude on the coast of Washington because of vertical mixing

iii

caused by the Cascade Mountains between the coastal stations and Richland. The concentration difference was greatest in the summer when stability is highest over the ocean and lowest over the continent. Comparison of radio-nuclide ratios between Richland and Barrow, Alaska, indicate that most of the 46 Sc, 55 Fe, 60 Co, 65 Zn, and 134 Cs measured at Richland came from the plutonium-producing nuclear reactors operating on the Hanford Reservation 20 to 30 miles north of Richland. (All but one of these reactors was shut down in the late 1960's and early 1970's.)

CONTENTS

,

ABSTRACT	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
INTRODUCT	ION	•	•	•	•	•	•	•	•	•	•	•	•	1
EXPERIMEN	TAL	•	•	•	•	•	•	•	•	•	•	•	•	3
RESULTS A	ND DIS	scuss	ION	•	•	•	•	•	•	•	•	•	•	5
NUCL	EAR WE	EAPON	IS PRO	DUCED	RADI	ONUCL	IDES	•	•	•	•	•	•	6
	Avera	age Y	'early	Conce	entra	tions	•	•	•	•	•	•	•	6
	Stra	tosph	eric f	Resid	ence	Time	•	•	• .	•	•	•	•	12
	Pluto	onium	1–238	•	•	•	•	•	•	•	•	•	•.	15
	Seaso	onal	Varia	tions	•	•	•	•	•	•	•		•	19
COSM	OGENI	C RAD	IONUCI	LIDES	•	•	•	•	•	•	•	•	•	25
	Avera	age Y	early	Conce	entra	tions	•	•	•	•	•	•	•	25
	Seaso	onal	Varia	tions	•	•	•	•	•	•	•	•	•	28
LEAD	-210	•	•	•	•	•	•	•	•	•		•	•	37
NUCL	EAR RI	EACTO	R PRO	DUCED	RADI	ONUCLI	IDES	•	•	•	•	•	•	42
	Avera	ige Y	'early	Conc	entra	tions	•	•	•	•	•	•	•	42
	Seaso	onal	Varia	tions	•	•	•	•	•	•	•	•	•	43
SUMMARY A	ND CO	NCLUS	IONS	•	•	•	•	•	•	•	•	•	•	47
REFERENCE	S		•	•	•	•	•	•	•	•	•	•	•	50

FIGURES

1	Average Yearly Concentrations of 106_{Ru}^{-137} Cs and 144_{Ce} at Richland, Washington	•	•	11
2	Concentrations of ⁹⁵ Zr in Stratospheric Air (in Picocuries per 100 Standard Cubic Meters) in March 1972 .	•	•	14
3	Concentrations of SNAP-9A ²³⁸ Pu at Richland, Washington	•	•	16
4	Plutonium-238 Distribution Cross Section During September- November 1965	•		17
5	Plutonium-238 Distribution Cross Section During June- August 1966	•	• .	18
6	Average Seasonal Variations of 137Cs at Richland (1962- 1979), Barrow (1965-1979) and Makah-Quillayute (1968-1970, 1973-1974)	•	•	21
7	Seasonal Variations of ¹³⁷ Cs at Quillayute, Richland, Salt Lake City, Rocky Flats, and New York City During 1973 and 1974	•	•	23
8	Radionuclide Disintegration Rates as a Function of Altitute at 40° - 35°N, 112° - 188°W During 1967-1969	•	•	24
9	⁷ Be Concentrations, Sunspot Number, and Neutron Flux (Green River, Canada) as Functions of Time	•	•	26
10	Average Yearly ²² Na Concentrations at Richland and Barrow	•	•	29
11	Seasonal Variations of ⁷ Be at Richland (1964-1979), Barrow (1966-1979) and Makah-Quillayute (1967-1970, 1973-1975)	•		30
12	Seasonal Variations of ²² Na at Richland (1967-1979), Barrow (1967-1979) and Makah-Quillayute (1967-1970, 1973-1975)	•	•	31
13	Seasonal Variations of ⁷ Be, ²² Na, and ¹³⁷ Cs at Makah-Quillayute (1968-1970, 1973-1974)	•	•	33
14	Ratios of 7 Be and ^{22}Na Concentrations to (A) Production Rate and (B) ^{24}Na Concentration		•	35
15	Seasonal Variation of ²¹⁰ Pb at Richland (1975-1979) and Barrow (1974-1979)	•	•	38
16	Seasonal Variations of ²¹⁰ Pb at Barrow, Alaska and Radon at Kodiak, Alaska and Wales, Alaska	e	•	39

19

.

17	Average $210p_b$ and Radon Concentrations Versus Altitude over the West Central United States	•	•	41
18	Average Yearly Concentrations at Richland, Washington, of Radionuclides Released by Hanford Nuclear Reactors .	•	•	44
19	Seasonal Variations at Richland of Radionuclides Released by Hanford Nuclear Reactors	•	•	45

TABLES

.

1.	Average Annual Radio	onuclide	Conce	ntration	s in S	urface	Air	at		
	Richland, Washingtor	n .	•	• •	•	•	•	•	•	7
2.	Average Annual Radio Barrow, Alaska .	onuclide	Conce	ntration:	s in S	urface	Air	at	•	9

.

INTRODUCTION

Large quantities of radionuclides were released into the atmosphere by the nuclear tests conducted by the U.S.S.R. at Novaya Zemlya $(75^{\circ}N, 55^{\circ}E)$ in 1961 and 1962 and by the U.S.A. at Christmas $(2^{\circ}N, 157^{\circ}W)$ and Johnston $(17^{\circ}N, 169^{\circ}E)$ Islands in 1962. These countries have not conducted atmospheric tests since that time, but atmospheric nuclear tests conducted by the French in the Sahara Desert $(27^{\circ}N, 0^{\circ})$ and the South Pacific $(21^{\circ}S, 137^{\circ}W)$ from 1960 through 1971, and by the Chinese at Lop Nor $(40^{\circ}N, 90^{\circ}E)$ from 1964 through the present time have maintained atmospheric radionuclide concentrations at appreciable levels (Carter and Moghissi 1977, Perkins and Thomas 1980).

There has been considerable concern over the health hazard presented by these radionuclides, but it has also been recognized that atmospheric mixing and deposition rates can be determined from their measurement. Therefore, Pacific Northwest Laboratory began the continuous measurement of the atmospheric concentrations of a wide spectrum of radionuclides produced by nuclear weapons, nuclear reactors, cosmic rays, and radon and thoron decay at Richland, Washington (46°N, 119°W) in 1961 and Barrow, Alaska (71°N, 157°W) in 1964, and has continued these measurements through the present time. Radionuclide concentrations were also measured at Rio de Janeiro, Brazil (23°5, 43°W) from 1966 through 1970; at Barbados, British West Indies (13°N, 60°W) from 1968 through 1970; and near the Pacific coast of Washington State at Makah (48°N, 125°W) from 1967 through 1970 and Quillayute (48°N, 125°W) from 1973 through 1975. Makah and Quillayute are only about 30 miles apart and have about the same elevation and meteorology, so the concentrations measured at these two stations will be discussed together under the heading Makan-Quillayute in this paper. The concentrations measured at Rio de Janeiro and Barbados are reported in the tables, but they will not be discussed in this report.

Vertical profiles of radionuclide concentrations were measured at altitudes from 1.5 km to 19 km, mostly near Albuquerque, New Mexico $(35^{\circ}N, 107^{\circ}W)$ and Spokane, Washington $(48^{\circ}N, 117^{\circ}W)$ from 1967 through 1969, and east of

Barbados in the summer of 1969. These measurements are reported in the tables, but they will only be discussed whenever they shed light upon the ground-level measurements.

•

1 4110

This report will discuss the concentrations of the longer-lived radionuclides (T 1/2 > 12 days). The concentrations of shorter-lived radionuclides measured following Chinese nuclear tests since 1972 are discussed in another report.

EXPERIMENTAL

Air samples are collected at ground level using Roots Type RAI blowers to draw air through air filters. In the past, millipore filters have been used, but in recent years samples have been collected on IPC-1478 filter paper because it is cheaper and easier to handle than millipore filters, and does not plug up as readily. It has been shown that at the face velocities used, IPC filter paper has nearly a 100 collection efficiency for radionuclides attached to aerosol particles (Van den Akkev 1960, Friend et al. 1961). At the present time, a 17 m³/min Roots blower is being used at Barrow and a 10 m³/min blower at Richland. These flow rates give face velocities of about 700 m/min across the filters at both sites. Air samples were collected above ground level aboard RB-57 aircraft using ram pressure to force air through IPC filters.

The air filter samples are pressed into disks one-half inch thick and two inches in diameter and counted directly, without chemical separation, on gamma-ray spectrometers to obtain the concentrations of a wide spectrum of radionuclides. Chemical separations are also performed on portions of some of the filters to obtain the concentrations of radionuclides such as 55 Fe, 90 Sr, 238 Pu, 239 Pu and 241 Am which cannot be measured directly by gamma-ray spectrometry.

All of the concentrations measured by gamma-ray spectrometry before 1966 were measured using anticoincidence shielded NaI(T1) multidimensional gamma-ray spectrometers (Perkins 1965). The energy resolution of NaI(T1) counters is not good enough to prevent interferences between several radionuclides which emit gamma rays of similar energy. However, many radionuclides emit two or more gamma rays simultaneously. The multidimensional NaI(T1) counters take advantage of this fact to minimize interferences between radionuclides. The sample to be counted is placed between two large NaI(T1) crystals. When one of the simultaneous gamma rays emitted by a radionuclide deposits its energy in one crystal, and the other deposits its energy in the second crystal, the event is stored in a 4096 channel computer memory at a location uniquely determined by the individual energies of the two gamma rays. In this manner, the

interferences of radionuclides which emit simultaneous gamma rays with those which emit either single or simultaneous gamma rays are greatly reduced. However, the interferences between radionuclides that emit single gamma rays are not reduced, so these multidimensional counters are still not able to resolve the gamma rays of many radionuclides. For example, the gamma rays emitted by the parent-daughter pair, 95Zr and 95Nb, cannot be resolved, so the sum of the disintegration rates of 95Zr and 95Nb have been reported as 95ZrNb when they were measured with NaI(T1) counters.

Because of the inability of the NaI(T1) counters to resolve the gamma rays emitted by several radionuclides, we began counting samples in late 1966 with anticoincidence-shielded Ge(Li) diodes, which have approximately 60 times better energy resolution than NaI(T1) crystals (Cooper et al. 1968).) The early Ge(Li) diodes were quite small and therefore had low counting efficiencies, however, so they gave significantly poorer numbers for many of the radionuclides than did the NaI(T1) counters. Therefore, we counted air samples with both NaI(T1) and Ge(Li) counters for a few years. As larger Ge(Li) diodes became available, more and more radionuclides could be measured better with the Ge(Li) diodes. Therefore, since late 1970 we have counted air samples only with Ge(Li) diodes.

RESULTS AND DISCUSSION

The atmospheric radionuclide concentrations that have been measured at ground level at Barrow, Alaska; Richland and Makah-Quillayute, Washington; Barbados, British West Indies; and Rio de Janeiro, Brazil, and above ground level by aircraft are reported in tables at the end of this report. The error limits reported in the tables are the 1 σ statistical counting errors associated with the random fluctuations in the counting rates. They do not include other sources of error such as counter drift or malfunction, standardization error, or errors in the calculated volumes of sampled air, because the magnitudes of these errors are unfortunately not known. Therefore, the reported error limits represent minimum possible rather than true error limits. It has been estimated that these other sources of error may contribute as much as a 10% error to the concentrations. Therefore, when the reported statistical counting error is significantly larger than 10%, it probably represents a fairly accurate estimate of the true error, but when it is less than 10% it may represent only a fraction of the total error.

Only a few error limits have been calculated for the single gamma-rayemitting radionuclides that were measured using NaI multidimensional counters, since counter gain shift generally resulted in errors that were larger than the rather small statistical counting errors.

The method of reporting measured concentrations that were near or below the detection limits of the counters has changed since measurements were begun in 1961. For the first few years calculated concentrations that were zero or negative were reported as not detectable (abbreviated ND in the tables). It was soon realized that this method was not satisfactory because it gave no indication of the maximum possible concentration. Therefore, we now report calculated concentrations that are zero or negative as less than 2σ statistical counting error. Concentrations that are very small are reported as calculated even when they are much smaller than the error limits. This allows more accurate concentration averages to be calculated than if just less than numbers were reported. It also gives a better indication of whether or not the actual concentrations, are likely to be significantly below the detection limit.

NUCLEAR WEAPONS PRODUCED RADIONUCLIDES

Average Yearly Concentrations

The average yearly radionuclide concentrations at Richland, Washington, from 1961 through 1979 and for Barrow, Alaska, from 1965 through 1979 are reported in Tables 1 and 2, and the concentrations of three of the nuclear weapons-produced radionuclides at Richland are plotted versus time in Figure 1. The size and timing of the Chinese atmospheric tests are also shown in Figure 1. Measurements of atmospheric radionuclide concentrations by several investigators following numerous nuclear tests have shown that the rate of transfer of radionuclides from the stratosphere into the troposphere reaches a maximum in the spring, and that radionuclides introduced into the lower stratosphere at middle or high latitudes are generally transferred into the troposphere in maximum quantities the following spring. Therefore, the concentrations of the longer-fixed radionuclides introduced into the atmosphere by the 1961-62 nuclear test series by the U.S.A. and the U.S.S.R. did not reach a maximum at Richland until the spring of 1963. However, the concentrations of the shorter-lived radionuclides 95 ZrNb (65 d), 103 Ru (40 d), 140 Ba (12.8 d), and 141 Ce (32.5 d) decreased after 1961 because of radioactive decay.

The concentrations of the nuclear weapons-produced radionuclides decreased rapidly until about 1967, when the Chinese conducted their first high-yield nuclear test at Lop Nor, $(40^{\circ}N, 90^{\circ}E)$. The concentrations of the shorter-lived radionuclides decreased faster than did the concentrations of the longer-lived radionuclides. In 1968 the concentrations of ^{137}Cs (30 yr) at Richland averaged 7.8% of the maximum concentrations measured in 1963, but the ^{103}Ru (40 d) concentrations averaged only 0.2% of the maximum concentrations measured in 1961. After 1968, the radionuclides increased somewhat (reaching a maximum in 1971) because of four 3-megaton tests conducted by the Chinese from 1967 through 1970 (Carter and Moghissi 1977, Perkins and Thomas 1980). In 1971, the ^{137}Cs concentrations at Richland averaged 11% of the 1963 concentrations. The Chinese conducted only two high-yield tests from 1971 until late 1976, so the radionuclide concentrations decreased again during this period. By 1976

Average Annual Radionuclide Concentrations in Surface Air at Richland, Washington (46°21'N, 119°17'W) TABLE 1.

· · · · ·

.

1. 1. 1.

3

ı,

7 _{8e} 22 _{Na} 46 _{Sc} 54 _{Mn}	22 _{Na} 46 ₅ c 54 _{Mn}	46 ₅ c 54 _{MD}	54 Min		55 Fe	57 _{Co}	Second Second	60 Co	Per Minu 65 ₂₀	le Per 1 68	с 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	95 ZrMb	95 ₂ r	95 _{Mb}	103 _{Ru}	106 _{ku}
						1						10, 550			6,820	
.388 64.9	.388 64.9	64.9	64.9					1.19		96 .		4,380			2,300	766
.642 238	.642 238	238	238					1.82	16.2	1.35	95.7	0/6,£				668
170 .329 .201 49.9 107	.329 .201 49.9 107	.201 49.9 107	49.9 107	107				.741	26.0	.608	35.5	81.1				284
158 .118 .289 9.70 75.0	.118 .289 9.70 75.0	.289 9.70 75.0	9.70 75.0	75.0				.945	6.66	100.	16.7	38.0				6.03
170 .051 .263 2.13 25.6	.051 .263 2.13 25.6	.263 2.13 25.6	2.13 25.6	25.6				1.21	16.1	500 .	9.50	9.50			20.2	30.2
179 .034 .489 .770 19.5 .048 .	. 034 . 489 . 770 19.5 . 048 .	.489 .770 19.5 .048 .	. 170 19.5 .048 .	19.5 .048 .	.048	•	146	. 750	5.81	.064	4.25	42.4			19.4	14.5
202 .042 1.14 1.01 13.6 .106 .	.042 1.14 1.01 13.6 .106 .	1.14 1.01 13.6 .106 .	1.01 13.6 .106 .	13.6 .106 .	.106	•	300	.968	2.87	.006	5.41		24.1	47.5	11.3	47.
199 .032 1.35 .767 4.65 .166 .1	.032 1.35 .767 4.65 .166 .	1.35 .767 4.65 .166 .	.767 4.65 .166 .	4.65 .166 .1	. 166	-	105	.200	1.11	E 10.	6.22		60.1	1117	40.1	54.8
210 .024 .544 .940 3.46 .280 .	.024 .544 .940 3.46 .280 .	.544 .940 3.46 .280 .	.940 3.46 .280 .	3.46 .280 .	. 280	•	129	.182	50E .	.154	6.93		55.5	120	21.4	128
208 .036 MD 1.34	. 036 ND 1.34	. 113. 1.34	. 113. • • • • • • • •	. 111 .	. 1112.	•	105	.058	.102	.442			84.4	159	28.6	75.3
237 .02 9 M 0 .220 .023 .0	. ETO. 022. OM 020.	ND .220 ND	. 220	. 670.	. £70.		938	.056	1 80 ⁻	.030			27.4	37.2	19.5	14.9
242 .030 MD .067 .022 .	.030 MD .067 .022	ND .067 .022 .	. 067	. 022	. 020.	-	600	110.	610.	DN			2.05	2.81	3.46	2.6
234 .025 MD .489 .024	.025 ND .489 .024 .	ND .489 .024 .	. 489 024 .	. 024	. 120.	-	810	F 60.	500.	\$ 50.			25.8	50.8	6.37	25.6
241 .024 ND .293 .016 .(.024 ND .293 .016 .0	ND .293 .016 .0	. 293 016 . (. 016 .(. 016.		EIC	.054	560.	.148			10.4	21.2	2.62	11.4
238 .022 ND .092 .03	.022 ND .092 .032 .2	AN .092 .092 .0	. 022	. 027 .2	.027 .2	~	63	611.	.015	Q			9.53	8.41	10.1	1.60
1. P20. 85.E 88P. 6N 0E0. L22	1. P30. 83.29 .499	RD .499 3.29 .054 .1	. 499 3.29 .054 .1	3.29 .054 .1	I. Ado.	-	55	620.	90.	.251	4.99		45.2	83.1	23.1	26.3
212 .021 .011 .349 6.28 .026 .	.021 .011 .349 6.28 .026 .	.011 .349 6.28 .026 .	. 349 6.28 .026 .	6.28 .026 .4	. 026		026	.203	80.	640.	4.96		3.15	5.87	6.88	18.7
208 .017 .013 .084 1.55 .005 .	.017 .013 .084 1.55 .005 .	.013 .084 1.55 .005 .	. 004 1.55 .005	1.55 .005 .	. 005	•	048	.052	.016	1 0.	10.1		FEO.	.053	.085	3.10

•

• 0

TABLE 1. (contd)

					-	lisintegrati	ions Per Minut	te Per 10 ³ M	~,				
Year	110mAg	124 _{Sb}	125 _{5b}	134 _{C5}	13/CI	140 _{8a}	141 _{Ce}	144 _{Ce}	155 _{Eu}	210 _{Pb}	238 _{Pu}	239 _{Pu}	241 Am
1961						1,120	9,820						
1962			87.5	.38	98.1	3,420	1,850	1,480			.023	.858	
1963	1 /1.	4.89	149	.511	152			1,800	84.8			£09°	.253
1964		1.70	1.11	.425	78.2			471	64.1		.00	.4/0	.120
1965	.060	660.	27.8	.185	34.4	14.5		3 8. 4	14.1		900.	395.	.153
1966	.050	.059	18.7	.182	18.9	11.2	43.4	27.9	6.15		600.	.143	.078
1967	.055	.142	6.60	.050	11.7	9.72	1.11	19.7	.820		2E0.	£.1.	.045
1968	.084	.034	6.54	.162	11.9	6.79	10.1	118	1.60		.028	.114	3 50.
1969	.040	.01	1.11	.178	14.0	2.36	J .3E	139	1.71		.041	.116	.0046
0791	.029	QN	61.1	.188	18.4	1.38	16.7	156	2.34		610.	ונו.	1600.
1791	.026	QN	6.06	.092	16.3	1.50	17.2	151	1.17		.00	121.	6500.
1972	QN	QN	09.1	.243	14.5	5.85	20.2	30.0	.42		.007	9/0.	.0025
19/3	QN	QN	č 6ć.	.021	J.02	1.89	1.94	4.64	.152		.0025	.0232	
19/4	NU	ŊŊ	2.55	.012	6.19	789.	19.6	59.2	.608		6100.	EEGO.	
6/61	20.	.029	1.34	010.	3.68	880.	1.30	26.6	3.03	18.1	6100.	.0366	
1976	0N	.028	.269	.000	1.75	10.7	11.6	4.16	.085	23.9	9000.	.0168	
1761	QN	64 0.	2.5/	110.	5.23	5.44	15.2	56.B	844.	23.4	6200.	/6£0.	0100.
1978	.062	61.	2./3	.020	5.68	10.9	4.07	3/.3	695.	8.61	8100.	1850.	.0027
6/61	840.	.027	189.	(10.	1.98	306.	.174	4.9/	ین . روید	25.4	.0008	.0220	.0034

•

	TABLE 2.	Average Annual	Radionuclide Concentrations	in Surfac
AIF AL BAFFOW, ALASKA (/I_LU'N, 156-30'W)		AIF AE BAFFOW.	Alaska (/1_10'N. 156_30'W)	

:

	dN ⁵⁶				17.2	19.2	16.2	25.8	10.3	16.9	16.5	3.75	17.8	4.37	7 .032
face	rub ⁹⁵ Zr	96	95	•	9.12	9.19	7.34	12.6	6.78	8.47	9.11	2.56	9.45	1.98	.01
n Juri	95 _{Z1}	з.с	7.9	13.9											
ons i (M) 3	88γ	.026	.003	.026	.002	.003	.021	.075	DN	.013	160.	QN	.049	.036	.002
entfati 56 ³ 0'	65 _{Zn}	.035	.155	.062	.267	.105	.12	.012	QN	QN	.023	.007	.015	600.	.001
Conce 0'N, 1 te Per	60 _{C0}	.078	.032	.013	.026	.016	.006	.008	QN	QN	.008	.002	900.	.008	.001
uciige (71 ⁹ 1 r Minu	58 _{C0}			.022	.108	.082	.066	.060	QN	ND	.012	.081	.078	.018	.003
kagion Alaska ons Pe	57 _{C0}			.025	.036	.054	.054	.063	.023	UN	600.	600.	.015	.013	.002
: Annual Barrow, ntegrati	55 _{Fe}	11.6	6.63	3.22	2.44	.821	.874								
Air at Disi	54 _{Mn}	5.35	1.21	.175	.334	.210	.183	.296	.066	.138	.156	.026	.133	.190	.022
NE 2.	22 _{Na}	.066	.028	.014	.014	110.	.012	.014	ND	110.	110.	.010	110.	110.	.008
	7 _{Be}		117	85.0	81.0	95.9	68.7	84.7	101	115	120	123	129	108	0.16
	Year	1965	1966	1967	1968	1969	1970	161	1972-3	1974	1975	1976	1977	1978	1979

9

.

TABLE 2. (contd)

percer y

	ام ا									6	~	فسيد	Ś	ŝ	~
	210 _{Pl}									15.9	19.7	20.1	15.6	13.6	12.2
	155 _{Eu}								.146	.211	191.	.029	.142	.293	.067
	144 _{Ce}	49.2	8.83	3.93	26.2	30.8	26.9	32.3	7.54	19.6	16.6	1.61	13.4	17.4	2.14
er 10 ³	141 _{Ce}			3.08	4.25	5.30	2.07	2.93	3.80	.98	1.23	3.15	4.13	.725	.081
inute P	140 _{Ba}	2.84	8.38	7.57	2.74	.761	.48	.42	.68	.19	QN	1.50	3.74	.93	.08
s Per M	137 _{Cs}	14.8	7.87	2.76	3.64	2.58	2.34	2.84	1.08	1.92	1.80	168.	1.33	2.68	.688
oration	134 _{Cs}	.020	.006	ND	UN	ND	.008	110.	QN	QN	.006	.003	.005	.004	.002
Disinte	125 _{Sb}	11.5	3.73	06.	1.76	1.71	1.60	1.42	.456	.751	.719	.105	.728	1.47	.303
	124 _{St}		.014	QN	.045	.00	600.	.005	.012	QN	QN	ND	.016	.055	110.
	110m _{A9} 124 _{S1}		.008 .014	.003 ND	.013 .045	.000 000	.004 .009	.003 .005	ND .012	UN DN	ON ON	DN DN	.013 .016	.012 .055	.007 .011
	106 _{Ru} 110m _{A9} 124 _{St}	27.3	6.45 .008 .014	2.26 .003 ND	12.8 .013 .045	11.8 .009 .007	14.4 .004 .009	15.2 .003 .005	3.55 ND .012	7.81 ND ND	7.25 ND ND	.764 ND ND	6.99 .013 .016	11.4 .012 .055	1.45 .007 .011
	103 _{Ru} 106 _{Ru} 110m _{A9} 124 _{St}	27.3	3.77 6.45 .008 .014	6.66 2.26 .003 ND	4.01 12.8 .013 .045	6.42 11.8 .009 .007	2.74 14.4 .004 .009	4.58 15.2 .003 .005	2.75 3.55 ND .012	1.98 7.81 ND ND	2.66 7.25 ND ND	3.51 .764 ND ND	5.40 6.99 .013 .016	1.72 11.4 .012 .055	.056 1.45 .007 .011
	<u>year 103_{Ru} 106_{Ru} 110m_{Ag} 124_{St}</u>	1965 27.3	1966 3.77 6.45 .008 .014	1967 6.66 2.26 .003 ND	1968 4.01 12.8 .013 .045	1969 6.42 11.8 .009 .007	1970 2.74 14.4 .004 .009	1971 4.58 15.2 .003 .005	1972-3 2.75 3.55 ND .012	1974 1.98 7.81 ND ND	1975 2.66 7.25 ND ND	1976 3.51 .764 ND ND	1977 5.40 6.99 .013 .016	1978 1.72 11.4 .012 .055	1979 .056 1.45 .007 .011

.

.

8 L - L

ю.

n

н П. с. – Ас

ы. 11.1.1.1.

•

FIGURE 1. Average Yearly Concentrations of 106_{Ru} , 137_{CS} and 144_{Ce} at Richland, Washington. Also shown are the dates and yields of Chinese atmospheric nuclear tests (Perkins and Thomas 1980).

the ¹³⁷Cs concentrations at Richland had decreased to 1.2% of the 1963 concentrations. The Chinese conducted two high-yield tests in late 1976, causing the radionuclide concentrations to increase again in 1977. They conducted only three small tests in 1977 and 1978 and none in 1979, so the radionuclide concentrations decreased again through 1979. In 1979 the ¹³⁷Cs concentrations at Richland averaged only 1.3% of the 1963 concentrations and 17% of the 1967 concentrations. However, in October of 1980 the Chinese conducted a 0.2 to 1 megaton test, so concentrations will increase again in the spring of 1981.

Stratospheric Residence Time

Although low-yield nuclear tests leave significant amounts of radionuclides in the troposphere, most of the radionuclides produced by high-yield tests rise into the stratosphere (Ferber 1964, Peterson 1970). The residence time of radionuclides in the troposphere before they are deposited on the earth's surface is around a month or less (Junge 1963, Enhalt 1973, Martell and Moore 1974, Bleichrodt 1978). Therefore, except for the first few months following a nuclear test, the primary source of nuclear weapons-produced radionuclides in the troposphere is radionuclides that were first introduced into the stratosphere. As a result, the rate of decrease in the average annual radionuclide concentrations in the troposphere in periods when there is no nuclear testing should be equal to the rate of decrease in the concentrations in the lower stratosphere.

Measurements by several investigators of radionuclides released at different latitudes and altitudes in the stratosphere have shown that processes such as 1) gravitational settling (which increases with altitude in the stratosphere), 2) poleward transport in the upper stratosphere, 3) downward transport in the middle and high-latitude stratosphere during the winter and spring, and 4) meridional transport and diffusion more or less parallel to the tropopause in the lower stratosphere eventually produce remarkably similar radionuclide distributions in the stratosphere for different release altitudes and latitudes (List and Telequdas 1969, Feely et al. 1966, Machte et al. 1970, Krey et al. 1973). This distribution features a layer of maximum concentration in the lower stratosphere which slopes upward from the pole to the equator,

more or less parallel to the tropopause (Fig. 2). The time required to approach this distribution depends upon the location of the release, with minimum times required for releases in the lower mid-latitude or polar stratosphere and maximum times required for releases in the high equatorial stratosphere. Ground level measurements at Richland of radionuclides released at three different locations in the stratosphere have indicated that once this stratosphere distribution was approached, the stratospheric concentrations decreased at approximately the same rate for the three release locations. It is believed that this will also hold true for other release locations.

• • • • • • •

During the period from 1963 through 1966, the decay-corrected concentrations of several long-lived radionuclides decreased with an average half-time of 11 months at Richland, indicating that the concentrations in the lower stratosphere were decreasing at this rate. During this period there was little atmospheric testing. The French and Chinese conducted a few small tests, mostly in late 1966, but the yield of these tests was less than 0.5% of the yield of the 1961-62 test series (Carter and Moghissi 1977, Perkins and Thomas 1980). Therefore, the primary sources of radionuclides were the tests conducted by the U.S. at 2°N, 157°W and 17°N, 169°E in 1961 and the U.S.S.R. at 75°N, 55°E in 1961 and 1962. However, the total yield of the Russian tests was about eight times that of the U.S. tests (Peterson 1970). Also, about 60% of the total yield of the Russian tests was contributed by tests in 1962 (Carter and Moghissi 1977, Perkins and Thomas 1980), and much of the debris from the 1961 tests was transferred to the troposphere in 1962. Therefore, since almost all of the Russian debris stabilized below 20 km (Ferber 1964), it may be considered that radionuclides measured at Richland from 1963 through 1966 were mostly injected into the lower polar (75°N) stratosphere in 1962. These results indicate that radionuclides introduced into the lower polar stratosphere will produce maximum ground-level concentrations the following spring, and that the decay-corrected stratospheric and tropospheric concentrations will decrease from then on with an 11-month half-time.

FIGURE 2. Concentration of 95 Zr in Stratospheric Air (in Picocuries per 100 Standard Cubic Meters) in March 1972

The decay-corrected concentrations of long-lived radionuclides injected into the lower stratosphere at mid-latitudes $(40^{\circ}N)$ by Chinese tests also reached maximums the following year at Richland and Barrow and then decreased with an 11-month half-time. Following the 3-megaton Chinese test of October 14, 1970, the decay-corrected concentrations of the long-lived radionuclides reached a maximum in the spring of 1971 and decreased with an 11-month halftime from 1971 through 1973. The Chinese then tested a 2 to 3-megaton device on June 26, 1973, so the decay-corrected concentrations again increased to a maximum in the spring of 1974 and then decreased with an 11-month halftime from 1974 through 1976, when the Chinese conducted two more tests.

Plutonium-238

The concentrations of ²³⁸Pu (85 yr) introduced into the high equatorial stratosphere did not reach a maximum at Richland until five years after the release, but after that they decreased with a 12-month half-time (Figure 3). Plutonium-238 is released in small quantities by nuclear weapons tests. However, in April of 1974 a navigational satellite containing an electric power generator (SNAP-9A) using 238 Pu as a heat source burned up at an altitude of about 50 km at 11°S over the Indian Ocean, releasing 17 kCi of submicron-sized ²³⁸Pu particles (Hansen et al. 1965, Krey 1967, USAEC 1968). At the beginning of 1965, the ²³⁸Pu was still above 25 km in the stratosphere (List and Telegadas 1969). However, by September-November of 1965 layers of maximum concentration had developed in the lower stratosphere south of 30°S at an altitude of about 20 km, and north of 40° N at an altitude of about 30 km (Figure 4). By June-August of 1966, the concentration maximums were at about 20 km at middle and high latitudes of both hemispheres (Figure 5). Miyake (1970) reported that measurable concentrations of 238 Pu first appeared at Tokyo in late 1966. At Richland, ²³⁸Pu concentrations began to increase in the spring of 1966 (Figure 3). The 238 Pu/ 239 Pu ratio also increased, indicating that the 238 Pu originated from SNAP-9A rather than nuclear weapons tests. Even though the ²³⁸Pu concentrations had developed the characteristic concentration maximums in the lower stratosphere by the middle of 1966. ²³⁸Pu concentrations at Richland continued to increase until 1969, indicating that ²³⁸Pu was still

FIGURE 3. Concentrations of SNAP-9A ²³⁸Pu at Richland, Washington

FIGURE 4. Plutonium-238 Distribution Cross Section During September-November 1965. Isolines show average concentration (in disintegrations per minute per 10³ standard cubic feet), decay-corrected to April 1964.

FIGURE 5. Plutonium-238 Distribution Cross Section During June-August 1966. Isolines show average concentration in disintegrations per minute per 10³ standard cubic feet), decay-corrected to April 1964.

being transported downward from the high stratosphere (above the highest measurements) to the lower stratosphere in considerable quantities. From 1969 through 1976, however, the concentrations of SNAP-9A 238 Pu decreased with a half-time of 12 months, indicating that the majority of the 238 Pu had been transported to the lower stratosphere. After 1976 the concentrations of SNAP-9A 238 Pu were lower than the concentrations of nuclear weapons-produced 238 Pu, so it was no longer possible to observe the decrease in the concentrations of SNAP-9A 238 Pu.

About 80% of the SNAP-9A ²³⁸Pu was in the southern stratosphere during January-March, 1966, and only 20% was in the northern stratosphere (Krey 1967). Plutonium-238 concentrations remained significantly higher in the southern stratosphere than the northern stratosphere through at least 1972 (Krey et al. 1973). Therefore, exchange between the hemispheres in the stratosphere should have slowed the rate of decrease of ²³⁸Pu in the northern stratosphere. However, the measured rate of decrease in the ²³⁸Pu concentrations in the northern hemisphere was probably not significantly slower than the measured rates of decrease in the concentrations of radionuclides introduced into the northern stratosphere by the Chinese and the Russians, even though exchange between the stratospheres should have increased the rates of decrease in the northern hemispheric concentrations of these radionuclides. It therefore does not appear that exchange between the northern and southern stratospheres is rapid enough to change the rate of decrease in the radionuclide concentrations in the northern hemisphere by an amount that can be measured easily. Reiter (1978) has estimated that only about 16% of the air in the stratosphere of one hemisphere is exchanged with the stratosphere of the other hemisphere annually.

Seasonal Variations

The concentrations of nuclear weapons-produced radionuclides showed pronounced seasonal variations at Richland (46°N), Makah-Quillayute (48°N) and Barrow (71°N), but the variations were somewhat different at Barrow than at Richland or Makah-Quillayute. In addition, the concentrations showed large shorter-term variations that resulted from variations in processes such as wet deposition and vertical mixing. Therefore, it was necessary to average the

data over several years to obtain a clear picture of the average seasonal variations. Since the concentration levels varied considerably from year to year, it was also necessary to normalize each year's data in some manner before averaging the seasonal variations of different years. This was done by dividing the average concentration of eac.. month by the average concentration for the year. The average ratios of monthly to yearly concentration for the long-lived nuclear weapons-produced radionuclide 137Cs at Richland, Makah-Quillayute and Barrow are plotted versus month in Figure 6.

The radionuclide concentrations increased to a maximum in the spring at the three sites because of the spring maximum in the rate of transfer of radionuclides from the stratosphere into the troposphere through the tropopause gap. However, the concentrations reached a maximum in April at Barrow, but did not reach a maximum until one month later at Richland and Makah-Quillayute. The concentrations at Barrow then decreased to a minimum in August, but the concentrations at Richland and Makah-Quillayute did not reach a minimum until December, four months later.

The seasonal variations of other long-lived radionuclides have been almost identical to those of 137 Cs. Even the seasonal variations of the relatively short-lived radionuclides 95 Zr (65 d), 103 Ru (40 d), and 141 Ce (32.5 d) were generally almost identical to those of the longer-lived radionuclides, although there were a couple of years in which the 95 Zr, 103 Ru and 137 Cs concentration variations were clearly controlled by the timing of the low-yield Chinese tests. It therefore appears that the primary source of these and longer-lived radionuclides since 1962 has been nuclear debris that was first injected into the stratosphere, despite the fact that the Chinese have conducted several low-yield tests which released large quantities of radionuclides having shorter half-lives than 141 Ce (32.5 d) have been controlled by the timing of these low-yield tests, however, indicating that their primary source has been debris released into the troposphere.

The concentrations of the nuclear weapons radionuclides have averaged 3.8 times higher at Richland than at Barrow, at least partly because radionuclides are transferred from the stratosphere into the troposphere primarily through

сü

FIGURE 6. Average Seasonal Variations of 137Cs at Richland (1962-1979), Barrow (1965-1979) and Makah-Quillayute (1968-1970, 1973-1974)

the tropopause gap at mid-latitudes. The fact that radionuclides began to decrease at Barrow after April, when the concentrations were still increasing at Richland, is probably due to the decrease in the rate of transport of radionuclides from middle to high latitudes which occurs when meridional mixing decreases in the spring and summer. Because of the relatively short residence time of radionuclides in the troposphere, the concentrations at Barrow would be expected to decrease when the transport of radionuclides from mid-latitudes decreased. The increase in the concentrations at Barrow after August probably results from the increase in meridional mixing which occurs in the fall and winter.

The concentrations of the nuclear weapons radionuclides at Richland also averaged about 2.7 times higher than those at Makah-Quillayute, even though Richland is at about the same latitude as Makah-Quillayute. Some of the difference could be due to the fact that precipitation is very heavy at Makah-Quillayute (250 cm/yr), but is very light at Richland (16 cm/yr). However, the concentration difference was greatest during the summer, when rainfall is light at both locations (Figure 7). The higher concentrations at Richland are probably due primarily to the vertical mixing that occurs when air passes over the Cascade Mountains going from the Washington coast to Richland in eastern Washington. Vertical profiles of radionuclide concentrations measured by Pacific Northwest Laboratory north of Richland showed that the radionuclide concentrations doubled for every 1.5 to 2 km increase in altitude in the lower troposphere, so vertical mixing would increase ground-level concentrations considerably (Figure 8). Concentrations measured by the Environmental Measurements Laboratory (EML) at Salt Lake City, Utah (41°N, 111°W) and Rocky Flats, Colorado (40°N, 105°W) were even higher than those at Richland (EML 1979), indicating continued vertical mixing as the air passed over additional mountain ranges (Figure 7). The radionuclide concentrations measured by EML at New York City (41°N, 74°W), however, averaged somewhat lower than those at Richland, but still over twice as high as those at Makah-Quillayute.

FIGURE 7. Seasonal Variations of 137Cs at Quillayute, Richland, Salt Lake City, Rocky Flats, and New York City During 1973 and 1974. Average concentrations for the period are given in parentheses.

п

н.

с. н.

Radionuclide Disintegration Rates as a Function of Altitute at 40°-35°N, 112°-188°W During 1967-1969 FIGURE 8.

n,

10 I

COSMOGENIC RADIONUCLIDES

Average Yearly Concentrations

<u>Beryllium-7</u> - Spallation reactions of cosmic rays with atmospheric gases produce ⁷Be (53 d), ²²Na (2.6 yr) and several other radionuclides. The production rates of these cosmogenic radionuclides per gram of air increase by three to four orders of magnitude between ground level and the lower stratosphere, and also increase with increasing latitude, especially at higher altitudes (Lal and Peters 1962, Young et al. 1970).

The average concentrations of ${}^{7}\text{Be}$ at Richland and Barrow have varied with time, but the variation has been different than that of the nuclear weapons radionuclides (Figure 9). The ${}^{7}\text{Be}$ production rate should be proportional to the cosmic ray flux in the earth's atmosphere. Therefore, the production rate should vary inversely with the sunspot number, since the magnetic fields associated with sunspots inhibit the penetration of cosmic rays (especially those with low magnetic rigidity) into the solar system. This reduction should be greatest at high altitudes and latitudes, because low rigidity cosmic rays are deflected toward polar regions by the earth's magnetic field, and are also less able to penetrate the earth's atmosphere. According to Lal and Peters (1962), the primary cosmic ray intensity at 45°N was 40% lower during the solar maximum of 1958 than during the solar minimum of 1954, and the cosmogenic radionuclide production rate was 24% lower in 1958 than in 1954.

The ⁷Be concentrations at Richland and Barrow have shown the expected correlation with the cosmic ray (neutron) flux, and anticorrelation with sunspot number, except at Richland from 1964 through 1967, when the ⁷Be concentrations were lower than would be predicted from the neutron flux. It is possible that the low reported average ⁷Be concentrations at Richland from 1964 through 1967 resulted from experimental error, since ⁷Be was measured at Richland using NaI(T1) counters before 1968. Beryllium-7 is particularly difficult to measure with NaI(T1) counters in the presence of large amounts of ¹⁰³Ru because 1) the gamma rays emitted by ⁷Be and ¹⁰³Ru have similar energy, 2) neither ⁷Be nor ¹⁰³Ru emit simultaneous gamma rays, 3) the half-life of ¹⁰³Ru (40 d) is not much shorter than that of ⁷Be (53 d), so allowing the

FIGURE 9. ⁷Be Concentrations, Sunspot Number, and Neutron Flux (Green River, Canada) as Functions of Time

samples to decay a few months before counting does not increase the ${}^{7}\text{Be}/{}^{103}\text{Ru}$ ratio rapidly enough to increase the accuracy of the ${}^{7}\text{Be}$ measurements very much, and 4) only 10.4% of the ${}^{7}\text{Be}$ atoms emit the measured gamma ray upon decay. One of the NaI(T1) counters used has been shown to give systematically low values for ${}^{7}\text{Be}$ in the presence of ${}^{103}\text{Ru}$, due to a tendency to drift to lower gain. The early ${}^{7}\text{Be}$ measurements at Barrow would be expected to be more accurate than those at Richland because 1) measurement with Ge(Li) diodes was begun one year earlier at Barrow, 2) the ratio of ${}^{103}\text{Ru}$ to ${}^{7}\text{Be}$ has been considerably lower at Barrow than at Richland, and 3) there has been a tendency to allow the Barrow samples to decay longer before counting.

During the period from 1968 through 1979 the minimum average annual. ⁷Be concentration at Richland was 21% lower than the maximum concentration, a variation very similar to that reported by Lal Peters (1962) for 1954 through 1958 at 45°N. However, the minimum average annual concentration at Barrow was 47% lower than the maximum. The larger variation at Barrow might be expected since the magnetic fields associated with solar activity have the greatest effect on low-rigidity cosmic rays, which are deflected toward high latitudes by the earth's magnetic field. Of course, the measured concentration variations are not necessarily due entirely to variations in the production rate. Variations in meteorological conditions from year to year (possibly even caused by the variations in the solar activity) may cause variations in the ground-level ⁷Be concentrations.

Pacific Northwest Laboratory also measured vertical profiles of ${}^{7}\text{Be}$ and the shorter-lived cosmogenic radionuclide, ${}^{24}\text{Na}$ (15 hr), from 1967 through 1969 (Young et al. 1970). The average yearly concentrations of ${}^{7}\text{Be}$ and ${}^{24}\text{Na}$ at an altitude of 18.3 km from 40 to 46°N decreased from 1967 through 1969, as would be predicted from the decrease in the neutron flux.

<u>Sodium-22</u> - Sodium-22 is produced by cosmic rays, but it is also produced by nuclear weapons tests by the reaction ${}^{23}Na(n, 2n){}^{22}Na$. Large amounts of ${}^{22}Na$ were released into the atmosphere by Russian thermonuclear tests in which sodium apparently was added to the nuclear device to provide a measure

of the neutron flux. Sodium-22 is also produced when sodium in crustal material is ingested into the fireball of a ground-level test.

The 22 Na concentrations at Richland reached a maximum in 1963 and then decreased rapidly until 1967, when they averaged 5.3% of the 1963 concentrations (Figure 10). The concentrations at Barrow also decreased rapidly from 1964 through 1966. Between 1963 and 1966 the decay corrected concentrations of nuclear weapons-produced 22 Na at Richland decreased with a half-time of 11.8 months (in making this calculation it was assumed that the 22 Na concentrations in 1979 represented the concentration due to cosmogenic 22 Na, so this concentration was subtracted from the measured concentrations to obtain the concentrations due to nuclear weapons).

After 1967, the 22 Na concentrations continued to decrease, but at a much slower rate. From 1967 through 1978 the decrease may not have been significant. However, the concentrations of cosmogenic 22 Na would have been expected to increase because the cosmic-ray flux was increasing, so it is likely that there was still some nuclear weapons 22 Na in the atmosphere, mostly from Chinese tests.

The concentration differences between Richland and Barrow were considerably smaller for ${}^{7}\text{Be}$ and ${}^{22}\text{Na}$ than for the nuclear weapons radionuclides. The ratios of the Richland to the Barrow concentrations averaged 2.1 for ${}^{7}\text{Be}$ and 2.4 for ${}^{22}\text{Na}$ (from 1967 on), as compared to 3.8 for the nuclear weapons radionuclides. The differences between Richland and Barrow were probably smaller for ${}^{7}\text{Be}$ and ${}^{22}\text{Na}$ because of their production in the troposphere. The variations in the average ${}^{7}\text{Be}$ and ${}^{22}\text{Na}$ concentrations between Makah-Quillayute, Richland, and the EML stations at Salt Lake City, Rocky Flats, and New York City were almost identical to those of the nuclear weapons radionuclides.

Seasonal Variations

The average monthly concentrations of 7 Be and 22 Na at Richland, Barrow, and Makah-Quillayute are given in Figures 11 and 12. Sodium-22 concentrations measured before 1967 were not used because the seasonal variations of cosmogenic

FIGURE 10. Average Yearly ^{22}Na Concentrations at Richland and Barrow

 $^{22}\mathrm{Na}$ were desired, and the $^{22}\mathrm{Na}$ concentrations before 1967 were clearly dominated by nuclear weapons $^{22}\mathrm{Na}$. The seasonal variations of $^{7}\mathrm{Be}$ and $^{22}\mathrm{Na}$ were somewhat different from those of the nuclear weapons-produced radionuclides (see Figure 6). At Richland, the maximum $^{7}\mathrm{Be}$ concentration occurred two months later than the maximum in the nuclear weapons radionuclides, but at Barrow the maximum $^{7}\mathrm{Be}$ concentration occurred one month earlier than the maximum in the nuclear weapons radionuclides. The concentration maximum was also broader for $^{7}\mathrm{Be}$ than for the nuclear weapons radionuclides. The net result was that the $^{7}\mathrm{Be}$ seasonal variations appeared to be considerably farther out-of-phase between Richland and Barrow than were the nuclear weapons radionuclides.

The seasonal variations of 22 Na at Richland and Barrow appeared to be intermediate between those of 7 Be and the nuclear weapons radionuclides, probably because the half-life of 22 Na (2.6 yr) is considerably longer than that of 7 Be (53 d), so a larger fraction of the measured 22 Na was of strat-ospheric origin. Also, some of the 22 Na was probably of nuclear weapons origin.

The seasonal variations of 7 Be at Makah-Ouillayute were distinctly different from those at Richland or Barrow, and were also different from the seasonal variations of ²²Na or the nuclear weapons radionuclides at Richland, Barrow, or Makah-Quillayute. The ⁷Be concentrations at Makah-Quillayute (1968-70, 1973-74) rose to a maximum in April and May, decreased sharply from June through August, increased again to a maximum in October, and then decreased to a minimum in December and January (Figure 13). The depressed ⁷Be concentrations in June through August at Makah-Quillayute were probably caused by the increased stability of the lower atmosphere over the Pacific Ocean during the summer months, which inhibits the transport of ⁷Be downward from altitudes of higher concentration. When marine air moves inland from the coast, surface heating decreases the stability and mountain ranges cause increased vertical mixing, so it is not surprising that Richland shows no evidence of decreased 7 Be concentrations in the summer. What is surprising is that ^{22}Na and the nuclear weapons radionuclides did not show the same decreased concentrations in the summer at Makah-Quillayute as did ⁷Be.

 $G_{\rm eff} = 0.111$

FIGURE 13. Seasonal Variations of ^{7}Be , ^{22}Na , and ^{137}Cs at Makah-Quillayute (1968-1970, 1973-1974)

The nuclear weapons radionuclides did show some evidence of decreased concentrations, but the decrease was very slight.

The reasons for the differences between the seasonal variations between 7 Be. 22 Na and the nuclear weapons radionuclides are not clear, but they undoubtedly result from differences in the source distributions. Bleichrodt (1978) estimated that only 30% of the 7 Be deposited on the earth's surface at 50°N is formed in the stratosphere. Aegerter et al. (1966) concluded from the concentration ratios of cosmogenic ^{32}P and 7Be measured at ground level at 47°N that the seasonal variation of 7 Be was due primarily to the transport of ⁷Be downward from higher altitudes in the troposphere, rather than transport from the stratosphere, as is the case for nuclear weapons radionuclides. If this is true, then the 7 Be concentrations in the middle and upper troposphere might become depleted below equilibrium levels by this transport. To test this possibility, the ratios of the 7 Be and 22 Na disintegration rates measured by Pacific Northwest Laboratory from 40 to 46°N to the production rates calculated by Bhandari et al. (1966) and Lal and Peters (1962) were plotted versus altitude in Figure 14. At ground level the ⁷Be disintegration rates averaged about the same as the production rates. Since 'Be is removed rather rapidly from the lower atmosphere by wet and dry deposition, this indicates that 7 Be was being replenished rather rapidly from higher altitudes. As the altitude increased, the ratio of the disintegration rate to the production rate decreased until maximum depletion occurred at around 7.5 km. The ratio then increased with altitude until the disintegration rate was only slightly below the production rate from 12 to 19 km. The ratio of the disintegration rate to the production rate for ²²Na showed the same change with altitude as did 7 Be, except that the 22 Na disintegration rates were significantly farther below equilibrium than were those of 7 Be because of the longer half-life of 22 Na. The ratios of the disintegration rate to the production rate for 7 Be and 22 Na at 35°N varied about the same with altitude as those at 40 to $46^{\circ}N$. It thus appears that a considerable fraction of the ⁷Be measured at ground level originated at higher altitudes in the troposphere. However, a significant contribution from stratospheric ⁷Be cannot be ruled out. Because of the large increase in the production rate

with altitude, the ⁷Be depletion shown for 12 to 19 km represents about onehalf of the ⁷Be represented by the depletion from ground level to 12 km. However, the depletion shown for ²²Na for 12 to 19 km represents twice the ²²Na represented by the depletion from ground level to 12 km. The ⁷Be depletions calculated from these profiles are unlikely to be very accurate at high altitudes where the production rates are high and the percent depletions are low, because of errors in the measured average concentrations and the calculated production rates. In addition, meridional transport also affects the ⁷Be and ²²Na depletions, so the depletion may not be a very accurate indication of vertical transport.

In Figure 14 the ratio of disintegration rate to production rate for 7 Be is also plotted versus altitude for the six months of maximum concentration at Richland (April-September) and for the six months of minimum concentration (October-March) to indicate the source of the seasonal variations. During the months of maximum ground-level concentration the concentrations from 7.5 km to 12 km were considerably more depleted than during the months of minimum groundlevel concentration, suggesting that the concentration maximum at ground level results from increased transport from these altitudes. Vertical mixing is more intense in the lower atmosphere over continental areas during the spring aid summer when atmospheric stability decreases. The concentrations from 12 to 19 km were actually higher during the months of maximum ground-level concentration. It is possible that these higher concentrations could lead to increased transport of ⁷Be to ground level, producing increased ground-level concentrations. The concentrations at 12 to 19 km could be maintained by meridional transport from higher latitudes, where ⁷Be production rates are higher.

The ratios of the average ${}^{7}\text{Be}$ and ${}^{22}\text{Na}$ concentrations to the average measured concentrations of the short-lived cosmogenic radionuclide, ${}^{24}\text{Na}$ (15 hr), were also plotted versus altitude in Figure 14 to confirm the pattern of ${}^{7}\text{Be}$ and ${}^{22}\text{Na}$ depletion versus altitude. The half-life of ${}^{24}\text{Na}$ is so short that it should be nearly at equilibrium with its production rate. Therefore, changes in the ${}^{7}\text{Be}/{}^{24}\text{Na}$ and ${}^{22}\text{Na}/{}^{24}\text{Na}$ ratios should correspond to changes in the ${}^{7}\text{Be}$ and ${}^{22}\text{Na}$ depletion. The variation of these ratios with altitude

were very similar to those of the ratios of disintegration rate to production rate for 7 Be and 22 Na, confirming that the variation in the 7 Be and 22 Na depletion with altitude is real.

LEAD-210

Lead-210 is a long-lived (22 yr) daughter of radon (222 Rn). Radon is a radioactive gas which is produced by the decay of radium in crustal material. After its formation, radon diffuses into the atmosphere where it decays through a chain of daughter radionuclides until stable lead is produced. The radon daughters quickly become attached to atmospheric aerosols, and are therefore collected on air filters. Since radon has a 3.8 day half-life, it is able to mix upward to a certain extent in the atmosphere, but its concentrations decrease rapidly with altitude. The concentrations of 210 Pb also decreases with altitude in the lower troposphere over continental areas, but the decrease is less than that of radon because the long half-life of 210 Pb allows for greater upward transport.

The average monthly concentrations of 210 Pb at Richland from 1975 through 1979 and Barrow from 1974 through 1979 are plotted in Figure 15. The 210 Pb concentrations at Barrow averaged about 70% of those at Richland. The concentrations showed pronounced seasonal variations at both Richland and Barrow, but the variations were out of phase with those of the nuclear weapons and cosmogenic radionuclides, with maximums occurring in the winter and minimums in the summer. The variations were fairly similar at Richland and Barrow, except that the concentration increases and decreases were somewhat earlier in the year at Richland.

Several other investigators have measured similar concentration variations for 210 Pb and/or radon at continental stations (Joshi and Rangarajan 1969, Joshi et al. 1969, Peirson et al. 1966, Lockhart 1962). The seasonal variations of radon measured by Lockhart (1962) at Wales and Kodiak, Alaska, for example, are very similar to those of 210 Pb at Barrow (Figure 16). It is believed by many investigators that a primary cause of the decrease in the radon and radon daughters in the spring and summer is the decrease in the stability of the lower atmosphere that occurs at this time, leading to

FIGURE 15. Seasonal Variation of 210pb at Richland (1975-1979) and Barrow (1974-1979)

,

.

FIGURE 16. Seasonal Variations of 210pb at Barrow, Alaska (71°N, 157°W) and Radon at Kodiak, Alaska (58°N, 152°W) and Wales, Alaska (66°N, 168°W)

increased vertical mixing, lower ground-level concentrations and increased concentrations at higher altitudes (Gale and People 1958, Joshi et al. 1969, Reiter 1978, Beck and Gogolak 1979). The spring increase in vertical mixing would be expected to occur earlier at Richland than at Barrow, which would explain the earlier concentration decrease at Richland. In Figure 17, the average vertical profiles of radon and ²¹⁰Pb measured by Moore (1973) are shown for the six months that ²¹⁰Pb concentrations were minimum at Richland (March-April) and for the six months ²¹⁰Pb concentrations were maximum at Richland (September-February). It can be seen that concentrations above ground level were high when ground-level concentrations were low and vice versa, which would support the hypothesis that the ground-level seasonal variations at Rich-land are due primarily to variations in the rate of vertical mixing.

Ground level ²¹⁰Pb concentrations, of course, are also affected by the rate of emanation of radon from the soil and the fraction of the time the air has spent over land surfaces during its recent history. The rate of radon emanation from ocean surfaces is about 1% of that from land surfaces (Wildening 1975). However, the rate of emanation of radon from the soil around Richland should be greatest in the summer when the soil is driest, since soil moisture inhibits the escape of radon from the soil. The prevalence of marine air at Richland is also lower in the summer than in the winter, which should also tend to increase the summer 210 Pb concentrations. Therefore, the low summer 210 Pb concentrations at Richland indicate that the increased vertical mixing in the summer overshadows these other effects in controlling 210 Pb concentrations.

The rate of emanation of radon from the soil around Barrow might also be expected to increase in the spring and summer when the permafrost melts. However, snow cover offers little obstruction to the release of radon during the winter (Hosler 1968). Also, the soil tends to remain wet in the spring and summer, which would inhibit radon emanation. However, it is possible that the low 210 Pb concentrations in the summer are partly due to a decrease in the transport of Asian air that has high radon concentrations northward to Barrow in the summer.

NUCLEAR REACTOR PRODUCED RADIONUCLIDES (⁴⁶Sc, ⁵⁵Fe, ⁶⁰Co, ⁶⁵Zn and ¹³⁴Cs)

Average Yearly Concentrations

The concentration ratios of the various nuclear weapons-produced radionuclides have been about the same at Richland as they have at Barrow. However, there have been five radionuclides whose concentrations at Richland have been considerably higher than would be predicted from their concentrations at Barrow, especially prior to 1971. During the period from 1965 through 1970, the concentrations of 55 Fe, 60 Co, 65 Zn and 134 Cs at Richland averaged higher by factors of 1.5, 8.7, 26.1 and 5.3, respectively, than would be predicted if they had been produced entirely by nuclear weapons. The concentrations of 46 Sc at Richland were also higher than would be predicted from the Barrow concentrations, but the Barrow concentrations were below detection limits, so it was impossible to tell how much the 46 Sc concentrations were enriched at Richland.

The elevated concentrations of these radionuclides at Richland resulted from the operation of eight plutonium-producing nuclear reactors on the Hanford Reservation 20 to 30 miles north of the Richland air sampling site. These reactors used Columbia River water as a primary coolant on a once-through basis. During its passage through the reactors, the water became radioactive because of the neutron activation of impurities in the water, the leaching of corrosion products, and occasional fuel element failures. The water was held for a few hours in ponds to allow some of the short-lived radionuclides to decay, and then dumped back into the Columbia River. Studies have shown that radionuclides in the water became deposited in Columbia River sediments, where they could later be resuspended into the atmosphere during periods when the river level was low (Perkins et al. 1966, Nelson and Haushild 1970, Robertson and Fix 1977). The Richland sampling site is downriver from the reactors and about half a mile from the river.

It should be noted that even though the reactor operations resulted in increased atmospheric concentrations of 46 Sc, 55 Fe, 60 Co, 65 Zn, and 134 Cs at Richland, the concentrations of these radionuclides were still considerably

lower than those of other radionuclides, so they represented only a tiny fraction of the total atmospheric radionuclide concentrations. Modern electric power-generating nuclear reactors use both a primary and a secondary coolant. The primary coolant is not discharged into the environment, so these reactors should not release the above radionuclides in significant quantities.

The Hanford plutonium-producing reactors began to be shut down in the late 1960's, and since 1971 the only reactor which has been in operation has been N-reactor, which produces both electricity and plutonium. Therefore, the atmospheric concentrations of 46 Sc, 55 Fe, 60 Co, 65 Zn and 134 Cs at Richland generally decreased in the late 1960's and the 1970's, with the radionuclides having the shortest half-lives showing the fastest rate of decrease (Figure 18). The 46 Sc (84 d) concentrations fell below detection limits in 1971, the ⁶⁵Zn (244 d) concentrations fell below detection limits in 1976, and the 134 Cs (2.1 yr) concentrations fell below detection limits in 1978. The half-times for the decreases of 65 Zn and 134 Cs were about equal to their half-lives for the periods 1967 through 1975 and 1970 through 1976, respectively. The concentrations of 55 Fe (2.7 yr) and 60 Co (5.2 yr), however, have remained measurable to the present time. Comparison of the 60 Co concentrations at Richland and Barrow indicates that the 60 Co released by the nuclear reactors is still the primary source of the 60 co measured at Richland. Since there have been no measurements of ⁵⁵Fe at Barrow in recent years, it is not possible to tell from a comparison of ⁵⁵Fe concentrations at Richland and Barrow whether the 55 Fe measured at Richland in the past few years has been due primarily to nuclear weapons or to nuclear reactors.

Seasonal Variations

The seasonal variations of 46 Sc, 55 Fe, 60 Co, 65 Zn and 134 Cs at Richland have been considerably different from those of the nuclear weapons radionuclides, again indicating that their primary source has not been nuclear weapons (Figure 19). However, the seasonal variations of each of these radionuclides have also been different from those of the others, indicating that they have become fractionated in the environment, and possibly that different processes are responsible for introducing them into the atmosphere. In the past, 65 Zn

FIGURE 18. Average Yearly Concentrations at Richland, Washington, of Radionuclides Released by Hanford Nuclear Reactors

FIGURE 19. Seasonal Variations at Richland of Radionuclides Released by Hanford Nuclear Reactors

concentrations have been found to be high in gnats, and the gnats collect on the air filters, so the measured 65 Zn concentrations increased in the summer when the gnats hatched. The seasonal variations of 46 Sc were nearly identical to those of 210 Pb, suggesting that the 46 Sc concentrations were controlled by the rate at which vertical mixing decreases ground-level concentrations. The seasonal variations of 55 Fe and 60 Co show some similarities, but the cause of the variation has not been determined. The seasonal variations of 55 Fe from 1977 through 1979 have been very similar to those from 1965 through 1969, indicating that 55 Fe released by the nuclear reactors is still making a major contribution to the measured concentrations.

SUMMARY AND CONCLUSIONS

The atmospheric concentrations of a wide spectrum of radionuclides have been measured at Richland, Washington, since 1961; at Barrow, Alaska, since 1964; and at other stations for shorter periods of time. Following the U.S.-U.S.S.R. test series of 1961-62 the concentrations of the longer-lived nuclear weapons radionuclides reached a maximum at Richland in the spring of 1963, and then decreased until 1967 when the Chinese conducted their first high-yield atmospheric nuclear test. The concentrations then increased somewhat until 1971, but have decreased since then as the frequency of high-yield Chinese tests has decreased. In 1979 the concentrations of 137 Cs (30 yr) averaged only 1.3% of the average 1963 concentrations. However, in October of 1979 the Chinese conducted a 0.2 to 1 megaton atmospheric nuclear test, so the groundlevel concentrations of nuclear weapons radionuclides will increase again in the spring of 1981.

The measurement of atmospheric radionuclides during the past several years has produced considerable valuable information on the rates of atmospheric mixing and depositon processes. Other submicron-sized particulate materials, such as those emitted by volcanos or other pollutant sources, should have the same mixing and deposition rates as radioactive particles, so the measurements of radionuclides can be used to predict the behavior of those other particulates in the atmosphere.

Radionuclide measurements have shown that the ground-level concentrations of radionuclides or other particulate pollutants produced by releases at different locations in the stratosphere will eventually begin to decrease with approximately an 11-month half-time, with only the time delay before the beginning of this decrease depending upon the release location. The decay-corrected concentrations of radionuclides released into the middle- and high-latitude lower stratosphere by the Chinese and the Russians, respectively, reached a maximum at Richland the following spring, and then decreased with an 11-month half-time, indicating that the half-residence time in the lower stratosphere is 11 months. However, the concentrations of ²³⁸Pu released at an altitude

of about 50 km by the burn-up of the SNAP-9A nuclear generator in April of 1964 at 11°S did not reach a maximum at Richland until the spring of 1969, five years later, indicating that this time interval was required for particulates to be transported from the upper equatorial stratosphere to the lower strato-sphere at mid-latitudes in the northern hemisphere. After the spring of 1969, the SNAP-9A 238 Pu concentrations at Richland decreased with a 12-month half-time. The fact that the concentrations of 238 Pu (which was released in the southern hemisphere) decreased at about the same rate as the concentrations of radionuclides released in the northern hemisphere indicates that the transport of radionuclides between the hemispheres in the stratosphere is not rapid enough to affect the rate of decrease in the ground-level concentrations very much.

The ground-level concentratiuons of nuclear weapons and cosmogenic radionuclides have increased to a maximum each spring. The spring maximum in the concentrations of nuclear weapons radionuclides is primarily due to a maximum in the rate of transfer of radionuclides from the stratosphere into the troposphere through the tropopause gap. However, increased vertical mixing in the troposphere in the spring is probably also partially responsible for the maximum. Vertical profiles of the cosmogenic radionuclides, ⁷Be and ²²Na, indicate that the spring maximums in their concentrations may be due primarily to increased transport down from the upper troposphere rather than the stratosphere. This increased vertical mixing in the spring is probably the primary cause of the spring minimum in the concentrations of the radon daughter, ²¹⁰_{Pb}.

The seasonal variations have been different at different sampling locations. The radionuclide concentrations at Barrow, Alaska, reached a maximum in April and then began to decrease, even though concentrations were still increasing at Richland. Therefore, during the summer the concentrations at Barrow were much lower than those at Richland, probably because the rate of meridional transport of radionuclides from the mid-latitude source region to high latitudes is lowest during the summer. During the winter, when meridional mixing is greatest, the radionuclide concentrations have been only slightly lower at Barrow than at Richland.

The concentrations of nuclear weapons radionuclides at Richland $(46^{\circ}N)$ have averaged 2.7 times higher than those at Makah-Quillayute, even though the two stations are at about the same latitude, because of the vertical mixing caused by the Cascade Mountains between Makah-Quillayute and Richland. The concentration difference was greatest in the spring and summer when the stability of the air over the continent is lowest. In the summer months, the ⁷Be concentrations at Makah-Quillayite showed a secondary minimum that presumably resulted from decreased vertical mixing over the Pacific Ocean caused by increased stability.

The concentrations of 46 Sc, 55 , 60 Co, 65 Zn and 134 Cs have been considerably higher at Richland than would be predicted from the ratios of these radionuclides to the other nuclear weapons radionuclides at Barrow, especially prior to 1971. Their elevated concentrations at Richland have resulted from the operation of eight plutonium-producing nuclear reactors on the Hanford Reservation 20 to 30 miles north of the Richland air-sampling site. These radionuclides were picked up by cooling water during its passage through the reactors and were then deposited in Columbia River sediments, where they could later be resuspended into the atmosphere. The plutonium-producing reactors began to be shut down in the late 1960's, and since 1971 only one reactor has been in operation, so the concentrations of these radionculides has decreased. At the present time, measurable quantities of only 60 Co and possibly 55 Fe from the reactors are observed at the Richland sampling site. It has not been possible as yet to detect radionuclides at Richland or Barrow that have been released from nuclear reactors operating at other locations around the world.

REFERENCES

Aegerter, S., N. Bhandari, Rama and A. S. Tamhane. 1966. "⁷Be and ³²P in Ground Level Air." Tellus 18:391.

Beck, H. L., and C. V. Gogolak. 1979. "Time Dependent Calculations of the Vertical Distribution of ²²²Ru and Its Decay Products in the Atmosphere." J. Geophys. Res. 84:3139.

- Bhandari, N., D. Lal and Rama. 1966. "Stratospheric Circulation Studies Based on Natural and Artificial Radioactive Tracer Elements." <u>Tellus</u> 18:391.
- Bleichrodt, J. F. 1978. "Mean Residence Time of Cosmic_Ray-Produced ⁷Be at North Temperate Latitudes." J. Geophys. Res. 83:3058.
- Carter, M. W., and A. A. Moghissi. 1977. "Three Decades of Nuclear Testing." Health Phys. 33:55.
- Cooper, J. A., N. A. Wogman, H. E. Palmer and R. W. Perkins. 1968. "The Applications of Solid State Detectors to Environmental and Biological Problems." Health Phys. 15:419.
- Environmental Measurements Laboratory. 1979. <u>Environmental Quarterly</u> (Appendix), EML-363.
- Enhalt, D. H.. 1973. "Turnover Times of ¹³⁷Cs and HTO in the Troposphere and Removal Rates of Natural Aerosol Particles and Water Vapor." J. Geophys. Res. 78:7076.
- Feely, H. W., and F. Bazan. 1964. "Stratospheric Distribution of Nuclear Debris in 1962, 1963, and 1964." In <u>Radioactive Fallout from Nuclear</u> Weapons Tests, AEC Symposium Series 5, p. 301.
- Ferber, G. J. 1964. "Distribution of Radioactivity with Height in Nuclear Clouds." In <u>Radioactive Fallout from Nuclear Weapons Tests</u>, AEC Symposium Series 5, p. 629.

Feely, H. W., H. Seitz, R. J. Lagomarsino and P. E. Biscaye. 1966. "Transport and Fallout of Stratospheric Radioactive Debris." <u>Tellus</u> 18:316.

Friend, J. P., H. W. Feely, P. W. Krey, P. W. Spar and A. Walton. 1961. "The High Altitude Sampling Program." In <u>U.S. Defense Atomic Support Agency</u> <u>Report</u>, DASA-1300.

Gale, H. J., and L. H. J. Peaple. 1958. "Measurements on the Near-Ground Radon Concentrations on the A.E.R.E Airfield." AERE HP/R, p. 2381.

- Hansen, H. E., A. J. Clark and A. E. Bentz. 1965. "Final Report on Re-entry Flight Demonstration No. 2." In <u>USAEC Report</u> SC-RR-65-43, Sandia Corporation.
- Hosler, C. R. 1968. "Urban-Rural Climatology of Atmospheric Radon Concentrations." J. Geophys. Res. 73:1155.
- Joshi, L. U., and T. N. Mahadevan. 1968. "Seasonal Variations of Radium-D (Lead-210) in Ground Level Air in India." Health Phys. 15:67.
- Joshi, L. U., C. Rangarajan and S. Gopalakrishnan. 1969. "Measurements of Lead-210 in Surface Air and Precipitation." Tellus 21:107.
- Junge, C. E. 1963. "Air Chemistry and Radioactivity." <u>Int. Geophys. Ser</u>.4: 227, Academic Press, New York.
- Krey, P. W. 1967. "Atmospheric Burnup of a Plutonium-238 Generator." <u>Science</u> 158:769.
- Krey, P. W., M. Schonberg, L. Toonkel. 1973. "Updating Stratospheric Inventories to March 1972." In <u>Fallout Program Quarterly Summary Report</u>, December 1, 1972 - March 1, 1973, USAEC Report HASL-273.
- Lal, D., and B. Peters. 1962. "Cosmic Ray Produced Isotopes and Their Application to Problems in Geophysics." In <u>Progress in Elementary Particle and</u> Cosmic Ray Physics, (Amsterdam: North Holland Publishing Co).
- List, R. J., and K. Telegadas. 1969. "Using Radioactive Tracers to Develop a Model of the Circulation of the Atmosphere." J. Atmos. Sci. 26:1128.
- Lockhart, L. B. 1962. "Natural Radioactive Isotopes in the Atmosphere at Kodiak and Wales, Alaska." <u>Tellus</u> 14:350.
- Machta, L., K. Telegadas and R. J. List. 1970. "The Slope of Surfaces of Maximum Tracer Concentration in the Lower Stratosphere." <u>J. Geophys. Res.</u> 75:2279.
- Martell, E. A., and H. E. Moore. 1974. "Tropospheric Aerosol Residence Times: A Critical Review." J. Rech. Atmos. 8:903.

Marx, J. L. 1979. "The Sources of Ionizing Radiation." Science 204:160.

Miyake, Y., Y. Kastsuragi and Y. Sugimura. 1970. "A Study on Plutonium Fallout." J. Geophys. Res. 75:2329.

Moore, H. E., S. E. Poet and E. A. Martell. 1973. "222Ru, 210pb,210Bi, and 210po Profiles and Aerosol Residence Times Versus Altitude." <u>J.</u> <u>Geophys. Res.</u> 78:7065.

- Nelson, J. L., and W. L. Haushild. 1970. "Accumulation of Radionuclides in Bed Sediments in the Columbia River Between the Hanford Reactors and McNary Dam." <u>Water Resources Res.</u> 6:130.
- Peirson, D. H., R. S. Cambray and G. S. Spicer. 1966. "Lead-210 and Polonium-210 in the Atmosphere." <u>Tellus</u> 18:427.
- Perkins, R. W. 1965. "An Anticoincidence Shielded-Multidimensional Gamma-Ray Spectrometer." <u>Nucl. Instr. and Meth.</u> 33:71.
- Perkins, R. W., J. L. Nelson and W. L. Hanshild. 1966. "Behavior and Transport of Radionuclides in the Columbia River Between Hanford and Vancouver, Washington." Limnol. and Oceanog. 11:235.
- Perkins, R. W., and C. W. Thomas. 1980. "World-Wide Fallout." In <u>Transuranium</u> <u>Elements in the Environment</u>, DOE/OHER Report TID-22800 (In Press).
- Peterson, K. R. 1970. "An Empirical Model for Estimating World-Wide Deposition from Atmospheric Nuclear Detonations." <u>Health Phys.</u> 18:357.
- Reiter, E. R. 1978. "Atmospheric Transport Processes, Part 4: Radioactive Tracers." Technical Information Center, U.S. Department of Energy.
- Robertson, D. E., and J. J. Fix. 1977. Association of Hanford Origin Radionuclides with Columbia River Sediment. BNWL-2305, Pacific Northwest Laboratory, Richland, Washington.
- U.S. Atomic Energy Commission. 1968. "Atmospheric Radioactivityand Fallout." Fundamental Nuclear Energy Research Report, 289.

Van den Akker, J. A. 1960. "A Study of the Filtration and Permeability Characteristics of IPC-1478 Filter Paper." U.S. Defense Atomic Support Agency <u>Report, DASA-1168</u>.

Wilkening, M. H., W. E. Clements and D. Stanley. . "Radon-222 Flux Measurements in Widely Separated Regions." In <u>Natural Radiation Environment</u> 2, ed. J. A. S. Adams, p. 717, U.S. Energy Research and Development Administration, Oak Ridge, Tennessee.

Young, J. A., C. W. Thomas, N. A. Wogman and R. W. Perkins. 1970. "Cosmogenic Radionuclide Production Rates in the Atmosphere." <u>J. Geophys. Res.</u> 75:2385.

Young, J. A. and C. W. Thomas. 1981. "Measurement of Short-Lived Radionuclides from Chinese Nuclear Tests Since 1972." PNL-3825. Radionue Lide Concentrations in Surface Air at Barrow, Alaska (71°10'N, 156°47'W) in 1964 and 1965

•

•

•

Ġ	ate					rMr01/Md0					
8	Off)Be	22 _{Na}	46 _{Sc}	54 Mu	55 _{fe}	60, Lu	u7 59	98γ	+ !	95 Zr Nb
11-18-64	12-05-64	133 ± 1	.124 4 .016		13.4 ± .2	17.1 ± 1.3	.182 4 .0	15	. 4 960.	110	25.4 4.2
12 05 64	01-02-65	11.0 ± .3	EIO. 4 080.		6.71 ± .0	1.67 ± 1.69	10. ≜ €/0.	8). * 010.	000	5.93 ± .04
01-02 65	01 20-65	9. ± 8.06	510. ± E60.		8.48 ± .0	4	10. + 601.	-	. 046 4 .	600	2.79 4 .04
01-30	02-27	115 1 1	210. ± EEI.		11.0 ± .1	29.6 ± 5	154 4 .01	1	. 4 490.	600	1.66 ± .03
02-27	03-27	10/ 4 1	.127 4 .023		10.3 4 .1	8.04 1.54	10. ± EE1.		I. ± 6⊁0.	800	1.04 4 .03
03-27	04 - 24	95.0 ± .4	.105 ± .015		9.46 ± .0	3 26.2 ± 2.4	144 4 .01	~	. 046 ± .(007	.//0 + .074
0424	06-07	55.4 ± .3	110. ¥ 650.		5.00 ± .0	3 11.3 ± 1.2	N. 4 670.	88	. 026 4 .1	900	1.60 1 03.1
0-90	07-03	68.2 ± .6	.076 ± .018		5.12 ± .0	4 17.1 4 1.8	10. + 780.	-). 4 610.	800	23.3 4 .1
07-03	1670	19.64	900. ± 110.	.014	1.42 ± .0	2 4.61 ± .82	.027 + .04	90 . IO3	. 4 100.	004	7.90 ± 00.
16-70	08-30	36.7 4 .5	.014 ± .006	010.	1.01 ± .0	1 1.05 ± .33	.014 4 .00	14 .Ul6	QN		.42/ 4 .022
10. 29	11 - 25	47.1 4 .6	200° ± 610.	.005	0. * 17.	1 4.0 4 1.6	.017 4 .00	4 .012	. 004 4 .0	100	ON
11 .25	01-02	10.5 1 .3	.025 4 .006	.005	1.02 ± .0	1 1.83 4 .30	.020 ± .00.	010. 10). 4 600.	200	()N

ND = Nut detectable

Barrow, Alaska, 1964 and 1965 (contd)

.

•

•

.

.

		1 1 2 1	1 T T T T T	2.C - L.CU	9.0 - C.01	1 3 7 6 10	1. 5 - 5 - 1. 1 11 - 2 - 5 - 5	95 6 ± 8 2	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.5 - 7.9	138127	1.3 - 0.6	9.1 4 2.0	
	140 _{n.2}	187 ± 7	01 1 10	06 06.1	-3	106 ± 084	035 ± 029	3.81 ± -2	14.2 ± 6	1.4 ± 1.0	1.4 ± 1 7	054 ± 035	015 ± 016	
		28.2 4 3	14.9 ± 2	1. ± 4.91	27.4 4 .1	26.5 ± .1	27.0 4 .1	14.5 ± .1	16.1 ± 1	4.80 ± .03	3.88 ± .02	3.29 ± 02	£.09 ± 00.5	
3 _M 3]M[042 4 .009	.021 4 .008	.028 + .008	100. + 660.	.042 4 .008	.021 + .008	.018 4 .006	.025 ± .010	000 + 600.	.006 ± .003	200. + 100.	200. ≢ 500.	
OPM/10	125 _{Sb}	24.5 ± .2	12.5 ± .1	16.4 ± .1	22.2 ± .1	21.4 ± .1	21.0 ± .1	1. + 8.01	12.1 4 .1	3.34 ± .05	2./1 4 .04	1.91 ± .04	2.92 ± .04	
	124 Sb	.071 4 .022	010 ¥ 090.	010. * 2019	.028 ± .019	.025 4 .015	.025 ± .013	QN	QN	ND	.028 ± .020	.005 ± .008	(IN	
	106 _{Ru}	61.4 4.7	4. ± E.IE	J8.5 ± .5	45.2 4 .4	48.4 ± .5	49.8 ± .5	9. ± 6.0 €	37.8 ± .5	7.45 ± .23	5.76 ± .19	3.81 ± .15	5.04 ± .13	
	103 _{ku}	80	ND	()N	QN	ND	0N	2.08 4 .06	12.4 ± .1	5.93 ± .18	.18 4 .10	.002 ± .058	ci.u. 1 lõu.	
ale	011	12-05-64	01-02-65	01-20-65	02-27	12-EO	614 Z4	06-07	£0-70	16-70	08-30	11-25	01-02	
đ	01	11-18-64	12-05-64	01-02-65	01-20	02-27	03-27	04 - 24	06~07	£0-70	16-70	10 29	H-25	

•

,

AD - Rot detectable

•

	03 _{Ru}	0	UN	GN	QN	ÛN	8	8	-	CIN	010	3 4 05		2	Ļ
		.9					86.	6.1	1.4			3.5	15.	14.	
	-	1								610.	110.	-			
	Zr.N	i 		-	_			_	-	-1	-	-			
	56	141.	.296	.120	.120	.208	14.1	4.77	2.119	BN9.	111.	20.7	32.1	22.8	-
	⁸⁸ γ	100	.004	.003	.005	100.	.00	100.	ND	QN	QN	QN	ND	100.	000
										200.	900.	900.			
	65 <u>2</u> n	-	4	-	5	~		~	~	7	7	#		~	
		20.	ÌE.	<u> 90</u> .	60	.05	QN	0.01	116.	.05	.064	.187	1/0.		100
										100.	100.	.002			
	2		~	_		~		_	_	-	#	-11			
H OI		.046	370.	170.	.085	.057	.021	.00.	900.	<i>.</i> 00.	000.	.022	510 .	C10.	614
)MIO	_	.73	.86	. 5	4.	۳.	.21	.27	80.	.21	.12	.18		.15	
1.1.2	ŝ	8 *	5 4	2 \$	₹ 6	₹ 6	2 *	*	* /	+	•	#		4 6	
		5.3	4.9	Π.	18.	11.	8.6	4.0	3.0	2.5	4.8	2.11		1.89	
										.005	004	600			
	툴		-	_		_				-+		*			
		1.66	2.47	2.19	2.86	1.76	.706	.243	.222	.162	.211	.529	3.28	. 308	257
	40 S.C	.022	UN	.004	.003	E00.	ND	.003	QN	CIN	(IN	()N	NIJ	500.	610
	1									100-	100.	2005			
	Ra Na	_	~		_			_		-4	4	-			MD
	•	.03	(50-	(90.	180.	.053	(10.	H00.	110.	(00.	110.	.02/	.014	10.	
										8.	6.	-			
<u> </u>	, 8	106	140	129	174	115	52.3	22.8	31.2	\$ 8.89	1.8.16	243 ±	123	160	111
		-04	18	16-1	0[-]	-29	30	10-1	-05	-15	-14	14	-30	80-	-16
Jale	<u> </u>	3	30	0	5	50	90	3	60	5	2	Ξ	Π	12	12
-	=	3	0	-03	-31	DE- 1	5-29	5-30	10-	-02	9-27) 28	1-14	- 30	-08

Kadionuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'H) in 1966

.

.

•

•

•

•

ND = Not detectable .

•

.

5()	le						DPM/10 ³ H ³					
9	10	106 _{Ru}	110mAg	124 _{Sh}	12556	134 _{CS}	13/ _{Cs}	140 _{Ba}	141 Ce	144_Ce	226 _{ka}	228 _{1h}
/0-10	02-04	6.67	.005	(IN	4.87	.010	9.29	N		12.2	- ON	.005
b ()- 7()	02 - 18	0.11	SEO.	(IH	1.49	.015	14.5	P/0.		111.6	.015	610.
F0-10	LE E0	0.11	.002	(W	7.80	.017	14.9	(IN)		19.8	£(X).	110.
IE EN	04-30	18.2	600.	QN	10.7	.018	20.1	ND		22.1	£10.	.015
04 - 30	05-29	15.1	(00)	(IN	6.50	£10.	12.9	.008		13.9	600.	110.
65-50	06 30	6.99	E10.	ND	2.86	.003	5.54	QN		6.60	110.	.020
06-30	08-01	2.36	.004	QN	1.02	.002	2.08	QN	061.	3.00	.005	.012
10-80	09-02	2.51	100.	QN	816.	100.	2.08	.159		2.15	(IN	.014
09-02	61-60	1.80 ± .05	.002 ± .002	(IN	.812 ± .021	100. ± 200.	10. ± £7.1	.494 ± .058		1.34 ± .38	.004 ± .005	.005 ± .007
0927	10-14	2.01 ± .03	100. ± 200.	(IN	.636 ± .016	100. + 100.	2.10 ± .01	.283		1.45 ± .23	ND	.008
10-28	11-14	4.63 ± .08	.003 ± .002	(IN	1.55 4 .03	100. ± £00.		32.7	8.26	5.75 4 .64	.014	120.
11 14	11-30	2.136	. 006	(IN	.633	QN	3.04	23.6		5.76	.005	.005
01. H	12.08	3.04	.010	QN	1.02	QN		17.0		5.62	(IN	.014
12-08	12-16	2.05	.006	(IN	5.16	ŊŊ	6.22	42.9	1.71	4.11	QN	.007
		-										

Barrow, Alaska, 1966

•

,

AD .. Not detectable

.

•

Radionuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'H) in 1967

•

	65 ₂₀	.180 ± .006	200. ± 001.	.00. ± 680.	194	.085	.016	.035	(IN	100	.002	032	021	620	
		100	.002	.003	.00.	.001	. 100.	. 100.	100.	. 100.	. 100.	. 100.	.001	. 100.	
	60 _{Co}	.023	.022 #	* 032	• 032	.022 ±	• 500.	.007 ±	.002	* E00.	• 000.	₹ 500.	* (00)	• 100.	
			.020	.044	.024	.014	.007	.010	.008		100.	500.	300.	900.	
	58 CC		* 2EO.	4 1 90.	£ (00.	.007	* (00.	• 110-	€ (00 .	99	.022 4	• 028	¥ 980.	+ 860.	
	0	.020*	160.	810.	.024	£10.	.004	010.	600.			.008	.007	.007	
м.	5/ 0	• 910.	* 650.	* 680.	.102 ±	• 110.	• 200.	• 025	+ 810.	GN	UN	.012 ±	1 210.	• 900	
01/M-103	2		15.	.24	.51	.10	.11		.58		510.	.063	.050	((0.	
	55 T		8.91 ±	4.24 ±	7.11 4	1.08 4	3.9 0 ≜		5.08 1		4 92 *	.268 *	408 +	1 909.	
		.005	.005	.00											
	54	* 88E.	424 4	± 90þ.	424	QN	.064	660.	120.	.042	.042	.074	.088	EII.	
	46 _{Sc}	UN	QN	QN	()N	(IN	QN	QN	ND	(IN	QN	QN	GN	QN	
	9	EU0.	.002	EUO.	100.	100.	100.	100.	100°	100.	100.	[()() .	100.	100.	
	22 N	* 9l0.	• 120.	.028	1 870.	¥ 810.	* 000.	* 800.	F 100-	¥ 120.	F 600°	¥ 600°	₹ 600.	1 110.	
		£*	S		æ		••	۲.	4.	4.	ç.	9.	9.	.6	
	- 	129 4	ŧ №1	185 ±	146 4	¥ E.09	40.4 +	\$1.3 \$	15.9 ±	32.4 ±	44.1 ±	\$ 9.ld	# E.IB	± 1.31	I
e	OLF	02-15	10-59	10-10	10 50	10-90	10-70	07-15	08-01	10-60	10-02	10-11	12-07	01-04	
Dat	E	01-16	02-16	10-1:0	04-01	1060	10-90	10-70	11-10	10-00	10-60	10-02	10-11	12-0/	;

.

* = First Analysis by GE(Li) Diode ND = Not detectable

•

Barrow, Alaska, 1967 (contd)

.

الأأأسك >

.

•

.

n0	011	88	~	95 _{21'Nb}	103 _{ku}	106 _{Ru}	110mAg	124 _{Sb}	125 _{5b}	134 _{CS}	
11-16	02-15	.042 4	.004	31.5 4 .1	24.1 ± .1	3.00 ± .03	.002 4 .002	.180 ± .007	1.31 ± .20*	8	3.99 ± 00.5
2-16	10-E0	* 090.	.002	44.5 ± .1	21.6 4 .1	3.64 ± .04	UN	.180 ± 081.	71. ± 40.1	-007 ¥ /005	4.27 ± .0
10-6	10-10	.008 4	<i>.</i> 007	47.4 ± .1	20.3 ± .1	5.79 ± .08	ŊŊ	110. ± 311.	90. ± 06.1	500. ¥ 700.	6.18 ± .0
10-11	0-50	* 180.	P00.	29.6	11.6 ± .1	5.54 ± .05	.00. 4 .002	.078 ± .008	2.36 4 .33	.001 4 200	8.72
10-9	10-90	.057 ≜	.00	9.71	5.22 ± .07	4.63 ± .05	.003 ± .002	.032 ± .006	1.34 ± .09	100. + 100.	4.24
[0-9	07-01	€ 900.	100.	1.70	¥863 ± 039∗	1.20 ± .02	.003 ± .002	ND	EEO. ± 36E.	QN	.988
1.01	07-15	₹ £00 .	100.	. 706	.176 ± .025	1.13 ± .03	.004 ± .004	QN	.565 4 .058	92	1.62
1-17	08 01	₹ 100 .	100.	.0/8	.049 4 .028	210. ± 81E.		ND	.257 4 .050	100° v 100°	.459
B-01	[()~60	QN		404.	.039 ± 026	.565 ± .016	.001 ± .004	QN	££0. ± 612.	100. + 100.	.812
10.6	10-02	ND		,265	.219 ± .035	.530 ± .015	QN	(JN	.152 4 .051	QN	018.
0-02	10-11	₹ 100.	100.	69-1	.406 ± .057	510. F 009.	.001 ± .001	(IN	.410 + .065	(JN	1.02
10-1	12-07	¥ 100.	100.	2.15	.883 ± .056	.880 4 .016	100. 4 .001	ND	130. ± 735.	QN	1.27
2-07	01-04	₹ 100 .	100.	2.44	1.13 ± .05	1.55 4 .03	$002 \pm .001$	QN	evo. ± 618.	(IN	1.55

* = first Analysis by Ge(Li) Diode ND = Not Detectable

•

.

.

.

Barrow, Alaska, 1967 (contd)

		.003	.019	011	011	.003	.003	.007	.006	.003	.003	.003	.002	.004
	²² ¹¹	-#	-#	-#	+	-#	-#	-+	-++	-+	-++	++	-++	-++
	53	.005	.014	.018	.017	.007	.012	.032	.014	.012	.000	.007	.002	.011
	a		.003	.002	.003	.004	.002	.005	.003	.002	.002	.002	.002	.003
	26 _R	QN	#	#	-#	-+1	-#	+	-++	-#	H	H	-#	+
	5	_	.014	.002	.025	.00	.007	.025	.007	.00	.005	.00	.001	110.
		.002	.002	.002	100.	.001		.001	.001	.00			.001	
м. Ж	07 _B	-#	-#	-+1	-+1	4	QN	-#	-#	+	ND	QN	-#	QN
4/10 ³ 1	5	.005	.002	.003	.003	.001		.001	.001	.001			.001	
DPI	لە	.65	.55	1.1	.50	.37	.08	.13	.058	.047	.18	.23	.25	.37
	44 _C	-#	-#	-#	-#	-#	++	-++	-++	-++	-#	-#	-++	-+1
	Ĩ	6.03	8.44	9.1	5.68	4.63	1.44	1.48	.268	.655	1.20	2.12	3.99	6.00
	e			.1*		•05	.024	.025	.021	.011	.025	.04	.03	.03
	41 _C			-#		-++	H	-#	-++	+	+	-#	*1	#
				21.0		4.45	.388	.201	.049	.180	.791	1.27	1.09	1.34
	ca	.2	.2	.15	60.					.015	.006	.005	.009	.014
	40 ^B	++	#	-#	-#	٥	0	٥	٥	-#	-#	-++	-+1	-11
	F	34.5	23.5	8.48	1.20					.017	.057	.025	.008	.353
)FF	2-15	3-01	1-01	5-01	5-01	7-01	7-15	8-01	9-01	0-02	1-01	2-07	1-04
te		1 3	0	õ	õ	ð	0	Ö	5	ö	I		-	0
Dā	NO	01-16	02-16	03-01	04-01	05-01	06-01	07-01	07-17	08-01	00-01	10-02	11-01	12-07

* = First Analysis by Ge(Li) Diode ND = Not Detectable D = Decayed Away Before Analysis

3
_∃
-
=
_
3
:
4
- 23
Z
2
1
7
-
-
, si
S
<
3
9
- 2
ŝ
8
-
G
-
-
-
9
С С
<u>ب</u>
<u>_</u>
5
_
ŝ
Ξ
-
Ę,
1
1
5
-
Ē
3
-
<u></u>
ž
Ξ
Ξ
-
~

•

		0384	1/0	650	1/0	0880	060	EBO	0/0	160	168	12	787	0/0	13	14/	65(0 90	15.8	112	156	5	c
	(1)	4	۲	* * ~			+	4). ± (*). * 1		10). 1).). +). 1). 1). T	۲. ۱.	l. 4
	1	.052	.17	.157	.33	.42.	.150	.316.	.231	.222	060.	13	.423	.324	182.	. 580	.052	E21.	E20.	.112	584	.32	ес.
	:	100.	200.	.002	.002	900.	-002	-002	-002	.002	100.	E00.	.002	.002	100.	100.	100.	100.	100.	100.	.002	600.	.002
•	00 Co	7 0	F ()	1 +	* 6	۹ لو	* 2	4 8	2 #	5 4	4 4	¥ 6	# 2	1 4	* •	، ج	4	* 2	=	*	*	T	- -
r F	J	ē	0.	6.	50.	90.	-04	.00	.0	10.	10.	-04	5.	.02	10.	0	10.	10.	10.	10.	.02	£0.	10.
		.022	.033	.024	.025	.040	.029	.021	610.	.013	.016	.024	.018	.016	.012	010.	010.	.013	.012	.015	.020	640.	
		14 F	66 ±	11 ±	¥ (6	₹ 9I	18 4	52 #	F 69	19 ±	18 4	T T	* 11	15 4	7 68	4 4	15 ±	۲ I.	4 4	F 8.		1	8
		3	Ē	0	Ē	к.	12.	я.	н.	ō.	0.	.24	0.	ЭГ.	.03	.02	E0.	<i>.</i> 07	EO .	3.	÷0.	.18	
	0	010.	.01	.014	B10.	1034	.022	.023	610 .	010.		.025	.021	(10.		E10.	.015	.013	.010	.016	.014	.029	
	5 ⁷ C	05 4	∓ 61	F El	£ 49	35 ≜	95 ±	57 ±	46 ±	11 4	QN	17 ±	46 4	57 🔺	QN	35 ±	₹ 1 0	55 ±	¥ 1(¥ 61	12 4	1 4	QN
		9	9.	0.	0.	0.	0.	0.	0.	0.		-	ġ.	ō.		0	ð.	6	ŏ.	<u>.</u>	0.	90.	
	Fe	* .22	4 .25	÷	4 .24	•6. *	. 23		• .16	• .22	п. 1	± .21				. 10		.03		. 15			н.
MEUI	55	.67	.07	- 36 -	Ξ.	.36	.18	.35 -	.17	.26 4	.87	.03		F /0.		¥ EL.		# 6E(4 10			17 ±
/Hau		1		2	1 6	1	2	_	-	2		N		'n		•				-			<u> </u>
	Ę	.00	160.	.026	• 034	.050	.042	.036	160.	.022	.026	.075	.034	160.	.024	120.	.022	.025	.020	.027	.022	.053	·04
	54	64 ±	10 4	87 4	65 ±	44 ±	24 4	54 ±	13 ±	₹ 96	10 ±	12 ±	12 ±	• 10	£ 63	18 ±	# 80	1 19	¥ 9(ŧ []	4 4	*	15 ±
	; ;	-	 	-	1.4	8. (· 5		-	1 .2	9.	.5	Ē.	λ,	-	.2	N.	.10	.21	E.	4.	.21
			:00		.00	.0IC	.005		.00		.00	6 00.		E00.				.002			.004	.00	
	465.	QN	₽ 9()	Ŋ	14 ±	Ŧ 60	07 ±	ND	05 4	θIJ	03 \$	18 ≜	ND	06 ≜	ND	QN	QN	¥ 20	(IN	(N	Ŧ 1(10 4	Q
		_	э. 	~	л. 2	9. y	9. 2	~	0.	_	9. N	0. 	. .	ð.				ē		_	ð.	0.	
	2	.00	00.	00.	00	.00	00	90	.00	09.	.00	00	.00	.00	100.	100.	100.	100.	100.	.002	200.	600.	
	2	ŧ	127	14)25 ±	# 610	121 4	17 ±	1	* 80	8 0	191	22 4	10	Ŧ []	0 <i>7</i> ±	1 60	7 9()	13 4	16 ±	• 60	17	QW
		2 .(у. е		Ч.			5.	9	с.	e. _	<u>о</u> .	.	0.	<u>.</u>	0.	9	0.	ο.	ē.	Ξ.	
	2	÷ .	-			- +	± .5	1 1	* .8	4 P	9. ±		6. *		. *	9. *	4 9. 4		¥.6	-	?		
	~	13.3	116	33.2	5.2	129	0.1	11)	4.]	М.б	6.3	6.1	0.5	4.6	9.5	2.8	8.1	l	6.7	113	4.3	141	· 0.9
!	_	63	16	28 6	02	17	5	16	Ξ	17 3	0	10 0	8 10	17 5	3 5	16 4	1 4	16 6	9 10	ç	5	e	÷
ite	10	02-	- 20	-20	64	- 40	05-0	50	-90	-90	07-(-10	08-(-80)-60	-60	10-1	101	11. (-	12 (121	12-2
G	-	l-04	2-03	2-16	3.16	1 · 05	1-17	5-01	o-16	10-9	1-17	10-1	-16	10-1	1-17	1-03	-16	10-1	-16	10-	- 12	-07	13
i	-	C	0	0	0	ð	ò	ö	Ľ	90	3	6	0	80	8	60	5	10	10	Ξ	Ξ	12	12

* = First Analysis by Ge(ti) Diode ND = Not Detectable

٠

.

Barrow, Alaska, 1968 (contd)

•

	34	E CE	.00. +	300. 4 I	00. 1	100. +	¥ .004	ND	0N	IN	(IN	P00. 4	E00. 4	E00. +	100. 4	• .002	100. ±	(N)	()N	4 .007	QN	005	un
			120.	100.	(00)	110.	/00.					000.	.012	.002	100.	E00 .	-002		-	200.		-,	-
	5 _{Sb}	* .12	1.13	* .16	11. 1	4 .26	± . 20	* .20	H. 4	1/0. 4	₽ .0/6	tl. 4	н. *	• .10	.0.	ŧ .068	• .066	• .066	1.063	60. 4	.07	• .16	11
	12	96 5.	1.74	1.04	2.66	3.26	2.73	3.00	1.87	.905	.956	3.68	3.02	1.97	1.18	.964	.842	.864	908.	1.31	1.66	2.30	1.38
	Sb	.005	.012	900.	900.	10.	.007		,004	.003	.004	900.		.001	E00.			E00.			200.	900 .	
	124	* \$00.	¥ 300.	• 900.	4 410.	• 030	+ 8IO.	QN	± 110.	* E00 .	• 800.	• 600.	UN	₹ ¥10.	* 200.	(IN	(IN	1 800.	0N	(IN	* E00.	£ 610.	(IN)
	V9	E00.	.003	.003.	V00.	010.	.005	.004	.004	.00 .	£00°	.005	.005	E00.	.002	.002	.002	.002	.002	.003	.002	.007	.002
	10	¥ 600).	• 110.	+ 010.	+ 110.	₹ 160.	• 020.	¥ 910.	▲ 810.	• • • • • •	₹ 110 .	• 034	• 910.	.012 ±	₹ EUO.	₹ ¥00°.	* E00.	* 900.	₹ E00.	* 900 *	• /00.	Ŧ \$20°	1 100.
3 ⁴³ 3	RL KL	.05	60.	.0.		۳.	.2	-	Γ.	.08	60.	.2	г.	-	۲.	.08	.08	80.	00.	-	-	.2	60.
DPM/10	106	1.81	£ 67.3	4.06 4	12.1 ±	23.3 4	18.2 ±	27.1 ±	15.3 ±	€.50	1.49 ±	25.2 #	27.6 ±	14.3 ±	11.1 ±	¥ 96°./	8.62 \$	6.18 ±	9.07 4	12.3 4	± 8.01	14.4 ±	8.72 1
	2	.20	г.	.2		4.	.11	.15	.07	.052	.068	.10	.08	.053	.056	.036	EEO.	5EO .	.045	.051	.052	Ξ.	.088
	[0]	ŧ 26.9	17.5 4	¥ 9.11	11.3 ±	17.5 ±	1.27 +	₹ 69°S	2.33 ±	* 90∕.	4 659.	1.41 4	1.02 ±	ŧ <u>2</u> 96.	.282	.187 4	* 102.	.254 4	1 626.	4 966.	₹ [69 .	- 18.	1 0/7.
	2	45. 1		• .2	1.2	4. 1	t. 2	1.2	l. I	60. 1	60. 1	• .2		60. 1	¥.08	90. 1	. 05	. 05	10.	90.	90.	.12	.10
	2	30.4	34.3	20.6	46.0	64.9	41.2	38.1	18.8	8.19	5.86	19.0	14.8	8.54	5.12	2.78	2.58	2.33	2.15	3.28	1.39 4	3.92 4	2.86 4
	ا	•3•	۲.			4.	с.	.2	.13	91.	Ξ.	81.	с.	.10	60.	.07	90.	.067	.062	60.	/07	.16	. 14
	1 1 1 1	18.3 4	32.1 J	16.14	21.7 +	r E.IE	11.6 4	16.U ±	8.26 ±	3.60 ±	2.86 ±	9.36 4	6.lB ±	3.53 ±	2.15 ±	ŧ 60.1	1.17 4	¥ E96.	¥ [191].	l.15 ±	1.52 4	2.26 4	1.45.4
		100.	100.	100.	100.	. UO3	100.	100.	100.	100.	100.	100.	100.	100.	100.	100.	100.	100.				100.	
	B,	.002	1002 4	.002	¥ £00.	4 (00.	+ P(N).	• 200.	.002	₹ 100 .	¥ 100'	₹ £00 .	¥ 100 [.]	¥ 100.	¥ 100.	F 100.	¥ 100.	+ INO.	NN	(IN	UN	1 100.	(IN
e G	OI F	05-03	02 · 16	02-28	01-02	11-40	05-01	05-16	10-90	71-yo	10-70	07-16	1080	08-17	09-03	9160	10-01	10 16	10-11	11-15	12 07	12-13	12 21
Dat	N	1-04	(5 OJ	216	13-16	40 P	11-10	10-50	9[-9	10-90	11-91	10-70	1-16	10-80	/1-80	6.03	91-6	10-0J	10-16	1-1	1-15	2-07	5 IJ

.

A = First Analysis by Ge(L1) Diode
Not Detectable

•

200. + 110. 000. ± 800. $017 \pm .008$ 010. 4 QEO. 00. ¥ (10. 010. ± 010. .025 ± .006 .015 ± .00b 300. ± £00. .000. ± 300. .003 ± .004 .012 ± .006 .085 ± .008 .012 ± .005 **200. ± EIO.** .00. + 300. 200. ± 800. 100. 4 P00. 000 + 800. 100. ± 100. 020 4 .014 200. 4 010. 232₁₁ 226_{fta} .014 1.005 110. 800. ± 260. 100. ± 000. 000. **000. ±** 1/0. .109 ± .012 003 4 .008 .182 ± .013 010. + 000. 100. 4 450. .102 ± .025 110. ± 350. 800. + 170. 110. 4 180. 100. 4 120. SI0. 4 180. 110. + 8/0. 700. ¥ El0. 100. ± 200. 100. 4 260. 100. 4 820. + 220. **₹** [80. 500. ± £00. EU0. ± 700. .024 ± .002 500. ± 010. 100. ± 300. .002 ± .002 200. * NOO. E00. 1 200. .003 ± .002 .005 ± .002 200. ± £00. E00. ± 200. 200. 4 200. .002 ± .002 600. 4 600. 207_{Bi} QN 3 92 GN Q 02 ΝD 144_{Ce} 26.3 4 1.4 26.0 ± 2.2 10.7 ± 1.0 42.3 ± 1.5 68.7 ± 4.1 13.1 ± 1.3 58.2 ± 1.8 DPM/10³M³ 14.5 4 1.1 14.3 ± 1.0 29.4 1.3 33.5 ± 1.3 42.0 ± 1.3 18.2 4 1.0 10.4 ± .8 46.3 ± .9 15.2 ± .8 16.6 ± .8 11.3 ± .7 9. + 8.11 1. ± 6.11 16.3 4 .9 10.7 4 .7 120. 4 861. .423 ± .048 .304 ± .073 .145 ± .040 .124 ± .040 .459 ± 053 . 176 ± .099 .145 ± .064 140. 4 1/6. .423 4 .078 .812 4 .064 9.53 ± .13 4.70 ± .10 2.78 ± .08 1.62 ± .06 1.52 4 .07 8.72 4 .17 1.98 4.14 11. + 13. 14./ 4 .2 28.3 ± .2 14.8 ± .1 140 Ha 000. 4 636. .071 4 .020 0/0 + 0/0. .131 4 .016 210. 4 210. 010. 4 540 EIO. 4 700. 423 4.030 010 4 006 010. + IEI. 078 ± .025 100. ± €10. 5.72 ± .30 1.66 ± .14 EL. ± 00. 5. 1/ 1. 12 P. 1 1. 109 12.0 ± .1 15.1 ± .7 1. 4 8.01 = First Analysis by Ge(Li) Diode QN 3 1.34 4 .04* 3.09 ± 00. 2.21 4 .06 4.96 ± .08 5.11 ± .09 4.83 ± .08 2.94 ± .05 1.46 ± .04 1.42 ± .04 5.62 ± .08 4.52 ± .06 1.55 1 .04 1.51 1.04 3.24 1.04 4.32 4 .10 10.4 6.25 ± .11 2.08 ± .04 1.53 ± .04 1.64 J .04 2.54 4 .05 3.30 4 .06 2.86 10-16 12-07 12 13 11-01 02-16 10-90 05-16 07-16 08-17 00 03 91-60 12-21 02-28 01-02 11-10 00 01 06 - 17 10-70 08 01 10-01 11-15 10 01-04 02-03 Date 02-03 12 0/ 08-17 12 13 1 10.16 10-11 02 16 **U3-16** 04-17 05-01 91-50 07-16 08 01 CO--60 10-01 11 15 04-02 10-90 06-17 10-70 91-60 3 ۰

- Nut Detectable

Q

Barrow, Alaska, 1968 (contd)

Radionuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'N) in 1969

	040	650	067	990	0/6	074	065	048	1/0	032	067	084		050				570		110		172
	1 620.	. 227 4 .	. 185 4 .	. * 692.	. 1 122.	. 1112.	. 189 ± .	. 181 4 .	. 167 4 .	. 4 1/0.	.1/8 ± .	. 186 4 .	02	. 4 190.	QN	ON	ON	. 4 810.	QN). 4 660.	(IN	. 4 640.
Co	100. 1	£()), ±	* .00 2	± .002	\$.002	4 .002	* . 002	* .002	1.002	100. ±	100. 4	100. *	100. +	100. *	100. 4	100. ±	100. *	100. 4	100. ±	100. +	500. ¥	100. 1
09	(10.	.021	.035	.020	200.	.042	EEO.	.034	.026	110.	E 10.	800.	.004	.005	.002	.00	300.	.005	600.	600.	800.	200.
0	.012	910.		.056	.063		EEO.	.039	SEO .	.014	.023	.021	E10.	.014	.012	<u>610</u> .	.013	.017	.020	.018	.022	.016
58 C	.053 #	* \$/0.	2	. 124 4	167 4	QN	* 260.	.102 *	. 162 ±	* 620.	4 601.	¥ 360.	+ ₩034	£ ()67 ±	• <i>(</i> 137)	. 1U2 *	• 046	.056 4	+ 12I.	• 000.	• 260.	¥ EGO.
	E10.	.006	.016	.01	.018	E10.	.019	.028	610.	110.	.022	.022	110.	.016	.012	610.	.015	.014	.022	<u>elo.</u>	120.	.016
5) ^C	€ 860.	• 046	• 090.	.062 4	▲ 1 (0.	¥ EEO.	.152 ±	.085 +	• 029	. 048 ±	.042 ±	* 640.	÷ 200.	.042 ±	• 650.	4 Ico.	• 036	* 020.	▲ 0/0.	¥ 160.	4 760.	• 053 •
E a	.12	.10	.13		.14		.12		.08		.10	. 14		.058		.055		690.		.067		.059
55 F	* 05.	• 58.	• 14 +		¥ IE.I		* 26.		.62 ±		1.24 +	1.49 ±		108 ±		£ 8f8.		.361 ≜		± 643.		.742 4
	.020	.022	.024	.025	.029	.030	:018	.028	160.	• 10.	260.	.032	.018	610 .	610.	.032	.025	.027	SEO.	0100	.034	.027
54 M	.120 ±	. 136 .	• 172 •	.124 ±	* 662.	* EIE.	* 62E.	* 6EE .	. 106 ±	109 ±	.246 ±	* 523	• 050.	* 601.	* 060.	¥ 691.	183	.167 ±	401 4	# 866.	.270 4	.165 4
		.00 .		600 .	.010	.004			900.		·00	.004		.002	.002	.004	-002		.004	£00.	.004	
46 Sc	<.005	* 500.	<.021	• 020	• 910.	¥ £00°.	• 900.	<.016	.007	<.016	* BUO.	• 800.	<.005	¥ £00.	• •00.	• 900.	• 200.	<.006	ŧ 300.	* 600.	• 500.	<.007
	100.	.002	.002	.002	.002	.002	.002	.002	.002	100.	.002	.002		100.		.002	100.	100.	.002	.002	.(0)2	100.
22 Nd	T (10.	4 EIO.	.014 ±	F [10.	.024 ±	.025 ±	• 120.	¥ 900.	* 810.	¥ E00.	• 900.	• 500.	<.003	• 200.	<.002	• 900.	• 200.	T 100.	F 110.	₹ <i>1</i> 00.	1 600.	1 210.
le Ie	1. +	*	• 1	11	F]	+	F]	۲ ا		9 . ±	± 1.3	± 1.1	1. 4	9° Ŧ	J. 1	1.0	1. *	6. 4	* 1	1 1	. 1	[]
`	94.7	121	110	113	158	200	147	186		54.9	70.0	41.1	20.9	19.4	15.0	57.1	9. <i>1</i> E	56.6	130	128	133	104
10	91-10	02-03	02-17	03-03	21-60	04-02	04 - 18	0201	02 - 16	(1-90	07-04	07-18	08 [.] 01	91-90	09-02	91 60	10 01	10-16	10-11	11-18	12 01	1218
S	-31	-16	-03	-17	-03	1	-02	-10	10	-16	-17	5	-18	10-	-16	-02	-16	0	-16	10-	-18	10

•

•

Ni = Not detectable D = Decayed away before analysis

.

•

Barrow, Alaska 1969 (contd)

•

		1			C007			E00.		£00.		.003	E00.		200		£00.	200.	E00.	.003	.003	5003	200
	34) m			4	i un		4	S	* 2	~	1 1	÷ 9	~		æ	*	*	-	-	4	+	-
		.00	.0U	8.9	00,	8.9	<u>0</u> 0.>	8	<u>00.</u> >	8.	00. 	9.	8.	×.00	.002	\$.00	8.	00.	<i>.</i> 00	10.	·00 ⁻	10.	.00
		6	80	SO	60	=	12	10	16	10	059	12	13	085	160	064	12	085	988	13	12	2	8
	25 ₅₁	-	#		+								4	4		्. च	*	*	1.			**). +
		1.13	1.45	1.46	1.24	2.01	2.64	2.47	2.57	1.73	.683	1.58	1.37	.565	.706	.612	1.34	.706	.986	2.51	4.45	4.02	1.27
		600	200.		017	017	.005			600	004	900	200	600	600	603	900	003	005	005	100	900	
	A SL	-	7	9	#	-1	4	-	_	-	-	+	-		#	*	4	+	#	-	4		ND.
		2003.	.012		.028	.016	500.	<.007	<.019	.018	.004	.012	010.	SOO.	800.	F(M) .	.016	600.	.008	.012	800.	(10.	-
		005	E00.	004	603	004	003	C00	004	004	002	002	E00	002	002	002	002	002	004	603	600	105	003
	Š	-	#	4	4	4	*	*	4	-	-#	#	+	4	4	*		4	-	-	4		4
-	Ξ	<u> </u>	010.	900.	900.	110.	biq.	014	E10.	.016	.006	900.	900.	.005	.008	.005	.005	E007	.008	010.	600.	.017	.002
/10 ³ H		89	60.		Ξ.			-	٦.	г.	.00	Γ.	-	60.	. 00	.07		60.	-	г.	Γ.	۲.	Ξ.
MUU	1006	32 4	1 4	* 1	* •	*	* 0	* 0	1 4	8 *	÷ .	8 ±	*	* 0	*	7 9	1	2 *	5 *	# 6	# 8	* 9	-
		6	8.(10	~	12.	15.	13.	19.	12.	9.6	16.	14.	6.6	7.9	5.1	12.	7.5	10.	18.	15.	13.	12.
	7	Ξ.	06	. 06	.07	.12		60.	.2	~	.10	.2	.2	۳.	.10	60.	EL.	60.	.12	10	60.	.12	.12
	101		.43	- 15.	24 4	- 96		• 66.	.8		F EF.	= 6.'	* ~	÷.	80 ±	54 ±	56 4	30 4	21 4	16 ±	T II	₹ <i>1</i> 6	۲ II
		5)6 3	16 2	8 4	~	Ξ	30	-	Ξ	5	2	3	2	4	2.	4	۶.	Ъ.	4	÷.	2.	2.
	Ĩ	J. 4	. 4	•	. 4	. 1			* .2	* .2	*		*				• •2	. 1		~ .	• .2	1.2	
	5	20.2	1.52	3.81	6.23	0.9	8.9	3.5	4.3	0.3	1.4	8.6	4.8	7.0	8.7	2.0	8.4	5.3		. 0.0	J. I	6.7	2.3
	4	30	a N	80	10	14	14	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	~	5	4	15 1	15 1	3	~	4	-	ē.	~	8	iii S
	1	-	-	-	-	4		•	+	-	-	-		*		-	*		-	4	#	-	-
	5	66.	3.11	2.22	3.60	11 111	9.43	7.17	12.9	10.0	10.5	27.3	20.8	8.15	8.62	5.54	12.8	6.60	3.98	14.1	10.2	8.30	5.72
			100	100	100	100	100	100	100	100	100	100	100	100	100	100	103	100	100	100	100	100	100
:	BL V	QN	-	-	-	*	-	-	-	-	*	4	4	-	+			-	4	4	-		4
			00.	100.	100.	E001	100.	100.	200.	200.	.002	S00.	(00 ⁻	.002	E00.	100.	00.	-002	<i>.</i> 007	.005	00 4	300.	E00.
	011	11 16	2.03	11-21	13-03	3-17	4 .02	4-18	10 ⁻ 5	91 6	6-17	7-04	1-18	8-01	<u>8-16</u>	9-02	9 16	0-01	0-16	10-1	81-18	10.5	81 2
Date	:	E C	16 C	3 0	0 (1	3 0	0	2 0	0 8	0	9	7 0	•	0	3	0 9	0 2		=	- 9	-		-
	5	12-	1-10	02-(02 -1	03-60	03-1	04-0	041	0-90	U5 - 1	1-90	00	07-1	08-0	08-1	0.60	1-60	10 0	10-1	1.0	II E	12-0

ND = Not detectable D = Becayed away before analysis

•

Barrow, Alaska 1969 (contd)

-

•

140 _{Ba}		41 _{Ce}	00%/10 ⁴ H ³ 144 _{Ce}	207 ₈₁	226	- -	232	4
(0 T O)		10. 1 85.	21.3 4 24	.00. + 200.	.016	/00).	900.	.00
10. + 11		5.47 ± .0/	26.2 ± .2	.00. ± 200.	. 036	.008	F [10]	900.
f0. 1 9		J. 74 ± .006	23.3 ± .2	200. + 100.	.024	/00.	120.	800.
2 4 .03		.93 ± .00	23.8 ± .2	.005 ± .002	F 510.	.00.	F 500.	900.
30° 1° 31	-	9.67 ± .12	23.6 ± .1	.00. ± 200.	• 600.	900.	r 500.	.00.
60.16		12.5 4 .1	47.0 ± .3	E00. + 010.	.067 4	010.	QN	
150. 4 61		2.08 ± .05	22.2 4 .5	E00. ▲ 110.	• 1064	600.	F 100.	500 .
160. ± 63		1.79 ± .12	35.7 ± .3	.00. ± 200.	• 810.	010.	• 300.	.006
0	-	J.86 ± .21	30.4 ± .3	EOO. ± 600.	• 190.	600.	₹ 200 .	.006
1 02.1 61	~	24 4 .09	22.1 ± .1	200. ± 200.	* 810.	.005	.022	.004
1 11. • 9	-	5.0 ± .2	55.3 ± .3	E00. + MOD.	• 1/0.	600.	.020	900.
1 640. + 9,	-	0.5 ± .2	46.6 ± .3	E00. + 500.	* [80.	010.	• 035 •	.00
2 4 .018 3	~	90. 4 6€.	19.0 ± .2	.00. ± .002	₹ \$£0°	.00.	.026	.00
E EIO. + M	_	1.32 4 .08	24.5 ± .2	E00. ₹ 100.	+ SM0.	.00B	₹ [10 .	.006
0 ± .042 1	-	. 76 ± .08	16.6 ± .2	.002 4 .002	.042 +	.006	.028	900.
E /f0. 1 6)	~	.67 ± .12	44.0 ± .3	EUO. ± 700.	.085	.010	¥ [10.	900.
1 310. 1 9	-	.48 ± .08	26.3 ± .2	.006 ± .002	.042	800.	• 110.	.006
1 4 .044 2	A 1	U. + SO.	30.9 4 .2	£00. ₹ 010.	₹ BEO.	.008	¥ E10.	900.
5 1.032 2.	~	82 4 .09	39.1 ± .2	.014 ± .003	+ SNU.	110.	• 900.	.005
4 1.031 2.	~	40 ± .09	34.7 4 .2	ENO. 4 ElO.	• 090.	.009	₹ (00 .	.00.
5 1.065 2	- A.	.82 ± .12	31.3 4 .2	.012 ± 510.	• VEL.	C10.	▲ 810.	900.
9 4 .10 2		E 7 1 1 2	0. + I VC		1 1 1 1	2000		N MA

A = First Analysis by Ge(Fi) Diode RD = Not Detectable
D = Decayed Away Before Analysis

•

Alaska
ßarrow,
at
A i.r
Surface
l a
Radionuclide Concentrations (71ª18'N, 156047'M) In 1970

•

•

			.068													
65 ₇₁	<.14	¢.11	T £60.	<. 14	¢.13	6.1 8	¢.13	۰.II ،	<.18	0/0.>	QN	۰.IU	«.0/8	an	(IN	6.014
	.002	.002	100.	100.	100.	.002	100.	100.	.002	100.	100.	100.	100.	100.	100.	100
60 CC	+ /00.	.007	₩ 100	₹ 600.	• 900.	.012 4	• 900.	¥ £00.	.005 4	1 200.	↓ 1 00.	¥ £00.	▼ £00.	F 100.	* 100.	1 600
	.028	.024	.018	.016	.012	.028	.018	.014	.012	.016	160.	.020	.012	800.	.015	210
58 58	₹ <u>5</u> 90.	.059 ±	• 084 •	• 890.	¥ 610.	. 112 ±	* 310.	+ 260.	• 040.	¥ 660.	4 6€1.	+ 1/0.	4 1:00.	r 680.	¥ 650.	106 1
	110	.015	.017	.020	610.	160.	610	.017	.025	600	021	012	110	003	007	600
5/ ^{C0}	• • 10.	₹ £90 .	• 034	• 850.	* 160.	* 651.	• 940.	• 090.	. 046 +	. 025 ±	• 190.	. 036 ± .	. 060 ±	. * 010.	. 031 + .	068 1
5	.057		760.		н.	EL.		60.		.047			040.	870.		0.02
55 ^{fe}	± 055.		₹ 60E .		1.01 +	2.28 ±		2.22 +		+ 827.			± 69 €.	. 301 4		100 1
	.027	.023	.029	000.	.026	.041	.029	.025	660.	014	.034	.002	.018	.005	010.	.013
54 [_]	£ 102.	± 211.	¥ [[].	± 101.	.215 4	.462 ±	* E 92.	.216 ±	122.	£ 601.	₽ 061.	122 4	¥ 651.	* 9EO.	.116 4	* EBI.
		005	003	003		005				603	900	104	002	100	E00	600
46 _{Sc}	<.012	• 800.	. + 010.	. ± 100.	<.006	. (004 .	<010>	<.006	<.012	. 4 100.	. ¥ E(X).	. 002 \$.	. ≜ 100.	. 4 200.	. 4 200.	. + 100.
	E001.	600.	.002	.002	.002	E00.	2007	100.	.002	100.	100.	100.	100.	100.	100.	.002
22 Ha	• 020	F 110.	₹ EIO .	.012 4	¥ 610.	* 910.	+ 010.	1 010.	r 210.	• 900.	¥ 210.	¥ 200.	¥ 1100.	• • • • • • • • • • • • • • • • • • • •	+ 600.	1 020.
	-		6.	-	8.	1.1	1.0		1.0	s.	1.0	9.	9.	.2	4.	_
7 _{lle}	156 4	104 4	13.2 ±	¥ EII	\$0.2	83.l ±	¥ 6./ľ	33.3 ±	28.0 ±	22.6 ±	16.8 ±	36.0 +	¥ 6.89	14.8 +	¥ 6.93	107 4
0.1	01 · 10	02-02	02-19	03-04	03-18	06 - 16	0/ 05	0724	00 03	10-60	60~15	10-02	11-2	12-02	12-17	20-10
	Ŋ.	-16	-02	- 19	1-04	10	- 16	02	- 24	[0]	10-	-15	- 02	-02	-05	-17

ND Not Detectable

•
•

99.21. 99.21. 19.47 19.47 19.47 19.47 19.47 19.47 19.47 19.47 19.47 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 2.11 2.11 1.11 1.11 1.11 2.11 2.11 1.01 1.002 1.016 1.015 1.11 1.01 1.002 1.010 1.010 1.015 1.010 1.010 1.010 1.010 1.010 1.11 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 <th <="" colspa="2" th=""><th>$18\frac{1}{10}$ 95_{11} $101\frac{3}{10}$ 106_{101} $110\frac{3}{6}$ $110\frac{3}{6}$ 124_{51} 125_{51} 137_{51} 134_{52} $005 \pm .002$ $6.00 \pm .13$ $12.7 \pm .1$ $2.34 \pm .00$ $5.2 \pm .2$ $010 \pm .005$ $002 \pm .003$ $1.26 \pm .06$ $005 \pm .003$ $0.05 \pm .003$ $1.26 \pm .06$ $005 \pm .003$ $005 \pm .003$ $1.05 \pm .003$ $005 \pm .003$ $000 \pm .003 \pm .003 \pm .003$ $000 \pm .003$</th><th></th><th>3</th><th></th><th></th><th>-</th><th>-</th><th>-</th><th>-</th><th>۳.</th><th>Ч.</th><th>Ξ.</th><th>Ξ.</th><th>-</th><th>ō.</th><th>•</th><th>-,</th><th>•</th><th>•</th></th>	<th>$18\frac{1}{10}$ 95_{11} $101\frac{3}{10}$ 106_{101} $110\frac{3}{6}$ $110\frac{3}{6}$ 124_{51} 125_{51} 137_{51} 134_{52} $005 \pm .002$ $6.00 \pm .13$ $12.7 \pm .1$ $2.34 \pm .00$ $5.2 \pm .2$ $010 \pm .005$ $002 \pm .003$ $1.26 \pm .06$ $005 \pm .003$ $0.05 \pm .003$ $1.26 \pm .06$ $005 \pm .003$ $005 \pm .003$ $1.05 \pm .003$ $005 \pm .003$ $000 \pm .003 \pm .003 \pm .003$ $000 \pm .003$</th> <th></th> <th>3</th> <th></th> <th></th> <th>-</th> <th>-</th> <th>-</th> <th>-</th> <th>۳.</th> <th>Ч.</th> <th>Ξ.</th> <th>Ξ.</th> <th>-</th> <th>ō.</th> <th>•</th> <th>-,</th> <th>•</th> <th>•</th>	$18\frac{1}{10}$ 95_{11} $101\frac{3}{10}$ 106_{101} $110\frac{3}{6}$ $110\frac{3}{6}$ 124_{51} 125_{51} 137_{51} 134_{52} $005 \pm .002$ $6.00 \pm .13$ $12.7 \pm .1$ $2.34 \pm .00$ $5.2 \pm .2$ $010 \pm .005$ $002 \pm .003$ $1.26 \pm .06$ $005 \pm .003$ $0.05 \pm .003$ $1.26 \pm .06$ $005 \pm .003$ $005 \pm .003$ $1.05 \pm .003$ $005 \pm .003$ $000 \pm .003 \pm .003 \pm .003$ $000 \pm .003 $		3			-	-	-	-	۳.	Ч.	Ξ.	Ξ.	-	ō.	•	-,	•	•
95.1 103 106 106 106 124 124 125 125 6.00 \cdot .11 2.34 \cdot .00 1.05 \cdot .013 1.26 \cdot .06 4.10 \cdot .10 9.01 \cdot .09 2.40 \cdot .06 1.25 \cdot .010 \cdot .005 \cdot .013 1.26 \cdot .06 7.52 \star .11 1.84 \cdot .00 0.02 \cdot .003 0.02 \cdot .003 1.03 \cdot .013 1.25 \cdot .010 7.52 \star .11 1.84 \cdot .00 0.02 \star .003 1.03 \cdot .013 1.66 \star .05 7.52 \star .11 1.84 \cdot .00 0.02 \star .003 1.63 \star .14 7.20 \star .11 $1.4.07$ \cdot .01 3.63 \cdot .00 1.63 \cdot .013 1.66 \star .05 7.20 \star .11 1.67 \cdot .11 1.003 0	0PM/10 ³ Ha 18^{1} 95 103 103 124 125 $005 \pm .002 \pm .002 \pm .001 \pm .002 \pm .001 \pm .001$:	5	* SUO.	. * 300.	. * 010.	. 1 800.	• 100.	• 920•	F 600.	• 000.	• 800.	¥ 200.	+ 010.	¥ 900.	¥ £00.	4 800.	¥ 900.	.012 +	
95 95 95 $10\overline{3}\overline{R_{44}}$ $10\overline{6}\overline{R_{44}}$ $11\overline{10}\overline{A_{24}}$ $12\overline{A_{24}}$ 6.00 ± .13 12.7 ± .1 2.34 ± .08 15.2 ± .2 .010 ± .005 .013 ± .005 4.10 ± .10 9.01 ± .09 2.40 ± .06 15.2 ± .2 .010 ± .005 .013 ± .003 7.52 ± .11 1.04 ± .08 13.7 ± .1 0.02 ± .003 .003 ± .003 10.05 7.52 ± .14 15.1 ± .1 3.92 ± .08 12.1 ± .1 .003 ± .004 .003 ± .003 7.20 ± 0.13 14.7 ± .1 3.92 ± .08 12.1 ± .1 .003 ± .003 .003 ± .003 7.20 ± 0.13 14.7 ± .1 3.92 ± .08 12.1 ± .1 .003 ± .003 .003 ± .003 7.20 ± 0.13 14.7 ± .2 3.04 10.65 ± .01 .003 ± .003 .003 .001 ± .003 7.20 ± 0.13 14.7 ± .2 3.04 ± .01 .012 ± .01 .003 ± .003 .001 ± .003 .002 .001 ± .003 .003 .003 .003 .003 .003 .001 .003 <td>BB $y_{15}y_{1}$ $y_{10}y_{1}$ $y_{10}y_{1}$</td> <td></td> <th>125₅₁</th> <td>. e6 ± .06</td> <td>.26 ± .08</td> <td>60. ± 60.</td> <td>.63 ± .14</td> <td>.59 ± .10</td> <td>.42 ± .1/</td> <td>11. + 80.</td> <td>60. ₽ 68.</td> <td>£1. ± 8/.</td> <td>716 4 .017</td> <td>.55 ± .05</td> <td>.26 ± .008</td> <td>.44 1 .06</td> <td>261 ± .010</td> <td>656 ± .023</td> <td>27 ± .03</td>	BB $y_{15}y_{1}$ $y_{10}y_{1}$		125 ₅₁	. e6 ± .06	.26 ± .08	60. ± 60.	.63 ± .14	.59 ± .10	.42 ± .1/	11. + 80.	60. ₽ 68.	£1. ± 8/.	716 4 .017	.55 ± .05	.26 ± .008	.44 1 .06	261 ± .010	656 ± .023	27 ± .03	
95 96 MI 103 MI	H8 95_{11} 915_{11} 915_{11} 915_{11} 916_{11} 110_{10} (005 ± .002 6.000 ± .13 12.7 ± .1 2.34 ± .08 15.2 ± .2 .010 ± .005 .005 (010 ± .001 3.26 ± .12 7.20 ± .11 1.84 ± .08 15.2 ± .2 .010 ± .005 .003 .004 .00 (010 ± .001 3.26 ± .12 7.20 ± .11 1.84 ± .08 8.98 ± .10 .003 ± .004 .00 .00 (010 ± .001 7.52 ± .14 15.1 ± .1 4.07 ± .09 13.7 ± .1 .003 ± .003 .00 .00 .003 ± .003 .00 .003 ± .004 .00 .003 ± .003 .00 .003 ± .004 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .004 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .003 ± .003 .00 .00 .003 ± .003		124 _{5h}	1 1	i2 ± .005 1.	1 300. 4 30	1 800. 4 80	02 ± .003 1	¥ 900. ¥ 02	01 + .005 2	1 600. 4 20	I 700. 1 EO	. /00	2 800. ± 60	011	02 4 .008 1	05 ± .002 .	02 ± .004 .	1 400 4 90	
95 96 MM 103 MM 103 MM 103 MM 103 MM 106 MM 107 MM MM 106 MM 107 MM 101 101 101	$101 \sqrt{10^3 H_3}$ $99. \chi_1$ $106 \kappa_{u}$ $106 \kappa_{u}$ $106 \kappa_{u}$ $106 \kappa_{u}$ $106 \kappa_{u}$ $100 \kappa_1$ $20. \gamma + 2$ $200 \kappa_1 + 2$		1104A9	010 ± .005 <.1	002 ± .005 .00	002 ± .004 .00	0. 400. 4 600	005 ± .003 .04	0. \$00. \$ 800	.00.	0. E00. ± 600	0. 200. ± 300	.> 200. + 2002	0. 004 .004	·> £00. + £00	0. 200. 4 600.	.002 ± .002	0. 500. 4 400.	J LUU + CUU	
y_5_{21} g_5_{Mb} 103_{Ru} 6.00 ± .13 12.7 ± .1 2.34 ± .08 4.10 ± .10 9.01 ± .09 2.40 ± .06 3.26 ± .12 7.20 ± .11 1.84 ± .08 7.52 ± .14 15.1 ± .1 4.07 ± .06 7.20 ± 0.13 14.7 ± .1 3.92 ± .08 7.25 ± .14 15.1 ± .1 3.92 ± .08 7.26 ± .2 58.7 ± .2 10.4 ± .1 14.4 ± .2 32.6 ± .2 56.3 ± .15 11.9 ± .2 26.7 ± .2 3.28 ± .09 6.86 ± .2? 19.9 ± .2 3.28 ± .09 11.9 ± .2 26.7 ± .2 3.28 ± .09 9.86 ± .2? 10.4 ± .1 11.9 ± .2 26.7 ± .2 3.28 ± .09 9.16 ± .10 8.19 ± .09 .15 9.05 ± .18 20.3 ± .2 1.67 ± .11 9.05 ± .18 20.3 ± .2 1.67 ± .10 9.10 ± .10 8.19 ± .00 .19 9.05 ± .18 20.3 ± .02 .167 ± .10 9.05 ± .18 2.08 ± .02 .103 1.03 ± .02	184_{Y} $99_{Z_{T}}$ $99_{Z_{T}}$ $99_{Z_{T}}$ $99_{Z_{T}}$ 1013_{Ru} $(005 \pm .002$ $6.00 \pm .13$ $12.7 \pm .1$ $2.34 \pm .08$ $(005 \pm .002$ $6.00 \pm .13$ $12.7 \pm .1$ $2.34 \pm .08$ $(010 \pm .001$ $3.26 \pm .12$ $7.20 \pm .011$ $1.09 - 2.40 \pm .06$ $(010 \pm .001$ $7.52 \pm .14$ $15.1 \pm .1$ $4.07 \pm .09$ $(010 \pm .001$ $7.52 \pm .14$ $15.1 \pm .1$ $4.07 \pm .09$ $(012 \pm .001$ 7.20 ± 0.13 $14.7 \pm .1$ $3.92 \pm .09$ $(012 \pm .001$ 7.20 ± 0.13 $14.7 \pm .2$ $10.4 \pm .1$ $(012 \pm .002$ $11.9 \pm .2$ $56.7 \pm .2$ $51.3 \pm .16$ $(013 \pm .002$ $11.9 \pm .2$ $26.7 \pm .2$ $3.28 \pm .09$ $(014 \pm .002$ $11.9 \pm .2$ $26.7 \pm .2$ $3.28 \pm .09$ $(015 \pm .002$ $9.05 \pm .16$ $0.13 \pm .0$ $0.13 \pm .09$ $(015 \pm .002$ $9.05 \pm .16$ $0.13 \pm .0$ $0.13 \pm .09$ $(014 \pm .001$ $3.91 \pm .00$ $0.13 \pm .01$ $0.13 \pm .01$ $(015 \pm .002$	01.M/10 ³ M ³	106 _{Ru}	15.2 ± .2 .1	10.7 ± .2 .1	. 01. 4 86.8	1. 1. + 7.61	12.1 4 .1	44.2 ± .2 .	22.2 ± .1 <	17.5 4 .1 .	17.2 4 .1 .	6.17 * .05 .	21.2 4 .1	10.6 ± .1	9.13 + .08*	2.67 ± .04	6.40 4 .08		
95,1 95,40 6.00 .13 12.7 ± 4.10 ± 10 9.01 ± 09 3.26 ± 12 7.20 ± 11 7.52 ± 14 15.1 ± 19 7.52 ± 13 12.7 ± 11 7.52 ± 14 15.1 ± 1 7.52 ± 14.7 ± 1 25.6 ± .2 58.7 ± 2 11.9 ± .2 56.7 ± 2 11.9 ± .2 26.7 ± 2 9.05 ± .10 8.33 ± 0 9.05 ± .10 8.19 ± 0 3.67 ± .10 8.19 ± 0 3.93 ± .08 8.19 ± 0 3.91 ± .08 8.19 ± .08 3.05 ± .10 8.19 ± .08 3.03 ± .02 2.08 ± .02 3.93 ± .02 2.08 ±<	BB_{Y} $y_{2}Z_{1}$ $g_{2}A_{1}$ $005 \pm .002$ $6.00 \pm .13$ $12.7 \pm .1$ $0013 \pm .002$ $6.00 \pm .13$ $12.7 \pm .03$ $0103 \pm .001$ $3.26 \pm .12$ $7.20 \pm .03$ $0102 \pm .001$ $3.26 \pm .12$ $7.20 \pm .03$ $0102 \pm .001$ 7.20 ± 0.13 $14.7 \pm .03$ $012 \pm .003$ 7.20 ± 0.13 $14.7 \pm .2$ $0135 \pm .003$ $14.4 \pm .2$ $58.7 \pm .2$ $0135 \pm .003$ $14.4 \pm .2$ $32.6 \pm .2$ $0135 \pm .003$ $14.4 \pm .2$ $26.7 \pm .2$ $0135 \pm .003$ $14.4 \pm .2$ $26.7 \pm .2$ $0135 \pm .003$ $14.4 \pm .2$ $26.7 \pm .2$ $014 \pm .002$ $1.94 \pm .2$ $26.7 \pm .2$ $014 \pm .002$ $3.46 \pm .09$ $8.34 \pm .09$ $016 \pm .003$ $9.05 \pm .10$ $8.19 \pm .09$ $015 \pm .001$ $3.91 \pm .00$ $1.03 \pm .03$ $015 \pm .001$ $3.91 \pm .00$ $1.03 \pm .03$ $015 \pm .001$ $3.01 \pm .001$ 1.02 $015 \pm .001$ 1.02 $2.04 \pm .02$			0.34 ± .08	06 + 06	1.84 ± .08	60. ± (0.	3.92 ± .08	1. + 1.01	5.63 ± .15	£0, ₹ 82.£	21. ± 61.5	115 1.05	11 4 79 1	1054 ± 059	050 + 190	FIO + CFA	1.21 4 .04		
952r 6.00 ± .13 4.10 ± .10 3.26 ± .12 7.52 ± .14 7.52 ± .14 7.20 ± 0.13 25.6 ± .2 14.4 ± .2 11.9 ± .2 11.9 ± .2 13.46 ± .09 9.05 ± .18 3.67 ± .10 3.61 ± .09 9.05 ± .18 1.03 ± .02 1.03 ± .05 1.03 ± .05 1.03 ± .05 1.03 ± .05 2.65 ± .05	BB_{Y} $95_{Z_{Y}}$ $(005 \pm .002$ $6.00 \pm .13$ $(013 \pm .002$ $6.00 \pm .13$ $(010 \pm .001$ $3.26 \pm .14$ $(010 \pm .002$ $7.52 \pm .14$ $(012 \pm .001$ $7.52 \pm .14$ $(012 \pm .001$ $7.52 \pm .14$ $(012 \pm .001$ $7.52 \pm .14$ $(012 \pm .003)$ $7.52 \pm .14$ $(0135 \pm .003)$ $14.4 \pm .2$ $(0135 \pm .003)$ $14.4 \pm .2$ $(014 \pm .002)$ $11.9 \pm .2$ $(014 \pm .002)$ $11.9 \pm .2$ $(015 \pm .003)$ $9.05 \pm .16$ $(015 \pm .003)$ $9.05 \pm .16$ $(015 \pm .002)$ $1.03 \pm .03$ $(011 \pm .001)$ $3.91 \pm .02$ $(010 \pm .001)$ $1.03 \pm .02$ $(010 \pm .001)$ $1.03 \pm .02$		95 mb		60° * 10° 6	11. ± 02.7	1. 1 1.61	1. * 7. 91	58.7 ± .2	72.6 4.2	26 7 4 2	10 9 4 2		6 7 E VC	0 1 0 1 00	0	0.0700 2 00 + 02	5. 11 4 . 11		
	BBy 100. 4 200. 4 200. 4 200. 4 200. 4 200. 4 201. 4		95,,			21.1.96 8	7 52 4 14	7 20 4 0.13	25.6 ± 2	14 4 5 2	0 + 0 11	20 2 2 20 0	0.00 • · · · ·	(n 0).(01. 1 CU.P	1. 1 /0.F	100. L 24.2	20. = CU.1 20. = CA C		

.

_ first Analysis by Ge(Li) Diode

Barrow, Alaska, 1970 (contd)

••

7

.

.

		011	008	006	007	003	006	007	004	008	003	005	005	002	002	004	004
	<u>_</u> =	Ч. 4	-							 -+				++	+I	•	•
	53	• 010 •	.000	• 000	.002	.002	• 035	• 065	.021	• 002	.004	.006	.000	.003	.002	.003	.003
	P	.015	.018	.010	.010	.008	.016	.011	.008	.015	.005	.011	.008	.006	.004	.007	600.
	الا	-#	H	-#	-#	+I	++	+H	+	4	H	#	#	-#	+	++	+
	52	.031	.032	.045	.004	.00	.024	.002	.051	.074	.015	.019	.016	.00	.017	600 .	.026
	Ce	1.8	2.0	1.2	1.3	1.0	2.0	1.1	6.	1.5	.6	1.6	1.0	8.	.41	6.	1.1
13	44	#	#	+1	#	#	-++	#	#	#	#	#	#	#	*	#	#
4/10 ³ h		28.4	21.5	19.6	26.5	24.7	73.2	36.1	31.7	35.(13.(37.(16.(22.1	5.2(13.	25.1
DPN		.08	.06	.08	.08	.07	.12	.15	.08	.15	.072	.11	.057	.053	.016	.03	.05
	LCe	-#	-#	#	-#	-#	+	-H	-+1	#	#	-#	++	-#	#	-H	#
	14	2.43	2.05	1.63	3.74	3.56	6.46	3.53	2.12	1.41	.671	1.24	.423	.575	.420	1.14	1.77
	la	.049	.021	.024	.014	.006	.035	~	.025	.17	.64	.32	.20	.034	.030	.045	.021
	40 _E	+	-H	-#	++	+	++	لهجا	+	-+1	-++	-#	#	#	#	#	#
		.185	.085	.152	.107	.032	.176		.028	.16	2.24	1.62	-90	.168	.354	.554	.469
	s	.05	.04	.05	.06	.05	.08	.05	.04	.06	.02	.06	.04	.03	.010	.02	.03
	370	+	-#	-#	#	-#	-#	4	-#	-#	H	-#	H	#	#	-#	#
	F	2.81	2.11	1.62	2.67	2.31	5.48	2.89	2.62	2.20	1.02	3.28	1.53	2.07	.649	1.41	2.72
te	OFF	01-16	02-02	02-19	03-04	03-18	06-16	07-02	07-24	0803	10-01	09-15	10-02	11-02	12-02	12-17	01-02
Da	NO	12-30	01-16	0202	02-19	03-04	06-01	06-16	07-02	07-24	08-03	10-60	09-15	10-02	11-02	12-02	12-17

• •

D = Decayed away before analysis

Radionuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'N) in 1971

.

•

.

•

							C 10.		810.	110.	E 10-	800	.018	/10	610.	
		••034	<.021	<.016	e-029	<.034	• 020.	<.04/	↓ 190.	7 110.	¥ 610.	• 600.	4 670.	£ /10.	1 210.	
	0	100.	100.	100	100	100.	100.	100-	.002	100.	600.	600.	.015	1.0.	120.	
	60 0	+ 500.	• 002	₹ E00.	• 800.	* 800 .	¥ 110.	# 600 .	* 610.	¥ E00.	.012 +	* EIO.	₹ 100 .	+ 110.	• 600.	
		.021	110.	010.	.016	.016	.022	1024	960.	120.	•200.	900.		120.	210.	
	58.	₹ 60l.	+ IVO.	* /£0.	¥ E60.	115 4	.127 ±	± 661.	.014 4	+ 010.	▼ EIO .	£ 500.	(IN	1 210.	¥ 600.	
	0	.012	.009	800.	210.	.014	.017	.018	.028	600.	110.	010.	110.	110.	E 10.	
	2) ^C	₹ 990.	* 820.	• 024	₹ 690.	• 8/0.	¥ 361.	¥ 6/0.	.204 ±	₹ EEO .	* 8EO .	¥ 620.	± 035 ±	+ 080.	± 710.	
0 ³ H ³	0	.058													110.	
L/M/IQ	55	* 266.													• /£0.	
	=	.002	<u>.015</u>	.015	.035	.023	.026	000.	.05	910.	120.	.016	.020	.022	.022	
	54 _M	.178 ±	. 270.	€ 0/0 .	115 4	.222	4 11 *	403 4	1.35 ±	± 665.	.208 +	10I.	• 164 •	+ E/I.	¥ 0E2.	
		F(X).		.002	£00.	.003	.005	600 .		.004	110.	900.		/10.	.015	
	465	¥ \$(N).	<.004	* 100.	¥ £00.	¥ E00.	• 800.	1 800.	<.009	• 010.	.012 #	¥ £00.	<.027	F 100.	F /00.	
	- -	.002	100.	100.	.002	.002	.002	£00.	M00.	.002	•/00.	100.	(10).	800.	010.	
	22 _N	¥ 610.	€ (00.	• /00.	* <i>(</i> 10.	¥ 610.	.026 ±	4 9l0.	₹ 800.	÷ 300.	• 020.	• ISO.	1 016 1	₹ 800.	.008 ±	
	Be	7	1.1	1.1	6. 1	6. 4		1. 4	1	4. ±	H. 1	9. 1	1.1 +	1.3	12	
		117	47.6	42.9	88.7	96.7	143	1.91	611	22.2	10.1	47.0	81.6	9.86	671	
Date	UF.	01 - 16	0201	02-15	03-01	03-15	1010	06-15	07-01	07-29	10-01	10-15	11-01	41- II	01.01	
	NO	01-02	01-16	05-0I	U215	01-01	U 3- 15	00-01	06 - 15	10 /0	61 60	10-01	10-15	10 11	12 15	

.

▲ .. First Analysis by Ge(Li) Diode. ND Not deteclable

•

,

	Cs Cs	E00. 4	₹002	200. t	£00. Ł	E00. 4	£00. ±	¥000. ±	9(N). ±	£00. +	110. 1	1004		• .010		
	VE1	900	£00.	500.	900.	110.	.014	.075	60.	600.	.028	.003	e10.>	.002	۰.07	
	5	90.	• .030	960. 4	90° 1	۲ .06	/0. 1	80. 1	1.12	1.04	. 05	100.	.013	. 052	GO .	
	125	1.12	.450	.478	1.15	1.38	2.14	1.85	5.76	1.08	1.04	. 518	: 967.	F 826.	1.21	
	 _	.005		.00		.004		900.			.023		.027	010.	.043	
	124	¥ 610.	<.007	. 005 ±	<.008	₹ 100.	<.010	₹ 800 .	<.020	<.611	• 020 •	<.042	₹ (10.	* 290.	¥ 620'	
	5	E10.	E00.	.003	.003	£00.	.003	100 .	900.	600.	.0724	.020			.021	
	110	.002 ±	* 100.	* 100.	. 002 ±	• 004 •	* 900.	# 600 .	F IIO.	₹ 600.	+ 120-	• 120.	9LU.>	۰.047	• 200.	
۳.	Ru	4.	12.	.29	4.	4.	9.	l.	6.	۲.	4.	.32	.36	.42	4.	
01/MJ	106	10.7 4	4.49 ±	4.18 ±	10.1 +	12.3 4	\$ 6.22	25.2 ±	64.7 ±	H.7 ±	H.7 +	5.00 ±	8.34 ±	9.39 ±	± 6.11	
-	Ru	.07	6EO .	.036	.07	90.	г.	11.	.2	.05	.048	.024	.054	.041	Π.	
	101	± 94 ±	<i>ŧ Ш.</i>	¥ 69/.	3.51 ±	4.64 ±	14.5 4	9.32 ±	20.1 ▲	2.68 4	• 355	± 366.	420 4	. 464 L	3.74 ±	
	-	. 15	60.	.08	90.	.18	₹.	4.	-	-	г.	60.	EI.	EI.	.12	
	5	4.11	1.62 4	I.53 4	6.34 ±	9.03 4	52.6 4	53.6 4	t 691	25.6 4	12.6 4	5.22 4	6.64 ±	6.78 \$	6.57 ±	
	5-	90	.04	.38	.02	90.	۳.	۳.	y.		. 14	60.	п.	. 14	.15	
1	36	2.38	1.09 J	1.00	2.60 ±	2.95	28.0 ±	27.1 4	81.3 4	12.2 #	1 16.3	2.40 4	3.08 ±	3.24 4	3.30 ±	
		.002	100.	100.	.002	EU0.	.004	.005	010.	.005	¥600°	.00.	010.	110.	-012	
	8	+ /10.	¥ 900.	¥ 900.	.022 *	¥ EEO.	.129	4 GPI.	± 454.	¥ 180°	• 050.	• 020	* 620.	• 270.	1 080.	
	<u>II</u>	-16	10	-15	10	-15	01	-15 -	01	59	10	15	01	15	10	
Date		01	02	- 20	-03-	-60	5	-90	07.	- 78	10	10	=	-	01-	1
	NO	01-02	01-10	05-01	u2 -15	03-01	03-15	00-01	<u>91-90</u>	10-70	51-60	10-01	10 - 15	11-01	12-15	

Barrow, Alaska (71°18'N, 156°47'W) in 1971 (contd)

•

* = First Analysis by Gc(Li) Diode.

.

·

	OFF		140 _{Ba}	141 Ce		144 _C	e	220 ⁸	la I	2.52	11 II	a	1
	01-16	2.38 4 .06	.591 ± 1076	1.51 +	10.	21.7 ±	.2	* 160.	.009	* 300.	.005	681.	10. I
. 9	02-01	1.01 ± .04	10. ± 80.0	T E95.	3EO.	9.30 ±	.15	+ 010.	.006	• 300.	100	. 072	• .06
2 =	02 - 15	1.00 ± 001	010. 4 730.	¥ 445.	160.	8.18 ±	.15	* 110.	.007	₹ 900°	. 105	.024	50. 4
. 5	03-01	2.60 ± .02	810. + 961.	2.61 4	90.	22.1 ±	.02	¥ (10.	600.	F 100.	.003	. 068	/0. 1
	03-15	2.95 ± .06	.118 ± .012	3.54 ±	90.	26.0 ±		¥ E10.	600.	. 002	• .005	125	10. 1
4	04-01	4.85 ± .07	6¥0. ★ 188.	10.1 ±	۲.	48.5 ±	s.	<.022		F 800.	. 005	.106	.0.
: =	06-15	3.34 ± .07	.209 + .026	4.60 ±	.07	46.3 ±	Е.	1 /80.	.013	• /00.	.005	.135	1
5	07-01	I. ± 6.01	.58 ± .16	11.8 ±	.2	152 ±	11	د.032		· 084	600° +	.125	• .09
. =	07.24	1.94 4.01	.114 ± .035	1.44 ±	.03	27.4 +	EO .	₹ V00°	.004	r 510.	600 .	.059	F0. 4
5	10-01	2.00 ± .05	<.038*	.358	.032	23.4 ±	.2					.102	.0.
. 3	10 15	1.06 ± .04	QN	+ 0/1.	.020	10.7 +	.2					, 10 <i>7</i>	[0. 1
ç	10 11	1.45 ± .04	QN	± 182.	6/0.	15.6 ±	.2					691.	.0. *
	11-15	30. ± 67.1	QN	.234 ±	950.	18.2 ±	.23					£11.	·0. 4
1	(U10	2.54 4 .05	3.6 1.4	3.24 ±	11.	22.3 ±	.2					.138	4 .U

Barrow, Alaska (71°18'N, 156°47'V) in 1971 (contd)

¢

▲ = First Analysis by Ge(Li) Drode. ND = Not Detectable

.

•

•

Ц,	lte				!				DPM/10	۶ ^M 3							
NO	OFF	/ Be	22 Na	4	اين م	54 Ma		5/ Co		28	9	60 Co		65 Zn		88	
01-01-72	04 -15-72	8. ¥ I.65	.022 ± .0	123 4.6	976	+ 261.	.019	• 024 F	110.	1010.	600.	.010	600.	QN		• 010.	10
04 15-72	05-01-72	1 T R/1	.022 4 .0).> 621	355	.226 ±	610.	* 5/0.	.015	• 9l0.	.014	<.021		<.028		• 010.	.012
05-01-72	05-15-72	161 ± 2	\£0.>	۰. د	968	.218 4	.040	.064 ≜	.030	.045 *	.045	.028 ±	.014	₹ 1 50.	020.	* 800.	(10.
05 -15-72	06-01-72	127 ± 2	. 002 ± .0	112 s.G	830	¥ 0/1.	260.	* 6 74 *	.027	.050 .	.032	* /00.	.012	<.10		.020 ±	.014
06-01-72	U6-15-72	46.5 ± 1.3	i <.046	۰.6 د.6	B 80C	* £/0.	160.	* \$60.	.023	££0.>		• 900.	110.	<.092		<.040	
06 15-72	07-01-72	25.0 ± .4	0. ₹ 600.	Ú.> 60	164	* 800.	.022	<.024		• 005	600.	* 600°	.005	* (00)	610.	₹ {00 .	/00.
07-01-72	07-15-72	49.9 ± 1.1	۰.050 ×	0.5	69	* /50.	.029	* 580.	.023	.016 ±	.013	₹ ¥00°.	010.	£60.>		4 900.	.012
07 - 15 - 72	08-01-72	12.6 ± .5	0. ↓ 100.	0. × .0	610	+ 810.	.021	₽ 900 .	.014	¢ .039		₹ [10.	600 .	<.067		.012 4	120.
08-01-72	09-01-72	33.0 ± .9	<.03/	۰.۵	120	+ 610.	.023	.013 +	.015	.012 +	110.	± 910.	600.	* /90.	.021	620.>	
27-10-60	09-15-72	45.2 4 1.1	.012 ± .0	12 <.0	16	.016 A	.027	* IIO.	.018	<.029		▼ 610.	110.	± (30.	.026	1 900.	210.
09-15-72	10 01-72	52.1 4 .7	د:00	6. 0	1	• 510	.014	• 018	010.	* 400.	900.	<.022		. 020 ±	010.	010.×	
10-04-73	10-18-73	150 ± 5	0. 4 ElO.	N RO	-	022 ±	007	<.005		6,081		600		VOU		I	
10-18-73	11-01-73	94.0 ± 3.9	. 4 100.	10 N	g	100.3		1 010.	£110.	<.0/0		<.010		M00.,		1 2	
11-02-73	11-15-73	220 ± 6	0. 4 800.	П и	9	027 ± .	010.	<.010		• 100.	640.	<.011		<.004		9	
11-15-73	11-29-73	168 4 9	. * OlO.	N 60	Å	:.016		<.010		QN		QN		₹ {E0 .	.026	5.032	
11 -29-73	12-28-73	202 + 3	.014 4.00	N 50		026 4 .	900,	. # 300.	£00.	<.004		(H).>		<.016		(IN	

Barrow, Alaska (71º18'8, 156º47'4) in 19/2 and 1973 (contd)

ND = Not Detectable

.

Barrow, Alaska (71°18'N, 156°47'W) in 1972 a 1973 (contd)

~

	13/ Ŭ	Cs	.13 ± .05	.33 ± .06	.12 ± .10	.42 ± .08	.14 ± .06	102 ± .024	.l3 ± .06	260 ± .032	587 ± .041	575 ± .049	513 ± .029	010 + VCC	110 PCC	218 ± .012	480 ± .019	383 ± .015	569 ± .013
	134	CS	.002 ± .011 2	.011 ± .012 3	s.019 3	.004 ± .011 2	010. ± 010.	.016 ± .007 .	.008 ± .010	.014 ± .008 .	.005 ± .007	.015 ± .009 .	.007 ± .005	. 016		.017 ± .007	. 012 ± .009 .	.003 ± .012 .	<.005 .
	125	12	.892 ± .048	1.32 ± .07	1.48 ± .14	1.11 ± .13	.54 ± .10	.037 ± .018	.46 ± .10	.155 ± .052	.276 ± .036	.282 ± .066	.227 ± .041	N10 + 230	+IN. * 100.	.057 ± .012	.123 ± .019	.111 ± .015	.164 ± .013
	124	es I	.027 ± .029	QN	<.048	<.046	.092	<.073	<.071	<.060	.047 ± .038	ND	QN	ġ	N	ND	ND	MD	QN
0PM/10 ³ M ³	110m	Ag	<.044	<.044	<.040	¢.073	ND	<.038	.049 ± .030	<.045	د.064	<.058	<.028	5	ND	ND	DN	.038 ± .041	QN
	106	Ru	7.20 ± .36	11.0 ± .4	10.6 ± .3	8.20 ± .58	4.11 ± .47	.45 ± .21	4.14 ± .45	.85 ± .23	2.23 ± .17	2.19 ± .33	1.76 ± .19		$.49 \pm .10$.44 ± .11	.77 ± .12	.86 ± .12	1.61 ± .08
	103	Ru	.340 ± .034	90. ± 06.1	5.52 ± .19	7.14 ± .16	3.95 ± .18	.211 ± .048	6.43 ± .08	1.63 ± .08	2.67 ± .12	1.89 ± .11	1.11 ± .04		I.30 ± .50	1.30 ± .44	2.76 ± .52	3.3 ± 1.8	2.54 ± .32
	95	ND	1.82 ± .07	16.4 ± .1	36.3 ± .4	33.7 ± .3	15.2 ± .28	1.23 ± .08	17.2 ± .3	3.12 * .11	5.18 ± .15	3.40 ± .13	2.29 ± .06		2.76 ± .21	2.39 ± .18	8.22 ± .32	5.66 ± .44	9.54 ± .22
	<u> 36</u>	Zr	.869 ± 077	14.1 ± .2	26.8 ± .5	24.8 ± .4	9.31 ± .34	.85 ± .11	10.5 ± .3	1.79 ± .13	2.65 ± .17	1.71 ± .16	1.22 ± .06		1.51 ± .26	1.19 ± .22	4.19 ± .39	2.12 ± .51	4.92 ± .24
te		OFF	04-15-72	05-01	05-15	1090	06-15	10-70	07-15	08-01	09-01	61-60	10-01		10-18-73	11-01	11-15	11-29	12-28
Da		NO	04-01-72	04-15	05-01	05-15	06-01	06-15	07-01	07-15	08-01	10-01	09-15		10-04-73	10-18	11-02	11-15	11-12

ND = Not Detectable

.

•

	02		8I.	.45	١٤.	.43	÷. :	.4.	ور .	.	F .	~~		1.00	620.	570-	
40 K	4 4		¥ [5.	1.64 4	¥ 0¥ 1	1.52 4	1.36 ±	2.08 ±	1.58 4	1.02 ±	• 9C.1	1 [6.			+ ROL.		•
	101 + 101		.063 ± .069	<.12	.05 4 .13	«.II	.05 4 .12	5l. ± 60.	.13 ± .12	.1/ 4 .12	čl. ± 60.	5/0. + 1/0.	.007 4 .020	.025 ± .021	<.085	220. ± 640.	510. ¥ 010.
226 Ra	36	02.5	د.ا؟	<.52	<.45	<.47	«.N	<.54	<.44	<.42	<.54	N	.161 ± .038	.057 \$.027	£00. ± €£0.	.083 ± .033	/10. + 640.
210 210 19													10.4 ± .3	16.3 ± .3	20.1 ± .4	30.8 ± .4	25.2 ± .3
155 DPM/		140. # 608.	.369 ± 060	.46 ± .12	.35 ± .10	.143 ± .075	<.010	780. ¥ 162.	$040 \pm .053$.054 ± .054	.132 ± .067	.035 ± .038	.022 ± .009	600. ± 810.	010. + 160.	.010. 4 260.	.000 + .009
144		14.1 ± .2	24.5 ± .2	23.3 ± .4	19.6 ± .3	8.38 ± .24	CI. * 77.	8.98 ± .25	1.83 ± .13	3.78 ± .16	3.34 ± .18	2.75 * .10	£0. ≢ 90.1	.877 ± .045	2.56 4 .08	2.08 ± .07	3.80 J .06
141		.260 ± .041	1.96 ± .10	12.4 ± .2	10.5 4 .1	4.19 ± .17	.276 ± .060	11. + 16.3	1.29 ± .0/	1.36 + .10	1.12 ± .09	.594 4 .033	2.2 + 1.5	3.7 ± 1.2	E.I ± I.E	0	89. + 11.1
140	<u>Ba</u>	D	2.25 ± .22	142 4 88	2.00 ± .37	0	<.017	.47 ± .37	0	a	UN	ND	ŊŊ	CIN	ON	(IN	99
2	- 01F	04-15-72	10-50	06.15	001	06 - 15	10-70	07-15	08-01	10-60	61-60	10-01	10 - 18 - 73	10-11	61- 11	11-29	12 28
Dat	NO	04-01-72	61 FU	01 U	05 - 15	06-01	61-90	10 /0	61-15	08-01	10-00	<u> 60 - 15</u>	10-04-73	10-18	11-02	11-15	11-29

Barrow, Alaska (21°18'N, 156°47'W) in 1972 and 1973 (contd)

.

•

•

¢

RUD = Not detectable D = Decayed away before analysis

.

.

ND - Not Detectable

610. 1 650. 8/0. + //1. 890. + 661. .047 ± .002 .026 ± .018 130. ± 000. 150. ± 590. 010. + 010. 65_{7n} •.11 ÎN GN 8 QN QN Î 9 9 9 <.043 <.029 040.> د. ال <.Ub6 <.019 .026 ± .009 .022 ± .018 900. ± 110. .012 ± .008 60_{C0} <.011 QN QN Q BD 9 Q QN QN (IN ¢.012 <.014 <.014 <.005 000.> IE0. ± 020. <.015 .122 ± .010 /10. + 620. 58 Co E (IN £10.> QN Ŵ **UN** an <.010 (H GN QN <.042 (N 510.> <.048 <.018 <.018 <.016 160.> <.014 <.15 $012 \pm .005$ 700. 4 610. (00. ± 300). 800. + 110. .004 ± 000. 400. ± £00. AUD. 4 800. 200. ± 210. .021 4 .014 000 ¥ 900. $.002 \pm .006$.004 .004 110. + 720. 010. ± 610. 100. ± 100. 110. ± 910. .004 1004 200. ± EIO. MU0. 4 500. 57₆₀ QN Ξ <.018 <.006 <.020 0PM/10³M³ 54_{Mn} 600. * 060. .200 ± .030 005 \$ 830. 010. ± 090. .212 ± .018 .00. 4 730. 800. 1 190. .010. 4 2000 .322 ± .024 .042 4 .010 .241 ± .029 010. ± 680. .048 ± .032 .106 ± .015 .010. 4 100. .048 ± .027 515 ± .035 190. ± 028. .210 ± .019 149 ± .016 .107 ± .013 (IIO. 4 2EO. $600. \pm 630.$ 710. ± £15. 16_{Sc} s.016 >.016 >.00/ Ē g ND ₽ 2 2 Œ QN QN Q θĐ <u>S</u> MD œ QN R 9 Q 2 Ē ĝ 100. ± 100. .287 4 .025 ESU. 4 185. .436 ± .038 . 301 4 10E. .420 ± .032 .218 4 .020 .262 ± .032 .248 4 .0.0 .618 4 .082 .264 ± .023 .165 ± .027 .006 ± .008 40. 9 QN 610.> QN e10.> ¢.019 <.019 <.067 <.056 <.18 <.14 .016 ± 013 800. + 710 110. 4 120. 600. **±** 800. .022 ± .018 **000. ▲** 000. 110. 4 910. **000.** ▲ 010. $020. \pm 610.$ 010. + 550. 800. 1 600. 000 ¥ 910. 000. 4 700. .021 ± .006 000. 4 /00. 000. + 500. 100. 4 100. 000. ± 800. 000. ± 800 22 Ala 99 80 99 B <.006 11.7 + 1.4 /2.0 ± 1.5 47.1 ± 1.0 50.7 ± 1.8 18.7 4 .6 6. ± 1.39 47.3 ± 6 91.6 1.8 39.4 ± .8 /8.3 ± .7 9. 1 0.95 1. 4 6.86 1. 4 9.36 8 + 122 143 ± 1 242 ± 4 221 ± 3 153 ± 1 151 4 1 134 ± 7 157 ± 2 159 ± 2 193 ± 2 136 ± 2 10 - 8006-15 07-15 61-80 10-01 04-15 05-01 06 02 10--70 11-01 11 15 03-15 10-10 05-15 08-31 61-60 10-15 10 11 51 01 12-01 10 10 12--28 01-13 01-26 02-24 03-01 12-15 OFF Dute 01-13 02-24 10--/0 61-60 10 01 92-10 03-15 61-90 07-15 08-15 11 15 12-01 12 15 01-15 06-02 08-01 10-01 10. 40 05-01 05-15 16-90 3

Radionuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'W) in 1974

ų.

(contd)
1974
Alaska,
Ваггон,

.

		: !																				.00/	900.		900.
	134 0	e00.>	110.>	*.0 B	<.024	<.16	(IN	QN	(IN	UN	0H	QN	0N	<.014	(IN	UN	UN	(IN	<.011	<.016	01	1 020.	1 910.	(11)	1 10.
	ą	900.	.023	.020	.055	.034	.040	.023	.03	.07	.06	.05	-04	.023	.07	.037	.026	.04	:025	.034	.021	.028	.028	.033	.027
	125	+ 1/1.	.234 ±	.405 ±	* 80/ .	¥ E03.	₹ 016 .	£ 052.	2.06 ±	2.68 ±	.855 ±	1.44 ±	1.24 ±	. 344 4	l.l5 ±	* 6 57.	.462 ±	1.04 ±	₽ 286.	± 958.	¥ [[[].	¥ 958.	¥ 000.	4 524.	¥ 946.
	124 _{Sb}	QN	0N	UN	()N	ŊŊ	UN	QW	ΠD	QN	UD	GR	UN	()N	(IN	(IN	QN	ND	ND	(IN	QN	QN	(IN	(JN	<.027
	110mAg	QN	(IN	MD	QN	QN	QN	QN	()N	(IN	QN	CIN	QN	(IN	ND	()N	QN	(IN	QN	QN	(IN	QN	UN	<.012	QN
10 ³ M ³	=	.46	-15	ЕІ.	.40	.22	۳.	. 14	4.	.5	٩.	۴.	г.	.04	.36	91.	.14	.26	.12	.17	.10	.13	.14	.17	.14
/MJU	106	2.49 ±	2.41 ±	4.17 ±	1. 39 ±	£ 69.9	10.9 ±	2.52 ±	24.3 ±	30.5 ±	11.3 +	11.7 ±	11.7 ±	3.52 ±	9.88 ±	± 66.3	3.99 ±	₽ 09.6	2.75 4	4.47 ±	1.77 ±	2.73 ±	2.83 ±	4.42 ±	3.3] ≜
	л Сп	н.	.20	61.	.38	.14	:I	070.	61.	.39	.27	.18	н.	160.	860.	.050	.027	.054	.026	160.	.021	670.	.03	.04	£0.
	Iu	2.01 4	2.48 1	2.56 ±	5.12 ±	3.17 ±	4.44 ±	.842 \$	6.06 4	6.38 ±	± <i>11.</i> 1	2.16 ±	1.11 ±	.258 ±	£ 599.	¥ £/£.	.354 ±	¥ 836.	406 4	.702 ±	# IIE .	+ 1/8.	1.05 4	1.65 4	1.74 ±
	-		•••	~.	ç.	.2	.2	EL.	. .	·5	4.	г.	.20	60.	.2	.10	.07	.15	50.	.10	.06	90.	80.	60.	-:
	25	12.4 4	10.7 ±	18.84	30.04	21.9 ±	13.0 ±	1.19 +	54.9 F	* 8.0 9	18.7 ±	24.6 ±	17.6 ±	3.83 ±	12.5 ±	6.52 ±	4.18 ±	11.7 ±	2.80 ±	B.33 ±	4.49 ±	3.88 1	9.30 ±	9.6/ 4	10.6 ±
		./6	.26	с.	9.	۲.	. .	.13	ŀ.	5 .	41	۳.	.23	60.	.25	.13	.08	.16	90.	Π.	80.	/0-	60.	.10	60.
	- ³⁵	6.56 ±	5.92 1	10.01	16.3 4	1.9.11	17.8 ±	3.27 ±	24.8.4	26.2 ±	¥ 99.6	13.4 ±	8.95 ±	2.01 ±	6.53	3.53 4	2.46 ±	8.51 ±	1.38 4	4.28 ±	2.29 ±	2.08 4	5.10 4	4.78 4	1 25.5
												.025		F 10.	.025			.015		.013	.008	.005	600.	110.	600.
	8	0N	QN	UN	ND	QN	ND	QN	()N	UN	QN	¥ 650.	QN	• 020	₹ [EO .	QN	ND	• 030	UN	1012 1	• (00)	* 910.	• 046	¥ 640.	.052 ±
te 	10	01-13	0126	02-24	10°-E0	0315	04-01	04-15	10-30	61-60	06-02	0615	10- /0	07-15	08-01	91·10	16-31	09-15	10-01	10-15	10-11	51 · 11	12-01	12-15	10-10
ru	01	12-28	01-13	01-26	U224	10.60	03-15	04 -01	04-15	10-30	61- GO	06-02	06-15	10-70	07-15	10-00	08 -15	16-80	09-15	10-01	10-15	10 11	11-15	12-01	12 - 15

ND - Not Detectable

(contd)
1974
Alaska,
Barrow,

•

.

en 1.12

AD = Not Detectable D = Decayed Away Before Analysis

•

H

Radionuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'W) in 1975

.

۰.

•	•	Π.	.2	~.		.2		.2	~	11	Ξ.	90.	1014	860.						290.	
	۶ ⁰	1 96.3	12.4 4	15.3 ±	13.3 ±	1 1 .61	19.8 ±	16.U ±	15.5 ±	5.21 1	5.74 ±	1.32 4	¥ 6EV.	¥ 689.	4	9	0	-	9	113 -	
		110.	.015	/10	910.	.018	.020	.018	610.	.015	1 0.	.014	.008	.1007							
	- γ _{HB}	• 050.	+ 851.	181.	• 1/1.	.208 ±	• [52.	. 217 .	.220 *	• 050.	¥ 001.	• 045 •	• 0/0.	• 010.	CIN	(IN	(III	(IN	NN	(III	
	:		.027		160.	260.	.038		/£0.	.027	.025	.024	C10.								
	65 _{2n}	<.033	• 0900 •	<.062	.018 +	• 048 •	. 125 ±	<.080	* \$60.	+ \$10.	* 010.	* 800*	* 300.	110.>	UN	QN	()N	<.011	¢.009	•••00	
		010.		£00.	600.	010.	010.	E 10.			900.		:005		300.	[()).	.002	100.	100).	100.	
	60 60	¥ 110.	<.014	+ 810.	₹ 110 .	¥ 100°	.018 ±	. 068 ≜	<.023	<.010	£ (00.	<.012	• 003	۰٥٥٨	• 010.	¥ £00°	100.	1 200.	+ 100.	1 100.	
			.015	.018	.015	.017	.023	.018	120.		.015	110.	900.					.032			
	58 Co	<.015	÷ 500.	• 020.	▲ 120.	¥ 160.	• 510.	* 9l0.	* 640.	<.028	₹ [10.	¥ 600°	Ŧ £00°	010.×	QN	ND	QN	4 280.	<.053	/£0.>	
0 ³ H ³		.005	.007	.00.	(0).	B(NO).	.006	600.	600.		.006	E00.	E00.	.002	F00 .	.002	EUO.	100.	.002		
I/MJQ	0) (5	.015 A	+ 10.	r 510.	₹ [20 .	¥ 010.	4 800.	.026 #	• (20.	×.008	₹ 800.	¥ 900.	¥ E00.	¥ £00.	₹ (00) .	• 200.	1 100.	¥ E00.	T 100°	<(X)4	
		010.	.014	810.	10.	610.	610.	.022	E 2N.	.015	.015	-110.	(00)	MO.	600.	E00.	100.	500.	£00.	.00.	
	54 Mn	* 660.	• 164 •	* 162.	. 224 ±	• 605.	± 166.	* ¥6E.	1 205.	. 168 4	¥ 622.	¥ 050.	• 046 •	¥ 5LO.	¥ 170.	₹ EIO .	f [10.	• 510.	¥ (10.	+ 110.	
			.012		.018	.026			.008	.018			.013	.049		800.	. (N)6		. (005	[10]	
	40.	3	120 +	N D	. 182 •	¥ E52.	٬٤.>	98	. 062	.202	QN	QW	₹ 19I.	± €68.	QN	129 4	* 140°.	IN	4 P.M.	4 480.	
		100	010.	610).	600.	110.	.012	110.	.012	600.	600.			EUX).		.002	COD.	S(N).	200.	<i>c</i> m.	
	22 Na	* 600.	* 610.	₹ 900 .	• •20.	• 020.	* \$60.	• 016	4 810.	+ EIO.	* SIO.	<.013	<.002	* 600.	<.015	• 004	F F(X).	· 100.	1 010.	1 210.	
		- 1	1 4				-			8. 4	1 1	9. 1	۰. ۵	5. 1	4 4.B	t 5.4	1 5.9	1].]		. .	
	" "	- 66	165	180	157	163	263	214	223	82.6	115	1.06	1.16	40.2	40.3	51.5	<i>1</i> 1.6	76.6	127	140	
le	01F	01-15	02-01	02-15	10- E0	03-15	04-01	04-15	10-30	61-60	10-90	06-15	10 /0	0/~16	11-80	60 - 15	10 01	10-11	12 01	01-01	-
Ρ	NO	10-10	01-15	02-01	02-15	03-01	03 -15	10-10	04-15	10-50	61-60	00 01	06-15	U7. UI	08 05	08-21	61 60	10-01	10 11	12-01	:

•

ND = Not Detectable D = Decayed Away Before Analysis

n

• .

•

.

.

.

										[[
3			•	101		106		110 a.	Ē	45 M-01/M		121	15	161-	134 _{Cs}		- 13/ Cs
	<u>+</u> =		-	. 16			16	0 + 110	61	→ 610	018	.358	030	N	. 4 /00.	100	0. + 30.1
5 8	<u>;</u> ;	11.0 *		* 9L T	5 8	1.191	24	0. 4 620.	2	048		.848	10. 1	QN	<.004		0.≜ 86.1
3		10.2 ±	: ~	4 66.4	99	10.9		<.054	v	c.051		. 958 .	1.048	QN	* * 600.	600	2.47 ± .0
5 8	3	26.3 4		4.06 4	30 .	1.1		840.×	·	c.040		. 560.	1.048	QN	. + (00.	800	2.51 4 .0
3 8	5	• / TE	~~	4.26 #	90).	13.4		s,052	•	c.046		1.16	• .05	QN	. 000	600	3.16 ± .(
5 8	-	41.8 1	. ~	\$.07 4	/0.	19.8		د.057	·	6.05B		2.05	¥.()6	QN	0.1 €10.	13	1. 1 28. 1
5 5	51-	11.8 ±	.2	3.55 4	.05	18.5	4. 1	<.062	-	. + 110.	010	1.92	• .06	8	<.021		1.51 ± .(
5		₹ 6°2€	~	a (A.E	30 .	21.4	•	.048 ± .0	050	د.059		2.01	9I). ±	GN	. 006 4 .	010	5.25 4 .(
5	s -	• 6.01	-	1.11 4	- 6 0	0.61	t. 24	0. ± ₽£0.	124	. + 640.	032	268.	/EO. 4	N	010.×). 4 66.1
98	10	12.3 4		1.08 4	-04	11.3	1.2	<.045	•	د.052		1.14	۰.04	QN	<.011		2.68 ± .(
8	-15	2.96 4	90.	108.	.024	3.44	* .18	<.049		. 025 ± .	810	.281	• .030	QN	. * 100.	010). 4 118.
9	10-1	1.14 4	1 0.	, IEL.	.014	1.116	H. 4	\$£0.>		¢.034		.237	6IO. ¥	ÎN	. ¥ 110.	600	. 1 285
6	16	1.30 4	.03	. 0016	(10. 1	1.63	1.08	(W		۰.039		.202	* .013	- Ni	. * MUO.	E00). ± 262.
80	=	-		-	_	.82	H. 4	89		QW		.100	¥10. t	QN	. 1 200.	.012	. 25/ 4 .(
50	J15	a			~	559.	4 .046	ON		(IN		. 096	• .005	ND	. 1 100.	100	. 4 632.
3	10	9			_	č 114.	1.062	QN		98		104	100. 4	QN	. 1 £00.	600	. + 6/2.
	10,1	- 362.	(N13) .	-	-	964.	VEO. 1	()PJ		QN		(110)	500° T	æ	· r 100.	.002	
ì	10	1 6/1.	<i>2</i> 90.	-	-	119.	/[[]] 1	(IN		0N		.116	· .000	QN	. 1 600.	100	. 1 298.
5	100 1		110	-	-	0.01	100	A M		(IN		.138	AU0. 4	(B)	. 1 (10).	100.	. 1 98E.

AD - Not Detectable D - Not Detectable D - Netayed Amay Before Analysis

Barrow, Alaska, 1975 (contd)

.066 .075 .072 .014 $.007 \pm .030$.064 .071 .047 .031 .024 .017 .004 .008 .004 .004 .004 228_{AC} .139 ± •063 + **.**080 **±** •068 ± .027 ± **#** 900° **.**073 **±** ± 101. H • 030 + H + + H H .065 .076 .026 .015 <.10 <.13 012 .006 <.07 .076 .086 .060 .070 .072 .086 .059 .056 .028 .035 .006 .009 $.034 \pm .027$.021 .023 ± .006 .031 ± .007 226_{Ra} .215 ± *** 9/0** .024 ± .040 ± * 094 **.021 ±** -# ± 610. .026 ± • 008 H -H .114 ± QN <.086 <.010 .183 .168 .122 . 29 .20 .10 .27 .10 $1.59 \pm .14$ $2.08 \pm .10$.07 പ 9. Ś 0 4. ~ 2 210_{0b} 38.8 ± 37.2 ± 2.11 ± 49.6 ± 21.6 ± 38.9 ± 26.9 ± l.46 ± 11.0 ± +1 -# # DPM/10³M³ H Ħ -H 5.18 7.98 6.97 4.25 33.7 45.5 .035 **±**.013 .030 .016 .033 .025 .027 .033 .022 .011 .007 .009 .003 .003 .002 .004 .021 .021 .004 155_{Eu} -# -# -# .410 ± ± 449. .505 ± H -# H H ·H H H -# + H H H .124 .241 .286 .538 .069 .018 .257 .296 .048 .023 .196 .062 .024 .022 .032 .027 60. .07 .06 .05 .03 .04 .02 .02 .03 .07 2 ~ ~ 2 2 ? 144_{Ce} **9.77 ±** 20.6 ± 26.0 ± • 03 ± .02 ± -# -# 1.56 ± -# H H 44.4 ± 4.06 ± 3.52 ± -# H -11 Ħ ++ 17.0 25.6 47.9 32.3 23.3 6.07 47.7 . 39 . 51 .49 .038 .030 .012 .024 .017 .03 .05 .03 9 .03 .04 .04 .04 141 Ce H -11 -# -# **+ 09.** -+ -++ -H H -H -# + + 0 0 0 0 0 2.38 2.36 .12 2.03 2.42 .26 326 125 042 362 .032 1.91 r40_{Ba} Q Q 9 2 2 2 2 2 0 2 2 2 Q Q 0 0 0 0 0 01-15 02-15 04-15 03-15 05-15 02-01 03-01 06-15 07-16 09-15 04-01 05-01 00-01 07-01 08-11 10-01 11-01 12-01 01-01 OFF Date 01-15 03-15 02-15 04-15 05-15 06-15 08-05 09-15 01-01 02-01 03-01 04-01 05-01 06-01 07-01 08-21 10-01 11-01 12-01 NO

ND = Not Detectable

D = Decayed Away Before Analysis

Radionuclide Concentrations in Surface Air at Barrow, Alaska (/1°18°N, 156°47°W) in 1976

,

.

·

-

4

. d. .k. . 🗑

4.002 .003 4.001 .003 4.001 4.003 .003 4.001 .003 4.014 4.003 .001 4.002 .003 4.019 4.002 .003 4.001 .016 .016 4.002 .003 4.001 .006 .016 4.001 .002 .003 4.001 .006 4.001 .001 4.001 .006 .002 4.001 .001 4.001 .002 .003 4.001 .001 .001 .002 .003 4.001 .001 .001 .002 .003	- 014 - 014 - 014 - 014 - 013 - 014 - 015 - 015 - 015 - 015 - 015 - 016	1 ± 006 h 1 ± 006 h 2 ± 009 h 1 ± 009 h 1 ± 016 h 1 ± 016 h 1 ± 016 h	.002 .00 .001 .08 .003 .13 .002 .13 .002 .26 .002 .32	+ 600. + 500. + 500. + 200.
* .003 .003 * .003 * .003 * .013 * .003 .001 * .002 .001 * .003 * .002 .003 * .001 < .016 * .002 .003 * .001 < .006 * .001 .001 * .001 < .006 * .001 .001 * .001 < .002 * .001 .001 * .001 < .002 * .002 .002 .001 .003	0 00 00 00 00 00 00 00 00 00 00 00 00 0	A 006 A 006 A 006 A 009 A 009 A 009 A 009 A 1 0 009 A 1 0 009 A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80. EI. 82.	.003 .003 .002 .002 .002
* .003 .001 ± .002 .001 ± .003 * .002 .003 ± .001 <.016	0 .022 ± .015 ± .015 ± .016 ± .016 ± .016 ± .0000 ± .000 ± .000 ± .000 ± .000 ± .000 ± .000 ± .000 ± .000 ± .000 ±	2 ± .009 N 1 ± .009 N 9 ± .016 N N ± 1	EL. 85. 55.	.003 200 200 200 200 200 200
* .002 .003 * .001 <.016	0 015 ± 0000 ± 000 ± 000 ± 000 ± 000 ± 000	N 009 N 009 N 009 N 016 N 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EL. 35. 55.	.002 .002 .002
# .002 .002 # .001 .006 * # .001 .001 # .001 .001 * .003 # .001 001 * .001 * .002 * .002 # .002 002 001 # .002 * .002	0 . 009 ±	9 ± .016 № 1 ± .008 №	.32	.002 .002
4 .001 .001 4 .001 <.005 4 .001 <.001 <.003 4 .002 <.002 .002	0 .007 4	i ± .008 N	32	002
<pre>4 .001 <.001 <.001 <.003 4 .002 <.002 .002</pre>	0. 003 4			.002
± .002 < .002 .002	100 0	4 ± .028 N	2	
	* IM. ()	N 010. + 6	1	. 600.
* .001 × .001 × .001	0 (002 ± .	N £00. ± 8	Ĩ.	. 100.
010 . 100 . 200 . 4 . 010 . 100 . 1010	. 4 (20). 0	2 4 .006 N	R	. 600.
4.004 ± 003 .460 ± 009 ±	· + /60· 0	2 4 .008 N	2	. 002
1003 .033 ± .002 .283 ± .007	. * 3/0. 300	·> 300. Ł I	2). 600.

ND - Not Detectable

Barrow, Alaska, 1976 (contd)

.

.

D.	le						-	ME OI / Ma				:		ļ	1
ő	10	۲ ع	95/1		ŝ	ź	103 _{Ru}	901	Ru	110 _{A9}	124 _{Sh}	125,	ą,	<u> </u>	is.
10 10	10 20	Ŵ	• 890.	.038	.138	± . 023	<.30	. 564 ±	160.	QN	(N	128 4	.005	<.003	
02-01	10- E0	<.016	.768 4	.064	1.57	4 .05	3.04 4 .22	1.50 4	.05	<.016	<.12	. 264 ±	.008	<.003	
10-60	03-29	QN	¥ 121.	.038	.203	* .026	.29 ± .12	1.08 ±	.04	W	(IN	* 195.	.008	· COO.	.00.
03-29	0428	(IN	.022 *	610.	.044	1.012	<095	. 668 ±	.032	(IN	NU	± 311.	.007	£00.>	
10-90	06-28	ND	¥ 010.	(110).	.018	± .004	.004 ± .014	± 113.	.027	Ш	ΟN	¥ 060.	.006	<.002	
06 -28	07-28	QN	• 210.	. 005	800.	£00. *	000. ± \$10.	¥ 61E.	.024	QN	(IN	* 680.	.006	004	00. 1
07 .28	61-80	QN	<.009		100.	£00. ŧ	<.010	• 036	610.	QN	ND	+ 610.	E00.	.002	.00. 4
61 80	10 [,] 60	ND	.002	.005	.007	£00. ±	<.010	± /II.	.026	(IN	0N	± 220.	.005	.002	.00.
10 60	10 01	QN	Ŧ E(N).	100.	100.	100.4	<.003	.103 +	.012	QN	QN	• 210.	.003	.002	.00.
10 01	11-01	ND	1.31 1	80.	10.1	I. *	2.23 ± .04	* 02E .	640.	QN	s.024	F EV0.	.008	100.	100
10-11	12-01	QN	14.0 4	۲.	19.2	l. *	20.1 ± .1	1.67 ±	.07	QN	<.014	¥ 680.	.012	.00.	.00.
12-01	12-31	<005	8.47 4	E0.	13.7	l. *	16.5 4 .1	2.27 ±	90.	110.>	<.010	.115 4	110.	100.	.00.

ND = Not Detectable

•

.

• .

Barrow, Alaska, 1976 (contd)

.

•

ND = Not Detectable D = Decayed away before realysis

.

.

	1							2001.					
	60 Co	<.003	<.003	<.002	<.003	<.005	<.005	F (00).	×.006	<.015	<.007	<.006	<.005
	0	.003	.002	.002	.002	.005	.005	900.	E00.	900.	600.	.008	600.
	58 _C	• 054 •	. 005 ≜	* 100.	+ 800.	• 510.	.014 ±	. 027 ±	.012 4	.215	.340 +	4 961.	1 120.
		100.		100.	.002	600.	.002	.002	E00.	.003	.003	E00.	.003
	5) C(¥ 600°	<.002	.002	• 005	• 900.	+ 110.	.015 4	± 500.	¥ 610.	.042 *	.044 ±	+ 810.
-		.002	.002	.002	.003	.005	.005	.005	.004	.004	900.	000.	.007
M 10 ³ M	54 M	• 026	* 810 .	.015 ±	.044 ±	.102 ±	109 ±	* 10 2.	.II7 4	.132 ±	¥ 682.	* E2E .	242 4
à	46 ₅ c	ŊŊ	QN	QN	QN	QN	UN	QN	QN	QN	(IN	(IN	ON
		.00	.006	.004	.004	100-	.020	.018	010.	900.	010.	010.	.014
1	40 K	* 101.	• III.	4 830.	.044 ±	₹ 600 .	306 ±	4 E8I.	147 ±	¥ 690°	¥ 361.	¥ ENO.	.124 ±
		500.	-002	.002	.002	E(N).	.003	.003	£00.		.004	£00.	E00.
	22 N	+ 610.	.022 4	* /10.	• 120.	4 310.	¥ 900.	• 2l0.	• 700.	<10.>	¥ £00.	T 510.	1 900.
	7 _{8e}	1 + 161	239 ± 1	209 ± 1	185 ± 1	116 ± 1	46.9 ± .3	71.4 ± .3	43.3 ± .2	£.±£.ðð	1 * 601	130 ± 1	1 + 191
e	110	01-31	03-01	04-04	04 - 30	06-02	1070-	<u>08 -02</u>	1E80	10-01	11-01	12-01	15-21
Pd	On	10-10	16-10	10-60	04-04	04-30	06-02	10-70	08-02	16-90	10-01	10-11	12-01

٠

.

Radiunuclide Concentrations in Surface Air at Barrow, Alaska (71°18'N, 156°47'W) in 1977

•

ND - Not delectable

.

المها

•

• •

••

.

•

Buirow, Alaska (71°18'N, 156'47'H) in 1977 (contd)

٠

		66	80	GF.	4		301			300
NO	OIF	uZ	λ	"'lr	UN,	ny ny	EN BU	hV m t	us"	(ISc
10-10	0131	s:008	200. + /00.	3.05 ± .03	4.88 ± .03	5.57 ± .03	1.12 ± .04	¢.009	¢.009	.103 4 .00
16-10	03 01	<.006	100. + 600.	2.84 ± .02	4.85 4 .03	3.18 ± .02	40° ¥ 86°	<.007	900.>	.143 4 .010
10 60	04 04	<.00/	200. ¥ 110.	3.29 4 .03	6.11 4 .03	2.77 4 .02	1.03 4 .04	<.007	600.×	145 4 .01
94-04	04 30	<.008	EOO. ± 9EO.	8.73 ± .01	l6.l ± .l	5./4 ± .02	2.83 ± .07	<.010	<.010	.272 4 .013
0430	06 -02	<.017	500. ± 3/0.	15.4 ± .1	1. ± 6.95	10.3 ± .1	7.44 ± .10	¢.014	<.014	.538 4 .07
J6- U2	10 ⁻ 20	<.015	500. + 990.	12.6 ± .1	25.5 ± .1	£0. ± 96.¢	6./2 4 .10	<.014	<.018	.575 + .010
10-70	08-02	۰.021	200. 4 60.	l. ± ∂.0l	34.9 ± .1	4.74 ± .03	9.14 ± .10	QN	<.020	10. ± 1c 1
JB-02	08-31	<.012	.004 + 2004	7.52 ± .04	15.8 ± .1	2.12 ± .02	21. ± £9.9	<.015	<.021	.621 4 .013
JKNC	10-01	<.012	500. + 160.	11.3 ± .1	15.4 ± .1	5.45 ± .03	6.59 ± .08	<.023	<.021	/10° + 619°
10-01	11-01	<.018	500°° ¥ 990°	15.1 4 .1	25.2 ± .1	9.79 ± 04.6	1. ± 0.01	<.018	<.019	1.17 ± .02
10- H	12-01	<.027	900. 1 I/O.	10.8 4 .1	21.1 ± .1	6.77 ± .04	17.1 ± 1.71	<.021	<.017	1.98' ± .02
1021	12 31	<.025	900. 1 630.	6.15 ± .06	13.4 ± 1.1	2.38 ± .02	13.4 4 .1	<.020	<.028	1.56 4 .02

,

•

•

•

.

Barrow, Alaska (71°18'N, 156°47'W) in 1977 (coutd)

		00	900	005	800	018	016		010	110	015		
	28 AC	4	*	#	#	*	-		+	4	-	-	~
	2	.006	.022	600 .	.002	.032	.030	£0.>	.00.	.028	.042	د.05i	. IM
		800.		.008	.007		.020	· 610.	.014			·	•
	226 _R	* E	[]	4	* 2	36	£ 4	F 7	+ 1	28	16	65	46
		10.	¢.(0.	.02	. .0	.00	9.	.02	ر. د. ا	0. ×	¢.0	¢.0
	-	.2		.2		•	.0	0.	.0		Ξ.	-	
	210	23.8 4	27.8 +	£ 6.9 ±	25.3 ±	10.3 ±	2.02 ±	2.79	3.58 ±	2.83	8.38 ±	¥ 8.61	30.0
		.004	.005	.004	00.	010.	.007	600.	.008	600.	800.	010.	.008
	55 _{Eu}	*	4	4 9	Ŧ	#	#	#	#	*	+	#	#
		310.)EO.	.04	.05	.106	.10	361.	560.	.10	.219	.394	.32
_		.02	.02	.02	.03		-	-	۲.	-	.05	Γ.	-
0 ³ M ³	44 Ce	#	+ /	# 6	* *	Ŧ	دی *	* E	1 ±	-	4 4	Ŧ 0	2 #
I / MJ		1.7	1.6	2.0	5.6	13.	13.	23.	12.	IA.	9.0	37.	27.
1	141 _{Ce}	.02	.02	.02	.02	.02	.02	.02	.010	.02	۲.	.02	.02
	141 _{Ce}	4	÷ 5	# 0	+ /	2 #	# 6	* 0	# 6	2 #	Ŧ 9	÷	3 #
	140 _{6a} 141 _{Ce}	3.8	2.2	1.8	3.0	4.5	2.4	2.4	.74	9.1	12.	5.1	1.5
		.053	9£0.		.016					.2	.22	010.	.30
		# 9	Ŧ	9	1 ±	a	a	٥		.	5	* 9	#
	140 _{Ba}	.66	.24		.03				3.×	18.	9.4)E2.	EI .
	13/ _{Cs} 140 _{Ba}	.006	.00	.006	600.	10.	.012	10.	10.	600.	10.	.02	10.
		4	4	1 ±	Ŧ	*	1 +	# 6	1	1 4	∓ fi	4 6	4 6
		.43	.50	.48	.65	1.0	.9.	1.6	1.0	(6.	6 .1	3.5	2.6
							•						.003
	34 _{Cs}	QN	05	02	63	05	05	35	05	0	99	70	# 8
i			<u>0</u> ,	9. ý	<u>o</u> .,	0. ×	۰. ۵	×.0	×.0	<u>0</u> .	 0.	Э . ,	8
	011	1E-11	13-01	4.04	14-30	16-02	10-71	8-02	16-31	10-01	10-1	2-01	2-31
Date	1	0 10	31 0	0 10	M 0	0 0	12 0	1 0	12 0	1 1		1 1	-
	õ	1-10	01-3	03-0	04-0	04-3	<u>)</u> - 9()	07-6	08-0	08-3	10-0	11-6	12-0

D = Decayed away before analysis

•

•

Radionuclide Concentrations in Surface Air at Barrow, Alaska (710–18'N, 1560–47'M) in 1978

.

•

•

		EOC	900		800	101	500		
	_	-	¥.		4	-			
	65/	800.	00.	<.012	080.	.012	GOO.	100.5	<.004
		.002			.002	.002	.002	100.	
	60 _{Co}	.042 ±	< . 006	۰.00 4	* 900.	• 000.	• 200.	¥ 100.	100.>
		• .005		900.	• .006	• 040			• .002
	58 Co	600.	<.015	110.	.022	160.	<.006	<.002	- 200.
		.002	.003	.002	.00 .	E00.	200.	100.	100
	20	≉ 6	، و	-	∓ 0	+ 1	+ /	4 \$	* 2
	2	0.	6	.02	6.	10.	99.	00.	8
EH ^E UI		.005	.00	900.	.006	900.	.004	.002	.002
/W.M	54	* E	2 4	₹ 81	Ŧ 61	₹ []	5 #	7 6,	# 5
دے		а.	12.	Ж.	-	œ.	.06	8	. .
	46 _{Sc}	AN	NU	QN	QN	(IN	UN	<.(N)2	<.002
		600 .	.008	.002	.003	.002	.002	.028	
	_¥	Ŧ 6(3 k	* 9	= =	7	Ŧ 8.	1 1	S.
	4	Ä.	<i>.</i> 0	.0	ò.	0.	0	¥.	×.0
		E(10).	.003	E00.	E00.	E00.	200.	100.	.002
	2 _{Na}	1	3 ±	Ŧ 6	8 1	₹ 8	¥ 9(12 ±	4
		ю.	10.	9.	6	9.	ð.	3	90-
		- +		-	-		4 2	9. t	÷. 4
	/Bc	117	142	151	160	121	29.8	51.5	94.2
<u>.</u>	OFF	01-31	02-20	03-31	05-01	10-90	0/ 01	10-01	
100	NO	12-31	16-10	02-28	03-31	10-50	10 90	10-60	10-01

ND= Not Detectable

+

.

•

.

.

Alaska (710 18'N, 1560 47'H) in 1978

•

•

	134 _{Cs}	.004 4 .002	.000 ± 300.	.006 4 .002	.000 ± 3003	COO. + BOO.	.002 4 .002	200. ± 100.	500. ± 100.
	125 _{Sh}	1.17 ± .02	1.94 ± 02	2.24 ± .02	2.74 ± .02	2.43 ± .02	570 4 .012	800. ± 062.	010. + 688.
	124 _{Sb}	<.023	<.025	.073 + .018	.291 ± .020	110. ± 680.	100. 4 200.	<.006	000 ¥ 900.
	110 _{A9}	<.014	<.018	410.×	<.015	£10.>	<.012	<.004	×.001
UPN/10 ^{3M3}	106 _{Ru}	9.92 ± .09	15.1 4 1	1 + 1.71	21.2 ± .1	1. * 9.61	4.32 ± .07	1.65 ± .04	2.29 ± .05
	103 _{Ru}	.52/ ± .017	.312 ± .014	.271 4 .025	8.14 ± .05	3.00 ± .02	.053 ± .006	200. ¥ 110.	010 * 010.
	95 ₈₁	6.17 ± .04	8.21 ± 04	6.84 ± .04	1.73 ± .04	4.48 ± .03	.650 + .013	.140 ± .007	200. ± 681.
	95 _{2r}	3.00 ± .04	3.67 ± 04	3.07 ± .04	3.63 ± .04	2.09 4 .03	.275 4 .012	.008 ± .008	.000 ± 100.
	88 <mark>7</mark>	.001 ± .005.	.058 ± .005	900. ± 730.	.066 ± .005	.045 ± .004	$00. \pm 300$.	.002 ± .002	200. 4 2002
DA IL	ON OF	1E-10 1E-	31 02-28	-28 03-31	10~50 IE-	10-90 10-	10-70-10-	10.01 10.	10 11 10
	-1	12	Ю	05	8	SU	90	60	10

.

•

	278 _{AC}	010. + 700.	<036	.002 4 .010	E10. + 410.	110° + 220°	00. 1 120.	900' + 700'	000. + 110.
	226 _{ka}	<.020	.061 ± .022	.026 ± .009	EIO. + 700.	110. 4 900.	110. + 220.	800. ± 610.	<.006
	210 _{Ph}	16.5 ± .1	21.8 ± .2	27.3 ± .1	21.1 ± .1	90. + 56.7	1.87 • .06	2.81 4 .08	8.65 ± .09
•	155 _{Eu}	.220 ± .009	.385 ± .012	.414 ± .010	110. ± 999.	.483 ± .010	110 ± .007	£00. ± 630.	300. ± 680.
1 ⁶ 01/Mid	144 _{Ce}	18.4 ± .1	1. ± 0.0E	1. 4 7.1E	24.6 ± .1	20.1 ± .1	6.73 ± .04	2.96 ± .02	4.09 ± 03
	lar _{Ce}	.220 ± .020	ere + 1015 + 1015	$.066 \pm .030$	4.35 ± .04	1.07 ± .02	800. + 600.	600.>	<006
	140 _{Ba}	ND	ND	(IN	5.39 ± .64	11. 1 40.	¢9	.24 1.16	<.03l
	13/ _{Cs}	10. ¥ El.2	3.51 4 .02	4.03 ± .02	4.93 ± .02	4.40 ± .02	1.02 4 .011	.565 ± .007	.862 4 .609
DAIE	ON OFF	12-31 01-31	01-31 02-28	02-28 03-31	03-31 05-01	10-90-10-50	10-70 10-90	10-01 10-60	10-11 10-01

Alaska (710 18'N, 1560 4/'W) in 1978 (could)

.

·

.

•

ND = Not Detectable

,

,

·

Radionuclide Concentrations in Surface Air at Barrow, Alaska (710–18°N, 1560–47'N) in 1979

•

·

• .

	65,			900. + 100.	.002 r .002	<006	E00. 4 E00.	£00. + £00.	٨(١١). >	£(N).>	<.002	<.005	<.004
	60 Co	, mi		100. * 100.	100. + 100.	100. + 500.	·.001	(00). ×	<.002	<.002	100.5	100. + £00.	<.001 ×
	58 Co	.024 ± .016	000 ×	2001		500.>	E00. ± 200.	$100. \pm 100.$	300. ± 100.	<.003	<.002	£00. * 500.	<.003
	57 _{C0}	$.004 \pm .001$	<.001	100 + 200		100. • 000	100 * 200	100.5	·.00	.002 ± .001	100. + 100.	<.002	<.002
	54 _{Mil}	.045 ± .002	.034 ± .002	(146 ± 002	003 + 003	115 + 1003	200 600.		100. * PUN.	100. * 000.	100. 4 200.	100 900.	100. ¥ 200.
61/10343	40 Sc	.003 ± .002	.003 ± .003	.003 ± .002	< .002	£.003	CUU * CUU		700° + 600°	• • • • • • • • • • • • • • • • • • •		5101	(M).>
	Nur.	.300 ± .024	.024 ± .026	.116 ± .023	.389 4 .032	.085 ± .028	180. 4 881.	010 + 010		(C) + CYU	101 1 100	020. 4 701.	020° + 631°
	Na	.012 ± .002	.003 ± .002	$.014 \pm .002$.021 4 .002	.011 ± .002	.004 ± .002	1007 + 2007	005 4 002	.002	CINY T SUU	100 - 500.	
1,	Be.	1 + EGI	38 ±	44 +	1 + 1/1	1 1 109 4 1	46.4 4 .3	27.1 4 .3	48.2 + .3	16.0 4 .2	110 4 1	110-3 1 - 4	
DALL		070 10-1n	05-01 03-0	03-01 04-0	04-01 05-0	0-90 10 50	06 01 07-0,	0-60 10-80	10-01 10-60	10 01 11-01		12-01 01-01	

a -

-

•

.

.

Burrow, Alaska (71º 18.N, 156º 47.W) in 1979

:

.

•

<u>a</u>r

		5			100.							
	VET	0.00	• 100	100.5	+ 200).	100.>			\$10°.>	(00)	< 002	COM V
	25 ₆₀		010. +	600. ¥	1.012	110. *	A (NBR	UND F	, (00).	£00. 4	900. 4	1006
		518	.430	163.	657.	1524.	122	0,8	.100	610.	600.	URU
	24 Sh	4 .005				806. T	4 ,005				800. 4	, (MAG
		.017	900. ×	<.005	<.004	.007	.005	<.015	<.013	×.006	010.	F 100.
	0	[]0.			P(X).							
	Ξ	160	· 001 >	£00.>	* /00.	ć.(H)4	£00.>	s.008	<.007	3000 ×	<.006	900. <i>></i>
	Ru	.05	.05	04	-05	05	03	.018	.022	.012	120.	.018
	100	2.86 4 .	2.11 ± .	2.57 4 .	3.40 ± .	2.69 ± .	1.05 ± .	105 ⊥	₽ 28£.	± 9 50.	. 362 ±	• 264 •
2 ^H 3		.010	.008	.004	500 .	.00			£(N).			.003
DPH/10	loj	* 9yç.	• 220.	• 500.	7 110.	• 600.	£00.>	110.>	* 500.	<.003	<.012	1 200.
	4	900.	-004	£00.	.004	.004	.002	200.	1007	100.		£00.
	1 56	+ ć 9ŀ.	▲ 160.	1 340.	+ /10.	¥ [E0.	+ S(X).	¥ 900.	1 (00).	1 2003.	<.005	1 200.
	-	900	905	£00	306	012	/00		EOK	02		
	95/	110 4 .0	024 4 .4	020 + .(022 ± .(). ± E00). ± 100	(10)), ± 300). * E00	BOO	107
	с і с і		. 20					Ŷ	•	•	N2 <.	13 c.
	γ	0.40	.	9.4	.	ð. •	ð. 1			_	- C	¥.
1		-00-	.00	300.	09.	8	100.	<.004	<.004	<. UU2	200.	100.
li i	10	02-01	03-01	04-01	02 01	10 90	07 01	10-60	10 01	10 11	11 - 30	01-01
1	S	10 10	10-20	10 00	10 10	02 OI	09 01	(N) (N)	10 60	10-01	10-11	12-01

•

•

Harrow, Alaska (71°18'N, 156°47'W) in 1979 (contd)

:

.

.

	1	900	MM	CN14		900	.005	CM)	004	604	.005	600.
	کچ	4	-		_	4		-	4		4	
	2	600.	.018	800.	¢.010	510.	.013	010.	.004	010.	.014	.00
	•	.005	900.	900.	110.	900.	900.	005	.005	500 .		.005
	5°	-	-	-		-	-	-	-		g	-
	2	.008	.018	800.	.012	1 0.	.022	10.	.015	.014	۰.00	<u>.00</u>
		-:		-	-	89.	: 05	.05	.05	.05	-	-
	5	-	-	*	-	*	*	*	-	-	-	+
	2	19.8	22.2	25.0	18.3	7.00	E6. I	2.83	2.61	2.14	12.7	19.3
	3	.006	500.	500.	006	500.	.00	.002	100.	100.	E00)-	E00).
	2	-	-	-	-	-	-	-	-	4	-	-
E H		.100	100.	.123	.180	.112	.052	.015	810.	.005	.020	.020
PM/10		60.	E0.	20.	CO .	EO .	.02	600.	110.	.005	110.	010.
-	ریا	-	-	-	-	-	-#	-	-	-	-	
	14	4.29	3.30	3.93	5.71	3.19	1.34	.315	.475	.00.	.465	. 385
	9	.012	.016	600.	.00	.005	.006		.012	E00 .	.015	600.
	41 ^C	-	#	-	٩	-	*	0	41	-	*	#
		.18.	.022	110.	800,	00.	900.	<.02	500.	500.	500.	E10.
		.072		65.	060.			1.1			64.	.13
	Ę	-	_	-	*	_	~	*	~	•	*	-
		188.	e2.2	10.	900.	<.25	<u>, 0.</u>		6.47	s.12	Ĵ.	0
		5	600.	10.	10.	10.	.00.	.004	.004	.002	300.	GOO .
	12 S	-	-	-	-	-**	#	-	4	-	41	*
	Ĵ.	1.14	\$\$6.	1.21	1.75	1.15	.408	.163	961.	.046	.263	.214
		5	10	5	5	0	10	0	0	0	30	10
re Le	5	-20	-03-	0	ŝ	-90	07	60	10-	Η	Ξ	-10
٢Ŋ		5	5	5	0	0	10	G	0	10	Ю	Ð
	S	010	02.	03.	Ю	05-	90	08	-60	10.	· H	12-

Washington	
al Makah,	
n Surface Air	and 1968.
Radiometide Concentrations h	. 1967 n. (48"22 .N. 124"37'W) in 1967

· į	-	100.	100.	100.	100.			100.	100.	100.	.00	100.	100.	100.	
	80	• 100.	r 100'	• 100.	F 100.			1 [00].	1 900.	Ŧ £(M).	¥ 900.	* 200.	• 100.	+ 100 [°] .	(00).>
	65 _{2n}	100. + 1CO	P10. 1 E60	066 ± .012	600. ± 720	(¤)/£0. ∓ 84£	090. + 14	395 ± 205/	892 + .050	245 4 .055	20 ± .11	325 ± .051	135 ± .029	0/0. + 0/2	042 t .015
	60 _{Co}	. 100. ± 200.	. 00. + 100.	.012 4 .002	. 100. + 800.		•	.062 4 .002 .	. 900. + 180.	. 600. ± 720.	. 029 ± .006	.036 4 .002 .	. 001 4 .001	. 027 ± .002	. 100. ± 900.
	58.0	.029 A .007	E10. 4 E90.	E10. + 900.	.066 ± .009			₽ZO. ± 661.	.210 ± .019	620° 1 180°	.058 4 .052	.029 4 .012	.018 ± .008	.028 4 .015	5(N)* + VN)*
6 _М , 10 ³ М ³	57 _{C0}	.002 ± .010 ^(a)	.065 4 .024	.059 ± .025	.025 ± .014	710. ¥ 640.	.102 4 .026	.089 ± .023	670. ± 611.	910. ¥ 801.	.103 4 .035	.025 4 .015	.028 ± .009	.049 ± .018	.016 ± .004
	54 Hu	004 ± 1004	066 4 .010	631 4 .010	163 ± .007	. (¤) ⁸ 10. ∗ 683	619 A .029	150. ± 601	.56 4 .03	₽20° ± 669	402 ± .1048	120. + 7/8	216 + .014	380 ± .029	900. ± 790
	46 Se	. 100. ± 100.	. 003	. 600.	. 100. ± 100.		•	. 110.>	1 600. >	<.016 .	<.026 .	<. U06 .	. 004	.008	. 603
	22 Nd	100. + /00.	.012 ± .002	100. + 910.	100. ± 010.			200. + 620.	200. 4 800.	EUO. ± 820.	900° ± 020°	200. 4 120.	100. 1 900.	200. + 620.	. 001 ± 100.
	7_Be	112.4 1 .B(a	124 + 2	225 + 2	107 4 1	1 + 151	120 + 1	136 ± 1	24/ 4 2	124 ± 1	159 ± 2	140 ± 1	81.3 ± .5	156 A 1	12.9 4 .2
le	010	19 8 67	10-11	11-14	11-28	02 -18-68	03-9-68	04-02	00- <u>0</u> 0	50 60	11 60	10-01	50-11	11 - 18	10-16
Da	NO	10 01-67	10 IS	10-11	11-14	01 - 10- 68	02-21-68	03-12	04-02	08 03	<u> 60-60</u>	09 12	10 02	40 H	H 25

.

(a) _ first Analysis by Ge (Li) Diode

•

,

Radiomuclide Concentrations in Surface Air at Makah, Washington (48°22 °N, 124°37'H) in 1967 and 1968. (contd)

			2.20 4 .01	3.68 ± .01	1.86 4 .01		(P)	4.8/ 1 .00	6.22 4 .08	6 6 A ± 07		1. ± 0.11	6.80 ± .05	4.51 * .12	A 11 A 114		1.0. + 86.1	4.00 ± .06	110. 1 141	
134, 5		.<	<.004	¢.0U3	<.002					1004	1.00. 2	.020 ¥ 620.	.006 4 .004	<.015		PUU->	<.002	-000 ¥ 100.	, 001	
		.9/0. # 906.	91. ¥ 16.	1.45 ± .23	54 ± 15			2.16 ± .11	2.98 4 .20		9.J4 - 10	61.±16.A	4.16 ± .09	2 8/ 4 18		80. 1 61.2	1.61 ± .05	2.19 ± .10	100 1 0.14	6 m
124.	95	200. 1 100.	<.004	£00' ¥ £00'	100		•			0	<.010	<.008	<.013	ACO. A		<.005	<.003	<.006		200.5
NUN/NU	6V	.001 + .002	-004 ± 1004	PO0. 4 E00.		CIVY: + 0/00.					.016 t .004	\$00. ¥ [E0.	017 4 006	10 4 010	cin. + 610.	EU0. * 210.	.003 ± .002	£00. ₹ 010.		2000 · • • •(X).
106	Ku	.702 4 .002	1.25 4 .04	2.05 4 .05		EN. 2 IE.I					30.1 4 .1	49.0 ± 1	0 1 0 0		P. = K.13	23.3 4 .1	9.83 4 .05	18.1 ± 1		M). ± 68.1
	ng n	1.04 ± .001	1.43 ± .16	11 + 11 1		2.1/ ± .1/		47.6 ± .3		7. 2 7.67	11.6 ± .2	13.3 ± .2	900 + 191	m.o ((/)	2.04 ± .12	1.02 4 .05	ACU. * UAV.	909 A 058		210. 1 160.
	dN ^{ck}	9.24 1.09	2. 4 6.11	1 1 1 19		21.4 1.2				bj.4 ± .2	63.1 ± .2	92.8.4.3		1. * P.C.	14.3 ± .2	7.98 4 .08	407 ¥ 12 ¥		no 00.0	610° 1 166°
	9:1	6.71 4 .12	12 4 42 0		r F./3	12.7 ± .2		5 4 C V3	.	42.1 4 .3	35.2 ± .3	1 4 H L H	6 - 0. U	an. 1 20.c	1.66 ± .21	3.84 ± .08	2 116 1 125		01. 1 60.2	.416 ± .021
le	110	10-08-17			61-11	11-28		09 01 00	00-01-20	03-09	04 02	W		20-60	11 - 60	10 01	90 11	co-11	81-11	10-10
0 ^o	NO	10-01-67	10 16		11.01	11-14			00 NI IN	0221	01-12		20-60	08-03	20-60	50° 60		20 01	50 H	11 25

(a) - First Analysis by Ge (Fi) Diode

•

.

.

•

Radionuclide Concentrations in Surface Air at Makah, Washington (48°22 'N, 124°37'W) in 1967 and 1968.

•

.

•

Da	te					1/Mq0	0 ³ M ³				1
NO	OFF	14(Ba	141	Ce	14	4 Ce	226	Th	232 _{Ra}	1
10-01-67	10-08-67	. 040 ±	.011	1.64 ±	.05 ^(a)	2.78 ±	.12 ^(a)	• 003	.003	.021 ± .00	ي
10-15	11-01	• 044 *	600°	2.16 ±	60.	5.05 ±	.23	* 100.	.006	.00. + 900.	6
11-01	11-14	.045 ±	.011	5.49 ±	.11	16.l ±	.2	.014 ±	.010	.023 ± .00	8
11-14	11-28	# 610.	.006	2.04 ±	.07	7.12 ±	.20	* 600 .	.005	.00. ± 800.	9
								•			
01-10-68	02-18-67	65.7 ±	1.5	64.7 ±	.2	49.5 #	.2				
02-21	03-09	7.52 ±	.22	22.4 ±	-2	63.0 ±	. •				
03-12	04-02	1.52 ±	.26	12.2 ±	.1	89.2 ≢	.2	.010 +	.008	.00. ± 010.	4
04-02	05-04	<.43		15.8 ±	.2	156 ±	-	. 020 ±	600.	.029 ± .00	4
08-03	09-02	∓ 6 €0.	.080	± 6/3 .	.049	€ 8.16		<.030		.017 ± .00	9
<u>00-05</u>	11-60	1.78 ±	.13	6.16 ±	.15	63.9 ±	•5	•033 +	.033	.048 ± .02	7
09-12	10-01	.571 ±	.019	1.99 ±	•06	53.1 ±	.2	<.015		00. ± 600.	4
10-02	11-05	.288 ±	.028	1.75 ±	.04	34.5 ±	.2	•003 +	.004	.011 ± .00	3
11-05	11-18	.141 ±	.020	1.86 ±	.07	41.2 ±	۳.	+ 010.	.009	.00. ± 800.	9
11-25	01-01	.012 ±	.007	.184 ±	.014	7.30 ±	.07	• 000	.004	.001 ± .00	3 S

(a) = First Analysis by Ge (Li) Diode

Washington
t Makalı,
Air a
in Surface and 1970.
ations in 1969
Concentr (37.W)
· ·N. 12
Radio: (48°27

٠

	NO _Y	.001				100. 4 200	100. + 900	016 ± 001	100. 4 [10	100. 4 800	002 4 2001			020 ¥ 020	COO. + COI	100 1 101				
	u/ cq	25 ± .026 <	01 + .036	82 4 .038	82 ± .032	16 ± .072 .	15 4 .040 .	. 629 . 4 68	67 4 .024 .	8/ ± .046 .	04 ± .023 .	120. ¥ 12	050	45 4 .020	ON	. AN			Db t .062	
	000 000	3 ± .001 .1		0,	0.	1. 110. + 9	7 * .001 .2	5 4 .002 .0	0. 100. ± 6	2 * .002 .0	0. 100. ± 1	0	3 ± 001 ± 5	0. 100. 1 1	1 100. 4 1	100. 1 8			4.	
2	0	4.010 4				10. 1	1 .02	4. 1031 . 02	10. 6	4 .026 .01	. 00.		• 00. 900. •	00. 810. 4	120. 220. 4	sl0. 910. 4				
2	0) 0)	* .008 .007	* .012	1.015	±.016	40.> 110. +	£0.> €10. ₽	£10. 10. 1	4 .015 <.03	4 .018 .027	1.008 <.02	• .010	10. 800. 1	4.007.002	££1. 150. ±	• .025 .144	₽G0. ±	110. 4	t .027	
/10 ³ H ³		.011 .027	EEO. 110.	.018 .075	10. 010.	340. 110.	.020 .099	.014 .069	.016 .075	.022 .063	110. 110.	020. EIO.	.012 .022	160. 000.	.023 .156	661. 60.	.086 .203	1014 .093	.030 .20/	
MUD	I.	1 961.	+ 147 +	▲ 813.	* 1 294 *	+ 19I.	005 .455 4	¥ 00E.	÷ 925.	1 164.	107 4	+ 151 .	.123 4.	± 860. №	¥ 605.	1.44 1	112 4	1 305 1	+ 196.	
yr	^u Se	I <.004				à.006	002 + .(2 <.015	¢.009	<.005			<005). ± 100.	<.010	800. ×				
23	- Na	00. 1 900.				100. ± P00.	00. ± F00.	.026 ± .003	<.002	<.(X)3	<.002		100. 1 600.	200. ± EWD.	007 ¥ 500.	200. + 610.				
k	Be	58.1 ± .4	U7.3 ± .6	7 GB	¥ ¥	9. ¥ 5.59	110 ± 1	l. ± 8.Eč	1. + 1.66	142 ± 1	1. ± 6.14	83.8 ± .7	66.5 ± .5	38.7 ± .4	128 ± 2	1 + 611	98.1 ± 3.7	9. ¥ /.ES	1 + 500	
	10	02-05-69	02 23	03 - 18	04-07	05 06	06 12	0729	09 - 25	10-20	11 16	0/-0810	02-02-70	03-20	01-10	06 - 28	07-30	03 22	11 03	
Date	ON	01 -01- 69	c	02 - 24	03 JB	04-07	0210	06-12	0729	09 25	10-22	12-12	0/ 00 10	02-09	03 24	01-30	H5- 3H	IE /0	10 IS	

•

.

.

Radiomoclide Concentrations in Surface Air at Makah, Washington (48[°]22 'N, 124[°]37'H) in 1969 and 1970.

i

137 _{Cs}	1.48 4 .02	2.48 4 .04	4.19 ± ()4	4.74 ± .05	2.36 ± .03	5.15 ± .04	3.04 ± .03	5.27 ± .03	4.54 ± .04	NO. 4 156.	1.15 4 .02	:	1.35 4 .02	20. ± 88.1	6.17 1 .04	8.34 4 .04	1.25 4 .13	4.22 4 .03	1.68 4 .07
]JM	<.00?				<.007	500. • 800.	.016 ± .004	.020 ± .002	.012 ± .005	<.002			<.002	<.003	200. + 010.	100. 4 280.			
125 _{Sb}	NO. ± EE.I	1.15 4 .07	80. 1 12.2	2.47 4 .09	1.27 ± .05	3.28 4 .10	7.18 4 .07	3.35 ± .08	2.8/ ± .09	654 ± .039	1.03 1.05		9/0. ₹ 8/6.	A40. 4 AEB.	4.26 ± .10	6.42 • .11	6.13 4 .27	30. 1 el.f	5.32 4 .14
124 _{Sb}	.00. ± .003				500° * 100°	100. + 800.	<.015	<.011	300. 4 210.	<.007			<.003	<.(NUB	<.011	۰.007	_		
-110_A9	.006 ± .002				.002 4 .002	.012 ± .003	$010 \pm .004$.014 ± .002	£00. ± 600.	200. ± €00.			.000 ¥ E00.	£00. ± 300.	.005 ± .002	COO. ₹ 500.	•		
106.ku	¥0. ± 1€.5	6.71 4 .23	11.1 ± .3	12.7 4 .3	6.60 ± .05	25.7 ± .1	59.3 ± .2	35.5 ± .1	26.5 4 .2	5.85 ± .05	6.61 ± .18		7.91 4 .05	6.91 ± .08	1. ± 3.13	66.8 ± .1	39.2 ± 1.1 ⁽⁴	21.4 ± .2	34.3 4.5
lû J _{ku}	2.54 4 .04	1.37 4 .07	12.5 ± .1	14.8 ± .1	60. ± 61.8	36.3 4 .2	1. + 7.61	14.8 ± .1	6.50 ± .11	1.57 4 .09	2.27 ± .06		2.44 1.04	5.26 4 .0/	22.5 4 .3	1. + 7.15	12.8 4 .7	3.08 4 .07	20.6 4 .2
98 ^{,99}	4.18 ± .04	7.85 ± .0/	18.2 4 .1	24.8 ± .1	16./ 4 .1	94.2 ± .2	5. + 0.69	83.2 4 .2	45.7 4 .2	8.27 * .10	9.81 1.08		8.34 ± .06	16.5 4.1	98.8±.4	125 & 1	1. 1 B.BB	30.7 4 .1	42.4 4.2
95, 75	2./6 ± .005	900. ± 69.4	10./ 4 .1	14./ 4 .1	8.22 4 .10	45.3 ± .2	31.1 ± .2	37.0 ± .2	19.5 4 .2	3.64 1.10	4.54 4.08		4.13 4 .0/	7.64 4 .08	43.6 ± .4	55.1 4 .2	39.4 4.7	13. 3 4 .1	23. 4 5.82
110	0 02-05-69	02-23	03 18	04 07	05 06	0612	0729	09. 25	10-20	11-16	01-08-70		07 02 02 /0	03 20	05-10	06 28	07 - 30	09 - 22	11 3
é S	01 01 65	02 05	02 24	01 18	U4 07	01-30	06 -12	07-29	62- 60	10 22	12-12		N 00 10	05 09	03-24	01-30	06 -28	16 /0	10 15

•

.

(a) - First Analysis By Ge (Li) Diode

Air at Makah,	and 1970.
Surface	in 1969
rations in	, 124°37'W)
de Concent	(48°22 'N
Radionuc lie	Washington

Da	te			DPM/10 ³ M ³		
NO	OFF	140 _{Ba}	141 _{Ce}	144 _{Ce}	226 _{Ra}	²³² Th
01-01-69	02-05-69	5.97 ± .26	2.97 ± .04	22.6 ± .1	<.006	.007 ± .002
02-05	02-23	1.27 ± .02	10.8 ± .1	23.3 ± .2		
02-24	03-18	3.64 ± .07	16.9 ± .1	38.3 ± .2		
03-18	04-07	٥	11.2 ± .1	43.4 ± .2		
04-07	05-06	D	35.5 ± .2	25.3 ± .1	$.001 \pm .005$.022 ± .004
05-10	06-12	0	16.9 ± .1	84.2 ± .3	$.008 \pm .008$.022 ± .003
06-12	07-29	D	$10.4 \pm .1$	69.6 ± .2	<.021	.018 ± .004
07–29	09-25	0	4.55 ± .13	100 ± 1	<.009	.014 ± .002
09-25	10-20	690. + 006.	2.08 ± .12	86.8 ± .3	.036 ± .011	.023 ± .004
10-22	11-16	.58 ± .26	2.67 ± .07	17.5 ± .1	<.007	.008 ± .003
12-12	01-08-70	D		24.5 ± .2		
01-09-70	02-05-70	$090. \pm 000.$	2.55 ± .04	23.0 ± .1	<.007	.007 ± .003
02-09	03-20	O	5.34 ± .06	23.3 ± .1	<.012	$.011 \pm .005$
03-24	05-10	0	22.5 ± .3	134 ± 1	.035 ± .008	.040 * .004
05-10	06-28	.058 ± .031	16.4 ± .1	199 ± 1	.067 ± .009	.026 ± .003
06-28	07-30		9.88 ± .81	173 ± 1		
07-31	09-22		4.06 ± .08	84.9 ± . 2		
10-15	11-03	32.9 ± .4	30.2 ± .2	129 ± 1		

· ·

•

•

D = Decayed Away Before Analysis

Radionuclide Concentrations in Surface Air at Quillayute, Hashington (47° 57:0, 124° 23:W) in 1973.

•

•

,

.

	i	.020			.002	010.	110.																
	65 _{4n}	• /10.	()N	(IN	+ 210.	• 023	1 010.	(IN)	011	(IN	QN	0N	QN	()N	IN	(IN	QH	8	(IN	(H)	(III)	H	ND
	60 (10	QN	.00. ± 1003	.132 4 .026		ON	QN	QN	(IN	()N	CRU	(H)	(NI)	(IN	(11)	(III)	(IN	92	0N	(11)	(III)	(IN	(IN
	58 C0	600° # 850'	80	(JN	ND	0N	QN	(IN	UN	QN	01	un	(IN	QN	UN	UN	BD	ND	(IN	QN	80	(IN	900° i 010
	5/ _{C0}	QN	E00. + H0.	(IN	(IN	QN	(IN	.024 ± .003	100. 4 300.	500. ± E10.	UN	()N	ſN	ND	ND	ND	(IN	()H	113	200. £00.	()H	(IN	(N)
M/10 ³ M ³	54 _{Mn}	ND	.037 ± .003	.00. ± 150.	100. 4 110.	£00. ± ££0.	.064 4 .005	£00. ¥ 1£0.	.015 + .002	.016 4 .002	.024 ± .018	.027 ± .007	.008 ± .002	.00. ¥ EIO.	.014 + .002	E00. + 800.	110. + 020.	ND	UN	.011 4 .002	.014 + .003	E00. ± 010.	.023 ± .008
-0	40 _K	00. ★ 11.1	£40. ± 788.	.060 ± .005	.778 + .065	.587 ± .060	090. + 816.	.821 4 .063	.664 ± .045	.715 4 .048	2.35 4 .34	14.3 ± .3	050. 4 609.	.671 4 .048	160. + 765.	.332 4 .026	3.32 4 .27		2.42 ± .20	.174 ± .054	624 + .048	.727 4 .056	.686 4 .052
	27 Ha	800. 4 160.	£00. ± 010.	EUO. 4 600.	.014 ± .005	400. ± 610.	.032 + .006	£00. ¥ 610.	.002 + .002	.008 4 .002	0H	80	£00. ± 700.	EOO. 1 EOO.	.003 A .002	E00. 4 600.	ND	Ш	UD UD	£00. ± 510.	200. 1 900.	ND	500. ± 700.
	/Be	207 4 1	103 4 1	133 ± 1	1 7 861	126 ± 1	1 + 161	1/3 ± 1	73.4 ± .3	86.6 ± .4	83.4 ± .9	86.3 4 .5	E. ≜ 0.95	80.8 ± .5	132 4 1	1 + 601	262 4 1	/8.8 ± 1.2	108 + 2	150 4 1	1 + 621	9. ± 1.00	8. ± 2.96
ite .	110	02-23	03-13	16-60	61 - 15	06 00	05-20	00 03	06-17	10-70	67-09	07-22	01-80	08-20	18 31	60 15	11-60	09-22	10 10	10 28	нн	N 25	12-09
Da	NO	0215	02-23	03-13	03-31	01 15	05 · 06	02 - 50	00-03	06-17	10 /0	60 70	08 01	08-10	08-20	08-31	51 GO	61 60	10 0/	10 14	10 28	11-11	11 25

•

ND - Not Detectable

٠

۱

it quillayute,	
Radionuclide Concentrations in Surface Air a	Hashington (4/° 5/'N, 124° 23'H) in 1973.

.

•

Date			01/110					
011	β8 _γ		95 _{Nb}	103 _{Ru}	106 _{Ru}	110 _{A9}	124 _{Sb}	125 _{5b}
02-23	ND	254 ± .019). ± 20č.	022 .115 4 .01	11 3.20 4 .11	ON .	QN	.533 ± .029
CI E0	Ŵ	.128 4 .010	. 1 692.	007 .036 ± .00	07 1.38 4 .04	600. ± £10.	0N	.334 4 .010
11-20	N.	126 4 .013	. 224 4 .	10. ± 050. 600	2 1.56 4 .05	QN	QN	310. + 0/8.
61-15	(IN	.014 .014	. 226 4 .(00. r 180. 600	99 2.13 4 .07	ON	QN	£91 ± 1024
04-30	QN	210. t 890.	. 120 4 .(00. FELU. 800	30. 1.53 1.06	ND	QN	910. + 905.
02-GO	QN	110. + +20.	. 166 ± .(008 .022 ± .00	1.61 ± .05	(IN	QN	130. + 187.
06-03	QN	800. 4 720.	. 1 960.	006 ND	30. ± 67.1	ND	QN	.458 4 .016
06 - 17	UN	.012 ± .003	. * 040.	00 ND	.064 ± .012	ND	QN	.186 ± .010
07-01	QN	200. 4 020.	. ± 360.	GN EOO	VEO. ★ EE7.	(IN	NIN	.226 4 .000
60-70	UN	170. 4 616.	. * 275.	029 2.87 ± .06	81. 4 94. 18	()N	QN	$.113 \pm .063$
07-22	QN	.420 4 .024	. 222 ± .(012 1.67 ± .02	651 4 . 067	ND	UN	.106 ± .023
08-10	ON	.567 ± .018	. 4 613 4 .(017 1.28 ± .02	160. 4 191.	QN	8	900. ¥ 101.
08-20	ND	.300 4 .012	. * 0/6.	0.0 .552 4 .01	0 .354 ± .028	HD	0N	600. r \$11.
08-31	QN	310. + 127.	. + 8/8.	012 1.26 ± .01	.526 4 .029	0H	(11)	110. + 361.
09-15	0N	1.39 ± 06.1	1.55 ± .(02 1.63 4 .03	1 .503 4 .043	CM	ND	100. ▲ 180.
11 60	(IN	2.98 ± .28	5.82 4 .	25 3.76 4 .36	1.26 4 .16	ND	(11)	620. 4 681.
09-22	ND	110. 1 219.	1.57 4 .(07 1.18 ± .06	!	(11)	0N	360. + 040.
10 10	QN	1.22 ± .13	2.69 ±	13 1.32 4 .16	.222 4 .068	(IN	(11)	.043 + .016
10-28	(IN	2.41 4 .04	3.78 ± .(03 2.13 ± .02	.626 ± .044	11D	01	10. 4 801.
11 11	()N	70. ± £P.2	5.01 4.0	0/ 1./6 4.06	676 4 .048	(IN	(8)	800. A 180.
11 25	(IN	2.53 1.08	5.21 ± .(07 1.77 4 .06	140. 1 381.	(IN)	(JH	600° + F80°
12 09	(11)	4.13 4.09	8.72 4 .(08 2.22 4 .6	90. т <u>с</u> 1.1	(IN	QN	.120 4 .010

.

•

2 = 2 Z

•

.

AD - Not Detectable

•

2

Quillayute,
al
in Surlace Air 3'W) in 1973.
S N
al ion 124
mcentr 5/·N,
<u> </u>
i i
Radionuc I i Wash ington

01 01 $13t_{65}$ $13t_{65}$ $13t_{65}$ $13t_{65}$ $13t_{65}$ $13t_{65}$ $13t_{66}$ 155 100 02 -15 02 -23 004 ± .006 $1.73 \pm .03$ 00 $258 \pm .003$ $258 \pm .003$ $201 \pm .003$ 02 -23 01 -13 .008 ± .003 $258 \pm .003$ 100 $2.74 \pm .03$ $001 \pm .003$ 03 -31 04 -10 N0 $1.73 \pm .02$ N0 0.32 100 $2.75 \pm .016$ 03 -31 04 -10 N0 $1.73 \pm .02$ N0 $0.31 \pm .02$ $001 \pm .013$ 012 05 04 -10 N0 $1.73 \pm .02$ N0 $2.74 \pm .03$ $001 \pm .010$ 05 04 -10 N0 $1.71 \pm .02$ N0 $2.74 \pm .03$ $001 \pm .010$ 06 -17 0/-01 N0 1.74 1.01 $N0$ $1.74 \pm .01$ 0.72 0.11 07 -10 N0 $2.74 \pm .01$ $N0$ $1.04 \pm .01$ $0.72 \pm .01$ 0.11 07 -10	S 	ale			01/103M3					
$0.2-15$ $0.7-23$ 0.04 ± 0.06 1.73 ± 0.0 M 0.33 ± 0.13 2.66 ± 0.03 2.93 ± 0.03 0.01 2.74 ± 0.03 0.01 ± 0.03 0.0	0N	011	134 _{Cs}	13/ _{CS}	140 _{8a}	141 _{Ce}	144 _{Ce}		226 _{Ra}	728AC
02:23 03:13 .003 <	02-15	02 - 23	.004 4 .006	I.73 ± .03	QN	ON	5.55 ± .06	1156 4 .031	QN	.064 ± .032
0.1 1 0.1 1 0.1 1 0.1 1 0.1 <th0.1< th=""></th0.1<>	02-23	03-13	.00. ± 800.	928 4 .009	ND	E10. ¥ EE0.	2.56 4 .02	.018 ± .007	QN	010. + 120.
01 1 01 1	03 13	1E · EO	UN	1.08 ± .02	QN	UN	2.74 ± .03	600. ¥ 160.	QN	0N
$(0 + 15)$ $(0 + 10)$ (0) $(1 - 1)^{+}$ (0) $(1 - 1)^{+}$ (0) $(1 - 1)^{+}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(1 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$ (0) $(0 - 1)^{-}$	16-60	04 - 15	ND	1.73 ± .02	0N	(H)	3.96 1.05	.125 ± .016	QN	810. ¥ /20.
05 06 $05-20$ $N0$ 2.33 ± 0.22 $N0$ $1.5.6 \pm 0.23$ 11.6 ± 0.05 11.4 ± 0.06 $05-20$ $06-0.13$ $N0$ $1.5.6 \pm 0.11$ $N0$ $1.5.6 \pm 0.12$ 11.6 ± 0.02 054 ± 0.05 $06-17$ $N0$ $.591 \pm 0.01$ $N0$ $.591 \pm 0.01$ $N0$ 1.70 ± 0.02 054 ± 0.05 $06-17$ $07-01$ $H0$ $.794 \pm 0.02$ $N0$ 1.70 ± 0.01 2.96 ± 0.05 $06-17$ $07-01$ $H0$ $.794 \pm 0.01$ 3.71 ± 2.0 1.30 ± 0.1 4.74 ± 0.05 $07-01$ 010 2.70 ± 0.01 3.71 ± 2.0 1.30 ± 0.01 0.74 ± 0.05 $07-01$ $07-02$ 001 1.70 ± 0.01 $.714 \pm 0.01$ $.770 \pm 0.02$ $07-02$ $08-10$ $.700$ $.557 \pm 0.02$ $.703 \pm 0.02$ $.074 \pm 0.02$ $01-10$ $00-15$ 100 $.704 \pm 0.01$ $.770 \pm 0.01$ $.770 \pm 0.01$ $.074 \pm 0.02$ $01-22$ 021 ± 0.00 $.784 \pm 0.01$ $.014 \pm 0.$	04-15	04-30	(IN	1.17 4 .02	QN	ND	2.71 4 .04	\$10. ¥ 260.	QN	010 + 010.
$05-20$ $06-01$ N0 $1.561 \pm .01$ N0 $1.561 \pm .01$ N0 $1.33 \pm .02$ $054 \pm .005$ $06-17$ N0 $.501 \pm .011$ N0 $1.33 \pm .02$ $054 \pm .005$ $06-17$ 0.0 $.012 \pm .011$ N0 $1.33 \pm .02$ $054 \pm .005$ $06-17$ $01-01$ N0 $.134 \pm .001$ $.101 \pm .102$ $.111 \pm .477 \pm .049$ $07-02$ N0 $.134 \pm .001$ $.174 \pm .001$ $.102 \pm .021$ $.024 \pm .005$ $07-01$ $07-02$ $.021 \pm .007$ $.2261 \pm .001$ $.171 \pm .20$ $.120 \pm .011$ $.003 \pm .011$ $07-10$ N0 $.540 \pm .002$ $.557 \pm .052$ $.714 \pm .001$ $.002 \pm .012$ $.002 \pm .001$ $01-10$ N0 $.540 \pm .002$ $.557 \pm .022$ $.748 \pm .010$ $.002 \pm .002$ $.002 \pm .002$ $01-10$ N0 $.540 \pm .002$ $.557 \pm .022$ $.748 \pm .010$ $.002 \pm .002$ $.002 \pm .002$ $01-20$ $010 \pm .011$ $.011 \pm .022$ $.024 \pm .002$ $.002 \pm .002$ $.001 \pm .002$	05-06	05-20	CIN	2.33 4 .02	ON	(JN	4.59 ± .05	.154018	QN	.010 4 .020
$06 \ 01$ $06 - 17$ $N0$ $.691 \pm .011$ $N0$ $N0$ $1.33 \pm .02$ $.054 \pm .005$ $06 - 17$ $07 - 01$ $N0$ $.794 \pm .012$ $N0$ $1.40 \pm .02$ $.054 \pm .005$ $07 - 01$ 07 $07 - 03$ $N0$ $.854 \pm .001$ $3.71 \pm .20$ $1.30 \pm .04$ $1.10 \pm .11$ $.477 \pm .003$ $07 - 01$ $07 - 02$ $.021 \pm .007$ $.720 \pm .016$ $.557 \pm .057$ $.748 \pm .010$ $.770 \pm .010$ $.024 \pm .003$ $07 - 01$ $08 - 10$ $08 - 10$ $N0$ $.476 \pm .002$ $.534 \pm .027$ $.708 \pm .017$ $.007 \pm .003$ $08 - 10$ $08 - 10$ $08 - 10$ $.014 \pm .003$ $.234 \pm .023$ $.708 \pm .017$ $.005 \pm .003$ $08 - 10$ $08 - 10$ $.014 \pm .003$ $.234 \pm .023$ $.708 \pm .012$ $.072 \pm .003$ $.012 \pm .003$ $08 - 10$ $08 - 10$ $.014 \pm .003$ $.014 \pm .012$ $.014 \pm .013$ $.012 \pm .013$ $.011 \pm .012$ $08 $	05-20	06-03	QN	1.58 4 .02	UN	0N	2.96 ± .03	.114 4 .008	QN	QN
$06-17$ $07-01$ 10 $.794 \pm .012$ ND $1.40 \pm .02$ $.654 \pm .002$ $.664 \pm .012$ $07-01$ $07-09$ ND $.894 \pm .040$ $3.71 \pm .20$ $1.30 \pm .04$ $1.11 \pm .71 \pm .049$ $07-02$ $.021 \pm .007$ $.720 \pm .016$ $1.55 \pm .09$ $.486 \pm .014$ $.097 \pm .004$ $.003 \pm .017$ $08-01$ $08-10$ ND $.476 \pm .009$ $.557 \pm .057$ $.748 \pm .010$ $.702 \pm .003$ $.017 \pm .003$ $08-01$ $08-10$ ND $.557 \pm .057$ $.748 \pm .010$ $.702 \pm .003$ $.017 \pm .005$ $08-01$ $08-10$ ND $.557 \pm .027$ $.021 \pm .002$ $.072 \pm .005$ $08-10$ $08-10$ ND $.567 \pm .013$ $.013 \pm .001$ $.012 \pm .005$ $08-11$ $09-15$ ND $.101 \pm .02$ $.004 \pm .025$ $.072 \pm .005$ $08-11$ $09-17$ ND $.101 \pm .02$ $.001 \pm .02$ $.072 \pm .005$ $08-11$ $09-17$ $.010$ $.101 \pm .02$ $.010 \pm .022$ $.012 \pm .$	06-03	06-17	ND	110. 4 169.	ND	(IN	1.33 ± .02	.054 ± .005	GN	QN
07-01 07-09 N0 .854 ± .040 3.71 ± .20 1.30 ± .04 1.10 ± .11 .477 ± .049 07-09 07-22 .021 ± .007 .720 ± .016 1.55 ± .057 .748 ± .010 .770 ± .018 .003 ± .017 08-01 08-10 N0 .476 ± .009 .557 ± .057 .748 ± .010 .770 ± .018 .024 ± .005 08-10 08-10 N0 .540 ± .009 .557 ± .057 .748 ± .010 .770 ± .013 .012 ± .005 08-10 08-11 N0 .540 ± .009 .557 ± .013 .018 ± .003 .708 ± .017 .012 ± .005 08-10 08-11 N0 .567 ± .013 .018 ± .003 .101 ± .02 .017 ± .005 .012 ± .005 08-11 09-15 N0 .567 ± .013 .018 ± .003 .101 ± .02 .004 ± .005 .012 ± .005 09-19 09-17 N0 .1.0 ± .02 .018 ± .013 .011 ± .02 .012 ± .013 .013 ± .013 09-19 09-12 N0 .1.0 ± .05 .2.04 .010 .012 ± .005 .011 .011 09-19 09-12 N0 .010 .010 <td>06-17</td> <td>10-70</td> <td>Ш</td> <td>./94 * .012</td> <td>ND</td> <td>QN</td> <td>1.40 ± .02</td> <td>.054 ± .005</td> <td>0N</td> <td>QN</td>	06-17	10-70	Ш	./94 * .012	ND	QN	1.40 ± .02	.054 ± .005	0N	QN
07-09 07-22 .021 ± .007 .720 ± .016 1.55 ± .057 .748 ± .010 .770 ± .016 .003 ± .017 08-01 08-10 NB .476 ± .009 .557 ± .057 .748 ± .010 .770 ± .017 .014 ± .005 08-10 NB .683 ± .009 .557 ± .057 .748 ± .010 .770 ± .017 .034 ± .005 08-10 08-20 ND .540 ± .009 .557 ± .057 .748 ± .010 .770 ± .017 .034 ± .005 08-10 08-20 ND .540 ± .001 .358 ± .033 .803 ± .001 .070 ± .017 .034 ± .005 08-21 09-15 ND .567 ± .013 .018 ± .003 .011 ± .02 .004 ± .023 .013 .013 09-19 09-12 ND .1.10 ± .01 .018 ± .003 .011 ± .02 .012 ± .02 .013 ± .013 .013 .013 .01 .01 .01 .01 .01 .01 .011 .011 .011 .011 .012 .013 <tt.013< td=""> .013 .013 .013<tt.01< td=""> .013 .013 .013 .013 .013 .013 .013 .013 .011 .011</tt.01<></tt.013<>	10.70	60-70	(IN	.854 ± .040	3.71 4 .20	1.30 ± .04	11. 10 1.11	.477 * .049	QN	(IN
03-01 08-10 N0 .476 ± .009 .557 ± .057 .748 ± .010 .770 ± .018 .024 ± .005 03-10 08-20 N0 .540 ± .009 .234 ± .022 .382 ± .007 .708 ± .017 .014 ± .005 04-10 08-20 N0 .540 ± .009 .234 ± .023 .803 ± .007 .708 ± .017 .014 ± .005 04-20 08-31 N0 .567 ± .013 .018 ± .003 1.01 ± .025 .046 ± .002 .073 ± .003 09-15 N0 .1.04 .013 .018 ± .003 1.01 ± .025 .046 ± .013 .013 ± .003 09-19 09-17 H0 .1.10 ± .04 N0 .014 ± .025 .046 ± .013 .013 ± .013 09-19 09-12 H0 .1.10 ± .04 N0 .1.11 ± .112 .013 ± .013 .013 ± .013 .013 10-07 10-10 N0 .256 ± .023 .014 ± .01 .014 ± .01 .013 .013 .014 .01 .013 .013 .014 .013 .013 .013 .014 .013 .013 .013 .013 .013 .013 .013 .013 .01	<u>60-70</u>	07-22	.021 4 .007	.720 4 .016	1.56 ± .09	.468 ± .014	£00. ₹ 768.	.003 ± 001	01	324 4 .042
08-10 09-20 ND .540 ± .009 .234 ± .029 .382 ± .007 .708 ± .017 .034 ± .005 08-20 08 31 ND .563 ± .013 .018 ± .003 .603 ± .003 1.01 ± .02 .072 ± .005 .066 08-31 09-15 ND .567 ± .013 .018 ± .003 1.01 ± .02 .072 ± .003 .005 08-31 09-15 ND .567 ± .013 .018 ± .003 1.01 ± .02 .904 ± .025 .046 ± .003 .013 09-19 09-17 HD 1.10 ± .04 HD .101 ± .02 .018 .013 .018 ± .003 .011 ± .02 .073 ± .013 .013 .01 09-19 09-12 HD .276 ± .029 .016 ND .276 ± .023 .018 .01 .01 .01 .01 .01 10-07 10 10 ND .269 ± .016 ND .113 ± .17 .883 ± .068 .018 .018 .013 .028 ± .013 .028 ± .013 .028 ± .013 .028 ± .013 .028 ± .013 .011 .011 .012 ± .013 .028 ± .008 .016 .026 .018 .011 .028 <td>10-80</td> <td>08-10</td> <td>()N</td> <td>.476 ± .009</td> <td>.557 4 .057</td> <td>.748 ± .010</td> <td>910. + 0//.</td> <td>.024 ± .005</td> <td>ÛN</td> <td>QN</td>	10-80	08-10	()N	.476 ± .009	.557 4 .057	.748 ± .010	910. + 0//.	.024 ± .005	ÛN	QN
08-20 08-31 N0 .663 ± .010 .358 ± .030 .803 ± .008 1.66 ± .02 .072 ± .005 08-31 09-15 N0 .567 ± .013 .018 ± .003 1.01 ± .02 .904 ± .025 .046 ± .09 .003 09-15 N0 .567 ± .013 .018 ± .003 1.01 ± .02 .904 ± .025 .045 ± .013 .019 09-19 09-17 N0 1.10 ± .04 N0 .695 ± .048 .410 ± .063 N0 .71 09-19 09-22 H0 .276 ± .024 .016 N0 .1.13 ± .17 .883 ± .048 .003 .01 .71 01-01 N0 .014 ± .011 1.13 ± .17 .883 ± .048 .003 .021 ± .003 .021 ± .003 10-12 N0 .014 ± .011 1.13 ± .17 .883 ± .048 .004 .021 ± .003 <	08-10	08 - 20	ŊŊ	.540 4 .009	.234 ± .029	.382 4 .007	10. + 807.	300. ± \$60.	QN	QN
08-31 09-15 N0 :567 ± .013 .018 ± .003 1.01 ± .02 :09 ± .025 .066 ± .003 .013 ± .013 09-15 09-17 H0 1.10 ± .04 H0 3.10 ± .55 2.26 ± .09 .073 ± .013 .013 09-19 09-222 H0 .276 ± .023 .016 H0 595 ± .048 .400 ± .063 H0 .71 09-19 09-222 H0 .276 ± .026 .016 H0 1.13 ± .17 .883 ± .048 H0 .71 10-07 10-10 H0 .269 ± .016 H0 1.13 ± .17 .883 ± .048 H0 .71 10-13 H0 .71 1.13 ± .17 .883 ± .048 H0 .018 .018 .018 10-28 11-11 H0 .311 ± .000 .001 ± .011 1.34 ± .01 1.57 ± .03 .071 ± .004 .078 11<11	08-20	08 31	ND	.683 • .010	.358 4 .030	800. ± 608.	1.06 4 .02	.042 ± .005	QN	8
09-15 09-17 H0 1.10 ± .04 H0 3.10 ± .55 2.26 ± .09 .073 ± .013 09-19 09-22 H0 .276 ± .024 H0 .695 ± .048 .410 ± .063 H0 .71 09-19 09-22 H0 .276 ± .024 H0 .695 ± .048 .410 ± .063 H0 .71 10-07 10-10 H0 .269 ± .016 H0 1.13 ± .17 .883 ± .048 H0 .71 10-14 10-28 H0 .763 ± .009 .001 ± .011 1.34 ± .01 1.57 ± .03 .078 ± .008 .001 10<14	UR-31	09 - 15	ND	.567 4 .013	.018 ± .003	1.01 ± .02	.904 ± .025	.046 ± .008	(IN	92
09-19 09-22 H0 .276 ± .024 H0 .695 ± .048 .406 ± .063 H0 .71 10-07 10-10 H0 .269 ± .016 H0 1.13 ± .17 .383 ± .048 H0 .71 10-10 H0 .269 ± .016 H0 1.13 ± .17 .383 ± .048 H0 10-14 10-28 H0 .763 ± .009 .081 ± .011 1.34 ± .01 1.57 ± .03 .021 ± .008 10-28 11-11 H0 .311 ± .008 N0 1.15 ± .06 1.67 ± .03 .071 ± .004 .075 11-11 H0 .293 ± .008 N0 1.07 ± .06 1.67 ± .03 .072 ± .005 .075 11-25 17-09 N0 .116 ± .008 N0 1.40 ± .05 2.87 ± .04 .077 ± .005 .075 H0 = Hot betectable N0 .110 ± .05 2.87 ± .04 .077 ± .005 .015 .015	61×60	11-60	QN	1.10 + .04	01	3.10 ± .55	2.26 ± .09	£10. ₹ £70.	QN	EEO. ¥ 160.
10-07 10-10 ND .269 ± .016 ND 1.13 ± .17 .083 ± .048 ND 10-14 10-28 ND .163 ± .009 .081 ± .011 1.34 ± .01 1.57 ± .03 .028 ± .008 10-28 ND .11 ± 1 ND .15 ± .00 1.61 ± .011 1.34 ± .01 1.57 ± .03 .028 ± .008 10-28 ND .311 ± .008 ND 1.15 ± .06 1.67 ± .03 .027 ± .004 .028 11 11 11 · 25 ND .293 ± .008 ND 1.07 ± .05 1.293 ± .004 .028 11-25 12-09 ND .118 ± .008 ND 1.40 ± .05 2.87 ± .04 .007 ± .005 .015 11-25 12-09 ND .118 ± .008 ND 1.40 ± .05 2.87 ± .04 .007 ± .005 .015 .015 MD = Hot Detectable .1101 ± .015 2.87 ± .04 .027 ± .005 .015 .015 .015 .015 .015 .015 .015 .015 .015 .016 .015 .015 .015 .016 .015 .016 .015 .016 .017 ± .005 <td>61-60</td> <td>09-22</td> <td>an</td> <td>120. + 975.</td> <td>QU</td> <td>.695 ± .048</td> <td>.480 ± .063</td> <td>010</td> <td>11 + 12.</td> <td>ND</td>	61-60	09-22	an	120. + 975.	QU	.695 ± .048	.480 ± .063	010	11 + 12.	ND
10 14 10-28 ND .163 ± .009 .081 ± .011 1.34 ± .01 1.57 ± .03 .028 ± .008 10 28 11-11 ND .311 ± .000 .001 ND 1.15 ± .06 1.67 ± .03 .021 ± .005 10 28 11-11 ND .311 ± .000 ND ND 1.15 ± .06 1.67 ± .03 .021 ± .005 11 11 11 25 ND .223 ± .008 ND 1.07 ± .05 .072 ± .004 .021 ± .005 11-25 12-09 ND .318 ± .008 ND 1.40 ± .05 2.87 ± .04 .077 ± .005 .015 N= Hot Detectable .318 ± .0008 ND 1.40 ± .05 2.87 ± .04 .077 ± .005 .015	10-07	10-10	M	.269 4 .016	91	1.13 ± .17	840. * 688.	(IN	02	92
10 20 11-11 ND .311 ± .008 ND 1.15 ± .06 1.67 ± .03 .021 ± .095 11 11 11 25 ND .293 ± .008 ND 1.07 ± .06 1.78 ± .03 .022 ± .004 .026 11-25 12-09 ND .318 ± .008 ND 1.40 ± .05 2.87 ± .04 .027 ± .005 .035 ND = Hot Detectable	10 14	10-28	QN	600. + 6.31 .	110. 4 180.	1.34 ± .01	1.57 4 .03	800. + 820.	Œ	011
11 11 11 25 ND .293 1.008 ND 1.07 1.06 1.78 1.03 .022 1.004 .026 11-25 12-09 ND .318 4.008 ND 1.40 4.05 2.87 1.04 .027 4.005 .075 ND = Hot Detectable	10-28	11-11	ND	800. 4 116.	QN	1.15 ± .06	1.6/ ± .03	-021 t .005	QN	800° r 220°
11-25 12-09 ND .318 4 .008 ND 1.40 4 .05 2.87 4 .04 .027 4 .005 .075 ND = Not Detectable	11 11	11 - 25	ND	800. + 862.	ON	1.07 4 .06	1./8 4 .03	. 100. 1 220.	110. 4 820.	600, 4 720.
RD - Hut Detectable	11-25	60-21	ND	800. + 818 .	Ŵ	1.40 ± .05	2.87 1.04	. 00. ± 750.	110. + 310.	010. + /10.
	an Hot	Detectable								

Radionuclide fourentrations in Surface Air at Quillayute, Washington (47° 57'N, 124° 23'W) in 1974 and 1975.

120. ± 8/0. 160. ± 610. ££0. ± £80. .025 ± .012 250. ± 650. 001 + .048 .036 ± .025 **911 ± 1039** 010 ± 810. £20. ¥ ££0. 010. 4 800. .025 ± .012 012 ± .014 .012 .021 4 .012 .026 .077 HU. + 970. 150. 4 200. 620° + 040. .00. 65 In Ē + (00. ¥ /80. Ŷ Ð 9 £ 260. + IEO. <.01 ×.04 .002 ± .008 .013 + .005 100. ± 800. E00. ± 200. 100. ± 100. E00. 4 100. .006 ± .004 .001 4 .003 .004 ± .003 E00. ± E00. A010 + 010. .005 .002 005 ± 200. 60<u>.</u>08 E . 115 4 Q QN QN â QN 9 Q QN 108 ± GN **N** <.006 <.006 .006 700. ± E10. 100. 4 420. 200. ± 100. 300. ± 010. 200. + 110. 100. ± 210. 900. L 100. 400. ± 110. 210. 4 120. EE0. + 640. 58. ACO. 4 ENO. QN * [10. ŝ NO QN 92 **E** ŝ 9 Î Ð Q Ð R R <.05 .003 ± 810. .010 + .005 E00. 4 110. .003 ± 110. .003 ± .003 .028 ± .008 .024 ± .007 .025 ± .006 £10. ₹ 810. 2/m) ± 800. .003 ± 1003 100. 1 100. .00. ± 200. E00. ± 600. $.014 \pm .005$ ₩ J 1 200. .024 ± .006 100. 1 110. .019 ± .005 300. ± 010. 300. L 760. 000. ± E20. $017 \pm .005$ 001 1 800. d00. 4 550. . QN 57_{C0} QN **610. ±** 269. 530 4 .064 .220 # .007 231 4 .034 .273 4 .022 .61 ± .01 . 334 ± .012 810. * 655. .532 4 .063 .218 4 .000 EI0. ± ESE. .318 + .024 .214 ± .014 010. 4 200. 010. + 171. 190. + 188. .583 4 .058 .077 4 .006 .066 4 .007 . 4 13 . 14 . 10 . 14 . 014 .70 ± .12 .108 ± .012 .065 ± .090 .084 ± .006 100. ± 012 .109 ± 001. .127 4 .015 .196 # .008 A10. + AEE. .121 4 .006 .304 ± .015 .155 4 .007 274 4 .015 410 ± .014 210. ± 1/E. .372 4 .015 700. ± 005. 54 Mil WEDI/WIN į 700. F 720. 1.71 4 .10 11. + 85. .49 4 .10 **61.** ± E9. .75 ± .14 .12 * 61. .83 ± .12 200. 4 000. .0/0 + .012 010. 1 631. .016 ± .015 260 4 .030 138 ± .021 910. ± 00f. 40, K 8 22 Na COO: 1 900. E00. ± 800. 200. 4 £00. 800. ± 1008 800. 4 620. .005 ± .004 005 ± 006 000. 4 8(M). 000. ± /10. 000 · + /20. .016 ± .003 110. ± 220. 300. ± 000. P00. + 700. P(K). ± (K). 000 + 900. 100. 4 110. ENO. 1 800. 700. ± 200. 200. 1 210. 000. 1 6IU. 0.04 ± 0.06 018 + .006 COD. 4 0507 QN W Œ 1 . . . 60.1 ± .2 82.3 ± .5 11.4 + .5 51.2 ± .5 57.2 ± .3 00.1 ± .3 P. ± E.10 BJ.5 4 .3 139 4 1 1 * 0/1 120 4 1 102 ± 1 120 ± 1 107 ± 1 1 + 101 139 4 1 174 ± 1 106 ± 1 1 + 9/1 104 + 1 142 4 1 178 ± 2 1 4 191 112 ± 2 180 4 1 1 7 591 126 ± 1 - 7 1Be 1 02 - 26 - 75 01-02-75 110 03-26 04 -29 - 11-28 05-15 06-14 06-30 07-15 07-28 08-15 09-15 09 -29 01 · 10 1E - 50 09-02 10-14 10-31 11.14 12-15 10 31 02 16 03-03 03 - 17 04-15 04 01 Ξ ł 6 Date 1 02-15-74 01 03 75 0.1-26 02-20 04-30 05-15 06 30 11-14 05-31 06-14 07-15 07-28 08-15 09-02 09-15 62-60 11-29 12-15 01 I I 10-14 10 31 01.31 02-16 11: E0 10° M 04-15 3 E0 - E0

- Not Detectable

(11)

(
Radionuclide Concentrations in Surface Air at Quillayute, Wishington (47°57'N, 124°23'W) in 1974 and 1975.

.022 .020 010. ± #9E. 100. .047 .036 1.0. C20. .021 **elo.** 60. .0 .05 ٥. -02 2 SO. 9 6. 6. 1.41 + .02 10. 9. 5 3 1.06 ± .02 Ξ 307 4 . + 6/9. 1.71 4 . 4 169. 385 ± . ----4 . --4 1 14 ---+ --. 2.78 1.85 1.20 -1.10 512 1.12 3.57 1.17 87**8**. 694. 472 1.40 1.16 1.20 1.66 l. 26 1.20 600. l - 174_{5b} ŝ 4 /(M). <u>S</u> Ê 2 E £ 9 £ 9 ŝ ŝ ŝ E Ê 3 E Ē E 2 2 ŝ Ē 2 2 2 2 -600° + 200° 600 · 100 6⁷011 ŝ E 2 ŝ 9 g ŝ 2 B Ş £ ĝ Q 92 9 Ŷ £ 2 £ ŝ Ð æ 8 Ē <.03 į 1 9.80 + 13 8.81 J .14 6.71 ± .18 5.01 + .10 3.45 4 .10 3.53 4 .10 2.59 4 .10 9.02 4 .11 3.22 + .14 5.06 ± .16 9. 18 F. 92 3.93 4 .10 3.84 4 .09 8.85 4 .20 9.60 + .18 106_{Ru} 14.9 ± .3 10.2 ± .1 14.7 4 .2 34.8 ± .3 1. + +.11 0.5 ± .2 13.4 + .2 25.34.2 1.5 + .2 16.0 + .2 15.5 4 .2 -11.4 4 i .948 4 .015 ***** .029 **1**0. 4.07 ***** .05 .03 A .03 ¥ .05 12.0 4 .1 1.74 4 .03 34.5 ± .1 4.56 ± .03 29.4 31.3.1 3.32 15.8 4 .1 1.75 4 .03 2.44 ± .02 4.35 ± .03 15. 4 11. 4 NO. 4 (0.6 5.26 4 .06 2.04 + .07 1.21 4 .03 3.37 4 .03 2. 18 + .02 6.23 + .04 6.04 4 .24 3.20 ± .13 3.10 ± .13 20. 4 69.1 95,410 ¹4³ fo3_{Ru} 3.15 1.40 1.32 .925 3.50 6.36 4 .07 1.32 13.8 4 .07 2.00 24.7 4 .2 2.82 5.07 17.3 ± .1 1. + 6.62 66.0 4 .2 43.3 4.1 22.1 + .1 18.3 4 .1 -1. + 2.11 **33.8 ≜ .**| 1. 4 0.61 B.7 4 .2 7. * 8.65 14.8 4 .1 20.8 4 .1 24.3 4.1 40.1 4 .1 16.4 ± .3 31.6 + .2 1. 4 6.12 43.0 4 .2 11.2 + -----÷ • 6.06 1.08 6.54 ± .06 8.14 4 .14 5.27 4 .09 80. ± £4.1 00. 1 56.7 11. ± /b.6 9.78 4 .07 7.68 4 .07 10. + 61.6 1. 4 4.91 1. 1 n.d 1. 1 2.0 95, Zr 13.4 4.1 **W.5 4 .2** 1. + S.61 14.6 4 .2 H. 2 . H 1. 4 8./1 12.6 4 .1 21.2 + .1 19.5 . . 1 21.4 1.3 15.1.1.2 15.0 4 .2 10.2 1.1 14.0 4 .2 .015 ¥ .008 10. + (00. **610**. 012 A .UN6 ECO. 4 EEO. 110. 1 000. ± 000 900. 1007.1 /00. 100. 4 201. 285 4 .020 0/07 £00. ¥ ł 1.012 . 136 4 . 38 4 -. . 128 4 9 3 ŝ 082 673 941. 190 .107 .235 . 165 275 149 204 ÷ ۲ 01-02-75 02-26 09-29 12 15 01-19 u3-26 04-29 05-15 16-20 06 14 06-30 07-15 07-28 00-15 50-02 09-15 10.14 10.31 11-14 11 Z8 11-10 02 16 03-03 10 10 11 10 04 15 Ξ ŝ ł Date : 02-15-74 67 10-10 12-15 02-20 03-26 04-30 05 15 05 11 06-14 06 - 30 0/ 15 08-15 09 02 **21 60** 09-29 10-14 11 14 11 29 01-19 01 03 10 31 11.31 07 16 11 60 28 5 Ξ S 0 Ξ S

MD . Not belectable

_

.

Dat	a.			401/140						
NO	01	1 M Cs	13/C1	140 _{8.a}	141 _{Ce}	144 Le	155 _{fu}	226 _{Ra}	228AC	1
12 15 74	02-26-74	W	1.17 4 .0	2 ND	1.22 ± .02	10.6 ± .1	000. * 1 00.	.096 ± .027	0. + 940.	22
12-26	03-26	2	2.32 4 .0	CINI Z	2.10 ± .02	28.2 ± .1	.248 ± .013	ND	8	
13 - 26	04-29	ND	2.97 4.0	ch ND	1.87 4 .01	36.6 ± .1	E10' + 65E.	UN	W	
14 30	61- GO	.004 1 .005	3.82 4.0	CIN E	1.30 4 .03	l. ± ₽./₽	910. * 89 F .	190. ± 290.	0. 4 9/0.	43
15 - 15	1E - SO	800. * 600.	7.96 4 .0	011 V	1.85 ± .04	l. ≜ <i>l.1</i> 3	020. ± 816.	.192 ± .074	UN	
16 21	00 - 14	M	6.38 ± .0	14 .021 ± .062	1.13 ± .03	76.2 ± .2	.732 ± .026	ND	11	
16 14	06 - 30	ND	2.15 ± .0	300. ± 7.20. 5	110. 4 878. 8	29.2 ± .1	.291 ± .015	.002 + .025	0. 4 /90.	53
10 30	07 - 15	Chy	4.27 4 .0	13 .083 A .024	1 .462 4 .015	12.2 ± .1	.505 + .022	.018 4 .056	QN	
17-15	07-28	ON	3. 4 20.6	5 .31 ± .12	.754 ± .038	39.9 ± .2	.435 4 .035	QH	. 108 ± .0	62
17 - 28	08-15	MD	J. 4 M.E	A .252 ± .058	8.645 ± .024	30.5 ± .2	.337 . .026	ŊŊ	0. + 000.	13
21-12	09-02	500. ± 010.	0. 4 246. 0	24 .816 ± .054	1 1.84 ± .03	8.06 ± .09	710. 4 560.	960. ± 611.	Ŵ	
50- 6i	61-60	500. + 100.	2.70 4 .0	50. ± 852. E	2.38 ± .02	23.0 4 .1	710. ± 062.	UN	(B)	
61 60	62 60	CIM	0. 4 96.5	4 .601 ± .095	i 4.55 ± .05	20.5 4 .2	.230 ± 029	.086 4 .060	CIN	
19. 29	10-14	QN	1.56 4 .0	EEO. ± 681. E	3 2.02 ± .03	1. + 1.71	.186 ± .021	00	(IN	
10 14	10 - 31	QN	1.76 ± .0	12 . 261 ± .021	2.17 4 .02	l. ≠ /.º9l	E10. + 161.	.012 4 .020	0. 4 900.	21
10 31	11-14	QN	0. 4 586.	11 .056 + .022	20. 4 13 4 .02	10.4 ± .01	.144 ± .012	QN	0. 4 800.	02
1-14	11-28	E00. * 100.	0. 1.15 1.0	120. ± 001. 5	10. + 0.0 1	13.9 ± .1	.144 ± .013	99	0. + /90.	22
1-29	12 15	[00. ± ∳00.	1.22 4.0	P 086 ± .034	4.73 ± .03	22.1 4 .1	410. 4 ISS.	.026 ± .026	QN	
2-15	01 02-75	E00. 4 100.	0. 1.06 1.0	210. ± 800. S	3.00 ± .02	16.1 ± .1	510. ¥ 171.	.024 ± 230.	(NI)	
01-03-75	01 [,] 19	QN	1.05 ± .0	01 . 026 4 .010	20. + 01.2	14.2 4 .1	.124 ± .012	.041 4 .026	N()	
61 · H	15 10	(N	2.25 4 .6	110. 4 E20. E	1 4.22 ± .03	J2.0 ₄ .l	.344 4 .024	.15. 073	91	
16 10	02-16	(HI	3. 4 41.6	ON LI	3.20 + .40	J. ± 8.9E	čl0. * 2/6.	ND	ÎN	
)2 - 16	01-03	MD	2.32 4.0	CN VO	2.15 ± .34	30.1 ± .1	.307 4 .015	£00. ± 9/0.	(IN	
EN EI	03 17	Ð	3. 4 06.6	UN EI	2.28 4 .25	42.2 ± .1	.420 + .016	<.U5	0. ¥ 040.	90
11-11	U1-01	QN	4.00 4.0	ON SI	1.60 ± .18	40.3 €.04	.400 4 001.	د.06	0. 4 830.	30
10 10	61 M	\$100°	4.02 4.0	011 E	1.35 + .17	38.4 + .1	110. 4 201.	×.0/	ç . 05	•
M 15	05-01	500. ± 100.	3.461.6	C ND	200. 4 008.	32.2 4 .1	MO. 1 018.		0. + 260.	2

ND - Not Detectable

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1961

.

-

	141 _{Ce}	26,000	7,490	3,740	2,050
³ м 3	140 _{Ba}	19,800	7,130	2,650	1,300
DPM/10	103 _{R u}	12,500	7,770	4,340	2,670
	95 _{Zr Nb}	26,100	5,390	8,900	3,390
	0ff	11-15	11-21	12-15	1-2
Date	uO	11-8	11-15	12-1	12-15

-

Radionuclide Cgncentratigns in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1962

	24 _{Sb}										•	1 2.0	- - 33
	$\begin{bmatrix} \\ \\ \\ \end{bmatrix}$	_	~		_	~	~	•	_		~	13.8	3.28
	106 _{Ru}	727 ± 14	1,290 ± 30	406 ± 8	1,510 ± 3(883 ± 17	1,200 ± 20	51 - 516	470 ± 10	730 ± 15	400 ± 10	370 ± 7	2.86 👲 7
	103 _{Ru}	5,810	a	1,590	1,810	1,160	974	521	584	3,030	5,110	2,930	1,800
					.32	.10	.10	н.		.12	п.	.21	.24
	88	0	Q	0	3.24 ±	÷ 95.	+ 06.	÷ 59.	Ö	- 69.	.48 <u>+</u>	1 16.	-24 ±
0M/10 ³ H ³	95 _{Zr Nb}	·10,100 ± 600	12,300 ± 600	3,030 ± 150	2,100 ± 110	4,030 ± 200	3,990 ± 200	2,940 ± 150	1,550 + 80	3,460 ± 170	2,490 ± 120	3,380 ± 170	3,170 ± 160
	65 _{Zn}	ſŇ	ON	7.80	ON	23.4	7.27	18.2	QN	73.8	9.10	ON	.25
	60 _{C0}	12. ± 66.	2.94 ± .64	120. ± 266.	.925 ± .022	.530 ± .021	.667 ± .022	.611 1 .022	4.77 ± .02	.703 ± .024	.374 + .018	.459 ± .021	.339 ± .020
	54 _{Mn}	66.0 ± 2.4	60 ± 12	25.5 ± 4.0	124	47.7	81.6	0.11	53.0	98.9	44.5	57.9	42.7
	-	.021	60.	EF.	.024	.015	.026	.021	.014	.025	600.	110.	00)
	22 _N	420 +	1.21 ±	- 04	+ 114.	. + EIE.	. 558 ±	406 +	.266 ±	448 +	.173 ± .	.207 ±	.140 +
te	0ff	1-31	2-5	3-5	5-1	1 -9	1-1	8-1	1E -8	9-28	10-31	11-29	12-29
Da	ч	12-29	2-2	3-2	4-6	5-1	6-1	1-1	8-1	b -0	10-1	10-31	06-11

ND = Not Detectable D = Decayed Away Before Analysis

•

(contd)
1962
Washington,
Ríchland,

	241 Am				.052 + 0.21	.044 + .016	-029 + -015	 					
	239 _{Pu}	1.14 + .12	1.00 + .10	.920 + .089		11.05 + .11		1.07 + .11	.639 + .064	.864 + .086	-293 + .059	.461 + .046	.349 ± .035
	238 _{Pu}	.023 + .011	ł										
	155 _{Eu}	157 + 60				136 ± 5	t						
DPM/10 ³ M ³	144 _{Ce}	1,890 ± 250	3,190 ± 740	440 + 170	3,040 + 130	1,540 ± 50	2,080 + 120	$1,520 \pm 100$	725 + 5	1,290 5 6.5	700 + 52	705 + 46	16 ± 089
	141 _{Ce}	4,290	0	938	1,070	818	1,070	804	133	2,870	4,030	2,400	1,310
	140 _{Ba}	1,070	0	a	a	٩	0	451	1,000	5,180	10,300	4,470	1,450
	137 _{Cs}	96.4 ± 1.0	150 ± 2	51.9 + 1.0	156	138	160	131	63.9	1.76	45.6	51.2	36.4
	134 _{CS}	.24 ± .18	.87 ± .65	.08 ± .16	.63 + .12	.321 ± .051	.41 + .12	11. ± 8 E.	.201 ± .039	.60 + .15	.332 + .065	.342 ± .056	.102 ± .029
	125 _{Sb}	91.5 ± 2.4	149 ± 11	52.6 ± 3.6	67.1	87.2	184	128	66.7	102	41.3	45.2	35.2
te	011	IE-I	2-5	3-5	5-1	6-1	1-1	8-1	B- 31	9-28	10-31	11-29	12-29
Da	on	12-29	2-2	3-2	4-6	2-1	6-1	l-1	8-1	9-4	10-1	10-31	06-11

ND = Not Detectable D = Decayed Away Before Analysis

.

.

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1963

.

DPH/10 ³ M ³	54 _{Mn} 60 _{Co} 65 _{Zn} 90 _{Sr} 95 _{Zr Nb} 88 _Y 103 _{Ru} 106 _{Ru} 110 _{nAg}	0 ± .3 2.05 ± .04 4.66 32.8 ± 1.5 5,510 ± 230 .724 ± .033 D 340 ± 9	9 + 1 2.19 <u>+</u> .05 28.3 15,400 <u>+</u> 700 1.42 <u>+</u> .07 0 1,140 <u>+</u> 20	3 <u>+</u> 1 11.4 <u>+</u> .1 9.57 88.3 <u>+</u> 4.5 6,640 <u>+</u> 330 .738 <u>+</u> .035 0 685 <u>+</u> 13	.9 .53 ± .03 ND 3,170 ± 190 .600 ± .030 D 500 ± 10	43 1.02 ± .02 1.29 173 ± 10 5,580 ± 230 1.21 ± .06 0 710 ± 15	63 . 88 ± .04 8.23 5,010 ± 250 .798 ± .040 D 690 ± 14	00 1.13 ± .02 5.12 134 ± 7 5,120 ± 260 .862 ± .043 D 094 ± 18 .100 ± .020	93 1.56 ± .03 4.52 6,180 ± 310 1.15 ± .06 0 1,170 ± 20 .057 ± .011	105 2.00 ± .04 12.3 187 ± 10 6,500 ± 330 1.70 ± .09 D 1,540 ± 30 .115 ± .023	00 3.78 ± .07 78.8 10,800 ± 500 3.50 ± .17 0 2,740 ± 60 .315 ± .062	25 1.49 ± .03 8.90 152 ± 7 3,520 ± 180 .985 ± .049 D 1,080 ± 20 .087 ± .018	17 2.07 ± .04 31.0 4,730 ± 240 1.69 ± .10 D 1,360 ± 30 .192 ± .036	27 1.93 ± .04 16.9 145 ± 7 3,710 ± 190 1.83 ± .09 D 1,300 ± 30 .244 ± .049	<i>11</i> 2.12 <u>+</u> .04 14.8 3,740 <u>+</u> 190 2.37 <u>+</u> .12 0 1,600 <u>+</u> 30 .266 <u>+</u> .054	20 1.85 <u>+</u> .04 29.9 58.3 <u>+</u> 3.2 3,260 <u>+</u> 160 2.73 <u>+</u> .14 0 1,490 <u>+</u> 30 .267 <u>+</u> .054	11.26 <u>+</u> 03 40.6 2,010 <u>+</u> 100 2.04 <u>+</u> .11 0 1,030 <u>+</u> 21 .197 <u>+</u> .039	89	73 2.73 ± .06 10.0 1,170 ± 59 1.61 ± .08 D 665 ± 13 .215 ± .043	31 1.35 ± .03 ND 72.4 ± 3.5 749 ± 38 1.56 ± .08 D 620 ± 12 .070 ± .014	.3 .357 ± .018 3.19 342 ± 18 .643 ± .033 0 290 ± 6	.1 .200 ± .025 ND 32.8 ± 1.7 226 ± 14 .597 ± .029 D 250 ± 5	.3 .403 ± .028 ND 326 ± 17 .626 ± .041 D 330 ± 7	.0 .220 ± .020 ND 17.7 ± .9 93 ± 10 .445 ± .023 D 195 ± 4	. 6 . 243 ± .009 ND 181 ± 11 .618 ± .032 D 215 + 5
	54 _{M1}	+1	+ 5	+1 m	6	5	63	00	66	185	8	25	[[]	27	11	20	84	68	73	IE	e.	.	~	0.	.6
		08 59.	118 17	11 11	18 600	123	116 1	125 2	141 2	949	6 6	38 J	49 4	6	7	4	144 2	129	127 1	32 1	11 65	12 61	11 77	10 34	10 52
	f ²² Na	·15 .153 ± .008 59.	11 810. + 18E. IE	·14 .367 ± .017 11	18 600. ± 5/1. 1	15 .427 ± .023 1	·1 .331 ± .016 1	16 .491 + .025 2	2 .802 ± .041 2	15 .982 ± .049 3	31 1.94 ± .09 9	14 . 752 ± .038 3	2 .982 ± .049 4	16 1.20 ± .06 4	30 1.39 ± .07 	16 1.39 ± .07 4	30 . 872 ± .044 2	18 .579 ± .029 1	1 .537 ± .027 1	18 .632 ± .032 1	1 .205 ± .011 65	18 .227 ± .012 61	27 .218 ± .011 77	13 .203 ± .010 34	30 .198 ± .010 52

ND = Not Detectable D = Decayed Away Before Analysis

•

•

=

(contd)
1963
Washington
R i ch l and,

-

	24] _{An}							.15 ± .03	.35 ± .04	26 ± .04															
	239 _{Pu}	.573		.475		.492		.468	·	1.37		.810		1.03		.636		.707		.335		.224		.116	
	155 _{Eu}							66.8 ± 5.4		124 ± 10		93.3 + 6.9		128 ± 10		131 + 11		1 - 56		50 ± 1		47 ± 1		28 ± 1	
I	144 _{Ce}	795 ± 40	2,460 ± 60	1.360 ± 50	964 ± 52	1,600 ± 50	1,610 ± 50	1,970 ± 50	2,580 ± 60	3,180 ± 70	5,720 ± 90	2,100 ± 60	2,750 ± 60	2,140 ± 50	3,040 ± 60	300 + 60	1,980 ± 50	1,430 ± 30	978 ± 35	1,190 ± 30	563 + 55	452 ± 20	576 ± 29	323 ± 26	346 ± 25
E ^{ME}	141 Ce	a	a	٥	D	0	a	a	a	a	Q	a	a	0	a	a	đ	a	O	O	0	a	a	a	9
DF/M90	140 _{8a}	a	Q	a	Q	D	O	٥	a	Q	a	D	0	G	, 0	a	q	D	a	٩	D	a	D	0	a
	5) ^{CS}	52.7 ± .3	156 ± 1	92.2 ± .3	61.1	109	105	181	179	231	473	177	261	212	244	246	178	3EI	137	106	57.2	12.1	76.6	36.4	60:0
	134 _{Cs}	46 ± .057	870. <u>±</u> 63	21 ± .057	66 <u>+</u> .062	890. + €6	650. ± 20	14 ± .066	24 ± .077	60 ± .10	53 ± .13	52 <u>+</u> .09	74 ± .16	60. 1 .09	01. <u>+</u> 10	60. <u>+</u> E0	070. ± 11	43 ± .063	64 <u>+</u> .064	090. ± 30	05 <u>+</u> .046	090. ± 65	14 ± .064	05 ± .057	B6 <u>±</u> .053
	125 _{Sb}	47 ± 1 .3	153 ± 1	205 ± 1 .3	60 .1	102 .2	103 .2	114 .3	1.89 .4	225	434 1.	180	. 192	228 .6	243 .7	253 1.	120 .4	139 .5	160 .3	32.5 .4	32.3 .2	7. 6.0	37.2 .3	. 6.9	5.8 .2
	124 _{Sb}	2.40 ± .12	14.1 ± .7	7.13 ± .36	2.61 ± .13	7.10 ± .36	4.77 ± .24	5.62 ± .28	5.62 ± .28	5.12 1 .26	14.9 ± .8	4.41 ± .22	5.90 ± .29	4.84 ± .24	6.53 ± .32	5.97 ± .29	3.88 ± .19	3.50 ± .18	2.97 ± .15	3.43 ± .17 5	1.06 ± .05 5	1.17 ± .06	1.84 ± .09 5	1.20 ± .06 2	1.34 ± .07 \$
بە	Off	1-15	1-31	2-14	1- I	3-15	4-1	4-16	5-2	5-15	1E-3	6-14	7-2	7-16	7-30	8-16	8-30	9-18	10-1	10-18	11-1	11-18	11-27	12-13	12-30
Dat	9	12-31	1-15	16-1	2-15	3-1	3-15	4-1	4-16	5-2	5-15	5-31	6-14	7-2	7-16	7-30	8-16	8-30	9-18	10-1	10-18	11-11	11-18	12-6	12-20

.

ND = Not Detectable D = Decayed Away Before Analysis

•

1

at Richland	
Air	
Surface In 1964	
5 in 7.41	
21 .N. 11901	
nuclide C8 ngton (46	
Radio Washi	

	35 _{Zr Nb}	14 + 6	87 + 4	- 	- 58 + 8	13 + 6	54 + 8	- 15 + 6	39 + 7	- 51 + 8	21 + 11	.4 + 4.2		- 9 ± 3.9				.2 + 1.3	. 7 + .4	5.		7 + 1.4	9 + 8	+ + -	.0 + 1.6
	90 _{Sr}	1 6. + 0.71	1	44.1 + 2.2 2	-	1	47.7 + 2.4 1	54.7 ± 2.8 1	-	B1.2 + 4.1 1	2	57.1 ± 3.4 84	51.1 + 1.8 87	19.4 + .8 68	5.0 + .8 38		11.7 ± .4 26	14.6 ± .9 26	8.1 + .5 8	4.8 + .3 10	5.7 + .5 26	7.5 + .3 28	0.7 + .4 17	7.2 + .4 7	0.2 1.6 33
	65 _{Zn}							_,		10.5 ± 2.1	25.2 ± 5.0	J	Ţ	9.4 + 1.9	27.1 + 5.4	4.2 ± .8 2	11.3 ± 8.2 3	102 ± 10 3	9.7 ± 6.0 1	2.6 + 2.3 1	8.1 + 8.1 1	1 680. + 068	-		.10 ± .11 2
М3	60 _{C0}	.417 ± .022	171 ± .024	480 ± .029	1.37 ± .03	.340 + .027	.519 ± .021	-910. <u>+</u> 196.	.713 ± .024	.026 + .026	4.80 ± .10	.724 ± .024	.932 ± .028	.770 ± .025	.569 ± .022	307 ± .026	593 ± .022	.724 ± .024	261 ± .025 £	540 + .021 2	427 + .029	288 ± .026 .	160 + .024	611 + .022	255 ± .026 1
DPM/10 ³	55 _{fe}		_				·	,	•				252	251	130	109	170 .	122 .	80.9	38.5 .	49.8 .	24.6 .	29.7	110 .	18.6 .
	54 _{Mn}	28.0 ± .1	30.6 ± .2	76.6 ± .3	65.0	47.0	9.69	57.6	11.3	120	181	57.9	11.3	75.6	57.9	32.0	38.8	35.1	16.6	14.4	13.6	6.46	6.92	6.62	5.72
	46 _{SC}										160. ± 280.	`						302 ± .030	167 ± .017	160 ± .016	370 ± .033	221 ± .022	155 <u>+</u> .016	073 ± .017	205 ± .029
	22 _{Na}	.121 ± .006	.142 ± .007	.1339 <u>+</u> 007	.335 ± .017	.255 ± .013	.410 ± .021	.459 ± .023	.494 ± .025	.685 ± .035	1.21 ± .06	.575 ± .029	.586 ± .029	.452 ± .023	.374 ± .018	.250 ± .013	.272 ± .014	. 244 ± .013 .	. 109 ± .006 .	. 137 ± .007 .	. 157 ± .008 .	. 200. ± £70.	. 001 ± 1005	.072 ± .005 .	. 005 ± .005
	7 _{Be}	153 ± 1	1 7 66	223 ± 1	168	134	211	124	215	256	308	186	221	226	226	137	182	228	130	158	136	. (9	87	127 .	99
le	Off	1-16	1-29	2-12	2-25	3-16	4-2	4-15	4-30	5-15	6-1	6-16	6-30	7-15	7-30	8-15	8-31	9-15	0 E -6	10-15	11-11	91-11	06-11	12-6	12-31
Da	0"	12-30	1-16	1-31	2-12	2-25	3-16	4-2	4-15	4-30	5-15	1-9	6-16	6-30	7-15	7-30	8-15	8-31	9-15	9-30	10-15	11-1	11-16	11-30	12-16

·

ND = Hot Detectable D = Decayed Amay Before Amalysis

	140 _{8a}										.519		. 865	1.60			.463 ± .011	.950 ± .027	.562 ± .017	.886 ± .024	114 + 3	37.1 ± 1.1	12.4 ± .3	61. ± 09.9	4.03 ± .12
	137 _{Cs}	30.7 ± .1	36.0 <u>+</u> .2	92.5 <u>+</u> .3	75.6	55.4	93.2	79.5	115	175	264	123	611	120	95.3	56.5	66.4	60.7	33.1	31.3	33.8	34.2	26.0	15.5	49.1
	134 _{CS}	.191 ± .049	.152 ± .085	.357 ± .047	.300 ± .042	.085 ± .039	.466 ± .042	.222 ± .042	.328 ± .043	.178 ± .048	.463 ± .047	.258 ± .047	740. 1 EE3.	.261 ± .039	.290 ± .017	.675 ± .040	.162 ± .046	EEO. ± 17E.	.201 ± .026	.346 ± .041	.368 ± .051	1.30 ± .08	.664 ± .056	.098 ± .021	<i>1</i> .91 <u>+</u> 10.1
1	125 _{Sb}	24.0 ± .3	30.2 ± .3	81.9 ± .5	62.9	46.6	73.1	62.9	86.5	153	249	162	109	118	91.5	56.5	62.2	0.62	26.9	71.7	28.9	13.3	13.1	11.8	12.5
DPM/10 ³ M ³	124 _{Sb}	1.02 ± .17	.92 ± .19	2.56 ± .26	2.37 ± .22	2.15 ± .18	3.40 ± .24	2.29 ± .17	3.85 ± .20	4.38 ± .17	6.32 ± .18	3.32 ± .16	1.41 ± .10	2.05 ± .14	1.52 ± .13	.706 ± .071	.812 ± .081	.522 ± .060	.208 ± .038	860, ± 673.	273 ± .045	QN	ND	030 ÷ 030	.079 <u>+</u> .045
	106 _{Ru}	150 ± 3	157 ± 3	392 - 8	311 ± 6	267 ± 5	468 ± 8	328 ± 8	523 ± 10	639 ± 12	1,020 ± 20	484 ± 10	452 ± 9	399 + 8	9 - EOE	166 ± 3	188 ± 4	148 ± 3	71.0 ± 1.4	69.6 ± 1.4	66.0 ± 1.3	46.6 <u>+</u> .9	55.1 ± 1.1	46.3 ± .9	45.6 ± .9
	103 _{Ru}																			43.4 ± 4.3	28.9 ± 2.9	20.6 ± 2.1			
	110mAg										.52 ± .11														
		.308 ± .016	.329 ± .017	.897 ± .045	. 706 ± .035	.569 ± .028	.893 ± .045	.848 ± .643	1.21 ± .06	1.44 ± .07	1.85 ± .09	1.16 ± .06	1.07 ± .05	.901 ± .045	.717 ± .036	.392 ± .020	.388 ± .019	.353 ± .018	.148 ± .008	.126 ± .006	.109 ± .005	.048 ± .005	.052 ± .005	.031 ± .005	500. ± 200.
4	0LF	1-16	1-29	2-12	2-25	3-16	4-2	4-15	4-30	5-15	6-1	6-16	6-30	7-15	7-30	8-15	8-31	9-15	0 6-30	10-15	11-11	11-16	11-30	12-6	12-31
ľ	On	12-30	1-16	1-31	2-12	2-25	3-16	4-2	4-15	4-30	5-15	6-1	6-16	6-30	7-15	7-30	8-15	8-31	9-15	9-30	10-15	11-1	11-16	11-30	12-16

•

.

Richland, Washington, 1964 (contd)

ND = Not Detectable D = Decayed Away Before Analysis

•

mtd)	24 1 Au				.10 + .03	€0. <u>+</u> 61. 07 + .02	1												
ton 1964 (c.	239 _{Pu}	.143	926.	.238	.340	067.		.363			.67 ± .02		.4b0 <u>+</u> .014	.480 + .027		210. + 261.		.281 ± .054	
land, Washing	/10 ³ M ³ 238 _{Pu}									100. T 610.	100. + 110.		200. <u>+</u> 100.	100. ± 100.		.001 ± .002		100. ± 100.	
R R	232 IN					260. + 660.	.357 ± .036	160. ± 611.	.111 <u>+</u> .032	.158 ± .028	.074 ± .031	.00. ± 700.	.155 + .077	.162 + .079	.0/2 i .061			990. + 160.	
	155 _{Éu}	1 - 12	1 - 09	67 ± 1	89 ± 2		199 ± 2		5 - 55	81 + 1		50 ± 1	32 + 1	1			2 ± 1		7 ± 1
	141 _{Ce}	248 ± 14 250 + 16	636 + 26 5/6 ± 24	441 ± 17 664 ± 22	600 ± 23	037 ± 750 1,050 + 30	1,510 ± 30	850 ± 26	752 ± 24 609 ± 23	530 ± 22	292 + 14	360 ± 16	c1 - 000 01 + 861	118 ± 10	144 + 10	01 + 10	70.6 ± 3.7	75.6 ± 8.2	75.9 1 9.4
	off	1-16 1-29	2-12 2-25	3-16 A-2	4-15	4-30 5-15	[-]	6-16	6-30 7-15	7-30	8-15	8-31	6-30 0	10-15	1-11	11-16	11-30	12-6	12-31
	0 0	12-30 1-16	1-31 2-12	2-25 3-16	4-2	4-15 4-30	5-15	l-9	01-9 91-9	7-15	7-30	8-15	9-15 9-15	9-30	10-15	1-11	11-16	11-30	12-16

•

.

ND = Not Detectable D = Decayed Away Before Analysis

ecayed Away before Analysis

ND = Not Detectable D = Decayed Away Before Analysis

Da	te		E			Entiment				
On	Off	7 _{Be}	22 _{Na}	46 _{Sc}	54 _{Mn}	55 _{Fe}	60 _{C0}	65 _{Zn}	90 _{Sr}	88 _Y
1-31	1-15	67	.005 + .005	.544 ± .007	6.20	25.8 ± 2.6	2.01 + .04	12.6	12.8 ± .4	.032 + .005
I-15	2-I	16	E00. ± 1E0.	.290 ± .015	2.57	43.4	3.19 ± .06	1.39	4.69 ± .20	·00. + 100.
2-1	2-15	101	.108 ± .006	.766 ± .023	11.1	273	4.56 ± .09	6.46	15.8 ± .4	.064 ± .005
2-15	3-2	145	.138 ± .007	.148 ± .011	13.2	127	.255 ± .026	QN	15.4 ± .7	.072 ± .005
3-2	3-18	252	.260 ± .013	.614 <u>+</u> .023	26.2	159	4.06 ± .08	1.77	33.4 <u>+</u> .5	135 ± .007
3-18	4-2	248	.228 ± .011	.275 ± .013	20.5	107	.752 ± .025	.62	31.1 ± .2	.005 ÷ 300.
4-2	4-16	205	.218 ± .011	.204 ± .013	18.1	84	.719 ± .024	.82	24.6 ± .2	500° + 860°
4-16	4-30	173	.229 ± .012	.230 ± .039	18.4	102	1.32 ± .03	1.56	29.5 ± .5	.081 ± .005
4-30	5-17	295	.253 ± .013	.126 ± .035	22.1	150	.540 ± .011	1.51	31.1 ± .2	500° + 660°
5-17	5-30	200	.236 ± .012	.278 ± .039	19.7	116	1.53 ± .03	1.43	32.4 ± .2	.003 ± .005
5-30	6-15	212	310. ± 10E.	.120 ± .024	23.8	149	.586 ± .022	3.92	44.8 ± .5	500. + 660.
6-15	6-30	143	.152 ± .008	139 ± 027	13.1	53.3	.487 ± .021	6.71	22.2 ± .2	.045 ± .005
6-30	7-16	115	.135 <u>+</u> .007	.117 ± .023	10.9	121	.632 ± .023	14.2	27.5 ± .3	.017 ± .005
7-16	7-29	221	.122 ± .007	.072 ± .021	9.64	69.6	.343 ± .027	8.37	21.0 ± .2	.030 ± .005
1-29	8-16	227	.105 ± .005	.161 ± .020	8.33	75.9	.244 ± .025	6.39	15.2 ± .2	200. <u>+</u> 160.
8-16	8-30	167	.066 ± .006	120. ± 1/0.	4.80		.261 ± .025	13.6	9.40 ± .13	.014 ± .005
8-30	9-11	159	.049 ± .005	.075 ± .022	2.11	29.4	.252 ± .025	18.0	9.65 ± .11	200. ± 800.
9-11	9-22	146	.000. + EVO.	.238 ± .024	4.38	27.1	.185 ± .024	26.3	9.49 ± .15	.016 ± .005
9-22	9-30	164	.005 + 120.	.088 ± .021	3.57	38.8	.227 ± .024	12.1	4.91 ± .23	.011 + .005
10-1	10-15	149	.065 ± .006	.221 ± .015	3.57	26.0	.199 ± .024	12.7	10.7 ± .4	.007 ± .005
10-15	1-11	199	.036 ± .005	elo. ± elt.	2.14	33.7	.163 ± .029	9.04	6.07 <u>+</u> .12	500. + 900.
1-11	11-12	16	.026 ± .005	.545 ± .017	1.43	22.1	.614 ± .022	7.38	5.50 ± .12	.004 ± .005
11-12	11-28	119	.000 ÷ 005	.153 ± .009	2.14	13.0	.918 ± .028	1.51	5.27 + .12	500. ± E00.
11-28	12-10	110	.000 ÷ 1005	.625 ± .019	1.06	7.8 ± 1.1	.413 ± .028	3.60	4.55 ± .10	.005 ± 005
12-10	12-20	101	.025 ± .005	.473 ± .016	1.17	14.3	.055 ± .024	.66	4.52 ± .11	200. ± 200.
12-20	12-26	2	.021 ± .005	.231 <u>+</u> .013	1.22	5.9 ± 1.0	.060 ± .024	.63	3.57 ± .10	500° + 100.

.

.

13

Radionuclide Cgncentratigns in Surface Air at Richland, Washington (46⁻21'N, 119⁻17'W) in 1965

(contd)
1965
Washington,
Richland,

.

Ŋ

•

.

	Ba	.10	.10	. 10	.03	.03	.08	.03	н.	.03	1.4	4	e E	6.	.19	.40	. 24	. 28	0	.04	27	5	.15	.05	.21		.13
	140	3.57 ±	3.35 1	1.79.4	1.00 1	÷ 26.	2.56 ±	+ 66.	3.64 ±	1.18 ±	45.6 ±	122 ±	+ 60I	29.6	6.57 ±	3.67 ±	÷ 87.	+ 66.	1.13 ±	1.24 ±	- 86.	16.1 ±	4.77 ±	1.75 ±	1.27 ±	3.67 ±	3.85 ±
	137 _{CS}	23.4	8.62	26.7	34.9	2.67	60.4	55.4	56.5	72.7	68.5	86.2	48.7	43.4	38.5	36.0	24.8	18.1	20.7	8.23	22.5	11.7	9.68	11.2	9.50	8.72	8.69
	CS	.036	. 032	. 048	.048	.016	.014	010.	.012	.012	. 015	.020	.013	.008	600.	.007	.007	.007	600.	. 016	.012	.007	.010	.006	.008	.007	.00
	134	· 360 į	.221	.176 ±	171.	420 4	.140 -	· 611.	.280 1	.165 -	159 -	.257 +	170 -	. 198	.156 1	.158 -	129	· 960.	.115 1	.273	.445 ±	.136 <u>-</u>	F 61.	074	F \$60°	· 066 1	· 050 ·
	125 _{Sb}	12.0	4.7	21.6	27.9	59.7	49.4	96.4	42.4	50.5	50.9	70.6	48.9	40.3	23.8	23.2	13.7	11.2	13.2	12.0	18.0	7.5	4.4	5.4	5.7	3.8	4.4
M3	Sb	Q	t .047	± .056	10	± .042	± .025	Ξ.	£ .028	£ .033	£ .038	Æ.	. 041	101. T	÷ .033	± .038	1. 027	100. 4	1.082	.027	± .028	÷ .038	160. 1	± .029	.027	± .025	160. 1
DPM/10	12,	-	.068	.102	-	.114	.129	- 22	160.	990.	.186	004	410	.168	.127 ±	.016	C10.	.023	.050	- 015	.016	910.	.220 ±	.017	.024	010.	.021
	on Ag	± .044	QN	QN	MD	± .024	± .018	± .020	± .021	± .015	± .022	÷ .069	± .068	£ .043	± .026	± .032	1.027	± .029	1.047	· .037	± .038	÷ .033	£ .039	± .032	± .047	160. 1	± .034
	=	.221				.120	680.	.102	901	.07	.108	.117	.106	.044	.022	.015	.026	.012	.025	038	.038	.048	.062	.045	.056	660.	.048
	06 _{R u}	6. +i	+ 	± 1.2	+ 1.4	ლ +i	7 + 7	1 2	1 2	er +i	1 2	ر 1+	<u>+</u> 1.7	1.2	1 .1 ±	<u>± 1.0</u>	9. +	; +	<u>+</u> 1.1	•• ••	₽. +!	<u>±</u> 1.2	₽. +!	۳. +۱	9. +	۳. + i	1 .2
	-	47.3	14.0	54.7	70.6	141	109	104	109	125	121	151	80.5	61.8	51.9	49.8	29.4	23.7	56.2	27.J	20.8	51.6	19.0	14.7	28.3	15.1	8.0
	103 _{Ru}											83.3	133	74.6													
	r Nb	<u>+</u> .27	1 .65	± .15	<u>±</u> 2.1	±.29	1 .20	±.25	± .29	<u>+</u> .16	<u>+</u> 3.3	+ 20	<u>+</u> 16	± 2.9	s. +	Ŧ .33	<u>+</u> .26	11. 1	1 .13	±.24	1 . <u>+</u>	<u>+</u> .14	50. <u>+</u>	. -05	14. 1	H. ±	6. +
	95 I	5.30	1.30	2.95	42.4	5.76	4.13	5.01	5.29	3.08	65.3	396	322	58.6	10.8	6.46	5.23	3.44	2.51	5.79	3.71	2.69	.98	₽6.	8.09	2.05	17.8
te	Off	1-15	2-1	2-15	3-2	3-18	4-2	4-16	4-30	5-17	5-30	6-15	0E - 9	7-16	7-29	8-16	8-30	11-6	9-22	9-30	10-15	1-11	11-12	11-28	12-10	12-20	12-26
Da	0u	12-31	1-15	2-1	2-15	3-2	3-18	4-2	4-16	4-30	5-17	5-30	6-15	6-30	7-16	1-29	8-16	0-30	9-11	9-22	10-1	10-15	11-1	11-12	11-28	12-10	12-20

,

.

ND = Not Detectable D = Decayed Away Before Analysis

Richland, Washington, 1965 (contd)

•

.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155 _{Eu}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.216
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.069
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.083
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.084
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.123
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.164
.051 .0004 ± .0006 .155 ± .005 .037 .011 .001 ± .001 .011 .001 ± .001 .069 ± .004 .010 .082 ± .004 .013 .013 .017 .017	. 165 .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.072
011 -010 -013 -017	.029
.010 .082 <u>-</u> .004 .013 .017	10.
.013	.020
.017	.027
	· 035 -

.

ND = Not Detectable D = Decayed Away Before Analysis

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1966

7

0n Da	le Off	η_{Be}	22 _{Na}	46 _{Sc}		54 _{Mn}	0PM/10 ³ M ³ 55 _{Fe}	60 _{C0}	65 _{2n}	90.Sr	88
	1 10	00 1	0.0E + 0.0E	263.4		LOO - 210				5	-
					000 .	100 ÷ 20 ;		PSU. <u>+</u> 201.	IN. <u>+</u> 24.	11. <u>+</u> 68.6	500. <u>+</u> 100.
			con. + 080.	+ 76/	en.	2n. ± 12.1	23.0 ± 2.3	.//0 ± .026	2.03 ± .03	9.99 <u>+</u> .12	$\frac{1}{2}$.003 $\frac{1}{2}$.005
0	2-10	1 7 101	.032 ± .005	+ 464.	.012	1.80 ± .01	4.9 ± .9	.813 ± .024	1.24 ± .02	8.09 ± .13	.002 ± .005
0	3-4	119	500° + 6E0.	· 388 + .	600.	1.38	26.6	1.06 ± .02	4.59	9.15 ± .11	.003 ± .005
	3-17	150	.007 ± .007	- 388 -	110.	2.19	24.5	1.27 ± .02	3.11	EL. ± 10.7	.002 + .005
~	4-1	249	.102 ± .007	424 +	600.	3.14	32.9	1.02 ± .02	4.52	25.6 ± .2	.006 + .005
	4-15	217	.009 + .009	.328 ± .	600.	4.84	39°6	2.40 ± .05	3.78	17.2 ± .1	.005 + .005
G	4-28	160	600. + 660.	· + 090.	900.	4.31	27.0	.24 ± .03	3.07	16.1 ± .2	004 + 005
8	5-10	191	010. ± 601.	. 1 11E.	600 .	4.27	28.9	2.57 ± .05	12.4	23.9 ± .2	.005 + .005
0	5-13	264	.010. ± 200.	• 036 ± .	620.	4.98	37.4	3.25 ± .07	8.02	13.8 ± .3	.003 + .005
~	l-9	234	.088 ± .009	.134 ± .	.008	4.38	26.0	.27 ± .03	11.6	16.4 ± .1	.034 + .005
	91-9	183	.078 ± .008	• 046 ±	Ю0.	3.81	82.6	4.38 ± .09	23.4	12.6 ± .1	·019 + .005
	1-1	166	.064 ± .006	.120 ± .	900.	3.00	29.9	1.83 ± .04	7.17	1. + 9.6	.011 ± .005
	7-14	298	.008 ± .008	. 1090.	10.	2.30	1.1 ± 6.7	1.06 ± .02	22.4	13.8 ± .1	.007 + .005
-	7-25	238	.078 ± .008	. 12	.007	2.75	20.7	.261 ± .025	5.83	11.3 <u>+</u> .3	.007 + .005
	8-16	100	.046 ± .005	· - 090 ·	60	2.72	13.5	$.099 \pm .024$	1.70	5.76 ± .24	.004 + .005
~	8-29	213	200. ± 1E0.	. + 290.	.005	1.52	44.5	.456 ± .029	4.41	4.52 ± .07	.002 + .005
_	9-16	221	.021 ± .005	.106 ± .	.005	1.02	8.1 ± 1.2	.155 ± .024	8.61	4.40 ± .09	.001 + .005
	10-3	199	.042 ± .005	. + 009.	610	.742	46.9	7.52 ± .19	27.2	6.81 ± .11	.001 + .005
	61-0I	110	$.010 \pm .005$	• 7090 •	600	.494	87.2	.159 ± .025	16.1	3.83 ± .09	$.002 \pm .005$
~	10-27	127	.020 ± .005	.078 ± .	008	.297	5.7 ± 1.0	.067 ± .023	3.00	4.87 + .49	.001 + .005
~	11-3	148	.017 ± .005	.424 + .	016	.953	15.9	1.17 ± .02	8.51	3.98 + .10	.001 + .005
	11-15	169	ND	.420 ± .	007	.803	8.4 ± 1.2	.053 + .023	7.88	3.50 + .09	.005 + .005
	11-30	50	800. 1 110.	. 1 553 ± .	008	.812	6.4 ± 1.1	194 + .024	2.65	4.41 + .08	.002 + .005
_	12-14	66	.010 1 .005	. 187 ± .	005	.307	2.9 ± .8	.067 ± .023	1.17	1.86 + .04	- 001 + .005
	12-25	159	500 [.] - 610 [.]	· - 063.	002	.353	6.4 ± 1.0	.008 ± .023	1.09	3.36 ± .07	.001 ± .005

ND = Not Detectable D = Decayed Away Before Analysis

Richland, Washington, 1966 (contd)

.

	OBA	+ 004		90	+ .24	- 05	8	• 0•	.018	. 34	2.4	1.9	1.5	8.	s.	.	08	019	-04	.03	.014	.023	.27	6.2	1.3		.13
	¥.	042		2.58	7.42	1.62	1.27	1.34	. 565 4	1.09	7.5 4	60.7	44.7 +	25.9 +	18.1 +	10.0 +	2.51 +	.636 +	1.17 +	1.09 +	424 +	+ 111.	8.76 +	18.4 +	43.7 +	11.3 +	
	137 _{Cs}	.62 + .01	0.6 + .1	6.1 + .1	<u>-</u>	9.6	0.5	1.0	0.6	2.3	6.9	2.5	3.0	0.7	1.7	9.7	1.8	1.5	1.5	3.2	49	69	.84	16	64	53	90
	134 _{CS}	064 + .002 8	222 + .005 2	342 + .005	215 + .003 1	1 100. + 100	261 ± .005 5	152 ± .005 3	NO 1 1 100	311 ± .006 5	071 ± .007 20	184 ± .004 33	117 ± .003 2:	053 ± .002 20	092 ± .005 24	085 ± .004 19	046 ± .002 11	064 ± .003 11	11 EOO. + PE.	173 ± .005 13	078 ± .004 7.	349 <u>+</u> .004 5.	208 ± .007 7.	117 ± .004 7.	113 ± .004 9.)64 <u>+</u> .003 3.	.38 <u>+</u> .01 6.
	125 _{Sb}	4.03 + .02	6.50 ± .05	5.01 ± .03	7.41 +	11.2	39.8	56.7 .	18.8 .	25.9	n.4 .	44.6	10.9	п.7 .	10.1	10.7	12.7	4.13	3.85 1	12.1	4.77	11.3	15.1	42.5	17.2 .1	85.8 .(2.37 1.
DPM/10 ³ M ³	124 _{Sb}	.002 ÷ .024	QN	Q	.004 ± .022	138 ± .044	.183 ± .048	.283 ± .098	.012 ± .026	.035 ± .029	.002 ± .032	180. ± 116.	.034 ± .038	.015 ± .008	.012 ± .026	.026 ± .027	.001 ± .021	.006 <u>+</u> .022	.064 ± .043	(IN	QN	.070 ± .047	.074 ± .058	.201 ± .020	.049 ± .038	.007 ± .027	.010 ± .037
	110mAg	.049 ± .035	100. ± 880.	.057 ± .038	100. ± 630.	.060 ± .049	ACO. ± 170.	160. ± 960.	051 ± 049	160. ± 280.	.046 ± .044	.032 ± .040	6M0. ± 000.	.021 ± .048	.028 ± .038	.022 ± .028	.018 ± .025	.012 ± .021	.022 ± .025	.102 ± .048	160, ± 660.	.046 1 .039	.106 ± .041	.071 ± .061	.053 ± .041	.049 ± .031	.064 1 .055
	106 _{R11}	9.8 ± .2	63.1 ± .3	75.5 ± .3	14.0 ± .3	62.7 ± 1.3	41.6 ± .8	40.0 ± .8	29.1 ± .6	35.5 ± .7	24.5 ± .5	28.6 ± .6	22.4 <u>+</u> .5	21.2 ± .4	26.2 ± .5	25.5 ± .5	15.9 <u>+</u> .3	9.2 ± .2	10.1 ± .2	51.7 ± 1.1	51.0 ± 1.1	30.0 ± .6	42.3 ± .8	27.0 ± .5	6.6 <u>+</u> .1	1.10.3	15.3 ± .3
	103 _{Ru}	5.30 ± .07	24.7 ± .2	3.88 ± .05	9.75	18.9	9.61	12.6	10.3	34.2	٩	14.4	31.6	38.1	32.7	20.4	22.1	6.43	3.71	28.6	1.1	12.8	17.8	68.9	33.6	9.92	2.97
والمتحديد والمحالي المحالي	95 _{2r Nb}	1.48 ± .08	2.47 ± .13	10.4 ± 5.1	3.45 ± .17	1.20 ± .06	1.38 ± .07	1E. ± 10.9	2.54 ± .13	5.69 ± .28	2.37 ± .12	2.43 ± .12	63.6 ± 3.2	63.4 ± 3.2	49.4 ± 2.5	29.9 ± 1.5	17.5 ± .9	9.46 ± .47	9.75 ± .49	10.9 ± .5	36.7 ± 3.7	4.87 ± .49	27.7 ± 2.8	95.4 ± 9.5	54.2 ± 5.4	20.1 ± 2.0	3.64 ± .36
ile	011	1-18	1-30	2-10	3-4	3-17	- +	4-15	4-28	5-10	5-13	6-1	6-16	1-1	7-14	7-25	8-16	8-29	91-6	10-3	61-01	10-27	11-3	sı-11	06-11	12-14	12-25
Ö	on	12-21	1-18	I-30	2-10	9-4	3-17	4-1	4-15	4-28	5-10	5-13	6-1	6-16	1-1	7-14	7-25	8-17	8-29	9-16	10-3	61-01	10-27	- 11 - 3	11-15	06-11	12-15

ND = Not Detectable D = Decayed Amay Before Analysis

•

(contd)	
1966	
Washington,	DPM/103m3
R I ch I and,	

$7 \pm .2$ $0.34 \pm .019$ $0.64 \pm .036$ $0.01 \pm .001$ $0.03 \pm .003$ 1.01 $0.01 \pm .001$ $0.03 \pm .003$ $0.01 \pm .001$ $0.03 \pm .003$ $0.01 \pm .001$ $0.01 \pm .003$	te 141 ₆	MIC		144 _{6 a}	155 ₆	726n .	PM/10 ³ M ³ 232.1	230	239.	241
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			16		66	e y	E	nd	nd	W
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-10 10.2 ± .6	10.2 ± .6	10.2 + .6		2.7 ± .2	010. ± fEO.	.064 ± .036	100. ± 100.	.003 ± .003	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-30 14.6 ± 1.2 1	14.6 ± 1.2 1	14.6 ± 1.2 1	-	.7 ± .2	.057 ± .027	141. 141.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-10 32.5 <u>+</u> .9	32.5 ± .9	32.5 ± .9			120. ± 660.	.215 ± .092	100. ± 100.	200. ± 760.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-4 29.5 <u>+</u> .9 5.	29.5 ± .9 5.	29.5 <u>+</u> .9 5.	ů.	5 ± .2	.092 ± .043	.127 ± .065		ł	
$.148 \pm .074$ $.162 \pm .091$ $.061 \pm .001$ $.236 \pm .007$ $.07 \pm .02$ $3 \pm .2$ $.131 \pm .069$ $.247 \pm .099$ $.004 \pm .001$ $.236 \pm .007$ $.07 \pm .02$ $0 \pm .33$ $.289 \pm .098$ $.187 \pm .099$ $.001 \pm .001$ $.327 \pm .006$ $.034 \pm .015$ $0 \pm .33$ $.208 \pm .098$ $.181 \pm .069$ $.010 \pm .001$ $.327 \pm .006$ $.034 \pm .015$ $.113 \pm .058$ $.111 \pm .058$ $.111 \pm .052$ $.013 \pm .001$ $.255 \pm .006$ $.034 \pm .015$ $.113 \pm .053$ $.021 \pm .022$ $.013 \pm .022$ $.013 \pm .001$ $.265 \pm .006$ $.034 \pm .015$ $.067 \pm .031$ $.053 \pm .027$ $.016 \pm .003$ $.016 \pm .003$ $.206 \pm .003$ $.014 \pm .001$ $.127 \pm .061$ $.109 \pm .061$ $.011 \pm .058$ $.014 \pm .001$ $.014 \pm .001$ $.002 \pm .003$ $.145 \pm .071$ $.258 \pm .003$ $.014 \pm .001$ $.267 \pm .003$ $.002 \pm .003$ $.002 \pm .003$ $.127 \pm .032$ $.013 \pm .001$ $.007 \pm .001$ $.007 \pm .001$ $.007 \pm .002$ $.014 \pm .002$ $.127 \pm .026$ $.012 \pm .023$ $.011 \pm .023$ $.001 \pm .001$ $.002 \pm .003$ <	3-17 23.8 ± 1.1 12.	23.8 ± 1.1 12.	23.8 ± 1.1 12.	12.	0 ± .2	.113 ± .058	.122 ± .064	$.017 \pm .002$	$.160 \pm .005$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-1 38.7 <u>+</u> 1.1	38.7 ± 1.1	38.7 ± 1.1			.148 ± .074	.162 ± .081		I	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-15 31.6 <u>+</u> 1.1	31.6 ± 1.1	31.6 ± 1.1			.212 ± .094	.152 ± .079	.001 + .001	.236 ± .007	.07 + .02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-28 31.9 <u>+</u> 1.4 9.8	31.9 ± 1.4 9.1	31.9 ± 1.4 9.1	9.1	3 ± .2	.134 ± .069	.247 ± .098		ł	.13 + .02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-10 75.2 ± 5.4 24.0	75.2 ± 5.4 24.0	75.2 ± 5.4 24.0	24.0	۳. +۱	.289 + .098	.187 ± .089	100. ± 010.	.327 ± .006	.034 + .015
$\pm .3$ $\cdot .131 \pm .058$ $\cdot .131 \pm .069$ $\cdot .052$ $\cdot .013 \pm .061$ $\cdot .052$ $\cdot .013 \pm .027$ $\cdot .067 \pm .033$ $\cdot .053 \pm .027$ $\cdot .013$ $\cdot .053$ $\cdot .013$ $\cdot .053$ $\cdot .006$ $\pm .061 \pm .041$ $\cdot .191 \pm .058$ $\cdot .013$ $\cdot .053$ $\cdot .013$ $\cdot .016 \pm .003$ $\pm .2$ $\cdot .124 \pm .061$ $\cdot .091 \pm .053$ $\cdot .014 \pm .001$ $\cdot .146 \pm .004$ $\pm .3$ $\cdot .127 \pm .062$ $\cdot .014 \pm .037$ $\cdot .014 \pm .001$ $\cdot .004$ $\pm .3$ $\cdot .145 \pm .071$ $\cdot .258 \pm .097$ $\cdot .001070 \pm .002$ $\cdot .004$ $\pm .350 \pm .094$ $\cdot .102 \pm .061$ $\cdot .001070 \pm .002$ $\cdot .042 \pm .003$ $\pm .330 \pm .094$ $\cdot .102 \pm .064$ $\cdot .001002$ $\cdot .042 \pm .003$ $\pm .3320 \pm .094$ $\cdot .102 \pm .064$ $\cdot .002$ $\cdot .042 \pm .003$ $\pm .332$ $\cdot .094$ $\cdot .023$ $\cdot .064$ $\cdot .002$ $\cdot .042 \pm .003$ ±32 $\cdot .057 \pm .019$ $\cdot .064 \pm .001$ $\cdot .001020$ $\cdot .002$ $\cdot .002$ ±32 $\cdot .019019$ $\cdot .064 \pm .001$ $\cdot .001001002$ $\cdot .002$ </td <td>5-13 117 ± 4</td> <td>117 ± 4</td> <td>117 ± 4</td> <td></td> <td></td> <td>.205 ± .094</td> <td>.166 ± .082</td> <td>1</td> <td>I</td> <td>i</td>	5-13 117 ± 4	117 ± 4	117 ± 4			.205 ± .094	.166 ± .082	1	I	i
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-1 81.1 48.2 ± 1.1	81.1 48.2 ± 1.1	48.2 ± 1.1			.113 ± .058	.131 ± .069			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6-16 61.3 33.5 ± 1.1 5.2	61.3 33.5 ± 1.1 5.2	33.5 ± 1.1 5.2	5.2	۳. + ۱	190. ± 961.	.102 ± .052	100. ± 610.	.255 ± .006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-7 52.2 24.6 ± .8	52.2 24.6 ± .8	24.6 ± .8			.033	.053 ± .027		i	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-14 53.7 67.5 ± 2.1	53.7 67.5 ± 2.1	67.5 ± 2.1			160. ± 180.	.191 ± .058	.016 ± .003	.206 ± .003	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7-25 37.5 34.6 ± 1.2 5.3	37.5 34.6 ± 1.2 5.3	34.6 ± 1.2 5.3	5.3	~	.124 ± .061	.109 ± .053			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8-16 14.2 15.0 <u>+</u> .6	14.2 15.0 <u>+</u> .6	15.0 <u>+</u> .6			.127 ± .062	.037 ± .037	.014 ± .001	.146 ± .004	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8-29 9.61 ± .76 3.2 ±	9.61 ± .76 3.2	9.61 ± .76 3.2	3.2	. .	.145 ± .071	790. ¥ 852.			
.3 .127 \pm .064 .095 \pm .048 .106 \pm .053 .008 \pm .002 .042 \pm .003 .32 .057 \pm .023 .047 \pm .027 .003 .106 \pm .051 .180 \pm .004 .004 .005 .105 \pm .051 .180 \pm .005 .013 \pm .001 .050 \pm .002 .102 \pm .019 .064 \pm .013 .001 .050 \pm .002 .024 \pm .019 .018 \pm .014 .004 \pm .001 .047 \pm .002 .018 \pm .014 .120 \pm .064 .014 .004 \pm .001 .047 \pm .002	9-16 3.67 6.14 ± .27	3.67 6.14 ± .27	6.14 ± .27			.350 ± .094	.102 ± .051	100. ± 200.	.070 ± .002	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-3 14.5 ± 1.2 2.2 ±	14.5 ± 1.2 2.2 ±	14.5 ± 1.2 2.2 ±	2.2 +			.127 ± .064			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10-19 3.99 ± .75	3.99 ± .75	3.99 ± .75			.095 + .048	.106 ± .053	.002 <u>+</u> 800.	.042 + .003	
.106 ± .051 .180 ± .094 .092 ± .041 .162 ± .075 .013 ± .001 .050 ± .002 .1 .025 ± .019 .064 ± .032 .024 ± .019 .018 ± .014 .004 ± .001 .047 ± .002 .018 ± .014 .120 ± .064	10-27 2.22 ± .78 .98 ±	2.22 ± .78 .98 ±	2.22 ± .78 .98 ±	- 8 6-	.32	.023 ± .023	.047 ± .027	1	I	
.092 ± .041 .162 ± .075 .013 ± .001 .050 ± .002 .1 .025 ± .019 .064 ± .032 .024 ± .019 .018 ± .014 .004 ± .001 .047 ± .002 .018 ± .014 .120 ± .064	11-3 21.6 <u>+</u> 1.6	21.6 ± 1.6	21.6 ± 1.6			.106 ± .051	.180 ± .084			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11-15 18.8 ± 1.0	18.8 ± 1.0	18.8 ± 1.0			140. ± 360.	.162 ± .075	100. ± 610.	.050 + .002	
.024 ± .019 .016 ± .014 .004 ± .001 .047 ± .002 .018 ± .014 .120 ± .064	11-30 9.30 ± .67 1.7	9.30 ± .67 1.7	9.30 ± .67 1.7	1.7	- :	.025 ± .019	.064 ± .032	l	I	
.018 ± .014 .120 ± .064	12-14 4.91 ± .61	4.91 ± .61	4.91 ± .61			.024 ± .019	018 + 014	.001 + .001	.047 + .002	
	12-25 5.33 ± .91	16. ± 66.3	16. ± £6.3			.018 ± .014	.120 ± .064	f	ł	

NU = Not Detectable D = Decayed Away Before Analysis

Radionuclide Egncentratigns in Surface Air at Richland, Washington (46⁰21'N, 119¹17'W) in 1967

N) = Nut Detectable D = Decayed Amay Before Analysis

•

.

.

kichland, Washington, 1967 (contd)

Da	lte					DPH/10 ³ M ³				
Ou	Off	β8 _γ	90 _{Sr}	95 _{Zr Nb}	103 _{Ru}	106 _{Ru}	110mAg	124 _{Sh}	125 _{Sb}	134 _{CS}
12-26	1-15	EI0. ± E/I.	3.80 ± .09	04.0 ± .2	48.5 ± .2	1.55 ± .03	.063 ± .064	.388 ± .040	4.77 ± .13	.092 + .012
1-15	1-31	.057 ± .005	2.15 ± .06	47.9 ± .2	23.5 ± .2	4.70 ± .10	.064 ± .043	.187 ± .060	2.82 ± .09	.085 ± .009
1-31	2-15	.102 + .005	3.43 ± .07	79.2 ± .2	36.2 <u>±</u> .2	1.53 ± .13	.046 ± .040	.23 ± .13	2.93 ± .12	600. + 180.
2-15	1- E	.120 ± .006	4.91 ± .05	85.9	41.0	7.70 ± .15	.053 ± .051	.39 ± .15	6.29	.145 ± .014
J-I	3-16	.124 ± .006		65.7	41.5	9.11 ± .18	.032 ± .041	.34 ± .14	7.45	.074 ± .014
3-16	3-31	.148 + .007	4.38 ± .12	75.0	9 .16	9.67 ± .19	.120 + .024	.176 ± .088	3.78	.025 ± .007
3-3	4-12	.138 + .007	8.01 ± .25	63.1	29.2	12.4 ± .3	.027 ± .038	100. ± 212.	5.37	.046 + .007
4-12	5-2	.102 ± .005	4.38 ± .22	43.2	16.8	9.32 ± .19	.006 ± .041	.124 ± .062	1.91	.007 ± .007
5-2	5-16	.071 + .005	5.34 ± .21	35.2	14.5	12.4 ± .3	.010 ± .034	.041 + .048	6.14	.001 + .005
5-16	1-9	.064 ± .005	5.79 + .28	14.5	6.85	10.7 ± .2	.010 ± .029	.033 ± .025	3.04	.002 ± .007
I- 9	6-15	.028 ± .005		9.85	7.80	11.7 ± .2	610. ± 600.	.019 ± .022	3.43	·005 + ·005
6-15	6-30	$.021 \pm .005$	6.33 ± .26	9.85	2.65	12.1 ± .2	6E0. ± 660.	160. ± 640.	14.2	.001 ÷ 1/0.
6-30	7-16	.057 ± .005			41.4	134 ± 3	.31 ± .26	QN	17.0	16.4 ± .2
8-1	8-18	.005 ± .005	5.07 ± .31	32.7	1.77	6.99 + .14	.064 ± .042	.032 ± .025	B. 33 ·	.145 ± .015
8-18	<u>6</u> 5	.005 ± .005		48.2	4.91	6.60 ± .13	.067 ± .053	.004 ± .018	1.13	.032 + .007
9-5	9-15	500. ± 800.	2.43 ± .27	43.9	4.4]	2.83 ± .06	.012 ± .032	.039 ± .025	1.66	.035 ± .007
6 -15	10-2	ON	2.08 ± .05	6.71	5.69	6.36 ± .12	.004 ± .022	.159 ± .020	18.7	QN
10-2	10-16	.002 ± .005	1.39 + .05	6.71	3.74	10.5 ± .1	.001 ± .029	.011 ± .025	.02 ± .02	.021 ± .007
11-15	12-1	ON		11.8	6.28	4.56 ± .09	.049 ± .039	.229 ± .030	16.5	.032 ± .007

ND = Not Detectable D = Decayed Away Before Analysis

•

(contd)	
1967	
Washington,	
R ich land,	

Da	te					DPM/10	3 ^M 3				
0u	Off	137 _{Cs}	140 _{ßa}	141 _{Ce}	144 _{Ce}	155 _{Eu}	226 _{R à}	232 _{1h}	238 _{Pu}	239 _{Pu}	241 Am
12-26	1-15	6.18 ± .04	90.8 ± 2.2	124 ± 1*	15.6 ± 3.4	111. + 111.	.032 + .021	.060 + .034	100. + 200.	.042 + .003	
1-15	1-31	4.56 ± .03	Q	46.4 ± .6	24.3 ± 3.0	.142 ± .035	.018 + .019	.053 ± .032	i	ł	
IE-I	2-15	6.39 ± .04	64.8 ± 1.9	24.8 ± .5	13.5 ± 2.3	.281 + .028	.092 + .048	.078 + .041	100. + 600.	.460 + .003	
2-15	3-1	8.72	a	42.8 ± .5	18.4 ± 2.1	.227 ± .031	.120 ± .062	.258 + .092	I	1	
3-1	3-16	10.6	5.55 ± .17	63.5 🛓 .5	18.4 ± 4.1		.042 + .023	.215 + .090	.033 + .002	.005 + .003	
3-16	16-E	8.33	9.15 ± .27	38.6 ± .3	16.0 ± 4.8	.159 ± .033		.074 + .035	1	I	
3-31	4-12	15.0	2.58 ± .08	35.1 ± .3	19.7 ± 3.9	176.	160. ± 030.	.092 + .047	.026 + .002	.003 + .003	
4-12	5-2	10.2	1.34 ± .04	13.2	11.0 ± 5.8	.352	.035 + .022	.053 + .031	t	ł	.041 + .015
5-2	5-16	11.8	.671 ± .021	6.96	16.5 ± 2.0	.853	101 + 200.	.049 + .029	.052 + .005	.126 + .007	.033 + .016
5-16	6-1	12.7	.127 ± .004	3.12	10.2 ± 3.7	1.52	.064 + .035	.046 ± .028	I	ł	.061 + .020
1- 9	6-15	14.3	.049 ± .003	2.26	8.5 ± 1.9	1.48	.052 + .027	.028 + .019	900. + 160.	600. + 960.	1
6-15	6-30	13.0	1.98 ± .06	1.09	4.8 ± 1.4	2.19	.148 + .071	.265 + .093	I	ł	
6-30	7-16	68.2	62.6 ± 1.9	3.88	135 ± 15	1.99	1.09 ± .13	290. + 097.	600. + E80.	.304 + .015	
8-1	8-18	8.05	2.19 ± .06	8.30	15.4 ± .7	1.91	.102 ± .55	.297 + .099	.037 + .008	.084 + .009	
8-18	95	6.25	1.45 ± .05	6.18	6.9 ± 2.0	1.14	.265 ± .094	.187 + .087	I	ł	
9-5	9-15	5.23	.953 ± .029	5.40	5.40 ± .58		.297 + .099	.34 + .11	.002 + .007	.046 + .007	
9-15	10-2	5.40	.459 ± .014		6.3 ± 1.9		.13 + .13	.31 + .10	I	I	
10-2	10-16	2.93	.21 ± .16	1.62	1.8 ± 1.0	.214 ± .031	.165 ± .084	.25 + .10	.001 + .002	.019 + .004	
11-15	12-1	4.41	1.45 ± .05	2.19	27.2 ± 4.5	.171 ± .032	.166 ± .079	EL. <u>+</u> eE.	- 000 - 000	.026 ± .005	

ND = Not Detectable D = Decayed Away Before Analysis

•

•

ī

•

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁶17'W) in 1968

•

.

			.005	.005		9 00°	600.	.012	.005	600.	.007	.005	000	. 300 °	.005	.005	.005	.005	.005	.005	_	.005	.005	500 .
		88	+ 400.	.004 ±		• 005 ±	.024 ±	• 020 •	<u>+</u> 800.	.014 ±	÷ 100.	÷ £00.	<u>+</u> 010.	. 005 <u>+</u>	÷ E00.	<u>+</u> 002	<u>+</u> E00.	1 00.	÷ 100.	.002 <u>+</u>	UN	1 100.	, + 100.	ī 100.
		Zn	. 22*	. 29	÷.36	. 24	± .22	. 24	44	9.	.14	42	.38	. 24	.14	. 16	EI.	Π.		.12	.10	.10	60.	.10
		9	1.13	2.68 ±	- 92 <u>-</u>	2.22 1	1.84	1.87 ±	5.65 1	19.5	3.64	4.03	4.34 1	1.38 1	1.13 ±	÷ 66.	2.33 1	1.73 ±	1.55 ±	2.61 ±	1.70 ±	- 85	+ 64.	÷ [5.
		e	.000	.02		90.	.2	.017	EO .	.017	600.	110.	110.	.005	.004	610.	010.	E00 .	.005	.010	.007	.005	.005	.004
		60	.105 ±	2.05 ±		2.22 ±	10.2 ±	+ 191.	2.15 ±	.166 ±	.187 ±	.272 ±	.226 ±	÷ 191.	÷ 651.	, 1/9.	.268 ±	<u>+</u> 260.	<u>+</u> 272.	<u>+</u> 612.	.113 ±	.162 ±	± 185.	.170 ±
		Co	.061	£ .028		.10	<u>. 15</u>	.16	.21	.30	.12	.12	. 054	. 042	.063	• 074	. 045	. 045	/60.	.042	.036	.041	.030	.030
_		22	.208	F 260.		.30	F 6¥.	.81	.78 _	• 66 •	42 4	.42 ±	183 1	138	208 1	.244 1	.152 ±	.152 ±	.124 ±	. 141	117	-134 <u>+</u>	, 660.	, 660.
10 1908		/co	± .034	÷.034	± .031	EEO. <u>1</u>	± .045	990. i	± .048	160. ±	1. O67	± .072	± .048	- O67	9	Ģ	9	9	Ģ	. 024	160. 1	£ .042	1.021	160. 1
(M. /1	PH/10 ³		.175	.173	.033	.064	.152	.226	.180	.109	.226	.240	.162	.226	-	-	-	-	-	.130	.045	.148	110.	.032
N, 119		55 _{Fe}	5.75	7.31	42.2		38.0	6.07	45.9	9.36	15.0	13.5	14.7	11.4	17.6	2.75	8.02	6.46	12.5	5.58	5.97	9.25	2.52	6.07
. 17 96)		Mn	± .084*	01. Ť	<u>t</u> .15	01. 1	60° i	÷.65	± .18	. 19	± .20	· .07	· · 0	· · ·	90. j	190. i	± .045	6E0. 1	1.042	160. 1	<u>1</u> .032	£ .043	160. 1	· .029
ngton		ĥ	.388	74	1.24	.81	1.73	1.48	1.91	1.91	1.94	1.62	1.59	1.58	1.34	.565	.742	.635	.537	- 66E.	:303	.247 ±	.261 ±	.283
USEM		6 _{Sc}	90° Ŧ	1 .05		1 .05	1 .063	¥ .038	<u>1</u> .023	± .037	1 .019	± .023	± .020	± .012	110. 1	100. 1	± .022	÷ .016	600. +	5.	. - 03	± .02		. .02
		4	1.13	2.97		1.41	.706	.353	.459	.328	.456	.286	.353	.317	.314	.600	.048	.742	.275	3.11	1.70	2.22	2.61	2.68
		²² Na	± .005	1 .005		1 .005	+00. ±	500. <u>+</u>	+ - 00 4	+ .007	<u>+</u> .002	÷.005	+ 004	1 00.	± .003	b 00. +	÷ .003	H 00. +	± .003	<u>+</u> .002	<u>+</u> .002	<u>+</u> .002	± .002	<u>+</u> .002
			.016	.042		.042	.074	.049	1/0.	.141	.013	.078	.064	.067	030.	.042	260.	.035	.025	.022	010.	.014	.020	.020
		7 _{Be}	149 ± 3*	202 ± 7	165 ± 4	124 ± 3	211 7 3	218 ± 3	221 ± 3	189 ± 3	326 ± 3	273 ± 2	2/3 ± 2	286 ± 2	291 ± 2	145 ± 1	250 ± 1	210 ± 1	225 ± 1	184 ± 1	135 ± 1	148 ± 1	121 ± 1	108 - 1
	e	0ff	1E-1	3-1	61- E	4-1	4-12	5-2	5-17	1E-3	6-17	1-1	7-15	J-31	8-19	8-30	9-16	10-1	10-17	10-31	11-15	11-27	12-12	12-30
	Dat	8	1-1	16-1	3-1	3-22	4 -1	4-12	5-2	5-17	5-31	6-17	1-1	7-15	7-31	61- 8	8-30	9-16	10-1	10-17	16-01	11-15	11-27	12-12

ND = Nut Detectable D = Decayed Away Before Analysis

.

•

.

•

Richland, Washington 1968 (contd)

.

.

	s	160.	1/0.		.052	.068	.038	.049	.046	.029	170.	.058	660.	.041	.052	.070	.048	.032	.049	.048	140.	.044	.082
	134	, 939 <u>+</u>	-380 ±		<u>+</u> EII.	<u>+ 062.</u>	.042 ±	, 180.	.078 ±	÷ E3E.	<u>+</u> 816.	.124 ±	+ 610.	<u>+</u> 180.	. 141 +	+ 192.	.177 _	÷ 935.	.198 ±	.170 ±	.117 <u>+</u>	.166 ±	.138 ±
	25 _{Sb}	± .14*	- 41	. 465	E 4 • +	+ .28	. 133	6. +	<u>+</u> .59	9. 1	÷.	<u>+</u> .24	<u>+</u> .22	+ .19	<u>+</u> .20	<u>+</u> .16	11. 1	<u>+</u> .16	<u>+</u> .13	+ .14	<u>+</u> .13	-10	60° -
		1.27	2.93	5.23	3.18	5.47	8.72	18.9	8.62	10.6	13.5	9.78	9.32	1.11	3.71	4.73	9.25	8.05	2.58	6.04	1.91	1.18	1.15
	4 Sb	160. ±	<u>1</u> .028		± .032	<u>+</u> .027	± .068	± .085	± .033	160. 1	100. 1	± .032	a	Q	9	160. 1	÷ .059	9	÷ .029	160. 1	± .028	£ .027	. 029
	12	.025	.035		.019	.032	.092	.184	.046	660.	.053	.022	-	-	-	.008	660.	-	.020	.023	-014 F	.005	900.
	m _{Ag}	.047	.14		.053	1/0.	110.	.069	.049	.068	1/0.	.081	.065	.061	.052	.046	.051	.083	.052	190.	180.	.064	.052
		.028 ±	-28		+ 080 +	.102 ±	+ EII.	.102 ±	+ 6HO.	+ 110.	.005 ±	<u>+</u> 260.	÷ 1/0.	<u>+</u> 1/0.	-046 <u>+</u>	+ 090.	.078 ±	+ 260.	-042 +	<u>+</u> 170.	. 560.	.074 ±	.042 ±
10 ³ M ³	6Ru	± .24			•	<u>+</u> 2.0	÷ 1.1	ŝ	1.0	5	9.4	9	_		4	-			. .	.2	~	-	-
DPM/	Ō	7.70	23.7		33.8	54.3	47.4	53.9	76.8	79.4	1.99	78.2 1	107	80.1	42.7 4	50.2	97.9 f	37.4 1	22.4 1	17.8 ±	15.3 1	13.2	14.1 1
	Ru	1.1*	2.0		2.4	2.7	3.0	2.2	1.5	1.6	1.1	1.0	.68	.49	2.3	.43	.47	.33	66.	.29	.32	.29	.26
	103	33.3 <u>†</u>	61.0 ±	28.1 ±	12.7 ±	13.5 ±	15.3 ±	10.8 ±	7.4 ±	7.8 ±	5.3 +	4.8+	3.39 ±	2.47 ±	22.5 ±	4.34 ±	7 99.9	1.66 ±	1.87 ±	1.45 ±	1.62 ±	1.45 ±	1.31 <u>1</u>
	4	÷ •6Å	5.		₹.					<u>ب</u>	ŗ.		~	.2		-		-	н.	.08	.10	.0	90
	35	49.1	56.0 ±	107	57.8	83.5	112 4	104	84.7	86.1	72.7 ±	56.9 <u>1</u>	50.5	34.5 1	18.4 1	19.8	14.2 ±	11.7 ±	1.70 ±	5.47 ±	5.58 ±	3.64 ±	4.03 +
	<u>Zr</u>	1.0*	1.2	1.0	•	5	8.	8.		.6	. .	۳.	. .	.2	.21	.2	.15	.13	EI .	. 11	.12	60.	.08
	56	45.0 ±	58.8 ±	47.8 ±	32.7 ±	37.3 ±	40.8 +	44.6 ±	36.5 ±	1 .1	<u>+</u> 6.92	24.8 ±	21.2 ±	14.7 ±	9.57 ±	11.1 ±	7.66 ±	5.26 ±	3.99 <u>+</u>	3.50 ±	2.86 ±	2.01 ±	2.12 ±
	ör	60. 1	1.18	.43	· .25	1E.	æ.	. 31	.32	.47		ŝ	.27	.17	Π.	60.	Ξ.	ЕГ.	.07	.05	.12	.04	.07
	8	1.78	6.57	8.76	4.91	5.12 1	6.03	1.03	1.53 1	9.46		10.2	8.64 1	6.57	3.14 ±	4.17 ±	3. 14 -	3.52 ±	5.25 ±	3.06 ±	3.32 ±	2.11 ±	3.46 ±
a	0ff	1-31]-]	3-13	4-]	4-12	5-2	5-17	1E - S	6-17	1-1	7-15	1-31	8-19	8-30	91-6	10-1	10-17	16-01	11-15	11-27	12-12	12-30
bat	On	1-1	1-31	3-1	3-22	4-1	4-12	5-2	5-17	5-31	6-17	1-1	7-15	7-31	8-19	8-30	9-16	1-01	10-17	10-31	11-15	11-27	12-12

.

ND = Not Detectable D = Decayed Away Before Analysis

•

(contd)	
1968	
Washington	
Ríchland,	

.

	241 _{Aun}					.030 ± .017	.035 ± .017	039 ± 017															
	239 _{Pu}	.028 ± .003	$.053 \pm .006$.003 + CAO.		.124 ± .007		.157 ± .006		.210 ± .006		.227 ± .007		.183 ± .007		.106 ± .004		$.103 \pm .005$.046 ± .003		.047 ± .004	
	238 _{Pu}	:000 - 1003	.026 ± .006	.050 <u>+</u> .005		.033 <u>+</u> .004		.027 ± .003		.063 <u>+</u> .003		$.041 \pm .003$.037 ± .004		.016 ± .002		.019 ± .003		$100. \pm 600.$.008 ± .002	
	232 _{1h}	EEO. ± 711.	.088 ± .025		.134 ± .039	.233 <u>+</u> .068	.286 ± .072	.194 ± .062	.247 ± .075	.071 ± .038	.127 ± .048	1.77 ± .10	1.41 ± .09	.102 ± .051	.033 ± .033	.113 ± .053	.095 ± .047	.074 ± .042	.088 ± .048	.124 ± .053	.074 ± .042	150. ± 360.	.078 ± .047
10 ³ M ³	226 _{R a}	1032 ± 034	.025 ± .032		.102 ± .052	.424 ± .097	.57 ± .14	.64 ± .18	·53 ± .14	.170 ± .078	160. + +61.	Ped. ± 565.	.198 ± .092	.026 ± .034	.120 ± .053	$.092 \pm .048$.088 ± .042	.011 ± .033	.039 ± .034	EEO. ± 9EO.	.064 ± .039	160. ± 800.	.021 ± .032
DPM/	155 _{Eu}	.44 ± .13	.51 ± .15	1.07 ± .32	1.11 ± .21	3.56 ± .14	2.21 ± .30	3.57 ± .34	1.51 ± .40	4.31 ± .20	2.87 ± .37	2.64 ± .17	2.63 ± .15	2.49 ± .14	1.07 ± .13	1.24 ± .12	.94 ± .10	1.17 ± .10	.578 ± .093	.528 ± .081	•279 ± 034	.315 ± .033	.268 ± .032
	144 _{Ce}	24.6 ± .6*	62.6 ± .7	6. ± 0.06	65.3 ± .6	159 ± 1	137 ± 1	148 ± 1	175 ± 1	291 + 1	254 ± 1	243 ± 1	238 ± 1	187 ± 1	09.2 1 .5	99.7 ± .4	75.8 ± .4	82.0 ± .4	47.9 ± .3	35.9 ± .3	40.5 ± .3	26.8 ± .2	28.5 ± .2
	[4]	54.2 ± .6	55.2 4 1.3	24.4 ± .1	11.2 ± .2	11.0 ± .3	8.62 ± .29	5.69 ± .23	3.78 ± .27	4.51 ± .26	1.52 ± .14	2.08 ± .18	1.70 ± .15	1.20 ± .11	13.1 ± .1	60. ± 00.3	6.50 ± .10	2.01 ± .08	2.72 ± .10	1.69 ± .07	1.66 ± .08	1.27 ± .06	1.09 ± 00.1
	140 _{Ba}	67.8 ± .2	33.7 ± .3	9.60 ± .13	5.6 ± 1.5	1.84 ± .38	1.31 ± .26	. 71 ± .49	.388 ± .074	.272 + .075	.124 ± .084	1.70 ± .34	60. <u>±</u> 6E.	11. ± 63.	6.98 ± .15	1.77 ± .34	1.94 ± .38	.31 ± .07	1.02 ± .25	1.80 ± .38	2.05 ± .41	6.5 ± 1.3	3.07 ± .61
	137 _{Cs}	6.81 ± .28*	14.8 ± .2	14.6 ± .3	8.65 ± .20	9.99 ± .15	14.2 ± .3	15.5 <u>+</u> .3	16.0 ± .3	20.2 ± .3 .	17.4 ± .1	18.0 ± .1	17.3 ± .1	14.9 ± .1	7.70 ± .11	11.8 ± .1	7.80 ± .08	7.13 ± .08	11.0 ± .1	6.89 ± .08	8.05 ± .10	6.85 ± .08	7.03 ± .07
Jate	Off	1-31	3-1	3-13	4-1	4-12	5-2	5-17	5-31	6-17	7-1	7-15	<i>1-3</i>	8-19	8-30	9-16	10-1	10-17	10-31	11-15	11-27	12-12	12-30
-	6	1-1	I-31	1- E	3-22	4-1	4-12	5-2	5-17	5-31	6-17	1-1	7-15	16-1	8-19	8-30	91-16	1-01	10-17	16-01	11-15	11-27	12-12

•

ND = Not Detectable D = Decayed Away Before Analysis

.

•

æ

Radionuclide Concentrations In Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1969

.005 .000 .005 .005 002 ± 005 .005 .005 .005 .005 .008 .005 .005 .008 .006 .003 .005 .005 500. <u>+</u> 200. .00 .00 .005 .005 .005 .005 • • 900. + 600. + 100. .034 ± . - 110. .022 ± . .046 + . 025 ± . • 100. + 800. <u>+</u> 610. .025 ± + 160. - **1** · - 100. , 900 + 100. + 100. •005 ± 88, ÷ E(10. +1 +1 .002 002 + .049 . 349 ± .053 .247 ± .048 .205 ± .042 565 ± .057 .208 ± .041 .057 <u>+</u> .032 .233 ± .046 .053 .343 ± .051 .53 ± .11 .459 ± .098 .78 ± .14 1.55 ± .14 3.07 ± .19 2.08 ± .16 1.84 + .11 .85 ± .13 2.97 ± .21 1.52 ± .14 2.86 ± .16 1.20 ± .13 1.87 ± .11 2.08 ± .13 65₂₀ +{ .247 .530 .026 .028 .092 ± .024 ± .024 .102 ± .028 .127 ± .029 .247 ± .050 .237 ± .046 .120 + .027 .148 ± .024 .092 ± .026 .177 ± .033 .155 ± .008 ·636 ± .064 .155 ± .028 .350 ± .055 404 + + 049 131 ± .021 222 ± .041 078 ± .024 .117 ± .027 .300 ± .034 .028 .029 60 C0 138 1 .148 ± +1 ÷I .148 .123 .265 + .032 <u>+</u> .028 $.102 \pm .029$ 270. ± 990. <u>±</u>.021 .297 ± .087 . 258 ± .081 160. .071 £60. ± 70£. 160. ± 10E. .198 ± .049 780. ± 675. 170. ± 200. .057 ± .042 160. ± .148 ± .041 020 + .031 58_{C0} .025 ± 99 g Q .208 <u>+</u> Q 9 .00 .074 017 .017 .033 .059 .071 ± .025 .114 ± .024 .089 ± .026 .169 <u>+</u> .032 **PEO**. 8E0. ± 1E1. .117 ± .038 .440 ± .062 .056 .055 .080 .054 .052 .023 .019 .057 .328 ± .022 .126 ± .037 .102 ± .029 el. <u>+</u> 16. ·053 ± .027 074 ± .025 57_{C0} . 254 ± .196 + .265 ± .106 ± .081 <u>+</u> .155 ± .477 ± · 1 ESO. +ł +1 +! .117 .081 DPM/10³M³ .067 55_{Fe} . 989 .089 1.06 3.95 4.70 3.39 9.78 2.19 6.57 1.66 1.86 6.99 6.71 8.58 4.98 6.74 9.85 5.01 4.73 2.46 48 2.06 12.1 + .036 ± .035 <u>+</u> .037 ± .045 268 ± .031 .530 ± .038 .028 .986 ± .044 .030 .025 .009 .441 ± .037 571 ± .041 .07 .848 ± .058 .706 ± .047 424 ± .047 .530 ± .042 1.17 ± .05 1.13 ± .06 1.34 ± .06 2.40 ± .08 1.55 ± .06 1.27 ± .06 54_{Mn} 212 ± +ł +1 +1 +1 .459 .455 .328 . 989 1.70 201 212 8 .565 ± .028 .023 .534 ± .021 .848 ± .028 .812 ± .038 PIO. ± 816. .530 ± .017 + 03 .530 ± .025 .022 2.15 <u>+</u> .05 1.94 <u>+</u> .04 <u>+</u> .02 1.34 ± .03 1.38 ± .03 2.08 ± .02 4.10 ± .03 1.17 ± .02 1.34 ± .04 1.94 ± .03 2.97 ± .05 46_{SC} 1.24 ± .03 04 .226 ± 2.22 ± +1 1.01 1.02 .742 $.040 \pm .004$.085 ± .008 .046 ± .005 100. ± .024 ± .007 000 T 000 .042 ± .007 + .003 .014 ± .003 .011 ± .005 .046 ± .007 .008 ± .008 007 ± .006 .004 .003 .042 ± .007 .052 ± .007 078 + .007 049 + .005 500° 7 E50' 22_{Na} Q .036 ± Q Q R +1 .012 .021 100. 99.1 ± 1.0 83.0 ± 1.2 72.3 ± 1.1 83.8 ± .9 11 7 111 178 ± 1 125 ± 1 234 ± 1 257 ± 1 353 ± 3 219 ± 2 230 ± 2 132 ± 1 113 ± 1 ~ 2 2 ~ ~ ~ 182 ± 1 2 /_{Be} 289 ± 335 ± 241 ± 253 ± 349 ± 174 ± 250 ± 210 ± 3 +1 197 1-16 **1-30** 2-13 4-16 3-17 5-15 6-17 1-17 8-18 9-15 9-30 10-15 11-17 11-30 12-15 12-29 Off **3-3** 6-3 8-1 9-2 10-31 4-2 5-2 1-1 Date 12-30 **1-30** 9 1-16 2-13 3-17 4-16 5-15 6-17 7-17 8-18 9-15 9-30 10-15 10-31 11-11 12-15 3-3 6-3 4-2 5-2 9-2 1-1 8-1 12-1

ND = Not Detectable

²

⁼ Decayed Away Before Analysis

Richland, Washington, 1969 (contd)

•

j.

ī

	34 _{Cs}	£E0. +	+ .027	+ .058	1/0. +	041	+ .032	034	eco. +	160. ±	+ .052	1/0. +	160. ±	+ .038	<u>+</u> .12	+ .043	<u>+</u> .037	+ .039	<u>+</u> .042	+ .032	140. +	+ .062	+ .054	+ .043	4.042
		.067	.074	.177	.353	.208	.039	.060	.049	.113	.268	.353	.025	111.	.57	.219	.102	.113	.148	.026	.138	.307	.265	.205	.212
	125 _{Sb}	2.72 + .11	3.32 + .14	1.87 ± .13	15.9 + .2	12.2 + .2	4.34 ± .19	4.84 ± .21	4.69 ± .21	8.30 ± .35	35.1 <u>+</u> .4	13.6 ± .5	6.46 ± .22	8.02 + .34	15.3 ± .5	10.9 ± .3	9.96 ± .33	7.98 ± .29	4.41 ± .22	8.62 ± .18	3.46 ± .17	1.45 ± .14	.95 + .15	41. + 66.	1.02 ± .12
	124 _{Sb}	.002 + .011	.018 + .023	.024 ± .021	.042 ± .024	.008 + .031	QN	- ON	UN	QN	QN	DN	110. ± 700.	.030 ± .021	•005 · •009	.018 ± .017	.040 + .010	160. ± 180.	.023 ± .015	760. ± 880.	QN	UN	510. + 110 .	600 [.] + £00 [.]	.012 ± .008
_	110aAg	.054 + .041	.071 ± .043	140. + 1/0.	.046 ± .032	.046 + .031	.032 ± .021	.039 ± .029	•035 + •014	.053 ± .041	.034 ± .028	.034 ± .031	QN	.015 ± .021	160. ± 610.	.025 ± .015	.026 ± .031	140. + 170.	.035 ± .035	.074 ± .042	160. ± 260.	.042 ± .027	.028 ± .029	160. ± 260.	.021 ± .015
0PM/10 ³ M ³	106 _{Ru}	13.4 ± .4	13.9 ± .4	9.78 ± .43	34.7 ± .5	29.5 ± .2	32.0 ± .2	35.3 <u>+</u> .2	36.5 ± .3	83.9 <u>+</u> .5	99.2 ± .4	136 ± 1	68.0 1 .3	95.1 ± .5	178 ± 1	120 ± 1	105 ± 1	73.2 ± .5	41.4 ± .4	24.2 ± .3	35.3 ± .3	11.2 ± .2	13.2 ± .3	12.0 ± .2	9.18 ± .19
	103 _{Ru}	3.85 ± .07	6.71 ± .09	7.49 ± .09	13.4 ± .1	21.1 ± .2	34.9 <u>+</u> .2	37.4 ± .2	41.7 ± .2	109 ± 1	113 + 1	146 ± 1	73.2 ± .3	80.0 ± .3	115 ± 1	60.1 <u>+</u> .3	40.7 ± .3	17.8 ± .2	12.3 ± .2	6.39 ± .16	8.09 ± .14	5.12 ± .11	3.57 ± .13	3.78 ± .10	2.22 ± .10
	95 _{Nb}	4.47 ± .08	8.05 ± .10	7.80 ± .09	13.7 ± .1	27.0 ± .2	47.2 ± .2	60.6 ± .3	76.0 ± .3	224 ± 1	266 ± 1	1 + EBE	219 ± 1	264 👲 1	457 ± 1	256 ± 1	204 ± 1	104 + 1	80.2 ± .3	43.9 ± .3	18.1 ± .3	19.5 ± .2	12.4 ± .1	12.9 ± .1	8.93 <u>+</u> .13
	95 _{Zr}	3.54 ± .11	5.86 <u>+</u> .13	6.36 ± .13	10.6 ± .2	18.2 ± .2	30.6 ± .2	36.0 ± .3	43.4 ± .3	1 7 611	141 + 1	200 ± 1	109 ± 1	130 ± 1	218 ± 1	124 ± 1	94.9 <u>+</u> .3	50.5 ± .2	34.9 <u>+</u> .3	19.2 ± .9	20.1 ± .2	9.29 ± .16	5.97 ± .16	6.53 ± .14	4.13 ± .15
	90 _{Sr}	3.57 ± .08	4.64 ± .08	4.18 ± .21	5.33 ± .23	7.92 ± .29	5.55 ± .15	5.23 ± .12	4.83 ± .14	8.20 ± .26	9.04 ± .30	9.18 ± .32	4.56 ± .75	8.48 ± .17	12.10 ± .41	8.40 ± .27	7.96 ± .29	6.71 ± .21	10.10 ± .33	3.46 ± .07	4.73 ± .09	4.01 ± .11	1.26 ± .07	6.61 ± .08	3.13 ± .07
e	Off	1-16	1-30	2-13	3-3	3-17	4-2	4-16	5-2	5-15	6-3	6-17	1-1	1-17	8-1	8-18	9-2	9-15	06-9	10-15	10-31	11-17	08-11	2-15	12-29
Uat	0u	12-30	1-16	1-30	2-13	3-3	3-17	4-2	4-16	5-2	5-15	6-3	6-17	1-1	1-11	8-1	8-18	9-2	9-15	0E- 6	10-15	16-01	11-12	12-1	12-15

.

ND = Not Detectable D = Decayed Away Before Analysis

•

•

Richland, Washington, 1969 (contd)

	24 1 Aun	1100. 1 680		0100. ± 0010		050 ± .0012		1100. ± 190		046 ± .0013		059 <u>+</u> .0013		036 ± .0011		022 ± .0010		028 ± .0010				029 ± 0013			
	239 _{Pu}	.053 ± .004 .0		0. 400. ± 640.		103 ± .004 .0		0. 200. ± 011.		0. 700. ± 701.		304 ± .011 .0		123 ± .004 .0		. 179 ± .005 .0		125 + .006 .0		070 ± .003		042 ± .003 .0		027 ± .002	
	238 _{Pu}	. 100. ± 100.		. E00. ± elc.		.034 ± .002 .		. 042 ± .003 .		. 004004 .		. 107 ± .007 .		. 027 ± .002 .		. 035 ± .002 .		.142 ± .006 .		.022 ± .002		. 002 ± .002		. 003 ± .002 .	
	232 _{1h}	.310 ± .033	.067 + .033	.081 ± .042	.077 ± .035	.205 ± .089	.212 ± .091	.169 ± .075	.113 <u>+</u> .054	160. ± 212.	.138 ± .071	660° - E5E°	180. + 061.	.134 ± .074	.201 ± .095	.155 ± .075	870. ± 101.	170. ± 553.	.078 ± .034	870. ± 861.	.208 ± .092	.074 ± .035	.071 ± .036	.064 ± .033	.124 + .058
³ н ³	226 _{R.a}	.022 ± .031	.064 ± .032	.024 ± .029	160. ± 660.	Q	QN	.088 ± .041	.078 <u>+</u> .037	170. ± 631.	.064 ± .036	.304 ± .094	160. ± 233.	.162 ± .080	.272 ± .094	.134 ± .071	.159 🛓 .084	.088 ± .044	.088 ± .044	160. ± 781.	.141 ± .071	.053 ± .032	.033 ± 730.	160. ± 260.	
DPM/10	155 _{Eu}	.309 ± .064	1.31 + .19	1.00 ± .14	1I. + 6 F .	1.12 ± .12	1.00 ± .14	1.41 ± .15	1.35 + .15	2.51 ± .24	3.70 ± .29	5.23 ± .31	5.18 ± .51	2.28 ± .23	4.87 ± .31	2.43 ± .22	1.47 + .24	1.18 ± .21	1.31 ± .14	.48 ± .11	01. ± 16.	.72 ± .10	.274 ± .088	.235 ± .038	.361 + .074
	144 _{Ce}	32.7 ± .3	45.3 ± .3	20.5 ± .3	28.3 ± .3	63.7 ± .4	P. 2 8.91	90.3 2.5	93.0 ± .5	200 ± 1	225 ± 1	326 ± 1	201 ± 1	265 ± 1	442 ± 1	315 ± 1	285 ± 1	162 ± 1	138 ± 1	81.6 ± .4	95.4 ± .4	54.9 i .3	30.9 ± .3	35.8 ± 1.3	26.1 + .3
	141 _{Ce}	5.64 ± .15	10.2 ± .1	10.5 ± .1	16.8 ± .1	26.4 ± .2	41.0 ± .2	43.5 ± .2	44.4 ± .2	106 ± 1	1 + 101	122 ± 1	59.9 1 .3	62.5 ± .2	86.8 ± .3	41.6 ± .2	27.9 ± .2	10.6 ± .2	7.84 ± .15	3.92 ± .16	6.71 ± .12	5.58 ± .10	3.60 ± .13	3.92 ± .10	2.22 + .11
	140 _{Ba}	5.49 ± .06	9.68 ± .05	5.26 ± .06	5.47 + .05	5.54 ± .24	3.88 + .08	3.30 ± .10	1.67 ± .17	D	đ	.48 ± .28	11. ± 61.	.35 ± .14	.145 ± .039	100. + 300.	.201 + .078	QN	ND	.293 ± .061	4.41 ± .10	2.83 ± .05	1.24 ± .03	1.02 ± .03	.459 ± .028
	137 _{Cs}	6.62 ± .06	9.96 ± .10	10.8 ± .1	13.9 ± .1	16.5 <u>+</u> .1	10.1 ± .1	10.5 ± .1	10.5 ± .1	18.1 ± .2	20.0 ± .1	20.6 ± .2	11.3 ± .11	16.1 ± .1	29.2 + .2	18.0 ± .1	17.7 ± .1	12.4 ± .1	20.9 ± .1	8.40 + .09	10.1 ± .1	8.81 ± .04	15.2 ± .1	13.7 ± .1	$60. \pm 00.9$
le	Off	1-16	J-30	2-13	3-3	3-17	4-2	4-16	5-2	5-15	6-3	6-17	1-1	7-17	8-1	8-18	9-2	9-15	066	10-15	10-31	11-17	11-30	12-15	12-29
Da	0 0	12-30]-16	1-30	2-13	3-3	3-17	4-2	4-16	5-2	5-15	6-3	6-17	1-1	11-1	8-1	8-18	9-2	9-15	0E-9	10-15	10-31	11-11	12-1	12-15

•

NU = Not Detectable D = Decayed Away Before Analysis

•

• . Radionuclide Egncentrations in Surface Air at Richland, Washington (46⁹21'N, 119⁰17'W) in 1970

.

	β8γ	.004 ÷ .005	.005 ± .005	.015 ± .005	200. ± EIO.	.062 + .008	010. ± 630.	.102 ± .006	.105 ± .006	.302 ± .011	.325 ± .010	.432 ± .013	.503 ± .007	. 307 ± .006	308 + .005	110. <u>+</u> eee.	.247 + .010	300. ± 180.	.075 ± .005	·005 ± .005	010. ± 661.	010. ± 550.	034 ± .014	022 ± .065	.016 ± .005
	65 _{2n}	.24 ± .06	.15 ± .05	.19 ± .06	.12 ± .05	.12 ± .05	QN	11. ± 11.	01. ± 60.	.12 ± .14	.65 ± .13	1.08 ± .16	.62 ± .14	¥I. <u>+</u> 16.	.28 ± .15	QN	.85 ± .12	. 10. ± 11.	.52 ± .09	.41 ± .09	. 59 ± .22 .	. 10. + 10.	. 05 ± .04	. 00. 1 00.	. 30. 1 70.
	60 _{C0}	.491 ± .042	.566 ± .044	.401 ± .040	.260 ± .038	.305 ± .041	.232 ± .040	.108 ± .025	*100. + 8/0.	2E0. ± 060.	.224 ± .039	660. ± 960.	.108 ± .036	8£0. ± 780.	.063 ± .041	610° Ŧ E80°	ef0. ± e1e.	. 307 ± .044	.075 ± .031	.075 ± .040	.023 ± .020	.031 ± .020	.026 ± .024	.025 ± .024	190. ± 861.
	58 ₆₀	.022 + .020	ND	QN	.026 ± .020	.123 ± .052	.125 ± .020	.079 <u>+</u> 052	.018 ± .044	.275 ± .069	D	Q	.133 ± .045	0	D	.562 ± .025	0	a	0	D	$.174 \pm .069$.094 ± .045	.056 ± .021	160. ± 670.	.047 ± .021
DPM/10 ³ H ³	57 _{C0}	.076 ± .020	.092 ± .026	.070 ± .024	elo. <u>+</u> emo.	.159 ± .042	ND	.120 👲 .024	.176 ± .038	.347 ± .069	.595 ± .066	.465 ± .084	.632 ± .082	110. + 699.	.650 ± .089	.82 ± .13	.328 ± .071	.185 ± .028	.248 ± .038	160. ± 681.	.174 ± .079	180. ± 261.	.106 ± .045	.048 ± .038	.038 ± .038
-	55 _{fe}	2.08	2.15	1.64	1.53	10.1	3.28																		
	54 _{Mn}	.158 ± .028	.291 ± .029	.178 ± .022	.148 ± .029	.543 ± .049	. 500 ± .038	.641 ± .047	.574 ± .045	1.47 ± .08	1.63 ± .06	2.12 ± .09	2.35 ± .09	1.89 ± .08	2.00 ± .10	2.40 ± .12	1.87 ± .08	.179 ± .022	.764 ± .047	.542 ± .055	.704 ± .070	.262 ± .071	.284 ± .079	180. ± 881.	.221 ± .085
	46 _{Sc}	1.27 ± .03	1.01 ± .03	.052 ± .019	.311 ± .027	.353 ± .024	.041 ± .031	.054 ± .02)	.231 ± .022	.362 ± .023	.243 + .027	.316 ± .020	.556 ± .022	.724 ± .021	1.34 ± .39	.179 ± .029	0	120. ± 860.	.247 ± .020	.755 ± .023	.261 ± .026	.790 <u>+</u> 032	1.25 ± .07	484 ± .005	1.58 ± .08
	22 _{Na}	500. ± 800.	200. ± 110.	.001 ± .004	500. ± 200.	010. ± 660.	.014 ± .008	.029 ± .005	.018 ± .005	.057 ± .008	800. ± 610.	.017 ± .010	.023 ± .006	.061 ± .005	.053 ± .005	600. 1 180.	.017 ± .004	.005 ± .003	.001 ± .003	.035 ± .004	.028 ± .009	900° - 900°	· 000 + 900.	.014 ± .003	.020 ± .004
	7 _{Be}	11 7 111	154 ± 1	95 ± 1	86 <u>+</u> 1	204 ± 2	1 + 161	203 ± 2	153 ± 2	282 ± 2	263 ± 2	320 ± 2	370 ± 2	306 ± 3	235 ± 2	362 ± 4	289 ± 4	155 ± 2	228 ± 2	258 ± 4	263 ± 4	208 ± 3	144 + 1	112 ± 1	1 + 66
e	Off	1-15	1-30	2-12	3-2	3-15	16- E	4-15	5-1	5-15	6-1	6-15	1-1	7-16	8-3	8-8	8-31	9-15	1-01	10-15	10-28	11-16	12-2	12-14	12-30
Dat	0u	12-29	1-15	1-30	2-12	3-2	3-15	3-31	4-15	5-1	5-15	6-1	6-15	1-1	7-16	8-3	8-17	9-1	9-15	10-1	10-15	10-28	11-16	12-2	12-14

ND = Not Detectable D = Decayed Away Before Analysis

.

(contd)
1970
Washington,
ich land,
R

•

195 ± 1 33.4 ± .3 256 ± 1 30.4 ± .6 186 ± 2 15.5 ± 1.3		112 ± 1 112 ± 1 112 ± 1 113 ± 1.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 25.1 ± 1.1 $57.0 \pm .6$ $4.01 \pm .75$ 5 25.1 ± 1.1 $57.7 \pm .6$ $5.89 \pm .85$ 5 21.6 ± 1.2 $48.0 \pm .5$ $4.45 \pm .81$ 8 14.9 ± 1.0 $32.6 \pm .5$ $3.55 \pm .80$ 6 17.2 ± 1.0 $33.3 \pm .5$ $12.1 \pm .9$ 9.1 \pm .8 $16.1 \pm .6$ $4.63 \pm .44$ $4.61 \pm .9$ 4 $6.4 \pm .5$ $10.6 \pm .4$ $4.71 \pm .10$ 0 $6.5 \pm .5$ $8.1 \pm .4$ $4.18 \pm .08$

ND = Not Detectable D = Decayed Away Before Analysis

•

Richland, Washington, 1970 (contd)

•

.

	24 I An	.0021 ± .0011		.0043 ± .0010		$.0031 \pm .0013$.0028 ± .0014		.0066 ± .0011		2100. ± 0600.				.0034 ± .0014									
	239 _{Pu}	.051 ± .003		.119 ± .006		•00. + •004		.079 ± 004		.186 <u>+</u> .008		.299 <u>+</u> .012		.261 ± .007		.242 ± .018		·001 + 1005		.074 ± .005		.075 <u>+</u> .008		.018 ± .003	
	238 _{Pu}	.005 + .001		.002 · .002		.029 ± .003		$.013 \pm .002$.033 ± .004		.041 ± .005		.041 ± .003		800. + 610.		.008 ± .002		.022 ± .003		. 004 <u>+</u> .004		<.0004	
	232 _{1h}	.047 ± .007	.029 ± .007	.056 ± .018	.070 ± .017	$010. \pm 670.$	110. ± 121.	193 ± .024	.160 ± .022	e10. ± E60.	.185 ± .059	.212 ± .026	.149 ± .011	.180 ± .012	.221 ± .012	.120 ± .023	.25 ± .13	.14 ± .11				.09 ± .12	.14 ± .10	.12 ± .11	.01. ± 00.
ри/10 ³ н ³	226 _{R.a}	<033	<.036	.033 ± .030	.024 ± .027	.044 ± .022	<.033	.004 ± .033	.001 ± .033	<.II	<.093	<.11	<.071	<.060	<.13	.066 ± .060	.37 ± .21	.31 + 18.	.34 ± .18					.18 ± .17	.18 ± .18
9	155 _{Eu}							1.12 ± .09	1.42 ± .09	2.83 ± .15	3.15 ± .15	3.82 ± .18	4.61 ± .13	3.41 ± .17	2.86 + .20	3.74 ± .30	2.85 ± .15	1.15 ± .10	1.36 ± .10	11.04 ± .11	1.04 ± .21	.68 ± .10			
	144 _{Ce}	23.0 ± .2	33.8 ± .3	39.1 ± .4	24.4 ± .2	89.1 ± .8	73.5 ± .7	92.0 ± .8	8. ± 6.88	263 ± 1	298 ± 1	389 ± 2	476 ± 3	373 ± 2	288 ± 1	3/3 ± 2	297 ± 2	100 ± 1	133 ± 1	105 ± 1	66.8 ± 1.1	48.2 ± 1.4	37.7 ± 1.0	25.0 ± 1.0	19.2 ± .6
	141 _{Ce}	3.50 ± .09	11. ± 66.4	5.39 ± .10	7.18 ± .12	22.7 ± .2	15.9 ± .1	24.1 ± .3	19.3 ± .2	45.2 ± .3	40.7 ± .2	44.2 ± .3	41.3 ± .2	24.8 ± .3	33.4 ± .6	17.7 ± .5	10.6 ± .2	3.01 ± .10	4.42 ± .12	3.52 ± .13	2.95 ± .15	16.1 ± .4	4.49 ± .06	3.04 ± .05	2.45 ± .07
	140 _{Ba}	190. ± 361.	.607 ± .024	.218 ± .029	.134 ± .025	.307 ± .026	.145 ± .019	.18 ± .12	.270 ± .068	.491 ± .057	.147 ± .074	.344 ± .089	1.25 ± .04	.384 ± .093	UN	ND	QN	ŊŊ	QN	QN	.61 ± .10	1. + 6.61	2.30 ± .21	1.32 ± .14	3.64 ± .25
	137 _{Cs}	12.0 ± .1	19.7 ± .2	13.2 ± .1	15.9 ± .1	15.5 <u>+</u> .1	12.4 ± .1	10.0 ± .1	12.6 ± .1	47.8 ± .2	28.3 ± .2	39.5 ± .2	37.6 ± .2	29.9 ± .2	23.5 ± .2	28.5 ± .2	25.0 ± .2	9.2 ± .1	13.8 ± .2	11.9 ± .2	8.9 ± .2	6.4 ± .1	5.9 <u>+</u> .1	7.4 ± .1	6.2 ± .1
Date	Off	9 1-15	5 1-30	0 2-12	2 3-2	3-15	5 3-3I	1 4-15	5 5-1	5-15	5 6-1	6-15	5 7-1	7-16	6 8-3	8-8	7 8-31	9-15	1-01 5	10-15	5 10-28	8 11-16	6 12-2	12-14	4 12-30
	5	12-2	-	I- 3	2-1	3-2	3-1	3-3	4-1	5-1	2-1 2-	[-9	6- I	1-1	7-1	8-3	8-1	9-I	9- I	1-01	10-1	10-21	11-11	12-2	12-14

ND = Not Detectable D = Decayed Away Before Analysis

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1971 •

	<mark>ه</mark>	<u>+</u> .002*	E00. ±	+ .004	1.004	100. 1	+ .015	610° Ŧ	÷ .016	. .02	<u>+</u> .026	± .014	EO. +	<u>+</u> .02	÷ .02	± .020	.041	• • 039	± .024	650. ±	1. 024	020. +	1.024	100. ±	610. 1	
	8	.015	.055	160.	110.	.223	.359	.535	.859	1.26	608	.992	1.28	1.00	1.49	.646	.353	111.	.085	960.	.07	.076	.029	110.	024	
	Zu	.035	SE0. 1	046	.048	- . 045	.048	.056	.058	.064	.024	.026	.024	.077	180.	.059	.047	.050	· 039	.075	.022	.047	160.	9	9	
	ĕ	.023	.064	.120	8	920-	.111.	.045	.136	-252 -	.221 4	.125 4	- 6IC.	.173 _	.268 1	TEL.	· 063	.082	.046	.040	10.	.044	.023	-	6	
	3	.022	160.	.025	044	.028	.026	VEO.	.041	.036	.036	.036	.040	.038	.045	.032	.027	.029	.029	.055	.02 3	.025	.023	9	.020	
	09	.022 ±	189 +	-031 -	÷ 6EO.	÷ EIO.	.045 <u>+</u>	- 054 +	- 202 -	- 065 +	- 055 +	+ C20.	÷ 0/0.	- 043 <u>+</u>	, 260.	- 032	÷ 210.		.112 2	· 10/ +	.057	• 028 •	. 62ù 1	2	.027 <u>+</u>	
		.022#	.021	.023	610 .	.026	.026	.032	260.	.036	.038	160.	.041	b とい	160.	.029	.025	.024	.015	660.	.01	610.	910.	01:		
	58 ^C	÷ 640.	÷ (60.	+ 880.	- EMO.	÷ 660.	123 ±	.148 ±	.208 ±	-259 ±	÷ 605.	.182 ±	-238 ±	.176 ±	.287 ±	.118 <u>+</u>	.074 ±	.027 ±	.042 ±	.017 ±	<u>+</u> 610.	- 110.	.012 t	.020 ±	물	
0 ³ H ³	0	.012	.016	.023	.020	.035	.045	160.	.047	.048	6£0.	.046	.053	.048	. 659	0:0-	160.	.026	.016	EEO.	.015	.018	.312	.014	.012	
I/Md0	<i>8</i>) ⁽	Ŧ 090.	÷ 980.	<u>+</u> ɛ/ı.	+ 060.	-196 <u>+</u>	÷ 355 ÷	.203 <u>+</u>	Ŧ HF.	426 ±	.295 ±	÷ 69E.	.452 ±	÷ 96E.	• 627 ±	. 293	.215 ±	138 ±	.058 ±	÷ 680.	- 054 ±	, 800.	.U43 ±	÷ 100.	- 055 <u>+</u>	
	İ,		_																							
	Ę	.017	.026	.032	620.	19.	660.	. 05	8.	90.	90.	.00	80.	.08	.21	90.	8	.044	.023	.054	.023	160.	.016	.021	510 .	
	54Mn	110. ± 631.	.315 ± .026	260. ± 164.	.358 ± .029	110. 1 121.	6E0. ± EIE.	1.40 ± .05	2.19 ± .06	2.76 ± .06	2.13 ± .06	2.67 ± .07	3.58 ± .08	2.96 ± .08	4.74 ± .27	2.39 ± .06	1.49 ± .04	.873 ± .044	.352 ± .023	·503 ± .054	.243 ± .023	.349 ± .031	.142 ± .016	130. ± 961.	510° - 602°	
	Sc 54Mn	.00. ± 631. 200.	.01 .315 ± .026	260. 191 . 032	.005 .358 ± .029	.006 .724 ± .041	.012 .913 ± .039	28 1.40 ± .05	25 2.19 <u>+</u> .06	28 2.76 ± .06	.020 2.13 ± .06	27 2.67 ± .07	48 3.58 <u>+</u> .08	21 2.96 <u>+</u> .08	30 4.74 ± .27	32 2.39 ± .06	0. <u>+</u> 61.1 +0	0 .873 ± .044	0 . 352 ± .023	0 .503 ± .054	0 . 243 ± .023	0 349 ± . 031	0 .142 ± .016	0. 139 ± .021	a	
	46 _{Sc} 54 _{Mn}	.163 ± .005 .153 ± .017	1.01 ± .01	260. ± 164. 200. ± 200.	.014 ± .005 .358 ± .029	.011 ± .006 .724 ± .041	.009 ± .012 .913 ± .039	<.028 1.40 ± .05	<.025 2.19 ± .06	<.028 2.76 ± .06	.011 ± .020 2.13 ± .06	<.027 2.67 ± .07	<.048 3.58 ± .08	<.021 2.96 <u>+</u> .08	<.030 4.74 ± .27	<.032 2.39 ± .06	ND* 1.49 ± .04	ND .873 ± .044	ND . 352 ± .023	NU .503 ± .054	ND .243 ± .023	ND .349 ± .031	NU .142 ± .016	ND .139 ± .021	ND . 203 ± .019	
	a 46 _{Sc} 54 _{Mn}	.011 .163 ± .005 .153 ± .017	.010 1.01 ± .01 .315 ± .026	.013 .005 <u>1</u> .005 .032	.011 .014 ± .005 .358 ± .029	.014 .011 ± .006 .724 ± .041	.014 .009 ± .012 .913 ± .039	.013 <.028 1.40 ± .05	.013 <.025 2.19 ±.06	.014 <.028 2.76 ± .06	.014 .011 ± .020 2.13 ± .06	.014 <.027 2.67 ± .07	.013 <.048 3.58 <u>+</u> .08	.012 <.021 2.96 <u>+</u> .08	.012 <.030 4.74 ± .27	.011 <.032 2.39 <u>+</u> .06	.030* ND* 1.49 ± .04	.019 ND .873 ± .044	.024 ND .352 <u>+</u> .023	.051 NU .503 ± .054	.022 NO .243 ± .023	.026 ND .349 ± .031	.025 H0 .142 ± .016	ND .139 <u>+</u> .021	.020 NR .200 ± .019	
	22 _{Na} 46 _{Sc} 54 _{Nn}	101 + 151. 200 + 191 . 110 + 110.	.012 ± .010 1.01 ± .01 .315 ± .026	.031 ± .013 .005 ± .005 ± .032	.017 ± .011 .014 ± .005 .358 ± .029	.038 ± .014 .011 ± .006 .724 ± .041	.034 ± .014 .009 ± .012 .913 ± .039	.027 ± .013 <.028 1.40 ± .05	.024 <u>+</u> .013 <.025 2.19 <u>+</u> .06	.087 ± .014 <.028 2.76 ± .06	.044 ± .014 .011 ± .020 2.13 ± .06	.081 ± .014 <.027 2.67 ± .07	.069 ± .013 <.048 3.58 ± .08	.155 <u>+</u> .012 <.021 2.96 <u>+</u> .08	.017 ± .012 <.030 4.74 ± .27	.034 ± .011 <.032 2.39 ± .06	.055 ± .030* ND* 1.49 ± .04	010 ± 878. 0N 010 ± 810. ± 810.	.012 ± .024 ND .352 ± .023	.032 ± .051 NU .503 ± .054	.016 <u>+</u> .022 NO .243 <u>+</u> .023	.013 ± .026 ND .349 ± .031	.010 ± .025 HU .142 ± .016	ND ND .139 <u>+</u> .021	.016 ± .020 NN .2201 ± .019	
	Be ²² Na 46 _{Sc} 54 _{Mn}	10. + 1. 011 + . 011 163 + . 005 153 + . 017	1 + 1 .012 + .010 1.01 + .01 .315 + .026	210. + 101. 000. <u>+</u> 000. <u>+</u> 001. <u>+</u> 001. <u>+</u> 01.	1 + 1 .017 + .011 .014 <u>+</u> .005 .358 <u>+</u> .029	5 ± 2 .038 ± .014 .011 ± .006 .724 ± .041	5 <u>+</u> 1 . 034 <u>+</u> . 014 . 009 <u>+</u> . 012 . 913 <u>+</u> . 039	3 ± 2 .027 ± .013 <.028 1.40 ± .05	5 ± 2 .024 ± .013 <.025 2.19 ± .06	1 ± 2 .087 ± .014 <.028 2.76 ± .06	2 ± 2 .044 ± .014 .011 ± .020 2.13 ± .06	2 ± 2 .081 ± .014 <.027 2.67 ± .07	0 ± 2 .069 ± .013 <.048 3.58 ± .08	1 ± 2 .155 ± .012 <.021 2.96 ± .08	1 ± 2 .037 ± .012 <.030 4.74 ± .27	i ± 2 .034 ± .011 <.032 2.39 ± .06) ± 2 .055 ± .030* ND* 1.49 ± .04	1	1 ± 1 .012 ± .024 ND .352 ± .023	1 ± 3 .032 ± .051 NU .503 ± .054	1 ± 1 .016 ± .022 № .243 ± .023	1 + 1 .013 + .026 ND .349 + .031	1 ± 1 .010 ± .025 MU .142 ± .016	1 ± 1 ND ND .139 ± .021	200 + CO2	
	7 Be 22 _{Na} 46 _{Sc} 54 _{Mn}	5 96 ± 1 .011 ± .011 .163 ± .005 .153 ± .017	114 ± 1 .012 ± .010 1.01 ± .01 .315 ± .026	7 196 + 1 .033 + .013 .005 + .005 + .005	134 ± 1 .017 ± .011 .014 ± .005 .358 ± .029	5 205 ± 2 .038 ± .014 .011 ± .006 .724 ± .041	216 ± 1 .034 ± .014 .009 ± .012 .913 ± .039	5 198 ± 2 .027 ± .013 <.028 1.40 ± .05	10 245 ± 2 .024 ± .013 <.025 2.19 ± .06	B 283 ± 2 .087 ± .014 <.028 2.76 ± .06	192 ± 2 .044 ± .014 .011 ± .020 2.13 ± .06	5 192 ± 2 .081 ± .014 <.027 2.67 ± .07	10 280 ± 2 .069 ± .013 <.048 3.58 ± .08	5 241 ± 2 .155 ± .012 <.021 2.96 ± .08	10 469 ± 2 .017 ± .012 <.030 4.74 ± .27	5 306 ± 2 .034 ± .011 <.032 2.39 ± .06	299 ± 2 .055 ± .030* ND* 1.49 ± .04	5 245 ± 2 .0'9 ± .019 ND .873 ± .044	10 114 ± 1 .012 ± .024 ND .352 ± .023	5 208 ± 3 .032 ± .051 NU .503 ± .054	134 <u>+</u> 1 .016 <u>+</u> .022 ND .243 <u>+</u> .023	5 159 ± 1 .013 ± .026 ND .349 ± .031	91 ± 1 .010 ± .025 MU .142 ± .016	5 90 ± 1 ND ND .139 ± .021	131 ± 1.016 ± .020 NO .131 ± 161	
ate	0ff 7 <u>Be</u> 22 _{Na} 46 _{Sc} 54 _{Mn}	1-15 96 <u>+</u> 1 .011 <u>+</u> .011 .163 <u>+</u> .005 .153 <u>+</u> .017	2-1 114 ± 1 .012 ± .010 1.01 ± .01 .315 ± .026	2-17 196 1 .033 1.013 .005 1.005 2.005	3-2 134 ± 1 .017 ± .011 .014 ± .005 .358 ± .029	3-15 205 ± 2 .038 ± .014 .011 ± .006 .724 ± .041	4-1 216 ± 1 .034 ± .014 .009 ± .012 .913 ± .039	4-15 198 ± 2 .027 ± .013 <.028 1.40 ± .05	4-30 245 ± 2 .024 ± .013 <.025 2.19 ± .06	5-18 283 ± 2 .087 ± .014 <.028 2.76 ± .06	6-1 192 ± 2 .044 ± .014 .011 ± .020 2.13 ± .06	6-15 192 ± 2 .081 ± .014 <.027 2.67 ± .07	6-30 200 ± 2 .069 ± .013 <.048 3.58 ± .08	7-15 241 ± 2 .155 ± .012 <.021 2.96 ± .08	7-30 469 ± 2 .037 ± .012 <.030 4.74 ± .27	8-15 306 ± 2 .034 ± .011 <.032 2.39 ± .06	9-1 299 ± 2 .055 ± .030* ND* 1.49 ± .04	9-15 245 ± 2 .0'9 ± .019 ND .873 ± .044	9-30 114 ± 1 .012 ± .024 ND .352 ± .023	10-15 208 ± 3 .032 ± .051 NU .503 ± .054	11-2 134 <u>+</u> 1 .016 <u>+</u> .022 HD .243 <u>+</u> .023	11-15 159 ± 1 .013 ± .026 ND .349 ± .031	12-1 91 <u>+</u> 1 .010 <u>+</u> .025 MU .142 <u>+</u> .016	12-15 90 ± 1 ND ND ND .139 ± .021	1-4 131 ± 1 .016 ± .020 ND .209 ± .019	

٠

MD = Not Detestable D = Decayed Xway Before Analysis

•

. 1

,

Richland, Washington, 1971 (contd)

:

	137 _{Cs}	4.53 ± .08	4.94 ± .08	17.5 ± .1	21.8 ± .2	10.6 ± .1	14.2 ± .1	13.5 ± .2	19.7 ± .2	25.5 ± .2	20.0 ± .2	23.3 ± .1	31.4 ± .2	34.0 ± .2	41.8 ± .2	23.2 ± .2	17.0 ± .1	15.0 ± .2	60. + 16.9	8.15 ± .15	3.74 ± .07	11.7±1	9.44 ± .11	6.63 ± .10	6.37 ± .08
	s) ⁴ Cs	.041 ± .014*	.041 ± .018	020. ± 660.	.150 ± .023	.083 ± .023	.039 <u>+</u> 021	.042 ± .023	.065 ± .031	.105 ± .034	.112 ± .030	.022 ± .033	.117 ± .037	.145 ± .036	.064 ± .042	.087 ± .030	.124 ± .025	.147 ± .024	810. ± 660.	.086 ± .040	.042 ± .013	.106 ± .021	710. + 960.	060. ± 160.	.200 ± .017
	125 _{Sb}	9E0. ± E26.	1.42 ± .07	3.13 ± .10	1.98 ± .08	3.84 ± .10	4.56 ± .10	6.27 ± .16	9.65 ± .19	12.6 ± .2	9.52 ± .18	11.2 ± .2	15.5 ± .2	13.1 ± .2	21.2 ± .2	10.7 ± .2	6.84 ± .14	3.91 ± .40	1.61 ± .07	2.45 ± .11	1.12 ± .06	1.81 ± .08	.720 ± .051	.234 ± .058	1.04 ± .05
	124 _{Sb}	.027 ± .005	.021 ± .006	700. ± 600.	900. 1 100.	<.014	<.032	<.032	<.038	<.028	060. ± 660.	<.026	<.041	<.036	<.029	<.037	*ON	QN	QŃ	QN	QN	DN	QN	QN	QW
DFM/10 ³ H ³	110mAg	.003 ± .003	100° + 800°	.012 ± .007	500 [.] 1 600 [.]	200. <u>+</u> EtO.	.031 ± .010	110. ± 160.	.034 ± .007	.050 ± .007	.070 ± .015	.039 ± .006	ELD. ± 270.	.065 <u>+</u> .008	.024 ± .010	.063 ± .013	*ON	QN	.049 ± .052	QN	.006 ± .046	010 ± 010.	ON	(IN	9
	106 _{Rt}	11. + 11.6	15.2 ± .5	7. ± 7.1E	19.8 ± .6	41.1 ± 1.1	54.8 ± .8	78.0 ± 1.2	124 ± 2	171 ± 2	111 ± 2	148 ± 2	200 ± 2	169 ± 2	268 ± 2	128 ± 1	81.1 ± 1.0	47.9 ± .9	18.2 ± .6	27.1 ± 1.1	12.3 ± .4	21.4 ± .7	8.74 ± .41	9.63 ± .48	12.2 ± .4
	103 _{ku}	2.49 ± .08	12.2 ± .1	15.8 ± .1	13.6 ± .1	34.7 ± .2	47.8 ± .3	63.4 ± .3	82.0 ± .3	90.3 ± .3	52.2 ± .3	57.3 ± .3	63.7 ± .3	42.3 ± .2	54.1 ± .3	20.8 ± .2	1. ± €.01	4.74 ± .10	1.56 ± .06	2.22 ± .12	.725 ± .044	.901 ÷ .057	2.06 ± .06	10.1 ± .1	.646 1 .029
	95 _{Mb}	7.97 ± .15	29.5 ± .5	44.5 ± .3	37.8 ± .2	103 ± 1	164 ± 1	243 ± 1	370 ± 1	421 ± 1	310 ± 1	365 ± 1	452 ± 1	335 ± 1	471 ± 1	207 ± 1	106 ± 1	57.2 ± .3	19.9 ± .3	26.8 ± .4	10.7 ± .1	14.5 ± .2	5.56 ± .09	4.79 ± .09	5.56 ± .09
																			~		-	8		~	6
	75 _{lr}	4.32 ± .14	17.6 ± .3	26.2 ± .3	22.0 ± .3	50.5 ± .5	89.2 ± .5	129 1	192 ± 1	233 ± 1	155 ± 1	180 ± 1	219 1 1	162 ± 1	1 1 2E2	9. 1 .6	53.9 ± .4	26.3 ± .3	9.29 ± .1	13.0 ± .4	4.89 ± .1	6.54 ± .1	2.73 ± .1	3.24 ± .15	2.70 ± .0
late	0ff 75 _{2r}	0 1-15 4.32 ± .14	5 2-1 17.6 ± .3	2-17 26.2 ± .3	7 3-2 22.0 ± .3	3-15 50.5 ± .5	5 4-1 89.2 ± .5	4-15 129 i 1	5 4-30 192 1	0 5-18 233 + 1	1 - 1 - 1 - 2 - 1	6-15 180 ± 1	5 6-30 219 1) 7-15 162 + 1	5 7-30 232 1 1	9. 1 2.99.2 <u>+</u> .6	5 9-1 53.9 ± .4	9-15 26.3 ± .3	1. 4 92.9 06-9	10-15 13.0 ± .4	1 4.69 1	11-15 6.54 ± .1	12-1 2.73 ± .1	12-15 3.24 ± .13	1-4 2.70 1.0

ND = Not Detectable D = Decayed Away Before Analysis

(contd)
1971
Washington,
R ich land,

.

ł

	9	.0033		.0008		1100.		1100.		.0016		.0008		1100.		.000				6000.		3000.		.000	
	241	0240 +	ł	0047 ±		0041 ±		7 6400		F 6800		¥ 8600		1054 ±		1 EEOC				013 <u>+</u>		<u>+ 620</u>		026 ±	
		002		. 005		. 500		. 900		. 800		. 700		010		900		004		908		900		004 .(
	239 _{P1}	. ± 610		075 ± .		. + 190		152 ± .		245 ± .		192 ± .		202 ± .		183 ± .		082 ±.		. + 090		103 ± .		067 ± .	
		.002		. 600.		. 600.		.002		.002		.002		. 003		. 002		. 100.		. 100.		. 603		. 002	
	238 _p	- 004		÷ 110.		+ 100.		-012 ±		+ 010		, 000		+ 100		+ 800		+ 200		+ 100		+ 600		+ 900	
	ج	008	010.	600	110.	600	610 .	.016	.013	.012	.022	.008	.016	.010	E10.	.023	* II.	•	60.		80.	. 10	.10	. 60.	.13
	232	.054 ±	-104 <u>+</u>	<u>+ 600.</u>	·III <u>·</u>	÷ E30.	<u>+</u> 661.	.258 ±	.161 <u>+</u>	-221 ±	.132 ±	÷ 190.	÷ 180.	<u>+</u> 760.	-201 ±	÷ 503.	.14 ±	QN	.26 ±	44 +	-25 ±	÷ H.	- 14 +	-10 +	.10 _
/10 ³ H ³	Ra	010.	.015	.015	6 10.	8 E	65	11	45	31	.051	58	_	2E0.	75	94	.16*	.18	11.	.21	.14	.18	.14	11.	60.
Hdo	226 _R	.022 ±	Ŧ EEO.	-027 +	.028 ±	0.>	¢.0	0.^	0.^ 0	0°>	+ 640.	0. ^	<u>۰</u> .	÷ 110.	0.>	•	-18 -	.16 <u>+</u>	, 35 <u>+</u>	.27 ±	-28 ±	-21 ±	-18 +	.12 ±	.14 ±
	E.	.047	.065	.084	.083	.12	.12	.15	.18	.20	.11	.18	.21	.19	. 25	.16	.12	• 094	.063	.12	.054	.072	.047	.052	.21
	155	.187 ±	÷ 906 · ·	-680 +	F EIF.	÷ /5.	-82 -	1.06 ±	1.80 ±	2.12 ±	1.37 ±	2.18 ±	2.67 ±	3.55 ±	3.70 ±	1.85 ±	1.38 ±	÷ 09/.	÷ 646.	+ 02.	- 295 +	470 +	183 ±	÷ 10E.	.27 ±
	l4 Le	5 1 .2	۲. + ا	₽. +;	•: +i	5. 1	1 +	r + 1			+		1+1	I + -	+1	I +	 +1	• • •	۳. +۱				+ .2	1 .2	. -2
	2	18.0	30.	65.2	41.4	83.(11(160	246	LIE .	256	303	400	338	535	259	191	9.6	37.7	52.3	24.4	39.0	14.3	14.3	21.1
	41 _{Ce}	6. +1	-: +!	- : +!		<u>+</u> .2	+ -5	+ .2	<u>+</u> .2	<u>+</u> .2	+ .2	₹. +	<u>+</u> .2		2. +	H. ±	5. +1	8. +1	ଞ୍ +।	1.12	99. +1	5 0. 1	99. +1	60. ±	. -
		1.89	10.2	12.5	10.4	24.9	33.2	42.0	50.7	53.5	33.5	30.9	31.9	20.6	25.1	9.56	4.64	2.18	.66	1.35	.42	.45	1.96	9.13	.54
	Ba	.016	8	.028	. 025	.022	.079	0.	.64	-41	.23	.094	.080	.15	.086	.049	•0	Q	9	a	9	a	.44	.	.67
	140	- 374 <u>+</u>	1.10 +	<u>+</u> 967.	1 96E.	.618 ±	. 619 <u>+</u>	1.05 ±	2.05 ±	1.55 ±	1.47 ±	.578 ±	. 145 ±	2.02 ±	÷ 1/6.	.366 ±	Ż	2	Z	Z	Z	Z	4.95 ±	15.9 1	+1 06.
٥	<u>01</u>	1-15	2-1	2-17	3-2	3-15	4-1	4-15	4-30	5-18	6-1	6-15	6-30	7-15	7-30	8-15	1-6	9-15	06-9	10-15	11-2	11-15	12-1	12-15	1-4
Dal	0	12-30	1-15	2-1	2-17	3-2	3-15	4 - 1	4-15	4-30	5-18	6-1	6-15	6-30	7-15	7-30	8-15	1-6	9-15	9-30	10-15	11-2	11-15	12-1	12-15

ND = Not Detectable D = Decayed Away Before Analysis

•

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1972

.009 <u>+</u> .029 .021 <u>+</u> .034 9E0. ± 1E0. .028 ± .025 .022 ± .027 •077 ± .059 .045 ± .018 .014 ± .015 .002 ± .010 600· Ŧ .024 ± .027 .048 .045 1 .034 .086 ± .044 .048 ± .025 .008 ± .016 .011 ± .015 .062 ± .051 .031 ± .056 <.058 9 88 MD S .008 • 014 ± 039 160. ± 750. EEO. ± 110. .029 ± .038 .061 ± .043 .109 ± .058 .020 + .098 .102 ± .033 .094 ± .041 610[.] 1 .174 ± .087 .105 ± .083 .125 ± .069 .005 ± .041 .075 ± .025 010 1 015 160. ± 660. .25 ± .11 .26 ± .10 .16 ± .13 .26 ± .11 65_{Zn} <.032 QN .012 .078 ± .046 .021 ± .026 .003 ± .029 .052 ± .029 .018 ± .029 .126 ± .039 .051 ± .034 .010 ± .050 .078 ± .045 .154 ± .055 490. ¥ 660. .169 ± .046 .030 ± .022 .015 ± .047 740. ÷ 860. .050 ± .037 .046 ± .031 160. ± 660. E10. ₹ 7E0. .037 ± .014 .015 .012 60 Co 23.6 ± .2 <u>+</u> Elo. +1 022 .019 + .016 .024 ± .016 .130 ± .035 710. ± 550. · 069 ± .022 .036 ± .048 .070 ± .059 .014 ± .021 .021 ± .017 .107 ± .044 .118 ± .050 .042 ± .036 .062 ± .052 .062 ± .044 .031 ± .028 .023 ± .011 .003 ± .052 110" ÷ E00 600° - 58_{C0} <.016 <.038 9 9 00 DPM/10³M³ 000 ± 000 . .032 ± .026 .075 ± .018 .053 ± .015 .062 ± .019 .057 ± .028 .111 ± .045 .102 ± .030 .058 + .021 E30. ± E61. .169 ± .059 050. ± 100. .171 ± .059 .045 ± .036 070 ± .016 .014 ± .015 .012 .138 ± .047 .046 + .046 .042 ± .033 .024 ± .026 .012 ± .015 .017 ± .021 57_{C0} +(.005 .048 .049 .233 ± .024 .046 .217 ± .026 .182 ± .041 .223 ± .022 .345 ± .030 .228 ± .023 .310 ± 029 .433 ± .036 438 + .051 .453 ± .057 .225 ± .045 .179 ± .038 .088 ± .033 .079 ± .029 .010 .296 ± .051 110. ± 201. .054 ± .045 .020 ± .012 110. 54Mn -260 + .257 <u>+</u> .345 ± + 090. +1 028 46_{Sc} 2 9 2 2 2 2 9 £ R 9 9 2 2 QN 2 g 9 2 Q 9 9 E10. ± E10 .016 ± .014 .023 ± .016 410. ± 610 .075 ± .034 019 ± .028 055 ± .043 059 ± .025 039 ± 029 078 ± .038 038 ± .023 .053 ± .037 049 ± .021 043 ± .022 021 ± .014 120. ± 010. 006 ± .016 110. ± 600 110. ± 660 22_{Na} <.051 <.054 <.089 3 212 ± 2 124 ± 1 292 ± 3 321 ± 3 205 ± 2 378 ± 3 158 ± 1 126 ± 1 255 ± 1 177 ± 1 E + OIE 425 ± 3 300 ± 2 239 ± 2 210 ± 2 339 ± 1 146 + 1 2 120 ± 1 ŝ 225 ± 1 7. Be ---+ | 244 ± 2 1 + 081 325 ± 142 2-18 **3-16** 4-20 1-17 5-15 6-16 6-29 11-29 1-17 8-15 **B-31** 9-15 10-16 10-31 12-15 3-3 **1E-7** 10-2 Off 2-2 4-5 5-3 **[-**] I-2 Date 1-17 2-18 3-16 5-15 4-20 6-16 6-29 8-15 9-15 10-16 3-3 7-17 11-15 11-29 2-2 5-3 12-15 4-1 7-31 **1E-8** 4-5 -9 10-2 5

MD = Not Detectable

D = Decayed Away Before Analysis

2)¹`

(contd)
1972
Washington,
Richland,

		.10	ç,		Π.	2	.18	80.	2	~	5.	.	~	~	e.	~	~	~	~	ŝ			90.	8
	137 _C	+۱	+1	+	+1 9	+1 4	+1	+1	+۱ دی	+ 2	+1	+1	+1	+1	+1	+1	+ ~	+1	+1	+ 5	+1 ~	+1	+	+1
		6.0	10.	13.	8.1	15.	8.0	4.9	14.	26.	13.	25.	14.	15.	22.	12.	14.	16.	17.	29.	23.	14.	4.8	3.3
	S	.041	.039	.036	IED.	660.	.066	.032	.044	.063	.045	.15	.046	860.	.051	.042	.041	.042	.037	019	.051	.044	.013	110.
	1340	078 ±	196 ±	241 ±	142 ±	235 ±	073 <u>+</u>	053 ±	235 ±	618 ±	107 ±	.26 ±	164 ±	1 1 1	208 ±	123 ±	228 ±	233 ±	232 ±	1 649	780 ±	525 ±	+ 000	030 ±
			ح	۲.	و	8				9	و	6			•	,	. 9	ۍ د	2.			65.	54	. 66
	25 _{5b}	9. +1	+	9. +1	9. +1	9. +I	 +	9. +1		- : +	~; +!	∼. +1	~! +1	∼. +1	~. +!	~. +ĭ	 +-	 +-		9. +1		9. +1	9. +1	9. +1
	-	.84	1.15	1.23	1.19	2.06	1.69	1.22	1.71	2.29	3.36	3.09	1.96	3.17	3.01	2.58	1.59	1.25	.72	1.14	.46	.222	.368	.416
	124 _{Sb}	060.	NEO.	QN	QN	.060	.12	.064	Ш.	660.	п.	660.	160.	.003	060.	.086	.074	.066	.055	Q	.096	99	QN	.11
_	9																		030		16			
10 ³ H ³	110m	QN	.084	Q	.058	QN	.12	.082	I 60 ⁻	14	н.	.12	II.	.10	п.	960.	.085	.073	+1 11	.074	+ 	Q	.046	.21
DPM/											_					-			.02					
	Ru	<u>ب</u>	9	÷.5	4	9.1	6, 	ي ب	بو ب	ۍ م	1.0	1.2	<u>i</u> 1.1	<u>i</u> 1.1	1.1	1.0		r. i	<u>.</u> .5	± .23	£ .37	<u>1</u> .20	± .18	÷.14
	101	11.7	10.2	12.5	10.6	15.1	12.6	11.5	15.6	24.0	23.1	30.1	18.9	28.5	30.3	25.2	19.2	12.1	1.37	9.67	6.00	3.05	3.41	2.11
		12	61	-	80	90	05	08			e	S	4	4	4	e	2	17	11	05	90	046	029	032
	103 _{Ru}	+1	+1	+1	+	+	, +1 0	+1	. + /	+1	+ 2	+1	+1 ~	+ _	+1	• +	• +	+;	+	• +1	+ 9	+	+	+1
		8.1	8.7	п.:	3.1	1.9	3.	5.2	=	52.	44	99	41	. 63	57.(86	18.	9.4	4.2	3.8	1.3	-53	-57	.28
	4	.13		н.	8		.17	2		-	-	-	• 2	2	ŝ	4.		~	90,	90	.07	8	8	.03
	<u>8</u>	3.58 ±	.62 ±	÷ 61.1	1.46 ±	5.25 ±	6.85 +	18.5 4	£ 6.9	141	106	133	78.5 i	33.7	16.4 ±	19.8	27.5 1	15.3 <u>1</u>	.85 ±	66.1	1.49 +	1.20 ±	1.55 ±	, 96.
		~	46 9	15	.12	.12 (61.	m	-	_	1	8	-	9	u	2	m	.27	11	80	11.	.07	8	04
	95 _{2r}	+۱ ص	+}	+1	+1	+1	+1	+1 m	+!	+1	+	+1	+ ~	+ 8	+1	+1	+1 ~	+ + ~	+1	+ -	+1	+1 ~	+	+1 5
		10.	5.1	5.0	2.4	3.1	2.7	21.	49.	12	85.	95.	53.	60.	A6.	29.	15.	8.3	3.9	3.8	1.5	1.	. 8	. 5
te	OFF	1-17	2-2	2-18	3-3	3-16	3-21	4-20	5-3	5-15	l-9	6-]6	6-24	1-17	J-31	8-15	B- 31	9-15	10-2	10-16	10-31	11-29	12-15	1-2
Da	on	1-4	1-17	2-2	2-18	3-3	3-16	4-5	4-20	5-3	5-15	6-1	6-16	6-29	11-1	J-31	8-15	8-3l	9-15	10-2	10-16	11-15	11-29	12-15

NI) = Not Detectable D = Decayed Away Before Analysis

Richland, Washington, 1972 (contd)

:

	241 _{Aun}	5 + .0006	ł	1 + .0004	I	6000. <u>+</u> E		2 ± .0008		3 ± .0004		3 <u>+</u> .0005		; + .0005	l	1 • • 0007		10004		i + .0010				
		.002		100.		.003		.002		.003		.005		9100.		.0026		.000		.0025				
	hu	.005		.005		.006		E00.		600.		.005		.005		.005		E00.		.003		.0005		
	239	.084 +	l	.080	ł	+ 260.		-032 +		.140 ±		.107 ±		+ 611.		.106 ±		.040 +		+ EEO.		.0054 +		
	3	.002		.002	.002		100.		.003		.002		.003		.002		.0005		.002			.0002		
	238	+ 100.		.007	.002 ±		<u>+</u> 200.		, 900.		, 1006 ±		.624 ±		, 110.				.002 <u>+</u>			0021 ±		
	E	.10	.16	89	80	.10	.23	60	п.	ЕГ.		.22	-22			.20	•	.15		.06		.06	90.	.05
~_	232	-20 +	-18 -	-21 +	÷EL.	Ŧ EI.	.44	-23 +	-25 +	-22 +		-27 ±	<u>+</u> 61.			÷ IE.		.16 ±		-14 +		-18 +	-20 <u>+</u>	·15 ±
H ^E OI/M	⁶ Ra	<u>+</u> .20	<u>+</u> .27	<u>+</u> .15		± .18	1 • • •	11. ±		. -23		1 .15	60. +	60 [.] +			H. +	± .15	EI. ±	<i>11</i> . ‡	1.12			<i>1</i> 0. +
a	2	.24	2.55	.20		.14	.17	.21		16.		.25	.27	.23			.25		.20	.37	.15			.17
	55 _{Eu}	1 .08	01. <u>+</u>	8 0. +	90. +	1 .08	1.12	Q	QN	9	± .22	± .23	1 .20	. 19	1 .20	. 18	<u>+</u> .14	+ .12	0I. <u>+</u>	90. +		90. i	90. +	+ .04
		.63	τε.	.42	.41	.49	. 70				.76	.95	.89	.98	68.	.67	.24	IE.	. 14	IE.	. 14	60.	.14	.21
	44 _{Ce}	د . +	4.	۳. +۱	. ++	۳. +۱	₩. +	۲. + ا	₹. +i	5. +	9. +	1. ±		1. +	9. +	-2 +1	₹. +1	₹. +i	e. +		11. ±	1.12	EL. <u>†</u>	10.1
		22.6	17.1	23.0	26.3	32.4	28.1	26.3	40.3	69.3	56.8	64.6	40.5	60.4	53.8	43.3	28.6	17.4	10.1	11.6	5.55	2.91	4.82	3.36
	Ce	-	88	.10	.07	90.	8			 .	-2		۳.	с.	۳.	.2	.2	.11	8	.05	.059	.059	.044	.054
	141	12.9 1	1.11 ±	9.74	2.58 1	1.53 1	41	15.8 ±	31.6 ±	94.1 +	53.0 1	67.2 ±	37.4 ±	46.1 ±	+ 0. 66	24.4 ±	10.5 ±	+ 68.4	2.24 ±	1.79 ±	.626 <u>+</u>	-200 +	<u>+</u> 523.	<u>+</u> 5/0.
	Ba	s.	. .	.21	EI .	190.	4	.18	.2	4.	۳.	۳.	91.	.13	.14	.085	.068	.047	~	~	1/0.	_	_	~
	140	22.7 ±	12.1 ±	8.21 ±	1.25 ±	430 +	. .3	8.93 ±	11.6 ±	30.5 ±	15.0 ±	12.5 ±	4.89 ±	3.69 ±	1.64 ±	. 655 <u>+</u>	.185 ±	-134 <u>+</u>	·.I.	ч.>	.040 ±	Ĩ	N	M
e	Off	1-17	2-2	2-18	3-3	3-16	3-21	4-20	5-3	5-15	[-]	6-16	6-24	7-17	16-1	8-15	1E- 8	9-15	10-2	10-16	10-31	11-29	12-15	1-2
Dat	On	1-4	1-17	2-2	2-18	3-3	3-16	4-5	4-20	5-3	5-15	6-1	6-16	6-29	11-1	16-1	8-15	B-31	9-15	10-2	10-16	11-15	11-29	12-15

ND = Not Detectable D = Decayed Away Before Analysis

•

.

Radionuclide Cgncentratigns in Surface Air at Richland, Washington (46²21'N, 119⁰17'W) in 1973

+ .010 .015 ± .029 010. ± 620. 100. ± .005 ± .010 800. ± EIO. ± .027 100. ± 300. <.011 2 g QN 88, Q 9 2 2 2 2 9 3 3 2 <u>e</u> 2 g 9 011 600. .054 .022 ± .016 .137 ± .016 .003 ± .015 •000. <u>+</u> EEO. <u>+</u>.014 .034 ± .005 $.023 \pm .012$ ± .023 10. + .028 ± .027 + .005 65_{Zn} <.042 <.074 <.10 9 9 9 Q 99 2 9 R 2 2 R 060. .055 .026 .014 010. ± 660. 101. ± 101. .154 ± .013 .034 ± .018 .058 ± .013 .034 ± .006 .024 ± .006 018 ± .004 .031 ± .014 .022 ± .008 .046 + .028 .003 ± 2003 .016 ± .004 200. ± 610. 700. ± EEO. 900° + 600° .018 + .005 .029 ± .004 ·215 ± .014 1.10 ± .03 012 + .005 60_{C0} 2 QN R 99 ÷ .013 .057 ± .030 .017 ± .008 .032 ± .003 .001 ± 100. .014 ± .007 £00**.** 100. ± 110. 600. .002 .008 58 C0 <.030 <.014 Q Z 9 9 Q 9 QN Ð Q Q Q 9 2 +1 +1 +1 +1 .00 .027 .00 .004 .034 0PM/10³M³ 57_{Co} .00 .008 .002 ± .016 .053 ± .015 .020 ± .016 .012 ± .005 .024 ± .006 .036 ± .006 .038 ± .008 900. .018 .00 .005 F00. + .031 ± .007 .018 ± .003 .016 ± .002 .017 ± .004 .002 ± .005 021 ± .008 .000 ± .002 000° + 5004 .085 ± .007 100. ± 100. <.036 . ± 660. · Ŧ EEO. . ± 050. -016 + -050 <u>+</u> .022 ± 3 80 .024 ± .003 .080 ± .015 020 ÷ 013 .060 ± .012 E00. 000. ± 180. .022 600. E00. ± 680. .114 ± .008 .072 ± .008 .114 ± .009 .102 ± .000 .063 ± .005 110. .003 001 ± 100 .014 .014 .035 ± .005 90. .004 .046 ± .004 <u>ю</u> 143 ± .010 .005 000. ± 860. 54 Mu ÷ 160. . 086 + 1EO. +1 ÷ 350. • 037 ± +1 +1 +ł .085 III. .037 047 , 2005 + 10. ± 200. <.044 <.020 <.015 <.020 <.058 <.011 3 9 9 Q 2 2 ŝ 22 99999 3 Q 2 2 +1 .014 .008 .018 + .015 .021 ± .016 000. ± 6M0. .027 ± .005 .068 ± .016 .029 ± .023 .021 ± .014 .008 ± 800 .034 ± .026 .054 ± .010 .049 ± .010 .049 ± .016 .010. ± 610. .021 ± .006 .00. ± ESO. .032 ± .006 .004 .053 ± .008 . 010 ± 010. 065 ± .017 046 ± .012 900. + 610. .020 + .005 .00 .008 .005 22_{Na} .012 ± . 006 ± .012 ± + 010. 138 ± 1 218 ± 1 1 + 066 ---+| 242 ± 1 244 ± 1 120 ± 1 297 ± 1 140 + 286 ± 1 . - 99E 403 + 292 ± 1 141 + 300 ± 1 +1 +1 +1 +1 +1 +1 ,Be 158 **79** 270 360 419 92 166 118 63 **EI-I** 7-20 2-14 3-16 3-30 5-15 **1-13** 8-15 **I-31** 4-17 5-3I 61-9 6-28 7-10 7-25 8-31 9-15 10-15 12-14 Off 3-2 **2-1** 1-1 12-3 12-31 10-1 11-2 Date 1-15 3-30 6-28 **IE-I** 2-14 3-16 4-17 5-15 6-15 7-10 7-20 5-31 7-13 61-6 7-25 8-15 10-15 Ш 1-2 8-31 12-14 3-2 **1**-5 10-1 1-1 11-2 12-3 120

= Not Detectable = Decayed Away Before Analysis

Richland, Washington, 1973 (contd)

ND = Not Detectable D = Decayed Away Before Analysis
	Ân																				.0024		1100.	1100.		.0023	
	241																				.0005		.0016 +	• 1900.	I	+ 0/00.	f
	P	.0016		0000 .				100.		0030.		.0038		.0032					.0015		.0026		.0022		.0010		.0010
	239	-0241 +		+ 6610.				+ IIE0.		+ 1660.		.0441 +		.0288 +	ł				.0236 <u>+</u>		.0159 ±		.0132 ±		<u>+</u> 0110.		÷ 0550.
	hu	.0007		.0003				.0002		.0008		.0007		.0008					.0004		.0008		.0005		110		110
	23(.0062		.0026				.0016		- 0038 <u>-</u>		• 0029		.0028 4					+ IE00.		+ 6200.		.0021 ±		0.>		0.>
(contd)	Ac.	670. 1	e70. ±	<u>-</u> .065	÷.056	.029	110. 1	± .032	6 [0.]	.038	.025	160.	.018	0	.10	.062	.041	.036	.016	.010	.027	.025	.020	.012	110.	EE0.	.021
1973	520	.314 _	.084	.141	· 196	.048	.065 ±	· 064 ·	· 092	.075 ±	.044	, 660.	-067 <u>+</u>	Z	÷90.	• 660°	. 141 ±	.106 ±	+ 890.	.028 ±	• 660.	.082 ±	• 690°	, 039 <u>+</u>	• 035 +	.053 ±	.048 ±
ngton,	6 ka	+ .10	± .078	<u>±</u> .092	± .084	<u>+</u> .040	+ .014	+ .039	<u>+</u> .052	+ .049	+ .030	± .041	±.026	QN	Q	QN	÷ .050	± .046	10. 1	± .015	± .036	± .038	÷ .019	± .024	£ .015	Q	. 028
, Washi	10 ³ M ³	.37	.261	.178	.231	.110	.106	.082	160.	.149	.100	.135	.061			_	.136	.082	.073	070.	.074	.075	.074	.027	.016	~	F 060 .
ich land	55 _{Eu}	. .053	<u>±</u> .046	± .058	± .049	¥ .018	± .023	± .025	<u>±</u> .026	± .029	<u>+</u> .026	± .031	± .012	± .024	± .058	± .032	<u>+</u> .025	<u>±</u> .021	± .012	900. 1	± .015	110. 1	600· +	± .014	· 000. Ŧ	± .012	600° -
a		.218	.121	.121	.156	.136	.216	.272	.257	.306	.212	.279	.138	.209	660.	.232	.249	.127	.143	101.	.074	.063	.051	.053	.032	.055	.038
	44 _{Ce}	EI. <u>+</u>	H. 1	. 13	II. <u>†</u>	90. +1	8. +1	<i>1</i> 0. +	8 . 1	60. +	₩. *	6 0. 1	₽. +	+ °08	11. ±	1.12	60. T	8 0. †	. 50. .	. 100	•	5 0. 1	ار	+ .04	± .35	90 [.] 1	÷.05
		.274	2.48	4.77	3.79	3.28	6.54	7.64	7.03	8.55	6.51	7.12	3.95	4.92	6.10	5.63	7.00	3.79	3.98	2.94	2.45	2.39	2.36	3.12	2.80	4.57	4.18
	l _{Ce}	ND	<u>+</u> .048	+ .040	± .029	± .024	1.028	QN	150	± .020	± .026	048	± .008	÷ .03		90. 1	÷.65	÷ .05	19	10. Ť	8		ю. -	- 05	. 02	. 02	. 02
	V		134	1/0.	.060	.072	.036		~	.040	.058	~	900	1.21	12.5	2.43	6.16	2.38	6.00	2.80	3.15	2.99	2.32	2.57	1.72	2.27	1.39
	Ba	9	.13	.073	160.	Q	g	a	0	a	0	D	a	.16	8.	-40	.22	.29	8	020.	.088	.051	.051	.022	610.	.025	.054
	140	-	- 19 -	- 084	-115 -	Z .	æ	z	Z	z	z	z	z	2.63 ±	25.4 ±	5.25 ±	1.33 ±	2.20 ±	<u>+</u> Ee.I	+ 196.	.842 ±	.467 ±	.372 ±	.156 <u>+</u>	.087 ±	÷ 126.	- 234 +
	7 _{C5}	+ .08	÷ .03	20. +	8 +1	. - 03	1 0. 1	EO. 1	8.	+ .04	8.	÷.04	÷.02	÷ .03	90. T	90.	- - -	.04	8.	10.	-05 -			- - - - -	10.		10. 1
	EI	7.99	3.22	6.43	3.22	2.40	3.41	4.07	4.37	4.31	4.47	4.12	2.33	2.90	2.80	3.43	3.96	2.40	2.23	1.92	1.17	1.47	1.49	1.93	.84	1.10 ±	.48
	te Of f	1-13	I-3I	2-14	3-2	3-1,6	1-3 7	4-17	1- <u>5</u>	5-15	5-31	6-15	6-28	1-1	7-10	7-13	7-20	7-25	8-15	8-31	9-15	10-1	10-15	11-2	12-3	12-14	12-31
	0n	1-2	1-15	I-3I	2-14	3-2	3-16	3-30	4-17	1- <u>5</u>	5-15	5-31	6-15	6-28	1-1	7-10	7-13	7-20	7-25	8-15	8-JI	9-19	1-0	0-15	1-2	2-3	2-14

ND = Not Detectable D = Decayed Away Befure Analysis

•

٠

:

Radionuclide Cgncentratigns in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1974

-

ND = Not Detectable D = Dccayed Away Before Analysis •

• 1

(contd)
1974
Washington,
tich land.

•

•

	134 _{Cs}	17 ± .006	13 + .005	02 ± .636	QN	38 ± .008	600 [.] 1 11	600. <u>+</u> 80	30 1 013	01 ± .017	610. 1 60	04 ± .014	07 ± .016	010. ± 61	31 ± .010	ND	010. + 610	ON	20 + .007	14 ± .006	$900. \pm 10$	11 + .005	900· · 910	$10 \pm .005$	13 + .006
	131	O. ON	D. ON	U. ON	QN	D. ON	0. ON	U. UN	0. ON	O. ON	O. ON	D. ON	2.16 ± .25 .0	.529 ± .083 .0	1.57 ± .12 .0	.35 ± .12	0. 60. ± 10.1	.233 ± .088	ND .	0. UN	D. ON	D. ON	D. ON	0. ON	U. QN
	125 _{Sb}	.244 ± .021	.393 ± .024	.734 ± .034	.710 ± .036	1.35 ± .05	2.89 ± .06	2.34 ± .06	5.97 ± .07	5.53 ± .07	3.55 ± .08	6.92 ± .09	7.70 ± .11	2.84 ± .04	4.63 ± .06	3.47 ± .06	2.38 ± .05	1.70 ± .05	1.97 ± .05	1.75 ± .04	1.41 ± .04	.473 ± .024	.742 ± .033	.762 ± .032	160. ± 631.
H ³	124 _{Sb}	QN	ND	QN	ND	ND	QN	ND	ND	ND	ND	QN	QN	ON	DN	ON	QN	QN	ND	Q	.018 ± .017	QN	<.022	ND	NN
DPM/10	110mAg	ND	ON	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND	QN	QN	QN	ON	Ŵ	92	QN	QN	QN	QN	<,033	1£0.>
	106 _{Ru}	1.47 ± .11	3.85 ± .13	7.58 ± .18	9.10 ± .20	14.9 ± .3	32.4 ± .3	26.3 ± .3	83.9 ± .7	55.6 ± .4	36.3 ± .5	64.0 ± .5	80.3 ± .7	39.4 ± 3.	40.1 ± .3	29.0 ± .3	19.3 ± .3	13.9 ± .3	14.7 ± .2	12.5 ± .2	9.29 <u>+</u> .18	3.68 ± .12	5.22 ± .16	5.54 ± .16	6.29 ± .16
	103 _{Ru}	2.64 ± .04	3.48 ± .03	6.04 ± .05	5.57 ± .05	7.74 ± .05	12.6 ± .1	8.11 ± .06	15.3 ± .1	10.8 ± .1	3.86 ± .10	7.55 ± .07	B.15 ± .08	3.79 ± .04	7.02 ± .05	4.28 ± .04	90. ± E0.6	4.82 ± .04	5.62 ± .07	3.36 ± .05	4.54 ± .05	2.46 ± .03	5.31 ± .04	5.26 ± .04	5.61 ± .04
	95 _{Nb}	11.2 ± .1	16.2 ± .1	31.5 ± .1	31.8 ± .1	49.1 ± .1	90.6 ± .2	66.0 ± .2	139 ± 1	113 + 1	68.5 <u>+</u> .3	102 ± 1	6. ± 3.66	48.1 ± .1	44.8 ± .1	54.5 ± .1	29.5 ± .1	22.2 ± .1	33.3 ± .2	37.3 ± .1	26.4 ± .1	13.3 ± .1	28.8 ± .1	32.5 ± .1	29.8 ± .1
	95 _{Zr}	5.38 ± .08	8.47 ± .08	15.6 ± .1	15.3 ± .1	24.2 ± .2	43.2 + 2.64	31.8 ± .2	66.6 ± .2	53.5 ± .2	31.9 ± .3	46.9 ± .3	48.0 ± .3	22.4 ± .1	22.9 ± .1	38.6 ± .2	20.0 ± .1	14.0 ± .2	17.9 ± .2	20.5 ± .2	14.0 + .1	7.76 ± .08	16.5 ± .1	1.1 ± 1.11	15.8 ± .1
le	Off	1-16	2-1	2-15	3-1	3-15	4-1	4-15	4-30	5-15	6-2	6-16	6-30	7-15	7-31	8-15	1-6	9-15	06-9	10-15	10-31	11-15	11-30	12-16	12-31
Da	ų	12-31	1-16	2-1	2-15	3-1	3-15	4-1	4-15	4-30	5-15	6-3	6-16	6-30	7-16	7-31	8-16	9-2	9-15	9-30	10-15	10-31	11-15	11-30	12-16

•

ND = Not Detectable D = Decayed Away Before Analysis

.

.

Richland, Washington, 1974 (contd)

•

	241 Au	< .0025		<.0025		< .0025		EE00. ± EE00.		.0012 ± .0027		.0040 ± .0012		.0015 ± .0021		<.0032		.0025 ± .0029		.0029 ± .0027		<.0025		<.0019	
	239 _{Pu}	.0191 + .0028		.0222 ± .0030		.0284 1 .0022		8E00. ± 66E0.		.116 ± .005		.0698 ± .0020		.0734 ± .0026		.0645 ± .0024		.0187 ± .0013	·	.0136 ± .0012		$.104 \pm .003$		1000 ± 0021	
	238 _{Pu}	<.0012		<.0012		.0024 ± .0006		.0021 ± .0007		.0001 ± .0006		.0030 ± .0004		.0029 <u>+</u> .0004		.0023 ± .0004		.0015 ± .0004		.0018 ± .0004		.0018 ± .0004		$.0014 \pm .0004$	
	228 _{AC}	.022 ± .027	.023 ± .027	ON	.110 ± .052	.109 ± .058	.048 ± .060	ND	.23 ± .10	ND	.33 ± .12	ND	.158 ± .078	QN	MD	.118 ± .043	.106 ± .015	.122 ± .048	.185 ± .043	.120 ± .027	.019 ± .032	.037 ± .022	.025 ± .034	.105 ± .038	.028 ± .033
~_	226 _{ka}	GN	QN	QN	QN	ON	QN	QN	QN	9	ND	11. ± 16.	.28 ± .07	.12 ± .08	MD	.27 ± .08	.13 <u>+</u> .06	.01 ÷ .05	.14 ± .05	.14 ± .04	.14 ± .04	10. ± 10.	.14 ± .02	.020 ± .045	.11 ± .03
DPM/10 ³	155 _{Eu}	.077 ± .012	₽10. + ₽60 .	.202 ± .021	120. ± 161.	.345 ± .020	.621 ± .025	.529 ± .024	1.43 ± .05	1.26 ± .05	.84 ± .05	1.57 ± .05	2.05 ± .07	.760 ± .038	.911 ± .040	.859 ± .032	0£0° Ŧ 909°	.364 ± .029	.413 ± .028	.414 ± .026	.259 🛓 .016	.133 _ 915	.239 <u>+</u> .021	.243 ± .021	elo. <u>+</u> e/l.
	144 _{Ce}	6.5 <u>+</u> .1	1. ± 1.9	22.0 ± .1	22.1 ± .1	37.5 ± .2	74.6 ± .2	62.8 ± .2	149 ± 1	ŭ5.9 <u>±</u> .2	92.2 ± .3	158 ± 1	196 ± 1	93.1 ± .2	94.1 ± .2	70.4 ± .2	47.3 ± .2	34.3 ± .1	38.2 ± .2	1.1 ± .1	23.6 ± .1	11.3 ± .1	1. ± E.91	22.7 ± .1	18.6 ± .1
	141 _{Ce}	1.61 ± .02	1.65 ± .02	2.92 ± .03	2.42 ± .03	3.09 <u>+</u> 03	4.68 ± .03	2.94 ± .03	5.32 ± .04	3.62 ± .04	1.83 ± .04	2.24 ± .05	4.27 ± .05	1.63 ± .02	5.33 1 .04	4.47 ± .03	10.8 ± .1	5.75 ± .04	6.13 ± .07	4.42 ± .04	4.04 ± .04	2.42 ± .02	4.75 ± .03	5.13 <u>+</u> .03	3.78 ± .03
	140 _{ba}	QN	QN	MD	QN	QN	ON	QN	QN	QN	MD	QN	3.85 ± .14	1.05 ± .04	3.16 ± .04	2.11 ± .07	4.54 ± .09	1.53 ± .06	1.00 ± .08	.410 ± .033	.361 ± .090	.291 ± .026	.224 ± .024	.305 ± .036	.096 ± .022
	137 _{Cs}	.80 1 .02	.98 ± .02	1.78 ± .03	2.26 ± .03	5.29 ± .05	6.74 ± .05	5.53 <u>+</u> .05	12.9 <u>+</u> .1	12.5 ± .1	8.53 ± .08	15.2 ± .1	17.7 ± .1	9.61 ± .08	10.5 ± .1	8.25 ± .05	5.08 ± .05	4.49 ± .04	4.71 ± .04	4.01 ± .04	3.14 ± .03	1.33 ± .02	2.31 ± .03	2.01 ± .03	2.02 ± .02
ale	Off	1-16	2-1	2-15	1- E	3-15	4-1	4-15	4-30	5-15	6-2	6-16	6-30	7-15	7-31	8-15	1-6	9-15	9-30	10-15	16-01	11-15	11-30	12-16	12-31
Dē	On	12-31	1-16	2-1	2-15	3-1	3-15	4-1	4-15	4-30	5-15	6-3	6-16	6-30	7-16	1E -1	<u>8-16</u>	9-2	9-15	06-9	10-15	10-31	11-15	06-11	12-16

ND = Not Detectable D = Decayed Away Before Analysis

•

1.2000
19101

Radiunuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'H) in 1975

m 0ff 10 $10f$ </th <th>Dal</th> <th>te</th> <th><i>L</i></th> <th>22</th> <th>46</th> <th>DPM/10³M³</th> <th>512</th> <th>58.</th> <th>.09</th>	Dal	te	<i>L</i>	22	46	DPM/10 ³ M ³	512	58.	.09
1 1-16 166 1 010 \cdot 006 \cdot 012 \cdot 011 \cdot 018 \cdot 008 \cdot 019 \cdot 008 \cdot 019 \cdot 008 \cdot 011 \cdot 008 \cdot 011 \cdot 008	_	Off	Be	Na	Sc	WN.		0)	- (0
	IE	1-16	166 <u>+</u> 1	.010 + .006	<.012	.210 ± .010	.018 + .005	.011 ± .008	.019 ± .006
31 $2-16$ 247 ± 1 0.22 ± 0.09 <0.016 551 ± 0.017 0.018 ± 0.003 0.014 ± 0.012 0.012 ± 0.012 0.014 ± 0.012 0.012 ± 0.012 0.012 ± 0.024 0.001 ± 0.002 1 $4-15$ 220 ± 11 0.012 ± 0.003 <0.017 $.514 \pm 0.17$ 0.013 ± 0.003 0.011 ± 0.011 0.013 ± 0.003 1 $4-15$ 220 ± 11 0.012 ± 0.003 <0.017 $.713 \pm 0.013$ 0.013 ± 0.012 0.013 ± 0.012 1 $4-15$ 2201 ± 11 0.012 ± 0.003 <0.016 $.414 \pm 0.16$ 0.013 ± 0.003 0.014 ± 0.02 0.010 ± 0.003 15 $5-11$ 0.012 ± 0.003 $<0.016 \pm 0.013$ $.014 \pm 0.06$ 0.014 ± 0.02 0.014 ± 0.02 15 $5-11$ 1002 ± 0.003 0.011 ± 0.014 0.010 ± 0.013 0.014 ± 0.02 0.014 ± 0.02 16 $5-11$ 0.012 ± 0.012 0.014 ± 0.016 0.014 ± 0.016 0.014 ± 0.016	16	1-31	1 + 161	.026 ± .007	QN	.433 ± .011	.001 + 100	.024 ± .011	.035 ± .008
	31	2-16	247 ± 1	.022 ± .009	<.016	.521 ± .016	.034 ± .008	.01 ± .013	.031 ± .008
3 $3-16$ 279 ± 1 $.082 \pm .001$ $<.021$ $.713 \pm .02$ $.015 \pm .007$ $.035 \pm .012$ $.011 \pm .011$ $.002 \pm .003$ 1 $4-15$ 220 ± 1 $.018 \pm .009$ $<.017$ $.564 \pm .017$ $.034 \pm .008$ $.011 \pm .011$ $.043 \pm .008$ 1 $4-15$ 220 ± 1 $.018 \pm .009$ $<.017$ $.564 \pm .017$ $.034 \pm .008$ $.011 \pm .011$ $.043 \pm .008$ 2 $5-15$ 271 ± 1 $.052 \pm .009$ $<.016$ $.511 \pm .016$ $.031 \pm .008$ $.012 \pm .012$ $.004 \pm .008$ 1 $7-1$ 147 ± 1 $.019 \pm .006$ $<.016$ $.414 \pm .016$ $.031 \pm .008$ $.011 \pm .012$ $.002 \pm .003$ 1 $7-1$ 147 ± 1 $.019 \pm .006$ $.010 \pm .016$ $.010 \pm .016$ $.014 \pm .068$ $.011 \pm .012$ $.001 \pm .002$ 1 $7-1$ 147 ± 1 $.019 \pm .006$ $.010 \pm .016$ $.011 \pm .012$ $.012 \pm .012$	16	3-3	1 7 161	e00. ± 110.	<.016	.578 ± .017	.018 ± .003	.034 ± .012	.045 ± .009
	-	3-16	279 ± 1	110. + 240.	<.021	.773 ± .024	.033 ± .010	.036 ± .016	800. ± 060.
1 $4-15$ 220 ± 1 $.018 \pm .009$ $<.017$ $.564 \pm .017$ $.054 \pm .003$ $.011 \pm .011$ $.013 \pm .003$ $.012 \pm .012$ $.024 \pm .010$ $.011 \pm .011$ $.013 \pm .003$ $.022 \pm .012$ $.010 \pm .003$ 2 5-15 271 ± 1 $.052 \pm .009$ $<.016$ $.531 \pm .016$ $.033 \pm .003$ $.022 \pm .012$ $.010 \pm .003$ 15 5-31 275 ± 1 $.003 \pm .009$ $<.016$ $.484 \pm .016$ $.003 \pm .003$ $.012 \pm .012$ $.072 \pm .012$ $.013 \pm .010$ $.021 \pm .003$ 16 $7-11$ 147 ± 1 $.019 \pm .006$ $.011 \pm .016$ $.021 \pm .003$ $.022 \pm .003$ $.014 \pm .006$ $.014 \pm .006$ 16 $7-11$ 348 ± 1 $.042 \pm .006$ $.011 \pm .006$ $.011 \pm .006$ $.014 \pm .006$ $.014 \pm .006$ 16 $7-11$ 348 ± 1 $.012 \pm .006$ $.011 \pm .006$ $.004 \pm .006$ $.014 \pm .006$ 16 $7-11$ 294 ± 1 $.012 \pm .006$ $.014 \pm .006$ $.004 \pm .006$ $.014 \pm .006$ 16	16	4-1	1 7 961	.026 + .009	<.016	419 + .015	.007 . .007	.023 ± .012	.013 ± .008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	4-15	220 ± 1	.018 ± .009	<.017	.564 ± .017	.034 ± .008	110. ± 110.	.043 ± .008
2 5-15 271 ± 1 $.052 \pm .009$ $<.016$ $.484 \pm .016$ $.031 \pm .003$ $.022 \pm .012$ $.012 \pm .012$ $.010 \pm .003$ 13 6-15 353 ± 1 $.002 \pm .003$ $.016$ $.484 \pm .016$ $.030 \pm .003$ $.021 \pm .012$ $.021 \pm .001$ $.021 \pm .012$ $.026 \pm .003$ 15 7-1 147 ± 1 $.019 \pm .006$ $.010$ $.104 \pm .006$ $.014 \pm .006$ $.014 \pm .006$ $.014 \pm .006$ 15 7-11 147 ± 1 $.019 \pm .000$ $.010 \pm .000$ $.011 \pm .005$ $.014 \pm .006$ $.014 \pm .006$ 16 7-13 288 ± 11 $.025 \pm .001$ $.005 \pm .003$ $.011 \pm .006$ $.014 \pm .006$ $.014 \pm .006$ $.014 \pm .006$ 16 831 179 ± 1 $.014 \pm .006$ $.109 \pm .003$ $.001 \pm .003$ $.004 \pm .006$ $.014 \pm .006$ 16 831 179 ± 1 $.014 \pm .006$ $.010 \pm .006$ $.001 \pm .006$ $.001 \pm .006$ $.001 \pm .006$ $.001 \pm .006$ $.014 \pm .006$ 17 $10-25$ $240 \pm .006$	15	5-2	284 ± 1	.034 ± .010	<.017	.706 ± .019	.038 ± .009	.018 ± .012	.024 ± .009
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	5-15	2/1 + 1	.052 + .009	<.016	.531 ± .016	.003 ± .003	.022 ± .012	.010 ± 010.
31 $6-15$ 353 ± 1 $.042 \pm .010$ $<.012$ $.434 \pm .016$ $.016 \pm .006$ $.014 \pm .006$ $.024 \pm .006$ $.014 \pm .006$ $.024 \pm .006$ $.026 \pm .007$ $.026 \pm .006$ $.02$	15	5-31	275 ± 1	600 · 000 ·	<.016	.484 ± .016	.030 ± .008	.010 + 610.	.001 ± 120.
15 7-1 147 1 $.019$ $.006$ N0 $.166$ $.009$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.014$ $.106$ $.021$	IE	6-15	353 ± 1	.042 ± .010	<.012	.434 ± .016	.029 + .008	.015 ± .012	$.026 \pm .008$
1 7-15 348 1 .045 .008 HD .252 .010 .014 006 .001 024 007 .024 007 .024 005 .001 026 007 .021 005 .001 006 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 .001 026 026 026 024 026 024 026 024 026 024 026 024 026 024 026 024 026 024 026 024 026 024 026 024 026 026 026 02	15	1-1	147 ± 1	.000 . <u>+</u> 010	QN	.166 ± .009	$.010 \pm .004$	900° - 900°	.014 ± .006
15 $7-31$ 288 ± 1 .026 $\pm .007$ < .008.189 $\pm .007$.022 $\pm .005$.004 $\pm .006$.021 $\pm .005$.039 $\pm .006$ 15 $8-15$ 294 ± 1 .020 $\pm .006$ < .007	_	7-15	348 ± 1	.045 ± .008	QN	.252 ± .010	.014 ± .006	.008 ± .007	.024 ± .006
31 $B-15$ 294 ± 1 $.020 \pm .006$ $<.007$ $.153 \pm .009$ $.011 \pm .005$ $.006 \pm .005$ $.005 \pm .004$ $.253 \pm .010$ 31 $9-15$ 374 ± 1 $.014 \pm .005$ $K0$ $.057 \pm .006$ $.005 \pm .003$ $.005 \pm .004$ $.253 \pm .010$ 31 $9-15$ 374 ± 1 $.024 \pm .006$ $R0$ $.149 \pm .006$ $.005 \pm .003$ $.005 \pm .004$ $.253 \pm .010$ 15 $10-1$ 305 ± 1 $.016 \pm .005$ $.100$ $.149 \pm .006$ $.005 \pm .003$ $.045 \pm .003$ $.043 \pm .003$ 15 $10-15$ 249 ± 1 $.017 \pm .005$ $.009 \pm .004$ $.057 \pm .006$ $.006 \pm .003$ $.005 \pm .004$ $.068 \pm .003$ 16 $10-15$ 249 ± 1 $.017 \pm .005$ $.009 \pm .004$ $.057 \pm .006$ $.006 \pm .003$ $.002 \pm .004$ $.058 \pm .004$ 16 $10-15$ 249 ± 1 $.017 \pm .005$ $.006 \pm .003$ $.006 \pm .003$ $.005 \pm .004$ $.065 \pm .003$ 16 $10-15$ 249 ± 1 $.017 \pm .005$ $.006 \pm .003$ $.006 \pm .003$ $.005 \pm .004$ $.065 \pm .004$ 31 $11-15$ 207 ± 1 $.018 \pm .005$ $.006 \pm .003$ $.004 \pm .002$ $.014 \pm .003$ $.066 \pm .003$ 15 $12-1$ 166 ± 1 $.018 \pm .006$ $.003 \pm .003$ $.003 \pm .003$ $.005 \pm .004$ $.005 \pm .003$ 20 $11-15$ 207 ± 1 $.011 \pm .005$ $.006 \pm .003$ $.001 \pm .002$ $.005 \pm .003$ $.014 \pm .003$ 2 $12-1$ 165 ± 1 $.001 \pm .006$ $.001 \pm .002$ $.001 \pm .002$ <t< td=""><td>15</td><td>16-7</td><td>288 ± 1</td><td>.026 ± .007</td><td><<u>,</u>008</td><td>.189 ± .007</td><td>.022 ± .005</td><td>.004 ± .006</td><td>.021 ± .005</td></t<>	15	16-7	288 ± 1	.026 ± .007	< <u>,</u> 008	.189 ± .007	.022 ± .005	.004 ± .006	.021 ± .005
15 $B-31$ 179 ± 1 $.014 \pm .005$ $K0$ $.057 \pm .006$ $.005 \pm .003$ $.005 \pm .004$ $.253 \pm .010$ 31 $9-15$ 374 ± 1 $.024 \pm .006$ $H0$ $.149 \pm .006$ $K0$ $.005 \pm .003$ $.045 \pm .003$ $.045 \pm .003$ 15 $10-1$ 305 ± 1 $.025 \pm .006$ $H0$ $.061 \pm .003$ $.043 \pm .003$ $.043 \pm .003$ 16 $10-15$ 249 ± 1 $.017 \pm .005$ $.009 \pm .004$ $.057 \pm .006$ $.006 \pm .003$ $.003 \pm .004$ $.058 \pm .004$ 15 $10-15$ 237 ± 1 $.017 \pm .005$ $.006 \pm .003$ $.003 \pm .002$ $.154 \pm .010$ 31 $11-15$ 207 ± 1 $.017 \pm .005$ $.066 \pm .005$ $.006 \pm .003$ $.009 \pm .003$ $.068 \pm .003$ 16 $12-1$ $1018 \pm .005$ $.006 \pm .006$ $.004 \pm .002$ $.014 \pm .003$ $.065 \pm .006$ 212-15 197 ± 1 $.018 \pm .006$ $.003 \pm .003$ $.014 \pm .003$ $.005 \pm .006$ $.003 \pm .003$ $.012 \pm .003$ $.012 \pm .003$ $.012 \pm .003$ $.014 \pm .003$ $.016 \pm .003$ $.012 \pm .003$ $.012 \pm .003$ <td>31</td> <td>8-15</td> <td>294 ± 1</td> <td>.020 + .006</td> <td><,007</td> <td>.153 ± .009</td> <td>.011 ± .005</td> <td>.004 + .005</td> <td>.039 ± .006</td>	31	8-15	294 ± 1	.020 + .006	<,007	.153 ± .009	.011 ± .005	.004 + .005	.039 ± .006
31 $9-15$ $3/4$ 1 $.024$ $.006$ 10 $.149$ $.008$ $.006$ $.005$ $.003$ $.043$ $.001$ 15 $10-15$ 305 ± 1 $.025$ $\pm .006$ 110 $.061$ $\pm .005$ $.011$ $\pm .004$ $.005$ $\pm .003$ $.043$ $\pm .006$ 1 $10-15$ 249 ± 1 $.016$ $\pm .005$ $.009$ $\pm .004$ $.058$ $\pm .003$ 15 $10-31$ 252 ± 1 $.017$ $\pm .005$ $.004$ $\pm .005$ $.003$ $\pm .003$ 31 $11-15$ 207 ± 1 $.005$ $\pm .005$ $.006$ $\pm .003$ $.009$ $\pm .003$ 31 $11-15$ 207 ± 1 $.005$ $\pm .005$ $.006$ $\pm .003$ $.009$ $\pm .003$ 31 $11-15$ 207 ± 1 $.001$ $.064$ $\pm .005$ $.006$ $\pm .003$ $.009$ $\pm .003$ 31 $11-15$ 207 ± 1 $.018$ 005 $.066$ $\pm .005$ $.006$ $\pm .003$ $.003$ $\pm .003$ 32 $12-1$ 166 ± 1 $.018$ $.005$ $.006$ $\pm .003$ $.003$ $\pm .003$ 32 197 ± 1 $.018$ $.006$ 003 $.003$ $\pm .003$ $.003$ $\pm .003$ 32 $12-15$ 197 ± 1 $.004$ $.003$ 003 $.003$ $\pm .003$ $.004$ 003 2 $12-15$ 197 ± 1 $.004$ $.003$ 00	15	8-31	1 + 6/1	.014 ± .005	R0	.057 ± .006	.005 ± .003	.005 ± .004	.253 ± .010
15 $10-1$ 305 ± 1 $.025 \pm .006$ 10 $.061 \pm .005$ $.011 \pm .004$ $.005 \pm .003$ $.043 \pm .003$ $.003 \pm .003$ 1 $10-15$ 249 ± 1 $.016 \pm .005$ $.009 \pm .004$ $.057 \pm .006$ $.006 \pm .003$ $.005 \pm .004$ $.058 \pm .004$ $.058 \pm .007$ 15 $10-15$ 249 ± 1 $.017 \pm .005$ $.009 \pm .004$ $.057 \pm .006$ $.006 \pm .003$ $.005 \pm .004$ $.058 \pm .004$ 31 $11-15$ 207 ± 1 $.011 \pm .005$ $.006 \pm .005$ $.003 \pm .002$ $.154 \pm .016$ 31 $11-15$ 207 ± 1 $.018 \pm .005$ $.005 \pm .005$ $.006 \pm .003$ $.003 \pm .003$ $.026 \pm .003$ 2 $12-1$ 166 ± 1 $.018 \pm .005$ $.006 \pm .005$ $.004 \pm .002$ $.014 \pm .003$ $.026 \pm .003$ 2 $12-15$ 197 ± 1 $.001 \pm .003$ $.002 \pm .003$ $.012 \pm .003$ $.005 \pm .003$ $.012 \pm .003$ $.005 \pm .003$ $.005 \pm .003$ $.005 \pm .003$ $.002 \pm .003$ $.$	ЗI	9-15	374 ± 1	.024 ± .006	91	.149 ± .068	<.006	ND	.045 ± .007
1 $10-15$ 249 ± 1 $.016 \pm .005$ $.003 \pm .004$ $.057 \pm .006$ $.006 \pm .003$ $.005 \pm .004$ $.058 \pm .001$ 15 $10-31$ 252 ± 1 $.017 \pm .005$ $<.607$ $.046 \pm .005$ $.003 \pm .002$ $<.005$ $.154 \pm .010$ 31 $11-15$ 207 ± 1 $.005 \pm .005$ $.005 \pm .005$ $.003 \pm .002$ $<.003$ $.003 \pm .003$ 15 $12-1$ $1005 \pm .005$ $.005 \pm .005$ $.006 \pm .003$ $.003 \pm .003$ $.003 \pm .003$ 15 $12-1$ 166 ± 1 $.006$ $.004 \pm .002$ $.014 \pm .003$ $.006 \pm .003$ 2 $12-15$ 197 ± 1 $.021 \pm .006$ $.003 \pm .004$ $.003 \pm .003$ $.012 \pm .005$ $.005 \pm .003$ 2 $12-15$ 197 ± 1 $.004 \pm .003$ $.003 \pm .003$ $.004 \pm .003$ $.003 \pm .003$ $.003 \pm .003$ $.00$	15	10-1	305 ± 1	.025 ± .006	01	.005 + 1005	P00. ± 110.	:003 - -003	.043 ± .006
15 $10-31$ 252 ± 1 $.017 \pm .005$ $<.003$ $<.003 \pm .002$ $<.005$ $.154 \pm .010$ 31 $11-15$ 207 ± 1 $.005 \pm .005$ $N0$ $.064 \pm .005$ $.006 \pm .003$ $.009 \pm .003$ $.058 \pm .003$ 15 $12-1$ 166 ± 1 $.018 \pm .005$ $.006 \pm .005$ $.006 \pm .003$ $.003 \pm .003$ $.003 \pm .003$ $.005 \pm .005$ 2 $12-15$ 197 ± 1 $.021 \pm .006$ $.004 \pm .003$ $.003 \pm .003$ $.012 \pm .005$ $.006 \pm .003$ 2 $12-15$ 197 ± 1 $.021 \pm .006$ $.003 \pm .003$ $.0012 \pm .005$ $.006 \pm .003$ 15 $1-2$ 97 ± 1 $.004 \pm .003$ $.050 \pm .004$	l	10-15	249 ± 1	.016 ± .005	400. + 600.	.057 ± .006	.000 ± .003	.005 ± .004	.058 ± .007
31 $11-15$ 207 ± 1 $.005 \pm .005$ $.005$ $.006 \pm .003$ $.003 \pm .003$ $.058 \pm .003$ 15 $12-1$ 166 ± 1 $.018 \pm .005$ $.006 \pm .005$ $.067 \pm .006$ $.004 \pm .002$ $.014 \pm .003$ $.086 \pm .003$ 2 $12-15$ 197 ± 1 $.001 \pm .006$ $.004 \pm .003$ $.012 \pm .005$ $.085 \pm .003$ 15 $1-2$ 97 ± 1 $.004 \pm .003$ $.003 \pm .003$ $.012 \pm .005$ $.085 \pm .008$ 15 $1-2$ 97 ± 1 $.004 \pm .003$ $.004 \pm .003$ $.004 \pm .003$ $.050 \pm .003$	15	10-31	252 ± 1	.017 <u>+</u> .005	<.607	.046 ± .005	.003 ± .002	<.005	.154 ± .010
15 12-1 166 \pm 1 .018 \pm .005 .006 \pm .005 .067 \pm .006 .004 \pm .002 .014 \pm .003 .003 \pm .003 2 12-15 197 \pm 1 .021 \pm .006 <.003	IE	11-15	207 ± 1	500° + 500°	QN	.064 ± .005	.006 <u>+</u> .003	£00. + 600.	$.058 \pm .007$
2 12-15 197 ± 1 .021 ± .006 <.003	15	12-1	166 ± 1	.018 + .005	.005 ± 300.	.000 ÷ .006	.004 ± .002	$.014 \pm .003$.006 ± .003
15 1-2 97 ± 1 .004 ± .003 <.004 .035 ± .004 .003 ± .002 .004 ± .003 .050 ± .005	2	12-15	1 7 161	.021 ± .006	<.008	.082 ± .006	.003 ± .003	.012 ± .005	$.085 \pm .008$
	15	1-2	1 7 16	.004 ± .003	V 00'>	.035 ± .004	.003 ± .002	.003 ± 1003	.050 ± .005

.

ND = Not Detectable D = Decayed Away Before Analysis

•

(contd)
1975
Wash ington,
R ich land,

.

;

.

	110m _{Ag}	<.028	ec0.>	028 + .019	044	<.057	<.041	<.043	<.046	038 + .022	~.027	260.2	<.019	<.020	<.018	<,018	QN	023 + .014	QN	<.017	< 018	<.016	< 017	0.00	110.>
	106 _{Ru}	7.12 + .20	14.0 + .2	20.0 + .3	18.3 ± .3	30.2 + .4	18.3 + .3	24.2 + .3	30.2 ± .3	23.5 ± .3	21.4 + .3	20.1 + .3	1.17 + .15	10.5 + .2				.63 + .16	.42 + .09	- 10. + 19.	.40 + .07	934 + .062	722 + .058	825 + 067	526 <u>+</u> .042
	103 _{Ru}	5.49 + .04	8.89 + .05	9.39 + .05	7.09 ± .05	9.48 + .06	4.83 ± .04	4.76 + .04	4.61 ± .04	3.02 + .03	2.15 + .03	1.38 ± .03	.465 ± .014 7	.537 4 .016 1	.362 + .013 6		$-056 \pm .006 2$.071 + .007 3	.032 ± .005 2	.052 + .006 1	.020 + .005 1	- 009 + .004	010 + .004	012 + .005	005 ± .003
DPM/10 ³ M ³	95 _{Nb}	30.7 + .1	53.1 ± .1	61.1 ± .2	49.5 ± .1	70.6 ± .2	38.2 ± .1	43.2 ± .1	45.8 ± .1	33.6 <u>+</u> .1	26.5 ± .1	21.9±.1	7.40 ± .05	90. + 90.6	$6.49 \pm .05$	3.87 + .04	1.54 ± .02	2.04 ± .03	1.13 ± .02	.702 ± .017	499 + .014	.323 + .012	.238 + .009	212 + .005	.121 ± .006
	95 _{Zr}	15.8 ± .1	27.1 ± .1	31.1 ± .2	25.1 ± .2	34.9 ± .2	18.5 ± .1	20.9 ± .1	21.3 ± .1	16.2 ± .1	12.6 ± .1	10.4 ± .1	3.31 ± .06	4.34 ± .06	3.14 ± .05	1.77 ± .04	.727 ± .026	060. + 636.	502 ± .024	610. + 66E.	710. ± 165.	EI0. + 2EI.	004 + .010	. 040. + 660	044 ± .008
	88 _y	.165 ± .010	.283 ± .014	.356 ± .015	.318 ± .015	elo. + 774.	.267 ± .014	.303 ± .015	.341 ± .015	.264 ± .013	.210 ± .013	201 ± .014	080 + 008	600. + 160	052 ± .008	050 + .007	024 ± .006	024 ± .006	018 ± .005	005 ± .005	016 ± .005	<"000">	001 ± .004	<.007	006 ± .003
	65 _{2n}	910. ± EEO.	$.094 \pm .020$.079 <u>+</u> 027	.036 ± .023	112 + .011	.073 ± .022	.053 ± .022	.040 + .025	.061 ± .020	.025 ± .020	.024 ± .022 .	. 610. ± 640.	. 047 ± .016 .	. 810. ± 610.	. 610. ± 620.	<.013 .	.014 ± .010 .	. 000 ± 800.	<.035	<.012	.004 ± .008	. 010 + .007	<.014	<. 008
te	Off	1-16	1-31	2-16	3- 3	3-16	4-1	4-15	5-2	5-15	5-31	6-15	1-1	7-15	7-31	8-15	8-31	9-15	10-1	10-15	10-31	11-15	12-1	12-15	1-2
Da	0u	12-31	1-16	1-31	2-16	3-3	3-16	4- Ì	4-15	5-2	5-15	5-31	6-15	1-1	7-15	1-31	8-15	8-3I	9-15	10-1	10-15	10-31	11-15	12-2	12-15

ND = Not Detectable D = Decayed Away Before Analysis

•

.

Richland, Washington, 1975 (contd)

Dat	e				DPM/10 ³ M ³			
o	Off	124 _{St}	125 _{Sh}	131	134 _{Cs}	137 _{CS}	140 _{8a}	141 _{Ce}
12-31	1-16	<.028	. 8 6 ± .03	.220 ± .055	.013 ± .005	2.05 + .02	.192 + .023	3.34 + .03
1-16	1-31	.016 ± .015	1.58 ± .04	.440 ± .068	<.014	4.17 ± .04	000. + IIE.	5.29 ± .03
1-31	2-16	<.034	1.87 ± .05	.125 ± .066	.022 ± .008	4.96 ± .04	.317 + .034	- 5.01 + .05
2-16	3-3	<.037	1.84 ± .05	.353 ± .065	<.014	4.28 ± .04	EPO. + 679.	3.67 + .03
3-3	3-16	₩20. + 6E0.	3.17 ± .06	QN	010. + 210.	7.87 + .06	- 090	4.41 + .04
3-16	1-1	<.035	2.00 ± .05	.186 ± .070	<.014	4.88 + .04	.(M2 + .033	2.11 + .03
I - I	4-15	.028 ± .016	2.64 ± .05	Ð	.002 + .007	6.23 ± .05	.046 + .025	2.05 + .03
4-15	5-2	<.039	80. <u>+</u> 65.5	Q	eoo. + 900.	7.93 + .05	<.050 <.050	1.89 + .03
5-2	5-15	<.034	2.71 ± .05	Q	×.014	6.59 4 .05	<.045	1.25 + .02
5-15	5-3l	160.>	2.26 ± .05	.174 ± .085	.020 ± .007	6.91 + .05	<.054	- 812 + .020
5-31	6-15	<.041	2.56 ± .05	QN	.029 ± .008	6.55 ± .05	<.12	501 + .027
6-15	1-1	<.017	. 03 + 66.	QN	.014 + .005	3.22 ± .03	QN	110. + 6/1.
1-1	7-15	£10. ± 610.	1.61 ± .05	QN	.000 ÷ 110.	3.84 + .04	QN	.201 + .014
7-15	16-1	<.014	1.26 ± .04	<.058	.007 + .005	3.59 + .03	<.025	.126 + .040
1-31	8-15	<10.>	.889 ± .032	<"034	.005 + .005	2.51 ± .03	<.013	- 059 + 011
8-15	8-31	ND	.425 ± .022	QN	.005 ÷ .005	1.36 ± .02	QN	.026 + .007
8-31	9-15	ON	.626 ± .033	QN	.006 ± .005	2.85 + .03	ND	-041 + .010
9-15	10-1	<,013	.394 ± .026	QN	.013 ± .004	1.75 ± .02	QN	.034 + .010
1-01	10-15	<.013	.275 ± .024	CN .		1.62 + .02	.021 + .016	.040 + .008
10-15	10-31	<.013	.258 ± .021	QN	.026 ± .004	.90 + .02	- 032 + .016	.020 + .007
10-31	11-15	<.014	elo. ± 4/1.	9	.005 + .004	1.04 + .02	- •,019	<.010
11-15	12-1	<.016	.172 ± .017	QN	¥00° + 600°	1.10 + .02	¢.019	012 + .066
12-2	12-15	¢.013	.176 ± .019	.142 ± .034	.000 ÷ 000	1.57 + .02	.272 + .029	-010 + 007
12-15	1-2	<.011	.105 ± .013	.059 ± .021	.001 <u>+</u> .003	10. - 99.	.157 ± .018	<.007

.

HD = Not Detectable D = Decayed Away Before Analysis

•

•

.

Richland, Washington, 1975 (contd)

.

	24 I Au	.0029		2000. + E	1	.0027		:,0020		15 + .0006	t	8 + .0005	I	1000. + 0	1	5000° + 6	1	1 + .0007	ł	6000. + 6	1	2 + .0006	ŧ	0 + .0007	ł
		014		212 .005)20 •		016 · •		E00. 710		100. 120		11 .002		200.005		14 .004		04 .008		.002		E00. E0	
	239 _{Pu}	.0205 + .00	l	.0288 + .00	I	. 0597 + .00	I	.0528 + .00	I	.0424 + .00	ł	.0815 + .00	ł	.0455 + .00	i	.0367 + .00	I	.0212 + .00	ł	00. + 6700.	I			.0059 + .00	ł
	38 _{Pu}	1000 ·	ł	+ .0003		+ .0002	Ì	£000° +	l	+ .0003	ł	+ .0008	ł	+ .0002		+ .0002		+ .0004	1	• .0001	ł			1000. ±	
		100.		-0015		.0012		1600.		.002		.0065		E100.		.0012		.0018		.0006				9000.	
E _M E ₁	228 _{AC}	<.068	.041 ± .047	.108 ± .056	.116 ± .048	.202 + .068	.137 ± .050	040. + 760.	.082 + .054	120. + 060.	190. + 900.	.119 ± .045	120. + 160.	.150 ± .033	.059 ± .029	.084 + .025	610. ± 960.	.073 + .022	020. + 020.	.085 + .021	.029 ± .019	.064 ± .016	.026 + .016	.062 4 .021	.025 ± .012
DPM/10	226 _{Ra}	.050 ± .030	.044 ± .049	<.12	.075 ± .060	.160 ± .079	.288 ± .064	.145 ± .053	<.08	.107 ± .059	.111 ± .045	.113 ± .056	.042 ± .035	.178 ± .040	<.051	.045 ± .028	.041 ± .023	141 ± .032	.185 ± .028	<:035	<.026	<.027	.120 ± .060	.053 ± .020	.020 ± .020
	210ph	24.0 + .4	25.6 ± .4	38.3 ± .4	17.4 ± .4	14.8 ± .4	9.22 ± .32	14.7 ± .4		9.53 ± .31	6.68 ± .30	10.3 ± .3	4.81 ± .19	19.2 + .3	9.59 ± .19	10.9 ± .2	9.46 ± .19	21.8 ± .3	19.5 ± .3	19.2 ± .3	12.0 ± .2	17.4 ± .2	36.8 ± .3	20.6 ± .3	43.5 ± .3
	155 _{Eu}	.223 ± .019	.426 ± .027	458 ± .028	.424 ± .028	719 ± 017.	.402 ± .027	050. 1 105.	.677 ± .033	.577 ± .028	.538 ± .028	488 ± .029	.205 ± .016	.325 ± .020	.268 ± .018	.207 ± .017	[10. ± 660.	.147 ± .016	.094 + .014	.102 ± .013	.064 ± .009	.046 ± .009	.073 <u>+</u> .008	110. ± 341.	.046 ± .007
	144 ^{Ce}	21.8 ± .1	1. 1 8.6E	50.2 ± .2	45.8 ± .2	69.7 ± .2	42.6 ± .3	53.2 ± .2	65.2 ± .2	53.1 ± .2	47.4 ± .2	43.2 ± .2	16.6 ± .1	23.0 ± .1	18.3 ± .1	13.0 ± .1	5.81 ± .05	8.41 ± .07	5.26 ± .06	3.69 ± .04	3.38 ± .04	2.28 ± .04	1.93 ± .03	2.30 ± .04	1.45 ± .03
٩	011	1-16	1-31	2-16	3-3	3-16	4-1	4-15	5-2	5-15	5-31	6-15	1-1	7-15	1-31	8-15	8-31	9-15	10-1	10-15	10-31	11-15	12-1	12-15	1-2
Dat	On	12-31	1-16	1-31	2-16	3-3	3-16	4-1	4-15	5-2	5-15	2-31	6-15	1-1	7-15	7-31	8-15	8-31	9-15	1-01	10-15	10-31	11-15	12-2	12-15

•

ND = Not Detectable D = Decayed Away Before Analysis

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1976

,

.

	60 _{C0}	.104 ± .011	.037 + .006	.212 ± .014	. 034 <u>+</u> .006	.008 ± .008	004 ÷ 260.	.322 ± .011	1.29 ± .03	.000 ÷ .006	.314 2.030	.027 ± .005	.000 ± 000	.003 ± .003	.008 + 110.	.002 ± .004	.027 ± .005	.025 ± .005	.045 ± .006	.050 ± 030	600°>	<.004	.854 ± .015	.018 ± .012	.041 ± .007
	58 _{Co}	.024 ± .005	.007 ± .002	.005 + .003	.000 <u>+</u> .004	<006	.005 ± .002	.036 <u>+</u> .005	<.004	.001 ± .004	<.007	.005 ± .003	<.004	<.006	E00. ± E00.	.004 ± .003	.002 ± .002	.001 ± .002	<, 005	1.09 ± .02	2.93 ± .03	1.84 ± .04	.863 ± .021	ego. <u>+</u> 771.	.037 ± .004
343	57 _{Co}	.002 ÷ 002	.003 ± .002	.003 ± 1003	.004 ± .002	100. ± 010.	<.003	.001 ± .001	.004 ± .002	.003 ÷ .003	<.006	.003 + .003	E00. ± E00.	<.005	<.006	.004 ÷ .003	E00. ± E00.	.003 ± .003	.005 ± .002	.007 ± .007	.220 ± .010	.167 ± .008	900. ± 060.	.024 ± .003	.006 ± .602
DPM/10	54Mn	600. ± EII.	.048 ± .005	.035 ± .005	.050 ± .005	.051 <u>+</u> .006	.056 ± .004	.162 ± .007	100 ÷ 000.	200. ± EEO.	.028 ± .004	.007 ± 260.	.034 ± .005	.027 ± .004	.026 ± .004	.013 + .003	.000 ± 000.	.003 ± .002	E00. ± E10.	· 189 ± .009	.516 ± .014	.391 ± .023	$.230 \pm .011$.066 ± .005	.057 ± .005
	46 <u>5c</u>	<.007	<.005	×.009	< . 006	<.007	< . 005	9 00 ° >	<.012	<"003	<.011	<.007	< .006	<.007	<.008	<.007	<.000	< ,006	QN	QN	QN	QN	QN	Q	QN
	22 _{Na}	300° + 300°.	.005 + 005	.015 ± .010	.028 ± .006	.040 ± .008	.034 ± .005	.036 <u>+</u> .005	.024 ± .007	.033 ± .006	.044 ± .007	.031 ± .006	.031 ± .006	.019 ± .005	.044 ± .007	.017 ± .005	900. ± 610.	.017 ± .005	.027 ± .006	<.016	<.021	<.011	.027 ± .015	110. ± 110.	.012 ± .003
	7 _{Be}	90 ± 1	11 - 111	211 ± 1	154 ± 1	355 ± 1	264 ± 1	292 ± 1	212 ± 1	307 ± 1	271 ± 1	339 ± 1	213 ± 1	254 ± 1	306 ± 1	240 ± 1	224 ± 1	206 ± 1	341 + 1	246 ± 1	308 ± 1	236 ± 1	265 ± 1	1 + 1/1	1 + 16
le	Off	1-15	1-30	2-15	1-	3-15	4-1	4-15	4-30	5-16	6-1	6-15	6-30	7-15	7-30	8-16	8-31	9-16	10-1	10-15	10-31	11-16	12-1	12-16	12-30
Da	o	1-2	I-15	1-30	2-15	1- E	3-15	4-1	4-15	4-30	5-17	6-1	6-15	6-30	7-15	7-30	8-16	8-31	91-16	10-1	10-15	10-31	91-11	12-1	12-16

.

•

NI) = Not Detectable D = Decayed Away Before Analysis

(contd
1976
Washington,
R ich land,

	110mAg	<.024	<.015	<.025	<.017	<.021	<.012	<.007	.061 + .028	-,038	££0,>	<.020	<,015	<.020	<.021	<.020	<.019	QN	QN	<.011	(IN	QN	QN	QN	(IN	
	106 _{Ru}	.520 + .058	.672 ± .052	1.39 + .08	. 8 . 06	1.90 + .09	1.66 + .05	2.15 + .07	1.26 ± .08	1.87 + .08	1.52 ± .07	1.30 ± .07	1.52 + .08	1.12 + .06	1.16 + .06	485 + .048	.416 ± .041	.274 ± .041	.469 ± .050	1.43 ± .26	2.93 4 .33	6.37 + .31	4.98 + .19	1.57 + .11	.60 ± .07	
	103 _{Ru}	.126 4 .008	.016 + .004	.645 + .015	.007 + 8/0	.199 + .009	.029 + .004	.081 + .006	.003 + .003	.007 + .006	<.008	.007 ± .005	<*000 *>	<.007	£00. + 600.	<006	<.005	<006	<.008	22.0 ± .1	53.0 ± .1	93.9 <u>+</u> .3	53.5 + .1	14.9 + .1	3.59 ± .03	
0PM/10 ^{3M3}	95 _{Nb}	.265 ± .011	.132 ± .007	.268 ± .011	.168 + .009	.246 + .011	.154 + .006	.267 ± .009	.089 ± .006	109 ± 008	900. ± EVO.	900 + 190.	.052 ± .005	600° + 000°	.027 ± .004	E00. ± 110.	.010 ± .003	:00. ± 700.	E00. ± 110.	20.4 ± .1	65.9 <u>+</u> .1	6. ± 8.69	33.7 ± .1	7.66 ± .05	2.34 ± .03	
	95 _{2r}	.201 ± .012	100. ± 880.	910. ± 661.	.098 ± .040	510. ± Abr.	.056 ± .008	.141 ± .030	.029 ± .007	.053 ± .012	.040 ± .009	<.014	.028 ± .003	010. ± 600.	<.015	<.013	<.010	<.007	<.010	37.2 ± .2	95.6 ± .2	59.2 ± .2	27.0 ± .2	6.37 ± .060	2.20 ± .04	
	88 _Y	.013 ± .006	.006	<.016	<.007	<.008	.006 ± .004	<.007	eno. ± 110.	<.007	<.012	e00.>	×.007	.012 ± .004	<.008	<.007	<.007	<u>N</u>	QN	ND	ND	ON	QN	QN	QN	
	65 _{Zn}	<.010	<.000	<.012	<.010	000. ± 810.	<.008	<110.>	• . 009	<.012	<.018	.001 ± 110.	<.011	<.014	<.010	600°>	<.010	<.007	<.010	<.022	1EQ.>	<.050	<.025	<.015	110.>	1
te	<u>01</u>	1-15	1-30	2-15	3-1	3-15	4-1	4-15	4-30	5-16	6-1	6-15	6-30	7-15	7-30	8-16	8-31	91-16	10-1	10-15	10-31	11-16	12-1	12-16	12-30	
Da	0u	1-2	1-15	1-30	2-15	3-1	3-15	4-1	4-15	4-30	5-17	6-1	6-15	6-30	7-15	7-30	8-16	8-31	91-16	10-1	10-15	10-31	11-16	12-1	12-16	

ND = Not Detectable D = Decayed Away Before Analysis

•

•

•

(contd)
1976
Wash ington,
and,
Richl

ſ,

_

•

	140 _{Ba} 141 _{Ce}	7 ± .040 .195 ± .008	8 + .027 .015 + .005	3 ± .07 1.27 ± .02	1 + .030 .117 + .008	2 + .028 .280 + .011	4 + .011 .014 + .006	6 <u>+</u> .012 .066 <u>+</u> .007	<.020 .022 <u>+</u> .007	<.032 <.016	<.029 .014 <u>+</u> .008	<.030 .013 <u>+</u> .010	<.017 <.010	·.018 .007 + .007	<.017 .012 <u>+</u> .009	·.019 .018 + .006	019 .000007	<.024 <.011	<.032 <.020	1 + .4 44.4 + .1	1 + 110 + 1	5 4 .7 82.4 4 .2	1 + .3 23.2 + .1	1. + 0.0 12.9 + .1	
	137 _{Cs}	1.76 ± .02 .39	1.28 ± .02 .31	1.40 ± .02 2.8	1.35 ± .02 .22	4.88 + .04 .26	2.34 ± .02 .00	3.21 ± .03 .08	1.22 ± .02	2.46 ± .03	1.45 ± .02	1.35 ± .02	1.53 ± .03	1.18 ± .02	1.24 ± .02	.77 ± .02	. 10. + 99.	1.28 ± .02	2.77 ± .03	3.53 ± .03 65.4	1.53 ± .03 95.0	1.53 ± .03 65.5	1.40 ± .02 18.7	.96 ± .01 4.52	01 · 01
DPM/10 ³ M ³	134 _{Cs}	< . 007	.010 ± .003	900° + 500°	100° + 600°.	.019 ± .005	.011 ± .004	.004 ÷ 004	.012 ± .007	.006 + .004	.007 + .006	.008 + .004	.002 ± .005	<.007	.004 + .004	.004 ± .003	400° + 600°	.007 ± .004	.014 ± .004	.022 + .019	<.048	<.030	800. ± 600.	<.012	
	131	920. ± 860.	.123 ± .023	.568 ± .040	< . 06	.102 ± .037	.038 ± .026	<.05	.036 ± .028	QN							<.07	<.07	<.14	41.7 ± .2	45.4 ± .2	12.8 ± .3	3.21 ± .22	.86 ± .04	
	125 _{Sb}	.100 ± .015	.173 ± .010	.271 ± .024	201 ± .019	.414 ± .030	.407 ± .017	.477 ± .020	.362 ± .020	.515 ± .026	.424 ± .025	.341 ± .020	.395 ± .024	.353 ± .023	.331 ± .025	e10. <u>+</u> E81.	.134 ± .020	·108 ± .019	.147 ± .024	050. ± 181.	.262 ± .040	.237 ± .038	.279 ± .039	120. + 860.	010 . 010
	124 _{Sb}	¢.013	<.015	<.015	<.016	.014 ± .010	<.011	<.013	.018 ± .011	<.018	<.019	<.014	< . 000	<.015	<.016	<.015	<.016	.023 ± .009	<.014	<.08	•. II	۰ .۱۱	< <u>,</u> 040	.028 ± .011	000 .
le	Off	1-15	1-30	2-15	3-1	3-15	4-1	4-15	4-30	5-16	6-1	6-15	630	7-15	7-30	8-16	1E-8	91-6	10-1	10-15	10-31	11-16	12-1	12-16	12 20
Da	0n	1-2	1-15	1-30	2-15	3-1	3-15	4-I	4-15	4-30	5-17	6-1	6-15	6-30	7-15	7-30	8-16	8-31	91-6	1-01	10-15	16-01	91-10	12-1	12.16

•

ND = Not Detectable D = Decayed Away Before Analysis

·

•

(contd)
1976
Washington,
R ich land.

4

		24 Au	<.0011		000. + 6100.	ł	000. + 0100	ł	.0003 + .0003	I	.0027 + .0007	i	0040 + 0006	•	.0007 + .0007	ł	.0046 + .0006	1	.0055 + .0009	ł	.114 + .006	ł	.0284 + .0014	I	0031 + 0009	Ŧ
		239 _{Pu}	.0052 + .0004	I					.0410 + .0013	I	.0260 + .0009	I	.0460 + .0015	1	6000. + 6110.	1	.0104 + .0010	I	.0082 + .0005	I	.0003 + .0005	I	.0110 + .0016	I	.0053 + .0004	ŧ
contd) ·		238 _{Pu}	1000. ± 2000.						8000, + 6000.	İ	8000. + 6000.	ſ	0010 + 0000	I	.0008 + .0008	I	.0005 + .0007	I	.0008 + .0008	I	<.0003		<.0003		$000. \pm 0100.$	ł
nyton, 1976 (c	E ^{ME} OI/H90	228 _{AC}	.033 + .015	.024 ± .017	.118 ± .020	610. + 5/0.	.057 ± .020	.075 ± .006	.085 ± .018	.124 ± .021	.098 ± .022	.083 + .020	.075 + .026	.068 + .019	.064 ± .017	.043 + .016	.028 ± .012	.048 + .018	.080 + .016	10. + 860.	.114 + .028	.003 ± 033	<.10 <	.076 ± .012	$.072 \pm .014$.020 ± .014
ichland, Washin		214 _{B1}	<.018	.089 ± .020	.139 <u>+</u> .029	.081 ± .023	.192 ± .020	.117 ± .020	.101 ± .025	.145 ± .027	.093 ± .028	.039 ± .018	0E0. + 570.	£20. ¥ 660.	.094 ± .025	.058 ± .022	.063 + .016	.062 ± .020	120. ± 601.	.121 ± .026	.122 ± .030	<.08	.131 ± .050	.138 ± .030	.069 ± .025	.053 ± .029
æ		226 _{Ra}	l6.6 <u>+</u> .2	25.9 ± .3	22.5 ± .3	6.80 ± .17	24.8 ± .3	8.12 ± .13	9.35 ± .17	61. ± 32.6	10.7 ± .2	7.72 ± .18	9.33 ± .20	8.03 ± .18	8.06 ± .17	10.9 ± .2	14.3 ± .2	9.13 ± .18	11.8 ± .2	39.4 1 .4	15.4 ± .3	31.0 ± .4	74.6 ± .6	46.3 ± .4	90.6 <u>+</u> .5	61.7 ± .4
		155 _{E11}	800° + 690°	eno. <u>+</u> 110.	.058 ± .013	e00. ± 110.	.181 ± .009	$.140 \pm .008$.153 ± .010	.066 ± .010	.117 ± .012	110. ± 601.	$.086 \pm .010$.107 ± .012	.003 + .009	.075 ± .011	.050 ± .008	000 · ÷ 660.	.000 · 120.	.115 ± .009	.020 + .020	<.II	.115 ± .024	.101 ± .023	.036 ± .014	.026 ± .009
		144 _{Ce}	1.38 ± .03	1.94 ± .03	2.71 ± .04	2.18 ± .04	4.05 ± .06	3.47 ± .03	4.28 ± .04	2.66 ± .04	3.97 ± .05	3.06 ± .05	2.51 🛓 .04	2.83 ± .04	2.22 ± .04	2.02 ± .04	1.03 ± .03	.76 ± .03	.53 <u>+</u> .02	. <i>1</i> 7 <u>+</u> .03	7.08 ± .10	21.6 ± .2	16.6 <u>+</u> .1	8.37 ± .09	2.12 ± .05	1.09 <u>+</u> 04
	Date	<u>6n Off</u>	1-2 1-15	1-15 1-30	1-30 2-15	2-15 3-1	3-1 3-15	3-15 4-1	4-1 4-15	4-15 4-30	4-30 5-16	5-17 6-1	6-1 6-15	6-15 6-30	6-30 7-15	7-15 7-30	7-30 8-16	8-16 8-31	8-31 9-16	9-16 10-1	10-1 10-15	10-15 10-31	10-31 11-16	11-16 12-1	12-1 12-16	12-16 12-30

•

ND = Not Detectable D = Decayed Away Before Analysis

•

٠

٠

Radionuclide (gncentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1977

•

	60 _{C0}	.066 + .008	.025 + .006	.014 + .006	.026 + .006	-000 + 005	.00. + 610.	.023 + .008	.023 + .008		-018 + 009	-018 + .013	- 012 - 012	.014 + .008	010. + 120.	-013 + .014	.038 + .008	.013 + .012	.065 + .038	120. + 670.	.065 + .020	-10. + 010.	-026 + .009	.016 + .008	.026 ± .008	
	58 _{C0}	.042 ± .005	£00. ± 600.	.000 1 003	.001 ± 110.	.014 ± .005	<.014	.055 ± .011	.122 ± .016	1219 ± 034	.072 ± .015	.107 ± .020	·129 <u>+</u> .019	.056 ± .016	1130 ± 011	.112 ± .020	.048 ± .013	.049 ± .022	.689 ± .022	.650 ± .031	.853 ± .023	.215 ± .015	110. ± 2011	.022 ± .012	.014 ± .014	
	5/ _{C0}	.004 + 003	EOO. ± EOO.	<.006	E00. ± E00.	N00. 1 110.	.008 <u>+</u> .005	.018 ± .007	110. ± 330.	.045 ± .010	.064 ± .008	010. ± 190.	.075 ± .010	000. ± 000.	.056 ± .012	.125 ± .016	.046 ± .010	.058 ± .008	. 300 ± 032	600. ± £60.	110. ± 611.	.042 ± .007	.036 ± .006	.022 ± .006	M00. ± 710.	
0PM/10 ³ N ³	55 _{Fe}					1.1		<1.9		2.76 ± .51		4.26 ± .48		2.96 ± .81		8.05 ± .78		4.26 ± .58		5.35 ± .61		2.48 ± .46		4.11 ± .78		
	54 Mu	500. ± EEO.	.016 ± .003	.034 ± .005	.038 ± .005	.043 ± .005	.074 ± .008	.280 ± .014	610. <u>+</u> E13.	.544 ± .019	.319 ± 020	1.04 ± .03	1.03 ± .03	.48 ± .02	1.10 ± .02	1.41 ± .03	.734 ± .024	.792 ± .028	.590 ± .021	000. + 778.	.694 ± .021	.A14 ± .016	.326 ± .010	.230 1 .014	.370 ± .010	
	46 S.C	(IN	(I)	MN	QN	(IN	QN	ND	QN	(NI)	QN	QN	ND	QN	0H	QN	QN	QN	ſN	QN	ŊŊ	QN	QN	QN	ſN	
- - - - - - - - - - - - - - - - - - -	22 HJ	.020 + .007	.022 ± .00/	.027 ± .006	.028 ± .007	.022 ± .006	.025 ± .008	.045 ± .011	.052 ± .010	.041 ± .010	010. ± 000.	.042 ± .014	EIO. ± 890.	<.02ì	110. ± 640.	910. ± Eb0.	110. ± 810.	.024 ± .014	.041 ± .038	.050 + .020	010 + 110.	<.026	010. ± 210.	<.018	.025 ± .008	
	/Be	1 + 151	206 ± 1	232 ± 1	228 ± 1	203 ± 1	230 ± 1	320 ± 1	1 - E/E	234 ± 1	276 ± 1	356 ± 1	351 <u>+</u> 1	177 ± 1/1	1 + 666	400 ± 1	270 ± 1	308 ± 1	1 7 161	303 ± 1	260 ± 1	176 ± 1	154 ± 1	125 ± 1	221 ± 1	
te	011	1-16	1-31	2-15	3-1	3-15	4-1	4-15	5-1	5-15	6-1	6-15	6-30	7-15	8-1	0-15	9-1	9-12	9-30	10-15	10-31	11-15	12-1	12-15	12-30	
P.	On	12-30	1-16	1 E -1	2-15	3-1	3-15	1-1	4-15	1 -5	5-15	6-1	6-15	6-30	7-15	8-1	8-15	1-6	9-15	10-2	10-15	IE-01	11-15	12-1	12-15	

ND = Not Detectable D = Decayed Away Before Analysis

.

.

٠

Richland, Washington, 1977 (contd)

•

	110anAg	QN	UN	.030 ± .014	.016 ± .012	<.026	<.034	.017 ± .022	<.056	< 050	.015 ± .027	<.072	.014 ± .031	<.052	.035 ± .030	.056 ± .044	ND	ND	۰.II	ND	(IN	ON	020. ± 200.	.024 + .024	.041
	106 _{Ru}	.03 ± .08	.65 ± .08	1.30 ± .10	1.80 ± .09	2.39 ± .13	3.91 ± .20	15.0 ± .3	32.0 ± .4	27.2 ± .4	38.1 ± .4	53.4 ± .6	54.1 ± :5	27.0 ± .4	5. ± 6.63	66.5 <u>+</u> .6	39.7 ± .4	43.3 ± .5	27.9 ± .4	45.1 <u>1</u> .5	30.8 ± .4	16.4 ± .3	14.9 ± .2	12.2 ± .2	17.1 ± .2
	103 _{Ru}	4.53 ± .04	4.44 ± .04	6.44 ± .05	7.95 ± .05	9.32 ± .06	14.2 ± .1	39.3 ± .1	67.2 ± .2	44.1 ± .1	49.2 1 .1	55.7 ± .1	42.9 ± .1	1. ± 0.91	29.3 ± .1	27.8 ± .1	12.1 ± .1	10.6 ± .1	1. ± 0.61	33.8 ± .1	38.4 ± .1	10.3 ± .1	5.19 <u>+</u> .04	1.99 ± .03	1.54 ± .03
M/10 ³ H ³	95 _{Nb}	3.84 ± .04	4.85 ± .04	8.64 ± .06	11. ± 8.11	16.1 ± .1	28.9 ± .1	94.8 ± .2	1 + 101	141 + 1	188 ± 1	1 7 101	210 + 1	1 - 1	1 = 051	1 + 161	91.0 ± .2	90.6 ± .2	56.2 ± .2	86.9 <u>+</u> .2	60.7 <u>+</u> .2	24.9 ± .1	18.6 ± .1	11.6 <u>+</u> .1	14.8 <u>+</u> .1
90	95 _{Zr}	2.98 ± .05	3. 77 ± .05	6.01 ± .07	7.82 ± .08	10.2 ± .1	17.2 ± .1	56.0 ± .2	106 ± 1	76.3 ± .2	6. <u>+</u> 1.16	125 ± 1	107 ± 1	46.3 1.2	88.6±.3	93.7 ± .3	43.8 ± .2	42.8 ± .2	40.6 ± .2	37.6 ± .3	39.6 ± .2	14.2 ± .1	9.48 + .08	5.50 ± .02	6.77 ± .07
	90 _{Sr}					<2.0		11.2 ± .4		4.01 1.24		3.10 ± .31		1.38 ± .52		5.37 ± .33		13.5 ± .1		7.51 ± .39		2.62 1.19		1.16 1.19	
	88 _Y	Ŋ	.011 ± .005	.020 ± .006	.017 ± .005	.041 ± .006	.000 ÷ E30.	.204 ± .013	460 ÷ .019	.324 ± .016	.460 ± .017	.637 ± .023	.589 ± .020	.263 ± .015	.565 ± .019	.639 <u>+</u> .026	.356 ± .016	.354 ± .020	.176 ± .020	.318 ± .022	.182 ± .018	600° - E60°	.086 ± .010	110. ± 9/0.	010. + 060.
	117 117	<.014	<.013	<.014	<.018	<.022	<.027	<.047	< .05	<.06	<.07	<.10	<,08	ć.07	<.07	۰.II	<.0 <i>\</i>	<.10	90 .	<.06	×.(ا6	<.05	<.05	<.05	÷.06
te	Off	1-16	1-31	2-15	3-1	3-15	1-1	4-15	1-5	5-15	6-1	6-15	6-30	7-15	8-1	81-15	1 -0	9-15	06 30	10-15	10-31	11-15	12-1	12-15	12-30
Da	0u	12-30	1-16	1-31	2-15	3-1	3-15	1-1	4-15	1- <u>5</u>	5-15	6-1	6-15	6-30	7-15	8-1	6 [- }	1-6	9-15	10-2	51-01	16-01	11-15	12-1	12-15

ND = Not Detectable D = Decayed Away Before Analysis

.

6430

(contd)
1761
Washington,
kichland,

Da	le				РМ/10 ³ М ³			
8	OFF	124 _{Sb}	125 _{Sh}	131	134 _{Cs}	137 _{Cs}	140 _{8a}	141 _{Ce}
12-30	1-16	<.019	124 ± .020	.430 ± .058	<.010	1.33 ± .02	$1.60 \pm .07$	4.64 ± .03
1-16	1-31	<.015	.112 ± .022	eco. <u>+</u> ect.	100. ± 100.	1.63 ± .02	.949 ± .045	3.67 ± .03
1-31	2-15	<.020	.204 ± .025	UN	.010 + .004	1.62 ± .02	.873 ± .058	5.10 ± .03
2-15	3-1	<.017	.279 ± .027	N	.002 + .005	. 98 ± . 02	.539 <u>+</u> 035	5.79 <u>+</u> .03
3-1	3-15	<.023	.288 ± .025	ON	.005 + .005	. <u>+</u> 10.	.392 + .035	6.02 ± .04
3-15	4-1	<.038	.409 1 .030	ND	QN	1.61 ± .03	.301 ± .045	8.60 ± .05
4- I	4-15	<"035	1.30 ± .06	Ŋ	.008 ± .008	2.80 ± .07	.513 1.045	23.5 ± .1
4-15	1-5	< <u>,050</u>	2.89 ± .07	UN	$021 \pm .009$	9.92 + .06	.518 ± .074	37.9 ± .1
5-1	5-15	<.046	2.16 ± .06	QN	000° + 1000.	4.16 ± .04	.241 ± .013	24.2 ± .1
5-15	[-]	.074 ± .025	3.64 ± .06	ON	.010 + 100	6.12 ± .05	ENO. ± 760.	25.9 ± .1
[-]	6-15	<.058	5.25 ± .09	QN	E10. ± 260.	8.88 ± .06	9£0° + 680°.	27.9 ± .1
6-15	6-30	<.055	5.38 ± .08	QN	.020 ± .012	90. ± 63.6	.108 ± .040	20.3 ± .1
6-30	7-15	<.046	2.64 <u>±</u> .06	QN	600 [.] • 100 [.]	4.56 ± .05	C 50° + 560°	7.61 ± .05
7-15	8-1	<.046	3.59 ± .07	ON	.022 ± .011	10.6 ± .1	••06	12.0 ± .1
8-1	8-15	<,069	7.19 ± .10	QN	E10. ± 200.	12.1 ± .1	<.10	10.8 ± .1
8-15	1-6	<,050	4.08 ± .07	QN	010. ± 610.	6.90 ± .06	<.06	4.40 ± .03
1- 0	9-15	<.058	4.47 ± .03	CIN	110. ± 700.	8.21 ± .06	<.10	3.73 ± .03
9-15	9-30	<.089	2.86 ± .05	46.4 ± .2	< . 036	5.09 ± .04	52.0 ± .3	28.1 ± .1
10-2	10-15	<.080	4.72 ± .08	16.1 ± .6	.026 ± .015	8.87 + .06	38.6 ± .6	48.4 ± .1
10-15	10-31	.064 ± .033	3.04 ± .06	7.02 ± .18	.014 ± .013	5.85 ± .06	28.0 ± .3	39.5 ± .1
10-31	51-11	· .043	1.77 ± .05	.700 ± .060	000 · 1000	3.45 ± .04	4.00 ± .09	9.35 + .04
11-15	12-1	·.033	1.72 ± .04	.179 ± .048	.007 ± .007	3.30 ± .03	1.34 ± .05	4.45 ± .02
12-1	12-15	<.042	1.37 ± .04	<.10	.027 ± .008	3.14 ± .04	.264 ± .053	1.16 ± .02
12-15	12-30	·.035	2.12 ± .04	<.10	<.014	3.85 ± .03	<.062	68 ± .02
		1						

ND = Not Detectable D = Decayed Away Before Analysis

.

•

Richland, Washington, 1977 (contd)

38

٠

•

	a la					2000.				.0006		0100.		.000						0100.					
	241	• 0023		1.021		+ 0100.	!	<.0005		.0012 +	I	+ 6000.	1	+ 0025 +	1	<.0003		<. 0005		.0026	I	<.0003			
	=	.0004		.0008		.000		0100.		.0014		0100.		£100.		.004		.0023		6100.		.0016		1100	
	239 _p	.0042 +	l	.0095 +		.0078 ±		+ 6620.		<u>+</u> 7950.	1	÷ 0039		+ 6440.		110 +		-0707 +		+ 1980		0413 +		0282 +	1
	•					1000.		.00028		.00020		.0003		.0007		9000.		. 0004		. 1000.		. 0005		. 0002	
	238 _{Pu}	< . 0003		<.0003		Ŧ 11000.		÷ 01100.		÷ 11000.		.0025 ±		· 8160.		.0028 ±		- 5100.		1 6400.		.0014 +		. + 6000.	1
f"Eu	228Ac	<.033	010. ± 600.	/E0">	.087 ± .020	<.047	.140 ± .033	.178 ± .046	<.11	< .1 5	$.060 \pm .048$	<,19	<.15	.158 1 .060	<.15	۰ . 20	<.12	<.18	<. 10	<.16	<.12	<.II.>	¢.09	.151 + .049	ч., П.,
	226 _{Ra}	.162 ± .029	.078 ± .020	.064 ± .027	<.054	.095 ± .032	123 ± .044	.137 ± .059	.162 ± .066	<.14	.159 ± .079	<.21	<.18	<.14	.237 ± .080	.11 - 11	.249 ± .070	<22	<.13	.218 ± .082	<.15	.140 + .061	.132 ± .052	.301 + .060	<.B
	210 _{Ph}	1 + 11:1	72.9 🛓 .5	70.4 ± .5	12.0 ± .2	B.23 <u>+</u> .22	8.22 ± .22	14.6 ± .3	14.6 ± .4	10.1 ± .4	7.54 ± .20	9.55 ± .41	13.0 ± .4	5.06 ± .25	9.61 <u>+</u> 133	13.3 ± .4	11.1 <u>+</u> .3	12.3 ± .4	7.86 ± .30	15.0 ± .4	20.2 ± .3	12.6 ± .3	28.6 ± .3	4.68 ± .20	38.9 <u>+</u> 3
	155_L	.036 + .010	.029 ± .010	.046 ± .015	910. + 6/0.	.082 ± .016	.117 ± .016	.325 ± .037	.474 ± .046	1.23 ± .03	.642 ± .040	.974 ± .052	840. + 779.	010. 1112.	1.16 ± .04	1.39 <u>+</u> 06	.716 ± .041	.821 ± .043	.857 ± .044	.887 ± .049	.631 ± .038	.344 ± .029	020. ± MEE.	.257 ± .023	.459 ± .018
	144 Ce	1.71 ± .04	1.70 ± .04	2.91 ± .05	4.18 ± .06	5.29 ± .06	9.76 ± .10	33.4 ± .2	71.0 ± .2	61.1 ± .2	87.7 ± .2	126 ± 1	125 ± 1	59.5 1.2	83.7 ± .2	155 ± 1	83.0 ± .3	96.2 ± .3	58.5 ± .2	96.1 ± .3	66.1 ± .2	35.7 ± .2	1. 1 9.66	24.2 ± .1	41.5 ± .1
a	JO	1-16	1-31	2-15	3-1	3-15	1-1	4-15	5-1	5-15	1-9	6-15	6-30	7-15	8-1	8-15	9-1	9-15	06-90	10-15	16-01	11-15	12-1	12-15	12-30
na l	0	12-30	1-16	1-31	2-15	3-1	3-15	4-1	4-15	5-1	5-15	1 -9	6-15	6-30	7-15	8-1	8-15	1-6	9-15	10-2	10-15	10-31	11-15	12-1	12-15

,

.

.

MD = Nut Detectable D = Decayed Away Before Analysis

•

Radionuclide Concentrations in Surface Air at Richland, Washington (46⁰21'N, 119⁰17'W) in 1978

.

•	50 _{Ca}	<u>. +</u> .05	100. 1 5	1 ± .008	900· + 2	§10. ± 1	640. ± 6	± .033	£10. ± 2	600° Ŧ (600° Ŧ 9	<u>1</u> .012	110. ± 5	<.013	800. + 1	10. Ŧ 9	<.012	900. 1 1	900. + /	700. ± 0	100. ± 0	i <u>+</u> .007	600° + 9	100. ± 5	160. ± 6
		3.5	.02	.05	.02	.27		.05	.05	030	00	.07	00.		.02	DEL.	_	<u>8</u>	10.	.010	.03	.04	60.	.02	.215
	58 _{C0}	<.026	001 + .010	016 ± .016	200. ± EIO	056 ± .017	145 ± .017	086 ± .017	036 ± .018	062 ± .019	<.037	<.029	030 ± .014	015 ± .016	510. ± EEO	010 · 1015	010. ± 610	110. ± 310	<.013	500 ⁻ - 800	002 ± .006	900. ± 900	013 ± .005	002 ± .004	800° ∓ EEO
	Co	900° +	. 100. ±	· 800. +	· 500. +	· 900. +	. 600. ±	· 110. Ŧ	· 600. +	. 600. ±	800. +	900. ±	· 900. +	. 900. ±	· 600· +	. 800. ±	÷ .005 . ±	÷ .005 .	¥00. Ŧ	· 500. i	· • • • • • • •	· 100. +	· 900 · +	· . 600. ±	. 900
	2	.102	.015	.023	.027	.051	.053	.053	760.	.038	.027	.036	.034	.021	.018	.039	.010	.004	.000	010.	010.	.006	.003	.005	v
DPM/10 ³ H ³	55 _{Fe}	33.7 ± 1.2		5.74 ± .41		6.59 ± .40		10.3 ± .7		6.74 ± .53		4.24 ± .93		3.85 ± .48		2.55 ± .97		<1.7		6 '>		.20 ± .11		13. 1 66.1	
-	=	.01ô	.012	.018	.015	.020	.018	.020	.022	.020	.018	610.	.017	.020	.019	.022	110.	.012	.008	010.	.008	.007	.007	.006	110.
	54 _M	÷ 06£.	.228 ±	.455 ±	÷ 44.	.675 ±	·615 ±	.684 ±	.576 <u>+</u>	+ 109.	.415 <u>+</u>	.473 ±	.556 <u>+</u>	432 +	÷ 1/3.	.470 ±	<u>+ 181.</u>	.107 ±	- 087 <u>+</u>	.106 ±	÷ 160.	.064 <u>+</u>	101.	÷ 920.	143 1
	46 _{Sc}	QN	QN	UN	(IN	QN	ND	ON	ND	ON	ND	QN	ND	QN	ND	QN	NU	<.017	<.012	<.013	< . 006	110.>	<.005	<.008	<.016
	22 _{Na}	110. + 10.	700. ± 610.	010. ± 610.	.018 ± .008	.035 ± .010	.028 ± .046	.025 ± .032	•00. ÷ 100.	110. ± 660.	110. ± 110.	.018 ± .011	.032 ± .000	.029 ± .010	.010. ± 120.	.066 ± .013	.010 ÷ 010.	.015 ± .009	.013 ± .006	.012 ± .008	.016 ± .005	800. ± 600.	.005 ± .006	<.01	<.027
	Be	126 ± 1	114 1 1	1 - 761	132 ± 1	182 ± 1	241 ± 1	290 ± 1	214 ± 1	226 ± 1	1 + 661	207 ± 1	230 ± 1	236 ± 1	1 - EBE	405 1 1	225 ÷ 1	214 ± 1	1 7 161	269 ± 1	270 ± 1	142 + 1	117 = 1	120 ± 1	195 ± 1
<u>د</u>	Off	1-15	2-1	2-15	3-l	3-15	3- Jl	4-15	5-1	5-15	5-31	6-16	1-2	7-15	7-30	8-15	1-6	9-15	9-30	10-15	10-31	11-15	12-1	12-15	12-28
Dat	0n	12-31	1-15	2-1	2-15	3-1	3-15	3-31	4-16	5-1	5-15	5-31	6-16	7-2	7-15	16-1	81-8	1-6	9-15	10-2	10-15	16-01	11-15	12-1	12-15

ND = Not Detectable D = Decayed Away Before Analysis

•

				Richla	nd, Washingto	a (contd)		
ă	ate			DPM/10	3 _M 3			
0	011	65 _{2 n}	88 _y 90 5r	95 _{Zr}	95 _{NI})	103 _{Ru}	106 _{Ru}	110mAq
12-31	1-15	.572 ± .038	.066 ± .018 3.36 ± .41	4.79 ± .07	10.4 ± .1	.736 + .020	12.9 + .2	·.10
1-15	2-1	<.042	.052 ± .008	3.63 ± .06	8.20 ± .06	436 + .017	13.2 4 .2	<.10
2-1	2-15	<.064	.103 ± .012 17.9 ± .4	6.04 ± .08	13.5 ± .1	.567 + .021	23.6 + .3	<.05
2-15	3-1	<.058	.056 ± .010	$3.75 \pm .06$	8.63 ± .06	.301 + 100	- 16.7 + .2	\$.08
3-1	3-15	×.079	.116 ± .013 8.67 ± .28	5.76 ± .07	12.8 ± .1	.375 + .020	30.2 + .3	<.13
3-15	3-31	.172 ± .029	.084 ± .029	17.5 ± .1	20.3 ± .1	96.5 + .2	40.4 + .4	. 15
3-31	4-15	.182 ± .033	.138 ± .022 7.82 ± .31	12.7 ± .1	18.7 ± .1		43.3 + .4	.11
4-16	5-1	(80°>	.107 ± .014	4.36 ± .07	9.63 ± .07	2.41 + .04	31.7 + .4	<.060 <
5-1	5-15	<.075	.105 ± .015 4.56 ± .21	3.02 ± .07	8.84 ± .08	.493 + .030	33.3 + .3	<.056
5-15	5-31	630. >	.046 ± .012	2.32 ± .06	5.15 ± .06	.147 + .018	21.9 + .3	<.053
5-31	6-15	×.063	.040 ± .010 4.87 ± .23	2.37 ± .05	5.32 + .05	.122 + .016	- 26.8+.3	<.052
6-16	1-2	<.057	.062 ± .010	2.36 ± .05	5.25 + .05	-102 + .017	30.6 + .3	< 045
7-2	7-15	<.075	.048 ± .011 3.76 ± .19	1.64 + .05	3.47 + .05	$.085 \pm .017$	23.4 + .3	<,052
7-15	7-30	<.060	.056 ± .011	1.82 ± .05	4.11 + .05	-047 + .017	31.1 + .3	048
16-1	8-15	6/0'>	.044 ± .014 1.65 ± .43	1.44 + .06	3.11 + .05	.066 + .025	26.2 + 3	< <u>.</u> 065
81-8	1-6	[60.•	<.014	.396 ± .026	- 811 + .022	-010 + 100	9.08 + .23	<.035
I-6	9-15	<.044	.012 ± .009 2.51 ± .17	.285 ± .030	.614 + .025	.018 + .014	7.17 + .19	<.040
9-15	06-9	<.044	.010 ± .006	.157 ± .017	.352 + .015	.000 + 300	4.76 + .13	<.024
10-2	10-15	st0.>	<.015 1.41 ± .18	.143 ± .019	420 + .018	~.017	6.35 + .17	<.038
10-15	10-31	<.027	<.014	.144 ± .016	.269 + .014	.003 + .008	4.76 + .14	<.032
10-31	11-15	.024	.003 ± .00/ 1.29 ± .00	.012 + 012	.164 + .011	.002 + .006	2.59 + .11	<.032
51-11	12-1	¢.019	<.011	110. ± 1/0.	.145 + .009	.019 + .006	2.00 + .08	< 0.29
12-1	12-15	<.021	<.011 1.68 ± .21	000. <u>+</u> 160.	.007 + 600	.003 + .005	1.88 + .08	•.026
12-15	12-28	<.015	.023 ± .017	.649 ± .030	.517 ± .018	5.72 <u>+</u> .06	3.92 ± .20	<.044
							l	

.

.

۲

ND = Not Detectable D = Decayed Away Before Analysis

•

Richland, Washington, 1978 (Contd)

.

	Eu	.020	015	. 028	. 019	Ю.	. 035	60.	.036	.03	.030	.025	.028	.024	60.	ю.	.019	.020	.015	010.	.016	.014	.013	.010	.024	
	156	.405	364	. 664	439 +	1.00	. 852 +	1.04	.882	1.06 +	10%.	+ II8.	+ 646.	+ 267.	1.09 +	1.04 +	.316 +	+ 162.	.180 +	- 259 +	150 4	+ 960.	138 +	.066 4	-129 -	
	Le Ce	+ .2		+ .2			+ .2		. -2	+ .2	+ .2	+ .2	1.2	+ .2	+ .2	- + .2	.	. +	+ .07		+ .08	- 90° +	90.		- -	
	14	30.6	27.2	51.5	39.8	78.2	66.1	78.3	63.6	67.4	43.1	52.4	58.2	45.6	58.0	50.3	16.7	12.9	8.22	11.5	8.03	4.31	5.78	3.39	5.46	
	e	.016	.014	.014	.010	.017				.029	.019	.016	.018		140	.029	110.	.015	.011	110.	.012	600.	.008	.007	90	
	141	421	.136	163	060.	.071	55.4	29.8	1.11	.187	190.	.053 4	+ 630.		0. ^	+ 610.	.018	.028	.018	+ 800.	.026 +	.014 +	- 015 +	+ 600.	- - - - - - - - - - - - - - - - - - -	
	ßa	020.	.041	.048	.022	.023	. 	4.	90.		_	0	8	1	8	_	0	_	8	e	1	.027	EE0.	010.	۴.	
	140	. 306 .	.087 ±	.162 +	+ 060.	+ 660.	176 +	56.7 ±	1.26 ±	<.2	 Ю	0 , ^	.0°	;0. ^	0.	·. 16	70°	¢.15	,0 ,	·.	30°,	.148 +	424 +	.005 +	25.3 ±	
	5	.04	.03	.04	8	90.	.05	г.	۲.	90.	90.	90.	.05	90.	8.	90.	.03	.04	.03	•04	.03	.03	6.	.03	E0.	
3 ^{M3})/[[]	4.18 +	4.66 ±	5.80 ±	4.28 ±	+ 86.7	+ EE. 6	10.9 ±	10.2 ±	9.42 +	6.46 ±	7.92 ±	9.23 +	7.35 ±	9.94 +	8.77 +	2.97 ±	2.57 ±	1.92 +	2.85 +	1.95 +	1.68 ±	2.23 ±	1.69 +	1.93 <u>+</u>	
DPM/10	5	9	900.	.008	8	0	8	.017	2	.010	8	6	.008				900	-	_	_			900			
	134 _C	<.02	.016 ±	+ 110.	· 00	<.02	<.04	•056 ±	<.02	.026 ±	·.01	·.01	.020 +	×.01	<.01	<.02	+ 610.	00. >	<.01	· 010	<.016	-,019	. + 800	- 110.>	<.016	
		.040	_	_	_	~	1	.2	180.	_		_	_						.10	8		.045	.037	2	.2	
	151	<u>+</u> 661.	N	Z	N	N	178 ±	30.7 ±	484 +	N	N	MC	M	UN	DN	UN	UN	GN	-22 ±	<.07	QN	202 ±	1 190	90°.>	÷ 6.1	•
		.04	ю.	.05	.05	90.	.07	80	6.	.07	90.	.06	90.	90.	.07	.07	-04	.04	.030	•0•	.034	.027 .	.022	.022	040.	
	125 _S	1.85 ±	1.58 1	3.02 ±	2.32 ±	4.75 ±	4.54 ±	5.21 ±	1.65 ±	1.96 ±	3.30 ±	1.05 1	1.87 ±	3. 82 ±	÷ 40.3	1.38 ±	1.51 <u>†</u>	1.22 ±	810 ±	I.17 <u>+</u>	832 ±	522 +	423 +	1 65E	299 1	
	ام	96	34	15	8	13	.10	.07	.020	25	66	15	200	6	9	89	56	90		54	5.		8	5.	.042	
	124 _S	Õ,	0 .^	Ŭ,	.0.	0. ^	2.75 ±	1.63 ±	- 990.	, 0,	.0. ,	0,	.0°	.0 .>	ð.				,0 ,	.°	 		.0	10°	- 149 +	
	10 ^m Ag	.10	.10	. 05	90	н.	.15	н.	.060	.056	.053	.052	.045	.052	.048	.065	.035	.040	.024	.038	.032	.032	.029	.026	.044	
		-15	-	-15		-15	- 31	-15	-1	-15	-31	-16	-2	-15	- 30	-15	-	-15	-30	-15	IE-	-15		51	28	
Date	ō	1 1	5 2.	2	5	ų	5 J.	11 4.	6 5.	ò	5.5	و. ا	67.	~	5 7-	1 8-	8 9-	-6	5 9-	-01	5 10-	-11 1	5 12-	12-	5 21-	
į	5	12-3] -]	2-1	2-1	1-	3-1		4-1	5-1	5-1	5-3	[-]	7-2	7-1	7-3	8-1	9-1	9-1	10-2	10-1	10-3	1-1i	2-1	2-1	

ND = Not Detectable D = Decayed Away Before Analysis

Richland, Washington, 1978 (contd)

Ş	3		.0005		.0004		.0006			9000.		0000 .		.0010		.0010		0004		0004				
241	. 90		+ 100)023 <u>+</u>		1035 <u>+</u>			031 +		1059 ±		7 990		055 ±). ± 600		+ 100		, 000		< ONN
	011). 110		015 .(N2 .C			0. IC		012 .0		14 .0		020 .0		0. 010		0. 60		07		16
39 _{Pu}	9 +1	•	• •		0. +1		ŏ. +			즈. +1		ð. +		ð. +		ي ج		ă. +		0. +		90. +		- UU +
~	.0281		.0571		.0796		.108			.110		0796.		.0668		6680.		.0275		.0230		1110.		0153
_	00021		00028		00024		00029			61000		00022		0002		0004		0003		002		002		909
28	+1		+1		+1		+!			+1		+1		 +		-, +1						-1		10, 4
	.0008 <u>.</u>		.00344		06100.		.00237			.00187		.00250		.0016		2100.		9100.		.0016		.000		0015
IJ					.050				.067		.067				.075		.044	.024	.040	.030	.028	.023	.022	111
228 _A	<.12	60. 2	<.12	<.12	.116 ±	<.1I	<.14	<.16	.146 ±	<.13	.182 ±	ч.,	<.15	<.12	.222 ±	60°>	<u>- 054 +</u>	÷ 650.	.114 ±	·067 ±	- 151 <u>-</u>	. 056 <u>+</u>	• 053 ±	112 4
		.048					670.					.065		070		.049		.036			.040	029	030	054
226 _R	ć.15	123 ±	<.14	<. IA	<.1 <i>1</i>	<.14	- 14 + 162	£1.>	<.16	<.14	<.15	106 +	<.18	+ 060	<.18	+ 991	60 . >	045 ±	<.10	<.08	144 +	- + ¥90	0/3 1	140 4
	4	e.	۴.	۳.	4.	۳.	.32	٩٤.	.27	.23	.27	.22	е.		۳.		.23		۳.	.	٠ ج	4.	۳	~
210 _{Pb}	1.2 ±	1.5 <u>+</u>	1.8 ±	1.3 ±	1.4 <u>+</u>	5.0 ±	+ 66	47 ±	- OE.	+ 26	02 ±	49 +	+ E .	. + 	4	+ 8.	7 09	1.6 <u>+</u>			+ 8.	.8 +	+ 1.9	+ 2 1
!	0	5 2	8	6	Š	5	80	6 9	6	4	5 8	8 7	4 1	1	1	3 6	0 8	5 11	11 6	6 2]	4 33	3 56	0 25	4 F
	.02	10.	.02	0.	9				8.		.02	.0	.02		-04	0.	.02	10.	10.	0.	6	0.	6	G
	405	. 364 <u>-</u>	· 664 +	-439 <u>-</u>	1.00 1	.052 ±	1.04	.682 ±	1.06 ±	F 107.	- 118.	<u>- 949 -</u>	<u>+</u> 267.	1.09 ±	1.04	. 316 <u>+</u>	- 1ES.	180	- 259 +	.150 1	, 0960.	- 130 -	· 090.	129 4
Off	1-15	2-1	2-15	3-1	3-15	3-31	4-15	1- <u>5</u>	5-15	1 E- 3	6-16	1-2	7-15	7-30	8-15	1-6	9-15	06-90	10-15	10-31	11-15	12-1	12-15	12_28
	-31	-15		-15		-15	IE -	-16	-	-15	16-	-16	-2	-15	-31	-18	-	-15	-5	-15	IE-	-15		16

ı

NI) = Not Detectable U = Decayed Away Before Analysis

.

R ich land.
at
Air
Surface in 1979
÷3
Concentrations 4621 W, 1199171
Radionuclide Washington (4

.

1

.

	88,	07 + 010	900	< 012		910° >	007 + 2006	17 + CUK	500		18 4 . (M5							500 T 9	900 ⁻ >	CCU >	7701 >	1 + 000.			۰ ، ۱۵۵. ،	
	65 ₇₀	014 + 016 0	0. 710. >	010. + 100	- 020 	014 + .016	018 + .016 .0	- 027 0	0. 220. + 110	- 015	028 .0	0. 800. + 760				N 520 >	< .015< .015	< .015 .00	03 +. 007	< 0.15	03 + .012	UN BUN	00. 000. 000. 000. 000. 000. 000. 000.		110. >	
	60 _{C0}	.062 + .016	.232 + .012	- .054 + .008 .	.035 + .006	.306 + .015	. 900. + 010.	.014 +.004	. 002 + .005	. 200. + 600.	.00. + 800.	. 331 + .018 .0	. 020. + 00.) 600 ×	010 + .005	005 + 005	. + 100	- 004	- 005 . 0	065 + .015	025 + .005 .0	100. + 010	022 + .004 0	003 + .007	015 + .004	
	58 _{C0}	.010 + .007	050 + 050.	500° + 100°	.010. >	.008 ± 610.	600. 1 800.	< .M2	.007 + 800	c10. >	.010. >	. 949 + .024	.010 + .008	110. + 600.	. 100. + 300.	. 100. 1 600.	. MO. + 600.	. 004 ± .004 .	600. >	. 000 +009	. 600. + 600.	- 3005	. 100. + 600.	- 00	. 600. ± 200.	
1/10 ³ M ³	57 _{C0}	<. 010	E00. ± E00.	E00. + 100.	£00. ∓ £00.	100. ± 110.	.005 ± .005	.008 ± .004	100. ± 200.	.002 ± .009	008 ÷ .004	P00. + 110.	010 + 000	005 + 004	, 008 2	5 °.008	900° >	< .005	001 ± .002	.015	002 ± .003	200. ± 600	003	, .004	. 200. ± 200	
DPN	55 _{fe}	1.28 ± .48		1.11 ± .50		6.05 ± .54		1.16 ± .30		1.27 ± .38	·	3.33 ± .49	•	1.74 ± .30 .	ŀ	•96 <u>+</u> .34		** *	•	.38 ± .22	•	1.26 ± .51 .(.33		
	54 Min	.117 ± .010	.126 1 .007	900° + 160°	.072 ± .006	110. ± 6/1.	.105 <u>+</u> .009	000. ± 8/0.	276 ± .012	900. + 890.	. 101 ± 101.	£10. ± 6/2.	110. ± 8/0.	.001 ± .007	100. ± 8/0.	100 T 090	032 ± .005	027 ± .004	100° 7 0100	063 ± .013	021 ± .00M	013 ± .003	020 + .003	001 ÷ .004	012 1 .003	
	46 _{Sc}	010 ÷ 010	500. + /00.	010. ×	600. >	200. ∓ 100.	610. ×	.005 ± .005	010. >	110. ×	.010 ± .010	.014	.010 ± .008	000 + 100	.006	002 1,015	< "008"	· 010. >	. 010. >	. 110. 1 110	002 ± .005 .	. 400. ± LOO	002 ± .006 .	< .012 .	005 ± .005	
	22 _{Ha}	.025 ± .015	.001 + .005	.018 ± .007	.016 ± .006	.014 + .007	.034 ± .008	900. + 610.	.014 ± .007	.022 ± .007	.024 ± .007	600. <u>+</u> 660.	110. + 160.	.012 ± .007	.027 ± .007	021 1 .008	.008 + .005	.016 ± .006	023 + 004	017 ± .016 .	. 010. >	006 ± .005 .	. MO. ± MO	< .015	. 500. ± 010	
	/ _{Be}	176 ± 1	75.2 ± .4	15/ 1	161 1 1	232 - 1	305 ± 1	191 - 161	259 ± 1	224 - 1	1 + 60E	182 + 1	245 ± 1	231 ± 1] ¥ 90	292 1 1	261 ± 1	1/8 + 1	247 ± 1	. 2 T BGE	139 ± 1	88.8 <u>±</u> .5 .	68.9 ± .4 .	64.1 <u>+</u> .6	146 ± 1 .	1
Date	Un Off	l-4 l-15	1-15 1-31	1-31 2-15	2-15 3-1 2 2 2 2 2	3-2 3-16	3-16 A-1	4-1 4-16	4-16 5-1	5-1 5-15	5-15 5-30	0-3 0-15	6-15 6-28	6-30 7-15	7-15 7-30	8-1 8-15	8-15 8-31	9-1 9-15	9-15 10-1	10-1 10-15	10-15 10-31	10-31 11-15	11-15 12-3	12-3 12-16	12-16 12-31	

ND = Nut Detectable D = Uetectable

•

Richland, Washington, 1979 (contd)

.

ŧ,

,

-

	5	020.	110.	.013	900.	016	.016	113	<u>e</u> 10.	600.	010.	.010	.014	6 00-	600.	600.	0 00.	.004	500.	.021	<u>.00</u>	.004	900.	010.	E00.
	134 ^C	~	•	v	÷ 500.	÷ 900.	+ 100.	v	•	•	v	+ 860.	v	, 1005	v	v	۷	÷ 400.	v	v	÷ 900.	÷ 900.	•	÷ 600.	÷ 900.
	1311	·01 1 .0/	165 ± .028	155 ± .040	160. ± 160	060 ± .037	048 ± .045	117 ± .054	160° >	.02 Ŧ .37	060. >	< .025	<. I3	.02 ± 1.07	< .24	< .08 <i>1</i>	380. ×	< .15	· . IU	220 ± .099	460. ± 6M	222 ± .015	112 ± .030	<. 032	£10. >
	125 _{Sb}	1 100. ÷ 199	. 278 ± .017 .	. 540 ± .077 .	.611 ± .026 .	. 40. + 10.1	1.52 ± .04 .	. 0. ± .03	1.24 ± .03	1.06 ± .03	1.37 <u>+</u> .03	1.38 <u>+</u> .04	050. + 1/6.	1.13 ± .03	.23 ± .04	.030 ± .036	531 ± .026	374 ± .023	483 ± .016	. 490. + 665	. 710. <u>+</u> IEL	. 10. + 960	071 ± .012 .	050 ± .017	147 ± .016
-	124 _{Sb}	.062 ± .026	·∵. 600• ∓ €00	< .021	< .015	.019 ± 014	.015 ± .015	011. 1 110	.002	.008 ± .021	< .026	.045 ± .013 1	< .026 .	< .012	.014 ± .012	. 110. ± 110.	.005 ± .007	.036 ± .012	< .012	.024 ± .014	. 010. >	< .015 .	. 014 014 .	· 000 ·	· 600. >
10 ³ M ³	110mAg	<: .050	0E0. >	• 100. + 100.	.003 ± .013	< .012	< .032	010 ÷ 019	.002 ± .007	.003 ± .082	< <u></u>	.004 ± .119	.027 ± .019	070. ± 600.	< .024	.003 ± .077	< .020	< .024	.007007	.051 ± .030	< .020	.014 ± .010	.020 ± .009	¥60. >	018
/HdO	106 _{Ru}	3.12 ± .14	1.14 ± .07	2.86 ± .11	2.96 ± .10	5.04 ± .14	6.93 ± .16	4.82 ± .13	5.53 ± .13	4.27 ± .13	6.31 ± .14	5.33 ± .16	4.00 ± .17	4.57 ± .12	5.02 ± .12	3.54 ± .12	2.24 ± .08	1.47 ± .08	1.78 ± .05	1.82 ± .17	.612 ± .049	.278 ± .042	.204 ± .036	.160 ± .069	.400 ± .043
	103 _{Ru}	1.62 ± .30	500. ± 200.	900. ± 800.	- 005 <u>+</u> 3005	100. ± 110.	010. ± 610.	.004 ± .013	100. ± 610.	110. ± 200.	• .014	.018 ± .007	.004 ± .023	s00. >	.026 ± .026	.018 ± .018	00. ± 100.	600° >	, 006	110. ± 600.	. (K)0. ± (K)).	.012 ± .003	.044 ± .004	£00. ± 1004	100. <u>+</u> 1003
	95 _{Nb}	307 ± .015	900. - 890.	800. ± 670.	.054 ± .007	600. 1 011.	110. 1 711.	100. ± £30.	euo. <u>+</u> 2/0.	800. ± 660.	100. ¥ 650.	.038 <u>+</u> .008	.010. + 240.	.027 <u>+</u> .007	.021 ± .006	900. + 710.	100. ± 600.	009 · · 004	.010 ± .002	.023 ± .009	. UNG	.004 ± .003	900° Ŧ 860'	£00. ± 300.	£00. <u>+</u> 200.
	95 ₂ r	.279 ± .022	.025 ± .008	.044 ± .011	010. ± 860.	₽10. ± £/0.	.063 ± .016	.026 ± .012	EIO. ± 620.	£10. ± 2£0.	110. + 610.	.020 ± .013	.010 ± .022	< .012	.020	.001 ± .085	< .012	610. ×	.004 ± .004	018 ± .016	· .005	.001 ± .004	000. ± 1000	< .012	₩00. Ŧ 500.
	90) ₅₁ .	88.8 ± 2.4		2.71 ± .35		.97 ± .15		.62 1.18		61. 1 18.		2.27 ± .21		.77 ± .18		.78 ± .17		.63 ± .16		.19		20.4 ± 1.4		1.56 ± .19	
9	011	1-15	1-31	2-15	J-I	3-16	4-l	4-16	2-]	5-15	5-30	6-15	6-28	7-15	7-30	8-15	8-31	9-15	10-1	10-15	16-91	11-15	12-3	12-16	12-31
Dat	U	1-4	1-15	1-31	2-15	3-2	3-16	4-1	4-16	5-1	5-15	6-3	6-15	6-30	7-15	8-1	8-15	1-6	9-15	1-01	51-0I	10-31	11-15	12-3	12-16

н

, .

.

NU = Not Detectable D = Detectable

,

0

•

Richland, Washington, 1979 (contd)

.

.

	241 Am	015 +.0006	ļ	.0002		<.0003		£000.~		1100. ± 340		149 ± .0005	ŀ	113 1.0005		9000. + 600	i	.0002		E000. ± 050		/000. ∓ E9		0100. ± 16	
	239 _{Pu}	0150 + .0008 .0		1000. ± 0600.		0267 + .0021	I	0302 + .0014		0301 ± .0012 .00		0438 + .0017 .00		0317 ± .0014 .00		0. E100. + 1E20		EU(0) + 91/00		0310 ± .0014 .00		0123 ± .0006 .00		10. 1000. ± 6100	
	238 _{Pu}	.0003 + .0002		.0001 + .0008		0100. + 7100.		.0004 + .0004		.0022 ± .0006		.0006 ± .0004		. M000. ± 6000.		.0012 ± .0005		. 1000. ± 1000.		.0007 ± .0002		•		•	
	228 _{AC}	.109 ± .032	.013 ± .019	.022 ± .026	.048 ± .023	160. ± 260.	.064 ± .034	.061 ± .027	.026 ± .042	.032 T 032	020. ¥ 101.	.074 ± .037	6E0. ± 601.	.002 ± .353	.050 ± .027	.145 ± .029	610. ± EVO.	.078 ± .020	.098 ± .012	.219 ± 053	.027 ± .016	E10. ± EE0.	.014 ± .012	.105 ± .026	.056 ± .013
	226 _{R.a}	114 ± .046	.047 ± .022	.018 ± .033	056 + .035	105 ± .042	129 + .051	026 ± .029	086 ± .040	160. + 800.	061 ± .035	032 ± .063	148 + .050	050. ± 260	PE0. + 150	078 ± .032	035 ± .023	109 + .026	082 ± .015	137 ± .063	810. + 160	030 ± .016	034 ± .016	024 ± .032	. 810. ± 610
DPM/10 ³ H ³	210 _{Pb}	145 ± 1	63.9 ± .4	35.8 ± .4	9.23 ± .18	13.8 ± .2	15.3 ± .2	5.23 ± .15	12.3 ± .2	8.10 ± .19	9.14 ± .20 .	8.77 ± .22	9.70 ± .30	7.25 ± .17	13.4 ± .2	11.4 ± .2	13.8 ± .2	10.9 ± .2	21.1 ± .1	39.5 ± .7	10.9 ± .2 .	57.9 ± .4 .	39.5 ± .3 .	18.8 ± .3	28.1 ± .3 .
	155 _{Eu}	.155 ± .021	.071 ± .022	E10. ± E60.	1125 ± .011	.212 ± .016	.289 <u>+</u> .018	.206 ± .014	.263 ± .015	.251 ± .015	810. + 662.	.302 ± .018	.272 ± .023	.253 ± .014	.300 ± .016	.191 ± .015.	.127 ± .011	010. + 400.	110 ± .007	.104 ± .028	£00. <u>+</u> 1008	600. ± 870.	.021 ± .007	110. ± 800.	.042 ± .008
	l4.1 _{Ce}	80. <u>+</u> 06.9	3.22 1.04	4.29 <u>+</u> .06	4.69 1.05	8.10 ± .08	1. ± €.11	7.43 ± .07	9.16 ± .07	10. ± 16.1	9.46 ± .08	8.19 ± .08	6.24 ± .10	6.74 ± .07	7.62 ± .07	$5.02 \pm .06$	3.16 ± .04	2.15 ± .04	2.46 1.02	2.85 1.10	.807 1.025	.561 ± .024	.456 ± .020	401 j .026	£30. 1 669.
	141 _{Ce}	3.00 ± .03	.017 ± .006	.022 ± .008	.016 <u>+</u> .007	000 · 1009	EI0. ± 610.	.003 <u>+</u> .026	.018	< .020	860. ± 610.	.006 ± .014	.007 ± .028	< .012	.016 ± .012	el0. >	.012 T .000	.006 ± .013	900. - 1000	< .041	.023 ± .006	.010 ± .0U5	100. + 601.	.010 ÷ .006	SIN. <u>↓</u> 110.
	140 _{Ba}	5.98 ± .14	.287 1 .027	.248 ± .030	.080 ± .016	.052 ± .016	< .067	.036 ± .016	< .027	.036	90. >	s10. >	.026 ± .022	el. <u>+</u> 10.	.012 ± .047	.003 ± .078	< .022	.018 <u>1</u> .018	110. 7 600.	.133 <u>+</u> .044	.046 ± .017	600. ± 710.	.241 ± .027	.048 <u>1</u> .016	EIO. ± 200.
	137 _{Cs}	1.61 ± .03	1.56 ± .02	1.49 ± .02	1.56 ± .02	2.61 ± .03	4.24 ± .04	2.42 ± .03	3.05 1.03	2.65 ± .03	3.53 ± .04	3.33 ± .04	2.36 <u>+</u> .04	2.72 ± .03	3.16 1.03	2.34 ± .03	1.44 ± .02	1.02 ± .02	10. ± 61.1	1.73 ± .05	559 <u>+</u> .014	1.0/ ± .02	434 ± .011	290 T 014	.748 <u>1</u> .015
lle	Off	1-15	I -31	2-15	3-I	3-16	4-1	4-16	5-1	5-15	5 -30	6-15	6-28	7-15	1-30	8-15	8-31	9-15	10-1	10-15	10-31	11-15	12-3	12-16	12-31
Da	On	1-4	1-15	IE-1	2-15	3-2	3-16	4 -1	4-16	5-1	51 - 5	6-3	6-15	0(°-9	7-15	R-1	8-15	1-6	9-15	1-01	10-15	10-31	11-15	12-3	12-16

ND = Not Detectable D = Detectable

Radionuclide Concentrations in Surface Air at Barbados, British West Indies (13°06'N, 59°37'W) in 1968 and 1969.

-

Dat	بە			DPM	/10 ³ M ³		
ON	OFF	7 _{Be}	54_{Mn}	57 _{Co}	95 _{2r}	95 _{Nb}	103 _{Ru}
08-21-68	08-22-68	401 ± 13	<1.3		11.6 ± 2.0	24.4 ± 1.3	6.8 ± 1.1
08-22	08-29	296 ± 5	.85 ± .21		45.4 ± 1.0	48.3 ± .7	36.4 ± .6
08-29	00-02	298 ± 5	.30 ± .22	QN	54.6 ± 1.0	59.5 ± .7	42.4 ± .6
<u> 30–05</u>	09-12	205 ± 4	.49 ± . 22	ND	65.0 ± 1.1	68.9 ± .7	52.3 ± . 7
05-22-69	05-25-69	311 ± 18	1.57 ± .51		1 42 ± 4	304 ± 4	109 ± 4
05-29	06-05	205 ± 8	.79 ± .25		92.6 ± 2.1	189 ± 2	69.9 ± 1.7
0620	06-28	175 ± 10	.35 ± .25		77.0 ± 2.1	165 ± 2	49.8 ± 2.0
06-28	07-04	155 ± 10	.98 ± .28		72.1 ± 2.2	147 ± 2	40.7 ± 1.9
07-31	08-15	135 ± 4	.66 ± .15		48.8 ± 1.0	102 ± 1	23.0 ± .7
08-15	09-02	125 ± 7	.37 ± .10	.024 ± .052	19.8 ± 1.1	46.8 ± .9	9.3 ± 1.3
80-60	09-16	115 ± 3			12.7 ± .6	25.9 ± .6	3.64 ± .32
09-16	9-22	117 ± 4			6.25 ± .54	14.1 ± .4	1.78 ± .30
09-22	9-29	138 ± 4			7.70 ± .62	15.5 ± .5	1.95 ± .32
09–29	10-15	38.3 ± 2.3		.023 ± .28	2.44 ± .32	4.41 ± .24	.06 ± .23
10-15	11-04	25.4 ± 2.6	.06 ± .10	.036 ± .061	$1.91 \pm .40$	2.36 ± .26	.64 ± .29
11-19	12-02	25.3 ± 2.0		.047 ± .027	1.81 ± .32	3.48 ± .23	.16 ± .23
12-02	12-16	32.2 ± 1.8		.013 ± .025	1.55 ± .23	2.45 ± .18	.75 ± .21
12-16	01-06						

ND = Not Detectable

•

Radionuclide Concentrations in Surface Air at Barbados, British West Indies (13 06'8, 59°37'W) in 1968 and 1969.

•

:

N) = Not Detectable

Radionuclide Concentrations in Surface Air at Barbados, British West Indies (13°06'N, 59°37'W) in 1970.

, v^{*}

N 1-06 1-14 2-25 3-03 3-03 1-14 1-14 1-20 5-19 5-19 5-19 5-19 5-19 5-19 7-21 7-21 7-21 7-29 3-05 3-05 7-21 7-29 3-05 7-21 7-29 7-21 7-29 7-29 7-29 7-29 7-29 7-29 7-29 7-29 7-20 7-20 7-20 7-20 7-20 7-20 7-20 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-25 7-26 7-29 7-2	6 01-14 01-20 03-03 03-10 03-10 04-20 04-28 04-28 05-19 05-19 05-26 05-22 05-26 05-26 05-26 07-13 07-21 07-29 08-06 08-01 08-11	$\begin{array}{c} 7_{Be} \\ 23.1 \pm 2.0 \\ 39.2 \pm 2.1 \\ 35.9 \pm 2.2 \\ 125 \pm 3 \\ 125 \pm 3 \\ 68.8 \pm 1.9 \\ 19.7 \pm 1.5 \\ 98.5 \pm 3.3 \\ 27.4 \pm 1.1 \\ 193 \pm 4 \\ 193 \pm 4 \\ 193 \pm 4 \\ 193 \pm 4 \\ 193 \pm 4 \\ 21.2 \pm 1.6 \\ 76.2 \pm 3.1 \\ 21.2 \pm 1.6 \\ 15.3 \pm 1.4 \\ 86.6 \pm 3.1 \\ 39.9 \pm 1.6 \end{array}$	$\begin{array}{c} 54_{Mn} \\ \hline 090 \pm .069 \\ <.18 \\ <.18 \\ <.19 \pm .11 \\ .44 \pm .15 \\ .302 \pm .090 \\ .143 \pm .080 \\ .143 \pm .080 \\ .49 \pm .16 \\ .055 \pm .061 \\ 1.03 \pm .22 \\ .61 \pm .20 \\ .12 \pm .20 \\ ND \\ ND \\ .12 \pm .093 \\ .128 \pm .094 \\ .128 \pm .094 \end{array}$	57_{Co} $.034 \pm .039$ $.047 \pm .054$ $.035 \pm .062$ $.197 \pm .094$ $.22 \pm .11$ $.138 \pm .037$ $.19 \pm .13$ $.12 \pm .12$ $.12 \pm .12$ $.27 \pm .14$ $.087 \pm .046$ $.287 \pm .046$ $.287 \pm .046$ $.287 \pm .046$ $.198 \pm .057$ $.198 \pm .051$ $.105 \pm .051$	95_{Zr} 95_{Zr} $1.49 \pm .30$ $9.38 \pm .52$ $28.0 \pm .7$ $28.0 \pm .7$ $23.7 \pm .5$ $5.78 \pm .35$ $35.1 \pm .8$ $10.1 \pm .3$ 52.1 ± 1.0 $37.0 \pm .9$ 62.1 ± 1.0 $37.0 \pm .9$ 60.3 ± 1.1 $.83 \pm .18$ $7.20 \pm .38$ $5.02 \pm .34$ $15.7 \pm .7$ $15.7 \pm .7$ $6.20 \pm .32$	95 Nb 2.38 ± .22 2.20 ± .21 17.8 ± .5 55.6 ± .6 49.6 ± .4 11.7 ± .3 67.8 ± .8 135 ± 1 74.4 ± .8 119 ± 1 119 ± 1 11.60 ± .12 55.1 ± .7 13.1 ± .3 13.0 ± .3 355.5 ± .6 12.2 ± .3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 N 10	09-02 09-16 09-21	51.3 ± 1.9 35.6 ± 1.8 187 ± 4	.61 ± .11 .23 ± .12 .28 ± .16	.037 ± .060 .038 ± .047 .100 ± .086	9.27 ± .41 4.50 ± .37 14.6 ± .6	18.4 ± .4 8.96 ± .30 27.9 ± .5	4.23 ± .23 1.41 ± .20 6.75 ± .35

.

.

•

ND = Not Detectable

a-4

ND = Not Detectable

Date			4	/MQ0	10 ³ M ³		
	OFF	106 _{Ru}	125 _{Sb}	137 _{Cs}	140 ^{Ba}	141 _{Ce}	144 _{Ce}
0	1-14	1.05 ± .58	.68 ± .16	.463 ± .071		1.67 ± .44	$4.64 \pm .41$
0	1-20	1.08 ± .67	.32 ± .21	.38 ± .10		1.80 ± .27	5.67 ± .53
0	3-03	2.0 ± 1.1	.92 ± .34	1.22 ± .14		8.18 ± .35	24.6 ± .8
0	3-10	18.4 ± 1.7	2.65 ± .55	4.41 ± .24		20.7 ± .3	81.4 ± 1.2
0	4-20	18.7 ± 1.1	2.16 ± .34	2.98 ± .14		12.0 ± .2	63.9 ± .7
Ó	4-28	3.94 ± .79	.92 ± .25	1.03 ± .11		2.57 ± .19	$15.0 \pm .5$
0	504	18.6 ± 2.0	3.40 ± .64	5.96 ± .27		15.3 ± .4	112 ± 1
0	5-19	5.81 ± .68	1.26 ± .22	1.49 ± .09		4.16 ± .12	34.4 ± .5
Ö	5-26	44.6 ± 2.7	5.59 ± .82	9.87 ± .35		20.5 ± 4	214 ± 2
Õ	6–22	28.2 ± 2.2	$5.56 \pm .68$	6.50 ± .30	2.8 ± 1.4	18.0 ± .4	150 ± 2
0	7-06	27.0 ± 2.5	7.82 ± .76	9.03 ± .33		29.6 ± .5	240 ± 1
0	7-13		.28 ± .17	160. ± 888.		.56 ± .11	5.47 ± .44
0	7-21	17.6 ± 1.6	3.51 ± .49	4.66 ± .22	16.7 ± 5.3	22.4 ± .5	119 ± 1
0	7-29	4.78 ± .92	1.15 ± .28	1.53 ± .13	3.1 ± 2.3	6.02 ± .25	30.8 ± .8
0	8–06	7.47 ± .95	.93 ± .29	$1.54 \pm .13$		2.02 ± .19	29.6 ± .7
Ō	8-11	19.9 ± 1.9	$4.04 \pm .58$	4.74 ± .27		5.10 ± .32	88.1 ± 1.4
Õ	8-25	6.97 ± .98	1.85 ± .30	2.03 ± .14		1.97 ± .17	35.7 ± .7
0	9-02	11.6 ± 1.2	1.79 ± 35	2.36 ± .16		6.37 ± .22	48.4 ± .8
0	9-16	6.7 ± 1.1	1.25 ± .32	$1.49 \pm .14$	•	1.41 ± .20	27.0 ± .7
0	9-21	20.9 ± 1.9	3.84 ± .55	4.04 ± .26		11.2 ± .3	73.7 ± 1.4

.

Radionuclide Concentrations in Surface Air at Barbados, British West Indies (13°06'N, 59°37'W) in 1970.

.

-

ć

Radionuclide Concentrations in Surface Air at Rio de Janciro, Brazil (22°53'5, 43°17'W) in 1966.

•

NF 8-22	1	8 29	9-5	10-29	11-7	12-15	1-2
l ide			/HAU	/10 ³ M ³			
38		213 ± 14 ^(a)	271 4 28	145 ± 41	62 ± 12	234 ± 10	91.5 ± 3.2
. + /10.	013	<.010	.024 + .011	.048 ± .008	$.010 \pm .012$.014 ± .012	
. ± £30.	017	.152 ± .080	210. + 610.	<.083	070 + 070.	.042 ± .017	
J. 95 4 30.	25	1.34 ± .08	.671 ± .020	2.30 ± .08	5.84 ± .03	3.81 4 .03	
		<.052 ^(a)	l60. ± 060.	4.57 ± .21	4.12 ± .08	2.73 ± .08	.500 + .029
		1.80 ± .24	1.12 ± .52	31.0 ± 1.5	16.8 ± .4	0.02 ± .30	1.79 4 .10
). ± [ĉ0.	200	.0/4 ± .035	.024 ± .007	.254 ± .04	110. ± 102.	110. + 641.	
). ± (2.	05	01. 4 11.	.077 ± .028	.96 ± .43	.40 ± .12	41 ± 14.	050. + 610.
6(N)->		.018 4 .022	.004 ± .004	.005 4 .006	.004 ¥ 900.	.004 4 .004	
ł		36.1 ± 2.1 ^{(a}	20.9 1 2.1	229 ± 5	171 ± 2	88.0 ± 1.4	19.0 + .4
		26.2 J. A ^(a)	9. 4 1.15	1 7 101	1 7 111	1. 1 9.96	2. 1 6.65
1 + 641		+ 5	119 ± 12 ⁽⁴⁾	847 ± 20	539 ± 5	240 ± 3	47.4 1.0
11.7 + 1.11	~	16.4 J.9	9.68 ± .22	73.8 4 .7	59.9 ± .4	44.4 ± .4	
). 1 [20.	017	₩E. ₩ 10.	4E0. ± 020.	EEO. ± 090.	.000 ± 300	ND	
). ± Eð0.	332	<.014	.010 ± 010.	1.98 4 .23	1.41 ± .08	.728 ± .054	
). к 866.	004	36. 1 19.	<. 16	£3 ± .24	د.5 7	1.84 1.12	
). ± 040.	600	014 × 039	800. ± 810.	<.036	.113 ± .012	800. + /90.	
1. ≜ 06.ĥ	13	6.22 4 .12	EU. 4 EU.4	8.72 ± .06	5.47 4 .04	7.31 4 .04	
143 ± 1		62.5 + 2.8	18.5 ± .6	2980 + 10	233 ± 3	3 1.1 ± . 6	
(NI)		(p) 21 1 66	/0 + 15	456 + 14	288 4 4	113 + 2	22.1 ± .6
31.4 ± 4.	~	24.9 4 .4	10.7 ± 3.3	75.8 ± 6.1	53.2 ± 4./	36.7 4.4.4	14.0 4 .3
(04) A (UCI.						

•

(a) = First Analysis By Ge (Li) Diode ND = Not Detectable

iclide Cuncentrations in Surface Air at Rio de Janeiro, Brazil (22°53'N, 43°17'W) in 1967	11
Radiometide G	

٠

·

		100.	100.	100.	100.				100.		100.	-002	200 .	100.	100.	100.	100.
	68 ₁	100.	F 100.	• 100-	¥ 100°	an		(IN	. 002 ±	<.004	T 510.	± €10.	* 210.	• E00 .	1 600.	ŧ 100.	. ()N2 4
	65 _{Zu}	660.	.152	.095	120.	(IN		.025	.027 ± .084	176 4 .013	010. ± 765.	. 255	.066	.162	.029	610.	.212
	60 _{C0}	.035 4 .005	.021.4 .002	.007 ± .002	100. 4 [10.	.005 ± .001		.012 + .001	.014 ± .002	\$00. ¥ (140.	.031 ± .002	£00. ± ££0.	.036 4 .002	.014 4 .002	100. 4 £10.	100. + 600.	.021 + . 002
	58 Cu	1.13 ± .08	.883 ± .040	.297 ± 1033	.290 + .025	510. ¥ 360.	$020. \pm 660.$.092 4 .012	.077 ± .020	1.26 ± .0/	2.36 ± .05	2.06 ± .06	1.54 ± .05	.445 ± .024	.207 4 .020	141 4 .012	.253 ± .024
DIM/10 ⁴ M ³	57 _{C0}	.508 4 .029	.246 ± .032	.137 ± .026	.127 4 .025	.015 + .017	.122 ± .015	£10. ↓ 150.	000. ± 180.	10. + 720.	.047 4 .040	.005 ± .054	.020 4 .029	E20. + IEO.	110° r 920°	.016 4 .004	.020 ± .013
	54Mn	. 706	.219	.067	180.	.064		.085	.139 ± .005	110. ± 101.	.048 ± .008	.254	.300	1/0.	.052	.045	.180
	46 _{Sc} .	ND	ON	QN	ND	ON		HO	E00. ± 100.	.087 ± .012	.041 ± .006	.004 ± .007	<.010	2.02 ± .02	.914 4 .012	.036 ± .003	900. ¥ ££1.
	22 Na	500. ± 600.	.011 ± .002	100. ± 700.	100. ± /00.	.004 ± .001		100. ± 210.	ENO. ± 710.	008 ± 008	.014 ± .002	E00. + /00.	.014 ± .002	100. 1 600.	100. ± 700.	100° r 800°	200. 1 620.
	⁷ lic	E * 611	9 9.7 ± 2.6	76.3 ± 4.2	113 4 2	59.9 ± 3.0	9. ± 9.ĉĉ	140 ± 1	162 ± 1	106 4 1	38.2 ± 1.5	72.4 ± 2.1	111 ± 2	56.8 ± 1.3	49.3 ± .9	£0.9 ± .9	154 ± 2
Date	011	12 01-16	16 UL-28	1 02-12	15 02-28	03-15	10-10 9	11 04 26	1E- 50 E	06-30 10	10-80 10	12 08 31	12-60 10	12 10-16	16-01-9	06-11 1	60 10 1
1	5	0-10	1 ⁻ 10	02-0	02 - 1	03-0	03 -1	04-0	0-30	0 90	07-0	08-0	0-60	10 0	10.1	10-3	12-0

.

ND - Not Detectable

•

1	ات								10.	10.	ю.					•E0.		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13	1.62	1.73	FHH.	60.I	083.		1.48	2.10 4	2.50 ±	2.96 4	3.11	2.91	.816	1.26	1.03 ±		
	s.	100.							£00.	900.	,004				.002	100.	90.	
ļ	134	+ 0I0.	<.005	<.003	<.002	(00. >		<.002	4 620.	₹ 680°	¥ 100.	<.008	×.006	4.006	1 1300.	* VOO.	2.8/ 4	
	- 								۸ <u>6</u> 60.	040.	.20	61.	800.	61.	00.0	.046	.002	
1 1 1 1	1255	100.5	<.083	<.0N5	.353	660.		, 706	1 607.	. 368 4	∗ νε.	* 96.	* 87.	. 38	1 823.	• 403	F 100.	
1	Sh I	.017	800.	CIN).	900.	.603		.003	/00.	.025	.012	E10.	.008	٠00.	.004	.002	Π.	
	124	120 4	+ 1/0.	• 810.	* 810.	* 900.		• 900.	* V00°	.157 4	.057 4	.046 *	• 750.	¥ /10.	* 400.	.002	± 16.	
EM ^E (6	.010	.005	: 00.		200.			010.	110.	E00.	300.	600.	.004	£00.		600.	
DI / Wild	- -	+ 810.	f (00.	.002 ±	<.005	₽ 100 .		د.03	± 200.	+ 110.	• 110.	• 000 .	Ŧ (00 [.]	¥ (M).	T 100 ⁻	<.003	¥ 900°.	
	-	۲.	60.	.06	.05	.08		10.	90.	Π.	-	-	-	10.	.05	.04	.08	
i. I	3 1 9	10.04	6.70 4	2.83	3.43 ±	1.52		2.86.4	3.17 4	9.00.4	10.9 4	16.0 4	₽ 6./I	6.40 4	5.18 4	3.25 ±	6.92	
	ş	l.	ç.	.66	06.	98.	80.	60.	.069	-	-		-		.2	.17	.16	
	3	32.0 +	17.0 4	4./9 ±	1.49 ±	1.61 4	1.42 4	1.55 4	£ 883.	101	+ 661	184 ±	105	1 6.65	12.1	4.48 4	4.67 1	
	4	~.	.16		EL .		G H.	c0.	٥٥.	~	-	.2	۳.	~	-	.10	.2	
- - - -	5	ŧ 9.ĉI	9.84 J		5.88 4		1.72	1.97	1.12 +	25.8 ±	24.6 +	63.0 4	56.2 +	19.61	15.5 ±	7.68 4	12.6 ±	
	_	4.	.30		EL.		G 00.	90.	.049	~.	4.	ç.	s.	۲.	. 18	11	.20	
- - - -	55	18.84	4 ₽3.8		3./1 4		1 /68.	1.12 +	± 9Ed.	27.74	± 1.cì	10.61	1 0.15	13.6 4	9.96.1	4.47 ±	1.31 +	
2	Of F	01-16	01,28	02 - 12	02 - 28	03 15	10-10	04-26	16-30	06-30	10 80	16-80	12-60	10 16	10-31	H - 30	01-09	
led	NO	01-02	01 16	1020	02 - 15	10-60	03-16	04 01	05-03	00-01	10-70	20-80	10 60	10 02	10 · 16	10 31	12-01	

Rie de Jaueiro, Brazil, 1967 (contd)

•

•

* < first Analysis by Ge(Li) Diode

•

Rio de Janeiro, Brazil, 1967 (contd)

	_	.017	600.	.010	.006	.005		.006	.014	.014	.006	.010	.009	.011	.007	.005	.008
	2 _{TI}	-#	#	+	+	+		-#	-#	#	+	-#	+	-#	-	+	-+1
	53	32	32	37	46	28		42	06	8	51	64	72	88	80	45	46
		0	0	0	ò	8		õ	.1	Ŧ.	ö	9.	0	õ	9.	Õ	ò
	a		.002	.004				.004	600 .	.023	.010	.013	.011		.007	.005	600.
	26 _R		++	-+	Q	S		+	+	+I	#	H	H	4	#	+H	-#
	2		11	118	0	00)14)26	99(50	35	32	03	13)23	148
			.		~	~		9	9	9	•	9		`			°.
3		*e.	. .	.12	.28	.13	.17	.15	60.	.12	е.		.2	.23	.09	.07	.15
3 ³ M	ce Le	+H	-#	-++	-#	+I	-#	-#	-#	-#	-#	+	-++	-#	-#	-#	-++
/10	14/	8.	4.	49	32	32	33	54	59	19	.7	.7	2.	28	70	41	27
MdO		13	10	2.	6.		2.	÷.	-	9.	18	24	10	8.	5.	ч.	7.
_	e	4.	.37		.20		.049	.049	.075	.2		.4	۴.	.1	.13	.12	.17
	н С	-#	H		-#		-#	-H	-H	-#	-#	#	#	+	-#	H	-#
	17	.3	98		60		34	85	85	. 8	24	9.]	3.1	0.	03	44	94
		13	7.		ي. ۲		S.	.	.2	54		6	ŝ	11	8.	2.	э.
	a	.07	060.	.030					.28	1		.8	5.	.04		.045	.094
	40 _B	++	H	-#	a	D		a	H	-#	H	#	H	Ħ	0	+	Ħ
	Ĥ	59	00	88					43	49	.84		4	01	010	56	104
			.6	0.					•	-	-	20	12	Γ.	~	0.	0.
te	0ff	01-16	01-28	02-12	02-28	0315	04-01	0426	05-31	06-30	08-01	08-31	09-21	10-16	10-31	11-30	01-09
Da	on O	01-02	01-16	02-01	02-15	03-01	03-16	04-01	0503	06-01	07-01	08-02	00-01	10-02	10-16	10-31	12-01

.

.

* = First Analysis by Ge(Li) Diode D = Decayed Away Before Analysis

·

•

.

Radionuclide Guncentrations in Surface Air at Rio de Janeiro, Brazil (22°53'S, 43°17'W) in 1968

	B,	2	100. ±	100. 1	-	4 .002	¥ .002	100. *	~	1(N). ±	-	1(X). Ł	1	EUO. 1	£00. ł	£00. ±	± .003	÷.005	400. Ł	E00. 4	1.004	ĉ00, 4	ł00. Ł	4 .002	E00. F	£00. ±	£(H). Ł	200° F	£00. ±	4 ,002	ζ(H), ±	2007 -	100. 4	100. 1
		00. > 110	200. 810	200. 110	·	.002	.002	100.	۰.00	100.	·.00	100. +360	17 <.00	200. 680	300.002	16 .002	36 .003	200. EE	300. 95	.002	200. 62	28 .007	75 . UUA	18 .002	F00. EI	100. 52	GOO. 61	2007 61	EUO. 71	100. 01	086 .002	15 .002	100. [1	100.
	49 ¹	, ± 690.). ¥ 260.	. ± [b[.	.027	.085	.003	.064	.086	.064	760.	. 4 940.	. 24 ± .	. 122 ± .(. 32 ± .	. * [2.	. 82 ± .	. * Iĉ.	. + 21.	¢35	. 1 92.	. + VE.	. 26 4	. 10 ± .	. 34 ± .	. 36 4 .	. 1 36.	. 11 .	. 10 4 .	. 4 [9]	. 4 580.	. 16 4 .	. 17 4 .	۰. <i>۱</i> ۷
	60 10	100. 4 200.	.000. ± 800.	.002 + .002	100. ± £00.	100. ± 200.	.008 ± .002	.008 ± .002	100. 1 100.	100. + 100.	100. + 100.	100. ± 100.	.015 ± .002	E00. ± E10.	100. + 010.	£00. ± 610.	.072 ± .005	400. ± 9£0.	900. + 390.	100. 1 610.	300. ± 120.	600. 1 960.	\$00. ± 610.	COO. + 1/20.	100. 1 120.	100. 1 010.	EUO. 4 810.	.034 1 .004	PUN. 1 /PU.	POD. 4 /ED.	£00. ± 220.	100. 1 000.	£00. + 610.	100, 1 110.
~	58 6.0	110. 4 880.	.036 + .018	010. ± 200.	۰.017	610. ¥ E10.	.027 ± .022	110. + 110.	c.U16	600. ¥ 100.	900° F 100°	800. 4 300.	2.51 4 .10	ll. ± 69.1	3.14 ± .16	1.54 ± .10	4.30 ± .16	2.03 ± .17	3.03 ± .19	60. ± 61.1	2.05 ± .14	EL. ± 10.1	01. ± 36.	0/0. + 1/6.	080. + 460.	.309 ± 055	110. + 586.	1.11 4 .07	80. 1 8C. I	1.01 4 .07	940. I GIA.	1707 T 0887	43.0. + 8/6.	730° i 138°
ME 01/1410	57 _{Co}	809. + 410.	820. + 110.	100. ± 100.	.022 ± .007	110. + 610.	110. ± 200.	000. ± 010.	010. + 100.	eo0. ± 210.	.004 + .006	.003 ± 003	QN	.069 ± 057	ND	QN	ND	01	MD	ND	ND	(11)	.325 ± .092	Ш	870. ± 180.	.112 4 .068	860. + 144.	.187 ± .076	.55 ± .11	180. + 185.	P00, ± 985.	070. ± 688.	050° t 981.	185 1 .043
	54 MH	700. ± 210.	110. F 8/0.	600. + 901.	.024	.076	.021	140.	.053	.056	.025	.072 ± .015*	.085 ± .055	650. ± 850.	۰.2ا	.036 ± .057	.28 ± .13	21. 4 12.	.16 ± .14	.304 ± 074	.35 ± .11	H. + /b.	01. 4 28.	432 + .069	EAO. 4 OFE.	.052 r .055	548° + 170.	690. ₹ ¢9E.	. 114 × .055	316 ± .065	.080. ± 1880.	.308 4 .067	UNU. + 552.	080. ± 121.
	4b. S.	FOD. ± 580.	600. + Hu.	ځ۵۵۰.>	.001 + .002	EUO. → EUO.	100° ± 300.	¢.003	100. ± 100.	<.003	100. + 200.	<.003	100. 4 420.	¢.008	010. ± 610.	800. + 310.	010. ± 120.	.014 ± .015	150. + 760.	900. v 610.	£10. + 5£0.	EIO. + 620.	110. + 610.	<.018	600. ¢ /10.	600° ¥ 600.	600° + 180°	600° i 200°	600. 1 820.	s.018	<.011	.018 t .007	100. 1 300.	6(N). I (.(N).
	22 _{N1}	100. 4 800.	500. ± 020.	500. ¥ 810.	100. 1 200.	.014 ± .002	500. ± 700.	100. ± 010.	.012 ± .002	100. + 110.	100. ± 700.	100. ± 600.	100. ± 010.	.000 ± 000.	.025 ± .004	E00. ± 720.	100. ± 660.	900° ¥ 620°	200. ± 750.	FOO. 4 600.	300. ± 680.	200. ± 220.	£00. ± 210.	E00. ± 610.	100. ± 120.	EU0. ± 200.	¥00. ± 610.	POAL & 160.	.042 ± .005	PIN). + PEU.	E00. 4 /10.	£00. ± 000.	£00. ± \$00.	2007 ¥ 7007
	/Be	83.8 ± 1.1	185 ± 3	102 4 2	45.8 ± .8	104 r 2	37.3 ± 1.5	94.1 ± 1.2	6. F 8.16	83.8 ± 1.0	54.6 4 ./	80.0 + 1.0	83.7 ± 1.5	44.2 ± 1.8	153 ± 3	158 4 3	176 ± 4	167 4 4	112 ± 5	104 + 3	270 4 4	120 4 4	64.3 + 2.8	139 + 2	1/6 - 4	20.1 4 2.1	89.7 ± 7.98	205.4.3	273 ± 4	1/8 + 3	1.30 ± 3	5 1 1 3	119 4 2	11.2 11.4
ıle	10	02-01	02 -15	02-29	01 · 16	[0- b0	01-10	04 - 26	05~15	05-28	06-18	07-13	0730	01-10	61-80	08-26	09-02	90-60	61-60	. 82, 60	09-28	10 06	lt of	10 - 21	10-26	10-11	11 40	11-18	H 25	12-02	12 09	12-16	12 23	12 30
Dd	NO	01-18	02-06	U2-15	03 01	03 19	04-02	61-10	05 02	61- GD	10-90	0/~/0	07 - 15	08-03	08-12	08-19	UB 26	99-02	01-60	00 16	09-23	10-01	10-07	10 14	12-01	10 28	n w	11.11	11 18	11 26	12-02	12 09	12 16	12.23

r 1444 x

...

i dan Pr

•

ы н

* = First Analysis by Ge(Li) Diode MD = Not Detectable

r - 1

Rio de Juneiro, Brazil, 1968 (contd)

50.5 ± 2.9 -----56.0 ± 1.3 26.2 ± 3.1 41.5 1 5.8 26.1 + 1.9 131 95.H ± 1.4 26.8 ± 1.2 23.6 ± 4.1 19.1 4 2.7 126 ± 4 sh 175_{Sh} 201 ± .048 191 4 .012 .235 ± .040 .150 ± .028 dd0. ± 0/E. 190. + 199. 950. ± 121. .392 ± .046 .0/5 + .056 200. ± 691. .72 ± .33 11. * 68. .23 ± 25. .56 ± .55 . 34 ± .66 .67 9.8 + 8.9 1.18 4 .50 1.33 ± .43 2.01 4 .44 1.43 ± .70 HP. 4 RU. I P. + P. | 800. + 740. . úl i . 63 11.14 1.11 1.10 4 .41 .47. i 175. . 18 ± <.5J <1.5 دا .6 <1.7 <.7B <.⊪, -- 124<u>sh</u>---010. 4 280. /10. + 6/0. 610. 1 640. 010. 1.170. .002 + .008 600° ¥ /00° 040. 4 200. 010. 4 200. 028 ± .018 £10, 1 £/0. .002 ± 2003 020. 4 750. E00. 4 [00. 210. ± 015. .114 ± .030 .01/ ± .020 .166 ± .034 240. 1 3/0. 160. ± 561. 150. 1 510. 010. 4 660. .013 + .00u 300. ± 100. 004 + 004 160. 1 180. .117 4 .022 .002 ± .004 <.004 ×.006 ÷.009 <.006 160.> 500. + 900. 020. 4 760. 300. ± £00. 150. ± 200. 600. t 800. .017 ± .013 EI0. ± 700. .002 ± 500. .002 ± .006 E00. ± E00. **600. ≜ 300.** .011 + .012 032 4 .018 03/ ± .018 010 T 910. **210. 1 ETO.** 210. 1 150. 078 4 .014 000. 1 /00. 110. 4 710. 110. + 050. 010. 1 310. 100. 1 100. 000. ± 000. 100. ± 100. .007 4 .006 .005 4 .005 .007 ± .012 100. 1 100 100. 1 100. .004 4 .005 0.01 4 00.02 <.00A 160. 4 387. .336 ± .020 .298 ± .018 .507 ± .028 .454 ± .025 .427 ± .023 160. 4 897. 402 ± 2035 .606 ± .032 1.87 + .06 1.32 ± .04 3.93 ± .07 3.35 ± .10 7.51 ± .13 7.92 ± .18 61. 4 68.9 6.81 1.16 11. * 68.1 6.92 4 .14 0.23 4 .13 4.44 ± .14 6./6 4 .12 21.0 ± .2 16.6 ± .3 13.9 4.2 11.2 ± .2 0.20 1.14 12.7 ± .2 15.1 1.2 15.54.2 11.1 4 .2 11.8 1 .2 6.6 4 .2 lo3_{Ru} 411 t .066 .058 4 .026 010. ¥ /00. .164 ± .021 950. ± 910. **600.** ▲ 660. ES. ± E8. EL. 4 17. bl. ± 76. 11. ± čl. 82.6 ± .5 84.3 ± .5 1. 1.96 85.1 1.5 1 + 001 422 ± 1 265 4 1 125 4 1 4. 1 8.66 1. 1 9.08 16.2 1 .5 8. 4 4.98 42.0.1.5 54.7 1 .4 41.3 4 ... 1. + 6.11 210 4 1 1 + 061 116 4 1 125 4 1 182 ± 1 217 4 1 ۰.070 × 140. 4 961. elo. + 8/1. 95_N1 .236 ± .028 207 ± /02. .414 ± .034 .272 4 .025 .635 4 .066 .184 4 .062 2.45 4 .15 1.15 4.06 1.25 4 .07 1.1 ± .4 1 1 2 3 3 1 0. 1 6.10 1. 1. 0. 1. 124 1 1 1 + 1/1 17641 508 4 1 258 ± 1 461 + 1 214 1 1 1 1 5 1 1 1 1 10.1 1.11 1.11 1 + 622 368 4 1 135 4 1 1 1 161 1 1 1 1 17 se 111 ± .044 .055 ± .028 110. 1 361. .110 ± .046 .052 ± .087 157 + .053 .149 4 .028 149 ± .049 .94 ± .20 51. 4 45. .16 4 .10 71.8 ± .6 13.8 4 .6 16.51.4.08 348 ± 2 1. 4 9.6 1. 1 4.5 116 ± 1 180 4 1 1 + 101 502 4 2 2019 ± 1 163 4 1 2/8 ± 1 722 4 1 105 4 1 1 1 11 1.7.8.4.1 1.26 + 1 1.1.001 1 + 112 124 1 1 1 1 101 08-10 10-11 12-23 hate 06-18 E1-70 07--30 08-19 09-28 10-0f 10 26 11-10 12.09 12 16 12 10 03-16 04 10 04-26 05-15 05--28 08-26 00-00 09 14 09-23 10 21 11-25 12-02 02-15 02-29 04-01 09 02 10 11 11 18 01 18 02 01 011 01° 60 62-60 11-04 12 09 02-15 10 01 10.14 16-21 10. 2B 81 11 U2 U6 03-01 03-19 05 15 U6-01 07-15 08-12 08 19 08-26 20-60 91-60 10 07 11-26 17 23 ļ 04-15 05 02 EU-80 11-11 12.02 12-16 04-02 10 20 Ξ

(contd)	~
1968	
Brazil,	
Janeiru,	
ą	
Rio	

	122 H 237 U	010	1011 F	600. 1	100.	1.012	100. 1	110. 4	210. +	÷.009. ±	100. +	4 .012	+ .010 46.8 J .3		4 .01/ <12	± .019 <23	± .01/ <12 ± .019 <23 ± .021 <1.2	* .017 <12 * .019 <23 * .021 <1.2 * .022 <149	* .01/ <12 * .019 <23 * .021 <1.2 * .022 <149 * .032 <22	* .01) <12 * .019 <23 * .021 <1.2 * .022 <149 * .033 <2.8	 4.017 <17 4.019 <73 4.021 <1.2 4.022 <149 4.032 <22 4.033 <2.8 4.033 <2.8 	 4.017 <17 4.019 <73 4.021 <1.2 4.022 <149 4.032 <22 4.033 <22.8 4.071 129 4.8 4.062 99 4.20 	 4.017 4.12 4.019 4.23 4.021 4.1.2 4.032 4.149 4.033 4.2.8 4.023 1.29 4.8 4.027 1.29 4.8 4.027 1.29 4.8 4.024 1.36 4.12 	 412 412 413 414 /ul>	 4.017 4.12 4.019 4.23 4.021 4.1.2 4.022 4.149 4.033 4.22 4.033 4.22 4.024 1.29 4.8 4.027 9.9 4.20 4.024 1.36 4.12 4.021 8.136 4.12 4.018 	 4.017 4.12 4.019 4.23 4.022 4.149 4.032 4.22 4.033 4.2.8 4.023 1.29 4.8 4.027 99 4.20 4.027 1.29 4.12 4.024 1.36 4.12 4.021 4.025 	 412 413 414 /ul>	 412 412 413 41, 20 <l< th=""><th> 4.017 4.12 4.12 4.1.2 4.022 4.12 4.033 4.20 4.023 129 12 4.024 136 12 13 12 12 12 13 12 13 12 13 13 14 15 14 15 15 15 16 16 17 17 18 16 17 17 18 18 19 10 1</th><th> 4.01/ 4.12 4.02 4.1.2 4.022 4.022 4.03 4.03 4.02 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 </th><th> 4.010 4.12 4.02 4.1.2 4.022 4.03 4.03 4.03 4.03 4.03 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.018 <l< th=""><th> 412 413 414 /ul></th><th> 4.017 4.12 4.12 4.1.2 4.02 4.93 4.03 4.03 2.8 4.02 129 120 4.021 123 4.024 129 120 4.024 129 120 4.024 129 120 4.024 136 12 120 12</th><th> 4.017 4.12 4.1.2 4.1.2 4.022 4.12 4.022 4.12 4.023 4.024 129 8.20 4.029 4.02 4.029 4.02 4.02 4.02 4.02 4.02 4.02 4.01 </th></l<></th></l<>	 4.017 4.12 4.12 4.1.2 4.022 4.12 4.033 4.20 4.023 129 12 4.024 136 12 13 12 12 12 13 12 13 12 13 13 14 15 14 15 15 15 16 16 17 17 18 16 17 17 18 18 19 10 1	 4.01/ 4.12 4.02 4.1.2 4.022 4.022 4.03 4.03 4.02 4.018 4.018 4.018 4.018 4.018 4.018 4.018 4.018 	 4.010 4.12 4.02 4.1.2 4.022 4.03 4.03 4.03 4.03 4.03 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.02 4.018 <l< th=""><th> 412 413 414 /ul></th><th> 4.017 4.12 4.12 4.1.2 4.02 4.93 4.03 4.03 2.8 4.02 129 120 4.021 123 4.024 129 120 4.024 129 120 4.024 129 120 4.024 136 12 120 12</th><th> 4.017 4.12 4.1.2 4.1.2 4.022 4.12 4.022 4.12 4.023 4.024 129 8.20 4.029 4.02 4.029 4.02 4.02 4.02 4.02 4.02 4.02 4.01 </th></l<>	 412 413 414 /ul>	 4.017 4.12 4.12 4.1.2 4.02 4.93 4.03 4.03 2.8 4.02 129 120 4.021 123 4.024 129 120 4.024 129 120 4.024 129 120 4.024 136 12 120 12	 4.017 4.12 4.1.2 4.1.2 4.022 4.12 4.022 4.12 4.023 4.024 129 8.20 4.029 4.02 4.029 4.02 4.02 4.02 4.02 4.02 4.02 4.01
	226 _{ka} 23	31 ± .006 .072	291. 010. r 05	26 4 .008 .043	1 + .005 .034	100. 000. ± 61	700, 200, L 20	10 ± 000 ± 01	280, 110, 4.6	- E40. 009 + GI	1 1 .005 .027	· 280. 900. • 9	5 100 800 F Z	80. 210. F		14 ± .022 .089 ±	4 ± .022 .089 ± 4 ± .021 .130 ± 4	id ± .022 .089 ± 4 ± .021 .130 ± 5 ± .072 .156 ±	 4 4 4 4 5 4 6 136 156 156 156 10 124 	 4 4 4 4 5 4 132 133 134 158 134 158 133 133 133 	 4 4 4 4 4 5 4 4<	4 4 .022 .089 4 .021 .130 4 5 .021 .131 .02 6 .021 .014 .128 7 .026 .133 4 4 .078 .133 4 4 .078 .133 4 4 .078 .133 4 4 .078 .133 4	* * 0.02 . * * * * 0.01 * * * * * * 1.02 * * * * * 1.02 * * * * * 1.02 * * * * * 1.02 * * * * * 1.02 * * * * * 1.02 * * * * * 1.02 * * * * * 1.02 * * * *	4 4 0.22 .089 4 6.021 .130 4 5 6.131 .131 4 4 8.1. .128 4 4 1.0.1 1.0.1 4 4 1.0.2 .154 1.128 4 1.026 .193 .193 4 1.026 .193 .194 4 .0034 .0034 .014 4 .0034 .0034 .014 5 .0034 .0034 .015	 4 4 200. 4 1022 4 1021. <	• 080. 520. • • • 061. 130. • • • 061. 130. • • • 161. 531. 530. • • • 151. 870. • • • • • 151. 870. • • • • • • • • • 101. 830. 101. •	• 0.22 .089 • 0.22 .081 • 0.22 .013 • 1.30 • • 1.130 • • 1.131 • • 1.121 • • 1.128 • • 1.128 • • 1.128 • • 1.128 • • 1.128 • • 1.128 • • 1.026 • • 1.034 • • 1.034 • • 1.034 • • 1.034 • • 1.034 • • 1.034 • • 1.01 • • 1.02 • • 1.03 • • 1.03 • • 1.03 • • 1.03 • • 1.03 •	• 0.22 0.08 • 0.22 0.01 • 0.22 130 • 0.22 130 • 0.131 1.130 • 0.131 1.131 • 0.191 1.128 • 0.121 1.128 • 0.121 1.128 • 0.126 1.131 • 0.134 1.128 • 0.134 1.128 • 0.134 1.131 • 0.134 1.131 • 0.134 1.034 • 0.134 1.034 • 0.134 1.034 • 0.103 1.03 • 0.103 1.03 • 0.103 1.03	• 0.022 0.089 • 0.21 1.30 • • 0.22 1.31 • • 0.22 1.32 • • 0.131 • • • • 0.121 • • • • 0.121 • • • • 0.121 • • • • 0.121 • • • • 0.121 • • • • 0.134 • • • • 0.134 • • • • 0.103 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • <t< td=""><td>• 0.0.2 0.0.1 •</td><td>4 4 .022 .089 4 .021 .130 4 5 .022 .154 4 6 .021 .130 4 6 .078 .131 4 7 .078 .131 4 8 .071 .013 4 8 .075 .191 4 8 .073 .094 4 8 .034 .004 4 7 .034 .014 4 10 .017 .013 4 10 .017 .013 101 10 .019 .010 .013 10 .010 .010 .013 103 10 .010 .010 .013 101 10 .010 .010 .013 101</td><td> 4 4 200. 4 1022 1084 4 1021 1130 4 1026 1024 1034 <</td><td>• 0.022 .081 • 0.221 .021 • 0.221 .021 • 0.130 .130 • 0.121 .012 • 0.121 .012 • 0.121 .012 • 0.121 .012 • 0.121 .012 • 0.131 .024 • 0.031 .010 • 0.101 .010 • 0.103 .010 • .010 .011 • .0120 .013 • .0130 .013 • .0130 .013 • .0120 .013 • .0120 .012 • .012 .012 • .012 .012 • .012 .012 • .012 .012 • .012 .012</td><td>• 051. 500. •<!--</td--></td></t<>	• 0.0.2 0.0.1 •	4 4 .022 .089 4 .021 .130 4 5 .022 .154 4 6 .021 .130 4 6 .078 .131 4 7 .078 .131 4 8 .071 .013 4 8 .075 .191 4 8 .073 .094 4 8 .034 .004 4 7 .034 .014 4 10 .017 .013 4 10 .017 .013 101 10 .019 .010 .013 10 .010 .010 .013 103 10 .010 .010 .013 101 10 .010 .010 .013 101	 4 4 200. 4 1022 1084 4 1021 1130 4 1026 1024 1034 <	• 0.022 .081 • 0.221 .021 • 0.221 .021 • 0.130 .130 • 0.121 .012 • 0.121 .012 • 0.121 .012 • 0.121 .012 • 0.121 .012 • 0.131 .024 • 0.031 .010 • 0.101 .010 • 0.103 .010 • .010 .011 • .0120 .013 • .0130 .013 • .0130 .013 • .0120 .013 • .0120 .012 • .012 .012 • .012 .012 • .012 .012 • .012 .012 • .012 .012	• 051. 500. • </td
	14/NI	0.	10.	0	0	Õ	.0.	.0.	ö .	Ю.	20.	5 0 .	182 + 1 . 05	57.4 ± .5 .0M	106 ± 2 .10		29.2 ± 2.0	29.2 ± 2.0 .11 154 ± 3 .11	29.2 ± 2.0 .11 154 ± 3 .11 87.8 ± 2.7 .16	29.2 ± 2.0 .11 154 ± 3 .11 18. ± 2.7 .18 101 ± 5 .13	29.2 ± 2.0 11 154 ± 3 11 11. 2 ± 2.1 18 101 ± 5 11 101 ± 1.7 22	11. 0.2 ± 2.02 11. 5 ± 1.01 11. 7.2 ± 1.01 10. 4 5 ± 1.01 10. 1 ± 5 ± 1.01 5 ± 1.1 ± 2.22 5 ± 1.1 ± 1.01	11. 0.2 ± 2.02 11. 5 ± 63 11. 7.2 ± 63 11. 7.2 ± 101 11. 7.1 ± 1.36 11. 6.1 ± 1.36 11. 6.2 ± 2.5	29.2 ± 2.0 111 154 ± 3 111 11.8 ± 2.7 118 101 ± 5 113 101 ± 1.7 22 52.4 ± 3.3 111 57.2 ± 2.5 119	29.2 ± 2.0 11. 154 ± 3 11. 21 ± 5 10. 4 5 10. 4 5 10. 4 5 10. 4 5 10. 22 11. 22 12. 2.5 19 10. 4 10. 21 10. 21 1	29.2 ± 2.0 11. 0.2 ± 2.0 11. 154 ± 3 11. 2 ± 2.1 10. 2 ± 2.5 10. 2 ± 2.5 10. 10 11. 22 10. 2 ± 2.5 10. 10 10. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.2 ± 2.0 11. 0.2 ± 2.1 11. 154 ± 3 11. 2 ± 2.1 10. 2 ± 2.5 11. 2.1 11. 2.1	29.2 ± 2.0 154 ± 3 11. ± 5 10. ± 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.2 ± 2.0 11. 154 ± 3 11. 154 ± 3 10. 1 ± 5 10. 1 ± 5 10. 1 ± 1.7 10. 1 ± 1.7 10. 2 ± 2.5 11. 22 11. 22 12. 2 ± 2.5 12. 19 10. 21 10. 21	29.2 ± 2.0 11.6 ± ± 2.1 11.6 ± ± 2.1 10.1 ± 5 11.7 ± 2.5 11.6 ± ± 1.3 11.6 ± ± 2.5 11.7 ± 2.5 11.6 ± 1.9 12.7 ± 2.5 10.9 10.0	
DPM/ 10 ¹ M ¹	144 	.73 ± .20	1.98 4 .18	1.68 ± .10	.288 ± .046	11. 1 07.1	.25 ± .13	1.03 4 .10	160. ¥ 163.	.728 4 .087	£90. * 799.	1.22 4 .10	48.4 ± 5.5	42.4 4.6	127 4 1		58.1 ± .7	58.1 ± .7 274 ± 2	58.1 ± .7 5 274 ± 2 122 ± 1	50.1 ± .7 5 274 ± 2 122 ± 1 211 ± 2	50.1 ± .7 274 ± 2 122 ± 1 211 ± 2 201 ± 1	50.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 165 ± 1	58.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 101 ± 1 101 ± 1	50.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 101 ± 1 101 ± 1 101 ± 1 101 ± 1	58.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 114 ± 1 15.6 ± 1.0 81.3 ± .7	58.1 ± .7 274 ± 2 122 ± 1 122 ± 1 211 ± 2 101 ± 1 101 ± 1 140 ± 1 140 ± 1 15.6 ± 1.0 81.3 ± .7 75.9 ± 1.0	50.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 161 ± 1 161 ± 1 75.6 ± 1.0 81.3 ± .7 75.9 ± 1.0 24.1 ± .7	58.1 ± .7 274 ± 2 122 ± 1 122 ± 1 211 ± 2 101 ± 1 101 ± 1 161 ± 1 75.6 ± 1.0 81.3 ± .7 75.9 ± 1.0 20.1 ± .7 77.2 ± 1.0	58.1 ± .7 274 ± 2 122 ± 1 122 ± 1 101 ± 1 101 ± 1 144 ± 1 75.6 ± 1.0 81.3 ± .7 75.9 ± 1.0 24.1 ± .7 77.2 ± 1.0	58.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 144 ± 1 144 ± 1 5.6 ± 1.0 75.9 ± 1.0 24.1 ± .7 75.9 ± 1.0 27.1 ± .7 77.2 ± 1.0	58.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 161 ± 1 75.6 ± 1.0 81.3 ± .7 75.9 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 199 ± 1 135 ± 1	58.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 144 ± 1 75.6 ± 1.0 81.3 ± .7 75.9 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 77.4 ± 1.0 135 ± 1 135 ± 1 135 ± 1	58.1 ± .7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 101 ± 1 101 ± 1 75.6 ± 1.0 75.9 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 77.2 ± 1.0 109 ± 1 109 ± 1 135 ± 1 135 ± 1	58.1 ± . 7 274 ± 2 122 ± 1 211 ± 2 101 ± 1 101 ± 1 103 ± 1 104 ± 1 104 ± 1 105.6 ± 1.0 81.3 ± . 7 75.9 ± 1.0 77.2 ± 1.0 128 ± 1 135 ±
	141 Ce	E30. + 452.	21. 1 16.	31. ± 66.	050. + 190.	16. ± 82.	.30 ± .31	.142 * .071	.123 ± .047	.078 ± .067	.028 ± .027	$.050 \pm .051$	1 + 626	212 + 1	576 + 1		239 ± 1	239 ± 1 1160 ± 1	239 ± 1 1160 ± 1 467 ±1	239 ± 1 1160 ± 1 467 ±1 /52 ± 1	239 ± 1 160 ± 1 167 ± 1 267 ± 1 314 ± 1	239 ± 1 1160 ± 1 467 ±1 752 ± 1 319 ± 1 517 ± 1	239 ± 1 1160 ± 1 467 ±1 752 ± 1 314 ± 1 517 ± 1 420 ± 1	239 ± 1 1160 ± 1 467 ±1 752 ± 1 314 ± 1 517 ± 1 420 ± 1 199 ± 1	239 ± 1 1160 ± 1 467 ± 1 752 ± 1 314 ± 1 517 ± 1 129 ± 1 199 ± 1 188 ± 1	239 ± 1 1160 ± 1 467 ±1 752 ± 1 314 ± 1 517 ± 1 420 ± 1 199 ± 1 188 ± 1 133 ± 1	239 ± 1 1160 ± 1 467 ± 1 752 ± 1 314 ± 1 517 ± 1 120 ± 1 188 ± 1 133 ± 1 133 ± 1	239 ± 1 1160 ± 1 467 ± 1 752 ± 1 314 ± 1 517 ± 1 199 ± 1 198 ± 1 133 ± 1 48.7 ± .4 48.1 ± .4	239 ± 1 1160 ± 1 467 ±1 752 ± 1 314 ± 1 314 ± 1 920 ± 1 198 ± 1 133 ± 1 98.7 ± .4 198 ± 1 138 ± 1	239 ± 1 1160 ± 1 467 ±1 752 ± 1 314 ± 1 517 ± 1 120 ± 1 188 ± 1 133 ± 1 138 ± 1 138 ± 1 158 ± 1 158 ± 1 158 ± 1	239 ± 1 1160 ± 1 467 ±1 752 ± 1 314 ± 1 517 ± 1 129 ± 1 188 ± 1 133 ± 1 133 ± 1 138 ± 1 138 ± 1 138 ± 1 138 ± 1 138 ± 1 138 ± 1	239 ± 1 1160 ± 1 467 ± 1 752 ± 1 314 ± 1 517 ± 1 129 ± 1 199 ± 1 1188 ± 1 1188 ± 1 133 ± 1 138 ± 1 158 ± 1 154 ± 1 124 ± 1 124 ± 1	239 ± 1 1160 ± 1 467 ± 1 752 ± 1 314 ± 1 314 ± 1 920 ± 1 113 ± 1 118 ± 1 118 ± 1 133 ± 1 138 ± 1 138 ± 1 138 ± 1 138 ± 1 138 ± 1 154 ± 1 154 ± 1 154 ± 1 154 ± 1	239 ± 1 1160 ± 1 467 ± 1 752 ± 1 752 ± 1 314 ± 1 617 ± 1 133 ± 1 133 ± 1 133 ± 1 133 ± 1 133 ± 1 133 ± 1 133 ± 1 133 ± 1 133 ± 1 134 ± 1 134 ± 1 134 ± 1 134 ± 1 135 ± 1 124 ±
" LALL	14064	a	180. 1 010.	11. 1 6/.1	D	4.1 4 9.	.1 + 1.0	a	210. + 000.	.081 4 .062	0.000.>	810. + 110.	333 ± 24	140 ¥ 19	291 ± 20		123 4 10	123 ± 10 623 ± 16	123 ± 10 623 ± 16 217 ± 22	123 ± 10 61 ± 623 21 ± 22 29 ± 22	123 ± 121 623 ± 15 715 ± 22 23 ± 22 29 ± 8	123 ± 10 623 ± 16 21 ± 22 22 ± 22 126 ± 8 9 ± 21	123 ± 10 623 ± 16 21 ± 22 29 ± 22 126 ± 8 135 ± 8 145 ± 8	123 ± 10 623 ± 15 715 ± 22 24 ± 22 25 ± 4 25 ± 4 175 ± 4 165 ± 1.23	123 ± 10 623 ± 16 217 ± 22 293 ± 22 176 ± 8 176 ± 8 165.1 ± 5.1 65.1 ± 2.4	123 ± 10 623 ± 16 217 ± 22 293 ± 22 294 ± 22 175 ± 8 165 ± 1 ÷ 1 61. 1 ± 2.0 24.9 ± 2.0	123 ± 10 623 ± 16 217 ± 22 293 ± 22 126 ± 8 126 ± 12 126 ± 1.2 120 ± 2.0 24.1 ± 1.0	123 ± 10 623 ± 16 217 ± 22 293 ± 22 293 ± 22 176 ± 8 176 ± 1.2 16.1 ± 1.2 26.9 ± 1.2 26.9 ± 1.2	123 ± 10 623 ± 16 217 ± 22 293 ± 22 175 ± 8 175 ± 8 175 ± 17 1.2 ± 1.2 2.1 ± 1.2 2.1 ± 1.2 2.1 ± 1.2	123 ± 10 212 ± 22 293 ± 22 293 ± 22 293 ± 221 $2 \pm 126 \pm 8$ 1.2 ± 1.26 1.2 ± 1.26 1.2 ± 1.21	123 ± 10 21 ± 22 21 ± 22 29 ± 22 29 ± 22 126 ± 8 1.6 ± 1.2 1.1 ± 1.0 1.1 ± 1.2 1.2 ± 1.2 1.2 ± 1.2 1.3 ± 1.2 1.1 ± 1.0 1.1 ± 1.0 1.1 ± 1.0 1.1 ± 1.2 1.1 ± 1.2 1.1 ± 1.2 1.1 ± 1.2 1.2 ± 1.2 ± 1.2 1.2 ± 1.2 ± 1.2 1.2 ±	123 ± 10 623 ± 15 217 ± 22 293 ± 22 293 ± 22 172 ± 13 173 ± 14 1.2 ± 1.2 1.2 ± 1.2 1.3 ± 1.2 1.3 ± 1.2 1.4 ± 1.2 1.3 ± 1	123 ± 10 21 ± 523 21 ± 22 29 ± 22 29 ± 24 172 ± 12 172 ± 12 1.2 ± 1.2 2.1 ± 1.2 1.3 ± 1.2 1.3 ± 1.2 1.4 ± 1.2 1.4 ± 1.2 1.2 ± 1.2 ± 1.2 1.2 ± 1.2 ± 1.2 1.2 ± 1.2 ± 1.2 ± 1.2 1.2 ± 1.2	123 ± 10 21 ± 523 29 ± 22 29 ± 22 126 ± 8 1.6 ± 1.25 1.6 ± 1.2 1.1 ± 1.0 1.1 ± 1.0 1.1 ± 1.0 1.2 ± 1.2 1.2 ± 1.2 1.2 ± 1.28 1.2 ± 1.28 1
111		50, t /9G.	1.53 ± .06	1.56 L .04	.351 4 .020	1.06 ± .03	180. + 101.	.849 ± 032	.580 ± .026	.615 ± .026	.363 + .018	.474 ± ,027	1.13 ± .08	1.20 ± .10	3.42 ± .17		3.49 t .11	11. ± 44.6 7.31 ± 22	3.49 ± .11 7.31 ± .22 3.74 ± .21	3.49 ± .11 7.31 ± .22 3.74 ± .21 5.93 ± .25	3. A9 4 11. 4 4. 6 7. 31 4 . 22 3. 4 4 . 21 3. 4 4 . 21 5. 5 4 14 2. 1 5 2. 5 4 14	3. A9 4 .11 7. 31 4 .22 3. 7 4 .21 5. 9 1 .25 2. 7 6 4 .10 2. 1 60.0	3. A9 ± .11 7. 31 ± .22 3. 74 ± .21 5. 93 ± .25 2. 75 ± .14 6. 01 ± .70 3. 76 ± 19	3. A9 4 .11 7. 31 4 .22 3. 74 4 .21 5. 93 4 .25 2. 76 4 .19 3. 76 4 19 3. 76 4 19 2. 32 4 .16	3. A9 4 . 11 7. 31 4 . 22 3. 74 4 . 21 5. 93 4 . 25 5. 93 4 . 26 2. 76 4 . 14 6. 01 4 . 70 3. 76 1 9 2. 32 4 . 16 2. 89 4 . 12	3. A9 4 . 11 7. 31 4 . 22 3. 74 4 . 21 5. 91 4 . 25 5. 92 4 . 16 3. 76 4 . 10 3. 76 4 . 12 2. 13 4 . 12 2. 89 4 . 12 3.51 4 . 19	3. A9 4 . 11 7. 31 4 . 22 3. 74 4 . 21 5. 93 4 . 25 5. 94 19 5. 32 4 . 16 3. 75 4 19 2. 32 4 . 12 2. 32 4 . 12 3.51 4 . 19 3.51 4 . 19 . 19 . 19	3. A9 4 . 11 7. 31 4 . 22 3. 74 4 . 21 5. 93 4 . 25 5. 94 4 . 70 5. 94 4 . 70 3. 76 4 19 3. 76 4 19 2. 32 4 . 16 2. 89 4 . 18 3. 51 4 . 18 3. 51 4 . 18 3. 51 4 . 18	3.49 4 .11 7.31 4 .22 3.74 4 .21 5.93 4 .25 2.76 4 .14 6.04 4 .20 3.76 4 19 3.76 4 19 2.89 4 .16 2.89 4 .12 3.51 4 .18 .19 4 .18 .10 4 .18 .10 4 .18	3.49 4 .11 7.31 4 .22 3.74 4 .21 5.93 4 .25 5.93 4 .76 5.04 4 .16 3.76 4 .19 3.76 4 .18 2.89 4 .12 2.89 4 .12 3.51 4 .18 3.51 4 .18 4.57 4 .18 4.57 4 .18	3. A9 4 11 7. 31 4 22 3. 74 4 22 3. 74 4 22 5. 93 4 25 5. 94 14 6. 04 4 20 3. 75 4 19 3. 76 4 14 2. 32 4 14 2. 32 4 12 3. 51 4	3. A9 4 11. 4 94. 7 7. 31 4 22 3. 74 4 21 5. 93 4 25 5. 94 19 3. 76 19 3. 76 19 3. 76 19 3. 70 19 1. 10 2. 89 1 18 3. 51 1 4 4. 85 1 16 2. 81 1 16 2. 81 1 16 3. 51 1 16 3	3. A9 4 . 11 7. 31 4 . 22 3. 74 4 . 21 5. 93 4 . 26 5. 94 4 . 16 5. 04 4 . 20 3. 76 4 19 3. 76 4 19 2. 89 4 . 16 2. 81 4 . 18 4. 85 4 . 16 2. 81 4 . 16 3. 81 4 . 17 3. 81 4 . 18 3. 81	3. A9 4 .11 7. 31 4 .22 3. 74 4 .21 5. 93 4 .25 5. 94 2.06 5. 04 2.00 3. 76 4 .16 2. 89 4 .16 2. 89 4 .12 3. 51 4 .12 3. 51 4 .12 3. 51 4 .16 4. 85 4 .16 2. 81 4 .16 3. 81 4
1 14	50.00	100. 4 200.	¢00.>	6(N). >	100. + 200.	۰.004	<.004	.001 ± .002	<.001	<.003	100. + 100.	5 (N) >	<.004	<.006	000. ± 800.		()))·>	euu 2016	euu 2.016 2.015	eux).> 810.> 210.> 810.>	eux	euo dto dto dto tto dto	eux	 <.00 <.016 <.016 <.016 <.016 <.016 <.018 <.009 <.008 <.010. 	e.00. e.016 e.015 e.015 e.017 e.003 e.	 <.009 <.016 <.016 <.012 <.012 <.001 <.010 <.010 <.010 <.010 <.009 <.000 <.000 <.000 <.000 <.000 	 <.00.9 <.016 <.015 <.016 <.016 <.018 <.008 <.008 <.009 <.009 <.009 <.000 <.000 <.000 <.0010 	 6.00.9 610.5 610.5 610.5 600.4 600.5 /ul>	 <.00.9 <.016 <.015 <.016 <.016 <.010 <.010 <.009 <.000 /ul>	 <.009 <.016 <.015 <.015 <.011 <.012 <.003 <.003 <.010 <.010 <.011 <.003 <.003 <.004 <.003 <.003 <.004 <	 <.009 <.016 <.015 <.016 <.011 <.003 <.004 <.005 <.007 <.007 <.007 <.007 <.001 <.008 <.001 <.008 <.008 <.001 <.008 <.001 	 6.00 6.016 6.015 6.016 6.010 6.02 6.03 6.03 6.04 6.003 6.003 6.004 6.005 6.003 	 <.009 <.016 <.015 <.016 <.016 <.009 <.009 <.009 <.001 <	 <.009 <.016 <.015 <.016 <.016 <.003 <.004 <.005 <.005 <.007 <.007 <.007 <.007 <.007 <.007 <.001 <.007 <.001 <.005 <.005 <.005
÷	1	n	15	18	-16	١Ū-	-10	- 26	- I ?	-28	-18	-13	06-1	3-10	6I-I		B- 26	9-26 9-02	1-26 9-02 9-06	3-26 3-02 3-06 3-14	1-26 1-26 1-14	1-26 0-02 0-14 0-14 0-23	1-26 1-26 1-14 1-23 1-23 1-28	1-26 1-26 1-14 1-14 1-12 1-23 1-23	3 -26 9 02 9 02 9 05 1 05 1 11 1 21	8-26 9-02 9-02 9-14 9-23 1-21 2-21 2-21		8-26 9-02 9-02 9-14 9-14 9-23 1-21 1-21 1-21 1-21	8-26 9-02 9-02 9-14 1-02 1-12 1-12 1-12 1-12 1-12 1-12 1-12	2	23 1 2 3 3 4 5 5 5 3 4 5 5 5 5 5 5 5 5 5 5 5 5		2000 2000 2000 2000 2000 2000 2000 200	2 P 6 6 5 7 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1

•

D = becayed Away Netore Analysis

.

.

696 I
in i
(8./1.81
(22°53'N,
ßrazil
Jane iro,
ste
Riu
at
۸iı
Sur Lace
Ē
Concentral ions
lad ionuc i ide

.

، ر.

•

	!	.		.002		100.	00		100		100	100	100	005	100.	100	100-	00			10	00	100.
	ίΝ.		• 200	104	(RV	• 201					10	10	102 ±	02 *	4 IO	• 10	• 10	1 20			-	- 	=
		ı ` İ			Ξ						9	0.		0. E	ē.	e.	ð.	0.0	3		5	ē.	Ĕ.
	65.	5	2		- -	,	2 4	• •			-	E0. ł	c	¥ .06	9	9	=	1.066					-
		1	5.5	. U			5 a				Z	690.	Z	690.	Z	æ	Z	.072	N		2 3	23	Ξ
		5	0.00	60 .	2001-			200	602	200	2005	100	2002	200	003	603	004	(11)	003		5	1441	1.44
								-		-	9 9	+ •	24.	7 ± .	74.	4 F .		-	-				- -
				i a		5 3		0	20.	.02	.03	5.	.03	8.	<i>.</i> 02	.03	<u>.</u> 0.	10.	10.	120			
	ļ	e e e						610.	.023	.042	.043	.022	9£0.	£20.	.027	.025	.012	.025	.023	(20)	800		
	58,	247	417		28.7	2	- / [[273 4	364 4	355 4	405 +	175 4	351 4	180	165 4	17/ ±	227 4	158 4	¥ 890	¥ 560	NK A		
۳. ۲		054	050	156	5		328	21 .	. 050	121 .	. 050		27 .	21.	21 .	26.	42	26 .	28 .1	24			:
4110 ³		+	-		*	+	*	*). *	•	. *	• •	0. T	J. 4	•	₽.4	0. 1	0. 4	0. *	4 · 0	10.		
ň		.29	.16		205	102	.329	976.	.400	.478	.657	. 363	.614	6/1.	063.	.742	647.	.684	.2A3	649.	613.	1.17	
		.050	.049	.026	.025	260.	1 34	.027	.035	1/0.	<i>(</i> E0.	.021	910.	.030	.04]	IVI.	0/0	110	044	1037	643	8	
	54 Ho	35.4	¥ 16	02 4	12.1	4 (6	56 ±	B7 ±	¥ ()	4 06	58 ±	* M	ŧ 0]	15 e	*	- B	- 2	2 F .	. + 1	ج + ح	9	•	
	; ! :	1 22		2 .U	0. 0	2 .0	-	2.	г. Е	~	ē.	<u>ي</u>	5	÷	ž		¥.	59.	<u>.</u>	.45	.44	1.4	
	20	8	.00.	00. 4	8.	00. 1			. 00.			8			<u>.</u>	<u>.</u>		600.	-004			E (X) -	
	46	800.	900.	.005	/00.	500.	<.005	900°)	F 010.	¢.004	500. v	- 100	006	.004	005	ŧ 100	(N).	4 200	. 600	£()() .	ç(N).	1 200	
		9(10)	603	002	002	602	200	200	200	200	200		202	202		2	Ň			~ 20		M	
	22 N.a	- 9	4 4				. * (*	-	*	-	4	. #	*	4	-). 1	1. 4	1. 1	9. -	
		8	10.	8.	10.	00.	.02	-01	.020	910.	.02	900.	(10.	00 .	<u>.</u>	/m .	100.	900.	£004	010.	VI0.	20.	
i	21	* 2	* 2	1.0		6. 1		-			-	æ,		-	<u>.</u>		n .		1.5	1.4	ç	20	
	, a	124	151	0.0	112	1.01	123	141	145 4	18/	; 169	* 8.9	125 4	•			- · · ·	-	B.7 4	1.9.4	104	315 •	
	_	-06	[].	-25	10	10	-17	II.	4	62	5 - 5 - 5	5 20 2	- 	n e C 3		2 2	3 3	e :	3	2	4		:
Jale	C	0	6	0	02.	63.	03-	0	10	8	ŝ	8	ġ s	9	6	5 3	2	2 :	-	=	12-	12	
	S	12-31	01-0C	01-13	01-27	02-19	[0 f0	1 5	10-01	04-15	20-cu	c1 - cn	70-00		10 - CO					11-11	12 01	12 15	

1 MAR

•

AD - Not defectable

•1

,

n

n

rO	le						01.H/10 ³ H ³				
9	017	95 <u>7</u>		95 Ab	log _{ku}	106 _{Ru}	110H _{A9}	174 _{Sb}	125 _{5b}	134Cs	1)/
12 - 30	90-10	ŧ 9.09	s.	1 + 811	29.4 ± .3	8.04 ± .22	710. ¥ E10.	.027 4 .014	.45 ± .32	.012 ± .010	3.05 4 .11
9010	01-13	52.0 +	s.	3. * 0.99	26.2 ± .3	7.60 + .12	010. ± 210.	.034 ± 1008	1.02 4 .29	.006 ± .005	2.64 4.10
01-13	01-25	23.5 4		44.7 4 .2	10.6 4 .1	4.0/ ± .06	.006 4 .006	.014 ± .004	AL + 35.	£00. ± £00.	1.25 + .05
01-27	01-20	32.3 \$	۳.	65.1 4 .3	13.0 4 .2	6.28 ± .07	300. ± 600.	00. ± 810.	91. i 66.	.005 ± .003	2.30 4 .06
02 19	10-E0	12.8 +	~.	26.6 ± .1	11. 4 66.4	2.26 4 .05	900. 1 200.	.004 + 004	. 32 4 . 14	EUU. ± 100.	1.13 4 .05
03-03	/1-60	29.94	۳.	63.0 ± .3	10.2 4 .1	11.2 ± .11	100° T 100'	100. * 110.	1.08 ± .17	<006	2.86 4 .07
11 EU	16-60	21.4 ×	~	45.6 4 .2	6.74 4 .12	8.73 ± .09	100. + 100.	E00. ± 200.	PL # 07.	<.005	2.44 ± .06
10-10	U4 - 14	24.5 +	~	54.2 ± .1	6.91 ± 13	7.03 4 .08	.005 4 .005	.015 4 .004	1.02 ± .17	.000 ± 800.	3.26 ± .07
04-15	04 -29	¥ E.91	~.	40.1 4 .1	5.26 ± .12	10.5 ± .1	<.007	010 ¥ 010.	1.17 ± .14	۰.004	30. ± 00.E
05-02	05-15	20.4 +	.2	43.9 ± .2	5.51 4 .12	14.1 ± .1	.005 * 005	000° ¥ 200°.	1.22 + .15	<.005	3.62 4 .07
05 15	06-02	1.46 4	EL .	1. 4 5./1	1.90 ± 06.1	4.67 ± .06	300. ▲ 100.	.002 ± .005	E80. 1 9E3.	<.004	1.40 ± .04
06 02	06-14	13.0 4	~	2. 1 6.62	3.04 4 .13	12.5 4 .1	300. ± [[0.	.000 ± 200.	EL. ± 10.1	<.005	2.55 4 .06
06 - 16	06-23	2.62 4	.18	6.35 4 .16	.58 * .12	2.8/ ± .08	.001 + .007	900. ± £00.	060. ± 902.	<.00A	138 4 .044
10 °60	01 60	5.81 4	.21	12.9 4 .2	1.23 + .14	0.92 ± .11	800. + 710.	.010 ± 010.	SI. ± 38.	<.004	2.47 4 .07
21 · 60	09-27	6.27 4	.19	14.3 ± .2	El. + /6.	I. 4 8.II	.006 ± .006	300. ± 110.	11. 4 82.1	<.006	3.2/ 4 .0/
10-01	90 01	5.64 ±	.28	12.5 4 .2	11. + 58.	10.7 4 .2	210° ¥ 600.	010. + 110.	el. ± 87.	110.>	3.48 ± .11
51-131 .	10-28	5.58 ±	.1.	12.6 4 .2	II. ± 56.	1. ± 1.61	.000 ± 1006	300. 4 800.	1.28 ± .10	×.007	4.0/ 4 .0/
10 11	11-07	1.98.1	.1.	4.14 4 .15	11. ± 34.	5.17 4 .10	110. + 110.	<.008	11. + 63.	600.>	1.50 + .07
11-11	11 2/	7.35 4	<u>.15</u>	5.43 ± .1 3	01. + 57.	1.73 1 .10	300. ± 100.	200. + 100.	01. + 76.	<.007	2.56 4 .06
12-01	12 14	2.78 1	.4/	5.45.4.32	1.1 4 0.1	12.4 4.1	700° ¥ 500'	<.005	eo. + 70.1	Eu0. ¥ 910.	3.02 4 .06
12 15	12 23	1.89.1	£6.	16.6 4 ./	2.9 4 2.1	30.0 4 .2	10. 1 10.	E20. 1 B40.	91. 1 41.6	<.012	EL. 4 /E.6

•

kiu de Janeiro, Brazil (22°53'N, 43°17'N) in 1969 (contd)

Ber
Rio de Janeiro, Brazil (22°53'N, 43°17'W) in 1969 (contd)

•

=

	Lh L	. 032	. 020	•000°	. 010	•000 ·	008	. 010	• . 009	010	. 012	• 008	012	. 016	.014	.011	020	· .009	017	. 010	. 010	. 019
	232	F 960°	. 141 ±	• 035	F 090°	• 016	• 037 ±	F (90°	• 140.	• 090 •	• 080.	. 058 ₄	F 1/0.	.052 4	F 690.	.062	• 046	F 6£0.	• 038 •	.028	.057	.105 ±
		.041	.021	.012	.012	.012	.010	600.	.014	.008	.010	600.	.010		.017	.015	.026	.015	.019	.015	000	.026
~	226 _{Ra}	.085 ±	# 690.	.035 ±	• 050 +	.025 ±	.036 ±	.028 ±	. 067 ±	.012 ±	.022 ±	. 031 ±	• 000 •	<.014	. 051 ±	•053 ±	.040 ±	. 029 ±	. 038 ±	.052 ±	± 610 .	± 111.
DPM/10 ³ M ³	144 _{Ce}	81.1 ± .6	77.0 ± .6	35.7 ± .3	$56.3 \pm .6$	27.7 ± .3	69.5 ± .4	55.1 ± .4	72.3 ± .4	62.8 ± .4	72.2 ± .4	29.1 ± .2	55.4 ± .4	13.1 ± .3	43.0 ± .4	59.1 ± .4	57.1 ± .6	65.3 ± .4	24.3 ± .4	37.2 ± .3	46.7 ± .4	139 ± 1
	141 _{Ce}	44.4 ± .3	38.0 ± .3	14.7 ± .1	17.1 ± .1	5.97 ± .09	11.7 ± .1	7.42 ± .10	7.73 ± .10	5.73 ± .11	4.88 ± .11	1.67 ± .06	2.72 ± .12	.27 ± .12	.65 ± .15	.51 ± .14	.61 ± .20	.38 ± .12	.52 ± .15	.29 ± .13	1.8 ± 2.5	5.2 ± 5.5
		.056	.034	.014	.016	.008	.010	600.	.013						.061	.062	.11	.068	.050	.033		
	140 _{Ba}	.750 ±	.577 ±	.157 ±	.139 ±	• 037 ±	.032 ±	.012 ±	.041 ±	0	a	Q	0	0	* 690°	.141 ±	.27 ±	.166 ±	.120 ±	• 056 +	D	D
te	OFF	01-06	01-13	01-25	02-10	03-01	03-17	03-31	04-14	04-29	05-15	06-02	06-14	06-23	09-10	09-27	10-06	10-28	11-07	11-27	12-14	12-23
Da	NO	12-30	01-06	01-13	01-27	02-19	03-03	03-17	04-01	04-15	05-02	05-15	06-02	06–16	09-01	09-15	10-01	10-15	11-01	11-17	12-01	12-15

•

D = Decayed away before analysis

_
1970
in
(M. /1_ EV
(22°53'N,
Brazil
Jane i ro,
રુ
K io

•

			100.	100.	100.	004	.012	510.	/10	610.	610.	000	.029	018	S10.	
	 98	<.001	+ IUO.	+ 100.	+ 200.	7 900.	• 036	. 121 4	. Jl6 ±	. 282 4	4 615.	* 126.	. ± €0£.	+ 112.	. 16/ ± .	
	65 _{2n}	DN	ND	QN	(IN	QN	QN	(IN	.13 4 .16	UN	(IN	QN	.43	044 A 029	1133 + 1034	
		E00.	100.	.002	.002	100.	.012	E00.	.005	£00.	£00.	.012	910.	.008	.008	
	60. Co	.032 +	* 010.	¥ 110.	¥ 600°	1 910.	.251 *	.050 4	* 090.	1 6/0.	+ 100.	• 140.	113 +	• 9/0.	₹ (Nb7 ±	
	58 Co	.053 ± .023	016 4 .010	010 + .010	014 + .010	.056 ± .032	10.4 F.9	11. ± 62.1	81. + 78.1	1.64 ± .16	1.11 ± .13	1.86 4 .27	1.78 4 .26	.98 ± .15	.02 ± .13	
01/MJU3 ³ M ³	5) _{C0}	448 ± .025	. 610. ± 600.	. 168 4 .014 .	. 110. 4 611.	. 243 ± .037	2.73 ± .24 3	1.84 ± .06 4	2.05 ± .09 4	1.98 ± .08 ∃	1.57 ± .08 3	2.41 4 .10 3	E 01. ± E8.2	1.59 ± .04 2	1.33 ± .04 2	
	5A _{Ha}	.324 ± .037	810. + 661.	.124 ± .020	.07 <u>8</u> ± .022	171 + .051	1.50 ± .14	1.08 ± .05	00. ± €1.1	1.34 ± .07	1.12 ± .07	1.71 + .11	11. + 6/.1	1.70 4 .05	l.46 ± 05	
	46 _{Sc}	<005	<.003	<.003	<.003	900. 1 900.	.052 ± .055	.110 ± 010	.105 ± .016	.076 ± .017	013 ± 003	870. + 160.	087 ± 780.	elo. + +/0.	.046 1 .014	
	22 _{Na}	200. ± 710.	100. 4 /00.	.010 ± 010.	£00. ± EIO.	900' T ETO.	.012 ± .009	400. ± 700.	MM. 4 810.	.016 ± .003	400° + 600°	110. + 020.	.028 4 .014	.008 ± .006	.008 4 .006	
	/He	E T IVI	86.64.8	104 ± 1	122 + 1	123 4 2	9 * 611	102 4 3	143 4 3	1/4 ± 2	119 4 3	I5I ± 3	210 ± 4	1 + 281	1 4 681	
e	110	03-27	04-15	05-28	05-13	61-90	60 - 90	08-13	08-20	CT: 60	09-23	90-01	10 - 22	11-14	11-26	1
Ind	NO	03-16	10-101	04-15	05 - 04	05-15	10-90	10-R0	08 - 14	10:60	91-61)	10-01 .	10-17	11-03	/1-11	•

All = Not Detectable

•

.

.

.

Rio de Janeiro, Brazil (22⁵53'N, 43¹17'W) in 1970 (contd)

.

•

.

	37.	- UK	5	6. 4	- 040 - F	1.08	11. 1	1 09	4 Id		-	~~~~				
		3 06			6987	1.63	6.64	2.65	1.14		2007 2	(D) 3		01.0 V N5	4.52	
							610.	.006	800	000	NOD.	910		alo.	F10.	
	134	A RUN	VUU		200°,	110.>	, EUL.	• 023 •	• 038	• 200.	1042 4	.047 4	* 190	1 990 -	+ 620.	
	1	8	055	059	070.	EI .	0.1	IE.	.45	E.	5	.5	64	9	01.	
	125	1.16 ±	1 01 1	1 111	₹ E3E.	¥ \$8.	16.24	1.17 ±	1.13 ±	1.21 4	. 76 4	3.85 4	3.58 4	1.69 ±	1.65 1	
	Sh		500.			E 10.	.17	120.	.032	.038	000.	.051	900	60.	.025	
	124	۰.00 ×	₹ [00 .	×.004	<.005	₹ 600.	1.11 +	¥ 160.	T 9/0.	₹ 001.	.140 ±	₽ £60.	.176 ±	• 055 •	₹ 900°	
EN ^L	6	900.	.005	2005	.007	.018	.029	.008	E 10.	600.		.02)	.046		.017	
DPM/10		• 900.	÷ ()().	₹ €00.	<i>* (</i> 00.	• 025	.088 ±	* 110.	* EIO.	• 010.	019 •	. 025	• 035	<.010	1 210.	
	=	.12	.05	.05	.05	Π.	-	Γ.	.2	.2	.2	9.	9.	4.	۲.	
	100	9.55 #	2.82 +	2.72 \$	2.17 4	3.46 ±	100 +	16.5 ±	19.4 ±	± 1.1€	24.4 +	32.5	35.5 4	1 6.15	23.2 4	
	Ru		.025	860.	.034	.16	2	-	-	1		_	8.	۲.	۲.	
	101	8	± 601.	# 0/1.	¥ 641.	1.37 4	1051 ±	129 ±	123 4	174 ±	140 +	122 4	1.16	55.0 4	36.14	
	_	.13	.036	.042	.045	.12	-		-			_	_	~	-	
i	3	2.31 4	¥ 166.	* 1106.	• 886.	1.63.1	421 4	168 4	164 4	117 ±	143 4	212 1	522	¥ /61	141 1	
	5	61.	.046	.055	.057	61.	2	-	-	-	_	-	-	-	9.	
;	1,50	1.27 ±	₹ ¥05.	* E0E.	480 4	1.23 ±	4 616	127 4	120 4	142 4	¥ 611	132 4	123 4	108 4	/6.1 1	
e	OF	03-27	04-15	04 -2B	05 13	61-50	c0 - 90	08-13	08-20	09- 13	62-60	90-01	10-22	11-14	11-26	•
IFO	N	03 · 16	01.01	04-15	09-04	0515	10-90	10-80	08-14	10-60	09 16	10-01	11-01	11 03	11-11	

D . Decayed Awy Betore Analysis

.

•

•

Rept

Rio de Janeiro, Brazil (22°53'N, 43°17'W) in 1970 (contd)

•

	232 _{Th}	.058 ± .009	.045 ± .009	.042 ± .009	.057 ± .013	.116 ± .029	.001 ± .028	.086 ± .013	.072 ± .018	.080 ± .012	.074 ± .016	.036 ± .033	.067 ± .036	.054 ± .019	.054 ± .022
	226 _{Ra}	.035 ± .011	$.020 \pm .009$.022 ± .009	.038 ± .013	.065 ± .027	.059 ± .047	.053 ± .017	.036 ± .021	.014 ± .015	.031 ± .021	.019 ± .051	8.78 ± .22	1.87 ± .07	.664 ± .053
DPM/10 ³ M ³	144 _{Ce}	35.3 ± .3	12.0 ± .2	11.9 ± .2	10.1 ± .2	$16.8 \pm .4$	208 ± 2	87.9 ± .6	98.0 ± .9	120 ± 1	95.0 ± .8	129 ± 1	142 ± 1	76.6 ± .4	63.7 ± .4
	141 _{Ce}	1.06 ± .46	.100 ± .035	$.016 \pm .049$	$.015 \pm .053$	2.74 ± .25	1652 ± 2	296 ± 1	260 ± 1	295 ± 1	231 ± 1	195 ± 1	150 ± 1	62.6 ± .3	37.4 ± .3
	140 _{Ba}	D	.026 ± .018	.029 ± .018	$.004 \pm .009$	3.10 ± .27	2920 ± 400	118 ± 4	122 ± 8	188 ± 50	70.8 ± 3.6	29.5 ± 1.9	13.6 ± .9	5.11 ± .48	5.45 ± .34
ē	OFF	03-27	04-15	04-28	05-13	05-19	06-05	08-13	08-20	09-13	09-23	10-06	10-22	11-14	11-26
Dat	NO	03-16	04-01	04-15	05-04	05-15	06-01	08-01	08-14	09-01	09-16	10-01	10-17	11-03	11-17

D = Decayed away before analysis

L

e

MARCH 16, 1967 - FLIGHT 1

SAMPLE NO. ALTITUDE (Km) LATITUDE (°N) LONGITUDE (°W)	2 18.9 39-47 109-118	3 19.1 46 117	4 18.3 46 117	5 15.2 46 117	6 12.2 46 117	7 9.1 46 117	8 6.1 46 117
			(0PM/10 ³ s	см ———		<u> </u>
⁷ Be	32,000	27,000	24,000	19,000	3900	810	210
²² Na	17	18	14	10	0.35	0.28	0.08
²⁴ Na	93 ± 19			57 ± 25	20.8 ± 1.1	3.43 ± 0.35	
⁵⁴ Mn	250	290	230	170			
⁶⁰ Co	16	17	17	9.2	0.21	0.35	
95 ZrNb	67	57	140	490	110	53	12
¹⁰³ Ru	710					<u>29</u>	6
¹⁰⁶ Ru	3500	3200	2800	1600	71	33	16
125 _{Sb}	1100	1500	1700	570		15	
¹³⁷ Cs	3500	4200	3500	2100	57	95	23
¹⁴⁰ Ba					3.7	8.5	
¹⁴⁴ Ce	1900	2000	1700	1200		-	

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

• •

MAY 8, 1967 - FLIGHT 2

.

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	1 18.9 41 <i>-</i> 44 112 <i>-</i> 116	2 18.9 44 <i>-</i> 47 117	3 19.1 46 117	R 10.7 36-46 108-118	L 6.1 46 118
		D	PM/10 ³ SC	CM	
⁷ Be	42,000	39,000	49,000	2300	670
22 _{Na}	15	16	15	0.49	0.18
24 _{Na}	78± 11		113 ± 7	13.81 ± 0.42	
54 _{Mn}	180	110	120	7.1	
ΰ ⁰ Co	10	7.1	8.8	0.46	0.20
95 Zrivb	290	17	26	39	12
¹⁰⁶ Ru	3200	2900	3100	81	23
¹²⁵ Sb	490	240	220	39	6.4
¹³⁷ Cs	2700	1800	1900	110	42
140 _{8a}				0.22	
1/14 Ce	1400	⁰ 20	780	60	53

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

1. 11

ш

ŝ
THOLL
~
96
5, 1
JUNE

SAMPLE NO. ALTITUDE (Km) LATITUDE (%)) LONGITUDE (%))	1 13.9 38-i/ 138-117	2 19.2 46 117	3 18.3 46 117	4 15.2 46 117	5 12.2 46 117	R 10.7 37-46 108-118	L 7.3 46 118
			10	MI10 ⁻ SCM			
7 _{Be}	42, COD	49,000	39, COO	19,000	16,000	7100	2300
22,i3	15	16	13	6.4	4.6	2.0	0.95
21 _{iia}	86.2±3.9	88.3±7.1	73.5±3.2	58.6±1.8	21.5± 3.9	20.8±1.4	10.6±1.4
54 _{Mn}	140	140	65	Ŋ	51	26	n
60 _{Co}	11	n	9.2	4.9	3.9	2.3	1.2
95 _{Z101b}	19	28	39	110	110	81	23
106 _{R u}	2900	2800	2200	810	640	330	150
125 ₅₀	181	1100	490	0011	260	140	11
137 _{CS}	2700		1890	1100	920	490	330
1.14Ce	1100	1300	1200	420	420	240	170

AUGUST 1967 - FLIGHTS 4 AND 5

DATE FLIGHT NO. SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	8-14-67 4 R 10.7 37-46 108-118	3-21 67 5 1 18.6 38-46 109-117	8-21-67 5 4 3.0 46 117
		DPM/10 ³ SCM -	
⁷ Be	2400	46,000	49
22 _{Na}	0.24	39	0.33
24 _{Na}	22.14 ± 0.28	63.6 ± 3.2	0.39 ± 0.11
⁵⁴ Mn	1.8	4600	
60 _{Co}	0.18	140	0.11
95 ZrNb	570	2,400,000	23
103 _{Ru}	88	9 90 ,000	29
106 _{Ru}	32	200,000	11
125 _{Sb}	13	-13,000	4.9
¹³⁷ Cs	39	13,000	26
¹⁴⁰ Ba	39	280,000	3.3
¹⁴⁴ Ce	53	140,000	

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

		JEFIEMDE	- 1061 N				
DATE FLIGHT NO. SAMPLE NO. ALTITUDE (Xm) LATITUDE (9N)	9-5-67 6 1 13.6 38-45	9-5-67 6 9.1 46	9-5-67 6 4 6.1 46	9-5-67 6 5 4.6 46	9-5-67 6 3.0 3.0	9-6-67 7 10.7 31-46	9-6-67 1 R 1.6 46
LONG ITUDE (0W)	113-117	111	117	117	117	108-119	117
				DPM/10 ³ SCA			
7 _{Be}	42,000	420	330	320		1200	950
22 _{Na}	96	0.07		0.20	0.27	0.04	0.08
²⁴ Na	85.l±6.7	4.94 ± 0.71	1.20 ± 0.53	1.41 ± 0.39	0.57 ± 0.21	14.83 ± 0.71	4.91 ± 0.35
60 C0	140	0.32	0.07		0.16		0.18
95 _{ZrNb}	2,400,000	100	22	39		35	250
lu3 _{Ru}	1, 700,000	42	22	28	29		
106 _{Ru}	200,000	6.7	9.5	4.9	3.9	8.5	8.8
125 _{Sh}	13,000						
137 _{Cs}	18,000	8.5	7.8	4.6	6.4	8.1	15
140 Ba	420,000	8.5	1.9	3.5	0.92	4.2	5.7
144 _{Ce}	330,000	280					
208,1			4.6±1.4	120.1 ± 4.9	283.2 ± 3.9		

FURMES & AND 7 SEPTEMRER 1967

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

SAMPLE NO. ALTITUDE (Km) LATITUDE (ON) LONGITUDE (OW)	1 18.6 38 45 108-117	2 19.1 46 117	3 15.2 46 117	4 13.7 46 117	5 12.2 46 117	6 9.1 117	7 6.1 117	8 46 117	9 3.0 117	9.4 35 107	R 9.4 35-47 107-118
						- DPM/10 ³	scm				
7 _{be}			000,16	11,000	3500	170	420	1200	210	1900	009
22 _{Wa}	29	23	1	4.6	0.39		0.08	0.20	0.16	0.22	0.05
24 _{Na}	91.8 ± 7.1	BM.4 ± 3.2	54.4 ± 4.2	50.1 ± 4.9	9.5±1.8	5.6± 1.1	1.45 ± 0.42	1.02 ± 0.11	0.28 ± 0.10	22.6± 1.1	10.66 ± 0.32
54 Min	1200	670	420	67						3.9	
eo Co	49	42	18	6.7	0.18	0.07		0.35	0.04	6.39	0.02
65 _{Zn}	2200	1400	390	78	3.9						
95ZrNub	420,000	000'066	170,000	46,000	2700	39	182	055	061	065	140
103 _{Ku}	170,000	100,000	000'66	2100	95	8.1			13	011	-
106 _{Ru}	53,000	39,000	0066	2300	57	3.9	6.4	23	6.0	ĄĘ	0.0
137 _{CS}	7400	5300	2200	066	z		п	39	5.7	49	5.3
1:40	4200	0055	8:30	951	8.1	0.23	0.78	0.99	0.30	2.6	0.42
144 _{Ce}	95,000	81,600	30,000	7400	570			011		520	15
208 ₁₁					5.1 ± 2.3				31.5 ± 1.9	19.9 ± 1.9	

OCTOBER 23, 1967 - FLIGHT 8

•

.

198

:

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

17

۰.

Π
AND
10
FLIGHTS
,
1961
DECEMBER

18 18 19 19 19 19 19 10 11<		23,000 950 20,000 1400	5.7 0.16 5.7 0.16	29.3±1.4 3.88±0.28 29.24±0.49 4.10±0.25	40 1.6	ki 0.35 7.8 0.25		9000 90	3400	500 32 2/00 46		X00 67 1100 46		, 000 92 9500 220	
18 10 8 11 7 5 0 11 7		360	0.07	0.92 ± 0.21		=	9.2	1800	220	500			0.53	420	
18 10 6.1 46 117	wio ³ scm -	210	0.18	3.06 ± 0.39	1.1	. 0.1	22	2500	240	240	п	3 2	1.1		
11 6 6 6 11 7 11 7	40	10,000	0.74	9.5 ± 1.1	26	2.8		8800	8	490	140	96		0061	
18 10 22 117		23,000	10	25.8 ± 2.1	490	24	110	160,000	23,000	18,000	1810	3500	67	46,000	
18 10 4 11/ 11/		25,000	23	2.6 1 9.66	066	49	0061	300,000	35,000	42,000	3400	7100		88,000	
18 10 12 12 12 12 12		29,000	21	64.6 1 4.9	1100	93	2200	000,045	67,000	000,66	4200	7400	560	120,000	
18 10 18 18 46 11 7		25,000	23	1.1 1.1.4	2100	22	25uu	000'066	000'66	85,000	6000	(1)%+		130,000	
18 10 18.6 38 45 108-117		34,000	13	109.5 ± 7.4	1100	53	lato	320,000	60,000	46, 000	4600	6700		92, 000	
DATE (DEC.) FLIGHT NO. SAMPLE NO. ATTINDE KMI LATTINDE (9N) LONGITUDE (9W)		7 ₈₆	22 _{N3}	ch ²⁴	Min	60 C0	65 ₂ n	95 _{ZtNb}	103 _{Ku}	106 _{Ru}	125 _{Sb}	IN _{Cs}	1:10, B.a	144 Ce	200

•

.

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

			٧ſ	NUARY 29.	1968 · FI	1 IND1.	2				
SAMPLE NO. ALTITUDE (Km) LATITUDE (^P 11) LONGITUDE (^D 11)	1 189 3845 109-117	2 19.1 11/	3 15.2 14 14	4 19 19 19 19 19 19 19 19 19 19 19 19 19	5 12.2 46 117	•245		****	- 2 4 5	R 10.7 41.45 112-116	L 7.6 36-40 10/-111
	:				INNUO	о ³ scм –					
1 Be				000,01	24,000	0009	9751	061	150	0007	83
22 ₁₄₄	23	23	25	9.2	ıs	2.8	n	0.25			017
24NJ	1.5 1.2 19	1.1 1.1.11	61.81 3.5	21.9 4 3.2	35.0 ± 4.2		4.6±1.1	254 1.1		13.1±1.4	7.17 ± 0.49
38 Ci										¥5 1 28	
¹⁹ С1										124 1 46	
Ma	0021	0/5	0011	280	950	3 5	6.B			46	42
60 Co	5	ŝ	5	67	58	6.0	1.1	6.85		4.2	0.26
uS _{Zn}	1400	2400	1400	3,0	1200	3	8			ŝ	42
95 _{2113b}	1381,600	100,000	130,000	28,000	000'011	000'61	1700	230	220	12, JA	810
103 Ku	000 [°] Fr	23,000	31,000	3200	000'EL	0066	710	67	9	2100	140
106 _{KU}	000'75	000'61	49,000	4200	21,000	1400	290	91	ló	0011	78
. 45 125	0nit	2400	4(1)(490	2100	R	R				
IN _{LS}	1100	4(11)	6,NHD	1100	0055	93	102	15	9.9	6/0	46
140				4.2	500	3500	z	0/1	110	2000	140
144 Ce	100	19, (UD)	81,440	0026	42,000	00/5	140	200		4,200	0%2
208 ₁₁											1.26 + 0.42
214 Bi										1, 900 ± 10/0	23, 100 ± 530

÷,

•

•

۲,

÷

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	La 12.5 46 117	Ra 9.1 46 117	Rß 7.6 46 117	Lß 6.1 46 117
	*********	DPM/	10° SCM	
⁷ Be		12,000	4900	
22 _{Na}	35	2.9	1.6	
24 _{Na}		17.3 ± 1.8	10.2 ± 1.1	3.00 ± 0.32
³⁸ C1	184 ± 35	350 ± 88	78 ± 48	13 ± 13
³⁹ C1		28 ± 21		17 ± 11
⁵⁴ Mn		57		
⁶⁰ Co	53	4.2	1.1	
⁶⁵ Zn	850		22	
⁹⁵ ZrNb	170,000	18,000 -	5700	
163 _{RJ}	15,000	4200	1200	
106 _{Ru}	39,000	1600	350	
¹³⁷ Cs	5700	600	200	
140 _{3a}	150	3900 -	1600	
14. C9	81,000	5300	1400	
208 ₁₁		3.0 ± 1.2	1.4 = 1.0	1.86 ± 0.49
214 _{3 i}	2600 ± 270	31,000 ± 2,200	56,000 ± 2,000	14,090±170

JANUARY 30, 1968 - FLIGHT 13

a 🖌 👘 👘 👘 👘

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

	L 7.6 41-47 112-117		2800	0.71	5.05 ± 0.1	21	1.5	9.5	4200	83	740	33	. 10	R	2000	
	R 30.7 37.41 108-112		000'11	2.6	12.7 ± 1.4	82	4.6	2	16,000	500	2005	350	19	460	(MUD)	
	* <u>*</u>				0.35 ± 0.14		80.0		0(1	R	6		1.2	9.2	и	21112
			500		1.38 ± 0.25	13	0.22	18	ę W	120	81 B	z	ж	96		1.44 1 0.61
16HT 14	. 3.43	SCM	<u></u>	0.35	2.90 ± 0.71	2		n	026	160	140	2	\$	£	9	
3		011/13	570	51		6.4	0.35	3.8	0000	120	220	R	3	\$	1100	
21, 1968	11 12 12 12 12		31,000	7.8	56168	Ŗ	33	95	000'15	4900	12,000	1200	2300	3	51,000	
KUARY	- îs i		012.01	25	11 r val		13		5,600	5700	15,000	1200	2400		26,000	61 1 4
83J	-234E		020'1:	4	64111	3	0.9	91	20,000	0051	4900	nı	9%6		REID	
	2 48 113			51	10-91 14	<u>ال</u> د ،		0.7:	000'07.1	00%	000'60	106	(10)+/	5	78,000	
	1 18:: 38:45 106:117			ĥ	82.3.1.5.3	11.4	5	1/10	120, vall	10%?	32,000	0n(r	6/00	64	1001/15	
	SAMPLE NI). ALTELDE (Karl LATLEDE (DN' LATLEDE (DN' LOC.C.TUELE (DV)		'Be	²² tia	- 24 _{Na}	Min	u) Co	65 ₂₁₁	95 ₂₁₁₄ 5	103 _{Ku}	lub _{ku}	اری ارد	117 _{CS}	140 140	144 Le	11 SUK

.

•

.

ATMOSPHERIC RADIONUCLIDE DISIN'TECRATION RATES

.

•

FEBRUARY 23, 1968 - FLIGHT 15

SAMPLE NO. ALTITUDE (Km) LATITUDE (^o N) LONGITUDE (^o W)	5 11.3 46-35 118-108	L 10.1 46-41 117-112	R 10.1 41-35 112-108
		DPM/10 ³ SCM -	
⁷ Be	9200	1000	780
22 _{Na}	2.5	0.57	0.20 .
²⁴ Na	8.1 ± 2.1	5.7 ± 1.1	7.4 ± 1.1
⁵⁴ Mn	95	15	3.9
60 _{Co}	5.3	1.2	0.24
⁹⁵ ZrNb	17,000	3200	640
¹⁰³ Ru	2400	530	88
¹⁰⁶ Ru	3400	600	100
125 _{Sb}	350	67 .	18
¹³⁷ Cs	740	160	34
140 _{Ba}	530	130	18
144 _{Ce}	7400	1400	270
208 _{7:}		57 ± 15	32 ± 14

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

S AMPLE NO. ALTITUDE (Km) LATITUDE (°N) LONGITUDE (°W)	1 3.0 35 107	2 6.1 35 107	3 9.1 35 107	4 12.2 35 107	5 15.2 35 107	6 18.9 3 3-46 108-117	7 15.2 46 117	L 7.6 35-41 108-112	R 10.7 41 - 16 112 - 117
					- 0PM/10 ³ 5	icm			
7 ₈₀	600	530	1090	7400	31,000	ļ	16,000	1800	8800
22 _{.Na}			0.31	7.4	20	14	13	0.85	4.6
24. Na		1.13 = 0.42	4.6 ± 1.1	15.2 ± 2.1	24.0 ± 2.8	ó4 ± 18	62.9 ± 2.8	4.56 ± 0.46	19.8 ± 1.1 ·
38 _{C1}					-	1200 ± 530	420 ± 57	138 ± 71	180 = 25
³⁹ C1						740 ± 180	740 ± 71		177 = 23
s4 _{Mn}	6.7		17	110	ó4 0	490	490	18	140
60 _{C0}	0.45		0.95	3.9	26	29	22	1.4	8.8
⁶⁵ Zn	8		27	130	790	730	600		95
95 ZrNb	460	160	1100	7800	39, 0 00	39,000	31,000	2400	14,000
¹⁰³ Ru	32	17	38	350	2300		2400	110	850
105 _{Ru}	160	60	420	3000	19,000	19,000	15,000	310	5300
125 _{Sb}	23		34	290	1900	2900	1400		_
¹³⁷ Cs	39	14	31	640	3400	3 900	1900	190	990
144 _{Ce}	240	31	c o()	5300	33, 000	22,000	24,000	1700	10,000
20 5 71	875 = 9	1.7 = 1.5			•			9.20 = 0.89	5.56 ± 0.87
²¹⁴ 3i								81, 500 ± 3, 000	43,440 ± *00

APRIL 15, 1968 - FLIGHT 16

•

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

`

APRIL 17, 1968 - FLIGHT 17

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	5 15.2 46-35 119-107	L 10.1 46-41 119-112	R 10.1 41-37 112-108
		DPM/10 ³ SCM ·	
7 _{Be}	26,000	7100	19,000
22 _{Na}	19	3.9	7.1
24 _{Na}	35.3 ± 3.5	13.8 ± 1.8	27.2 ± 2.5
⁵⁴ Mn	710	88	130
60 _{Co}	23	5.3	9.2
⁶⁵ Zn	530	81	
95 ZrNb	33,000	10,000	16,000
103 _{Ru}	1900	460	710
¹⁰⁶ Ru	16.000	3500	6400
125 _{Sb}	1300	460	450
137 _{Cs}	2800	810	1200
¹⁴⁴ Ce	23,000	8500	9200

•

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

.

1	2		122 H	15. 190	•		Ra 12.2	8	80	9
	× 9	 2	108	2 S 80	38 46 108 117	48 11 11	4-6 112 117	36 40 107-111	74-00 101-111	107 41 45 111 118
		-			OPM/10 ³ SCI					
	מנן	049	10 000	N.000		46,000	9200	90(1	0011	1440
	10.04	101	5.3	=	8	60	lb	0 42	16.0	0 t b
	4011.1	111/0	16212.1	8.2 1.1 42	M2125	65 31 42	1.0 1 5.16	9E 0 7 52.21	13.14	240 + 11
					530 ± 190	530±110	11 1 155	60 t X	11 # 71	53 1 I4
					1070 ± 140	11 1 11	\$£ 1 629	67 ± 18	46 1 28	
	.9	-	2	92		6/0	950		2.6	91
	4 0	a) 	6.7	5	£	ድ	R	02.0	6.0	150
	4		3	2 M	2000Ž	1100				60
	240	95	0064	26,000	42,000	000'66	21,000	240	9 2	0/0
	2						2200			
	lzu	3	4(1)()	15 000	28,000	24,000	14,000	931	021	110
		4	641	1/00	440		40	15	9.2	2
	4	¥	926	5/00	4400	4400	27083		Ŕ	3
	910	17.	92(0)	23,000	42,000	000.60	25, 600	260	280	a s
	-12		8512b				112 1 31	1.10 + 01.1	1.4 1.4	
							011 1 00%7	43, 100 ± 1100	48, 200 1 2000	46.61U

•

MAY 7, 1968 - FLIGHT 18

4

ATMOSPHERIC RADIONUCLIDE DISIN'FEGRATION RATES

.

•

DATE (MAY) FLIGHT NO. SAMPLE NO. ALTITUDE (Km) LATITUDE (^Q N) LONGITUDE (^Q W)	8 19 7 7.6 48 117	3 19 △ 6.1 48 117	9 20 1 14.9 46-38 117-108	9 20 Ra 10.1 47 -36 118-108	9 20 1 <i>a</i> 10.1 47 -36 118-108	9 20 LB 11.3 47 -42 117 -112	9 20 RB 12.5 41-36 111-107
			- DPM/1	.0 ³ SCM -			
7 _{Be}	530	600	26,000	2400	2300	4900	26,000
22 _{Na}	0.22	0.24	12	1.1	0.88	3.9	19
24 _{Na}	10.42 ± 0.35	2.207 ± 0.057					
³⁸ C1	35 ± 14	12.7 ± 3.9					
³⁹ C1	77.7 ± 3.9	16.6 ± 1.1					
⁵⁴ Mn				21	25	35	420
60 _{Co}	0.35	0.30	14	1.5	1.7	3.5	24
65 _{Zn}		4.6		23	35		
95 ZrNb	340	350	19,000	1900	1900	4900	27,000
¹⁰⁶ Ru	150	130	11,000	920	920	2300	15,000
125 Sb	1 - -		950	120	79		1200
137 _{Cs}	5.7	25	2000	180	190	160	2300
144 Ce		230	17,000	1800	1500	≟600	26,000
208 ₁	1.04 ± 0.17						

MAY 8 AND 9, 1968 - FLIGHTS 19 AND 20

A-MOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

-

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

•

			-		1		
AMPLE NO.	-	21	2R	31	38	41.	4R
VLITUDE (Km)	1.5	3.0	4.6	6.1	7.6	9.1	10.7
ATITUDE (%)	48	48	48	48	48	48	48
ONGITUDE ("W)	1118	118	811	118	118	118	118
				DPM/10 ³ SCM			
1 ₁₂	140	120	1200	010	020	AKAD	
2		3	8		760		7 , 000
22 _{Na}			0.33	0.21	0.14	2.0	4.6
24 _{Na}	0.127 ± 0.039	0.95±0.11	2.58±0.28	4.77 ± 0.35	10.49 ± 0.32	12.01 ± 0.71	23.7 ± 1.1
54 _{Mn}	1.1	8.5	14	7.1	5.3	39	200
60 _{Co}	0.11	0.49	0,60	0.57	0.42	2.9	13
65 _{Zn}		8.8	16			26	120
95 ZrNb	67	420	570	390	270	2800	13, 000
106 _{R u}	39	240	350	280	190	1900	9200
125 _{Sb}	5.7	53	म्र	35	35	200	056
137 _{C5}	9.9	80	78	57	35	390	1800
14A _{Ca}	67	420	570	490	350	3500	16,000
208 ₁₁	230 1 1	3.31 ± 0.37	3.10 ± 0.48		3.69 ± 0.93	1.89 ± 0.46	2.63 ± 0.75

.

JUNE 12, 1968 - FLIGHT 22

-

÷

-

-

-

i no e di

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

		IUNE 13, 1	948 - FLIGH	1 23		
SAMPLE NO.	Ra	10 8 8	R	1 X 101	LB 113	RØ 11.3
LA TITUDE (0N) LONGITUDE (0W)	45-40 113-110	40-35 110-108	45-40 116-111	40-35 111-107	45-40 118-110	40-36 110-108
			DPM/10 ³	SCM		
7 _{Be}	850	1000	950	780	1500	2100
22 _{Na}	0.19	0.42	0.67	0.22	0.42	0.46
24 _{Na}	7.52 ± 0.39	10.45 ± 0.53	12.36 ± 0.71	11.44±0.57	13.1±1.4	12.0±1.
54 IAn	8.1	15	19	8.5	n	13
60 _{C0}	0.39	0.92	0.35	0.25	0.78	1.6
65 _{Zn}	7.1	18	12	8.1	10	
95 _{ZrNb}	3:0	1000	350	260	710	0001
106 _{Ru}	250	780	250	200	530	740
125 _{Sh}	42	81		20	49	
137 _{CS}	53	150	ม	57	100	150
144 _{Ce}	390	1300	350	280	810	1300
208 ₁₁	4.22 ± 0.32	4.0 ± 1.1		4.6±3.0	7.8 ± 1.9	

ī

•

ATMOSPHERIC RADIONUCLIDE DISIN'TEGRATION RATES

.

•

•

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	Ra 6.1 36-40 107-111	La 6.1 40-47 111-117	Lβ 9.1 35 107	RB 9.1 35 -48 107 -118	Ly 12.2 35 107	Rγ 12.2 35-47 107-118
			0PM/10 ³	SCM		
7 _{Be}	390	670	570	670	1100	2200
22 _{.Na}	0.05	0.14	0.23	0.07		0.46
24 _{Na}	2.96 ± 0.18	3.71 ± 0.35	10.49 ± 0.60	7.66 ± 0.18	22.3 ± 1.9	13.00 ± 0.49
³⁸ C1	32 ± 21	19.4 ± 7.8		42 ± 10	260 = 220	34 ± 15
³⁹ C1		15.2 ± 3.2		58.4 ± 4.5		49 ± 25
⁵⁴ Mn		3.9		2.4		23
⁶⁰ са	0.09	0.30	0.81	0.49	0.4	0.49
⁶⁵ Zn				15		39
95 ZrNb	39	110	95	95	85	390
¹⁰⁶ Ru	39	120	110	60	85	390
125 _{Sb}		19	28	13		46
¹³⁷ Cs	25	31	9 9	64	46	95
¹⁴⁴ Ce	71	180	160	130	130	390
208 ₁₁	38.8 ± 2.4		25.8 ± 1.5	3.7 = 4.9	29.3 ± 3.7	3.4 ± 1.5
²¹⁴ 3i	176,600 ± 2900		373.000 ± 14,000		418, 500 ± 3500	28,430 ± 530

JULY 23, 1968 - FLIGHT 24

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

JULY 24, 1968 - FLIGHT 25

.

ţ

.

.

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	a 1.5 48 117	β 4.6 48 117	∆ 7.6 48 117	Y 10.7 48 117
		DPM/10 ³	scm	
⁷ Be	600	530	1200	2200
²² Na	0.07	0.07	0.32	0.49
²⁴ Na	0.265 ± 0.021	1.861 ± 0.064	6.95 ± 1.4	22.53 ± 0.64
³⁸ C1		2.4 ± 2.4	8.1 ± 4.2	38.5 ± 6.4
³⁹ C1			4.5 ± 2.0	57.5 ± 3.4
⁵⁴ Mn	0.2	9.2	9.5	17
60 _{C0}	0.10	G.2 2	0.28	0.95
65 _{Zn}	0.3	3.5	18	ઠ.1
95 ZrNb	0יי	160	120	570
104,011	ç9	130	210	600
¹²⁵ Sb	3.0	13	12	92
¹³⁷ Cs	21	3Ú	46	100
¹⁴⁴ Ce	260	210	290	;20
208 ₁₁	122 = 4			

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

JULY 25, 1968 - FLIGHT 26

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	R 8.8 48-42 118-113	L 8.8 42-36 113-107	L 10.1 48-43 117-114	R 10.1 43-35 113-107	R 11.3 46-37 117-108
	••••••••••••••••••••••••••••••••••••••	0	PM/10 ³ SCM -		
7 _{Be}	1000	670	2800	570	2200
22 _. Na		0.18	1.1	0.13	
24 _{Na}	8.51 ± 0.49	11.83 ± 0.53	18.2 ± 1.4	9.50 ± 0.67	
⁵⁴ Mn	6.0		19	4.6	13
60 _{Co}	0.35	0.27	1.4	0.14	0.88
65 _{Zn}	3.9			2.3	
95 Zrt:b	170	67	780	78	390
105 _{Ru}	190	74	220	9 9	460
125 _{Sb}	32	11			88
¹³⁷ Cs	42	.22	190	22	i20
144 _{C3}	290	110	1400	9 9	810
208 ₁₁	2.88 ± 0.87	24.8 ± 1.6	4.8 ± 1.4	9.5 ± 1.2	

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATE:

		AUGUST 26	, 1968 - FL	1GHT 27		
S AMPLE NŨ. Altitude (Kin)	1a 6,1	Ra 6.1	1.p	8 B 9 1	LY 12.2	RY 12 2
LATITUDE (⁰ N) LONGITUDE (⁰ W)	35-40 107-111	40-48 111-117	35 107	35-47 107-117	35 107	36-48 107-117
			0PM/10	SCM		
· 7 _{Be}	230	830	061	920	670	8800
²² Na	0.17	0.26		0.85	0.22	анан санан
24 _{Na}	1.94 ± 0.23	3.67 ± 0.39	2.82 ± 0.20	10.74 ± 0.21	13.35 ± 0.64	25.25 ± 0.95
54 hin				2.9		24
60 Co		0.25	0.10	0.99	0.14	2.9
95 ZrNb	Ø	061	22	180	130	1700
103 _{Ru}				53	32	
106 _{Ru}	65	150	20	150	57	130
125 _{Sb}			13		32	240
137 _{CS}	18	49	42	39	25	420
140 Ba	в	II	3.2	35	35	200
1rd Ce		230	21	270	210	3200
208 ₁₁	15.5	8.13±0.79	15.45 ± 0.74	4.12 ± 0.52	17.8 ± 1.4	4.93 ± 0.72

•

ATMOSPHERIC RADIONUCLIDE DISIN'FEGRATION RATES

AUGUST 27, 1968 - FLIGHT 28

SAMPLE NO. ALTITUDE (Km) LATITUDE (ON) LONG ITUDE (OW)	LR 1.5 48 118	LR 3.0 48 118	R 6.1 48 118	L 9.1 48 113	LR 12.2 48 118
		[DPM/10 ³ SCM		
⁷ Be	74	350	1500	1700	14,000
22 _{Na}	0.06	0.06	0.49	0.88	
24 _{Na}	0.120 ± 0.024	0.308 ± 0.026	2.34 ± 0.24	12.68 ± 0.46	39.90 ± 0.74
³⁸ CI					480 ± 140 .
⁵⁴ Mn	0.1	1.8	12		67
⁶⁰ Со	0.14	0.1ċ	0.71	1.4	4.9
65. Zn					71
95 ZrNb	13	67	310	300	3500
. 103 _{R u}					920
106 _{R -1}	7.8	45	460	330	3200
¹²⁵ Sb	2.4	20	 i⇔ó		880
¹³⁷ Cs	4.6	22	110	78	710
¹⁴⁰ 3a	0.06	0.02	0.92	39	460
¹⁴⁴ Ce	29	1.40	640	530	ć 900
203 ₁₁	149.1 ± 8.3	3.67 ÷ 0.12	8.76	15.3 = 1.5	8.22 ± 0.53

•

.

•

ATMOSPHERIC FACTONUCLIDE DISINTEGRATION RATES

•

AUGUST 28, 1968 - FLIGHT 29

SAMPLE NO. ALTITUDE (Km) LATITUDE (°N) LONG ITUDE (°W)	R 8.8 41-35 113-107	L 10.4 48-41 118-112	R 10.4 41-35 112-107	L 11.3 48-42 118-113	R 11.3 42-40 113-111
	- <u></u>		- DPM/10 ³	SCM	
⁷ Be	880	1300	1400	9500	350
22 _{Na}					0.11
24 _{. Na}				6.50 ± 0.64	0.63 ± 0.34
54 _{Mn}		5.7	3.5		
60 _{Co}	0.22				0.18
⁶⁵ Zn		4.9	4.2		
95 ZrNb	170	390	310	2200	130
¹⁰³ Ru	57	130	85		
¹⁰⁶ Ru	53	140	130	2300	110
125 _{Sb}				290	
¹³⁷ Cs	16	39	35	530	30
¹⁴⁰ Ba	49	110	8 8	260	16
144 _{Ce}	71	230	210		190
208 _{TI}					8.9 ± 1.5

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	L 6.1 36~40 107-111	R 6.1 40-48 111-118	L 9.1 35 107	R 9.1 35-48 107-118	L 12.2 35 107	R 12.2 35-47 107-118
			DPM/10	³ scm	<u></u>	
⁷ 8e	1300	190	7400	1300	10,000	6000
22 _{Na}	0.22	0.08		0.11	3.1	1.2
24 _{Na}	5.17 ± 0.20	2.73 ± 0.18	16.88 ± 0.64	7.31 ± 0.35	32.7 ± 3.0	25.43 ± 0.28
³⁸ C1						25 ± 11
³⁹ C1				24.0 ± 5.3		71.7 ± 8.5
⁵⁴ Mn		0.9	42	3.4		24
60 _{Co}	0.28	0.02	2.8	0.67	2.3	0.95
⁶⁵ Zn			35	2.4		33
95 ZrNb	130	24	1100	170	2600	1100
103 _{Ru}					640	190
106 _{Ru}	160	23	1600	190	1400	1100
125 Sb	32	3.9	350	15		140
137 _{Cs}	35	5.6	390	39	3 90	290
140 _{Ba}	4.9	4.2	30	9.5	490	67
¹⁴⁴ Ce			2400		3500	1800
208 ₁₁	3.77 ± 0.38	2.01 ± 0.27	7.12 ± 0.87	1.31 ± 0.23	8.9 ± 3.0	3.63 ± 0.64
214 _{Bi}						11,590 ± 170

SEPTEMBER 23, 1968 - FLIGHT 30

.

-

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	LR 1.5 48 118	LR 4.6 48 118	L 7.6 49 118	R 9.1 49 118	LR 13.0 49 118
		C	0PM/10 ³ SCM		
7 _{Be}	170	460	350		6000
²² Na	0.011		0.05	0.04	
24 _{Na}	0.149 ± 0.026	1.69 ± 0.12	7.06 ± 0.42	5.58 ± 0.57	34.43 ±`0.49
³⁸ C1					89.3 ± 6.4
³⁹ C1			37 ± 17	69 ± 18	161 ± 23
⁵⁴ Mn	0.18		2.6		24
⁶⁰ со	0.060		0.16		2.0
⁶⁵ Zn	0.3		4.9		30
95 Z.tNb	17	110	110	32	1800
¹⁰³ Rບ	6.0	42	16		570
¹⁰⁶ Ru	14	24	19	12	9 90
125	3.5		11	35	
137 _{Cs}	4.2	8.8	7.1	4.9	280
140 _{Ba}	0.071	53			300
144 _{Ce}					1700
²⁰⁸ TI	440 ± 35	0.64 ± 0.10			
²¹⁴ Bi		23,270 ±			10, 200 = 170

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

:

		SEPTEMBER 2	5, 1968 - FLI	GNT 32		
SAMPLE NO. ALTITUDE (Km) LATITUDE (VN)	L 8.8 43-42	R 8.8 4 ² -35	L 10.1 48 42	R 10.1 42.36	L 11.3 49-41	R 11.3 41-35
tcadilute (ow)	113-J13	101-611	118-113	113-108	118-112	112-107
,			DPM/10 ³	SCM		
/Be ·	490	0:/	1200	0061	1400	3400
PH			0.29	0.26		1.2
24 Na	2.81 + 0.22	1.8/ ± 0.42	13.8 ± 1.4	21.1 ± 0.57	17.6±1.6	19.7 ± 1.1
. uw	1.1				4.2	28
60 C0	0.05	0.14	0.16	0.31	0.20	0.92
65 ₂₀	2.5		3.5			23
92, ZrNu	53	0/1	0/1	180	170	140
103.	12	1 78			29	260
l06 Ru	42	32	88	150	160	520
الک الک	12				66	
117 _{CS}	12	21	25	39	96	150
140 Ba	4.9	76	97.	42	lá	14
144. Le	n		45	UNC	. 0142	
2018 [1	1.36 4 0 62	3.9 1 1.0	1.9 1 2.0	1.48 ± 0.74	9.0 1 4.6	5.4 ± 1.5

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

• •

· · ·

			001	0BER 28.	1968 - F	LIGNT 33				
SAMPLE NO. ALTITUDE (Km) LATITUDE (⁰ 41)	- <mark>- 20 97 97</mark>	2 12 15	35.1	4 12.2 35	5 15.2 35	6 18.3 35-40	7 16.3 40-45	8 15.2 47	L 7.6 35-41	R 7.6 41-47
IONGITUDE (0W)	101	101	101	107	107	107-110	511-011	117	111-201	211-111
					DPM	- WD2 2011				
lbe	240				35,000	39,000	35,000	42,000	390	490
22 _{Na}					11	12	240		0.08	0.16
24 _{Na}	0.60 ± 0.17		1.1 ± 1.1	18.0±2.4	61.6± 3.4	67.1 ± 5.7	76.6 ± 7.8	28.9 ± 1.6	6.10±0.27	9.04 ± 0.53
54 _{Mn}		2.1	3.5		961	286	240	93	0.1	
60. Lo	0.11	0.18	0.11		ló	17	22	1.3	0.10	0.18
65 _{Zn}		2.1	6.7		0/1	290		35		
95 ZrNtu	120	49	46	0066	3500	3500	3900	6400	96	Q
103 Ru	14	23	46	2300				2200	ló	13
106 _{Ru}	22	1.1	6.7	260	8500	000,11	13,000	670	12	26
125 ₅₀			8		140	1100	1000			
B7 _{C5}	9.2	3.2	2.0	0(1	2400	2700	3100	290	3.5	15
140	77	7.1	9.9	710	23			740	6.0	5. 6
144 Ce	8/				13,000	14,000	17,000	00/1	53	0]
208	20.6 1 1.5	1.6 1 1.2			11.1 ± 9.8					2.32 ± 0.43

٠

-

,

.

ATMOSPHERIC RADIONUCLID ISINTEGRATION RATES

							;			
SAMPIE NO. ALTLINGE (Kai) LATTIUDE (^V N) LATTIUDE (^V N)	33.17	<u> </u>	+ 1.6 1.5 19	5 12.2	35.2	7 18.3 36-40 107-110	8 18.3 40 45 110-117	9 15.2 46-47 117	L 11.9 42 44 114 -117	8 9.1 45-47 117
				- 	- DPM	uno ³ scm				
lbe	161	2002	01,	0084		29,000	24,000	24,000	28,000	460
22 _{N4}	0.24	0.30	0.4	1.1		9.5	12	20	5.1	
24Nd		3.14 1 0.64	4110	15.3 ± 3.0		68.9 1 4.9	78.0 ± 3.5	84.8 ± 7.8	46.3 1 2.8	29±13
38 _{C1}				•				350 1 180	8E T ISI	
39 _{C1}								66 1 265	315.1.25	
54 Min		1	8.8	<u> </u>		260	290	130	140	
60 C0	0.30		0.32	0.7			B	12	II	0.4
65 ₂₁₁			~			390	020		120	
95 21Nb	100	120	4')()	UKI		3200	3000	8800	2700	180
lu3 _{Ru}		29	0.1	420				2100		
106 ₈₁₁	39	12	71	046		8800	95,00	8100	4900	65
ائک ملا						1200	1200	180	670	
11/ _{CS}	=	=	Ś	160		2500	2700	2500	1400	200
14:1 _{6.4}	58	4.9	*	15		a a	12	110	62	
144 _{(:e}	1250		5 U	186		14,000	14,000	NDCR	8100	110

NOVEMBER 25, 1968 - FLIGHT 34

•

٠

LIGHT 35
ملكيا –
1
6
Ö
6
20,
~
2
7
~
_
Z
4

- 28	-	2 2 2	3 35 35	4 12.2 35	5 15.2 35	6 18.3 37-41	7 18.3 41-46	8 15.2 47	R 9.4 36-42	L 9.4 42-48
107 107 107	107 107	107		107		108-113 î	113-117	111	108-113	113-1
					— DPM/IC	o ³ scm —				
130 130 130	130 1700	00/1		4600	0009	24,000	24,000	23,000	0061	270
				0.66 ± 0.27	1.10 ± 0.70	12.0±1.1	13.5± 1.5	9.3 ± 1.0	0.40 ± 0.10	
1.11 ± 0.39 4.56 ± 0.57	1.77 ± 3.39 4.56 ± 0.57	4.56±0.57	_		28.9± 3.0	46.6±5.3	56.9±4.6			
9.5	9.5	9.5	No. of Concession, name			180 ± 11	166±10	11111	1.8 ± 0.8	
0.10 0.92	0.10 0.92	0.92		0.60 ± 0.25	1.90±0.54	15.6± 1.4	15.0 ± 1.4	11.1 ± 6.6	0.29 ± 0.08	0.64
						109±24		94±15		
22 19 460	19 460	460		1200	4600	22,000	16,000	0009	220	120
8.5 320	8.5 320	320		230	880	3500	2700	920	290	100
GU 22 190	22 190	061		320 ± 13	596±24	6521 ± 76	6913±76	5109±51	196 1 4	49
13 140	13 140	140		28±4	33 ± 7	745 ± 12	781 ± 12	636±8	33± l	22
25 IB n	13 [71	IJ		1106	163±2	1924 ± 6	2068 ± 6	1500±4	1 1 18	22
3.1 1.3 320	1.3 320	320		3.5	14	88	46	R	270	110
49 640	49 (olito	000		016 1 009	1100	13,000	15,000 ± 1000	9050 ± 860	440±100	

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

JANUARY 22, 1969 - FLIGHT 36

.

.

A Deng

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	10 15.2 46-41 117-112	11 15.2 41-37 112-108	R 11.3 46-41 118-112	L 11.3 41-35 112-107
		DPM/10 ³	SCM	
7 _{Be}	2000			
²² Na	9.00 ± 0.86	9.5 ± 1.0	5.50 ± 0.46	8.74 ± 0.58
⁵⁴ Mn	57 ± 6	103 ± 7	29 ± 3	74 ± 4
60 _{Co}	9.91 ± 0.74	9.99 ± 0.78	7.65 ± 0.40	10.63 ± 0.47
95 ZrNb	9900	53, 00 0	25,000	49,000
¹⁰³ Ru		57,000	2600	ئ0,000
106 _{Ru}	5228 ± 47	7747 ± 60	4581 ± 28	7505 ± 36
^{1.25} Sb	593 ± 7	682 ± 8	474 ± 4	785 ± 5
¹³⁷ Cs	1470 ± 3	1589 ± 4	1093 ± 2	1640 ± 2
¹⁴⁰ Ba	1700	53, 000	29,000	60,000
144 Ce	10,790 ± 820	14,900 ± 1000	9510 ± 470	15,670 ± 600

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

SAMPLE NO. ALTITUDE (Km) LATITUDE (QN) LONGJIJDE (QW)	1 18.3 33-42 109-113	2 19.9 142-47	3 15.2 47	4 12.2 47	9.4 17	5 6.1 47	7 3.0 47
				CPM/1	10 ³ SCM		
7 _{8€}	1	1	1	!	1 9500	390	; 110
22 _{.4a}	25.9 ± 3.0	13.3 ± 2.5	16.4 = 2.3	16.3 = 1.7	1.05 = 0.50	! 0.13	0.29
24 _{.Na}			56.9 = 6.0	35.7 ± 2.9	1 15.9 ± 1.5	1.66 ± 0.39	9.55 = 0.25
38 _{C1}					240 ± 110	1	
39 _{C1}					139 ± 58		
Silin	913 ± 25	509 ± 21	632 = 19	350 ± 13	45 ± 4	64	:
60_0	135 + 14	130 = 15	$ 4.4 \pm 3 $	137+10	511+114	0.17	+
65,		1		102210		3.0	
95						3.4	
200	330,000	480,000	; 58 9, 009	220,000	5300	150	74
103 ² 0	\$30, C OO	529,000	310,000	95,000	1500	- 31	34
106 ₇ u	42,000 ± 200	1 25,150 ± 160	31.450 ± 150	20, 350 = 100	.221 = 29	57	17
15a ²⁹	1344 ± 27	2255 ± 24	2450 = 21	1397 ± 14	296 ± 3	14	
137 _{Cs}	4788 ± 11	3677 ± 10	. 3962 ± 9	2741 ± 6	715 = 2	- 20	11
¹⁴⁰ 3a	:	t	110,000	42,000	1000	15	7.4
144. Ce	103, 700 ± 3400	. 53, 400 ± 2900	70, 700 ± 2500	48, 300 = 1800	i 1350 ± 330		
²¹⁴ 3i		1 1 2	:	;	918 ± 38	32, 500 ± 2300	1 55,400 = 2400

FEBRUARY 26, 1969 - FLIGHT 37

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES
FEBRUARY 27, 1969 - FLIGHT 38

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	3 15.2 46-42 117-113	4 15.2 42-36 113-108	R 11.3 47-41 118-112	L 11.3 42-36 113-108
		DPM/10 ³ S	CM	
⁷ Be				180
22 _{Na}	6.0 ± 1.2	17.6 ± 1.8	3.00 ± 0.32	0.76 ± 0.12
54 _{Mn}	180 ± 10	421 ± 15	34 ± 2	
60 _{Co}	6.27 ± 0.65	15.51 ± 0.86	2.66 ± 0.24	
⁹⁵ ZrNb	210,000	490,000	16,000	130
103 _{Ru}	130,000	300,000	9500	92
¹⁰⁶ Ru	15,359 ± 82	40, 330 ± 120	23⁄10 ± 19	28.4 ± 2.6
¹²⁵ Sb	1060 ± 11	2379 ± 16	275 ± 3	5.9 ± 1.4
¹³⁷ Cs	1825 ± 5	4877 ± 7	598 ± 1	19.7 ± 0.4
¹⁴⁰ Ba	42,000	110,000	3100	24
¹⁴⁴ Ce	38, 709 ± 1500	98,000 ± 2100	4469 ± 310	34

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

2

SAMPIL RO. ATTUINE K III	1	2		4	5		2	8	ä	L 10,
IATITUDE (°N) LONGINDE (°W)	29	29	E A E	۶ä	5	37-41 108-112	41-65 112-117	46-47 117	35-41 107-112	41-47
					DPMI	10 ³ scm				
lue	570	200	0061 1 0096							
22 _{Ha}	0.42	N. 0	0,50 1 0.40	14.4 1.7	12.6 ± 2.0	23.2 ± 2.4	21.6 ± 2.4	46.8.1 4.0		
24 _{Na}	1.01 1 0.32	4.48 ± 0.46		0.6 ± 0.66	33.7 4 2.7	9.6 1 0.11	69.7 ± 3.3	1.1 21.65	4.02 1 0.26	10.28±0.53
Mui		3.9		144	315	615	Kł	1127		
60 C0	0.49			92110	64± 1.1	21 22 15	20.2 1 1.5	8.1 ± 1.3	0.21	
65 ₂₁₁									6.4	
nni2 ci	200	я,	EE 1 929E	120,000	230,000	250,000	260,000	000 [°] 092	570	
103 _{ku}	110	Į,		000'15	88,000	000.24	95,000	000'050	150	
106 _{ku}	43	R/	41 t <i>l</i> tc	13,902 1 86	011 T 0/0 '0Z	24, 300 ± 130	25,220 ± 130	65, BOD ± 220	33	
45 42			41) 1 3	10.12	1215	1815	1/8/1	4254		
W _G	23	R	1 1 1 1 1	1 1 1622	2426 i B	01 1 19/1	38of 1 10	1522 4 16	26	
140 B.4	2	11		1100	000'E3	000-61	14,000	49,000	28	
144. Le		056	1470 - 280	29,600 1400	20,300 1 1000	62, 100 1 2200	66, 210 1 22UU	0056 1 006,001		
208.1	514.2.1 6.2								0.25 1 0 22	

MARCH 25, 1969 - FLIGHT 39

•

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

.

•

SAMPLE NO. ALTITUDE (Km) LATITUJE (^O N) LONGITUDE (^O W)	2 3.0 18.5 67	3 6.1 18.5 67	4 9.1 18.5 67	5 12.2 18.5 67	6 15.2 18.5 67	7 18.3 18.5 67
			DPM/10 ³ S	icm		
7 _{Be}	250 ± 5	230 ± 5	475 ± 6	450 ± 9	2996 ± 58	7694 ± 59
22 _{Na}	0.058 ± 0.027	0.070 ± 0.031	0.059 ± 0.049	0.34 ± 0.22		5.05 ± 0.81
24 _{Na}	0.27 ± 0.18	0.82 ± 0.26	5.28 ± 0.66	6.8 + L.1		12.5 ± 1.6
60 _{Co}			0.44 ± 0.20	Q.36 ± Q.10		2.88 ± 0.46
95 ZrNb	234 ± 1	149 ± 1	333 ± 1	1121 ± 2	962 ± 8	31, 581 ± 11
103 _{Ru}	31 ± 1	19 ± 1	55 ± 1	210 ± 1	170 ± 7	5133 ± 7
106 _{Ru}	48.8 ± 1.1	23 ± 2	60 ± 3	200 ± 5	190 ± 6	5554 ± 30
125 _{Sb}	18 ± 1			125 ± 0.7		505 ± 7
137 _{Cs}	9.7 ± 0.3	3.4 ± 0.4	7.7 ± 0.4	27.0 ± 0.7	27.4 ± 0.9	851 ± 3
140 ₈ a	0.063 ± 0.058	0.106 ± 0.077	0.15 ± 0.11	0.43 ± 0.28		15.6 ± L3
144 _{Ce}	98 ± 17	82 ± 16	230 ± 120	480 ± 140	940 ± 200	13, 900 ± 500

JULY 8, 1969 - FLIGHT 40

٠

•

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

(¹ .	
	gan

SEPTEMBER 30, 1969 - FLIGHT 41

SAMPLE NO. Attitude Km) Lattitude Pn) Longitude Pw)	148 65 148	2 6 1 148	د 1381 148	148 66 22	15.2	6 18.3 65-60 148-137	7 18.3 60-55 137-132	8 18.3 55-50 132-126
				IMdo	ld ³ SCM			ł
7 Be	7 68	205 ± 13	1774 ± 20	12, 990 ± 63	30, 670 ± 140	32,323 ± BM	36, 660 ± 78	23,211 ± 90
22 _{Na}		0 202 ± 0.093	Q39± Q21	5.49 ± 0.92	206±21	14.0 ± 1.3	13.62 ± 0.78	1274 ± 078
24 _{Na}	Q39±Q22	077 ± 0.26	7.80 ± 0.96	3A7 ± 25	51.5 ± 5.1	6 <u>6</u> 913.5	72.0 ± 3.6	74.4 ± 3.2
54 _{Mn}		4 ± 1	12 ± 1	105 ± 13	262 ± 11	271 ± 6	51 ¥ KI	269 ± 18
60 _{C0}			Q 26 ± Q 18	3.13 ± 0.56	11.9± 1.3	10.1 ± 1.0	9.21 ± 0.54	1a 29 ± a 54
95 _{2rNb}	19 ± 1	1 1 255	1382 ± 3	14, 963 ± 12	35, TTI ± 24	19,058 ± 13	14, 915 ± 11	34,926 ± 15
100 _{Ku}	1 1 6	ודונ	15 ± 2	1369 ± 8	51 Ŧ M82	2206 ± 10	1290 ± 9	3307 ± 10
106 _{Ru}	347121	126.8 1 3.6	483 ± 8	5302 ± 34	12, 940 ± 71	9245 ± 46	8024 ± 37	14' 1 <i>11</i> ± 45
125 ₅₀	1543		67 ± 5	435 ± 17			MI ± 20	
137 _{Cs}	1 7 21	21 1 1	K3 1 2	943 ± 7	2750± 14	1944 ± 7	6 1 6 6 5 1	2637 ± 8
140 _{61a}	<u></u>					4.4.1 22	3.64 1.3	2911.4
144 _{Ce}	102 1 40	266 1 50	1380 ± 130	11,810 1 500	0011 r 006,16	20, 020 1 660	14, 230 ± 430	31,220 ± 550
208 ₁₁	6241 63			22 ± 12				

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

	-	
1		1.1

4

NOVEMBER 18, 1969 - FLIGHT 42

•

APLE NO. 11UDE (Km) 11UDE (°N) (GITUDE (°W)	1 3.0 107	2 61 35 107	3 9.1 35 107	122 35 107	5 15.2 35 107	6 18.3 35 107
			DPM10	SCM		
7 ^{be}	145 ± 5	578 ± 7	217±5	1826 ± 41		
. eN22		Q.19±0.09		5.4 ± 1.2		
24 _{Na}	Q42 ± Q14	4.56 ± 0.59	á76± Q <i>7</i> 9	27.1 ± 2.1	48.4 ± 2.4	53.0±4.4
54 _{Mn}			1.6 ± Q5			
60 _{C0}	Q 09 ± Q 06	0,10 ± 0,08	a19± a09	4.09 ± 0.86	5.9± 1.7	78.4 ± 4.7
95 _{ZrNb}	1 7 19	224 ± 1	49 ± 1	597 4 ± 5	54, 322 ± 15	205,580 ± 41
103 _{Ru}	12 ± 1	23 ± 1	13 ± 1	1468 ± 5	37, 376 ± 16	144, 896 ± 43
106 _{Ru}	29.611.3	108.0 ± 3.1	21.1 ± 1.0	235 ± 18	9145 ± 37	24, 067 ± 97
137 _{Cs}	8.6 ± 0.4	21 ± 12	4.4 ± Q.4	434 ± 4	2720±8	
140 _{B a}	4.2 ± 0.2	ሴንቱ ቢፋ	4.7 ± 0.4	827 ± 6	17, 728 ± 21	68, 244 ± 61
20811	24,6±1.3	1.16 ± 0.82	,			

ATMOSPHERIC RADIONUCLIDE DISINFEGRATION RATES

JUNE 9, 1968 FLIGHT 1A

١

•-

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	2 15.2 65-60 147-137	3 15.2 60-55 137-130	4 15.2 55 <i>-</i> 50 130-125	5 15.2 50-45 125-118	6 15.2 45-40 118-110	7 15.2 40-35 110-107
			DPM/10	³ scm —		
⁷ Be	28,000	35,000	28,0 00	42,000	32,000	21,000
22 _{Na}	13	29	12	15	16	
²⁴ Na	53.0 ± 6.0	71.3 ± 6.4	48.7 ± 6.0	48.0 ± 4.6	63.6 ± 3.2	29.3 ± 2.5
⁵⁴ Mn	390	530	320		460	420
60 _{Co}	27	31	20	25	28	20
⁶⁵ Zn	320			950	490	420
⁹⁵ ZrNb	20,000	23,0 00	19,000	21,0 00	24,000	17,000
106 _{Ru}	18,000	19,0 00	16,000	18,000	20, 000	14, 0 00
¹²⁵ Sb	19 00		1800	1900	2500	2400
137 _{Cs}	3300	3900	290 0	3500	3900	2600
¹⁴⁴ Ce	25,000	32,000	24,000	26, 0 00	31,000	21,000
208 ₁₁					84 ± 11	19.3 ± 9.4

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

OCTOBER 5, 1968 - FLIGHT 3A

-

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	1 18.3 12.5-14 82	2 18.3 14 19 82-85	3 18.3 19 <i>-</i> 23 85 <i>-</i> 88
	D	PM/10 ³ SCM	
7 _{Be}		12,000	24,000
22 _{Na}	2.4	6.7	4.2
24 _{Na}	53 ± 53	44.1 ± 1.1	56 ± 15
⁵⁴ Mn	57	110	390
⁶⁰ Co		10	23
⁹⁵ ZrNb	1300	3900	5300
105 _{Ru}	1300	4600	9500
¹²⁵ Sb	420	920	2300
¹³⁷ Cs	420	1500	2900
140 _{Ba}	200	110	34
<u>144</u> Ce	1800	8500	17,000

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

.

.

OCTOBER 8, 1968 - FLIGHT 4A

SAMPLE NO. ALTITUCE (Xm) LATITUCE (Xm) LATITUCE (2W)	2 17.4 20-2505 39-73	3 11.4 25-20 ⁰ 5 73-76	4 17.7 20-15 ⁰ S 16-30	5 18.1 15-10 ⁰ S 20-83	7 18.3 5 0 ⁰ 5 35-78	8 18.3 N ⁰ -5 ⁻ 0 79-81	9 18.3 5-30N 81-80 -
				- DPIA/10 ³ SCN			
7 _{Be} 1							16,000
22 _{N4}		3.5 ± 1.7	6.5±14	5.3 ± 2.2	12.2 ± 5.8	4.3±1.9	6.0 ± 1.7
24 _{Na}				32 ± 16		23.3 ± 6.0	24.0 ± 9.5
54 _{Mn}		204 ± 18	77 ± 10	285 ± 25	1174 ± 63	196±22	177 ± 20
00 00	15	34.7±1.4	21.1±12	18.0 ± 2.1	88.6± 5.0	12.8±1.9	11.9±1.5
95 _{ZrNb}	1,100,000	920,000	470,000	280,000	2,000,600	46,000	24,000
103 _{Ru}	420,000	460,000	240,000	000'66	1,000,000	16,000	7800
106 _{Ru}	39,000	43, 180 ± 170	21,030 ± 130	10, 320± 180	92,910±570	4910 ± 130	5320±100
125 _{Sb}		11 1 651	4600 1 22	638 1 24	3489 ± 56	604 ± 23	68A ± 21
137 _{Cs}	12,000	4436±7	601 T 5563	1896 ± 10	9019 ± 23	1569 1 9	1 1 1891
140 _{B.a}	420,000	420,000	200,000	100,000	000.46	000'11	3900
144 Ce	000-011	1 001 76	56, 200 i 2500	33, 600 1 3800	222,000 1 16,000	5000 1 0002	16,400 1 2700

ATMOSPHERIC RADIONUCLIDE DISINFEGRATION RATES

OCTOBER 9, 1968 - FLIGHT 5A

S AMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	3 18.3 15-20 83-86	4 18.3 20 <i>-</i> 25 86 <i>-9</i> 0	5 18.3 25-30 90-96	6 18.3 30-35 96-106
	-	D PM/10	³ scm	<u></u>
7 _{Be}	28,000		28,000	35,000
²² Na	14		13	15
24 _{Na}	35.3 ± 9.5	35.7 ± 6.4	37.8 ± 7.4	5 5.1 ± 7.4
⁵⁴ Mn	300		280	350
60 _{Co}	17		14	19
⁹⁵ ZrNb	5300		4600	6400
106 _{Ru}	8500		9200	12,000
125 _{Sb}	950		1100	1500
¹³⁷ Cs	2500		2500	3200
¹⁴⁰ Ba	420		230	710
¹⁴⁴ Ce	16,000		14,000	17,000

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

OCTOBER 9, 1968 - FLIGHT 6A

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N)	1 18.3 60-55	2 18.3 55-50	3 18.3 50-45	4 18.3 45-40	5 18.3 40-36
		n	PM/10 ³ SCM		
_		J			
⁷ Be	28,000	25,000	39,000	30,000	29,000
22 _{Na}	6.7	12	23	11	14
²⁴ Na	88.6 ± 6.0	74.9 ± 5.3	57.6 ± 9.2	76 ± 11	49.8 ± 3.1
⁵⁴ Mn	300	150	230		420
⁶⁰ Co	19	14	22	18	18
65 _{Zn}					460
95 ZriNb	3900	3300	4200	4200	4600
¹⁰⁶ Ru	11,000	11,000	14,000	12,000	11,000
¹²⁵ Sb	2000	1500	1100		1100
137 US	27Çn	210C	2900	2900	2900
1493a				7.4	
144 _{Ce}	14,000	12,000	15,000	16,000	14,000

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

NOVEMBER 5, 1968, - FLIGHT 8A

•

SAMPLE NO. ALTITUCE (Km) LATITUDE (^O N) LONGITUDE (^O W)	1 18.3 60-55 140-133	2 18.3 55-50 133-125	3 18.3 50-45 125-118	4 18.3 45-40 118-111	5 18.3 40-35 111-107
		DF	PM/10 ³ SCM -		
⁷ Be	26,000	27,000	39,000	35,000	35,000
²² Na	15	15	14	19	14 .
24 _{Na}	80.2 ± 5.3	68.2 ± 4.6	64.3 ± 7.8	68.2 ± 9.9	66 ± 12
⁵⁴ Мп	170	280	170	220	200
⁶⁰ Co	16	19	.16	17	20
95 ZrNb	2700	3200	3200	3000	3400
¹⁰⁶ Ru	10,000	11,000	11,000	9900	13,000
125 _{Sb}	1300	1900	1100		
¹³⁷ Cs	2300	2600	2600	2600	3000
¹⁴⁰ 3a	13	22			
¹⁴⁴ Ce	12,000	13,000	13,000	14,000	15,000

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

8
FLIGHT
1969
11,
RUARY
FE B

.

A.....

•

SAMPLE NO. ATTITUDE (Km) LATITUDE (M) LONGITUDE (M)	2 15.2 112-15 81-83	3 15-18 15-18 83-84	4 15.2 18-21 84-87	5 15.2 21-24 87-89	6 15.2 24-26 89-91	1 15.2 26-29 91-95	8 15.2 29-31 86-98	9 15.2 31-33 98-102	10 15.2 33-35 102-106
					- DPMVIOT SC	 			
7 _{Be}	2300	2800		5700	4 1998-189				
22 _{Na}		Q.53	1.7 ± 1.1		Q8± Q8	Q.98 ± Q.72	Q45 ± Q31	0 97 ± 0 83	
24 _{Na}	28.6± 9.9		20.1 ± 6.4	50±18					
54 _{Mn}	64	в					20 ± 4		
60 _{Co}		0 .30	1.63 ± 0.94		4.6	1.80 ± 0.56	a76± a21	Q81 ± Q51	
65 ₂₀	جر 1	B			ž				
^{€2} rNb	780	1200		3500	£500	12,000	520 ± 300	2730 ± 450	
103 _{Å u}	500	170		1500	7400	6700			
106 _{ku}	52	110	1000 1 54	420	864 1 48	965 ± 39	106.7 ± 8.8	86 1 86	
125 _{Sb}			10 + 10		34 t 13	8101	13±4	B ± 10	
137 _{Cs}	35	23	174±3	170	139±3	1/1 ± 3	32 ± 1	152 ± 3	
140 _{61a}]31	52		0/9	2900	2000			
144 _{Ce}	500	240	5000 ± 1800		2200 ± 1200	3060 1 940		2800±110	

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

FEBRUARY 21 AND 22, 1969 - FLIGHTS 10A AND 11A

DATE (FEB) FLIGHT NO. SAMPLE NO. ALTI TUDE (Km) LATI TUDE (^Q N) LONGI TUDE (^Q W)	21 10A 2 15.2 10-15 80-83	22 11A 1 15.2 10-15 80-83	22 11A 2 15.2 15-20 83-86	22 11A 3 15.2 20-25 86-90	22 11A 4 15.2 25-30 90-96	22 11A 5 15.2 30-35 %-107
			DP	M/10 ³ SCM -	<u></u>	
7 _{8e}	2200	1	11, 000		-	1
22 _{Na}		0.14				4.5 ± 1.1
²⁴ Na	19.1 ± 6.0		28.6 ± 9.9		20.1 ± 6.4	50 ± 18
. ⁵⁴ Mn	13		16	11.5 ± 4.9	24 ± 5	249 ± 11
60 _{Co}	Q 1	0.1	Q.2	0.89 ± 0.34	L02 ± 0.37	6.48 ± 0.68
. ⁶⁵ Zn	10	4.9	14		78	84 ± 26
95 ZrNb	780	9.2	2200		6400	14, 0 00
103 _{Ru}	190		490		3900	17 0, 0 00
106 _{Ru}	92	23	190	223 ± 16	664 ± 27	12, 114 ± 95
125 Sb				22 ± 5	59 ± 6	866 ± 11
137 _{Cs}	32	9.9	78	55 ± 1	137 ± 2	1541 ± 5
¹⁴⁰ Ba	42	0.19	120		9 90	39, 000
¹⁴⁴ Ce	220		710		1160 ± 580	27,800 ± 1600

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

MARCH 17, 1969 - FLIGHT 12A

,

SAMPLE NO. Altitude (Km) Latitude (Mi) Longitude (Mi)	1 17.7 62-60 140-137	2 18.3 60-55 137-132	3 18.3 55-50 132-126	4 18.3 50-45 126-118	5 18.3 45-40 118-111	6 18.3 40-36 111-108
			DPM/10	³ scm		1
22 _{Na}	12.0±3.8	9.0±26		16.5 ± 3.1	19.5 ± 3.4	
24 _{Na}	89 ± 25	91 ± 35	90±26			95 ± 18
54 _{Mn}	347 ± 33	522 ± 23		798 ± 26	839 ± 30	4600
60 _{C0}	15. 3 ± 25	164±1.8	32	19.9 ± 1.8	21.4±1.9	
ω _{Zn}		0091				3500
95 ZrNb	20,000	260, 000	220,000	38, 400 ± 2000	460, 000 ± 2200	810, 000
103 _{Ru}	120,000	110,000	71,000			350, 000
106 _{R u}	19, 240 ± 270	20, 200 ± 190	24,000	38, 130 ± 240	44 , 100 ± 250	78,000
125 _{Sh}	1288 ± 38	1464 ± 26 .		2673 ± 30	3132 ± 34	
137 _{Cs}	245 ± 15	2947 ± 1.1	10,000	4765 ± 13	5374 ± 14	22,000
140 _{6a}	22,000	21,000	14,000			64,000
144 _{Ce}	46, 300 ± 4800	46, 300 ± 3300	27,000	86,600 1 4000	110,800±4500	180,000

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

4	e		
		- A	
1			
V		- X.	 ~
			Ч.

MARCH 31, 1969 - FLIGHT 13A

.

.

SAMPLE NO. LITITUDE (Km) ATITUDE (ON) ONGLITUDE (OW)	2 18.1 62-60 140-137	3 18.3 60-55 137-132	4 18.3 55-50 132-126 DPM	5 18.3 50-45 126-118 126-118	6 18.3 45-40 118-110	7 18.3 40-35 110-108
²² Na		11.1 ± 1.6	9.4 ± 3.1		14.9 ± 3.4	24.2±5.1
24 _{Na}	61 + 16		66 ± 21			53 ± 13
54 Min	850	462 ± 13	610 ± 27	ll£ ± ll	J6 ± 31	1(B6 ± 46
60 _{C0}	U	11.36±0,94	19.4 ± 2.2	Q75 ± Q.86	19.3 ± 2.0	14.9±2.4
95 _{ZrNb}	190,000	241,000±1200	240, 000	110,000	342,500 ± 3700	460, 000
10 ^R u	74, 000		000,10	46, 000		170, 000
106 _{R u}	19, 000	18, 550 ± 110	B,310 ± 20	10, 237 ± 81	36, 650 ± 28	42, 730 ± 400
125 _{Sh}		1399 ± 16	1877 ± 32	688 ± 12	2688 ± 33	3126 ± 49
137 _{Cs}	5700	2718 ± 7	3697 ± 14	1336 ± 5	4822 ± 14	5392 ± 20
140 _{Ba}	8100		£500	4900		19, 000
144 _{Ce}	42,000	43, 700 ± 1900	53, 660 ± 3900	28, 200 ± 1500	90, 800 ± 4900	100,400 ± 0,400

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

	API	RIL 10, 1969	- FLIGHT 14	<	
sample no. Altitude (Km) Latitude (M) Longitude (M)	2 18.3 11-15 81-83	3 18.3 16-20 83-86	4 18.3 21-25 87-90	5 18.3 80-96	6 18.3 30-35 96-107
			DPM10 ³ SCM		
7 _{Be}	24,000		-		
22 _{Na}	L3±L3	3.1 ± 1.1	8.3 ± 1.8	1.3± 2.4	105±24
²⁴ Na	24.8 ± 3.5	37.1 ± 3.5	37.1 ± 8.5		53.0±4.9
54Mn	45 ± 14	37 ± 9	23 ± 15	351 ± 23	505 ± 20
60 _{Co}	260±0%	228±0.79	60± 1.1	67±1.2	11.8±1.3
95 _{ZrNb}	29,000	35, 0 00	130,000	164, 300 ± 3300	240,000
103 _{Ru}	11,000	13,000	53,000		51,000
106 _{Ru}	2912 ± 86	3905 ± 58	13,070±110	16, 620 ± 190	24, 350 ± 180
125 _{Sh}	91 t KI	248 ± 10	921 ± 16	1119 ± 24	1830±24
137 _{Cs}	438 ± 6	559 ± 4	1703 ± 7	2176 ± 10	3249 ± 10
140 _{Ba}	780	810	3500		5700
144 _{Ce}	6700 ± 1700	10,100 ± 1200	31,700 ± 2000	40, 200 ± 3400	54, 900 ± 3000

.

.

.

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

١

10.00

APRIL 10, 1969 - FLIGHT 15A

SAMPLE NO. ALTITUDE (Km) LATITUDE (^o N) LONGITUDE (^o W)	2 15.2 10-15 80-83	3 15.2 15-20 83-86	4 15.2 20-25 86-90	5 15.2 25-30 90-96	6 15.2 30-35 96-97
			• DPM/10 ³ SC	CM	
7 _{Be}	1600	3000		4900	i
22 _{Na}		0.32	0.71 ± 0.34	0.85	7.7 ± 1.5
24 _{Na}	13.0 ± 3.2	25.8 ± 3.9	26.8 ± 6.4	16.6 ± 6.0	
⁵⁴ Mn	0.85	13 ± 5		15 ± 5	400 ± 13
හ _{co}			0.61 ± 0.28	0.43 ± 0.30	7.93 ± 0.78
⁶⁵ Zn			5.7		225 ± 31
95 ZrNb	200	1800	5700	2700	199, 300 ± 1400
103 _{Ru}	67	670	2700	850	
¹⁰⁶ Ru	27	216 ± 17	606 ± 17	343 ± 19	19, 480 ± 120
125 _{Sb}		18 ± 6	23 ± 3	15 ± 5	1432 ± 14
137 _{Cs}	7.4	33 ± 2	92 ± 1	59 ± 1	2291 ± 6
¹⁴⁰ Ba	3.4	42	130	57	1
¹⁴⁴ Ce	7.1	390	1570 ± 450	710 ± 450	44, 900 ± 2000

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

7 _{Be} 19,000	
22 _{Na} 3.1 ± 1.6 4.1 ± 1.6 8.9 ± 2.7 9.0 ± 2.5 11.0 ± 2.4	•
24 _{Na} 29.7 \pm 7.4 39.9 \pm 8.5 56 \pm 14 40 \pm 12	
54 _{Mn} 104 ± 15 51 ± 14 87 ± 25 383 ± 22 398 ± 21	
$60_{Co} = 3.3 \pm 1.0 = 2.75 \pm 0.93 = 8.0 \pm 1.8 = 8.9 \pm 1.4 = 1.24 \pm 1.4$	
65 ₇₇ 92 130 950	
95_{TrNh} 35,000 42,000 110,000 158,500 ± 1800 240,000	
103 _{R11} 14 000 15,000 49,000 85,000	
$106_{0} = 100 = 11,360 \pm 190 = 18,970 \pm 190 = 24,380 \pm 1$	90
$125 c_{1} \qquad 373 \pm 17 \qquad 301 \pm 17 \qquad 738 \pm 24 \qquad 1327 \pm 24 \qquad 1701 \pm 24$	
$137_{-} = 50 = 281 \pm 17 = 501 \pm 17 = 10 = 1471 \pm 10 = 2448 \pm 10 = 3245 \pm 10$	
140	
$144_{0} = 1200 \pm 1200 \pm 1900 = 33,400 \pm 3800 = 43,400 \pm 3300 = 60,200 \pm 1000 \pm 1000 \pm 1000 = 1000 = 1000 \pm 1000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 100$	3300

APRIL 11, 1969 - FLIGHT 16A

.

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

1.		-	
		.,	• •
_	-		11

JULY 29, 1969 - FLIGHT 17A

•

sample no. Altitude Km) Latitude (M) Longitude (M)	2 15.2-18.3 10-15 80-83	3 18.3 83-86	4 18.3 20-25 86-90 DPM10 ³ SCM	5 18.3 20-96 90-96	6 18.3 30-35 90-107
7 _{Be}	0E1 ± 002.11	29, 750 ± 180	10, 870 ± 160	34, 190 ± 140	33, 280 ± 140
22Na	9.15 ± 0.81	10.2 ± 1.7	123±1.2	15.5 ± 3.3	9.0 ± 1.0
24 _{Na}	37 ± 12	71 ± 21	96 ± 12	61 ± 19	61 ± 10
Mu	296 ± 24	411 ± 25	268 ± 17	87 ± 24	364 ± 20
60 _{C0}	7.36 ± 0.54	9.5 ± 1.0	99113	&1 ± 1.6	10,90 ± 0.54
95 ZrNu	51,574 ± 22	85, 100 ± 34	98, 938 ± 29	%, 108 ± 30	98, 348 ± 24
100 _{Ru}	8134 T 14	10, 284 ± 21	13, 808 ± 18	10, 737 ± 17	9700±15
106 _{R u}	12, 144 ± 48	18, 020 ± 100	18,550 ± 140	18, 990 ± 210	19, 968 ± 51
125 ₅₀	1193 ± 31	1703 ± 35	1526 ± 20	1376±32	1770± 25
137 _{Cs}	21 <i>1</i> 3 ± 13	3410±220	3081 ± 9	3101 ± 14	3444 ± 48
140 _{B.a}	14.4 ± 1.8	20.5 ± 4.6	29.2 ± 2.6		28.1 ± 2.0
144 _{Ce}	28,400 ± 600	46, 700 ± 1200	44, 700 ± 2400	55, 200 ± 3900	51, 140 ± 710

•

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

JULY 31, 1969 - FLIGHT 18A

•

.

Sample no. Altitude (Km) Latitude Longitude (^O W)	2 16.5 29-2605 70-72	3 16.6 26-23 ⁰ 5 72-73	4 16.8 23-20 ⁰ 5 73-74	5 16.8 20-15 ⁰ 5 74-77	6 16.8 15-11 ⁰ 5 77-79	7 14.8 17-70 19-80	8 16.8 7-305 80-82	9 16.8 3 ⁰ 5-19N 82-81	10 168 1-5 ⁰ N 1-5 ⁰ N	11 16.8 5-7 ⁰ N 80
					DPM10 ³	SCM				
7 _{Be}	21,500 ± 300	27, 960 1 350	18, 700 ± 300	14,600±170	8220 T 1/0	9550 ± 190	7040 ± 170	11,710±250	13, 500 ± 270	10, 880 ± 280
²² Na	3.3 ± 2.4	10.6± 3.0	á8 ± 1.3	4.3 ± 1.8	4.7 ± 20	27 ± 1.2	3.1 ± 1.7	23 ± 1.7	68 ± 1.7	20±1.8
54 Min	489 ± 21	768 ± 25	466 ± 37	214 ± 12	\$5 ± 13	89 ± 10	£ ± 10	160±15	56 ± 17	38 ± 15
60 _{C0}	2 3.4 ± 2.5	41.8 ± 3.5	20.4 ± 1.4	8.5±23		246± 0.85	1.63 ± Q.B		21±1.2	3.0 ± 1.1
ω _{Zn}			260±31			116 ± 20	80 ± 22	120 ± 26		
95 ZrNu	26, 455 ± 50	36, 914 ± 60	21, 800 ± 47	12, 759 ± 27	670A ± 23	9180±20	5319±22	12, 965 ± 36	2,9214	18, 658 ± 44
103 _{Ku}	519±36	1040 ± 41	688 ± 34	432 ± 20	461 ± 20	893 ± 22		1425 ± 29	2717 ± 31	1896 ± 32
106 _{Ru}	10, 540 ± 160	14, 328 ± 190	8560±74	4817±68	2096 ± 58	2626 ± 48	1653 ± 58	3955±99	5340 ± 120	4010 1 100
125 _{Sb}	795 1 26	1001 ± 31	583 ± 14	424 ± 34	210 ± 35	192 ± 14	1N ± 13	2%6 ± 19	42l ± 19	316 ± 20
137 _{CS}	Z35 ± 12	3533 4 15	2200 ± 160	1331 ± 15	520±14	475 ± 22	313 ± 5	739±7	801 ± 8	585 ± 7
144 _{Ce}	29,300 1 1700	43, 300 1 3600	23, 500 ± 1400	12,400±1100	4800±1000	4700±830	2800 ± 1100	7300 ± 1700	11,000 ± 2300	10, 000 ± 2000

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

•

.

•

·

	5 18.3 30-35 96-107		27,000 ± 270	7.3 ± 1.9	356±15	9,3 ± 1.1	65, 895 ± 49	8207 ± 29	15,440 ± 130	1448 ± 19	2601 ± 9	31,800 ± 2100
Æ	4 18.3 20-96		32,450±330	1Q5 ± 26	566±21		76, 015 ± 65	7499 ± 38	15, 280 ± 120		3212±30	35, 700 ± 1700
- FLIGHT 20/	3 18.3 20-25 86-90	DPM/IC SCM	26,470 ± 310	129±27	108 ± 19		44,316±55	4009 ± 35	9600±110		3123 ± 28	25, 900 ± 1600
IST 2, 1969	2 18.3 15-20 83-86	•		4.8±24	254 ± 20	9.5 ± 1.6	53, 613 ± 61	7509 ‡ 35	11,530 ± 190	1071 ± 25	2119±11	29,500 ± 1600
AUGI	1 18,3 10-15 80-83		35, 730 ± 360	6,3±24	215 ± 19	7.8 ± 1.5	51, 651 ± 65	4009 ± 42	11,350±160	1003 ± 25	11976±11	27,700 ± 2300
	Sample No. Altitude (Km) Latitude (°N) Longitude (°W)		7 _{Be}	22 _{Na}	54 _{Mn}	60 _{C0}	95 ZrNb	103 _{Ru}	106 _{Ru}	125 _{Sb}	137 _{Cs}	144 _{Ce}

•

•

•

•

.

ATMOSHPERIC RADIONUCLIDE DISINTEGRATION RATES

AUGUST 2, 1969 - FLIGHT 21A

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N) LONGITUDE (^O W)	1 15.2 10-15 8 0-83	2 15.2 15-20 83-86	3 15.2 20-25 86-90	4 15.2 25-30 90-96
		DPM/1	0 ³ SCM	
⁷ Be	7860 ± 110	5520 ± 130	9990 ± 110	12, 000 ± 110
22 _{Na}	0.8 ± 0.8	2.0 ± 1.4	2.2 ± 1.0	1.37 ± 0.77
⁵⁴ Mn	42 ± 8	68 ± 8	32 ± 8	69 ± 7
60 _{Co}	0.4 ± 0.4	1.62 ± 0.85	2.11 ± 0.71	1.52 ± 0.43
⁶⁵ Zn			83 ± 10	
⁹⁵ ZrNb	7839 ± 17	8760 ± 23	9850 ± 18	12, 826 ± 18
103 _{Ru}	847 ± 12	1263 ± 16	1135 ± 12	1454 ± 14
106 _{Ru}	1760 ± 34	1935 ± 53	2145 ± 53	3139 ± 53
¹²⁵ Sb	120 ± 9		157 ± 9	244 ± 8
137 _{Cs}	264 ± 3	361 ± 9	335 ± 3	461 ± 3
¹⁴⁰ Ba		12.0 ± 5.6		
¹⁴⁴ Ce	5200 ± 1100	3000 ± 680	6200 ± 1100	6960 ± 410

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

.

OCTOBER 18, 1969 - FLIGHT 22A

.

.

SAMPLE NO. ALTITUDE (Km) LATITUDE (^O N)	2 15.2 12-15	3 15.2 15.18 15.18	4 15.2 18-21 04-07	5 15.2 21-24 82-80	6 15.2 24-26 80-01	7 15.2 26-29 01-05	8 15.2 29-31 05-08	9 15.2 31-33 98-102	10 15.2 33-35 102-106
LUNGI I ULE ("W)	co- 10	- G	10-10	0 01	0, 17 10 1		2		
					nt hu in				
7 _{Be}	940±180	2060 ± 190			16 ∓ 016	1080±310	2910±390	3380±440	3560±350
²² Na					a59 ± a50	Q6± Q6	1.55 ± 0.93	1. 06 ± 0.86	
54 _{Min}					16±5	13 ± 6		9.1 ± 7.3	
60 _{C0}						Q 68 ± Q 43	Q.68 ± Q.52	1.65 ± 0.63	
95 _{ZrNb}	1127 ± 17	2202 ± 19		412 ± 8	2217 ± 58	1366±34	Z42±51	3124 ± 55	1818 ± 46
103 _{Ru}	1735 ± 20	2005 ± 22		354 ± 10	2192 ± 72	946 ± 38	928 ± 49	1362 ± 56	349 ± 43
106 _{Ru}	223 ± 37	303 ± 42		58 ± 17	427 ± 17	305 ± 20	814 ± 37	967 ± 39	819±44
155 _{Sb}					20 ± 7	34 ± 8	53 ± 11	69 ± 10	37 ± 11
137 _{CS}					71 ± 2	54 ± 2	143±3	160±3	136±4
140 _{bà}	2287 1 9A	011 T 0582		512 ± 43	3700 1 260	1480±130	1210±130	2390±180	200 1 58
144 _{Ce}					680±49	1300±580	3230± 910	2290 ± 800	1C40±990

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

OCTOBER 18, 1969 - FLIGHT 23A

•

SAMPLE NO. Altitide (Km) Latitude (^O N) Longitude (^O W)	2 16.8 12-15 81-83	3 168 15-18 83-84	4 16.8 18-21 84-87	5 16.8 21-24 87-89	6 16.8 24-26 89-91	7 16.8 26-29 91-95	8 16.8 5-99	9 16.8 31-33 99-102	10 16.8 33-34 102-107
					DPM/10 ³ SCM				-
7 _{Be}	10,640 ± 270								
²² Na	6.4 ± 4.2				4.0±3.3	11.1 ± 3.1	7.1 ± 23	7.4 ± 2.2	1.0±1.0
54 _{Mn}					176±27	80±24	260 ± 16	195 ± 16	78 ± 11
60 _{C0}					3.0±1.3	4.3 ± 1.4	5.0±1.2	60± 1.3	1.06 ± 0.69
95 _{ZrNb}	8297 ± 40	79, 080 ± 13	157,840±510	147, 740 ± 160	177,810±600	160, 320 ± 440	54, 830 ± 260	32, CBO ± 200	7890±100
103 _{Ru}	934 ± 32	74,400 ± 150	156, 850 ± 590	153,060±190	191, 940 ± 740	174, 060 ± 560	29, 190 ± 310	13, 730 ± 190	121±79
106 _{Ru}	3250±110	8670 ± 290	14, 000 ± 1100	14,560±400	16, 570 ± 220	14,570 ± 180	9540 ± 130	8750 ± 130	2919 ± 78
125 _{Sb}	***				1150 ± 37	941±29	925 ± 24	619 ± 23	294 ± 16
137 _{Cs}	639 ± 40				1746 ± 14	1538 ± 12	1650 ± 10	1661 ± <u>1</u> 0	603 ± 6
140 _{8 a}	360±44	111, 600 ± 780	241, 800 ± 3200	27,310±970	342, 900 ± 2900	315, 700 ± 2200	70, 600 ± 1103	24, 190 ± 650	1490 ± 160
144 _{Ce}					45,400 ± 3900	40,400 ± 3300	17, 600 ± 2100	17, 200 ± 2100	5200±1300

· ,

ATMOSPHERIC RADIONUCLIDE DISINTEGRATION RATES

Ľ

MAY 3, 1969

•;

1969
4
MAY

	10 [.] Ba	81 ± .22 7 ±2.0	96 ± .74 55 ± .28 5 ± 1.0 04 ± .89 1 ± 2.7 ± 25	0 ± .3 7 ± .6 2 ± .4	3 ± .6
	K	4 7 3.	8 L 91 L 4 L 0 19.	6 3 - 8 - 6	7 1. 62 44 67 1.
	BI _{Cs}	6. 29 ± 4. 9 ± 1. 4. 1 ± 4. 7. 6 ± 8.	9.8 ±1. 5.88 ± . 5.4 ±2. 3.1 ±4. 6 ±38	9.8 ±3. 5.8 ± 3. 2.0 ± . 1.9 ±1. 1.9 ±1. 0.3 ±9.	8.4 ±1. 7.5 ±2. .99 ± . 1.66 ± . 16.5 ±8. 66 ±15
.W.	106 _{Ru}	20.3 ± 1.3 26.8 ± 4.9 18.3 ± 5.7 1 7.4 ± 6.6 135 ± 29 7	43. 0 ± 5. 0 18. 5 ± 1. 8 10. 5 ± 5. 0 4. 8 ± 3. 0 396 ± 30 21 620 ± 120 12	41. 1 ± 1. 7 11. 5 ± 3. 7 23. 8 ± 2. 3 8. 5 ± 1. 8 19. 9 ± 4. 1 77 ± 21 145 ± 32 4	21.2 ±3.3 23.5 ±4.4 11.2 ±2.1 15.9 ±5.0 37 ±20 1 466 ±59 5
DPM/10 ³ S. C	103 _{Ru}	24.7 53.1±7.2 66.3 7.5±3.0 131±11	76.2 ±2.9 47.9 17.5 5.9 ±2.3 680 ±18 1872	71.4 ±4.3 12.1 40.5 13.5 ±1.0 35.7 151 ±11 151 ±11 280 ±15	40.3 ±2.2 40.5 ±5.7 46.1 36 ±13 85 ±12 1077
	95 _{Zr}	39.9±.3 57.8±2.1 44.2±2.1 9.6±.9 160.9±9.0	100.5 ± 1.0 53.6 ± .4 12.6 ± .5 9.9 ± .6 726.3 ± 2.7 2042 ± 23	88. 5 ± . 4 24. 5 ± . 9 67. 3 ± . 4 13. 5 ± . 5 36. 0 ± . 8 185. 9 ± 4. 3 298. 3 ± 5. 0	56.2 ± .8 59.0 ± 1.1 32.1 ± 1.7 29.1 ± .9 107.2 ± 4.2 1356 ± 11
-	7 _{Be}	208 244 ± 30 541 557 ± 29 532 ± 99	399 ±28 137 468 512 745 ±55 2696	342 ±53 112 ±81 287 287 287 477 604 2410 ±260	293 ±22 205 ±28 412 397 660 ±70 2180
ALT.	N IN	40 20 5 1 40 24 20	20 2 20 2 1 20 40 20 2 1	50 05 20 10 2 10 20 10 2	20 24 50 50 50
	LONG 0W	58 ⁰ 23' 58 ⁰ 23' 57 ⁰ 23' 57 ⁰ 68'	53°51' 59°51' 59°06' 54°06' 53°51'	54 ⁰ 23' 54 ⁰ 34' 54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 40' 57 ⁰ 12' 54 ⁰ 34'	60 ⁰ 32' 59 ⁰ 12' 60 ⁰ 10' 59 ⁰ 12' 59 ⁰ 12'
OFF	LAT ON	12 ⁰ 23' 13 ⁰ 47' 12 ⁰ 38' 13 ⁰ 02'	13°08' 13°08' 14°06' 13°36' 13°08'	,96017 17036 17036 17036 17033 17033	17000' 100' 1000'
	TIME (Z)	1308 1245 1345 1327 1434	1649 1710 1745 1405 1520 1458	1556 1532 1509 1509 1549 1549 1613 1601	1932 1910 1846 1629 1707 1654
	10NG	58 ⁰ 23' 59 ⁰ 30' 59 ⁰ 25' 58 ⁰ 23'	54 ⁰ 04' 53 ⁰ 51' 53 ⁰ 51' 53 ⁰ 51'	54034' 54034' 54034' 54029' 54029' 54 ⁰ 55'	59012' 59012' 58052' 59012' 57035'
NO	IAT N	12 ⁰ 23' 13 ⁰ 05' 12 ⁰ 23' 12 ⁰ 58'	14°24' 13°08' 13°08' 13°06' 13°06' 13°30'	17 ⁰ 36' 17 ⁰ 36' 17 ⁰ 36' 16 ⁰ 11' 36 ⁰ 26' 16 ⁰ 00'	16 ⁰ 50' 15 ⁰ 50' 17 ⁰ 16' 16 ⁰ 35' 16 ⁰ 35'
	TIME (Z)	1248 1225 1325 1307 1424	1629 1650 1345 1345 1510	1536 1512 1449 1425 1529 1544 1544	1912 1850 1826 1609 1638
	SAMPLE NO.	MM 1 MM 5 MM 20 MM 20 MM 40	01 2 01 5 01 20 01 20 01 20	0C 1 0C 5 0C 20 0C 20 0C 24 0C 24	RA 1 RA 5 RA 20 RA 20 RA 20 RA 50

MAY 5, 1969

1.

	Ba	1.1	t .2	t .6		9	t .02		t 2. U	01.81	11.78	11.90	11.2					t .7	t I. I	t 1.0						t.8		+ +	12.3	N. 10	11 t . 50	+ 4.0		1 ± 1.0			• • •	3 14 U
	14	1.3	<u> </u>	.0		1	20.		8. J	2.3	а -	5.9	<u>.</u>					2.0	3.7	1.5						2.5			4			22.1		1.4			ş	2
	3	t2.5	t .71	7	t 4 .6	1	t.59		t 2.4	t 1.6	÷.	t 2.2	t 2.2		t I. >	1	t 9. /	t 1.5	12.4	t2.1		t l.4	t .8	t3.0	17.]	t2.0	t2.7	t 1.4	t 1.4	+ +	+ .8	±5.2		1± .65	5 - - -	±1.1	ţ.,	13.8
	137	17.4	5.72	4.61	8.7		1. 92	1	10.2	11.5	6 2	68.2	3.4	i I	3.1	i	23.7	9.0	7.4	9.1		3.2	2.2	3.7	27.2	7.6	7.3	6.7	6.5		80	59.7		9.5	7.14	11.0	ŝ	9.6
	106 _{Ru}	0.8 ± 7.4	1.7±1.6	1.1±6.0				8.8 t5.0	8.2 t 6.8	8.3 15.1	2.8 ±2.1	0.5 ± 7.0	4. l t 4.6	3.3 ±2.8	!	1 12/	6 t 24	1.8 15.4	9.6 ± 6.0	3.9 17.5	6.7 13.8	5.8 17.5	0.8 ± 1.9	3.3 ± 7.0	6 1 1 8	8.114.0	8.8 16.2	11.2 18.0	3.1 15.4	9.2 11.4	6.6 t2.6	28 ± 16	17.8 ± 6.8	10.8 ± 2.0	13.8 ±2.9	13.6 ± 3.8	20 ± 14	16 122
C.M.		3	2	Ä					ñ	4	2	õ		••••		ŝ	ð	5	Ň	4		~	~	~	ç	e		<u> </u>	~		~	8	_	_		- - -	3	21
υ ³ S.	Ru		±4.2	±5.4				t 9.0		±5.4	t 5.0	t 12 .		t 2.5			t31	t2.5	13.8	t 7. 1		t 6. 0			t II		t4.3	t 4. l			_	± 12		18.0		13.7		
DPM/I	90	90.0	47.9	50.0	29.1			37.7	74.7	76.7	37.8	174	51.4	5.8		5	135	72.7	43.6	73.2	25.8	56.1	26	50.4	85	13.1	23.2	4.5	33.6	18.9	71.0	854	4	23.6	11.7	82.4	244	111
		4	. 	₹.	۲,	.24	4	<u>م</u>	80		ŝ	<u>.</u> 5	. .	ŝ	2	6.	6.	6.		-	œ .	3.8	3.6	I.3	4.2	6.	I. 3	3.1	œ.	ŗ.		3.9	4.8	4	6.2	6 ; <u>9</u>	6 .8	7.4
	% _{Zr}	1 7 6	+	11	.3±1	.61±	÷5.	+ 	.7 ±]	111	3 ±	.5 t l	.41	.1 ±	.01	3.8 ±	. O +	.7 t	.6 t	13 ±	.0 ±	L 6 t	5.7 ±	0.1 ±	3.6 t	9.7 t	0.2 ±	5.7 t	l.ót	4.7 ±	0.5 ±	9.8 ±	4.6±	l. l ±	l. 7 <u>t</u>	7.6±	9.8 ±	2.7 ±
			3	69	6	-	~	3	128	109	8	239	4			3	21 0	6	3		2	2	2	3	161 01	ъ.	3	3	4	Ň	~	101 00	30	0 3	<u>م</u>	2 9	4	8
	Be		5 ± 22	1 1 39	~	•	~	5 1 88	_	0 ± 49	5 ± 70	2 ± 37	9	-	~	~	0 ± 37	5 t 22	9 1 35	2 ±3]		4 t 4	~	~	0 1 1	ý	0 139	4 12(2	2	2	0 t 1(9	17 ± 41)6 <u>† 2</u> :	17 ± 21	2	-
		ŝ	20	Ř	11	2	121	35	121	49	20	3	24	Π	31	32	131	30	20	: #	E C	2	3	2	197	2	22	8	ŝ	4	4	253	12	~	8 0	3	2	61
ALT.	N S	-	• •	10	20	9	32	đ	50	-	Ś	9	20	30	32	\$	50		5	9	20	20	32	40	50	~	Ś	9	20	20	32	40	20	18	8	53	50	20
	ONG W	600721	58 ⁰ 23'	56 ⁰ 20	57025	58023	57018	57054	58 ⁰ 23'	53051'	53051	53051'	55025	54020	53052'	5631	.15065	24017	ACOA?	10075	54074	55010	.61 ₀ 95	55003	54034	60 ⁰ 40'	59012	61°15*	59012	59020	12009	,00 ₁ 09	59012	,0E020	65 ⁰ 30'	,00,99	59055	65 0 52'
OFF	N N	16406		5 0 42,	30.00	2023	2033	3000	2023	3008	3008	3008	14016	Sud5'	4000	13036'	13008°	16 ⁰ 16'	1036	1926	17026	1035	160/	16057	,960/1	17000	16 ⁰ 50'	17005	16 ⁰ 50'	16 ⁰ 50'	110/11	16055'	16 ⁰ 50'	18 ⁰ 10'	18000	17055	13028'	18 ⁰ 00'
	JWE			438	423	1408	1318	432	1416]	1722	1746	505	1818	1539	1352	1522	1509	687	UVI V	1546	23	1605	1543	1613	1559	2002	1940	1769	1914	1641	1618	1720	1657	2124	1745	1706	1400	1828
		-				-	-	-	-	•		-	•	-				2					. 7						~	è	-		-		5		4	5
	PONG		20030	58023	58023	60028	59043	58023	59055	54005	53051	56000	53051	53051	55037	53051	55035	12013	1004	l de la	56030	100	2405	2403	5405	5001;	1065	5901	6705	57°U	5800	1065	5704	61 ⁰ 2(Pol9	2,09	€¶0	ξ O β
NO	533		12-21 130051	12031	1004	14000	13003	12021	13°28'	14020	130081	12050	13008	13008	12045	13008'	13026	17016	17076	0C-11	14017	16025	160201	17036	15055	11,050,11	16050	16 ⁰ 50'	15051	17015	17014	16050	16034	17005	17010	lloll	17044	17000
	3WI1		1324	NIN SIN	IAM	BAFI	1258	1422	1400	auti	1766	1445	1758	1519	1332	1512	1453	1417	1550		1500	1545	2	l MA	1548	CVDI	1920	1649	1854	1621	1558	1710	Ibdi	2012	1716	1620	1308	06/1
	SAMPLE	2	1 MW	AM IO	MM 20	OF WW	CE WW	WW AD	AMM 50	1 10	5 10		02 10	01.10	DI 32	DI AD	DI 50	1 .00	1 70				10 30 10 30	00 W	00 20	841	RA 5	RA 10	RA 20	RA 30	RA 32	RA 40	RA 50	31 N 18	91 N 18	IN 29	01 50	1N 50

•

 \cdot Counted on counter which has been found to give consistantly low 7 Be numbers.

ę

•

MAY 6, 1969

	1			32			~		2	m				ŝ			60	13				6		32	2			5	5			
	Ba	± I.		+1			+1		++	++				+1			 +1	+1				±5.		+1	: +:			;	÷5.	1 9		
	14(5.1		1.06			8.7		2.0	1.4				6.			2.11	1.27				10.5		2.46	8.			5.6	12.4	9		
		I.2		×.	f . 0	•	5.4	5.0	l.2		₹.	~			9.5		<u></u>	5.2	. O	4		3.2]	7.2	۲.	-	.89	1.4	5	~	4	.37	.30
	31 _{Cs}	Ŧ		++ ∞0	÷ 8		+	+	+1	+	1	+		, c	÷i		+ 19	+	+	+1		+1	+1	+i 80	+1	58 ±	+1	#	Ŧ	+1	59 ±	51 ±
	-	œ		Q.	ġ.		8	4	9	4	<u> </u>			e.	26.		5	7.4	8.6	2.8		5	28		4.	2.(~	20	62	74	ы.	14.
	Ru	E4.0		t I. 9		t 1.3	F 12	£7.5	Ł4.0	t2.0	t I. I	Ł l. 4	E 1.4	H.3	£30	+]]	12.2	9.4	t 6. l	±5.1		10	:24	t 1.8	4.0	2.8	:2.9	:1.5	19	41	: L .6	:2. U
	100	6.61	8	2.7 ±		5.1	ן פ	4.8	3.4 1	9.61	9.4	3.4 ±	I. 6	5.61	4	5	1.0 ±	I.5	1.7	4.4		5	~1 œ0	9.04	2.3	I.3	5.61	8.74	-	** 51	4.84	6.6 <u>1</u>
C.M.		m,	4	m			4	4	m					-	Z	4	4	m	2	-		m	80	2	, 1	-		×	6	20		~ 0
es. S	Ru	£3.8		£8.3		±2.0		f 16	t 2. 6	t5.5	±3.1				± 18		12.7	15.3	£ 9. 7		t 2. 1	ĒB		t 2.7			t l.7	£3.9	£ 15			
PMI	6	1.9	11.0	4.9		II.9		ຕ ຕ	5.9	0.4	3.2 :	14.9		3.5	2	0	1.8	6.5	1.7		6. 6 j	ģ	5	8.3	2.5	0.2	6.8	8.0	281	C	•	
-	1	4	य			-		2	L.	m		m		~		12	5	ŝ	5		4	un i	ສ	J	~	in.		51		46		
		• •	ч ч ч	±4.0	±3.4	+ •	±2.1	± 1.7	*) +)	÷.5	÷.	۳. +	± 1.3	±.5	±4.4	±2.7	± .5	± 1.0	± 1.8	± 1.0	÷.2	±3.1	±4.4	± .4	* *	± 1.2	±.4	±1.5	±3.7	± 7. U	÷.	±2.1
	95 _Z	86.1	7.3	89.0	l.6	l6.2	12.6	32.6	13.2	46. 1	24.4	12.9	3.9	34.0	58.0	48.4	14.7	58.9	67.0	9.1	2.92	14.2	35.5	85.3	29.8	51.8	6.0	44.9	94.6	14.7	0.5	1 0. 9
				_	0			0						0		- 0	<u></u>					- -	3	-				Š	5 0	ŝ		5
	Be	1 1 41		140	1±22	± 45		1±23		±33	± 15	•	_	I I I	1 ± 10	01 Ŧ 10	1 ± 20	±33	1121		+ 8°	1 ± 16	_	121		•	±26	134	EL FI	_		
		334	25	467	32(ŝ	612	1090	ã	169	345	J 9[311	520	46(1140	338	214	236	262	6	400	1150	209	165	162	9/1	632	530	1170	472	588
ALT.	N N	- -	2	20	29	30	40	50	-	Ś	2	20	29	30	40	50	-	Ś	10	20	30	40	50	-	ŝ	20	29	30、	40	50	18	18
	2,	22	5.0	, 1 6'	57'	52	54	3	51,	51	.10	20,	B,	21,	31'	51	14'	34'	34	34'	38'	8	34	12'	36'	5	28,	8	,0	12,	40,	36
	<u>9</u> 3	580	8 <u>8</u>	570	200	28	570	280	530	50	ž	5	2	540	2	50	20	Z	2	540	55	55	540	29 ⁰	99	20	60	20 <mark>0</mark>	600	590	530	66 ⁰
OFF	N I	623	5 (3 ⁰ 50'	36'	چ	30,00	23.	008	.80 00		10,0		5 ⁰ 59	3036'	90 ⁰⁸¹	500g	1036'	1036'	96. 1	ين مي	م	'36'	5 ⁰ 50'	30,00	, 20, , 20,	50	5,059	5 ⁰ 57'	5 ⁰ 50'	3011'	3 ⁰ 20'
	WE Z		2 22	I E	44 I.	20 E	17 17	5	8	2 12	22	20 1	18	52	भ ह	I E	16 N	24 E	M E	10	20 1	18 J(28 18	26 H	18 1	59 IC	2	47 N	21 69	26 l(50 15	2 69
		21	2 4	E	14	H	Ā	14	16	16	ŝ	16	15	5	3	2	15	14	14	14	je Je	16	16	18	8	1	2	16	Ň	16	Ξ	20
	NC NC	R R	n N N	3	3	3	3	155	je	51.	,4 6 ,	51	2	10	5 1	32	34'	34'	1	24,	ŝ	3	2	12	ы З	20,	,9 <u>1</u> 0,	44,	12,	31	,00,	52
	012	28,2	× 30	28	ŝ,	Ĵ,	<u>چ</u>	20	2	3	ž	ž	5	Z	ã	55	54	Z,	2	3	2	2	540	26	5	2	28	20	20	57	6 6	61
NO	ON N	2 ⁰ 23'	2021	2023	3004	3054	203	3028	4°22'	3008	2048	.80oE	2 <mark>0</mark> 53	3014	3018'	3026	1036	7036	1036'	6 ⁰ 24'	6 ⁰ 29	7036	5058	0509	6 ⁰ 50'	5057	17010	11011	6050	6⁰34'	8°10'	,010L
	Щ (1 1	4	2	-	4	10	1	R	6	80	5	6		9	4	12	õ	2	~ %	0	9	8	6	2	-	6	2	1 1	2
	E	121	9	125	142	140	EFI	141	154	160	150	163	145	5	151	150	145	[4]	141	135	16(16(155	180	182	Ū3	13	162	165	16	100)6I
	PLE J.	_	~ 3	20	29	30	\$	20			0	0	~	0	0	0			0	0	0	0	0			0	6	0	0	0	~	30
	SAN	WW	WW	WW	WW	WW	WW	WW	1 10	DI 5	B	DI 2	012	E E	DI 4	01 5	001	00.5	00	00.2	003	004	0C 5	RA 1	RA 5	RA 2	RA 2	RA 3	RA 4	RA 5	0 I	I NI

•

.

.

 \cdot Counted on counter which has been found to give consistantly low 7 Be numbers.

MAY 7, 1969

SAMPLE NO. NM 5 NM 20 NM 20 NM 20 NM 20 NM 20 DI 1 DI 20 DI	111ME 1254 1316 1316 1404 1404 1404 1404 1404 1404 1404 14	00 10 10 10 10 10 10 10 10 10 10 10 10 1	000 000 000 000 000 000 000 000	TIME (2) (2) (336 (336 (336 (336 (436 (433 (433 (433	00FF 00F 00F 00F 00F 00F 00F 00F	000 00 00 00 00 00 00 00 00 00	NIN 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 7_{Be} \\ \hline 196 \\ \hline 236 \\ 459 \\ 639 \\ 639 \\ 639 \\ 639 \\ 639 \\ 639 \\ 639 \\ 536 \\ 1130 \pm 140 \\ 120 \pm 29 \\ 595 \\ 1573 \pm 100 \\ 301 \pm 21 \\ 197 \pm 29 \\ 595 \\ 197 \pm 29 \\ 197 \pm 29 \\ 192 \pm 29 \\ 197 \pm 29 \\ 197 \pm 29 \\ 197 \pm 29 \\ 197 \pm 29 \\ 197 \pm 20 \\ 100 \\ 197 \pm 20 \\ 19$	95 _{Zr} 63.3 ± .4 65.0 ±1.2 86.2 ±1.7 49.3 ± .9 105.1 ±1.5 94.4 ±5.2 62.9 ± .3 64.8 ±1.0 22.7 ±1.1 28.7 ± .8 88.4 ±3.1 160.9 ±3.7 10.0 ±1.1	DPM/10 ³ S. (103 Ru 53.2 ±1.0 53.2 ±1.0 53.2 ±1.0 53.2 ±1.1 41.7 ±8.2 117 ±19 48.4 ±1.1 45.1 ±3.1 53.2 ±7.1 53.2 ±7.1 65.2 65.2 70.9 ±2.6 76.9 ±2.6 76.9 ±3.3		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 140 \\ \hline 140 \\ \hline 2.75 \pm .74 \\ 2.75 \pm .91 \\ 2.7 \pm 2.0 \\ 1.52 \pm .61 \\ 1.52 \pm .61 \\ 1.3 \pm 2.8 \\ 1.3 \pm .2 \\ 1.6 \pm .8 \\ 1.0 \pm .6 \\ 1.0 \pm .6 \\ 1.0 \pm .6 \\ 1.0 \pm .6 \end{array}$
00 20 00 20	1609 1537 1537 1542 1542 1653 1653 1653 1651 1651 1651	17.936 16.007 17.936 17.958 17.950 18.950 18.950 18.950 18.950 17.900 11.900 11.900 11.900	5005 5005	1629 1557 1557 1558 1560 1588 1589 1589 1589 1589 1500 1529 1229 2015	17.00 17.00 17.00 17.00 17.00 17.00 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 18.05 19.05	54034 54034 55040 55040 55012 60037 59012 59012 59012 61021	20 20 20 20 20 20 20 20 20 20 20 20 20 2	185 360 ± 100 519 ± 34 1690 ± 180 264 ± 42 158 127 124 ± 34 1930 ± 430 1930 ± 430 196 196 196 198 8, 1969	63.9 ±1.5 22.7 ±1.9 14.2 ±1.6 70.0 ±5.1 284.0 ±3.1 73.5 ± .4 53.7 ± .4 53.7 ± .4 26.9 ±1.2 288.7 ±1.8 58.7 ±1.8 58.0 ± 2.6 177.7 ±1.6	50.6 22.9 9.8±1.5 35 ±11 201 ±35 58.9±4.0 43.5 13.8 13.5 13.8 14.3 38.8 141.3	8.9 ± 8.1 4.8 ± 3.3 61.8 ± 8.8 151 ± 11 29.4 ± 2.2 26.1 ± 5.3 13 ± 12 10.0 ± 8.2 13 ± 12 19.6 ± .9	4.5 ± 3.2 9.1 ± 3.1 9.1 ± 3.1 9.1 ± 3.1 9.12 ± .6 9.6 ± 3.2 9.6 ± 3.2 9.6 ± 3.2 9.5 ± 3.2 9.4 ± 3.2 10.45 ± .9	1.8 ± 1.2 2.9 ± 2.0 2.5 ± 1.3 11.4 ± 4.8 1.04 ± .61 3.2 ± 1.0 2.7 ± 2.3 3.2 ± 1.0 8 3.2 ± 1.0 8 3.2 ± 1.0 8 8
MM 60 D1 60 DC 60 RA 60	1401 1459 1554 1643	1,008 1,008	59 ⁰ 40' 57 ⁰ 34' 57 ⁰ 34'	1431 1526 1621 1710	12 ⁰ 08' 17 ⁰ 08' 17 ⁰ 08'	56 ⁰ 51 56 ⁰ 51 39 ⁰ 51	3333	23850 ± 8200 36370 ± 6810 19790 ± 2060 53000 ± 12000	(36570 ± 140 (49830 ± 280 (37010 ± 210 67440 ± 100	27050 ±1160 33910 ± 93 28870 ±250 48500 ±2300	12170 ± 350 14740 ± 300 12090 ± 60 21740 ± 210	2140 ± 39 2820 ± 60 1990 ± 11 4770 ± 22) 679 ±36) 892 ±46) 732 ±43) 131 ±34

.

•

?

MAY 9, 1969

	Ba	t.6	t ./	t .//				t.5	1	1 - 23	t .49		,	t I. /	ţ.]						t I. /	1.1	t .7	/t.>2			±3.1	t /.U			
	4	1.0	. 0	3.5I				۲.		1.98	1.51			 	l.6						5.4	l. l	ອ				4.7	9.8			
	BI _{Cs}	9.4 6.6		10.1 ±2.5	4.5 ±1.6	l.7 t .9	7.7 ±4.1	3.12 ± .52	5.8 ±1.5	6.5 t .5	3.24 ± .86		13.1 ±6.9	4.2 ±2.9	6. 11 ± .66	5.3 ±2.7	1.9 ±1.4	l.6 ± .8	4.2 ±1.8		20.7 ±3.9	7.9 ±1.4	5.3 ±2.1	5.6 ±1.0	4. 14 ± .73	l.8 ± .6	146 ± 16	57 tB	6.47t.59	7.55 ± .59	
M.	106 _{Ru}	39.3 ±2.7	16. l t4. 4	54.8 ±3.6	24.2 ± 4.4	2.2 ±1.1	14.4 ± 8.4	28.5 ±1.7	14.2 ±4.0	32.5 ± 1.5	20.4 ± 2.2			70.6 ± 8.2	26.6 ±2.0	18.2 ±4.8	10.4±3.7	7.7 ± 1.9	3.7 ±2.2	35 ±24	79 ±10	30.3 ±4.4	22.2 ±5.0	15.9 ±2.9	25.0 ±2.1		272 ±50	155 128	30.2 ±3.4	27.1 ±3.2	
DPM/10 ³ S.C.	103 _{Ru}	66. l ± l.3	31.7 ±3.0	128 ± 12	36	3.7 ±2.1	43.3 ±4.3	50.6 ± l. l	33.3 ±2.1	62.8 ±8.2	44.0		18.5±9.3	79 ±50	50.1±1.3	22.0±4.2	15.7	23.0	4.8 ± 2.1	46	178 ±5	47 ± 10	24.6±4.5	29.8 ± 1.7	39.3		686 ±15	467	61.8	38.2 ·	
	95 _{Zr}	97.6t.5	44.2 ± 1.0	157.1 ±4.1	48.2 t .8	1.99 ± .34	26.8 ± 1.5	58.2 12.0	46.6±.8	97.3 ± 1.0	48.2 ± .4	2.461.57	29.5 ±3.0	80.9±1.3	69.9±.4	36.2 ± 1.0	21.3 ± .7	29.1 ± .4	.51.49	52.9 ±4.4	232.0±1.8	62.0±.8	46.5 ± 1.0	41.5±1.0	49.4 ± .4	1.21 ± .22	862.7±7.1	569 ±12	77.8±1.1	75.9 ± 1.1	
	7 _{Be}	386 t l3	115 ± 40	355 175	282	71 ± 13	204 1 64	219	127 ± 19	459 ± 52	330	80 ± 21	443 ± 91	1900 ± 550	243 ±22	140 ± 70	96 ± 51	232	31 ± 20*	311	1140 ± 240	212 169	212 ±28	214 ± 19	163*	362	740 ± 140	11/1	245	302	1
ALT.	K II	-	Ś	10	20	30	40	-	ŝ	10	20	30	40	50	-	5	9	20	30	40	5Û	-	5	10	20	30	40	50	20	20	
	0W PMC	-60 ₀ /5	58 ⁰ 23'	56 ⁰ 20'	58 ⁰ 23'	58023	57 ⁰ 54'	53 ⁰ 51'	53051'	53051'	54007	540151	54031	53 ⁰ 51'	56 ⁰ 00'	540341	54034	54034	55 ⁰ 40'	55 ⁰ 03'	54°34'	59 ⁰ 12'	59 ⁰ 12'	61 ⁰ 40'	60 ⁰ 45'	· 59 ⁰ 12'	60 ⁰ 10'	59 ⁰ 12'	59 ⁰ 39'	66 ⁰ 00'	•
OFF	N IV	2037'	2023	2045'	2 ⁰ 23'	2023	3 ⁰ 02'	3 ⁰ 08'	30 ⁰ 81	3008	4 ⁰ 45 ¹	5055	3036'	30081	7 ⁰ 20'	7036'	1036'	7 ⁰ 36'	7°25'	6 ⁰ 57'	1036'	10209	16 ⁰ 50'	17005	17002	16°50'	16057'	16 ⁰ 50'	13,13,	18,05	
	TIME (2)	1343	1321	1432 1	1255 1	1400 1	1433	1438 1	1501	1459 1	1535	1532	1523	1509	1716	1655	1634	1612	1557	1614	1602	1800	1822	1658	1852	1627	1710	1655	1235	2004	
	LONG 0W	580231	58023	580231	,6E065	60 ⁰ 20'	58 ⁰ 23'	55 ⁰ 05'	53051	55 ⁰ 50'	53051'	53051'	53051'	55 ⁰ 32'	54 ⁰ 34'	54034	54034	54 ⁰ 18'	54025	54 ⁰ 34'	54 ⁰ 53'	57 ⁰ 50'	59012	59 ⁰ 12'	59012	56055	59012	،الا ₀ 25	,00,99	60 ⁰ 45'	
NO	N IN	166061	12023	12023	13013'	13055	12023'	12 ⁰ 56'	13 ⁰ 08'	12050'	13008	13008	13008'	13 ⁰ 26'	12036	17036	17036	15057	16 ⁰ 25'	,9E071	15058'	17 ⁰ 05'	16 ⁰ 50'	16 ⁰ 50'	16 ⁰ 50'	17015	16050'	16 ⁰ 34'	18 ⁰ 05'	17002	_
	11ME	ECEI		1412	1235	1340	1425	1418	1441	1439	1515	1512	1513	1453	1656	1635	1614	1552	1537	1605	1546	1740	1802	1638	1832	1607	1700	1639	1055	1852	-
	SAMPLE	L WW	5 WW	WW JU	07 WW	OF WW	MM 40	1 10	- 5 0		01 20	DI 30	Di 40	DI 50		00.5	00 10	00.20	00 30	00 40	0C 50	RA 1	RA 5	RA 10	RA 20	RA 30	RA 40	RA 50	01;20	IN 20	

• Counted on counter which has been found to give consistently low ' Be numbers.

WAY 10, 1969

 \cdot Counted on counter which has been found to give consistently low ^fBe numbers.

ŧ 6

8

11 + 92

± 6. l

167.9

4 B

234

17059

MAY 11, 1969

		ON		0FF		ALT.			0PM/10 ³ S.	C.M.		
SAMPLE NO.	TIME (Z)	LAT ON		TIME LAT		IN <u>Krt</u>	7 _{8e}	95 _{Zr}	103 _{Ru}	106 _{Ru}	137 _{Cs}	140 _{8a}
MM 1 MM 5 MM 10 MM 20 MM 29	1211 1145 1418 1249 1347	12°23' 13°05' 12°33' 12°23' 13°50'	58°23' 55°30' 58°23' 58°24' 60°20'	1231 12°23' 1205 12°25' 1438 12°35' 1309 13°40' 1407 12°33'	58°23' 58°25' 56°25' 57°30' 58°23'	1 5 10 20 29	177 247 167 225 229	56.3 ± 1.1 9L2 ± 1.2 26.6 ± .6 55.1 ± .9 4.82± .73	39.9 40.8 14.6 37.7 8.6	19.4 ±5.0 21.0 ±4.7 5.0 ±3.3 28.5 ±5.7	8.5 ±2.5 3.1 ±2.2 4.1 ±1.2 7.6 ±1.5 3.0 ±2.0	1.33 ± .77 1.76 ± .65 1.3 ±1.2
MM 31 MM 40 MM 50	1305 1421 1404	13°00' 12°23' 13°28'	59 ⁰ 20' 58 ⁰ 23' 59 ⁰ 55'	1325 12°20' 1431 13°02' 1420 12°23'	57 ⁰ 00' 57 ⁰ 54' 58 ⁰ 23'	31 40 50	320 ± 100 406 1190	6.8 ±2.1 100.5 ±4.3 372.2 ±6.0	80 28 2	89 ±27 184 ±33	12.9 ±9.7 50 ±11	
DI 01 DI 05 DI 10 DI 20 DI 29 DI 31 DI 40	1550 1612 1445 1644 1517 1340 1509	14032' 13°08' 12°45' 13°08' 13°08' 12°55' 13°08'	54 ⁰ 04' 53 ⁰ 51' 55 ⁰ 45' 53 ⁰ 51' 53 ⁰ 51' 55 ⁰ 17' 53 ⁰ 51'	1610 13°08' 1632 13°08' 1505 13°08' 1704 14°10' 1537 15°20' 1400 14°14' 1520 13°36'	53°51' 53°51' 55°25' 54°10' 54°05' 54°05'	1 5 10 20 29 31	152 181 222 123• 187• 310 202	62.9 ± .9 77.6 ± L 4 28.5 ± .2 13.1 ± .8 2.97 ± .20 0	58.0 64.2 18.3 8.8 12.5	29.7 ± 4.2 25.9 ± 6.3 11.7 ± 1.1 5.4 ± 3.3	6.2 ± 1.7 12.3 ± 3.1 2.62 ± .40	2.1 ±1.0
DI 50	1449	13°26'	55032'	1505 13°08'	53°51'	50	2130	667.5 ±2.6	563	249 ± 13	51.4 ±4.1	13.0 ±2.5
0C 01 0C 05 0C 10 0C 20 0C 29 0C 31 0C 40 0C 50	1459 1437 1414 1350 1544 1530 1605 1545	17°36' 17°36' 16°15' 16°35' 16°43' 17°36' 15°58'	54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 38' 54 ⁰ 25' 54 ⁰ 28' 54 ⁰ 28' 54 ⁰ 28' 54 ⁰ 28'	1519 16 ⁶² 20' 1457 17 ⁰ 36' 1434 17 ¹³ 36' 1410 17 ¹⁰ 36' 1604 17 ¹⁰ 25' 1550 17 ¹⁰ 13' 1615 16 ¹⁰ 57' 1603 17 ¹⁰ 36'	54 ⁰ 17' 54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 50' 56 ⁰ 12' 55 ⁰ 03' 54 ⁰ 34'	1 5 10 20 29 31 40 50	362 104 359 411 309 230 430 ± 110 6640	71.2 ± .9 8.9 ± .9 120.8 ± 1.6 33.5 ± .9 5.05 ± .78 12.2 ± 2.1 123.8 ± 4.4 5687 ± 21	54.3 77.0 22.3 ± 3.4 69 4110	39.8 ± 5.0 51.4 ± 8.9 19.9 ± 4.9 6.0 ± 4.2 65 ± 21 1722 ± 92	11.0 ±1.8 5.9 ±2.8 10.9 ±2.8 2.1 ±1.7 3.6 ±1.8 17.3 ±9.6 385 ±26 1	1.20 ± .50 1.12 ± .89 1.18 ± .97 5.0 ± 3.5
RA 01 RA 05 RA 10 RA 20 RA 29 RA 31 RA 40 RA 50	1825 1803 1642 1739 1612 1604 1659 1638	16 ⁰ 50' 16 ⁰ 50' 16 ⁰ 50' 15 ⁰ 52' 17 ⁰ 15' 17 ⁰ 00' 16 ⁰ 50' 16 ⁰ 34'	59°12' 59°12' 59°12' 57°47' 56°55' 57°51' 59°12' 57°31'	1845 17°00' 1823 16°50' 1702 17°05' 1759 16°50' 1632 16°50' 1624 16°56' 1709 16°57' 1656 16°50'	60 ⁰ 30' 59 ⁰ 12' 61 ⁰ 25' 59 ⁰ 12' 59 ⁰ 12' 60 ⁰ 08' 60 ⁰ 10' 59 ⁰ 12'	1 5 10 20 29 31 40 50	320 108 539 315° 163° 353 2637	70.0 ± .9 22.2 ± 1.0 84.3 ± .9 29.2 ± 3.2 5.12 ± .21 8.6 ± 2.2 340.0 ± 5.9 461.1 ± 6.3	54, 9 7, 8 55, 6 34, 6 ± 1, 0 14, 4 299 337	27.2 ± 4.3 8.5 ± 4.8 26.7 ± 4.7 8.0 ± 1.6 .7 ± 1.1 166 ± 35 175 ± 37	7.1 \pm 1.7 8.0 \pm 1.5 1.91 \pm .69 3.51 \pm .59 3.6 \pm 1.3 45 \pm 11 49 \pm 11	1. 05 ± .48 1. 87 ± .63 .95 ± .44
OU 18 IN 18 OU 29 IN 29 OU 31 IN 31 OU 50 IN 50	0958 1855 1259 1707 1209 1624 1308 1714	18°08' 17°05' 17°15' 17°10' 17°44' 16°56' 17°44' 17°44' 17°02'	66 ⁰ C8' 61 ⁰ 10' 64 ⁰ 40' 62 ⁰ 00' 64 ⁰ 42' 60 ⁰ 08' 64 ⁰ 42' 60 ⁰ 08'	1136 13°40' 2000 18°30' 1347 13°50' 1740 17°38' 1305 13°00 1700 17°35' 1404 13°28' 1757 17°59'	60 ⁰ 00' 66 ⁰ 30' 60 ⁰ 20' 64 ⁰ 45' 59 ⁰ 20' 64 ⁰ 10' 59 ⁰ 55' 65 ⁰ 53'	18 18 29 29 31 31 50 50	219 610 198 305 168 324 1905 740	29.7 ± .8 339.8 ± 2.8 6.7 ± .8 87.7 ± 2.7 14.2 ± .9 70.4 ± L 9 397.0 ± 5.6 399.1 ± 6.9	26. 1 257 ± 12 14. 9 58 10. 6 44 340 ± 31 567	8.2 ± 1.8 121.2 ± 7.9 5.2 ± 2.3 35.9 ± 6.3 22.0 ± 5.0 155 ± 18 88 ± 15	1.75 ± .45 21.3 ± 1.3 4.40 ± .73 5.8 ± 1.2 1.26 ± .68 5.5 ± 1.2 25.3 ± 3.1 29.8 ± 3.8	

* Counted on counter which has been found to give consistently low ⁷Be numbers.

.

.

MAY 12, 1969

		VV	i ₹	25	2	n.1		6		-22	~	9		1.21	F 7.4		10			t .83		t I. 9	5	113	98. 7	4 7	t .21	t 4. y		0	t 1.9	t .N7	±.42	t .71	
	140 ^B	75.4			 	7.1.7	•		9 .5 ±	l. 63 t	+ 4 6	1 67			1. 4	e	50			1.55	1	5.1	ę	40	1.47	a.	9 1.29	ZU. U			15.4	3 1.82	6.73	12.20	
	č		1 6 7	1 . J I A		7.71	t 1. 8	±3.0		t . 62	- 6 +			12.4	12.9	t 10	± 18	t l. 6		t 2.0	± 2. 8	t 2.8	0	t 20	t 1.8	t1.0	2 ± .4	t).0	t 2.2	t 11	± 13	9 ± .8	1 ± 1.5	i ± 1.9	
	137		• •	4 C	0	4	I . I	4.4		R 07		7 0 7	- ` -	•	x	-	148	4 . 1		3.0	40.5	17.7		18 5	12.4	2.2	6.3	2. I	B.5	16	89	6.9	27.0	51.5	
K	106 ₈ 0		0.61 4.21	20.3 · 5 3	28.5 I.7.5	11.0 10.9	10.8 13.9	9.8 ± 6.0	91 ±22	35 6 4 1 7		71.4 I.I.7	4U.Z.1.7.4	12.6 ± 8.9	37.5 ± 6.3	86 ±27	748 168	30.2 14.2		9.8 15.0	128 ± 13	111 ±11	69 124	848 168	34.7 ±5.7	21. l ±2. l	34.6 t l.6	126 114	63.5 ± 6.8	106 ±38	481 148	40.7 ± 1.2	151.3 ±3.8	280.0 ± 6.2	
DPM/10 ³ S.C.I	100 _{R11}		28.1	34.4	13.5	20.8	17.6	8.9	%	0 + 0 2	01.01.7	35.9 t 4 .00	51.8	15.3	75.5	83.9	600	B .1		31.3	383	249	40 ± 12	1934	603	48.3	61. Ì	215 115	113	247	1164	77 8 + 5 9	256 ±30.	514 ±86	
	95 ₇ ,		38.7 t .8	57.8 ± 1.0	106.8 ± 1.0	41.4 ± 1.0	23.0±.8	16.3 ± 1. 1	157.6 14.3	05 0 1 3	85.Ut.J	74.3 ± 1.4	81.3±.9	15.8±1.0	94.1 ± 1.0	100.2 ± 4.5	2102 113 1	51.1+ .8	6.76± .69	43.5 ± 1.0	430.0 12.9	275.7 ±2.1	78.7 14.0	142/ ± 10	92.2 11.1	58.41.4	87.2 t .3	325.4 ± 2.0	151.6±1.2	326.6 ± 6.1	1427 ± 10	100 0 + 3	390.4 11.2	759.5 ± 1.3	
•	10.0		601	234	396	253	248*	311	06/1	000	862	333	328	220	448	740	3750	W	50		318	490	826	4460	390	8	370	742 ±30	633	1257	2097	77 A DA	2810 + 160	2600	r
ALT.	N	H H	-	ŝ	9	20	20	AD	50			Ś	10	20	29	40	<u>8</u>	ç	.	5	2 2	2 2	9	50	-		10	20	2) (P	2	1	7 5	2 2	
	LONG	M	58 ⁰ 23'	58023	56'41'	57030	105005	102013	580231		53,51'	53%51'	53"51'	55000	540121	16925	53°51'	64010'				55071	5500	54034	60 ⁰ 40'	59012	61013	59 ⁰ 12	5002U		59012	1.0		6000 8000	;
OFF	IVI	S	12 ⁰ 23'	12023'	12 ⁰ 40'	13046	120051		1.0.01	1	13,08'	13'08'	13 ⁰ 08'	14000	150221	10,16	130081	1,40,41		1,91011	17036	17030	1,057	.9E0/1	17 ⁰ 031	16050		16050	16.050		16050		18 11 12 12 12 12 12 12 12 12 12 12 12 12	105021	2
	TIME	2	1236	1214	1435	VILL		1420	V/V		1609	1631	1503	2021	1531	1526	1515		1200		achi Airi	1414	1617	1604	1852	1830	2021		1626						2
	LONG	Mo	580231	59030	05005	50031		00 10 50033	20 23 50055		54"23"	53051	55051	15053			5,03,01	- 0				00.00		1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1003	27 K	50000	1930CS	1070	20 40 1013	116023		60-1/. 60-1/.	04 47	77 FN
ą	INI	N	12021	10101	130051	1000			12 C2 21	07~(1	14 ⁰ 25'	13008	12051	10001			90 CT					10,010		95051	1, 0501		105021	15051		11 11			640 10		1911 - 1912 - 19
	TIME	(2)	210	1154				141	6761	1410	1549	INN			1040		11450		1502	1440	1418	PC[]		1001		2021	1010	CP01			1001		1631	2121	174
	SAMPLE	NO.		MM 1		01 WW	MM ZU	MM 29	MM 40	nc ww		5 2			07 IN	01 <i>2</i> 9	01 40	N 10	00 00	00 B	00 10	00 20	6 2 36							RA 29	KA 40		IN 31	20.50	

• Counted on counter which has been found to give consistently low I Be numbers.

MAY 13, 1969

	Ba	±7.6	2 C 7 T	г . т	±.84			±.66	±.79	±2.7	÷.	± .55	7 . 28	₩. ‡	
	140	22.6	4. c	7. 11	3.05			1.42	l. 16	9.6	1 3.37	1.28	6E.	1.42	
	d _{Cs}	t 7.8	1.2.1	16.0	±2.2	13.	t 1. l	• ± 1.9	1 ± 3.2	±5.1	9 ± 6	12.0			
	я	86.5	. .7	10.0	18. 1	10.1	7.4	15.9	4.6	4 5.]	11.6	4.7			
	106 _{Ru}	± 10	014.4	.218.8	6 ± 7.5	.7±7.2	.5 ±3.0	.2±5.9	.3±6.2	± 18	.2 ±3.1	. I ±4.2	.4±1.7	.7±4.7	
C.M.		265	, ≍	20	101	39	29	2	61	179	64	20	ŝ	~	
/10 ³ S. (B _{Ru}		•••			•	•		~			~	4	5	
DPM	Ŋ	1205	29.2	181	209	79.2	51.6	84.]	31.2	409	152	48.1	14.	-	
	5	t5.4	t.9	± 1. 8	± 1.6	± 1.5	÷.6	±1.5	i ± 1.3	13.7	9. <u>†</u> (1 ± 1.0	1±.4	8 ± 1. 1	
	95 7	1601. 6	41.1	227.4	266.9	93.2	75.4	93.2	44 .5	511.5	160. (72.(16. (24.8	
	Be	± 1300									•				~
	1	3100	8	341	896	291	179	323	99	742	143	233		171	
ALT.	N H N H	-	Ś	20	-	Ś	20	ľ	5	01	20	l	Ś	20	
	LONG 0W	58023	58,23'	57"49"	53 ⁰ 51'	53051	54 ⁰ 57'	54 ⁰ 18'	102025	54034	54034	60 ⁰ 43'	59 ⁰ 12'	59 ⁰ 12'	
OFF	LAT ON	12023	12 [°] 23'	13 ^u 12'	13 ⁰ 08'	13008	14 ⁰ 00'	16 ⁰ 15'	17076	98.021	17036'	10,01	16 ⁰ 50'	10 ⁰ 50'	
	TIME (Z)	1232	1210	1312	1616	1637	1708	1523	1501	0601	1412	0061	1838	1814	
	PNC NO	58 ⁰ 23'	59 ⁰ 35'	58 ⁰ 23'	54 ⁰ 051	53 ⁰ 51 ⁴	53°51'	1031		NC012	54040	500121	50012	57055	
NO	IAT No	12023'	13,08	12 ⁰ 23'	14 ⁰ 24'	1300FI	13008	170261	170261	17036	17 ⁰ 00	16 ⁰ 501	160501	15058'	
	TIME	1212	1150	1252	1556	1617	1648	1603		1441	1352	IRAD	1818	1754	
	SAMPLE	WW 0J	AM 05	MM 20	U U		01 20				00.20			RA 20	

Counted on counter which has been found to give consistently low ¹Be numbers.

MAY 14, 1969

	g	E.54	t I. I	F. 84	t 1.4	t .53	t I. 6	±4.2	t.54		t .25	t 1.4	t 2. 0	t 8.8	t.18	t .25	± 1.6	t I.3			t 5. l	ŧ.55	t.59	±.24		t 1.6		£2.4
	140	. 78 -	1.7	2.75 1	4.1	3. 19	3.2	36.6	п.		1.97	5.1	8.6	45.8	1. 14 -	- 67	5.7	Э.Э. Т.Э			7.0	- 61.	l. 65	3.38		6.8		6.5
	Cs	±1.7	±2.9	t 1.6	t3.5	±2.8	t3.3	t 6.8	t l.7	t3.0	1.56	t 2.8	±3.8	t 13	t .55	t 1.0	t3.1	±2.6	t 1.5		t 7.8	t l.8	11.92	it .82	±2.4	± 1.0	±4.7	±3.5
	B	7.3	3.1	13.4	26.3	12.8	6.9	202.1	8.4	8.8	18.45	23.7	52.1	167	6.2]	2.1	14.6	B.2	8.]		60.4	11.3	6.51	25.46	5.3	31.2	5.9	21.6
	l06 _{Ru}	3 ± 4.7	0t6.4	2 25.6	± 12	6 ± 3. l	8±8.6	t 23	8 ± 5.0	5 ± 6.0	2 ± 1.9	7±9.8	± 12	t 48	0 ± 1.5	8 ± 2.0	± 11	2 ± 8.9	3 44.7		t 30	0 ± 5. l	0±2.8	3 ± 2.7	3 ±5.4	± 10	± 11	± 11
C.M.		31.	28.0	51.	127	78.	70.	£	44	22	50.	103.	145	872	30.	18.	8	52.	36.		273	46. (19.	92.	26.	209	26	159
/10 ³ S.	₃₈ u							t 80								_			_	-		_	-	t1.9				
DPM		64. 4	41.8	99.5	292	164	157	2240	63.5	23.5	85.5	201	347	1672	40. ć	44. (183	6	77.(19.9	461	68.9	33.7	183.8	74.2	490		308
	Zr	1.9	1±1.3	i t l. l	12.5	1±2.2	11.6·	t 6	t1.0	t1.3	14.4) ±2.0	12.1	± 24	t2.8	1.4	12.1	1 t 4.3	14.9	tl.3	1 1 5.4	± 1.0	1.4	1 + . 6	11.2	1 t 2. l) <u>+</u> 1 .8	±2.1
	8	77.6	65.9	126.8	367.1	212.0	175.9	2928	87.3	50.7	125.0	290.9	418.9	2279	57.9	52.5	219.9	128.4	90. C	50.7	661.3	94.7	42.5	242.4	83. J	583. (6.9	399.7
	7 _{Be}	Ś	~	~	5	-	Ð	0 ± 490	6	5	60	~	~	0	~	~	-	•	6 ± 20	~	-	~	5	4 ± 40	6	•	5	proved.
ا نبر		18	ä	26	45	8	ŝ	357	52	1 9	31	115	122	457	16i	ö	19	36	49	22	312	36	H	35	ð	õ	42	218
AL	N EX	-	5	10	20	29	40	50		5	9	29	40	50		ŝ	01	20	29	40	50		5	01	20	29	40	50
	PW PW	57 ⁰ 15'	58023	56 ⁰ 26	58 ⁰ 23	58°23'	57 ⁰ 54	58 ⁰ 23'	53°51'	53,51	53,51	54,16	16,42	53°51'	55 ⁰ 55 ¹	54"34	54034	54,34	26,00	2,6	54"34"	59°12'	59°12'	61 ⁰ 38'	60 ⁰ 55	59°12'	60,10	59"12"
OFF	0N N	12 ⁰ 36'	12023	12,42'	12 ⁰ 23'	12 ⁰ 23'	13,02'	12 ^u 23'	13 ⁰ 08'	13 ⁰ 08'	13,08'	15 ⁰ 28'	13,36'	13'08'	17022'	17 ⁰ 36'	17 ⁰ 36'	17"36'	17,331	16 ⁰ 57'	17 [*] 36'	16 ⁰ 50'	16,50'	16 ⁰ 59'	17,05'	16,50'	16,57'	16"50'
	11ME	1328	1307	1436	1239	1405	1431	1418	1422	1445	1503	1535	1521	1508	1712	1648	1627	1604	1605	1612	1559	1756	1819	1658	1850	1630	1702	1649
	ong ong	8 ⁰ 23'	8023'	8023	00,00	0 ⁰ 26'	16208	19 ⁰ 55'	5 ⁰ 07'	13 ⁰ 51'	50491	3051	13 ⁰ 51'	5 ⁰ 32'	4 ⁰ 34'	64 ⁰ 34'	4 ⁰ 34'	4 ⁰ 22'	14 ⁰ 251	14°34'	14 ⁰ 53'	1 ⁰ 38'	59 ⁰ 12'	9 ⁰ 12'	9 ⁰ 12'	192. 192.	90'12'	16,10
z	TA N	1 ⁶ 231	·23	5	321 0351	,00,	⁰ 23	-58r	⁰ 56 ¹	80 .80	020	,80°	180	⁰ 26'	0361		-9°-	.010,	ي چو		286	80 00	20. 20.	.0 <u>.</u> 0	20	52.	2	14
0		8 12	7 12	6 12	EI 6	5	1 12	EI Z	2 12	5 El	51	5 13		2	2	8 17	1 1	4 16	5 16	2	5	6 17	9 16	8 16) M	0 11	2	2 2
		130	124	141	121	134	142	140	140	142	144	151	151	145	165i	162	160	154	154	160	154	173(175	163	183	161	165	163
	SAMPLE NO.	I WW	2 WW	MM 10	MM 20	MM 29	MM 40	MM 50	1 10	01 5	01 10	DI 29	DI 40	DI 50	00 1	0C 5	OC 10	0C 20	0C 29	0C 40	OC 50	RA Ì	RA 5	RA 10	RA 20	RA 29	RA 40	RA 50

 \cdot Counted on counter which has been found to give consistently low 7 Be numbers.

MAY 15, 1969

1	1	
	140 _{Ba}	250 ±31 133 ±26 881 ±49 640 ±40
	137 _{CS}	1357 ±53 1199 ±45 4972 ±73 2648 ±59 3795 ±34
M.	106 _{Ru}	7, 190 ± 210 5, 480 ± 18 19, 870 ± 310 13, 910 ± 260 21, 030 ± 240
DPM/10 ³ S.C.	100 _{Ru}	13, 647 9, 277 ± 62 35, 320 31, 100 32, 800
	95 _{Zr}	19, 201 ± 42 13, 456 ± 35 57, 284 ± 65 41, 993 ± 55 61, 157 ± 75
	7 _{Be}	14, 770 14, 580 68, 331 12, 060 56, 150
ALT.	N	33333
	LONG	57 ⁰ 00 ⁶ 53 ⁰ 51 ⁶ 55 ⁰ 40 ⁶ 59 ⁰ 40 ⁶
OFF	IVI	12 ⁰ 35' 13 ⁰ 08' 17 ⁰ 36' 17 ⁰ 00' 13 ⁰ 20'
	IIMI	1433 1627 1627 1627 1627
	LONG	59°40' 53°51' 54°34' 64°42'
NO	S M	13 ⁰ 20 13 ⁰ 08 17 ⁰ 05 17 ⁰ 05
	IIME	1406 1406 1406 1600 1307
	SAMPLE	MM 50 DN 60 DN 60 RA 60 JU 60

 \cdot Counted on counter which has been found to give consistently low $^{\prime}$ Be numbers.

MAY 24, 1969

66 ± 38 75 ± 41 34 ± 60 17 ± 39	
66 ± 64 4 112 ± 63 4 125 ± 98 6 143 ± 68 5	
860 ± 300 35 820 ± 270 24 000 ± 380 41 760 ± 320 43	
. 030 17, 15, 460 15, 16, 15, 200 t 140 24, 360 18,	
50, 612 ±59 45, 713 ±58 68, 732 ±81 50, 932 ±61	
27, 400 23, 960• 37, 400 49, 000	L
3 3 9 9	
56 ⁰ 33' 53 ⁰ 49' 54 ⁰ 32' 61 ⁰ 12'	
2045' 2010' 7004'	
1458 1 1551 1 1659 1 1659 1 1753 1	
59 ⁰ 30' 53 ⁰ 49' 57 ⁰ 10' 57 ⁰ 10'	
13°05' 13°10' 17°12' 17°12'	
1430 1524 1632 1721	
MM 60 D1 60 RA 60	

Counted on counter which has been found to give consistently low ¹Be numbers.

MAY 31, 1969

271 ±40 171 ±18 663 ±41 603 ±32		82 1 20	74 ± 23	111 ± 22	74 ± 20	109 ± 17
2817 ± 54 1720 ± 36 5181 ± 73 4839 ± 62 5565 ± 5 3554 ± 50		2361 145	2374 ± 43	2826 ± 49	2711 ± 47	2616 ± 41
13, 600 ± 260 10, 620 ± 170 32, 970 ± 330 28, 370 ± 290 32, 420 ± 360 21, 440 ± 320		10990 ± 170	9740 ± 160	13040 ± 180	12040 ± 170	13060 ± 150
23, 100 15, 038 52, 290 69, 140 30, 140		13570 ± 60	10800	15651	14549	16473
37, 000 ± 53 25, 130 ± 36 88, 097 ± 71 79, 178 ± 63 109, 380 ± 130 60, 987 ± 100	69	25009 134	22380 ± 33	31490 ± 38	27817 ± 36	31073 ± 33
17, 360 16, 930 50, 600 38, 600 10, 840 74, 800	JUNE 11, 19	24560	36170	32020	28310	21890
000000000		60	99	99	99	60
56 ⁰ 50' 54 ⁰ 34' 61 ⁰ 00' 59 ⁰ 35' 65 ⁰ 53'		58 ⁰ 23'	53051	54°34'	59012	65 ⁰ 53'
12 ⁰ 39' 13 ⁰ 08' 17 ⁰ 36' 17 ⁰ 59'		12023'	13008'	17036	16 ⁰ 50'	17 ⁰ 59'
1423 1513 1513 1513 11707 11707 11747		1422	1502	1542	1618	1655
59 ⁰ 35' 53 ⁰ 51' 54 ⁰ 34' 64 ⁰ 42' 61 ⁰ 00'		58 ⁰ 23'	53051	54034	59012	59 ⁰ 12'
13 ⁰ 15' 13 ⁰ 08' 17 ⁰ 36' 17 ⁰ 10' 17 ⁰ 00'		12 ⁰ 23'	13,08	17036	16 ⁰ 50'	16 ⁰ 50'
1356 1446 1553 1640 1258		1355	1435	1515	1551	1618
MM 60 DI 60 RA 60 OU 60 IN 60		09 WW	09 IU	00 60	RA 60	1N 60
.

JUNE 21, 1969

		ON		OFF		ALT			DPM/10 ³ S.C	. <u></u>		
SAMPLE NO.	TIME (Z)		LONG	TIME LAT	LONG	IN Kft	7 _{Be}	95 _{Zr}	103 _{Ru}	106 _{Ru}	137 _{Cs}	140 _{3a}
MM 1 MM 5 MM 10 MM 20 MM 20 MM 27 MM 30 MM 40 MM 50 MM 60	1333 1310 1410 1240 1310 1340 1428 1408 1358	12°23' 12°23' 12°23' 12°23' 12°37' 12°57' 14°21' 12°23' 13°28' 13°20'	58 ⁰ 23' 58 ⁰ 23' 58 ⁰ 20' 59 ⁰ 50' 59 ⁰ 13' 61 ⁰ 05' 58 ⁰ 23' 59 ⁰ 55' 59 ⁰ 46'	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	57 ⁰ 00' 58 ⁰ 23' 56 ⁰ 36' 58 ⁰ 23' 57 ⁰ 16' 59 ⁰ 27' 57 ⁰ 54' 58 ⁰ 23' 58 ⁰ 23' 56 ⁰ 51'	1 5 10 20 27 30 40 50 60	177* 17 388 151 99 58 * 21 250 5883 27590	$\begin{array}{c} 42.4 \pm .8\\ 9.7 \pm .8\\ 143.3 \pm 1.4\\ 25.9 \pm 1.1\\ 13.2 \pm .9\\ 11.5 \pm .7\\ 123.0 \pm 5.0\\ 1769 \pm 12\\ 21600 \pm 31\end{array}$	20.1 6.7 78.3 3.2 8.8 ± 1.3 116 677 10451	22.8 ±4.4 5.8 ±2.6 92 ±10 24.8 ±7.3 58 ±20 785 ±75 9880 ±160	6.6 ±1.6 18.9 ±2.3 3.0 ±2.3 3.4 ± 1.9 2.7 ±2.1 10.1 ±7.4 205 ±19 2180 ±42	1.3 = 1.1 2.9 = 2.1 58 = 18
DI 1 DI 5 DI 10 DI 20 DI 27 DI 30 DI 40 DI 50 DI 60	1425 1450 1436 1525 1348 1510 1515 1456 1450	12 ⁰ 55' 13 ⁰ 08' 12 ⁰ 54' 13 ⁰ 08' 12 ⁰ 54' 13 ⁰ 10' 13 ⁰ 08' 13 ⁰ 26' 13 ⁰ 26'	55 ⁰ 10' 53 ⁰ 51' 55 ⁰ 59' 53 ⁰ 51' 54 ⁰ 56' 54 ⁰ 07' 53 ⁰ 51' 55 ⁰ 32' 54 ⁰ 00'	1445 13 ⁰ 08' 1510 13 ⁰ 08' 1456 13 ⁰ 08' 1545 14 ⁰ 45' 1408 13 ⁰ 46' 1530 15 ⁰ 30' 1525 13 ⁰ 36' 1512 13 ⁰ 08' 1517 13 ⁰ 10'	53 ⁰ 51' 53 ⁰ 51' 53 ⁰ 51' 54 ⁰ 10' 55 ⁰ 31' 54 ⁰ 14' 54 ⁰ 31' 53 ⁰ 51' 53 ⁰ 50'	1 5 20 27 30 40 50 60	440 208* 62* 90 117 122 ± 42 854 5500 ± 100 30620	210.4 ± 1.8 151.7 ± 1.8 246.0 ± 1.8 $16.1 \pm .4$ 42.8 ± 1.2 $24.2 \pm .7$ 1221 ± 11 $0 \ 1877 \pm 15$ 21567 ± 31	120 31.1 145.2 6.3 28.5 15.1 ± 2.4 523 910 ± 170 10234	92.4 ±2.4 94 ±11 118 ±11 8.6 ±2.4 11.4 ±5.7 4.2 ±3.0 447 ±52 909 ±53 10106 ±160	22.4 ± 2.5 18.3 ± 2.8 29.0 ± 2.7 3.8 ± 2.0 3.4 ± 1.3 154 ± 14 208 ± 31 2245 ± 45	5.6 ± 2.9 2.0 ± 1.4
0C 1 0C 5 0C 10 0C 20 0C 27 0C 30 0C 40 0C 50 0C 50 0C 50	1716 1654 1630 1605 1539 1539 1604 1545 1546	17°36' 17°36' 17°36' 16°20' 16°25' 16°22' 17°36' 15°58' 17°30'	54 ⁰ 34' 54 ⁰ 34' 54 ⁰ 34' 54 ⁰ 20' 54 ⁰ 15' 54 ⁰ 18' 54 ⁰ 34' 54 ⁰ 53' 54 ⁰ 30'	1736 17°20' 1714 17°36' 1650 17°36' 1655 17°36' 1559 17°23' 1559 17°23' 1614 16°57' 1601 17°36' 1613 17°30'	56 ⁰ 10' 54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 40' 55 ⁰ 39' 55 ⁰ 39' 55 ⁰ 39' 55 ⁰ 39' 55 ⁰ 39' 55 ⁰ 39'	1 5 20 27 30 40 50 60	400 337 443 124 100 208 430 ± 110 4327 36000	163.8 ± L.7 148.7 ± 2.3 208.9 ± 2.5 38.4 ± L.5 36.9 ± .3 37.9 ± L.1 89.8 ± 3.7 378.5 ± 2.8 27712 ± 35	78.9 62.4 111 17.6 22.2 19.8 40 ± 19 110.2 13270	84.8 ± 9.4 96 ± 15 143 ± 18 21 ± 10 18.0 ± 1.9 13.4 ± 5.2 197 ± 21 12500 ± 170	$\begin{array}{r} 19.0 \pm 2.3\\ 14.2 \pm 3.6\\ 29.1 \pm 4.5\\ 5.5 \pm 3.1\\ 6.16 \pm .6\\ 7.9 \pm 2.0\\ 30.2 \pm 5.9\\ 63.2 \pm 5.6\\ 2714 \pm 47\end{array}$	8
RA 1 RA 5 RA 20 RA 27 RA 50 RA 60	1758 1822 1857 1618 1634 1633	17 ⁰ 05' 16 ⁰ 50' 16 ⁰ 50' 16 ⁰ 59' 16 ⁰ 34' 17 ⁰ 06'	57 ⁰ 30' 59 ⁰ 12' 58 ⁰ 12' 58 ⁰ 02' 57 ⁰ 31' 57 ⁰ 45'	1818 16 ⁰ 50' 1842 16 ⁰ 50' 1917 14 ⁰ 50' 1638 17 ⁰ 03' 1650 16 ⁰ 50' 1700 17 ⁰ 05'	59 ⁰ 12' 59 ⁰ 12' 59 ⁰ 30' 60 ⁰ 37' 59 ⁰ 12' 61 ⁰ 15'	1 5 20 27 50 60	258 164 249 275 4496 41720	111.9 ± .4 45.5 ± 1.2 78.0 ± .4 75.8 ± 1.5 421.2 ± 2.8 29159 ± 35	61. 1 20. 9 35. 7 62. 0 ± 4. 5 50 ± 11 13401	57.6 ±2.7 24.1 ±6.7 42.0 ±2.7 19.5 ±5.0 211 ±21 13200 ±180	12.58 ± .7 6.4 ± 2.5 7.77 ± .5 7.3 ± 2.1 44.1 ± 5.6 3001 ± 47	2 8 3.8 ± 3.4 76 ± 18
OU 20 IN 20 OU 27 IN 27 OU 30 OU 50 IN 50 OU 60 IN 60	1105 1917 1215 1638 1306 1312 1707 1257 1700	18°00' 14°50' 17°22' 17°03' 17°23' 17°44' 17°02' 17°44' 17°55'	65 ⁰ 53' 59 ⁰ 30' 64 ⁰ 12' 60 ⁰ 37' 64 ⁰ 30' 64 ⁰ 42' 60 ⁰ 46' 64 ⁰ 45' 61 ⁰ 15'	1240 13 ⁰ 27' 1935 14 ⁰ 00' 1310 12 ⁰ 57' 1726 17 ⁰ 58' 1340 14 ⁰ 21' 1408 13 ⁰ 28' 1754 17 ⁰ 59' 1358 13 ⁰ 20' 1726 17 ⁰ 31'	59°50' 59°30' 59°13' 66°18' 61°05' 59°55' 65°53' 59°46' 64°45'	20 20 27 27 30 50 50 60	208 229 499 478 4834 6778 41460 39920	57.8 ± .7 15.5 ± .9 68.1 ± .6 126.0 ± 1.3 104.2 ± .4 991.9 ± 4.6 2181 ± 7 27005 ± 22 28197 ± 36	26.9 18.7 48.3 74.4 53.1 379 903 11478 12918	30.6 ±3.2 31.9 ±3.9 63.3 ±5.9 46.3 ±2.3 464 ±25 1008 ±34 12230 ±110 12810 ±180	3.43 ± .6 6.19 ± .9 8.9 ± 1.1 11.90 ± .6 103.3 ± 6.0 212.4 ± 3.1 2984 ± 29 2913 ± 47	7 6 43 ± 10 51 ± 19

 $^{\circ}$ Counted on counter which has been found to give consistently low $^{7}\mathrm{Be}$ numbers.

RADIONUCLIDE DISINFEGRATION RAFES IN AIR FILTER SAMPLES COLLECTED BY AIRCRAFT During the Barbados oceanographic and meteorological experiment

JUNE 22, 1969

•

.

•

		NO			OFF		ALL.	MAE 55, 13	5	DPM/10 ³ S. C	W		
SAMPLE NO.	11ME	₹₹	ow 6	11ME	Z Z	€0¥G	NX	7 _{Be}	%2r	18 _{Ru}	106 _{Ru}	131 _{Cs}	140 _{Ba}
I WW	6511	12 ⁰ 23'	58°23'	1219	12023	58 ⁰ 23'		468	176.0±1.6	82. I 89. 1	86.5 ±8.6	15.6 ±5.3	
2 MM 20 MM	1811			1437	12,22.	20,00,	~ a	346	133.3 ± 1.4	00.1 75.6	67.9 ±9.0	16.9 ±2.3	
MM 20	1237	12021	20.02	1257	14012	57°07'	20	173 4 26	35.6 ± .9	21.3 ± 5.3	19.0 ± 9.0	3.3 ±1.7	
MM 27	1257	13,00,1	59 ⁰ 29'	1917	12 ⁶ 33'	57 ⁰ 10	21	113	22.734 .28	14.3	11.8±1.7	2.82 ± .65	
0E MM	1348	13°40'	60 ⁰ 14	1407	12,23,	58,031	30	169	18.9 ± 1. 1	6. Ó	6.2 ±8.3		
MM 40	1426	,[2 ₀ 2],	58°23'	1457	13 ⁰ 02'	57 ⁰ 54'	40	2317	430.5 ± 1.0	134.1	208.0 ±7.7	55.7 ±2.1	2.1 ±1.3
AMM 50	1410	13"28"	59 ⁰ 55	1426	12,23	58023	2	6121	2089 ± 10	1032	946 ±73	156 ±20	
1 10	1638	13008'	53 ⁰ 51'	1658	13,06'	53051'	-	265	98.6±1.6	45.4	48.3 ± 8. 1	11.9 ±2.3	
5 10	1443	12,56'	55°32'	1500	13,08'	53°51'	ŝ	406	144.9 ± 1.3	78.1	66.0±6.0	16.9 11.8	
01 10	1548	14,58'	54°12'	1628	13,08	53,51'	9	440	186.1 ± 1.7	89.5	109 ± 10	17.8 12.2	
DI 20	11/1	13°08'	53°51'	1731	15,00	56,30	20	225	57.6 ± 1.7	33.5	23.2 ± 6.6	5.1 ±1.7	
DI 27	1333	12,50	55,16	1353	14,19	54"22'	23	118	25.61.9	23.8		4.6 ±2.0	
DE 10	1514	.99,EI	53 51'	1534	15 ["] 22"	54,12	õ	168	19.0 ± 1.1	8.3		4.1 ±2.8	
DI 40	1514	13008.	-15°55	1525	13°36'	5631	4	3707	792.2 19.6	422.6	404 ±48	56 ±12	
DI 50	1457	13"26'	55 ^u 32'	1514	13,08	53"51'	2	5890 ± 250	555 t 28	73.8	281 114	37.9 22.4	
00.1	1407	17 ⁰ 36	54 ⁰ 34'	1427	1969/1	54034	-	244	117.3 ± 1.7	59.7	62 ± 10	12.2 12.6	
00.5	1429	,9C,11	53"34"	1449	.96°,71	ň. X	Ś	137	64.8 t l.2	37.6	29.3 ± 7.5	N.7 ±2.0	
00 10	1455	.96,11	53034	1535	15°30'	54 ⁰ 20'	10	350 140	207.5 13.0	107.0 ± 2.7	113 ± 8	22.0 14.3	
0C 20	9261	16°12'	55°37'	1356	17.36	54,34	20	127	6l. l ± l.4	35.4	15.5 ± 6.8	6.7 12.5	
0C 21	1516	16"21'	54,42.	1536	11,24	56,10	21	375	69.2 ± 1. 1	40.2 ± 2.8	12.6 ±6.5	12.5 ±2.1	
0C 30	1543	16.40	54"21'	1603	17,21	56, EF.	20	658	134.3 t l. 9	61.2	63 ± 12	l6.7 ±3.1	
0C 40	1606	17.26.	54.94	1615	16,57'	55,68,	40	6869	1562 ± 15	868	153 ± 12	1(C † 16	
AC 50	1546	15 ⁵ 8'	540531	1604	,9Cn/1	54"34"	50	1/15	1115 ±9	489	501 ±62	136 ± 16	
RA I	0690	16 ⁰ 50'	59°12'	0450	16050	59 ⁰ 12'	-	208	86.611.5	41.8	37 ± 11	9.1 ±3.1	3.2 ±2.0
RA 5	0454	16050	59 ⁰ 12	0614	17,000	60 ⁰ 43'	Ś	259	88.9 11.3	35.5	44.0 ±9.2	7.2 +2.6	1.6 ±1.5
RA IU	1638	16 ⁰ 50	59 ⁰ 12'	1654	17'04'	61,06	2	651	241.5 ± 1.9	135.4	121 ± 11	34.8 ±2.8	I
RA 20	1808	15 ⁰ 55'	57 ⁰ 48'	1828	16 ⁰ 50'	59 ⁰ 12'	20	312	83.4 11.6	46.9	31.6 19.3	6.6 12.6	
RA 27	1551	17 ⁰ 08	58'00'	1611	16,57	60 ⁰ 27'	21	633	165.7 t l.6	100.6	60.0±9.8	19.2 12.6	
RA 30	1609	17°13'	56 ⁰ 53'	1627	10,01,	20 ₀ 15,	30	800	171.6 ± 2.1	76.3	94 t 15	22.3 ±3.8	
RA 40	1657	16"50"	59 ⁴ 12'	1707	16 ⁰ 57'	60 ⁰ 10	9	4176	1209 ±3	463. 1	546 ±23	119.2 ± 6.5	
RA 50	9631	16 ⁰ 34'	,1E ₀ 25	1657	16 ⁰ 50'	59 ⁰ 12'	3	0530	2318 ± 10	858	1109 + 68	317 ± 19	
81 U O	0952	18 ⁰ 12'	•5 ⁰ 58*	1123	13 ⁰ 55'	,62 ₀ 9	81	262	72.01.8	32.4	30.9 13.2	6.36 ± .68	
00 18	2340	18015	66 ⁰ 15'	0415	16 ⁰ 50'	59 ⁰ 12'	18				I	I	
1N 18	0527	17,00	61°05'	0625	18 ⁰ 27'	66 ⁰ 00'	18	267	87.2 ± 1.1	41.8	35.1±4.3	7.78 ± .96	
00 27	1150	17"59'	65,43	1257	13°05'	59 ⁴ 29	21	544	134.8 ± 1.2	55.3	68.1±5.2	10.64±.95	
IN 27	1611	16,57'	60"27'	1655	15,27	65°40'	21	463	192.2 ± 1. 1	119.7	93.1 ± 6.8	15.7 ±1.5	
00 30	0061	17,44	64 42'	1348		60,14	Я С	28	152.1 + 1.3	31.9	11.9 ± 1.8	19.9 ±1.9	
09.00	1314	17'44	64 45	1410	13, 28,	59,55	3	3458	2387 17	1445	961 ±37	190.7 ±7.8	3.6 ±2.7
NC NI	I/I/I	- nr.	6U*46'	QUR	.65~11	65_23.	2	629	594.0 t .1	1643	197.3 13.5		

•

 \cdot Counted on counter which has been found to give consistently tow $^7\mathrm{Be}$ numbers.

159 ±22 183 ±32 687.6 ±8.5 15.1 ±5.3 140_{Ba} 31.3 ±3.1. 5.% ± .66 62.5 ±2.6 13.21 ± .43 38.1±2.5 5.11±.73 9.8 ±1.9 7.8 ±2.0 11.1±6.1 6.5±1.9 36.8 ± 6.5 15.4 ± 2.2 62.9 ± 7.1 12.7 ± 1.8 ±33 296.8 ±7.9 296.8 ±7.9 169.9 18.4 26.3 ±2.6 ± 19 **t** 32 137_{C5} 574 ±23 211.4 ±6. 1270 ±77 169 ±20 22 3738 ±74 713 106_{Ru} 37.7 ±6.4 3.2 ±3.2 ŧ 35 **t** 33 ± 11 240 ± 69 80 ± 67 3183 1352 112 1352 1001 DPM/10³ S. C. M. +310 64.0±2.6 l6.3 ±2.4 11.5 ± 3.6 104. 1 ± 4. 1 103_{Ru} 361 ±11 29.6 52.1 97.8 54.3 76. l 35. 0 53.4 251 2611 3620 1086 æ 41 260 971 6578 ± 6 119.9 ± 1.1 43.5 ± 1.0 69.9 t .7 127.8 t .5 118.0 ± 6.5 86.9±1.3 367.9 ±2.4 135.1±.6 207.1 ±2.5 76.8 ± .4 198.3 ± 6.9 576.6 ± 7.7 52.5 ± l. l 27.6 ± 1.] 2603 ± 12 13700 ± 20008048 ± 62 1272 ±3 17 17 95_{Zr} 2878 2247 255 ± 26 7_{Be} 476 ± 37 **16136** 210 1250 5452 53 480 5593 401 807 236 542 309 235 432 7452 5081 20] ALT K ft 29 20 50 23 50 5 60 28 20 50 5 20 28 IO 58⁰231 58⁰23' 57⁰10' 58⁰23' 55⁰15¹ 54⁰31' 53⁰51' 55⁰43' 55⁰03' 59⁰12' 60⁰10' 60⁰22' 59⁰12' 67⁰05' 59⁰55' 59⁰55' 65⁰53' LONG ð 14⁰25' 13⁰36' 13⁰08' 12⁰23' 12⁰50' 13⁰02' 12⁰23' 16050 26⁰00' 13⁰25' 16⁰50' 13⁰28' 120231 17⁰20' 16⁰57' 17⁰36' 16050 16⁰55' OFF LAI N TIME 1516 1224 1429 1529 1502 1604 (Z) 1159 1648 1708 1655 0548 1726 1745 1432 1133 0520 1500 58⁰23' 59⁰30' 59⁰40' 59⁰23' 55⁰10' 53⁰51' 55⁰32' 54⁰25¹ 54⁰34¹ 54⁰34¹ 54⁰31² 59⁰12¹ 57⁰31² 59⁰10' 66⁰10' 64⁰42' 60⁴6' LONG 13⁰08' 13⁰08' 13⁰26' 17⁰36' 15⁰58' 16⁰50' 12⁰55' 12⁰23' 13⁰05' 13⁰15' 13⁰23' 13⁰28' 16°30' 17⁰05' 16⁰50' 16⁰34' 8010' 17⁰44' 17⁰44' N IAI 2 TIME 1409 1548 1204 1139 1500 1442 0528 1706 1729 1238 2 1628 1658 1639 0955 2350 1405 SAMPLE **MM 50 MM 40** Ś **MM 27** 0C 27 0C 40 0C 50 RA1 5 0U 20B **MM 5** DI 27 DI 40 DI 50 RA 28 RA 40 RA 50 IN 10 0U 18 0U 50 IN 50 I WW

JUNE 23, 1969

1

·**^**.

JUNE 24, 1969

•

								UNE 64, 170	2	ç			
		NO			E E		ALT.			DPM/10 ² S. C	. M.		
SAMPLE NO.	TIME [2]	S I	eve eve	11ME (2)	8 P	ow o	N E	1 _{Be}	95 _{Zr}	103 _{Ru}	106 _{Ru}	137 _{CS}	
MM I	1217	12023'	58 ⁰ 23'	1237	120231	58 ⁰ 23'		427	141.0 ± 1.9	54.0	78 t ll	20.9 ±3.0	
MM 5	1144	14000	60°40'	1213	12 ⁰ 23'	58 ⁰ 23'	\$	453	191.6 ± 2.0	88.9	100 ± 12	20.8 ±3.2	
MM 10	1446	12,231	58°23'	1506	12°47'	56 ⁰ 24'	20	458	231.8 ± 2.8	137.2	121.3 ± 7.0	22.4 11.4	
MM 20	1256	12 [°] 23'	58,231	1316	13"47"	57 ⁰ 20'	20	157	39.9 ± 1.5	15.8	30 ±11		
MM 27	1307	12 ⁰ 58'	59 18'	1327	12 ⁰ 33'	56,58'	21	292	109.3 ± 1.5	56.2	42.6±7.6	11.8 12.2	
0E MM	1416	13,48'	,11,09	1435	12 [°] 23'	58 ⁰ 23'	30	582 ± 55	265.2 t l.8	154.0±8.5	128.4 19.6	27.3 ±2.2	
MM 40	1427	12 ⁰ 23'	58 ⁰ 23'	1437	13 ⁰ 21	570541	40	900 ± 130	139.4 ± 4.7	40.8 ± 6.0	70 ± 14	29.4 17.9	
MM 50	1408	13 ⁰ 28'	59 ⁰ 55'	1424	12 ⁰ 23'	58 ⁰ 23'	50	4571	3195 ±12	1421	1378 ±77	113 ± 21	
1 10	1632	13 ⁰ 08'	53 ⁰ 51'	1652	13 ⁰ 08'	53 ⁰ 51'	7	189	92.9 t .5	47.4	45.9 ±3.2	11.9 11.0	
01 6	1512	12°51'	55°51'	1534	13°14'	53054	9	187 ± 20	74.61.9	38.3 ±2.1	41.5 ± 4.3	9.4 11.1	
DI 10	1548	15022	540121	1628	13008	53 ⁰ 51'	01	8 S	253.2 ± 2.0	146.5	136 ± 14	31.0 13.2	
DI 20	1708	13,08	53 ⁰ 51'	1728	14 ⁰ 00'	55 ⁰ 0'	20	235	55.2 ± l.3	26.0 13.2	24.9 ± 6.0	6.6 12.3	
01 27	1343	12,054'	54 ⁰ 49	1403	14 ⁰ 19'	53,58,	27	296	124.6 ± 1.6	81.8	44.2 ± 7.7	13.8 12.3	
01 30	1550	13,00,	53'45'	1610	15,30	54'11'	30	275	154.7 ± 1.7	99.0	76 110	14.6 ±2.7	
DI 40	1516	13 ⁰ 08'	53051'	1526	13 ⁰ 36'	16,93	40	790	157. l ± 4. 9	70	36 ±17	7.8 17.8	
DI 50	1457	13"26"	55 ^u 23'	1513	13'08'	53"51'	20	10770	5051 ±16	2186	2484 t 88	471 ±21	
00.1	1422	,98°7(54 ⁰ 34'	1442	17 ⁰ 36'	54034'	-	180	95.5 ± L 4	53.3	40.4 15.8	11.2 ±1.7	
5 20	1444	,9E0[1	54034	1504	196.011	54034	5	298 ± 30	104.1 ±2.2	51.9 ±3.4	55.4 ± 7.1	11.8 tl.9	
00 10	1507	17036	54 34	1547	15021	54 12	9	511 ± 28	231.0 ± 1.5	122.3 ± 2.9	118.5 ± 8.1	26.7 14.3	
00 20	1355	16 ⁰ 25	55 ⁰ 23'	1415	17°36'	54034	20	191	52. l ± l. 2	26.7	12.9 14.6		
9C 27	1536	16 ⁰ 21'	54012'	1556	17,25'	550371	27	384	91.4 ± 1.4	46.0	28.7 ± 5.9	9.0 ±2.1	
OC 30	1618	16 ⁰ 25'	54 ⁰ 20'	1638	17,23'	55 ⁴ 0'	30	286	64.611.5	37.8	21.8 ±5.6	8.1 ±2.3	
0C 40	1607	17036	54 ⁰ 34'	1617	16,57'	55,001	40	1563	667.1 ± 8.7	348	259 ±47	38 t l l	
OC 50	1548	15 ^{58'}	54"53'	1604	17"36' 11	54"34"	20	33120	19940 ±34	8257	9170 ±1501	895 134	
RA 1	0530	16 ⁰ 50'	59 ⁰ 12'	0550	16 ⁰ 50'	59 ⁰ 12'	-	203 ± 99	93.1 ± 1.8	49 t 10	38.2 ± 5.7	12.2 ± 1.7	
RA 5	0553	16 ⁰ 50'	590121	0613	17 ⁰ 00'	60 ⁰ 00	ŝ	234	126.3 ± 1.4	13.1	74.5±8.3	13.8 ±2.1	
RA 10	1718	16 ⁰ 47'	59 [°] 13'	1738	16'47'	61,16'	91	516	246.7 ± 1.8	144	124.0 ± 9.9	31.3 12.4	
RA 20	1808	15 ⁰ 53'	57,45'	1828	16,50'	59 ⁰ 12'	20	349	105.2 tl.6	55.4	28.2 t 6.8	7.0 12.6	
RA 27	1612	17,08	57,35'	1632	16,57'	60 ⁰ 28'	21	290	89.5±1.5	52.2	42.4 ± 6.8	8.1 ±2.1	
RA 30	1646	11,11	56,37	1706	16,45'	59,02	30	302	70.111.6	40.6	19.2 ± 6.0	7.1 t2.3	
RA 40	1702	16,50'	59,12,	1712	16,57	60,10	Q :	1150	279.9 ± 6.3	130	99 126	55.4 +9.5	
RA 50	1643	16"34'	57"31'	1659	16~50'	59~12'	20	17490	11050 113	4732	4880 t 130	968 t21	
0U 27	1211	17026	64 ⁰ 32'	1307	12 ⁰ 58'	59018'	21	715	143.7 ± .4	39.0	75.1 ±2.0	19.04 t .4	6
0E UU	1332	61,21	64 ⁰ 20	1416	13,48'	60'11'	30	638	94.6±1.1	22.1	34.6±7.8	13.6 12.0	
IN 50	1717	17'œ'	60'10'	1758	17"59'	65,23	50	6310	2120 ±11	1003	998 ±49	157.7 ±8.9	-

JUNE 25, 1969

		NO			OFF		ALT.			DPM/10 ³ S.(C.M.	
SAMPLE	TIME	IAT 0N	0M0	TIME (2)	N N	FONG W	NX	7 _{Be}	95 _{Zf}	l@ _{Ru}	106 _{Ru}	IN CS
WW I	1206	12023	580231	1226	120231	58021	-	90 ± 14	42.9±.5	25.4±1.2	24.8 ± 3.	3 5.1 ± 1.2
MM 5	1144	130061	59031	1204	12023	58 ⁰ 23'	Ś	217	89.4± .9	54.9±2.7	39.7 ± 5.	2 12.0 ± 2.1
MM 10	1402	12 ⁰ 23'	58,23'	1422	12,50'	56,24	2	539	188.2±.5	92.3	104.0 ± 3.	3 26.41±.79
MM 20	1243	12,23'	58 ⁰ 23'	1303	13,50	57030'	20	683	226.9±2.3	101	109 ± 13	20.8 ± 3.3
06 MM	1333	14,03'	60"27'	1353	12,23'	58,23	8	269 ± 26	54.0±1.0	37.4± 3.4	17.4 ±4.	6 8.0±1.6
MM 40	1422	12"23'	58,23	1451	13,02	57,54	40	2877	2005 ± 9	1124	853 1 42	146 ± 9
MM 50	1405	13"28'	59 ⁴ 55'	1421	12"23"	58 ^u 23'	50	9509	4420 ± 16	2051	2032 ± 9(497 ± 23
1 10	1534	14 ⁰ 25'	54004	1554	13 ⁰ 08'	53 ⁰ 51'	~	115 ± 11	64.0±.4	38.5±3.9	32.7 ± 2	1 6.67 ± .75
DI 5	1556	13,08'	53 51'	1616	13,08	53051	\$	239 ± 36	113.9 ± 1.5	51.0±7.6	46.7 ± 9.	4 15.3 ± 3.8
01 10	1427	12 ⁰ 52'	55 ⁰ 52'	1447	13,08'	53 ⁰ 51'	10	481 ± 26	181.5±2.0	97.9±2.9	88.4 ± 5.	4 25.2 ± 1.6
DI 20	1627	13,08	53,51'	1647	14005	55,05	20	205 ± 27	74.6±1.2	42.4±3.3	19.4 ± 4.	$0 8.7 \pm 1.8$
08 10	1500	13,08	53 ⁰ 51'	1520	15°56'	54,23'	80	475	213.5 ± 1.9	140	111 ± 1	2 19.5 ± 2.9
DI 40	1507	13,08'	53°51'	1518	13,36'	54 ⁰ 31'	40	8746	13017 ± 34	9666	6570 ± 2(0 1399 ± 36
DI 50	1451	13 [°] 26'	55 ^u 32'	1506	13'08'	53 ⁰ 51'	20	9075	5185 ± 16	2340	2315 ± 94	415 ± 25
00.1	1445	17 ⁰ 36'	54 ⁰ 34'	1505	16 ⁰ 10'	54 ⁰ 20'		208	86.9±1.3	24.8	109 ± 12	5.8 ± 2.4
00.5	1425	17036	54034	1445	1,96,011	24034	5	122	137 7 ± 7	58.5	732 ± 4	5 14 2 ± 1.3
00 10	1403	17 ⁰ 36'	240.34	1423	.9E0/1	5402	10	386	271 0 ± 2 7	139	118 ± 14	345 ± 39
00 20	1340	16018'	55 ⁰ 32'	1400	17036	24034	20	724 ± 63	345.8±2.2	179.3 ± 5.1	158 ± 12	36.4 ± 5.1
00 30	1521	16025	54025	1541	17029	55035	9	1666	921.6±3.8	616	452 ± 23	594 ± 47
00 40	1557	196.011	54034	1625	16°57'	55001	40	16410 ± 410	6814 ± 20	2560 ± 390	3269 ± 18	510 ± 12
OC 50	1536	15 ⁰ 58'	54053	1554	17 ⁰ 36'	54°34'	20	70608	27750 ± 12	8067	13380 ± 54	3916 ± 13
RA 1	1817	16 ⁰ 50'	59012	1837	17,10'	60 ⁰ 40'	~	220	90.3±.4	6Q 0	4 6.2 ± 2.	0 8.49 ± .60
KA 5	1755	16 ⁰ 50'	54,12'	1815	16,50	59°12'	ŝ	286	96.7±1.7	41.7	56.4 ± 9.	6 12.6 ± 2.8
RA 10	1615	16,50	59°12'	1635	16'47'	60,58	01	238	115.4±.5	63.3	6l.9 ± 4.	6
RA 20	1730	16,05'	58,00	1750	16,50	59,12	20	465	180. 2 ± 2. 2	82.3	74 ± 14	23.6 ± 3.7
RA 30	1548	17,18	56,31'	1608	16,50	59 ⁰ 12	8	388	230.2±2.2	162	06 ± 12	2ú. l ± 2.8
RA 40	1642	16,50	59'12'	1650	16,57'	60,10	40	670	1015 ± 10	538	500 ± 87	12.59±.67
RA 50	1626	16~34'	57 ⁰ 31'	1641	16"50'	59 ⁰ 12	50	9140	3864 ± 5	1392	1832 ± 29	429.0 ± 7.9
0U 18	1005	17 ⁰ 00'	65 ⁰ 55'	1135	13 ⁰ 50'	60 ⁰ 00'	18	253	88.24.8	44.7	45.6 ± 3.	8 6.66±.79
0U 27	1206	18,03,	66 ⁰ 14'	1308	13040	60 ⁰ 07'	27	363	6l. l ± .8	30.6	20.9 ± 3.	0 5.00±.74
1N 29	1643	16,50	61 ⁰ 48'	1705	17,19'	64 40'	ଝ	230	53.2±1.5	40.5	18.9 ± 5.	3 6.0 ± 1.6
00 30	1250	17"23'	64 ⁰ 21'	1333	14'03'	60 ⁰ 27'	30	1253	293.6±1.5	121	130.8 ± 9.	1 34.6 ± 2.2
0U 50	1310	17,44	64 ⁰ 42'	1405	13 ⁰ 28'	59 ⁰ 55'	20	8670	4279 ± 8	2012	2040 ± 39	386.6 ± 1.9
IN 50	1651	17'02'	60'46'	1745	17 ⁰ 59'	65 ⁰ 53'	20	5480	2361 ± 6	1056	1167 ± 32	220 ± 8

							-		-		
		ON		OFF		ALT.			DPM/10 ³ S.	С.М.	
SAMPLE NO.	TIME (Z)	LAT °N		TIME LAT (Z) ^O N	LONG	IN <u>Kft</u>	7 _{Be}	95 _{Zr}	103 _{Ru}	106 _{Ru}	137 _{Cs}
MM 1 MM 5 MM 10 MM 27 MM 30 MM 40 MM 50	1215 1151 1417 1306 1345 1431 1413	13°05' 13°15' 12°27' 12°58' 13°41' 12°23' 13°28'	59 ⁰ 30' 59 ⁰ 40' 58 ⁰ 22' 59 ⁰ 23' 60 ⁰ 22' 58 ⁰ 23' 59 ⁰ 55'	1235 13 ⁰ 05' 1211 13 ⁰ 05' 1437 12 ⁰ 43' 1326 12 ⁰ 35' 1405 12 ⁰ 29' 1441 13 ⁰ 02' 1429 12 ⁰ 23'	59 ⁰ 30' 59 ⁰ 30' 56 ⁰ 26' 57 ⁰ 04' 58 ⁰ 22' 57 ⁰ 54' 58 ⁰ 23'	1 5 10 27 30 40 50	174 ± 30 488 407 357 586 640 6441	$\begin{array}{c} 107.\ 6\ \pm\ 1.\ 4\\ 329.\ 4\ \pm\ 2.\ 2\\ 104.\ 4\ \pm\ 1.\ 2\\ 57.\ 7\ \pm\ 1.\ 2\\ 156.\ 0\ \pm\ 1.\ 9\\ 172.\ 6\ \pm\ 5.\ 4\\ 2926\ \ \pm\ 5\end{array}$	65. 6 ± 3. 0 132 46. 2 29. 4 92. 9 93 1443	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 14.6 & \pm 2.1 \\ 46.9 & \pm 3.4 \\ .12.5 & \pm 2.1 \\ 9.4 & \pm 2.1 \\ 15.5 & \pm 2.6 \\ 20.1 & \pm 8.1 \\ 255 & \pm 7 \end{array}$
DI 10 DI 27 DI 30 DI 40 DI 50	1441 1344 1515 1517 1458	12 ⁰ 47' 12 ⁰ 59' 12 ⁰ 42' 13 ⁰ 08' 13 ⁰ 26'	55 ⁰ 58' 54 ⁰ 50' 53 ⁰ 49' 53 ⁰ 51' 55 ⁰ 32'	1501 13 ⁰ 07' 1404 14 ⁰ 33' 1535 14 ⁰ 49' 1527 13 ⁰ 36' 1514 13 ⁰ 08'	54 ⁰ 00' 54 ⁰ 01' 54 ⁰ 23' 54 ⁰ 31' 53 ⁰ 51'	10 27 30 40 50	120 300 309 1020 10630	26. 2 ± .8 86. 5 ± 1.4 132. 1 ± 1.9 446.8 ± 6.9 5113 ± 15	15. 7 51. 9 105. 4 210 2274	$\begin{array}{rrrrr} 11.2 & \pm 4.8 \\ 30.0 & \pm 7.9 \\ 41.3 & \pm 7.6 \\ 247 & \pm 44 \\ 2478 & \pm 89 \end{array}$	9.9 \pm 2.2 8.9 \pm 2.5 41 \pm 11 538 \pm 24
OC 27 OC 30 OC 40 OC 50	1534 1547 1608 1549	16 ⁰ 20' 16 ⁰ 14' 17 ⁰ 36' 15 ⁰ 58'	54 ⁰ 25' 54 ⁰ 35' 54 ⁰ 34' 54 ⁰ 53'	1554 17 ⁰ 20' 1607 17 ⁰ 16' 1618 16 ⁰ 57' 1605 17 ⁰ 36'	55 ⁰ 55' 55 ⁰ 49' 55 ⁰ 33' 54 ⁰ 34'	27 30 40 50	577 383 2896 43636	184.4 ± 2.0 159.4 ± 1.9 2550 ± 17 32730 ± 35	109 103 1242 14560	$\begin{array}{rrrr} 91 & \pm 11 \\ 64 & \pm 10 \\ 1310 & \pm 89 \\ 15310 & \pm 180 \end{array}$	$\begin{array}{ccc} 11. \ 0 & \pm \ 2. \ 4 \\ 19. \ 4 & \pm \ 2. \ 7 \\ 190 & \pm \ 19 \\ 3109 & \pm \ 47 \end{array}$
RA 10 RA 27 RA 30 RA 40 RA 50	1645 1612 1615 1658 1639	16 ⁰ 48' 17 ⁰ 05' 17 ⁰ 08' 16 ⁰ 50' 16 ⁰ 34'	59 ⁰ 07' 58 ⁰ 00' 56 ⁰ 46' 59 ⁰ 12' 57 ⁰ 31'	1705 16 ⁰ 44' 1632 16 ⁰ 58' 1635 16 ⁰ 42' 1708 16 ⁰ 57' 1655 16 ⁰ 50'	60 ⁰ 55' 60 ⁰ 22' 59 ⁰ 10' 60 ⁰ 10' 59 ⁰ 12'	10 27 30 40 50	332 385 404 1315 1%00 ± 460	120.0 ± 1.3 138.4 ± 1.8 169.0 ± 2.0 1186 ± 9 0.10620 ± 240	56. 2 655 91. 5 510 4660 ± 640	$\begin{array}{c} 66.3 \pm 7.7 \\ 61.7 \pm 9.9 \\ 72.9 \pm 9.6 \\ 510 \pm 73 \\ 5202 \pm 38 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
IN 14 OU 18 IN 24 OU 27 IN 27 OU 30 OU 50 IN 50	1245 1007 1712 1206 1632 1259 1316 1714	12 ⁰ 38' 18 ⁰ 15' 17 ⁰ 07' 17 ⁰ 47' 16 ⁰ 58' 17 ⁰ 35' 17 ⁰ 44' 17 ⁰ 02'	58°45' 66°30' 61°54' 64°51' 60°22' 64°27' 64°42' 60°46'	1452 18 ⁰ 04' 1143 13 ⁰ 52' 1744 17 ⁰ 46' 1306 12 ⁰ 58' 1720 17 ⁰ 50' 1345 13 ⁰ 41' 1413 13 ⁰ 28' 1748 17 ⁰ 59'	65 ⁰ 59' 60 ⁰ 06' 65 ⁰ 57' 59 ⁰ 23' 67 ⁰ 00' 60 ⁰ 22' 59 ⁰ 55' 65 ⁰ 53'	14 18 24 27 27 30 50	200 345 332 320 292 464 13224 12710	$77.3 \pm .7$ $108.9 \pm .9$ $35.7 \pm .9$ $52.4 \pm .3$ $51.1 \pm .8$ 137.4 ± 1.5 5860 ± 3 15131 ± 29	39. 6 48. 3 19. 2 23. 9 32. 4 77. 7 2385 8113	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$7.19 \pm .57$ $9.65 \pm .80$ $4.06 \pm .98$ $4.71 \pm .77$ $4.60 \pm .89$ 14.9 ± 1.4 575.7 ± 3.4 1098 ± 19
							JUNE 27, 19	69			
MM 60 DI 60 OC 60 RA 60 OU 60 IN 60	1358 1449 1545 1629 1305 1659	13 ⁰ 20' 13 ⁰ 05' 17 ⁰ 00' 17 ⁰ 10' 17 ⁰ 25' 17 ⁰ 05'	59 ⁰ 40' 54 ⁰ 25' 54 ⁰ 30 57 ⁰ 25' 64 ⁰ 10' 60 ⁰ 55'	1425 12 ⁰ 40' 1516 13 ⁰ 40' 1612 17 ⁰ 30' 1658 17 ⁰ 05' 1357 13 ⁰ 20' 1737 17 ⁰ 45'	56 ⁰ 56' 53 ⁰ 55' 55 ⁰ 10' 60 ⁰ 55' 59 ⁰ 40' 64 ⁰ 45'	60 60 60 60 60 60	32890 45770 32690 68660 32780 18670	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8350 8469 12830 13015 17099 8763	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

JUNE 26, 1969

•

JUNE 28, 1969

		ON		OFF		ALT.			DPM/10 ³ S. C		······
SAMPLE NO.	TIME (Z)	LAT ^O N		TIME LAT		IN <u>Kft</u>	7 _{8e}	95 	103 _{Ru}	106 _{Ru}	137 _{Cs}
MM 1 MM 5 MM 10 MM 20 MM 27 MM 30 MM 40 MM 50	1218 1155 1418 1259 1315 1348 1417 1358	12°23' 12°23' 12°23' 12°23' 12°23' 13°04' 13°46' 12°23' 13°28'	58°23' 58°23' 58°23' 58°23' 59°28' 60°07' 58°23' 59°55'	1238 12°23' 1215 12°23' 1438 12°47' 1319 13°45' 1335 12°34' 1408 12°23' 1427 13°22' 1414 12°23'	58°23' 58°23' 56°29' 57°25' 57°08' 57°08' 58°23' 57°54' 58°23'	1 5 20 27 30 40 50	$165 \pm 35 \\ 204 \pm 27 \\ 101 \\ 262 \\ 348 \\ 146 \\ 1110 \pm 120 \\ 2230 \pm 160 \\ 160 \\ 165 \\ 165 \\ 165 \\ 165 \\ 160 \\ 100 $	$47.8 \pm 1.2 \\ 124.5 \pm 1.2 \\ 7.0 \pm .42 \\ 48.4 \pm 1.6 \\ 61.4 \pm 1.3 \\ 19.07 \pm .32 \\ 290.8 \pm 6.3 \\ 131.7 \pm 4.6 \end{bmatrix}$	$25.7 \pm 6.870.7 \pm 3.121.027.48.4118 \pm 2044$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9.3 ± 1.9 14.8 ± 1.6 $2.1 \pm .9$ 6.6 ± 3.1 $.7.3 \pm 2.0$ 28.8 ± 6.9 27.8 ± 8.4
DI 1 DI 5 DI 10 DI 20 DI 27 DI 30 DI 40 DI 50	1705 1446 1617 1730 1352 1518 1506 1447	13°08' 12°57' 14°38' 13°08' 12°59' 13°15' 13°08' 13°26'	53 ⁰ 51' 55 ⁰ 35' 54 ⁰ 04' 53 ⁰ 51' 55 ⁰ 02' 54 ⁰ 01' 53 ⁰ 51' 55 ⁰ 32'	1725 13 ⁰ 08' 1506 12 ⁰ 53' 1657 13 ⁰ 08' 1750 13 ⁰ 38' 1412 14 ⁰ 29' 1538 15 ⁰ 48' 1516 13 ⁰ 36' 1503 13 ⁰ 08'	53 ⁰ 51' 53 ⁰ 55' 53 ⁰ 51' 54 ⁰ 34' 54 ⁰ 34' 54 ⁰ 36' 54 ⁰ 31' 53 ⁰ 51'	1 5 10 20 27 30 40 50	$50 \pm 18 \\ 30 \pm 12 \\ 365 \pm 34 \\ 122 \pm 45 \\ 271 \\ 265 \\ 1400 \\ 2260 \pm 190 \\ 190 \\ 122 \\ 100 \\ 10$	$18.7 \pm .6$ 10.8 ± 1.1 133.9 ± 1.4 $16.5 \pm .8$ 82.8 ± 1.3 90.7 ± 1.4 428.0 ± 7.3 192.7 ± 5.1	10.8 ± 1.9 7.8 ± 1.5 62.4 ± 2.9 3.8 ± 3.0 47.1 50.2 209 115 ± 19	$13.2 \pm 3.4 \\ 4.9 \pm 2.3 \\ 67.7 \pm 8.6 \\ 5.7 \pm 2.9 \\ 22.7 \pm 7.1 \\ 35.1 \pm 7.9 \\ 235 \pm 39 \\ 116 \pm 28$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
OC 1 OC 5 OC 10 OC 20 OC 27 OC 30 OC 40 OC 50	1428 1450 1515 1400 1544 1546 1557 1538	17 ⁰ 36' 17 ⁰ 36' 17 ⁰ 36' 17 ⁰ 00' 16 ⁰ 40' 16 ⁰ 36' 17 ⁰ 36' 15 [°] 58'	54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 07' 54 ⁰ 18' 54 ⁰ 36' 54 ⁰ 36' 54 ⁰ 33'	$\begin{array}{c} 1448 & 17^{0}36'\\ 1510 & 17^{0}36'\\ 1555 & 16^{0}08'\\ 1420 & 17^{0}36'\\ 1604 & 17^{0}22'\\ 1606 & 17^{0}33'\\ 1607 & 16^{0}57'\\ 1554 & 17^{0}36' \end{array}$	54 ⁰ 34' 54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 47' 56 ⁰ 14' 55 ⁰ 03' 54 ⁰ 34'	1 5 20 27 30 40 50	171 198 348 352 598 455 1680 17110	56. 3 ± 1.3 61. $4 \pm .4$ 132. 5 ± 1.7 128. 0 ± 2.0 366. 7 ± 2.5 192. 7 ± 2.1 766. 8 ± 8.6 13430	26. 7 10. 4 69. 4 74. 1 206 128. 4 381 5413	$\begin{array}{c} 21.9 \\ \pm 5.6 \\ 27.8 \\ \pm 2.5 \\ 68 \\ \pm 10 \\ 64 \\ \pm 14 \\ 163 \\ \pm 14 \\ 83 \\ \pm 12 \\ 329 \\ \pm 47 \\ 6330 \\ \pm 130 \end{array}$	$5.7 \pm 2.07.91 \pm .8416.4 \pm 2.713.3 \pm 3.434.6 \pm 3.022.6 \pm 2.879 \pm 11949 \pm 30$
RA 10 RA 20 RA 27 RA 30 RA 40 RA 50	1643 1840 1617 1615 1650 1631	16 ⁰ 46' 16 ⁰ 00' 17 ⁰ 03' 17 ⁰ 18' 16 ⁰ 50' 16 ⁰ 34'	58 ⁰ 50' 58 ⁰ 05' 57 ⁰ 45' 57 ⁰ 00' 59 ⁰ 12' 57 ⁰ 31'	1703 17 ⁰ 02 [•] 1900 16 [°] 50 [•] 1637 17 [°] 04 [•] 1635 16 [°] 46 [•] 1700 16 [°] 57 [•] 1647 16 [°] 50 [•]	60 ⁰ 57' 59 ⁰ 12' 60 ⁰ 08' 59 ⁰ 19' 60 ⁰ 10' 59 ⁰ 12'	10 20 27 30 40 50	223 ± 8 405 345 298 ± 78 1150 18070 ± 620	$\begin{array}{r} 66.3 \pm .9 \\ 139.3 \pm 3.3 \\ 176.7 \pm .6 \\ 84.3 \pm 1.1 \\ 306.6 \pm 6.3 \\ 17064 \pm 18 \end{array}$	$\begin{array}{r} 32, 1 \pm 5, 3 \\ 58, 4 \\ 89, 5 \\ 50, 0 \pm 7, 1 \\ 127 \\ 3140 \\ \pm 120 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r} 8.1 \pm .6 \\ 13.7 \pm 2.0 \\ 16.03 \pm .83 \\ 10.3 \pm 1.6 \\ 47.0 \pm 9.4 \\ 648 \pm 25 \end{array}$
OU 18 IN 20 OU 27 IN 27 OU 30 IN 30 OU 50 IN 50	1012 1902 1213 1637 1302 1712 1303 1707	18 ⁰ 00' 16 ⁰ 50' 17 ⁰ 53' 17 ⁰ 04' 17 ⁰ 31' 17 ⁰ 04' 17 ⁰ 44' 17 ⁰ 02'	66 ⁰ 00 ⁴ 58 ⁰ 05 ⁴ 65 ⁰ 04 ⁴ 60 ⁰ 08 ⁴ 64 ⁰ 34 ⁴ 62 ⁰ 01 ⁴ 64 ⁰ 42 ⁴ 60 ⁰ 46 ⁴	1141 14 ⁰ 00 ⁴ 2019 18 ⁰ 28 ⁴ 1315 13 ⁰ 04 ⁴ 1726 18 ⁰ 10 ⁴ 1348 13 ⁰ 46 ⁴ 1740 18 ⁰ 06 ⁴ 1358 13 ⁰ 28 ⁴ 1745 17 ⁰ 59 ⁴	60 ⁰ 40' 66 ⁰ 12' 59 ⁰ 28' 66 ⁰ 32' 60 ⁰ 07' 66 ⁰ 08' 59 ⁰ 55' 65 ⁰ 53'	18 20 27 27 30 30 50 50	250 247 479 414 359 307 9518 27930	$104.9 \pm .3$ $136.0 \pm .9$ $58.6 \pm .3$ $41.1 \pm .8$ $42.7 \pm .9$ 75.1 ± 1.5 5357 ± 15 10914 ± 5	51, 1 68, 1 2, 4 18, 8 27, 4 46, 2 2456 3473	$\begin{array}{rrrrr} 46.1 & \pm 1.2 \\ 53.8 & \pm 4.1 \\ 26.5 & \pm 1.6 \\ 29.4 & \pm 4.4 \\ 23.8 & \pm 4.0 \\ 35.9 & \pm 6.3 \\ 2556 & \pm 66 \\ 5358 & \pm 23 \end{array}$	$8.95 \pm .26$ 7.4 ± 1.0 5.40 ± .40 4.30 ± .81 4.88 ± .94 6.8 ± 1.5 411 ± 11 1365 ± 6

* Counted on counter which has been found to give consistently low ⁷Be numbers.

.

JUNE 29, 1969

.

		ON			OFF		ALT.	·			DPM/10 ³ S.	<u>C.M.</u>			
SAMPLE NO.	TIME	LAT	LONG O _W	TIME (Z)	LAT ON	LONG	IN Kft	7 _{8e}	95 ₇₁	-	10381	10	6 _{p,1}	137	<u>۔۔۔</u>
MM 1	1240	12027	58022	1300	12023'	58 ⁰ 22'	1	35 ± 17	8.59	±.64	5.3	7.0	± 2.4	3.2 ±	: 10
MM 5	1210	13012'	59 ⁰ 38'	1230	12,23	58023	5	59 ± 27	22.3	±.9	12.3 ± 5.0	8.8	± 4.0	4.7 ±	19
MM 10	1440	12 27'	58 ⁰ 08'	1500	12 49'	56008	10	211	52.8	±.3	22.5	33. 5	± 2.0	11,51±	. 60
MM 20	1325	12023'	58°23'	1345	13 ⁰ 50'	57°25'	20								
MM 27	1309	12057	59°27'	1325	12,33'	57°27'	27	125	240.8	±22	199	16 6	± 14	66.2 ±	3.5
MM 30	1409	14,02'	60,230	1429	12,23'	58,19	30	349	94.7	±1,3	47.8	35. 0	± 7.4	66.8 ±	27
MM 40	1414	12,23	58,23'	1424	13,02,	57, 54'	40	1170 ± 170	1334	± 23	724 ± 40	726	± 49	353 ±	: 13
MM 50	1356	13°28'	59 55'	1412	12"23'	58°23'	50	1930 ± 140	306.0	± 2,5	208	71	± 8	. 47.1 ±	= 8, 7
DI 1	1713	13008'	53 ⁰ 01'	1733	13,08'	53°01'	1	165 ± 17	67.8	±.9	30.9 ± 4.8	36, 1	± 4, 4	7.9 ±	±13
DI 5	1502	12,51'	55 54	1522	13016'	54,07	5	279	93.5	± L 1	43.6 ± 2.5	54. 7	± 7.7	12.3 ±	1.8
DI 10	1630	15,08	54°15'	1710	13 08'	53°01'	10	307	134.0	± 1,5	65.5	68.4	± 8.7	19.4 ±	= 2,2
DI 20	1748	13,08'	53°01'	1808	14,16'	55°23'	20	402	155. 1	± 3.8	71.0	69.0	± 7.5	21.6 ±	:29
DI 27	1345	13,04'	54 ⁰ 59'	1405	14,20'	54°03'	27	129	17.6	± 1.0	9.3			2.7 ±	:L9
01 30	1535	13,16'	54,018'	1555	15,53'	54 35'	30	105	19.10) ± . 27	13.8	8.3	±16	3,98 ±	±.64
DI 40	1459	13,08'	53,51'	1509	13,36'	54°31'	40	680 ± 100	227.5	± 4.2	118 ± 13	143	± 22	26.3 ±	6.2
DI 50	1441	13'26'	55 32'	1457	13'08'	53°51'	50	11190	3136	±7	1300	1802	± 87	534 ±	= 22
OC 1	1455	170361	54 ⁰ 34'	1515	170361	54 ⁰ 34'	1	206	72.6	±.9	32.6	41.0	± 5.2	6.4 ±	2.0
00 5	1502	12051	55054	1522	13016'	54 07'	ŝ	246	96.7	± 1.4	54.1 ± 3.4	49.1	± 6.8	8.6 ±	3.3
OC 10	1630	15008	54 ⁰ 15'	1710	13008	53 ⁰ 01	10	350	155.1	± 1.6	74.0	64.8	± 7.7	17.0 ±	2.1
OC 20	1748	13008	53 01'	1808	14 16'	55°23'	20	281-	161.0	= 1.9	75.0	79	± 10	12.7 ±	2.6
OC 27	1345	13004	54 ⁰ 59'	1405	14020'	54 ⁰ 03'	27	340	227.9	±1.9	145.5	94	± 10	19.1 ±	= 1, 1
OC 30	1535	13016'	54 ⁰ 18'	1555	15°53'	54 ⁰ 35'	30	389	78.3	± 1.3	43. 5	27. 0	± 7.5	10.1 ±	: 2, 1
OC 40	1459	13 ⁰ 08'	53°51'	1509	13°36'	54°31'	40	450 ± 140	410.4	± 5.3	198 ± 14	200	± 26	91 ±	= 12
OC 50	1441	13°26'	55 ⁰ 32'	1457	13°08'	53°51'	50	16960	11945	± 23	56 66	5550	± 120	1117 ±	: 29
RA 1	0532	16 ⁰ 50'	50012	0552	160501	59012	1	179 + 26	22 3	+12	41.0 ± 2.6	38 7	+67	128 ±	21
RA S	0554	16050	50012	0614	17000	60 37	ŝ	273 + 23	110.0	+11	631 ± 40	51 0	+62	11 4 ±	1 5
RASR	0642	16050	59012	0702	17020	61015	Ś	158	32.2	±.7	93	16.8	± 4.7	6.1 ±	1.7
RA 10	1648	17003	590 091	1708	1700	61019	10	204	119.8	± 1.2	77.9	47.6	± 6.3	11.6 ±	= 1.7
RA 20	1904	16050	59 ⁰ 12'	1924	17000	60'38'	20	356 ± 29	224. 2	± 3.2	123.9 ± 5.3	106.1	± 8.4	19.8 ±	= 2.4
кА 27	1620	16 55'	58 ⁰ 07'	1640	14 59'	60 23'	27	314	84.6	± 1.2	55.8	35. 5	± 7.8	10.3 ±	22
RA 30	1621	17,22'	56 ⁰ 35'	1641	1700	59°09'	30	465	321.6	±.8	165	150.5	± 4.2	57.3 ±	LO
RA 40	1637	16,20'	59 ⁰ 12'	1647	16 ⁰ 57'	60 ⁰ 10°.	40	1130	334. 2	± 6.6	121	201	± 35	31.9 ±	£ 9.6
011 18	2345	18010	660031	0525	160501	500121	19	201	226 6	+ 7	118	111 7	+ 2 8	1852 +	- 11
IN 18	0625	17010	61 ⁰ 17'	020	18010	660 63'	18	471	262 3	+17	143	121 0	+79	23.8 ±	= 1 6
011 19	1030	18000	65050	1200	130351	60 18'	19	304	84.9	±.9	42.9	37.9	± 3.7	8.83 ±	- 74
IN 20B	0710	17010	62 ⁰ 15'	0755	18000	66 ⁰ 00'	20	411	104.5	± 1.4	43.5	52.4	± 7.4	10.2	17
OU 27	1207	17047	6502	1309	12057	59027	27	303	44, 1	±.5	33.7	19.2	± 2.9	5.09	76
00 30	1326	170.54	64 42'	1409	14 02'	60 ⁰ 30	30	335	75.9	±.7	51.5	25.9	± 4.3	5.8 ±	= 1.2
IN 30	1646	16.59	60 ⁰ 23'	1718	17049	65°03'	30	529	202.4	±1,9	98.5	109.0	± 8.9	17.8 ±	L 6
IN 30	1716	17 06'	62 ⁰ 20	1744	17 48	65 54'	30	502	170.9	±20	82, 7	78.2	± 8. 8	13.3 ±	= 2.0
OU 50	1302	17044	64 42'	1356	13,28'	59 ⁰ 55	50	9536	6964		3174	3375	± 47	625 ±	= 11
IN 50	1652	17002'	60 ⁰ 40'	1737	17"59"	65 ⁰ 53'	50	15070	10992	± 23	4861	5390	± 100	766 ±	± 19

³ Counted on counter which has been found to give consistently low ⁷Be numbers.

.

JUNE 30, 1969

		ON		OFF		ALT.			0PM/10 ³ S.	C.M.	
SAMPLE NO.	TIME (Z)	LAT	LONG	TIME LAT	LONG	IN Kft	7 _{Be}	95 Zr	103 _{Ru}	106 _{Ru}	137 _{Cs}
MM 1 MM 5 MM 10 MM 20 MM 27 MM 30 MM 40 MM 50	1147 1110 1406 1225 1258 1339 1419 1400	12°23 13°05' 12°23' 13°02' 13°02' 13°44' 12°23' 13°28'	58 ⁰ 23' 59 ⁰ 30' 58 ⁰ 23' 58 ⁰ 23' 59 ⁰ 31' 60 ⁰ 20' 58 ⁰ 23' 59 ⁰ 55'	1207 12 ⁰ 23' 1130 12 ⁰ 20' 1426 12 ⁰ 23' 1245 13 ⁰ 48' 1318 12 ⁰ 38' 1359 12 ⁰ 23' 1430 13 ⁰ 02' 1416 12 ⁰ 23'	58° 23' 58° 22' 56° 49' 57° 26' 57° 15' 58° 23' 57° 54' 58° 23'	1 5 10 20 27 30 40 50	176 512 ± 17 388 107• 176 163 1228 8510	$108. 0 \pm 2. 0$ $194. 5 \pm . 8$ $149. 0 \pm 1. 6$ $54. 1 \pm 1. 3$ $10. 3 \pm . 7$ $43. 2 \pm 1. 2$ $364. 1 \pm 7. 2$ 4760 ± 14	45.4 73.1 ± 2.2 73.6 28.5 1.4 28.0 ± 3.2 241 1392	$\begin{array}{c} 68 & \pm 14 \\ 95.2 \pm 6.3 \\ 75.6 \pm 9.4 \\ 23.5 \pm 6.5 \\ 3.1 \pm 5.6 \\ 7.5 \pm 5.9 \\ 217 & \pm 39 \\ 1568 & \pm 84 \end{array}$	10.9 ± 3.8 25.9 ± 1.4 19.8 ± 2.3 3.7 ± 2.3 2.5 ± 1.9 7.2 ± 2.3 60 ± 10 549 ± 22
01 1 01 5 01 10 01 20 01 27 01 30 01 40 01 50	1633 1433 1527 1708 1335 1507 1508 1449	13°08' 12°31' 15°06' 13°08' 12°58' 13°22' 13°08' 13°26'	53 ⁰ 51' 56 ⁰ 12' 54 ⁰ 12' 53 ⁰ 51' 55 ⁰ 07' 54 ⁰ 36' 53 ⁰ 51' 55 ⁰ 32'	1653 13 ⁰ 08' 1453 12 ⁰ 44' 1607 13 ⁰ 08' 1728 14 ⁰ 17' 1355 14 ⁰ 22' 1527 15 ⁰ 59' 1518 13 ⁰ 36' 1505 13 ⁰ 08'	53 ⁰ 51' 54 ⁰ 16' 53 ⁰ 51' 55 ⁰ 27' 54 ⁰ 02' 54 ⁰ 51' 54 ⁰ 31' 53 ⁰ 51'	1 5 20 27 30 40 50	202 300 196 340 214 ± 29 253 ± 21 265 ± 96 11080	146.7 ± 1.4 $119.8 \pm .4$ 76.0 ± 1.2 35.8 ± 1.2 $16.3 \pm .6$ $56.3 \pm .9$ 38.6 ± 2.7 3866 ± 15	78. 0 ± 3. 4 57. 2 30. 7 12. 0 2. 7 ± 2. 2 27. 7 ± 4. 6 1481	$75 \pm 1868.3 \pm 2.738.4 \pm 6.017.4 \pm 5.62.2 \pm 1.729.1 \pm 6.01819 \pm 87$	$\begin{array}{c} 16.4 \pm 3.0 \\ 15.23 \pm .62 \\ 11.1 \pm 1.7 \\ 7.4 \pm 2.2 \\ 2.0 \pm 1.3 \\ 4.5 \pm 1.7 \\ \end{array}$
OC 1 OC 5 OC 10 OC 20 OC 27 OC 30 CC 40 OC 50	1352 1414 1438 1326 1525 1524 1558 1539	17°36' 17°36' 17°36' 16°30' 16°23' 16°37' 16°37' 17°36' 17°36' 15°58'	54 ⁰ 34' 54 ⁰ 34' 55 ⁰ 25' 54 ⁰ 20' 54 ⁰ 20' 54 ⁰ 57' 54 ⁰ 57' 54 ⁰ 53'	1412 17 ⁰ 36' 1434 17 ⁰ 36' 1518 15 ⁰ 30' 346 16 ⁰ 20' 1545 17 ⁰ 25' 1554 17 ⁰ 31' 1608 16 ⁰ 57' 1555 17 ⁰ 36'	54 ⁰ 34' 54 ⁰ 12' 55 ⁰ 38' 55 ⁰ 48' 55 ⁰ 02' 55 ⁰ 03' 54 ⁰ 34'	1 5 20 27 30 40 50	$140 \pm 29 \\ 224 \pm 31 \\ 203 \pm 19 \\ 418 \pm 38 \\ 817 \\ 1304 \pm 66 \\ 850 \pm 200 \\ 14200$	112.8 ± 1.4 103.2 ± 1.8 118.0 ± 1.0 239.1 ± 1.9 717.2 ± 3.2 695.3 ± 5.1 338.0 ± 4.9 7851 ± 20	$61, 6 \pm 3, 4$ $50, 5 \pm 6, 2$ $59, 5 \pm 4, 2$ $125, 5 \pm 4, 6$ 445 $385, 9 \pm 5, 1$ 174 ± 22 3597	$\begin{array}{c} 43.\ 7 \pm 6.\ 9 \\ 44.\ 5 \pm 8.\ 5 \\ 59.\ 5 \pm 5.\ 6 \\ 118 \ \pm 10 \\ 322 \ \pm 18 \\ 316 \ \pm 15 \\ 104 \ \pm 19 \\ 4090 \ \pm 110 \end{array}$	$17.4 \pm 2.1 \\ 8.6 \pm 5.4 \\ 17.1 \pm 3.0 \\ 25.3 \pm 2.4 \\ 83.9 \pm 4.0 \\ 71.7 \pm 6.1 \\ 40.1 \pm 7.0 \\ 736 \pm 27$
RA 10 RA 20 RA 27 RA 30 RA 40 RA 50	1628 1805 1604 1601 1652 1633	17 ⁰ 04' 15°52' 17°05' 17°25' 16°50' 16°34'	59 ⁰ 50' 57 ⁰ 50' 57 ⁰ 55' 56 ⁰ 50' 59 ⁰ 12' 57 ⁰ 31'	1648 17 ⁰ 35' 1825 16 ⁰ 50' 1624 17 ⁰ 00' 1621 17 ⁰ 04' 1702 16 ⁰ 57' 1648 16 ⁰ 50'	61 ⁰ 42' 59 ⁰ 12' 60 ⁰ 32' 59 ⁰ 11' 60 ⁰ 10' 59 ⁰ 12'	10 20 27 30 40 50	307 580 ± 130 1117 1360 ± 140 7440 12320	121.4 ± 1.4 365.1 ± 2.1 1054 ± 4 1091 ± 3 4752 ± 22 8394 ± 21	$\begin{array}{r} 67.\ 0\ \pm\ 2.\ 2\\ 177\ \ \pm\ 16\\ 605.\ 7\ \pm\ 7.\ 0\\ 614\ \ \pm\ 7\\ 2348\\ 3944 \end{array}$	$\begin{array}{c} 61. 1 \pm 4. 9 \\ 174. 3 \pm 1. 1 \\ 483 \pm 23 \\ 571 \pm 40 \\ 2150 \pm 110 \\ 4010 \pm 110 \end{array}$	$\begin{array}{c} 6.2 \pm 1.6\\ 31.0 \pm 4.5\\ 102.5 \pm 4.7\\ 102.2 \pm 3.6\\ 397 \pm 25\\ 825 \pm 28 \end{array}$
OU 18 IN 20 OU 27 IN 28 OU 30 OU 50 IN 50	0920 1651 1202 1624 1255 1306 1702	18 ⁰ 14' 17 ⁰ 37' 17 ⁰ 37' 17 ⁰ 00' 17 ⁰ 26' 17 ⁰ 44' 17 ⁰ 02'	65 ⁰ 55' 61 ⁰ 56' 64 ⁰ 34' 60 ⁰ 32' 64 ⁰ 25' 64 ⁰ 42' 60 ⁰ 46'	1055 13 ⁰ 52' 1723 18 ⁰ 45' 1258 13 ⁰ 02' 1713 18 ⁰ 05' 1339 13 ⁰ 44' 1400 13 ⁰ 28' 1752 17 ⁰ 59'	60 ⁰ 20° 65 ⁰ 48' 59 ⁰ 31' 66 ⁰ 18' 60 ⁰ 20° 59 ⁰ 55' 65 ⁰ 53'	18 20 27 28 30 50 50	413 1400 696 1445 798 4570 4320	214, 4 ± 1, 2 833, 7 ± 3, 3 86, 0 ± , 7 764, 8 ± 3, 0 525, 3 ± 1, 9 7589 ± 3 7521 ± 3	103 422 187. 8 390 293 4290 4174	97. 7 ± 5.5 405 ± 16 139. 7 ± 7.0 376 ± 14 255 ± 11 3671 ± 18 3586 ± 17	18.0 ± 1.1 71.3 ± 3.0 56.8 ± 1.4 53.6 ± 2.6 50.6 ± 2.4 501.5 ± 3.9 545.7 ± 3.6

* Counted on counter which has been found to give consistently low ⁷Be numbers.

.

JULY 1, 1969

		ON		0 FF		ALT.			DPM/10 ³ S.	C.M.	
SAMPLE NO.	TIME (Z)	LAT	LONG	TIME LAT	LONG	IN Kft	7 _{Be}	95 Zr	103 _{Ru}	106 _{R11}	137
RA 1	0600	16052	59013	0620 16052'	59 ⁰ 13'	1	226	99.5 ± 1.3	55.8	35.2 ± 7.3	11.1 ± 2.0
RA 5	0622	16 ⁰ 52'	59 ⁰ 13'	0642 17 ⁰ 00"	61 ⁰ 00'	5	312	113.6±1.5	50, 8	92 ± 11	20.7 ± 2.4
IN 20	0656	17 ⁰ 25'	62 ⁰ 20'	0742 18 ⁰ 30'	66 ⁰ 00'	20	764	509.9±2.8	252	271 ± 17	52.1 ± 2.5
MM 1	1202	12,23'	58°23'	1222 12,23'	58°23'	1	298	110.3 ± 2.0	47.1	42 ± 12	15.1 ± 3.6
MM 5	1138	13,05'	59, 30'	1158 12,23'	58,23'	5	240 ± 24	69.3±1.0	25.9 ± 4.0	36.4 ± 6.3	11.6 ± 2.0
MM 10	1420	12,23	58,23'	1440 12,42'	56,10'	10	192 ± 41	$66.0 \pm .8$	35.1 ± 7.3	38.3 ± 4.1	9.9 ± 1.1
MM 108	2116	12,30	58 12'	2257 13,08'	53 51	10	250	$120.2 \pm .8$	50.3 ± 1.6	58.2 ± 4.6	13.2 ± 1.1
MM 20	1243	12,23	58 23'	1303 13,43	57-27	20	65 ± 27	11.1 ± .8	4. U ± 2. 9	5 5 = 5 2	
MM 208	1748	12-24	58-30	1808 12 23	58 23	20	199	18.8 ± 1.2	17 7	(.) ± 4.0	29±23
MM 27A	1308	13-04	59 28	1308 13 00.	59 39	21	183	23.7 ± 1.7	16.1		
MM 27B	1218	12 00.	59 30	1328 12 24	20 0U	21	107	19.0 = 1.3	10.1	16 2 4 7 4	57-24
MIN 30	1429	120221	59 49 59 ⁰ 72,	1405 12 25	57054	30 AN	1110	504 0 + 8 2	288	10.5 ± 7.4 205 + 45	5.7 ± 2.4 6.1 + 12
MM 50	1420	13028	500551	1436 13 02 1425 12 ⁰ 23	58023	50	5130	1861 ± 11	200 794	892 ± 74	203 ± 19
	1017	1.0.0.	- 1 ⁰			,	207	167 1 + 6	07.0		17 02 + 92
	1545	14 43	54 00	1003 13 08	22 21	L E	507		73. U 730	74.7 ± 3.3	1/. U2 = .00 109 7 + 4 3
	1007	12,00	22 71 C	102/ 12 00	52 ⁰ 51	10	527	$135 0 \pm 9$		207 ± 10	12 0 + 1 1
01.10	1414	13000	53051	1700 13054	55000	20	120	60 + 7	47.4	JJ. 7 - 4. J	
DI 274	1345	120551	54 ⁰ 47'	1355 13000	53057	27	147	84+14	11.0		43±36
DI 278	1355	13009	53051	1405 14025	54001	27	194	8.3 ± 1.4	2.9 ± 4.6		8.4 ± 3.8
DI 30	1517	13008	53 ⁰ 51'	1537 15021	54009	30	327	59.8±1.2	30.6	23.7 ± 7.9	9.0 ± 2.3
DI 40	1517	13008	53 ⁰ 51'	1527 13 ⁰ 36'	54031	40	650 ± 100	79.5 ± 3.5	48 ± 11	65 ± 30	12.2 ± 5.6
DI 50	1458	13°26'	55 ⁰ 32'	1514 13 ⁰ 08'	53 ⁰ 51'	50	6250	1240 ± 9	443	723 ± 71	177 ± 19
OC 1	1453	17 ⁰ 36'	54 ⁰ 34'	1513 16 ⁰ 30'	54 ⁰ 20'	1	331	144.9 ± 1.6	74. 0	95 ± 11	20.7 ± 2.6
0C 5	1429	17.36'	54034	1444 17.36'	54034	5	354	173.9 ± 2.5	88.3	98 ± 15	23.0 ± 4.1
OC 10	1407	17 36'	54 ⁰ 34'	1427 17 36'	54,34	10	556	290.5±2.7	122	131 ± 12	31, 0 ± 4, 8
OC 20	1343	16 ⁰ 18'	55 ⁰ 30'	1403 17 ⁰ 36'	54'34'	20	172	34.1 ± 1.5	14. 7		
OC 27A	1536	16911'	54009'	1546 17 ⁰ 10'	54021'	27	196	37.9±1.7	27. 7		10.3 ± 3.8
OC 27B	1546	17 ⁰ 10'	54021'	1556 16 ⁰ 56'	55038	27	194	42.3 ± 1.7	27.6		9.1 ± 3.9
OC 30	1544	16914	54017'	1604 17018	55,52	30	319	50.1 ± 1.2	28.5	12.0 ± 8.0	6.8 ± 2.2
OC 40	1608	17036	54034'	1618 16957	55'03'	40	770	452.0 ± 7.1	245	191 ± 42	59 ± 11
OC 50	1549	15 58	54053	1605 17°36'	54'34'	50	7232	3554 ± 15	1652	1803 ± 85	371 ± 22
RA 1	1827	16 ⁰ 50'	59012'	1847 17000	60,32	1	267	108.5 ± 1.4	61.7	70, 8 ± 8, 3	9.4 ± 2.0
RA 5	1805	16,50	59 12	1825 16 50	59,12	5	245	$101.5 \pm .6$	48.2	53. 2 ± 3. 2	$14.87 \pm .92$
RA 10	1645	16 50	59 12	1705 16 53'	61 44	10	590	267.1 ± 4.2	139	142.0 ± 9.4	22.4 ± 1.6
RA 20	1740	16,00	57-45	1800 16 50	59 12	20	230	46.2±1.2	14. 7	40.6 ± 8.4	10,7 ± 25
RA Z7A	1615	16~29	57 46'	1625 16 50	59 20	27	273	$147.7 \pm .8$	624	09.1±4./	26 7 + 4 4
RA 278	1025	10 50	59 20 6 m m	1035 10 22	00 07.	21	0UZ		16.1	11 ± 10	20.7 ± 4.4
RA 276	1022	160561	60 07 ·	1634 16050	61 20°	20	(70 ± 11 0	71 1 + 1	14.0	121 ± 20	A 20 + 7A
DA /7	1655	16050	59012	1705 16057	60010	17	15600	7207 - 7	2561	3248 ± 40	716 ± 10
RA 50	1636	16 ⁰ 34'	57031	1651 16 50	59 ⁰ 12	50	9930	5744 ± 17	2643	2694 = 97	477 ± 24
011 19	0050	18000	66 ⁰ 00	1123 14000	60 ⁰ 20	19	101	272 4 + 1 5	125	133 1 + 6 5	267+12
	1212	17022	640201	1308 12004	500 20	27	474	202 8 + 1 5	106	103 7 + 6 9	23.5+14
00 27	1311	17044	64042	1409 13 28	59055,	50	17240	7138 ± 3	2624	3489 ± 15	685. 3 ± 3. 7
IN 50	1705	1702	60 46'	1753 17 59	65 ⁰ 53'	50	18852	12905 = 25	5875	6237 ± 110	1030 ± 19

JULY 2, 1969

		ON		OFF		ALT.				DPM/1	0 ³ S.	<u>C.M.</u>			
SAMPLE NO.	TIME (Z)	LAT		TIME LAT	LONG	IN <u>Kft</u>	7 _{Be}	95 _Z	r	103	Ru	10	Жац	137	Cs
RA 108	0125	17 ⁰ 00'	57 ⁰ 12'	0138 16055	' 58 ⁰ 54'	10	471	240.9	± 3.6	122		78	± 16	27.3	± 5, 2
MM 10 MM 30 MM 40 MM 50 MM 60	1416 1348 1427 1407 1410	12 ⁰ 23' 13 ⁰ 52' 12 ⁰ 23' 13 ⁰ 28' 13 ⁰ 20'	58 ⁰ 23' 60 ⁰ 20' 58 ⁰ 23' 59 ⁰ 55' 59 ⁰ 40'	1436 12°42 1408 12°22 1437 13°02 1424 12°23 1437 12°37	55 ⁰ 58' 58 ⁰ 23' 57 ⁰ 54' 58 ⁰ 23' 58 ⁰ 23' 57 ⁰ 00'	10 30 40 50 60	89 657 938 2628 64540	8.59 78.8 619.9 358.6 30056)±.38 ±L3 ±8.2 ±6.6 ±13	38.7 339 120 8974	± 18	4.0 29.9 337 116 14811	± 1. 6 ± 8. 2 ± 46 ± 60 ± 63	2.0 10.0 77 49 4528	± 1.1 ± 2.4 ± 12 ± 16 ± 16
DI 5 DI 30 DI 40 DI 50 DI 60	1443 1507 1519 1500 1501	12 ⁰ 51' 13°04' 13°08' 13°26' 13°26' 13°03'	55 ⁰ 07' 53 ⁰ 40' 53 ⁰ 51' 55 ⁰ 32' 54 ⁰ 24'	1503 13°04 1527 15°16 1529 13°36 1516 13°08 1528 13°38	53°40' 54°10' 54°31' 53°51' 53°55'	5 30 40 50 60	79 274 280 ± 11 5310 45960	10.3 43.3 0 115.0 853.0 32475	±.6 ±L1 ±5.3 ±2.8 ±40	6.7 22.3 48 221 12551	± 10	8, 1 10, 9 31 462 15650	± 4.0 ± 6.9 ± 15 ± 22 ± 200	2.2 9.6 30.5 109.4 3830	± 1.5 ± 2.3 ± 6.6 ± 6.0 ± 49
OC 30 OC 40 OC 50 OC 60	1542 1604 1548 1556	16 ⁰ 52' 17 ⁰ 36' 15 ⁰ 58' 17 ⁰ 00'	54 ⁰ 26' 54 ⁰ 34' 54 ⁰ 53' 54 ⁰ 30'	1602 12 ⁰ 17 1614 16 ⁰ 57 1603 17 ⁰ 36 1623 17 ⁰ 30	' 56 ⁰ 02' ' 55 ⁰ 03' ' 54 ⁰ 34' ' 55 ⁰ 10'	30 40 50 60	321 1380 ± 19 2894 55010	87.9 0914 722.4 37926	± 1. 1 ± 10 ± 8.3 ± 43	50, 0 438 350 13706		38, 3 485 391 18090	± 8. 1 ± 54 ± 47 ± 210	8.3 73 80 4671	± 2.5 ± 13 ± 13 ± 53
RA 10 RA 30 RA 40 RA 50 RA 60	1635 1609 1657 1639 1641	16 ⁰ 47' 17 ⁰ 08' 16 ⁰ 50' 16 ⁰ 34' 17 ⁰ 03'	59 ⁰ 06' 56 ⁰ 48' 59 ⁰ 12' 57 ⁰ 31' 61 ⁰ 00'	1655 16 ⁰ 51 1629 16 ⁰ 47 1707 16 ⁰ 57 1654 16 ⁰ 50 1747 17 ⁰ 03	' 61 ⁰ 16' ' 59 ⁰ 06' ' 60 ⁰ 10' ' 59 ⁰ 12' ' 61 ⁰ 00'	10 30 40 50 60	224 478 5522 5046 17250	69.8 166.5 1999 1090 15807	± 1. 0 ± 1. 7 ± 4 ± 10 ± 18	34. 0 92. 5 600 464 5268		39,1 69 973 678 6219	± 5.9 ± 11 ± 26 ± 78 ± 82	9. 0 29. 0 293. 7 137 1247	± 1.5 ± 2.7 ± 7.0 ± 20 ± 21
OU 27 IN 27 OU 30 OU 50 IN 50 OU 60 IN 60	1202 1658 1252 1312 1708 1309 1708	17 ⁰ 29' 16 ⁰ 51' 17 ⁰ 42' 17 ⁰ 44' 17 ⁰ 02' 17 ⁰ 44' 17 ⁰ 02'	64 ⁰ 56' 61 16' 64 ⁰ 35' 64 ⁰ 42' 60 ⁰ 46' 64 ⁰ 42' 61 ⁰ 00'	1259 12 ⁰ 32 1723 17 [°] 02 1348 13 [°] 52 1407 13 [°] 22 1749 17 [°] 59 1410 13 [°] 20 1747 17 [°] 59	59 ⁰ 29 64 ⁰ 42' 60 ⁰ 20' 59 ⁰ 55' 65 ⁰ 53' 59 ⁰ 40' 65 ⁰ 53'	27 27 30 50 50 60 60	332 602 639 10890 9245 7434 32581	95. 9 188. 5 198. 0 6974 5254 27011 35893	$\pm .8$ ± 2.1 ± 1.6 ± 17 ± 17 ± 40 ± 67	54, 6 100 95, 4 3110 1981 16254 21095		48, 1 95 106, 2 3620 3320 13000 13070	± 4.3 ± 11 ± 7.4 ± 79 ± 87 ± 180 ± 230	1019 18.6 17.7 529 400 2365 2362	
							JULY 21,	1969							
MM 60 D1 60 RW 60 OU 60	1525 1445 1425 1303	11 ⁰ 30' 13 ⁰ 22' 15 ⁰ 00' 17 ⁰ 44'	55 ⁰ 30' 54 ⁰ 25' 56 ⁰ 15' 64 ⁰ 42'	1551 11 ⁰ 3 1511 12 ⁰ 4 1433 14 ⁰ 2 1407 15 ⁰ 4	0' 57 ⁰ 30' 0' 54 ⁰ 20 0' 55 ⁰ 30 0' 58 ⁰ 00	60 60 60 60	44380 40020 63300 25920	27824 31547 43460 31492	± 36 ± 39 ± 86 ± 37	8161 10420 15640 11631	= 2 60	15320 17210 25780 17310	± 190 = 210 ± 480 = 210	3728 3635 5680 2904	± 49 ± 51 ± 120 ± 42
							JULY 26.	1969							
MM 60 OU 60	1520 1400	11 ⁰ 30' 17 ⁰ 42'	59 ⁰ 15' 64 ⁰ 48'	1547 10 ⁰ 1520 11 ⁰	9 0' 57 ⁰ 30 9 0' 59 ⁰ 15)* 60 i' 60	36080 24390	19878 20009	± 29 ± 17	5584 6667		11710 11617	± 170 ± 92	3085 2464	± 43 ± 23
		-	•	-	•		JULY 28	. 1969				•••	• / •	••••	
A 60 3 50 C 60 D 60 E 60 OU 60 IN 50	1508 1535 1602 1630 1653 1422 1720	15 ⁰ 25 15 ⁰ 45 17 ⁰ 30 17 ⁰ 30 16 ⁰ 05 16 ⁰ 15 15 ⁰ 55	56 ⁰ 35' 56 ⁰ 09' 54 ⁰ 00' 54 ⁰ 00' 56 ⁰ 00' 61 ⁰ 30' 58 ⁰ 53'	1535 15 ⁹ 1602 17 ⁹ 1629 17 ⁹ 1653 16 ⁰ 1720 15 ⁰ 1505 15 ⁹ 1809 17 ⁹	25' 56 ⁰ 3 30' 54 ⁰ 0 30' 54 ⁰ 0 05' 56 ⁰ 0 55' 58 ⁰ 5 25' 56 ⁰ 3 42' 64 ⁰ 4	5' 60 0' 60 0' 60 0' 60 3' 60 5' 60 7' 60	25430 16030* 14260 13040 28260 17840 15940	15545 14276 12921 14599 14269 16378 16208	± 16 ± 10 ± 10 ± 39 ± 10 ± 7 ± 7	5140 5077 5099 6494 4278 6219 6308	= 13 = 14	9640 8554 7872 3660 9133 3 10037 2 10161	± 160 ± 66 ± 60 ± 230 ± 62 ± 45 ± 43	2416 1502 1691 1778 2217 1882 2198	± 39 ± 13 ± 13 ± 41 ± 13 ± 9 ± 8

(and)

с. с

Ŀ,

* Counted on counter which has been found to give consistantly low ⁷Be numbers.

DATE FILMED 7/19/93