
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue

Argonne, IL 60439

ANL/MCS-TM-- 171

DE93 012147

ANL/MCS-TM-171

A Toolkit for Building Earth System Models

by

Ian Foster

Mathematics and Computer Science Division

March 1993

This work was supported by the Office of Scientific Computing, U.S. Dop_rtment of Energy, under

,. Contract W-31-109-Eng-38. __[S'_ E_!_ IOISTRIBUTION OF:THIS _[.JT/I,EI'4"r"I,_UNLIMITED '
_1111

w!_,



Contents

Abstract 1

1 Motivation 1

2 Programming Concepts 2
2.1 Processes .................................... 2
2.2 Ports ....................................... 2
2.3 Channels ..................................... 3

2.4 Mappings .................................... 3

3 Implementation 4
3.1 FORTRAN M ................................... 4

3.2 Compatibility Libraries ............................. 5
3.3 Performance Issues ............................... 7

4 Status 7

Reference 7

iii

' m _' ',' I]r .....



A Toolkit for Building Earth System Models

Ian Foster

Abstract

An earthsystemmodelisa computercodedesignedtosimulatetheinterrelated
processesthatdeterminetheearth'sweatherand climate,suchasatmospheric
circulation,atmosphericphysics,atmosphericchemistry,oceaniccirculation,and
biosphere.I proposea toolkitthatwouldsupporta modular,orobject-oriented,
approachtotheimplementationofsuchmodels.

1 Motivation

An earth system model is a computer code designed to simulate the interrelated processes
that determine the earth's weather and climate, such as atmospheric circulation, atmo-
spheric physics, atmospheric chemistry, oceanic circulation, and biosphere. A scientist
might use a diagram similar to Figure 1 to explain an earth system model. In this fig-
ure, boxes represent processes, and arrows represent linkages between processes. This
description is easy to follow. It hides unnecessary detail and makes the interfaces be-
tween components clear. These desirable characteristics, which have obvious value to the
scientist, are also of value to the software engineer. In fact, they constitute the central
attributes of modt:lar, or object-oriented, design. Unfortunately, this natural modularity
is normally lost when an earth system model is implemented as a computer program. The
result is that it is difficult both to implement these models and to adapt them to changing
requirements.

In this document, we propose an object-oriented approach to the implementation of
earth system models and a toolkit that supports the use of this approach on sequential
and parallel computers. These have the following features:

1. Process models written in sequential languages such as FORTRAN and C, or in par-
allel languages such as FORTRAN+NX, FORTRAN+PICL, C+p4, High Performunce
FORTRAN, and PCN, can be combined with little modification.

2. Code that performs generic functions such as I/O or the conversion of data between
different grid systems can be encapsulated in reusable modules.

3. On a parallel computer, the mapping of computation to processors can be modified
within a component without changing other parts of a program.

4. Programs produced using the toolkit are portable across many parallel and sequen-
tial computers.

, , _l,i



CHEMISTRY

A? T

• AT ! T
auv ATMOSP _ BmsP

!

& RADL_'HON _T q [ " _q [
!

AsJ. T_
¥

N
Figure 1: Simplified Schematic Description of Earth System Model

The first feature allows existing atmosphere, ocean models, etc., to b.e integrated, even
if written in different programming languages. The second feature facilitates reuse and
exchange of model components. The third feature simplifies the development of load-
balancing strategies.

2 Programming Concepts

Our modular, or object-oriented, approach to model development is based on four ideas:
processes, ports, channels, and mappings. The process is the building block from which
models are constructed. A process's interface with its environment is defined in terms of
ports. An application is constructed by creating processes and connecting ports in these
processes with channels. The programmer can also specify a mapping of processes to
physical processors.

2.1 Processes

A process encapsulates data structures and the code that operates on those data struc-
tures. The code can be written in any programming language supported by the toolkit. If
this is a parallel language, then the process may create subprocesses that perform inter-
nal communication. This internal communication is visible only within the process and
cannot interfere with other communications.

An implementation of an earth system model will define one process for each box in
a specification such as Figure 1, plus additional processes for I/O and data conversion
functions.

2.2 Ports

A process's interface to its environment is defined in terms of ports. These come in
two flavors: out-ports and in-ports; a process can send data on an out-port and receive
information on an in-port. A port is similar in some respects to a I/O unit or file in

2



! I I I
' .

 iiiiiiiii ! ill:
,' °

Figure 2: A Process and Its Interface

Fortran or C; send and receive analogous to write and read operations. If a process is a
parallel program, then its interface is likely to consist of an array of ports, with one port
for each subprocess.

A process and its ports together define a reusable module. Figure 2 shows the pro-
grammer's view of a process. Four in-ports and two out-ports (represented as arrows)
define the interface, while internal implementation details are hidden.

2.3 Channels

The programmer constructs a model by plugging together processes and creating channels
to specify how these processes are to interact. A channel is a one-to-one communication
link that connects an out-port and an in-port. It can be thought of as a first-in, first-out
message queue, with send operations on the out-port adding messages to the queue, and
receive operations on the in-port removing messages from the queue. A receive operation

±

blocks if the queue is empty and resumes execution if and when a send operation adds to
the queue.

The use of channels to connect processes is illustrated in Figure 3. At the top of
the figure, an atmosphere model process, an ocean model process, and an interpolator

2 process are shown, together with the ports that define their interfaces. At the bottom
of the figure, the same processes are shown coupled together. As the interfaces between

- the processes consist of multiple channels, we can infer that the processes are probably
| parallel programs.

Because model components are represented as distinct processes and all intermodel
interaction is constrained to occur via channels, it is easy to substitute components. For
example, the ocean model in Figure 3 can be replaced with a program that reads sea
surface temperature from a file: no changes to the interpolator or the atmosphere model
are required. Similarly, an alternative interpolation algorithm can be substituted without
changing the other two components.

2.4 Mappings

The programmer can provide a third piece of information when plugging processes to-
gether: where processes are to execute in a parallel computer or network. As a process
carl itself be a parallel program, the programmer can allocate a set of processors to a

3

J

,1
i

I '



I ATMOSPHEREI ._. _ _ _ _ _I_I _INTERPOLATOR]

¢
I INTE_OLATOR I

Iocgaml
Figure 3: Process Coupling

particular process. This mapping information can have a profound impact on the per-
formance of the program, but does not affect the result computed, ttence, mapping can
be changed without changing other parts of a program. For example, Figure 4 shows a
program comprising two processes (each a parallel program in its own right) mapped to
a parallel computer, two parallel computers, and a workstation and a parallel computer.

3 Implementation

While the concepts outlined in Section 2 can be employed in any programming systcm,
they are easier to use if supported by appropriate tools. In this section, we describe a
toolkit that provides direct support for the concepts. This toolkit comprises the following
components:

1. A language for plugging together processes to form programs. Initially, we plan to
use FORTRAN M for this purpose, as this provides syntax for representing processes,
ports, channels, and mapping.

2. Compatibility libraries that allow programs developed using standard sequential and
parallel programming systems to be encapsulated as processes. Initially, we plan
to target message-passing libraries such as NX, PICL, and p4. Support for High
Performance FORTRAN (HPF) is to be added as HPF compilers become available.

3.1 FORTRANM

FORTRAN M is a small set of extensions to Fortran 77 that provides syntax for represent-

ing the programming concepts outlined in Section 2. Figure 5 shows an illustrative code
fragment. The process atmosphere implements a simple atmosphere model that obtains

4



(c) ,

i.........................................i i.....----i.....!.....i.....Y-'t....i

Figure 4: The same code can execute on (a) one parallel computer, (b) two parallel
computers, and (c) a workstation and a parallel computer

sea-surface temperature data on in-port sst_i and sends momentum data on out-port
uv_o. The process coupled_model couples this process with an ocean model. A complete
description of FORTRAN M is provided in a separate document [1].

3.2 Compatibility Libraries

A compatibility library allows a program written in a foreign parallel programming lan-
,, guage such as FORTRAN+NX, FORTRAN+PICL, C-Fp4, PCN, or HPF to be invoked as

I a process in a FOttTaAN M program. On distributed-memory parallel computers, pro-

i grams written in these languages create one or more processes per physical processor;
c these processes communicate by calling low-level message-passing routines provided by
i the operating system.
1 A compatibility library consists of two components: concurrency and interface. The

concurrency component implements foreign language processes using the mechanisms used
to implement FORTRAN M processes and organizes communication so that messages gen-
erated by the foreign computation are distinguishable from those generated by other parts
of a computation. The interface component provides a mechanism by which a FORTRAN M
program can invoke a foreign program, passing ports as arguments. It also provides the
foreign language with routines that it can call to send and receive messages on these ports.

Hence, a compatibility library comprises a component that is invisible to the program-
' mer (a run-time library) and a component th._t is visible to the programmer (routines for

sending and receiving messages on ports). In general, the modifications to a program
required for it to execute in a coupled model consist primarily of the addition of the
communication calls needed to send and receive interface data.

_1r _1



process atmosphere(sst_i ,uv_o)

parameter(NLAT=128, NLON=256, TMAX=I00)

C The ports sst_i and uv_o are the external interface.

inport (real x(NLAT,NLON)) sst_i

outport (real x(NLAT,NLON), real y(NLAT,NLON)) uv_o
C Process common variables.

process common /atmo/ sst, u, v
real sst (NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)

C Repeat TMAXtimes: recv SST, update U _z V, send U _ V.
do 10 i=I,TMAX

send(uv_o) u,v

receive(ssti) sst

call atm_compute
I0 continue

C Signal end of communication.
endchannel (uv_o)

end

process coupled.model

parameter (NLAT=I28, NLON=256)

C Local port variables.

inport (real x(NLAT,NLON)) ssti

outport (real x(NLAT,NLON)) ssto

inport (real x(NLAT,NLON), real y(NLAT,NLON)) uvi

outport (real x(NLAT,NLON), real y(NLAT,NLON)) uvo

C Create channels and define ports.
channel (out=ssto, in=ssti)

channel (out=uvo,in=uvo)

C Call two models with ports as arguments.

processes

call atmosphere(ssti ,uvo)
call ocean(uvi, ssto)

endprocesses
end

Figure 5: FORTRAN M programming example



3.3 Performance Issues

The use of the toolkit can introduce overhead that would not be incurred if a code were

implemented as a monolithic program. Primary sources of overhead are additional copy-
ing because of the use of channels for data transfer between modules and process switching

_ when multiple modules execute on the same processor. Although these costs must clearly
be carefully evaluated, they must also be weighed against the benefits of modular dc-
sign, ease of modification, ease of reuse, and portability. We are currently conducting
experiments to quantify these costs.

4 Status

A prototype FORTRAN M compiler for uniprocessors and shared-memory multiprocessors
is to be available from Argonne National Laboratory in November 1992 and a compiler
for distributed-memory parallel computers is scheduled for release soon after. These
compilers use source-to-source transformations to implement the FORTRAN M extensions
and operating system facilities to implement concurrent threads and message passing.

The success of this toolkit depends to a large extent on the case with which com-
patibility libraries can be developed. As a first experiment, we propose to develop a
compatibility library for applications developed using Intel FOnTRAN+NX. This work is
to begin in eaily 1993.

Reference

[1] Foster, I., and Chandy, K. M., Fortran M: A language for modular parallel pro-
gramming, Preprint MCS-P327-0992, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, Ill., 1992.

I II I II I | I III IIIllll I I1[11 I III[ IIIIl[ IIIi i _IIH,II i iii i 1 i ii
,ql,,r ,mnlnpnll,llte.,iIlp,,ll$,t_,I,l'l.ll_el,l._, rplI,,,,_,_,,, ,IItUlll," ',pttl ,"' tellIfr I',' 'P_,'P_PrH, i,rlqqunnqlUllv,,, =lllenIIHlqnllIll_lq qllplIIllnillII rllMlq_q_I_'_qII_E_'I_r'_i|_i_1_i_I_q_iM_I_i_q_p_i_I_i_'n_r_'rP_iI'qPqp,nq,i!lllqn,nIPPililrnillirqll]'llilllI' fIln:_lellIiPqnlllllIl_nIIIIlIPIPIIIIIPllIilPIIllllllillli_llllllllllnl IllllqlflllI_Ipqllllll_llllllqlllIllIllII]llIlllll' qlllllrlfill IllI



" I

i




