NRTSC
— Technology

i

'.\

WSRC-RP-90-1129

DISCLAIMER

This report was prepared by Westinghouse Savannah River Company
(WSRC) tor the United States Department of Energy under Contract
DE-AC09-885R18035 and is an account of work performed under that
Contract. Neither the United States, the United States Department of
Energy nor WSRC, nor any of their employees, makes any warranty,
express or Implied, or assumes any legal tllabllity or responsibllity
for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed herein, or represents that
its use will not infringe privately owned rights. Reference herein to
any specific commercial product, process or service by trade name,
mark, manufacturer, or otherwise does not necessarily constitute or
imply endorsement, recommendation, or favoring of same by WSRC or
by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily staie or
reflect those of the United States Government or any agency thereof.

i

NRTSC

WSRC-RP-90-1129

KEYWORDS: ARCHY User Manual

RETENTION: PERMANENT

ARCHY USER'S MANUAL (U)

J. E. Aull
G. L. Hire
R. E. Pevey

ISSUED: NOVEMBER 1990

WESTINGHOUSE SAVANNAH RIVER COMPANY
SAVANNAH RIVER LABORATORY
AIKEN, SC 29808

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC09 88SR18035

NRTSC

@

WSRC-RP-90-1129

Tars

DOCUMENT: WSRC-RP-90-1129
TITLE: ARCHY User's Manual (U)
TASK: 90-003-0

APPROVALS

-

Wy DATE: _2 - /- ? /
. R. BUCKNER, MANAGER

SCIENTIFIC COMPUTATIONS SECTION

C.E. APPER;é AGER \ DATE: £ 5/?/

REACTOR PHYSICS GROUP

)

{

iy

a

b

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 1 of 91
SUMMARY

This document tells how to use the system of programs called
ARCHY (Analysis and Reverse Engineering of Code with Hierarchy and
Yourdon Diagrams). This document consists of an introduction which
gives an overview of ARCHY and the problem that it solves, an
explanation of how to use the ARCHY menu system, and detailed
explanations of the menu choices within ARCHY. The structure of the
ARCHY database is in Appendix A.

I. INTRODUCTION

ARCHY will be used to document and maintain existing programs and
in the development of new programs. It runs under VAX/VMS
Version 5 and is written in FORTRAN. When a program is read by
ARCHY it creates a database, generates structure charts and data flow
diagrams, restructures programs by automatically -indenting,
reorders statement labels, and maintains module headers.

There are two principle types of tasks that ARCHY is used for:
development of new codes and analysis of existing codes. Each of
these will require a different "flow" through the system.

A. Use of ARCHY as a Program Development Tool

A program development project using ARCHY would proceed in the
following order:

(1) The computational goals would be conceptually laid out for
the new program in a Problem Statement and Solution
Proposal report (PSSP), which would include a description of
the theory proposed for the solution.

(2) A conceptual design would proceed with the creation of Data
Flow Diagrams (DFD) which would illustrate the flow of data
from input files through transforms to output files. Based on

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 of 91

this information, the Transforms, Files, DFD, and Data Flow
tables would be input into the database using the DB utility.
The DATAFLOW utility would be used to document this
specification in the PSSP.

(3) From this detailed data flow analysis, the program
hierarchical structure would be developed, resulting in a
correspondence between transforms and program modules.
This correspondence would be put into the transforms
structure using the DB utility; then the consistency checking
in DB would guide the user to include the variables in the
module lists. The STRUCT utility will then print the initial
structure chart.

(4) Next, attention would turn to the individual modules of the
program; Purpose, Algorithm, and Procedure descriptions
R would be included in the module structure of the database
with the DB utility.

w (5) The designer would then "flesh out” the variable list by
deciding on the variable types, character lengths, array
dimensions, and variable definitions; this would be included
in the Data Dictionary table of the database by the DB utility.

(6) Implementation would begin by an initial run through
SKELETON; this would create a complete skeleton of the
system including all variables being passed through
argument lists.

(7) When the designer is satisfied with the module descriptions
and the interfaces between them (the subroutine calls and
common blocks), design would be documented in a Program
Design Report, including Module Design sheets (which
ultimately become module headers) and a Design Sheet Data
Dictionary (which contains all variable descriptions as well as
a list of which modules use each variable) using the OUTPUT

3 menu.

T

NRTSC

v WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 3 of 91

(9) Module Design sheets would be turned over to programming
teams to code and test the modules. The ARCHY cleanup
utilities (CLEAN, ALPHA, and LABEL) would be used in this
development.

(10) As the modules are ready, they would be incorporated into a
growing program, which would undergo system testing to
provide verification and validation of the entire system. The
coding and testing would be documented in a Program
Implementation report.

(11) The completed full system would then undergo benchmark
testing to provide validation of the new code; this would be
documented in a Program Benchmark Testing Report.

B. Use of ARCHY as a Program Analysis Tool

. An analysis of an existing FORTRAN code would proceed in a fashion
similar to the following:

(1) The ARCHY cleanup utilities would be used to re-cast the
FORTRAN coding into a consistent style.

(2) The DECIFE utility would operate on the FORTRAN coding and
would create an ARCHY database.

(3) The DB utility completeness checks would be used to prompt
the user for module descriptions and variable definitions.

(4) The INCORP utility would be used to put the headers into each
module.

(5) The STRUCT and DESIGN utilities would be used to print the

Structure Chart, Design Sheets, and Design Sheet Data
W Dictionary.

5]

NRTSC

t WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 4 of 91

(6) The DB consistency checks would be used to aid the user in
translating the modules into transforms and grouping the
input and output variables into data flows.

(7) The DATAFLOW utility would be used to print a Data Flow
Diagram, a DFD Data Dictionary, and a listing of the transform
table for the program.

II. HOW TO USE THE ARCHY MENU SYSTEM

ARCHY runs on the Savannah River Laboratory VAXcluster. To run
it, type RUN SRLUSER1:[T3835.ARCHY.SRC]JARCHY at the system
prompt. That causes the ARCHY main menu to appear on your
terminal as shown in Fig. 1. A brief explanation of what each menu
choice does is shown within the menu. A detailed explanation of the
" menu choices is given in Section III. Each of the menu choices 1-8
cause a FORTRAN program to be executed. Choices 9, A, and B
present sub-menus. Choice C lets you execute a DCL command while
& still in the ARCHY system. Choice D exits from the ARCHY system.

In Figure 1 what the user types is shown in bold type.

EY

L5

By

-l

]

LY

NRTSC
Technology

@luel
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 5 of 91

Input File: TEST

Output File:

1, DECIFE Create database from existing program.

2, DB Edit database using DB.

3. SKELETON Create skeleton program from database

4. DHEADER Transfer info. from header to database.
5. INCORP Insert database information into headers.
6. MIX Mix two databases.

7. EXTRA Extract subroutine from program.

8. TRAMP Fill in subprogram arguments in database,
9. BEAUTIFY Use cleanup utilities.

A. OUTPUT Print diagrams or reports,

B. PREF Set up preferences.

C. DCL Issue DCL command.

D. EXIT Return to operating system.

Use the arrow keys or type number to select option,

Fig. 1 ARCHY Main Menu

You must type an input file name before choosing any of the menu
options. The filename may consist of a maximum of 50 characters
including node, device, directory, filename, extension, and version.
You can leave off the extension and a default will be supplied. The
default extension supplied by ARCHY depends on which of the menu
options you choose. If you don’t supply an output file name then
ARCHY assumes that the output filename will be the same as the
input filename though the extension may be different. The default
input and output extensions for each of the ARCHY menu choices is
listed in Table 1.

]

ey
k]

&

NRTSC

(@Eié;i;}ﬂz;t
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 6 of 91

Table 1. Default Extensions

Input Cutput

Menu Choice Extension Extension
MAIN 1. DECIFE FOR RCH
MATN 2. DB RCH RCH
MATN 3. SKELETCON RCH FOR
MATIN 4. DHEADER FOR RCH
MATN 5. INCORP RCH FOR
MAIN 6. MIX RCH RCH
MAIN 7. EXTRA FOR FOR
MAIN 8. TRAMP RCH RCH
MATN 9. BEAUTIFY FOR FOR
MAIN A. OUTPUT RCH See Below
QUTPUT 1. STRUCT RCH SPS
OUTPUT 2. HEADER RCH MDS
QUTPUT 3. DATADICT RCH pDD
QUTPUT 4. DATAFLOW RCH FPS
QUTPUT 5. FLOWDICT RCH FDD
oUTPUT 6. TRANFORM RCH DD

After entering the input filename(s) press RETURN and you see a
highlight on the first menu choice. Move the highlight up or down
with the arrow keys and press RETURN when the desired choice is
highlighted. Another way to select a menu option is to type the
number or letter that corresponds to that choice without pressing the
RETURN key.

Option 9 presents the beautify menu which contains utilities for
making programs more readable. If option 9 is chosen in Fig. 1 then
you get the screen in Fig, 2.

9

NRTSC
Technology

@":‘.

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990

Page 7 of 91

Input File :

Qutput File:

1. CLEAN
2. ALPHA
3. LABEL
4., PORT
5. PRETRN
6. PREV

TEST.FOR

TEST.FOR

———————————— BEAUTIFY MENU ———-——————=s=—m———mmmm e

Indent and resequence statement numbers.
Alphabetize modules.

Add end-of-line labels.

Convert file for transmission to IBM,
Insert blank before each line.

Return to previous menu.

Use the UP/DOWN arrow keys to select option.

Fig. 2. Beautify Menu

Each of the beautify menu choices is described in detail in Section

IT1.B.

Option A on the main menu presents the output menu which contains
utilities for printing various diagrams and reports based on
information in the ARCHY database. If option A is chosen in Fig. 1
then you get the screen in Fig. 3.

B

*}

&

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 8 of 91

Input File: TEST.RCH
Cutput File: TEST
———————————————————————— QUTPUT MENU ======mmm e e —— e e e

Print Queue: LASERS

1. STRUCT Structure chart.

2. HEADER Module Design Sheets

3. DATADICT Design Sheet Data Dictionary

4. DATAFLOW Pataflow Diagram

5. FLOWDICT bataflow Diagram Data Picticnary
6. TRANFORM Transform Pescriptions

7. PREV Return to previous menu

Use the UP/DOWN arrow keys to select option.

Fig. 3. Output Menu

The print queue will be supplied from the preferences file. Notice
that the choice of the output menu makes a default extension of
"RCH" appear on the input file. Each of the choices 1-6 corresponds
to a different default extension on the output file as shown in Table
1. Each of the output menu choices is described in detail in Section
II1.C.

Option B on the main menu activates the preferences menu which
you can use to set parameters which control the execution of
programs within the menu. When you choose this option you get a
list of programs to choose from as shown in Fig. 4. The current list
only includes three functions, ALPHA, CLEAN, and OUTPUT. Use the
arrow keys to highlight your choice and press RETURN. You will then
be asked to answer questions that indicate your preference for that
function. Your answers are stored in a file called ARCHY.PREF in your
root directory. Then when you execute the program in question, the
preference file is read by that program.

NRTSC

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 9 of 91

Input File: TEST
Output File:
------------------ PREFERENCES MENU ——————mmmm e o

What function do you want to set preferences for ?

]
l
|
| ALPHA CLEAN CUTPUT
|
I
I
|

Fig. 4. Preferences Menu

The questions that correspond to each of the functions shown in Fig.
4 are shown in Table 2. ALPHA alphabetizes modules within a
program and you are given a choice as to whether you want the main
module at the beginning of the program or in its alphabetic slot.
CLEAN can put a frame of stars around comment lines if you desire
and FORMAT statements will be located at the end of modules if you
so choose. The print queue where reports from the output menu are
sent is entered in the QUTPUT function of the preferences menu. The
default answer to each of the yes or no questions in Table 2 is "yes".
The default output queue is LASERS.

B

-l

N

(1

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 10 of 91

Table 2. Preference Questions

ALPHA

Locate main module first?(Y/N)
CLEAN '

Put frame around comment lines?(Y/N)

Put FORMAT statements at end of modules?(Y/N)
OUTPUT

Print queue :

When you return to the main menu after running a program you see
the last entry typed in the input field. Press return at this point to
reuse that filename. Typing any other key invalidates what you see
in that field and causes the input filename to be what you type, even
if the only thing you type is a space.

III. Program Documentation

This section contains detailed instructions for running each of the
programs within the ARCHY menu system. Subsection A deals with
programs accessed through the main menu, subsection B covers the
beautify menu, and subsection C contains information about the
output menu.

A. Main Menu
1. DECIFE: Create Database From Existing Program
DECIFE reads a FORTRAN program and outputs an ARCHY database.

Figure 1.1 is an example of a program and the resulting data base
output is in Figure 1.2.

£

NRTSC

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 11 of 91

PROGRAM TESTL
o A SIMPLE EXAMPLE
REAL*8 X,XBAR
x=2.
Y=X**3,
CALL CROOT(Z,Y)
V=XHALF {2)
WRITE (5,100)V
100 FORMAT(1X,'v= ',F10.3)
STOP
END
SUBROUTINE CROCT(S,T)
S=T**_ 333
RETURN
END
FUNCTION XHALF (X)
XHALF=X/2,
RETURN
END

Fig. 1.1. Program Fed Into DECIFE

Figure 1.2 shows the ARCHY database file, TEST1.RCH, that is output
when TEST1.FOR is analyzed by DECIFE. Note that the variable X is
declared as REAL*8 in the main program, TESTI, yet X is implicitly
typed as REAL*4 in the function XHALF, yet only one type is shown
in the Data Dictionary table below. Refer to Appendix A for an

explanation of the database structure.

#Modules<32>

@testl

:Structure chart description<lé>

:Purpose<64>

:History<64>

:Called modules<32>[Modules]

croot

xhalf

:Parameters (value)<64>

:External variables - used<32>[Data Dictionary]
:External variables - set<32>[Data Dictionary]

NRTSC

Technoiogy
On Time

@anel
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990

Page 12 of 91

:External variables - just passing through<32>[Data Dicticnary)
:Internal variables<32>[Data Dictionary]

N OX <

:Theory<64>

:Algorithm<64>

@croot

;Structure chart description<lé>

:Purpose<é64>

:History<e4>

:Called modules<32>[Modules}

:Parameters (value)}<64>

:External variables - used<32>[Data Dictionary]
t

:External variables - set<32>[Data Dictionary]
5

:External variables - just passing through<32>([Data Dictionary]
:Internal variables<32>[Data Dictionary]
:Theory<64>

:Algorithm<64>

@xhalf

:Structure chart description<lé>

:Purpose<64>

:History<64>

:Called modules<32>[Modules]

:Parameters (value) <64>

:External variables - used<32>[Data Dictionary]
X

:External variables - set<32>[Data Dicticnary]
:External variables - Jjust passing through<32>[Data Dictionaryl]
:Internal variables<32>([Data Dictionary]

xhalf

:Theory<64>

:Algorithm<64>

#Data Dictionary<32>

@

: Type<l6>

tArray limits<32>

:Definition<ed>

:Modules using<32>[Modules]

:Aliases<64>[Data Dicticonary]

@s

:Type<lo>

r*4

:Array limits<32>

:Definition<64>

:Modules using<32>[Modules]

:Aliases<64>[Data Dicticnary)

@t

<

B

NRTSC
Technology

ARCHY User’s Manual(U)

WSRC-RP-90-1129
November 1990
Page 13 of 91

:Type<lé>

r*4

:Array limits<32>
:Definition<64>

:Modules using<32>[Modules]
:Aliases<64>[Data Dictionary]
Qv

:Type<l6>

r*4

:Array limits<32>
:Definition<éd>

:Modules using<32>[Modules]
:Aliases<64>[Data Dictionary]
@x

: Type<lé>

R*8

:Array limits<32>
:Definition<64>

:Modules using<32>[Modules]
:Aliases<64>([Data Dictiocnary]
@xhalf

: Type<l6>

r*4

:Array limits<32>
:Definition<64>

:Modules using<32>[Modules]
:Aliases<64>[Data Dictiocnary]
Qy

:Type<lé>

r*4

:Array limits<32>
:Definition<64>

:Modules using<32>{Modules]
:Aliases<64>[Data Dictionary]
Qz

:Type<lé>

r*4

:Array limits<32>
:Definition<64>

:Modules using<32>([Modules]
:Aliases<64>[Data Dictionary]
#COMMON blocks<32>

@

:Description<64>

:Modules using<32>[Modules]
:Variable names<32>[Data Dictionary]
#Transforms<32>

@

:Transform number<lé>
:Transform title<32>
:Description<6d>

NRTSC

@":
WSRC-RP-90-1129

ARCHY User's Manual(U) November

1990

Page 14 of 91

:Procedure<64>

:Incoming data flows<64>[Data flows]
:0utgoing data flows<64>[Data flows]
:Subordinate transforms<32>[Transforms]
:Corresponding modules<32>[Modules]
$Files<64>

@

:File number<16>

:File title<32>

:Description<ed>

:Incoming data flows<64>[Data flows]
:Qutgoing data flows<é4>([Data flows]
#Data flows<64>

@

:Description<é4>

:Variable names<32>[Data Dictionary]
#DFD<64>

@

:DFD Title<e4>

:Description<é4>

:Displayed transforms{x,y)<32>[Transforms]
:Digplayed files(x,y)<64>[Files]

:Extra incoming dataflows<64>[Data flows]
:Extra outgoing dataflows<64>[Data flows]
:Legend position<32>

Fig. 1.2. Database Output by DECIFE

2. DB: Edit Database Using DB

DB is a database editor that allows you to browse, create, edit, check,
and print information contained in an ARCHY database file. An
ARCHY database file is actually just an ASCII file so it can be easily
edited with any editor. DB provides the functionality of a full screen
editor and presents ARCHY data in an easy-to-use format along with
markers for field widths.

a. Using the DB Menu

The main menu of the database manager lets you choose which table
you want to edit. In Fig. 2.1 a "1" was chosen which means work
with the MODULES table.

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual{U) November 1990
Page 15 of 91

Desired Table ==> 1

. Modules

Data Dictionary
COMMON blocks

. Transforms

. Files

. Data flows

DFD

. Check the database
. QUIT without saving
SAVE results without exiting
. EXIT with save

XL O U d Wik

Fig. 2.1 DB Main Menu

The check option is very useful for performing consistency checks on the
database which could point out problems within the program from which the
database is generated. Figure 2.2 shows the menu you get when the check
option is chosen by typing "C" on the main DB menu screen.

. Check that all referenced entries exist
Check that all variables referenced
" n " data flows "
" " " transforms "
n n n module s 1"
" " n files "
Check that Transforms and subordinates consistent
Check that Modules and subrcutines consistent
. Check that Module/Transforms consistent

WO-~Jonnn s Wl

Fig. 2.2 Consistency Check Menu

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 16 of 91

Table 2.1 shows some of the messages generated when
inconsistencies are found.

Table 2.1 Consistency Check Error Messages

Module needs subordinate variable

The following referenced entries do not exist:
Table _______ needs entry

The following entries are not referenced:’
Transform subs need incoming
Transform subs need outgoing

Transform needs incoming

Transform needs outgoing

On the edit screen, shown in Fig. 2.3, you choose between the various
choices that appear on the top line. You can choose by moving the
cursor from word to word using arrow keys or by typing the first
letter in the word and then pressing RETURN. If you choose any of
the first four (browse, edit, delete, or rename) then you will have to
supply an entry name. Entering "all” at the "Choose an entry ==>"
prompt will allow you to cycle through all the current entries in
order. If you just press RETURN at the "Choose an entry ==>"

prompt, then you can use the arrow keys to highlight the entry
desired from the "Current entries” list.

Notice that all the names for the current entries are shown on the
screen. If you want to add an entry then choose "EDIT" and type the
name of the new entry. Then it will ask if you want to add it.
Alphabetize just sorts the entries on the screen. CHECK does a
consistency check with other tables in the database. In Figure 2.2 an
edit of the CROOT entry in the MODULES table was chosen.

NETSC

WSRC-RP-90-1129

ARCHY User's Manual{U) November 1990
Page 17 of 91

[————— e Working with dtestl.rch -—---—————-———om————————
o TABLE MODULES---—————————==————————— e

Add Edit Delete Rename Print Alphabetize QUIT
Choose an entry ==> CROOT

|

I

|

|

| Current entries:

| TEMP1 CROCT XHALYF
!
I
I
|

Fig. 2.3 DB Table Menu

Figure 2.4 shows how the CROOT record in the MODULES table is edited. You
just arrow down to the field you want to change, press RETURN, and type in
what you want. The field lengths are marked with "I" characters. When you
are done with that record press the PF2 key to get back to the previous
screen.

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual{U) November 1990
Page 18 of 91

- Working with dtestl.rch --——-—————-—————c——er—————
[e TABLE MODULES=—==————————— == —— o —

Parameters (value)

External variables - used

External variables - set

External variables - just passing through

Internal variables

Fig. 2.4 DB Edit Screen

All the tables are edited the same way. The only difference is in
the names of the fields within the different tables. Once an entry
has been selected for edit, the you will see a new panel containing
the current contents of the entry. The categories will be printed
left-justified and highlighted. These cannot be changed by the
editor. The current values (if any) for each category will be listed
below the category titles. They are indented three characters and
printed in normal (non-highlighted) intensity. These can be
modified by the editor. Between the list of values and the next

NRTSC

et
@lr‘el
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 19 of 91

category title is a blank line (there for aesthetics) which cannot
be written on.

b. Using the DB Editor
1) Getting out of the editor
When you want out use one of the following three options.

a) Press PF2 or F2 which is the equivalent of the COMMAND line
command EXIT. (See COMMAND line commands below).

b) Use the COMMAND line command EXIT - which exits with
save.

¢) Use the COMMAND line command QUIT - which exits without
save (and also jumps you out of the automatic scrolling
through entries begun by specifying entry "all").

2) Positioning the cursor

Editing takes place at the position of the cursor. The cursor can be
moved using:

a) The arrow keys;

b) The Number Keypad (with NUMLOCK on):
end of the line (plus one character)
down 1 line

down 1 page

left 1 character

no action

right 1 character

first character of line

up 1 line

up 1 page

nm i uw

O 00 ~1 O Lh b)b

i

b

NRTSC

@:::ﬂ
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 0 of 91

c) The TAB key - takes cursor to first line of next category;

d) COMMAND line commands TOP, BOT, FIND. (See "COMMAND
line commands” below.)

3) Adding a line under a category

To add a line to the end of a category, position the cursor in the
blank line at the end of the list and press “Enter”. This will create a
new field at the bottom of the list (with the cursor positioned at the
first character of the field); this field can then be edited as in
"Editing an existing line" below.

4) Editing an existing line

To edit an existing line, position the cursor in the line to be edited.
(Remember, the blank line at the end of a list of values cannot be
edited. If you want to write there, first press "Enter” to create a

field.)

When a line has been chosen, the margin markers (broken vertical
lines) will be visible. These mark the edges of the field as it will be
saved. Two items of note:

a) It is possible to write beyond the right edge of the margin, but
anything written will not be saved in the database.

b) If a longer line is present, the right margin marker is not part
of the line. There is a character hidden under it.

With the cursor positioned where you want it, the following special
keys are active:

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 1 of 91

a) The "0" on the KEYPAD toggles between INSERT and
OVERSTRIKE mode;

b} The period on the KEYPAD deletes the character at the cursor
(and collapses the line in INSERT mode);

¢) The BACKSPACE or DELETE key deletes the previous character
and collapses the line;

d) The F4 or PF4 key crases to the end of the line;

e) The ENTER key creates a new line and moves the rest of the
current line there;

5) COMMAND line commands

Extra user power is provided when PF1 or F1 is pressed. This
initiates a COMMAND line which allows the following commands (in
either upper or lower case):

BOT = Moves cursor to bottom of entry

TOP = Moves cursor to top of entry

FIND = Prompts user for a string; the cursor moves to the next
occurrence of the string (Same as PF3)

ALP = Alphabetizes the lines of the current category

LEN = Arranges the lines in order of length in the current
category (shortest to longest)

QUIT = Leaves the editor without save

EXIT = Leaves the editor with save (Same as PF2)

6) PF Keys
PFl1 - Invokes COMMAND line (See previous paragraph)

PF2 - Leaves the editor with save (Same as COMMAND line
command 'EXIT')

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 2 of 91

PF3 - Prompts user for a string; the cursor moves to the next
occurrence of the string (Same as COMMAND line
command 'FIND'")

PF4 - Erases to end of line

3. SKELETON: Create Skeleton Program From Database

The SKELETON program is part of the ARCHY system. SKELETON
creates a compilable FORTRAN program from a specified ARCHY
database.

a. What SKELETON Does

SKELETON produces a FORTRAN output file from the input ARCHY
database. The output file includes the call and subroutine statements
with their appropriate passed arguments. SKELETON also creates the
parameter statements with their appropriate values and produces
the type statements for all the variables. SKELETON uses the
Modules and Data Dictionary tables of the ARCHY input database to
produce the FORTRAN output file. The Data Dictionary table is cross
referenced to include the variable type and definition. Figure 3.1
shows the Tables and categories that SKELETON uses to produce the
FORTRAN file. The database tables are defined by a "#", table entries
are defined by an "@"

, and the categories are distinguished by a ":".
b. How To Use SKELETON

1). Enter the input and output files on the ARCHY main menu
screen. The default output file is a FORTRAN file with the same
name as the input file. Figure 3.2 shows a sample execution of
SKELETON. In this figure what the user types is enclosed in
braces.

2). Choose SKELETON from the main menu. The default
extension when SKELETON is chosen from the main menu is
"RCH".

#

NRTSC
Technolopgy

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 3 of 91

After you choose SKELETON from the main menu, you will be asked
for the "Name of the top module”. Figure 3.3 shows the input ARCHY
database and Figure 3.4 shows the FORTRAN output file after the
execution of SKELETON.

#Modules<3z>

@

:Called modules<32>[Modules]
;:Parameters{value)<64>

:External variables - used<32>[Data Dictionary]
:External variables -~ set<32>[Data Dicticnary]
:External variables - just passing through<32>[Data Dictionary]
:Internal variables<32>[Data Dictionary]

#bata Dictionary<32>

@

: Type<lé>

tArray limits<32>

Figure 3.1. Database Tables And Categories Used By SKELETON

-l

Lo

NRTSC
Technology

WSRC-RP-90-1129

ARC-HY User's Manual(U) November 1990
Page 2 4 of 91

INPUT FILE; main.RCH
CUTPUT FILE: MAIN.FCR

Name of the top module ==>
{main}

Figure 3.2. Sample Execution Of SKELETON

#Modules<3z>

@main

:Called modules<32>[Modules)

a

b

c

:Parameters (value)}<64>

:External variables - used<32>{Data Dictionary]
:External variables - set<32>[Data Dictionary]
:External variables - just passing through<32>[Data Dictiocnary]
:Internal variables<32>([Data Dictionary]

one

three

two
Ga

&

NRTSC
Technalogy

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 5 of 91

:Called modules<32>[Modules)

:Parameters (value) <o4>

:External variables - used<32>([Data Dictionary]
one

:External variables - set<32>[Data Dictionary]
:External variables - just passing through<32>[Data Dictionary]
:Internal variables<32>[Data Dictionary]

&b

:Called modules<3Z>[Modules]
:Parameters{value) <64>

:External variables - used<32>[Data Dictionaryl}
two

:External variables - set<32>[Data Dictiocnary}
:External variables - just passing through<32>[Data Dictionary]
:Internal variables<32>[Data Dicticonary]

e

:Called modules<32>{Modules]

:Parameters (value) <64>

:External variables - used<32>[Data Dictionary}
three

:External variables - set<32>[Data Dicticnary]
:External variables - just passing through<32>[Data Dicticnary]
:Internal variables<32>[Data Dictionary]

#Data Dictionary<32>

@one

:Type<l6>

C*7

;Array limits<32>

@three

:Type<l6>

C*11

:Array limits<3Z>

@two

: Type<16>

Cc*7

:Array limits<32>

Figure 3.3. Input ARCHY Database

NRTSC
Technology
Time

WSRC-RP-90-1129
ARCHY User's Manual(U} November 1990
Page 2 6 of 91

program main

c PARAMETERS
Cc EXTERNAL variables
C INTERNAL variables

character*7 one
character*ll three
character*7 two
write{*, 9010)
9010 format(2x,' main ')
call a{one)
call b(twe)
call c(three)
stop
end
C*******************t***
subroutine a{one)
C PARAMETERS
c EXTERNAL variables
character*’ one
C INTERNAL variables
write (*, 9010)
9010 format(4x,' a ")
return
end
c**************************************t********************************
subroutine b (two)
c PARAMETERS
ol EXTERNAL variables
character*7 two
o} INTERNAL variables
write (*,9010)
9010 format(4x," b ')
return
end
c***
subroutine c(three)
c PARAMETERS
c EXTERNAI variables
character*ll three
c INTERNAL variables
write(*,9010)
9010 format(4x,' c ")
return
end

Figure 3.4. OQutput File After Execution Of SKELETON

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 7 of 91

¢. Requirements For The Operation Of SKELETON

This section describes some limitations and useful information which
may aid you in your operation of SKELETON.

1) Limitations

SKELETON will only allow the database to have a maximum of
100,000 lines 80 characters long. SKELETON may allocate up to
24.5 Megabytes of virtual memory.

2) Information

SKELETON requires the user to input the name of the top
module exactly as it appears in the Modules table of the ARCHY
database with respect to upper or lower case. The created
FORTRAN file contains write statements which print out the
names of the modules when the created file is executed.

4. DHEADER: Transfer Info From Header to Database

The DHEADER program is part of the ARCHY system. DHEADER
decifers subroutine headers and inserts the descriptive information
that it gleans from comment statements in the header into an ARCHY
database.

a. What DHEADER Does

DHEADER reads a FORTRAN program. At the beginning of each
module it looks for the header block which is enclosed in stars. Then
it looks for specific markers that occur within each ARCHY header.
The markers that pertain to the module are shown in Table 4.1.

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 2 8 of 91

DHEADER finds the descriptive text that occurs after each marker and
inserts that text into the corresponding field within the Modules
table in the ARCHY database. DHEADER also reads variable
definitions from program headers and inserts them into the Data
Dictionary table.

Table 4.1 Markers Recognized by DHEADER

Module name:

Structure chart description:
Purpose:

History:

Theory:

Algorithm:

b. How To Use DHEADER

Figure 4.1 shows how to execute DHEADER. What you type is shown
inside {braces}. The extensions supplied by default are shown in
bold type. Simply type the name of the program whose headers are
being decifered at the "Input File:" prompt and the name of the
database being created at the "Output File:" prompt. Then choose
option 4 from the main menu. ARCHY then prompts you for the
name of the input database. At this point you type the name of the
database which will have information from the header inserted into
it. When you press RETURN, ARCHY echoes the three file names and
the information is transferred from the header to the database.

The program that is the source of the descriptive information in this
example is shown in Fig. 4.2. The databases before and after
execution of DHEADER are shown in Figures 4.3 and 4.4 respectively.

NRTSC

@":
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 29 of 91

———————————————————————————— ARCHY MAIN MENU —————=m===————————r———==
Input File : {dhtestZ2in.FOR}

Output File: {dhtestZout.RCH}

Name of input database: {dhtest2in.RCH}

Fig. 4.1 Sample Execution of DHEADER

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 3 0 of 91

c**#

Module name:
dhtest2

Structure chart description:
EXTRACTS CODE
FROM AN EXISTING
FORTRAN FILE

Purpose:
TO EXTRACT CODING FOR MODULES FROM A FORTRAN FILE AND EITHER
APPEND IT TO ANOTHER FORTRAN FILE CR CREATE A NEW FORTRAN FILE.

Called modules:

NONE
Internal variables:
A8C . Cc*80
A line of ALINE.
ALINE (50000) c*80

An array containing an entire module

I I*4

O00Q00000000000000000000

Counting variable
C**
character*80 ag0
character*80 aline(50000)
do i=1,189
read(*,100)aB0
aline (i)=a80
enddo
stop
100 format (a)

3k 3k 3o Fh e o He e -k Sk - Fe Sk W A S R R S H W 3

Fig. 4.2 Program Input Into DHEADER

NRTSC
Technology

@
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 31 of 91

#Modules<32>

@chtest?2

:$tructure chart description<lé>
:Purpose<64>

:Bistory<e4>

:Called modules<32>[Modules)
:Parameters (value) <64>

:External variables - used<32>[Data Dictionary]
:External variables - set<32>[Data Dictionary)
:External variables - just passing through<32>{Data Dictiocnary])
:Internal variables<32>([Data Dictiocnary]
ago

aline

i

:Theory<64>

:Algorithm<64>

#Data Dictionary<3z>

@

:Type<16>

tArray limits<32>
:Definition<64>

:Modules using<32>[Modules)
:Aliases<64>[Data Dictionary]
@as0

: Type<l6>

C*80

:Array limits<32>
:Definition<64>

:Modules using<32>{Modules]
tAliases<64>[Data Dictionary)
@aline

1 Type<l6>

C*80

:Array limits<32>

50000

:Definition<é4:

:Modules using<32>([Modules]
:Aliases<64>[Data Dictionary]

@i

: Type<lé>

i*4q

:Array limits<32>
:Definition<é4>

:Modules using<32>[Modules)]
:Aliases<64>[Data Dictionary]

Fig. 4.3 Database Before DHEADER Adds Descriptions

wd

.l

@_f

NRTSC
Techaoiegy

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 32 of 91

#Modules<32>

@dhtest2

:Structure chart description<lé>
EXTRACTS CCDE

FROM AN EXISTING

FORTRAN FILE

:Purpose<64>

TO EXTRACT CODING FOR MCODULES FRCM A FORTRAN FILE AND EITHER
APPEND IT TO ANOTHER FORTRAN FILE OR CREATE A NEW FCRTRAN FILE.

:History<64>
:Called modules<32>[Modules)
:Parameters (value)}<64>

:External variables - used<32>(Data Dictionaryl}
:External variables - set<32>{Data Dictionary]

:External variables - just passing through<32>[Data Dictionary]

:Internal variables<32>{Data Dictionary]
a80

aline

i

:Theory<64>

:Algorithm<&4>

#bata Dictionary<32>

@

:Type<le>

:Array limits<32>
:Definition<é4>

:Modules using<32>([Modules]
:Aliases<64>[Data Dictionary]

@ago
:Type<lo>
Cc*80
:Array limits<32>
:Definition<64>

A line of ALINE.
@aline
:Type<l6>
C*80
tArray limits<32>
50000
:Definition<64>

An array containing an entire module
@i
: Type<l6>
i*4
:Array limits<32>
:Definition<éd>

Counting variable

Fig. 4.4 Database After DHEADER Adds Descriptions

NRTSC

@L‘i‘.‘.,
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 3 3 of 91

c. DHEADER Limitations and Requirements

DHEADER reads the entire program in one pass. As it encounters
markers and variable names, it stores them in two temporary files,
TEMPM.TMP and TEMPD.TMP. It then merges each of these files
with the input database. If a description already exists in the input
database, it will be overwritten by the description from the program
header. It is possible that a program could have a variable that has
the identical name, type, and dimension within two different
modules yet the definitions of those two variables could be different.
In a case like this, DHEADER, will insert the definition that it first
encounters within the TEMPD.TMP file. The first one that it
encounters might not coincide with the first occurrence of that
variable definition within a module header because DHEADER begins
a sequential search of the TEMPD.TMP file where the last search left
off and then TEMPD.TMP is rewound and the search resumes at the
top of the file. It is very important to have the header in the exact
ARCHY format in order for DHEADER to extract the descriptive
information. A few of the specifications for the ARCHY header
format are summarized in the following list.

1) The header must be surrounded by a "frame" of stars
with the pound sign in column 65.

2) The markers must match the ones listed in Table 4.1
exactly to the letter.

3) The blank lines within the header frame are essential and
extra blank lines can be deadly.

4) Variable names, types, and dimensions must match the
database exactly (except for case) with variable names
beginning in column 5, dimensions within parentheses
following the variable name, and variable types ending in
column 63.

N

NRTSC

Ecc!:r?nlc“
- WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 34 of 91

5) The module used to match within the database comes
from the header rather than from within a SUBROQUTINE or
FUNCTION statement.

5. INCORP: Insert Database Information Into Headers

The INCORP program is part of the ARCHY system. INCORP creates
subroutine headers and inserts them at the beginning of the
appropriate subroutine in a FORTRAN file.

a. What INCORP Does

INCORP produces a new version of the input file. The output file contains
the original file with subroutine headers added at the start of each
subroutine. INCORP reads a FORTRAN program and an ARCHY database. The
Modules and Data Dictionary tables of the database are used to produce the
subroutine headers which contain the categories from the Modules table.
The Data Dictionary table is cross referenced to include the variable type
and definition. Figure 5.1 shows the Tables and categories that INCORP uses
to produce the headers. The database tables are defined by a "#", table
entries are defined by an "@", and the categories are distinguished by a

",

b. How To Use INCORP

1) Enter the input and output files on the ARCHY main menu screen.
The default for the output file is a new version of the FORTRAN input
file. Figure 5.2 shows a sample execution of INCORP.

2) Choose INCORP from the main menu. The default extension when
INCORP 1s chosen from the main menu is ".FOR".

After you choose INCORP from the main menu, you will be asked for the
"Input ARCHY database”. The default extension is ".RCH". As INCORP is
executed a list of the subroutine headers created by INCORP will appear on
the screen. Figure 5.3 shows the FORTRAN input file and Figure 5.4 shows

-,

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 35 of 91

the input ARCHY database. Figure 5.5 shows the FORTRAN output file after
the execution of INCORP.

#Modules<32>

@

:Structure chart description<lé>

:Purpose<64> .
tHistory<e4>

:Called modules<32>[Modules]

tParameters {value)<é64>

+External variables - used<32>[Data Dictionary]

:External variables - set<32>([Data Dictionary]

:External variables - just passing through<32>[Data Dictionary]
:Internal variables<32>[Data Dictionary]

:Theory<64>

:Algorithm<64>

#Data Dictionary<32>

@

1 Type<16>

:Definition<64>

Figure 5.1. Database Tables And Categories Used By INCORP

NRTSC

S
@Arpt
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 3 6 of 91

INPUT FILE: main.FOR
QUTPUT FILE: MAIN.FOR
————————————————————————————— INCORP —===——————————— -————

Input ARCHY database =—>
{main.RCH}

a
b
c

Figure 5.2. Sample Execution Of INCORP

NRTSC
Technalogy

'.’:‘:..

ARCHY User's Manual(U)

WSRC-RP-90-1129

November 1990
Page 37 of 91

program main
character*7 one, two
character*1ll three
one='This is'
two=' a test'
three=' of INCORP.'
call a(one)
call b(two)
call c{three)
stop
end
subroutine a({one)
character*7 one
write(*,10)one

10 format (1x,a7)
return
end
subroutine b (two)
character*7 two
write(*,20)two

20 format {(a7)
return
end
subroutine c¢(three}
character*1ll three
write (*, 30)three

30 format (all)
return
end

Figure 5.3. FORTRAN Input File

'l

)

NRTSC

Technology
On Time

@.

ARCHY User's Manual{(U)

WSRC-RP-90-1129
November 1990
Page 3 8 of 91

#Modules<32>

@main

:Structure chart description<lé>

The main program

:Purpose<64>

To call a, b, and c.

:Subroutines called<32>[Modules}

a

b

c

:Internal variables<32>[Data Dictionary]
one

three

two

Ra

:Structure chart description<lé>

Writes one

:Purpose<64>

To write 'This is'.

:History<64>

Called by main.

:External variables - used<32>[Data Dictionary]
one

@b

:Structure chart description<lé>

Writes two

: Purpose<64>

To write ' a test'.

:History<64>

Called by main.

:External variables - used<32>[Data Dictionary}
two

Gc

:Structure chart description<lé>

Writes three

:Purpose<éd>

To write ' of INCORP,.'.

:History<64>

Called by main.-

+External variables - used<32>([Data Dictioconary]
three

#Data Dictionary<32>

Qone

:Type<le>

C*7

:Definition<éd>

Contains the first two words of the sentence.
@three

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 39 of 91

1 Type<lé>

C*11l

:Definition<64>

Contains the last two words of the sentence.

Rtwo

:Type<l6>

C*7

:Definition<é4>

Contains the third and forth words of the sentence.

Figure 5.4. Input ARCHY Database

program main

character*7 one, two
c**********************-ﬁr***#

Module name:
MAIN

Structure chart description:
THE MAIN PROGRAM

Purpose:
TO CALL A, B, AND C.

Subroutines called:
A
B
C

Internal variables:
ONE C*7
Contains the first two words of the sentence.
THREE Cc*11
Contains the last two words of the sentence.
TWO Cc*7
Contains the third and forth words of the sentence.

OO0 0000000000000000
S 3 S e e Sk Sk 3k 3 W e e e o e e e S o O e e Sk s

A ALK A AR A ATk kA A A A A Ak ke ke hkdrkhihhir

character*ll three
" one='This is'

two='! a test!'

three=' of INCORP.'

call a(one)

call b(two)

call c({three)

stop

NRTSC
Technology

@1‘.’?{«
C/ WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 4 0 _of 91

end
subroutine a(one)

character*7 one
c***********************************‘k**********************************#

Module name:
A

Structure chart description:
WRITES ONE

Purpese:
TC WRITE 'THIS IS'.

History:
CALLED BY MAIN,

External variables - used:
ONE C*7
Contains the first two words of the sentence.

O00Q00000000000000C0
e W S S S S e R SR R S 3 3 3k

g e dede ke do ke kA e e ok o e e e ook ok i Ao e o b e e e ke e e e e ok 3 e e o ok ok ok 9k e ok ke o o o o o e e e e ke ok Rk ok

write(*,10)one
format {1x,a7)
return

end

subroutine b (two)

character*7 two
C**#

=
[

Module name:
B

Structure chart description:
WRITES TWC

Purpose:
TO WRITE ' A TEST'.

History:
CALLED BY MAIN.

External variables - used:
TWC C*77

Contains the third and forth words of the sentence.

0O000000000000000C0
S 8E S e Ik S o 6 S 89k 3k 3 e

c**

write (*, 20)two
20 format (a7)

return

end

NRTSC

@:‘r’:ﬂ
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 41 of 91

subroutine c¢(three}

character*ll three
c**#

Module name:
C

Structure chart description:
WRITES THREE

Purpose:
TO WRITE ' OF INCORP.'.

History:
CALLED BY MAIN.

External variables - used:
THREE C*11
Contains the last two words of the sentence.

DO OO0Qa000aa0an
H= e e 3 e 3 3 H H W H o S e ak

c**

write (*,30)three
30 format (all)

return

end

Figure 5.5. Output File After Execution Of INCORP

c. Requirements For The Operation Of INCORP

This section describes some limitations and useful information which may
aid you in your operation of INCORP.

1) Limitations

INCORP will only allow the databases to have a maximum of 50,000
lines 80 characters long. INCORP may allocate up to 8§ Megabytes of
virtual memory.

2) Information

INCORP allows the user to enter their responses in upper or lower
case. The module names within the FORTRAN file must match the

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 4 2 of 91

modules in the ARCHY database exactly with regard to upper and
lower case. The subroutine header will only contain the categories
that have a description in the database, however the Module name
will always be in the header. INCORP will not include a variable in the
header if the variable is not listed in the Data Dictionary table of the
ARCHY input file. The category descriptions, except for the variable
definitions are written in upper case in the subroutine header.

6. MIX: Mix Two Databases.

The MIX program is part of the ARCHY system. MIX merges two
ARCHY databases together to form one combined database.

a. What MIX Does

MIX reads two ARCHY databases and merges them together into one
new database. MIX adds descriptions to certain categories in the
Modules, Data Dictionary and the COMMON blocks tables of the input
database, provided the category doesn't already contain a
description. Figure 6.1 shows the Tables and categories that
descriptions are added to by MIX. The tables are defined by a "#",
table entries are defined by an "@", and the categories are
distinguished by a ":". The Transforms, Files, Data flows and the DFD
tables in the database are either left untouched or totally replaced.

b. How To Use MIX

1. Enter the input file (the name of the database you want to
make additions to) on the ARCHY main menu screen. Enter the
output file on the ARCHY Main Menu screen. The default
output file is a new version of the input file. Figure 6.2 shows
the execution of MIX for two different databases. The user
responses are shown inside the braces, { }.

2. Choose MIX from the main menu. ".RCH" is the default
extension when MIX is chosén from the main menu.

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 4 3 of 91

After you choose MIX from the main menu, you will be asked for the
"Name of the database containing the descriptions”. The default is
the previous version of the input file. Figure 6.3 shows an execution
of MIX where the default database is used. You will also be asked
"Do you want the TRANSFORMS, FILES, DATAFLOWS, and DFD tables
replaced in the database [YES]?". The default to this question is
"YES". The answer to this question can be "yes" or "no" or just the
first letter of the word and can be in either upper or lower case. If
you enter "YES" or default your answer the TRANSFORMS, FILES,
DATAFLOWS, and DFD tables of the input file are replaced by the
tables in the database containing the descriptions. If you enter "n" or
"no" the TRANSFORMS, FILES, DATAFLOWS, and DFD tables of the
input file remain unchanged. Figure 6.4 shows the input file and
Figure 6.5 shows the database with the descriptions prior to the
execution of MIX, and Figure 6.6 shows the merged database after
the execution of MIX.

#Modules<3z>

:Structure chart description<lé>
:Purpose<ed>

:History<64>

:Theory<64>

:Algorithm<64>

#Data Dictionary<32>
:Definition<é4>

#COMMON blocks<32>
:Description<é4>

Figure 6.1. Database Tables And Categories Affected By MIX

NRTSC
Technology

.'::.t
' WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 44 of 91

INPUT FILE: main.RCH
QUTPUT FILE: MAIN.RCH

Name of database containing the descriptions:
{descript .RCH}

replaced in the database [YES]?

I
I
|
I
|
| Do you want the TRANSFORMS, FILES, DATAFLOWS, and the DFD tables
|
| {n}

!

|

Figure 6.2. Sample MIX Execution Of Two Different Databases

INPUT FILE: main.rch:;é
CUTPUT FILE: main.rch;7

] Name of database containing the descriptions:
i main.rch;5

Do you want the TRANSFORMS, FILES, DATAFLOWS, and the DFD tables
replaced in the database [YES]?
{n}

Figure 6.3. Sample MIX Execution By Default

NRTSC
Technoology

WSRC-RP-90-1129

ARCHY User’'s Manual(U) November 1990
Page 4 5 of 91

#Modules<32>

@mix

:Structure chart description<lé>
Merge Two

Databases Into

One

:Purpose<é4>

To combine a database containing descriptions with an empty database.
:History<64>

:Algorithm<64>

@search

:Structure chart description<lé>
:Purpose<64>

:History<64>

:Algorithm<64>

#Data Dictionary<32>

@category

:Definition<64>

@entry

:Definition<64>

@table

:Definition<é4>

Figure 6.4. Input File Prior To The Execution Of MIX

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 4 6 of 91

#Modules<32>

@rmix

:Structure chart description<ie>

:Purpose<e4>

:History<64>

The main coding of the program.

:Algorithm<é4>

For each category that mix deals with:
Find the matching spot in the database contailning the descriptions and
write the description to the output file if it has one,

@search

:Structure chart description<lé>

Finds The

Desired Text

:Purpose<64>

To lock through a database and find the proper description for a

given table, entry and category.

:History<64>

Called by mix

:Algorithm<64>

Loop over the lines of the database containing the descriptions, until

the table, entry and category match and then write the description to

the output file if a description is found.

#Data Dictionary<32>

Rcategory

:Definition<64>

The name of the category in the database.

@entry

:Definition<64>

The name of the entry in the database.

@table

:Definition<64>

The name of the table in the database.

Figure 6.5. Database Containing The Descriptions

i

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 47 of 91

#Modules<32>

@mix

:Structure chart description<lé>
Merge Two

Databases Into

Cne

:Purpose<64>

To combine a database containing descriptions with an empty database.

tHistory<64d>

The main coding of the program.

:Algorithm<é4>

For each category that mix deals with:
Find the matching spot in the database containing the descriptions and
write the description to the output file if it has one.

@search

:Structure chart description<lé>

Finds The

Desired Text

:Purpose<64>

To look through a database and find the proper description for a

given table, entry and category.

:History<éed>

Called by mix

:Algorithm<&4>

Loop over the lines of the database with descriptions, until the

table, entry and category match and then write the descripticn to the

output file if a description is found.

#Data Dictionary<32>

@category

:Definition<64>

The name of the category in the database,.

:Modules using<32>[Modules]

fentry

:Definition<64>

The name of the entry in the database.

:Modules using<32>[Modules]

@table

:Definition<é4>

The name of the table in the database.

Figure 6.6. Output File After Execution Of MIX

bt

NRTSC

Technolegy
@lnel
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 4 8 of 91

¢. Requirements For The Operation Of MIX

This section describes some limitations and useful information which
may aid you in your operation of MIX.

1) Limitations

MIX will only allow the databases to have a maximum of
50,000 lines 80 characters long. MIX may allocate up to 8
Megabytes of virtual memory.

2) Information

MIX allows the user to enter their responses in upper or lower
case.

7. EXTRA: Extract Subroutine From Program

The EXTRA program is part of the ARCHY system. EXTRA extracts
modules from an existing FORTRAN program and either creates a
new FORTRAN file or appends the modules to an existing FORTRAN
program.

a. What EXTRA Does

EXTRA extracts coding from a FORTRAN program and creates a new
FORTRAN file containing the specified subroutines or appends the
subroutines to an existing FORTRAN program. EXTRA uses the
Modules table of an ARCHY database to determine the subordinate
subroutines, provided you want them included in the FORTRAN file.
Figure 7.1 shows‘the database tables and categories that EXTRA uses
to determine the subordinate modules. The database tables are
defined by a "#", table entries are defined by an "@", and the
categories are distinguished by a ":"

&

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 49 of 91

fModules<32>
@
:Called modules<3Z>[Modules]

Figure 7.1. Database Tables And Categories Used By EXTRA

b. How To Use EXTRA

1) Enter the input and output files on the ARCHY main menu
screen. When EXTRA is chosen from the ARCHY Main Menu,
the default extension for the input and output files is ".FOR".

2) Choose EXTRA from the main menu. Figure 7.2 shows a
sample execution of EXTRA while appending the subroutines to
an existing FORTRAN program and is explained below. Figure
7.6 shows the execution of EXTRA without appending the
coding. The user inputs are shown within the { }.

After you choose EXTRA from the main menu, you will be asked "Do
you want the code appended to an existing file [Y]?". The default to
this question is "Y". If you answer this question "Yes", you will be
asked "What is the name of the file to append coding to (.for will be
added)==>?". Then you will be asked "Do you want the subordinate
subroutines included [Y]?". The default to this question is "Y".
Answer "Yes", if you would like all the subroutines called by the
desired subroutine to be included in the Output file. Next you will be
asked "No. of subroutines to be extracted (1-100)", here you enter
the number of known subroutines you would like extracted from the
Input file. You will then be asked for the names of the known
subroutines you would like fo havé extracted. After the names of
the subroutines have been entered and you are having them
appended to an existing file, EXTRA will write a list of the extracted
subroutines to the screen. Figure 7.3 shows the input FORTRAN file,
Figure 7.4 shows the file being appended to, and Figure 7.5 shows

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 5 0 of 91

the FORTRAN output file after the execution of EXTRA shown in
Figure 7.2.

INPUT FILE: mainl.RCH
OUTPUT FILE: main3.FOR

Do you want the code appended to an existing file ([Y]?
{¥}

What is the name of the file to append the coding to (.for will be added)==>
{main2}

Do you want the subordinate subroutines included (Y)?
{Y}
{1}

Subroutine 1 to be extracted -
{a}

The file main.for should contain the following:

W
Qwr

i
|
i
|
|
|
|
|
|
|
|
| No. of subroutines to be extracted (1-100)
|
{
I
|
|
|
|
i
|
I
|

Figure 7.2. Sample Execution Of EXTRA While Appending

NRTSC
Technology

CJ WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 51 of 91

program mainl

character*72 one, two, three
one="'This is’

two='a test!'

three=*of EXTRA.'

call a(one, two,three)

stop

end
C***

c*******************i***

subroutine a{one,two,three)
character*72 one, two, three
write{(*,9010)one

9010 format (1x,a72)
call b(two,three}
return

end
c*************************t***

c***********************************t***********************************

subroutine b{two, three}
character*72 two,three
write(*, 2010) two

9010 format (1x,a72)
call c{three)
return '

end
c******************t**

C************************************t**********************************

subroutine c({three}

character*72 three

write(*,9010)three
9010 format (1x,a72)

return

end

Figure 7.3. Input FORTRAN File

NRTSC
Technology

On Time
@Tﬂ'ﬁﬂ
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 52 of 91

program main2

character*72 one,two,three
one="This file has'
two="'been appended with'
three='subroutines a,b and c¢'
call a(one,two,three)

stop

end

Figure 7.4. File To Append The Coding To

NRTSC
Technology

‘ WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page S 3 of 91

program main2

character*72 one, two,three
one='This file has'

two="'been appended with'
three='subroutines a,b and c'
call a(one,two,three) -

stop

end
c***************************************‘k*******************************

C***

subroutine a(one, two,three)
character*72 one, two,three
write(*, 3010)one

8010 format (1x,a72)
call b (two, three)
return

end
c******-k**

c***

subroutine b (two, three)
character*72 two,three
write {(*, 9010) two

9010 format {1x,a72)
call c(three)
return

end
c**t******************

c**‘k***********************************'*********************************

subroutine c(three)

character*72 three

write(*, 9010)three
9010 format (1x,a72)

return

end

Figure 7.5. Output File With Coding Appended

If you answer "No" to the question "Do you want the code appended
to an existing file [Y]?", you will be asked "Do you want the
subordinate subroutines included [Y]?". If you answer "No", only the
subroutines you input will be included in the output file. Next you
will be asked for the "No. of subroutines to be extracted (1-100)" and
to enter the names of the subroutines to be extracted. Figure 7.7

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 54 of 91

shows the input FORTRAN file and Figure 7.8 shows the FORTRAN
output file after the execution of EXTRA shown in Figure 7.6.

INPUT FILE: mainl.RCH
OUTPUT FILE: main3.FOR

Do you want the code appended to an existing file [Y]7?
{N}

Do you want the subordinate subroutines included (Y]
- {N}

|
|
|
{
I
|
|
| No. of subroutines to be extracted (1-100)
i {3}

I
] Subroutine 1 to be extracted -

| {a}

|
|
|
I
|
|
I
I

Subroutine 2 to be extracted -
{b}

Subroutine 3 to be extracted -
{c}

Figure 7.6. Sample Execution Of EXTRA Without Appending

program mainl

character*72 one, two, three
one='This 1is*

two='a test'

three="'0cf EXTRA.'

call a(one, two, three)

stop

end
CEREIXARATXAXXEEEEEXRXLELRKAXIKALEI AR AT TL A A hrAdTLhrrhrrhhdhrhhkrhkrthdthhrrk

c***
subroutine a({one,two,three)
character*72 one, two,three
write (*,9010)cne

NRTSC
Technology

@ WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 55 of 91

9010 format (1x,a72)
call b (two, three)
return

end
c***

c**‘k‘k*

subroutine b(two,three)
character*72 two,three
write(*,9010)two

9010 format (1x,a72)
call c(three)
return

end
C***

C'A'**

subroutine c¢(three)

character*72 three

write(*,9010)three
9010 format (1x,a72)

return

end

Figure 7.7. Input FORTRAN File

-

NRTSC

Technology
Time

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990

Page 5 6 _of 91

9010

subroutine a(one,two,three)
character*72 one, two, three
write(*, 3010)one

format {1x,a72)

call b{two, three)

return

end

C***
c***

8010

subroutine b (two, three)
character*72 two,three
write(*,9010)two
format (1x,a72)

call c(three)

return

end

c***
(O e e oo e o e e e o o e Sk e S ok e o o e o e e ol e ok ok e ol e ole e e e sl e Sk e ke ol ok ke e e i O o i ol o o ol e e sl ke e ke sl A ol e ok e ok e e o ok ok

9010

subroutine c(three)
character*72 three
write(*, 9010)three
format (1x,a72)
return

end

Figure 7.8. Output File Without Appending

¢. Requirements For The Operation Of EXTRA

This

section describes some limitations and useful information which

may aid you in your operation of EXTRA.

1) Limitations

EXTRA will only allow the database to have a maximum of
50,000 lines 80 characters long. EXTRA may allocate up to 4
Megabytes of virtual memory.

o

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 57 of 91

2) Information

As EXTRA is executed it opens a file with the same name as the
Input File with the extension ".RCH" , therefore an ARCHY
database with the same name as the Input File must exist in
the default directory in order to execute EXTRA. The number
of subroutines you can input to be extracted can be between 1
and 100. Extra will write a note to the screen saying "Could not
find a subroutine named ", if it can not find a
subroutine that you request. The default Output file when
appending coding to an existing file is a new version of the file
the coding is appended to.

8. TRAMP: Fill in Subprogram Arguments in Database

The TRAMP program is part of the ARCHY system. TRAMP fills in
missing variables in the ARCHY database.

a. What TRAMP Does

TRAMP finds out which modules use a specific variable and then
tramps up through the modules to determine the first place the
variable could be introduced to all the modules using the variable.
Then TRAMP inserts the variable in the Output ARCHY database as
an internal variable in the originating subroutine and as an external
variable - just passing through in the subroutines between the
original and the subroutines that use the variable. TRAMP uses the
Modules table of the Input ARCHY database to determine the order
of the subroutines, and the Data Dictionary table to determine all the
variables to check. Figure 8.1 shows the database tables and
categories that TRAMP uses to determine the variables and the
subroutine order. The database tables are defined by a "#", table
entries are defined by an "@", and the categories are distingunished by

"

a ..

NRTSC

S
@nnﬂ
WSRC-RP-90-1129

ARéHY User's Manual(U) November 1990
Page 58 of 91

#Modules<32>

@

:Called modules<32>[Modules]

:External variables - used<32>{Data Dictic¢nary]

:External variables - set<32>([Data Dictionary]

:External variables - just passing through<32>{Data Dictiocnary]
:Internal variables<32>[Data Dictionary]

#Data Dictionary<32>

@

Figure 8.1. Database Tables And Categories Used By TRAMP

b. How To Use TRAMP

1) Enter the input and output files on the ARCHY main menu
screen. When TRAMP is chosen from the ARCHY Main Menu,
the default extension for the input file is ".RCH" and the default
output file is a new version of the input file.

2) Choose TRAMP from the main menu. Figure 8.2 shows a
sample execution of TRAMP. The user inputs are shown within
the { }.

After you choose TRAMP from the main menu, you will be asked to
"Input the name of the top module ==>". The name of the top module
must be entered in exactly the same way it appears in the Modules
table of the Input database. The variable names are listed on the
screen as TRAMP checks them. Figure 8.3 shows a sample Input
ARCHY database and a sample Output ARCHY database is shown in
Figure 8.4.

NRTSC

5 WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 59 of 91

INPUT FILE: main.RCH
CUTPUT FILE: MAIN.RCH

————————————————————————————— TRAMP — = = mtm e e
;
I Input the name of the top module ==>
| {main}
|
| one
! two
! three
!
I
|
I

Figure 8.2. Sample Execution Of TRAMP

)

-

e

NRTSC
Techneology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 6 0 _of 91

#Modules<32>»

Gmain

:Called modules<3Z>([Modules)

a

b

:External variables - used<32>[Data Dictiecnary]

:External variables - set<32>([Data Dictionary]

:External variables - just passing through<32>[Data Dicticnary]
:Internal variables<32>[Data Dictionary]

fa

:Called modules<32>[Modules]

:External variables - used<32>{Data Dictionary]

one

:External variables - set<32>[Data Dictionary)]

:External variables - just passing through<32>{Data Dictionary]
:Internal variables<32>[{Data Dicticnary]

@b

:Called modules<32>[Modules]

c

d

:External variables - used<32>[Data Dictionary)
two

:External variables — set<32>([Data Dicticnary])

:External variables - just passing through<32Z>[Data Dicticnary]
:Internal variables<32>[Data Dictionary]

Gc

;Called modules<32>[Modules]

:External variables - used<32>[Data Dictionary]

two '

three

tExternal variables -~ set<32>[Data Dictionaryl

:External variables - just passing through<32>([Data Dictionary]
:Internal variables<32>(Data Dictionary)

ad

:Called modules<32>[Modules]

:External variables - used<32>[Data Dictionary]

one

three

:External variables - set<32>([Data Dictionary]

:External variables - just passing through<32>([Data Dictionary)
:Internal variables<32>[Data Dicticnary)

#Data Dictionary<32>

@one

@two

@three

Figure 8.3. ARCHY Database Prior To Execution Of TRAMP

ey

NRTSC
Technology

@L’?:«
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 61 of 91

#Modules<3z>

@main

:Called modules<32> [Modules]

a

b

:External variables - used<32>[Data Dictionary]

:External variables - set<32Z2>[Data Dictionary]

:External variables - just passing through<32>{Data Dictionary]
:Internal variables<32>(Data Dictionary)

one

two

@a

:Called modules<32>{Modules]

:External variables - used<3Z>[Data Dictionrary]

one

:External variables - set<32>[Data Dictionary]

:External variables - just passing through<32>([Data Dictionary]
:Internal variables<32>([Data Dictionary]

@b

:Called modules<32>[Modules]

c

d

:External variables - used<32>[Data Dictionary]
two

:External variables - set<32>[Data Dictionary]

:External variables - just passing through<32>[Data Dicticnary]
one

:Internal variables<32>[Data Dictionary]

three

ec

:Called modules<32>[Modules]

:External variables - used<32>{[Data Dictionary]

two

three

:External variables - set<32>[Data Dictionary]

:External variables ~ just passing through<32>{Data Dicticnary]
:Internal variables<32>[Data Dictilonary]

@d

:Called modules<32>[Modules)]

:External variables - used<32>[Data Dictionary]

one

three

:External variahles - set<32>[Data Dicticnary}

:External variables - just passing through<32>[Data Dicticnary]
:Internal variables<32>[Data Dictionary]

[

Caf

[

NRTSC

e
@ancl
WSRC-RP-90-1129

ARCHY User's Manual(l)) November 1990
Page 6 2 of 91

#Data Dictionary<32>
@one

Btwo

@three

Figure 8.4. ARCHY Database After Execution Of TRAMP

Figure 8.5 shows a structure chart diagram of the Modules table from
the database shown in Figure 8.3 . The diagram also lists the
variables for each module prior to the execution of TRAMP. None of
the variables are listed as internal variables or as external variables
passing through. Variables one, two, and three are listed as used
external variables in the modules.

NRTSC
Technology

ARC.HY User's Manual(l)

WSRC-RP-90-1129
November 1990
Page 6 3 of 91

MAIN

External variables-used or set
External variables-just passing through

ot

3]

Internal variables

A

External variables-used or set

one
External variables-just passing through
Internal variables

External variables-used or set

two
External variables-just passing through
Internal variables

c
External variables-used or set
two
three

External variables-just passing through
Internal variables

D
Extaernal variables-used or set
one
three

External variables-just passing through
Internal variables

Figure 8.5. Structure Diagram Of The Input ARCHY Database

Figure 8.6 shows a structure chart diagram of the Modules table from
. the database shown in Figure 8.4 . The diagram also lists the

o

NRTSC

@“
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 6 4 of 91

variables for each module after the execution of TRAMP. As TRAMP
executes it works down the Data Dictionary table and checks on the
variables. As TRAMP works with the variable one it finds the
variable in modules A and D and that module MAIN is the place
where the two flow paths meet. The variable one is then recorded
as an internal variable in MAIN and as a external variable - just
passing through in B. For the variable two, TRAMP finds it in
modules B and C and traces their path back to Module MAIN. The
variable two is then listed in the database as an internal variable in
the module MAIN, but is not listed as an external variable - just
passing through in B because it is already listed as an external
variable in the Input ARCHY database. TRAMP finds the variable
three in modules C and D and their paths meet at module C. TRAMP
places the variable three in module B as an internal variable.

NRTSC
Tachaology

ARCHY User's Manual(l)

WSRC-RP-90-1129
November 1990
Page 6 5 of 91

MAIN

External variables-used or set
External variables-just passing through

Internal variables
cne
two

A

External variables-used or set

one
External variables-just passing through
Internal variables

B

External variables-used or set
two

External variables-just passing through
one

Internal variables

Internal variables

External variables-just passing through

three
c)
External variables-used or set External variables-used or set
two one
three thres

Internal variablas

External variables-just passing through

Figure 8.6. Structure Diagram Of The Output ARCHY Database

NERTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 6 6 of 91

¢. Requirements For The Operation Of TRAMP

This section describes some limitations and useful information which
may aid you in your operation of TRAMP.

1) Limitations

TRAMP will only allow the database to have a maximum of
50,000 lines 80 characters long. The maximum number of
modules allowed in the database is 100, and each module may
contain 500 internal variables, 500 external variables, and 500
passed variables. The name of the top module may have up to
20 characters , otherwise TRAMP will not execute correctly.
TRAMP may allocate up to 20 Megabytes of virtual memory.

2) Information

TRAMP will not execute correctly if the name of the top module
is entered differently than it appears in the Modules table of
the Input ARCHY database. Also, the variables can not be listed
as external variables in the Input database listing for the top
module or TRAMP will not operate correctly. The Data
Dictionary table of the Input database must contain the
variables in order for TRAMP to check on the variables.
TRAMP only lists the variable as an external variable - just
passing through if it is not already listed as an external

variable - used or set.

B. Beautify Menu
1. CLEAN: Indent and Resequence Statement Numbers
This chapter tells you how to use CLEAN which is one of the

programs used to blow the dust off "ancient” FORTRAN programs so
that they can be more readable and maintainable.

NRTSC

@aq:t
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 6 7 of 91

a. What CLEAN Does

CLEAN reads a FORTRAN program and outputs the same program
with the following features. CLEAN automatically indents the body
of DO loops and IF-THEN-ELSE statements. It resequences statement
labels within subprograms. It converts Hollerith constants within
FORMAT statements to literals enclosed by single quotes. It converts
executable statements to lower-case except for portions enclosed in
quotes. It inserts two lines of stars in comment statements between
subprograms. It changes TABs in columns 1-7 to spaces. If you
want it to, it will place FORMAT statements at the end of each
subprogram in the order in which they are encountered and it will
put a frame of stars around all comment statements. CLEAN is
guaranteed to produce a program that executes exactly like the
program that was fed to it provided that the source program does
not contain any lines that have trailing blanks within literals which
are continued on the next line.

b. How To Use CLEAN

1) Enter the input file (name of program being cleaned) on the ARCHY
main menu screen as shown in Figure B.1.1.

2) Choose BEAUTIFY from the main menu. ".FOR" is the default
extension when BEAUTIFY is chosen from the main menu. The default
output file is a new version of the program with the same name and
extension.

3) Choose CLEAN from the BEAUTIFY menu. As CLEAN processes your
program you see a list that tells the number of lines in each module.
Then you see each module name on the screen. When the CLEAN
program is finished you see the BEAUTIFY menu once more.

Note: The default preferences for CLEAN are for it to put a frame of
stars around comments and to place FORMAT statements at the end

NRTSC

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 6 8 of 91

of subroutines. Refer to
default settings.

page 8 to find out how to change these

INPUT FILE: main.FOR
OQUTPUT FILE: MAIN.FOR

T CLEAN =—————m———mmmmm

Line no.
Line no.
Line no.

2subroutine a
3subroutine b

1
|
|
t
|
[
| END OF ORIGINAL CODING
l
r
I
i
I
f

10
20
41

END OF CRIGINAL CODING

Figure B.1.1. Sample CLEAN Execution

NRTSC
Technology

n Time
n Target

€

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 6 9 of 91

Figures B.1.2 and B.1.3 show what a program looks like before and
after cleaning.

50
230
40
20
7893

40
35

PROGRAM MAIN
EXAMPLE PROGRAM FOR CLEAN
GOTO 40
FORMAT (1X, 'THE END')
DO 201 =1,3
IF (I.EQ.2)GOTO 7893
WRITE (8, 230)
CALL B
STCP
END
SUBROUTINE B
IF (.TRUE.) THEN
IF (l1=1} THEN
A=2
ELSE
A=3
END IF
ELSE
A=4
ENDIF
IF (.TRUE.) THEN
A=5
ELSE
IF (.TRUE) THEN
B=3
ELSE
D=4
ENDIF
ENDIF
RETURN
END

Figure B.1.2. TEST!.FOR Before Cleaning

[

-

r)

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 7 0 of 91

program main
ChRAA A A ATITATT TR A A A A AN TA KK T A Ik kAT AR Ak IR Ak AA LR A AR A AKX A Rk * Ak K

o

c EXAMPLE PROGRAM FOR CLEAN

c
C**
10 goto 20

20 do 3041 =1,3
if (i.eq.2)goto 40
30 CONTINUE
40 write(8,9010)
call b
stop
9010 format (1x, "THE END')

end
c*************************t**************************t*********t**t**

C**

subroutine b
10 if (.true.) then
20 if (1=1) then
a=2
else
a=3
end if
else
a=4
endif
if (.true,) then
a=5
else
if (.true} then
b=3
else
d=4
endif
endif
return
end

Figure B.1.3. TESTL1.FOR After Cleaning

c. How CLEAN Handles Special Cases

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 71 of 91

This section describes some of the special features of CLEAN in the
detail that is appreciated by programmers but may be tedious to the

casual reader. If you trudge through it you may become an avid
ARCHYologist.

1) Limitations of Space

You can only have 500 subprograms in your entire program. Each of
those subprograms can have at most 499 statement labels of which
no more than 99 may be statement labels for FORMAT statements.
CLEAN stores all the statement labels for an entire program in an
array so it could conceivably need to reference an array of 249,500
5-byte character strings. Lines must be no more than 80 characters
and end-of-line labels in columns 73-80 are deleted by CLEAN but
another program on the BEAUTIFY menu, LABEL, will generate line
labels using the first 4 characters of the subprogram name.

2) Comment Lines
i. To Frame or Not To Frame?

Nothing is as distinctive about your programming style as your
comments so if you prefer to not have stars around your comments
then the only stars CLEAN will insert in your program are the two
lines of stars between subprograms. See page 8 for an explanation of
how to set preferences. The program from Figure B.1.1 turns out like
Figure B.1.4 if you choose not to frame. Please note that once
comment lines are added to a program by CLEAN, they are never
taken away by CLEAN with one exception. CLEAN deletes duplicate
comment lines that consist of a ¢ followed by 72 blanks. This is to
keep frames from being bigger than they need to be. When you
choose not to frame comments they are padded with blanks so that
all comment lines become 80 characters long.

NRTSC
Technology
On Time

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 7 2 of 91

program main
C EXAMPLE PROGRAM FOR CLEAN
10 goto 20
20 do 30 i = 1,3
if (i.eq.2)goto 40
30 CONTINUE
40 write(8,9010)
call b
stop
9010 format (1x, 'THE END')

end
c******************'k***

(% e e de e ke e ek e e Sk e e e 3ok ke 6 ok e e o ok 3 ok e g ok 3 ok ok e ok ke e dk ok e sk ol o ok e e ok o de e e A e e e T e e ek e e e e e ke R

subroutine b
10 if (.true.) then
20 if {1=1} then
a=2
else
a=3
end if
else
a=4
endif
if (.true.) then
a=5
else
if (.true) then
b=3
else
d=4
endif
endif
return
end

Figure B.1.4. Comments Are Not Framed

3) End-Of-Line Comments

VAX FORTRAN permits an extension to the FORTRAN-77 standard
called end-of-line comments. The VAX FORTRAN compiler ignores
characters that occur to the right of an exclamation point. CLEAN

NRTSC
Technology

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 73 of 91

converts end-of-line comments to a C-type comment with the
comment occurring one line previous to where the end-of-line
comment had been. This is illustrated by Figures 5 and 6.

PROGRAM TESTCOM

CHARACTER*10 ACHAR

ACHAR='SURPRISE' !END OF LINE COMMENT
ACHAR='THE'!END'

STOP

END

Figure B.1.5. Program TESTCOM Before Cleaning

program testcom
character*10Q achar
c END OF LINE COMMENT
achar='SURPRISE'
achar="THE!END?
stop
end

Figure B.1.6. Program TESTCOM After Cleaning

4) Indenting and Continuation Lines

The bodies of nested loops and conditionals are indented two spaces.
When the level of nesting exceeds 30, CLEAN indents no more as
shown in Figure B.1.7. Continuation lines will normally be indented
two spaces to the right of the first line of a continued statement. The
location of line breaks within a continued statement are normally
preserved by CLEAN. The exceptions to these rules occur when
indention would cause a line to be longer than 72 characters in which
case the overflow is continued on the next line. CLEAN never inserts
line breaks in the middle of keywords or variables. If a line break
falls in the middle of a literal then the continuation line is not
indented. Literals that have to be continued on the next line are
never written with trailing blanks at the end of the line that is being

il

NRTSC
Technology

On Time
@Tu‘el
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 74 of 91

continued. When CLEAN reads a line it starts at column 72 and looks
at each character from right to left. Any blank characters are
trimmed. If a program is fed to CLEAN with a literal containing
trailing blanks which is split across two lines, then CLEAN's output
when compiled and executed could result in blanks being omitted
from the program's output which could lead to confusing output as
shown in Figures 8 and 9. In Figure B.1.8 the literal in line 10 is
continued across continuation lines with trailing blanks but after it is
put through CLEAN it looks like Figure B.1.9.

NRTSC
Technology

@1«

ARCHY User's Manual(l)

WSRC-RP-90-1129

November 1990
Page 75 of 91

program test?
do i=1,10
do i1=1,10
do i2=1,10
do 13=1,10

do 14=1,10
do 15=1,10
do i6=1,10
do i7=1,10
do 18=1,10
do 19=1,10
do i10=1,10
do il11=1,10
do i12=1,10
do 113=1,10
do 114=1,10
do il5=1,10
do 116=1,10
do i17=1,10
do 118=1,10

do 1i19=1,10

do i20=1,10

do 121i=1,10

do 122=1,10
do 123=1,10
do 124=1,10

enddo

do
do
do
do
do
do
do
do

125=1,10
i26=1,10
127=1,190
128=1,10
129=1,10
i30=1,10
131=1,10
132=1,10

print *,
'LOOP DE LOQP!
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo

NRTSC
Technelogy

@/“

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 7 6 of 91

enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo
enddo

enddo

stop

end

Figure B.1.7. Nesting Level Exceeded

NRTSC
Technology

m Time
n Targel

@ WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990

Page 77 of 91

10

20

PROGRAM TRAIL
Y=TEMPERATURE, OUJ=MEASUREMENT, ER=ENERGY, K=CONSTANT
WRITE (6,10)

FORMAT (1X, 'Y

*OUJ

*ER

*K')

WRITE (6,20)

FORMAT (1X, '- -— - -1
STOP

END

ouJ ER K

Figure B.1.8. Program and Output Before Cleaning

9010
9020

program trail

Y=TEMPERATURE, OQUJ=MEASUREMENT, ER=ENERGY, K=CONSTANT
write (6, 9010}

write (6, 3020}

stop

format (1x, "YOUJERK')

format (1x, *- - - =)

end

Figure B.1.9. Program and Output After Cleaning

»

NRTSC

."::..
- WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 78 of 91

5) Hollerith Conversion

Hollerith constants within FORMAT statements are converted to
literals whereas Hollerith constants elsewhere are left unperturbed.
The one exception to this rule is a Hollerith constant within a
FORMAT statement that contains a literal. These statements are
flagged with an H in the first column and CLEAN beeps and prints an
error message. If the offending FORMAT staternent happens to be
continued as well then the continuation of this line will not be
marked with an H which could lead to unpredictable results if the
program even compiles. If you get this message then the original
program must be edited so that Hollerith constants within FORMAT
statements which contain literals are removed. Examples of Hollerith
constant conversion to literals is shown in Figures 10 and 11.

PROGRAM TEST12 .
200 FORMAT (1X, 1HE, SHTWICE, 6HTHRICE)
2100 FORMAT (1X,12HERROR!AGAINS)

STOP

END

Figure B.1.10. Program TEST12 Before Cleaning

program testl2

stop
9010 format(lx,'E', 'ITWICE', 'THRICE')
9020 format (1x, 'ERROR!AGAINS')

end

Figure B.1.11. Program TEST12 After Cleaning

NRTSC
Technology

On Time
@Tlr'ﬂ
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 7 9 of 91

2. ALPHA: Alphabetize Modules

This program puts the modules within a program file into

alphabetical order. The preference file determines whether the main
program appears at the top of the file or in alphabetic order with the
other modules. How to set preferences is explained on page 8 above.

3. LABEL: Add End-of-Line Labels

This program adds line labels to column 72-80 of each executable
line. The labels consist of the first 4 characters of the module line
followed by a 4 digit number, The 4 digit numbers are ordered
sequentially with an increment of 10. If you have more than 999
executable lines in a module then the numbering begins again at 0.
Figure B.3.1 shows a program before LABEL is run and Figure B.3.2
shows the same program after LABEL is run. It is poor programming
practice to continue a literal on another line. Notice that if you
continue a literal on another line then the line label will be inserted
in the middle of the literal.

il

NRTSC
Technology

ARCHY User's Manual(U)

WSRC-RP-90-1129

November 1990
Page 8 0 of 91

program aaaaaa
o] comments are not labeled
character*80 a
a="label test®
a=
1'Continued lines get labeled too'
a="Watch out for
lquotes. !
stop
end
subroutine bbbbbb
C corments are not labeled
character*80 a
a='label test’
return
end
subroutine cccC
el comments are not labeled
character*80 a
a='label test'
return
end

Fig. B.3.1 Program Before LABEL is Run

NRTSC

@I‘lrlel
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 81 of 91

Nl

»

7]

program aaaaaa aaaa
comments are not labeled

character*80 a aaaa
a='label test’ aaaa
a= aaaa
1'Continued lines get labeled too! aaaa
a="Watch out for aaaa
lquotes.' aaaa
stop aaaa
end aaaa
subroutine bbbbbb bbbb
comments are not labeled

character*80 a bbbb
a='label test' bbbb
return bbbb
end bbbb
subroutine ccc ccce
comments are not labeled

character*80 a cee
a='labhel test' cce
return cee
end ccce

Fig. B.3.2 Progra.m After LABEL is Run

4. PORT: Convert File for Transmission to IBM

This program reads a file using and then writes it back out using the
parameter, CARRIAGECONTROL=NONE. At the same time a blank is
added at the beginning of each line. This is the preferred format for
a program prior to uploading of that file to the IBM mainframe.

5. PRETRN: Insert Blank Before Each Line

This program inserts a blank at the beginning of each line. This is
done to facilitate printing of the file because many printers drop the
first character on each line.

L/

=

NRTSC
Technology

@::n
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 8 2 of 91

C. Output Menu
1. STRUCT: Structure Chart

When option 1 on the output menu is chosen, a structure chart is
printed for the ARCHY database that was entered on the main menu
as the input file. The PostScript commands that draw the structure
chart are output to a file with the default extension, SPS, and then
that file is submitted to the print queue shown on the output menu
screen. An example of a structure chart is shown in Figure C.1.1.

MATAG
Translate from
NJOY format to
TAG format
GETNAM PUTONE
Find the isotope Translate an
names from isotope to TAG
MATAG.IN file
TAGC TAGII TAGI2 VAL
Write the Read the Read the Read the
TAG arrays first line second line values in
of the NJOY of the NJOY the NJOY
integer array integer array GROUPR array

Fig. C.1.1 Sample Structure Chart

Ay

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 8 3 of 91

2. HEADER: Module Design Sheets

When option 2 on the output menu is chosen, module design sheets
are printed for the ARCHY database that was entered on the main
menu as the input file. Module design sheets contain the same
descriptive information found in a module header. An example of a
module design sheet is shown in Figure C.2.1. The module design
sheets are output to a file with the default extension, MDS, and then
that file is submitted to the print queue shown on the output menu
screen.

NRTSC
Technoology

@l’i’:ﬂ

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990

Page 8 4 of 91

MCDULES Descriptions

* Kk ok k&

Module name:
MATAG

Structure chart description:
Translate from
NJOY format to

TAG format
Purpose:
Translate from NJOY format to TAG format
History:
Designed: R. E. Pevey and K. R. Okafor 8/17/90
Coded: R. E. Pevey 8/18/90
Called modules:
getnam
putone
) Internal variables:
ACHOICE

Flag for real/binary (=r/b)
output for TAG file

IEND
Flag that last entry has been
read from NAMES file

IMAT
Material number

JOSDES (999)
JOSHUA isotope/temperature name

MATDES (999)
NJOY material name (Must be a
.GROUPR file of this name)

NMAT
Number of material pairs read

Variables written:
JOSDES (999)
JOSHUA isotope/temperature name

MATDES (999)

© NJOY material name (Must be a

c*l

i*4

i*4

C*13

C*13

i*4

Cc*13

C*13

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 8 5 of 91

.GROUPR file of this name)

Algorithm:
1. Get the NJOY and JOSHUA names of isotopes desired [GETNAM]
2. Loop over iscotopes desired:
A. Translate the isotope [PUTONE]

Fig. C.2.1 Sample Module Design Sheet

3. DATADICT: Design Sheet Data Dictionary

When option 3 on the output menu is chosen, a design sheet data
dictionary is printed for the ARCHY database that was entered on the
main menu as the input file. The design sheet data dictionary is
output to a file with the default extension, DDD, and then that file is
submitted to the print queue shown on the output menu screen. An
example of a design sheet data dictionary is shown in Figure C.3.1.

NRTSC

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 8 6_of 91

DATA DICTIONARY Descriptions

* K Kk ok ¥k

Variable name:
ACHOICE
Type:
C*1
Definition:
Flag for real/binary (=r/b)
output for TAG file
Used by:
matag
putone
tagc
%k %k ¥k k Xk
Variable name:
ALINE
Type:
C*80
Definition:
Variable to hold latest line
read from a file
Used by:
getnam
putone
tagil
tagi2
val

Fig. C.3.1 Sample Design Sheet Data Dictionary

B

&)

NRTSC

T
@lnel
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 8 7 of 91

4, DATAFLOW: Dataflow Diagram

When option 4 on the output menu is chosen, a dataflow diagram is
printed for the ARCHY database that was entered on the main menu
as the input file. The PostScript commands that draw the dataflow
diagram output to a file with the default extension, FPS, and then

that file is submitted to the print queue shown on the output menu
screen. An example of a dataflow diagram is shown in Figure C.4.1.

[

NRTSC

@:

ARCHY User's Manual(U)

WSRC-RP-90-1129
November 1990
Page 8 8 of 91

Fig. C.4.1 Sample Dataflow Diagram

NRTSC

WSRC-RP-90-1129

ARCHY User's Manuai(U) November 1990
Page 89 of 91

5. FLOWDICT: Dataflow Diagram Data Dictionary

When option 5 on the output menu is chosen, dataflow diagram data
dictionaries are printed for the ARCHY database that was entered on
the main menu as the input file. The output goes to a file with the
default extension, FDD, and then that file is submitted to the print
queue shown on the output menu screen. An example of a dataflow
diagram data dictionary is shown in Figure C.5.1.

a)

NRTSC

ARCHY User's Manual(l)

WSRC-RP-90-1129
November 1990
Page 9 0 of 91

DFD DATA DICTIONARY

MATERIAL NUMBER
Variables
IMAT
Material number

ISOTOPE NAMES
Variables
NMAT

Number of material pairs read
JOSDES (999)

JOSHUA isotope/temperature name
MATDES (999)

NJOY material name (Must be a
.GROUPR file of this name)

FIRST LINE OF TAG
Variables
MAT
MAT number (isotope designation)
MF
MF file number
MT

NJOY MT (reaction type) value
NL

Legendre order

I*4

[*4

C*13

C*13

I*4

1*4

I*4

I*4

Fig. C.5.1 Sample Dataflow Diagram Data Dictionary

NRTSC
Technology
T

@::..
WSRC-RP-90-1129

ARCHY User's Manual(U) November 1990
Page 91 of 91

Py

6. TRANFORM: Transform Descriptions

When option 6 on the output menu is chosen, transform descriptions
are printed for the ARCHY database that was entered on the main
menu as the input file. When this program runs, you are asked
whether you want to print the transform descriptions for all the
dataflow diagrams within the database or whether you only want
one of them. You indicate your choice by typing "a" or "o"
respectively. The transform descriptions are output to a file with the
default extension, TDD, and then that file is submitted to the print
queue shown on the output menu screen. An example of a transform

description is shown in Figure C.6.1.

TRANSFORM DESCRIPTIONS

Transform - MATAG
Title
Translate from
NJOY format to
TAG format
Description
Translate from NJOY format to TAG format
Procedure
1. Get the NJOY and JOSHUA names of isotopes desired [GETNAM]
2. Loop over isotopes desired:
A, Translate the isotope [PUTONE]
Incoming data flows
NJOY MULTIGROQUFP RECORD
LIST CF DESIRED ISOTOPES
Outgoing data flows
TAG MULTIGROUP RECORD
Subordinate transforms
GETNAM
PUTCONE

-

Fig. C.6.1 Sample Transform Description

.
LtA

-

“})

NRTSC

WSRC-RP-90-1129

ARCHY User's Manual{U] November 1990
Page A-1

APPENDIX A
LI.Structure of the ARCHY Database

Here is the latest version of the ARCHY database structure; the first
version appeared in the ARCHY PSSP, but has undergone some
variation since then. The bracketed information designates which
Tables may be linked to the current category. This remains so that it
is possible to eliminate an entry in a Table and at the same time
eliminate all references to it (i.e., all possible module names would
contain a [Modules] designation).

Here is a definition of each of the tables and a listing of its fields:
(1) Module table - Individual modules are described. <32>

Fields:

Structure chart description <16> - The title on the Structure Chart

Purpose <64> - Description of the purpose of the module

History <64> - Description of history of module

Called Modules <32> [Modules] - Listing of other modules called
by this one

Parameters {value} <64> - Module parameters and their values

External variables - used <32> [Data Dictionary] - List of variables
which are used in the module

External variables - set <32> [Data Dictionary] - List of variables
which are set within the module

External variables - just passing through <32> [Data Dictionary] -
List of variables which are neither set nor used, but simply
pass through on the way to a subordinate

Internal variables <32> [Data Dictionary] - List of internal
variables (i.e., not passed from above, but may be passed
below)

Theory <64> - Theoretical basis for the algorithm followed with
references to technical literature.

NRTSC

e
@lqel
WSRC-RP-90-1129

ARCHY User's Manual[U] November 1990
Page A-2

Algorithm <64> - Outline of the algorithm followed in the
module

(2) Data Dictionary table <32>

Fields:

Type - <16> Type information

Array limits <32> - Array information

Description <62>

Modules <32> [Modules] - Only needed in the case of duplicate
variable names

(3) COMMON block table <32>

Fields:

Description <64>

Modules <32> {Modules]

Variable names <32> [Data Dictionary] - A list of variables in
the COMMON Block

(4) Transform table - This table contains the information for each
transform of the Data Flow Diagram<32>

Fields:

Transform number <16> - A numerical designation to appear
on the DFD

Transform title <32> - Transform title on the DFD

Description <64>

Procedure <64>

Incoming data flows <64> - Lists the flows containing the input
for the transform

Qutgoing data flows <64> - Lists the flows containing the output
from the transform

Subordinate transforms <32> [Transforms]- Lists the transforms
(if any) into which this one can be broken down

3

NRTSC
Technology

On Time
@Taq:l
WSRC-RP-90-1129

ARCHY User's Manual[U] November 1990
Page A-3

Corresponding Modules <32> [Module] - This lists the module(s)
that implement the transformation

(5) Files table - Here the Data Flow Diagram files (input and output
data repositories) are described. <32>

Fields:

File number <16> - A DFD numerical designation such as "File 7"

File title <32> - This will be the title of the file on the DFD

Description <64>

Incoming data flows <64> [Data flows] - Lists the flows
containing the input for the data repository

QOutgoing data flows <64> [Data flows] - Lists the flows
containing the output from the data repository

(6) Data Flow table - Data flows are described<64>

Fields:

Description <64>

Variables <32> [Data dictionary} - A list of variables in the data
flow

(7) DFD table - The individual DFD drawings are organized. <64>

Fields:

DFD Title <64> - This will show up as the title of the DFD

Description <64>

Displayed transforms{x,y,angin,angout} <32> - [Transforms]
The transforms listed will be printed at
the locations given (x and y should
range from O to 1). All data flows
associated with them will be included
also. Any input and output dataflows
which have no displayed "other end"”
will be attached at the angles indicated.

:'(.P

%

NRTSC

ARCHY User's Manual{U]

WSRC-RP-90-1129

November 1990
Page A4

Displayed files {x,y} <32> [Files]

The files listed will be printed at the
locations given (x and y should range
from O to 1).

Extra incoming_ dataflows <64> - [Data flows]

Extra incoming data flows desired on
the drawing.

Extra_outgoing dataflows <64> - [Data flows]

Legend position <32>

Extra outgoing data flows desired on the
drawing.

The x and y locations of the Legend
using the format "(x,y)". (No entries
results in no Legend.)

