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ABSTRACT

The neutron transport equation is solved by a hybrid method that iter-
atively couples regions where deterministic (Sy) and stochastic (Monte Carlo)
methods are applied. Unlike previous hybrid methods, the Monte Carlo and Sy
regions are fully coupled in the sense that no assumption is made about geometri-
cal separation or decoupling. The hybrid method provides a new means of solving
problems involving both optically thick and optically thin regions that neither

Monte Carlo nor S is well suited for by themselves.

The fully coupled Monte Carlo/Sy technique consists of defining spatial
and/or energy regions of a problem in which either a Monte Carlo calculation or
an Sy calculation is to be performed. The Monte Carlo region may comprise
the entire spatial region (with vacuum boundary conditions) for selected energy
groups, or may consist of a rectangular area that is either completely or partially
embedded in an arbitrary Sy region. The Monte Carlo and Sy regions are then
connected through the common angular boundary fluxes, which are determined

iteratively using the response matrix technique, and volumetric sources.

The hybrid method has been implemented in the Sy code TWODANT by
adding special-purpose Monte Carlo subroutines to calculate the response matri-

ces and volumetric sources, and linkage subroutines to carry out the interface flux
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iterations. The common angular boundary fluxes are included in the Sy code as
interior boundary sources, leaving the logic for the solution of the transport flux
unchanged, while, with minor modifications. the diffusion synthetic accelerator
remains effective in accelerating the Sy calculations. The special-purpose Monte
Carlo routines used are essentially analog. with few variance reduction techniques
employed. H“owever, the routines have been succesfully vectorized. with approxi-

mately a factor of five increase in speed over the non-vectorized version.

The hybrid method is capable of solving forward. inhomogeneous source
problems in X - Y and R — Z geometries. This capability includes multigroup
problems involving upscatter and fission in non-highly multiplying (kesy < .8)
systéms. The hybrid method has been applied to several simple test problems

with good results.
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CHAPTER 1.
INTRODUCTION

Knowledge about the distribution of neutrons in a medium is essential in
many of today’s applications in nuclear science. Most obviously, the distribution
of neutrons in a reactor directly relates to the energy released by fission. thus
determining power levels and safety margins. Many other applications also exist.
however. such as oil well logging. in which the distribution of neutrons emitted from
a source placed in a well can be correlated to the possible presence or absence of
hydrocarbons in the surrounding soil. Both these. as well as other areas. require an

accurate means of evaluating the neutron distribution.

The distribution of neutrons in a medium is best described by the Boltzmann
transport equation, which can be derived from the requirements of particle conser-
vation across an element of phase space.! If the distribution .V(r, E.Q)drdE d?
represents the number of neutrons in volume dr about location r, with energy
in dE about E, and moving in solid angle d2 about direction €2, then the to-
tal track length per second of the particles in the phase space element dr dE dQ2
is v(E)N(r,E,Q)dr dE d?, where v(E) is the neutron speed. In transport the-

ory, the quantity v(E) N(r, E, Q) is commonly defined as the angular neutron flux

S SN
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o(r. E. ). and the linear. steady state Boltzmann transport equation is written in

terms of the angular flux as
Q- Vo(r.E,Q)+ Er(r.E)o(r.E.Q) =

/ dE' [ dQ Ss(r.E' = E.Q - Q) 6(r. E'. Q)
0 imr
x<
+\(E)/ dE' v(E')SF(r.E'Yo(r,E') + S(r, E, Q).
0

The total macroscopic cross section Tr(r, E) is the number of neutron interactions
of all types per unit track length. the differential macroscopic scattering cross sec-
tion Eg(r. E' — E. Q' - Q)dE df represents the number of particles per unit track
length scattered from energy E’ and direction ' to dE about E and df? about Q.
and the fission macroscopic cross section Sg(r. E) is the number of fission interac-
tions occuring per unit track length. The average number of neutrons emi.utted per
fission is defined as v(E). while the fission spectrum \(E)dE represents the prob-
ability of a fission particle appearing in energy range dE about E. The scalar flux
o(r. E) is defined as the integral [ dQ'o(r.E.Q'). and the inhomogeneous source
an

S{r.E.Q)drdE dfQ is the number of ncutrons emitted in volume dr about location

r. with energy in dE about E, and moving in solid angle d? about direction Q.

The first term on the left-hand side of Eq. (1-1) is interpreted as the rate
of change of particles in the phase space due to streaming, while the second term
represents the loss of particles from the phase space due to all types of collisions.
The first term on the right-hand side is the rate of gain of particles in the phase
space due to scattering from all phase space elements at r, while the second term

is the gain due to fissions.
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Several physical assumptions are inherent in Eq. (1-1). Scattering is assumed
to be dependent only upon the scattering angle €2 - ', which is valid for isotropic
media. The fission spectrum \(E) is assumed independent of the fission energy E'.
and is also assumed to be identical for both prompt and delayed fission neutrons.
The angular distribution of fission neutrons is assumed to be isotropic. which is
reasonable at energies under consideration here (< 20 MeV'). To preserve linearity.

macroscopic cross sections are assumed to be independent of the neutron flux.

Equation (1-1) is an integro-differential in six variables (three spatial. two
angular. and one in energy). and a general solution has not been found. While an-
alytic solutions have been obtained for simplified cases.! realistic problems require
a numerical solution by one of several methods. which can be divided into two gen-
eral classes - deterministic. of which the most popular method is discrete ordinates

(S~). and probabilistic (Monte Carlo).

While both S and Monte Carlo are well suited for specific types of problems,
neither is efficient for all types. The Sy method is difficult to apply to problems
with complicated geometries and encounters numerical difficulties in low scattering
regions. While, in theory, Monte Carlo can be used to solve any problem. the
computational time required for an accurate solution can be enormous, especially

for problems with highly scattering regions.

Previous efforts at developing hybrid techniques that enable the best features
of discrete ordinates and Monte Carlo to be exploited in a single problem have been
limited. One of the first approaches was to employ the results of a one-dimensional

adjoint SN calculation as a biasing function in a three-dimensional Monte Carlo
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shielding problem.? Note, however. that the Monte Carlo and Sy methods were not
directly linked; rather. the Sx results pfovided additional information to the Monte
Carlo, which performed} the actual calculation. In the code DOMINO (Discrete
Ordinates Monte Carlo Interface Operation).®** the boundary fluxes resulting from
a discrete ordinates code were used as input to the Monte Carlo code MORSE.
either directly as a source, or indirectly as an importance function. However. the
S~y and Monte Carlo regions were assumed to be decoupled. in that the solution to
the Sy problem was not affected by the Monte Carlo region. Thus. even though
the methods were coupled, the problem geometry was not. Similarly. Monte Carlo
calculations have been used to provide a surface source (forward or adjoint) for S

5~7

calculations.”~" again. with a decoupled geometry.

Anor’her means of coupling Monte Carlo and Sy is the first collision source
method.? in which source particles from a localized source are tracked to their first
collision via Monte Carlo. then tallied to form a source for the S». This removes the
difficulties encountered in running Sy with singular sources. such as a point source.
while the time involved in the Monte Carlo calculation is minimal, since particles
are only followed until their first collision. However. Sy is still used to compute
the final fluxes throughout the entire problem geometry, so the first collision source
method only partially alleviates any problems due to the presence of low scattering

regions.

In Ref. 9, Monte Carlo methods are implemented within the Sy method
itself. This is accomplished by choosing the Sy quadrature directions randomly,

which are then used with standard Sy techniques. The use of random angular



18

quadrature directions helps mitigate ray effect problems. but does not eliminate

errors due to spatial differencing (i.e., problems due to optically thin regions).

In contrast, the fully coupled Sa /Monte Carlo technique described here con-
sists of defining spatial regions in which either a Monte Carlo calculation or an S
calculation is to be done. The regions are then connected through the common
boundary fluxes. which are determined iteratively using the response matrix tech-
nique. This technique is completely consistent in that the solution obtained is not

dependent upon any assumptions of geometric separation or decoupling.

As an example of a configuration suitable for analysis by the fully coupled
hybrid technique. consider a geometrically complicated neutron source located in a
low scattering material. such as air. encased in a large cylinder of highly scattering
material. such as steel. Due to the ‘complex source geometry and streaming in
air. the Sx technique by itself would be unreliable. On the other hand. Monte
Carlo alone would be inefficient because of the significant multiple scattering in
the steel. Even a decoupled linking technique that used a Monte Carlo calculation
in the source and air regions, followed by an Sy analysis in the steel. would be
inadequate if particles were likely to reenter the air region after having entered the
steel region. By using the Monte Carlo technique for the air and source regions. the
S~ technique for the steel region, and the response matrix method to determine
the interface currents between the air and steel regions, we are able to apply both

methods where they are most efficient and still obtain a fully coupled solution.
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The hybrid technique. as originally developed by Alcouffe and Filippone,!?-!!
was first implemented for monoenergetic transport in simple X — Y geometry prob-
lems. thus demonstrating the feasibility of the method for one-group problems in
two dimensions. (Although three dimensional Sy codes are currently under de-
velopment, past limits in computational resources have restricted development of
practical discrete ordinates codes to two dimensions.) Although application of the
hybrid method to realistic problems would require the inclusion of multiple energy
groups. a “brute force” extension of the method was not possible due to physical
limits on data storage. In addition, numerous other features and capabilities were
needed in order to handle the complexities posed by realistic problems. Although
the hybrid method showed pfornise. it was unclear if it could be extended to more

complicated problems.

The goal of this dissertation is to determine the feasibility of the application

of the hybrid method to problems of real world complexities by:
a. Extending the hybrid method to include multiple energy groups.

b. Generalizing the treatment of neutron scattering to allow anisotropic scat-

tering.
c. ‘ncluding the capability for treating fission and upscatter.

d. Allowing the treatment of more complicated geometries, including cylindri-

cal.
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e. Enhancing the efficiency of the Monte Carlo portion of the hybrid method

through vectorization.

f. Increasing the efficiency of the Sy portion of the hybrid method through

improved acceleration ‘echniques.

g. Developing a method for estimating the variance of quantities calculated by

stochastic techniques in the hybrid method.

Chapters 2 and 3 of this dissertation will provide a brief review of discrete
ordinates and Monte Carlo techniques, respectively. while Chapter 4 will detail
the theory behind the response matrix hybrid technique. Chapter 5 will describe
the actual implementation of the hybrid method. i.e., how the Monte Carlo and
S~ are coupled together. Chapter 6 describes the specifics of the Monte Carlo
techniques used in the hybrid method, while Chapter 7 covers the vectorization
of the hybrid Monte Carlo method. Chapter 8 describes how multigroup cross
sections are obtained for the Monte Carlo from the S~. and explores some of the
related effects of using such derived cross sections. The use of statistics and variance
estimators in the hybrid method is explained in Chapter 9, while the use of diffusion
synthetic accleration in the Sy with the hybrid method is covered in Chapter 10.
Chapter 11 presents a series of benchmark comparisons between pure Sy and the
hybrid method. Finally, conclusions and recommendations about the hybrid method

are presented in Chapter 12.




CHAPTER 2.
DISCRETE ORDINATES

The discrete ordinates (S~ ) method is a deterministic means of solving the
transport equation through discretization of the independent variables. The energy
domain E is subdivided into G groups (i.e., the multigroup method is used), and the
spatial domain r is partitioned into “rectangular” cells. A set of discrete angular
variables (ordinates) is then selected and the transport equation evaluated along
these directions. Because of the nature of the linear Boltzmann integro-differential
equation. its solution is most conveniently developed by a process of von Neumann

or source iteration.

Many discrete ordinates codes currently exist today. some of which have
been constructed in a different manner. The following review of discrete ordinates
is tailored to TWODANT,!2 the Sy code within which the hybrid method has been
implemented, and is based upon Refs. 13 and 14.

2.1 _Coordinate Systems

A two dimensional X — Y geometry consists of a block with finite r and

y dimensions, and an infinite length in the z direction. In the coordinate system
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shown at Fig. 2-1. y is the direction cosine along €., n the direction cosine along &,.
and ¢ the direction cosine along é,. The phase space thus consists of five dimensions

-z, y. E, y. and n. since we have the constraint u? + n? +¢2 = 1.

A two dimensional R — Z geometry consists of a finite cylinder with radius R.
height H. and azimuthal symmetry. In the coordinate system shown at Fig. 2-2. u
is the direction cosine alone &,. n the direction cosine along é.. and £ the direction

cosine along &4. Again, the phase space has five dimensions - r, =, E. u. and n.

2.2 The Multigroup Method

The energy groups are represented by the group index g. where increasing g
corresponds to decreasing energy. Let 0 < E} < E3 < ... < Eg- < Eg. where Eg
is the maximum energy of interest in the system. then the definition of the group

flux is

E
¢g(r,n)§/ " dE'o(r.E'.Q). (2-1)
Ey-

Similarly. the group source is

Sy(r. ) = /E' dE' S(r.E'. Q). (2-2)
E,y
The group total and fission cross sections are defined so that
Sry(r Q) = —— " o(r. E', ) Sp(r, E'). (2 - 3a)
py(r, ) Eq-1
vEFy(r,Q) = L /E, dE' o(r.E' Q)v(E')SFp(r.E"), (2 - 3b)
0g(r. Q) JE,_,
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and the group-to-group transfer cross section is
1 E, Ey

dE dE' ¢(r,E',Q)Zs(r. E' - E.Q' - Q).

Coyme(r. ¥ Q)= —————
[ 9( ) q>g,(r,ﬂ) Eg_1 Eyi_y

(2 - 3c)
Since the angular flux o(r, E, ) is not known a priori, multigroup cross sections are
generally calculated by assuming that the angular flux is separable into functions
f(r‘ﬂ)g('E), where f(r,f2) need not be determined, and the spectral weighting
function g(E') is estimated. Then, the group macroscopic cross sections are functions

of r only.

With the definitions at Eqns. (2-3), integration of Eq. (1-1) over the energy

group g results in

I=1]

g
Q-Vou(r.R)+ Sry(r)o,(r. Q) = Z / dQ' Sy _g(r. Q- Q) oy (r. Q')
g ir

G G
+ Z dV Sy _g(r. Q' - Q) (r. Q) + 4 Z vEF.g(r)og(r)+ S,(r, Q).

g'=g+l 4 gl=1

(2-4)

E, E,

dE' \(E') and o,(r) as/ dE' (r,E").

where Y, is defined as /
Egor

Eqgoy

Note that the first term on the left-hand side is due to neutrons scattering
from higher energy groups to lower energy groups (plus within group scatter), and
is referred to as “downscatter”, while the second term is due to neutrons scattering
from lower energy groups to higher energy groups, and is referred to as “upscatter”.
For problems without upscatter or fission, the multigroup equation may be solved
directly by solving for the flux in group one, calculating its contribution to the sec-
ond and lower groups, solving for the second group's flux, etc., until all groups have

been solved. With upscatter or fission, an iterative procedure is most conveniently
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used. Letting p be the iteration index, and using the updated scatter source where
available, Eq. (2-4) becomes

g

Q-Ver+(r. Q)+ Sry(r) ot (r.N) = Z dQ' Sy _g(r. Q- ﬂ)o‘;.*'l(r. Q')

g'=l i
G G
+ Z /; d Sy —g(r. Q- Q) 0l (r. ) + 1\ Z vEFg(r)oh(r)+ Sy(r. Q).
g'=g+1 V3T g'=1

(2-3)
This iteration procedure is referred to as the “outer” iteration in discrete ordinates

codes.

2.3 _The Scattering Cross Section

Before we proceed with the discretization of the angular variables. the scat-
tering cross section must be further specified. Letting uo = ' - Q. and expanding

the group-to-group transfer cross section in Legendre polynomials. we obtain

Lol 41
:g’-g(r~ﬂ0)=z o Zig —g(r) Pl o). (2-6)

=0

where Pi(ug) is the Ith Legendre polynomial and the infinite series representation
has been truncated after L terms. Truncation at L = 0 corresponds to isotropic
scattering. while truncation at L = 1 is referred to as linearly anisotropic scatter'ng

Since the Legendre polynomials are orthogonal, the coefficients of the expansion are

o

-1

+1
T4 —g(F) = 21 / g Sy g (F. i) Pil o). (2-7)
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The Ith Legendre polynomial can be expressed as

4 m=+! ’
Pilpo) = 55 2 Yim() ¥in (), (2-8)
- m=-|

by using the addition theorem for spherical harmonics, with ¥ » () representing
the [th, mth spherical harmonic. and 17, () its complex conjugate. If we now

expand the group angular flux in terms of the spherical harmonics. i.e.,

ot =" 3" Yim(Q) 0imyl(r)
6:mg(r)=/ dRY () 0,(r. Q).
ir

The scattering source (including both upscatter and downscatter) then becomes

G G L m=+!
d Sy g(r. R Doy (r. Q) =" Y Ty y(6) Y Yim(R) Oy (r
g'=1"47 g'=11=0 m=-|

(2-10)
Note that because of symmetry considerations for two dimensional geometries, the

moments Ojmgy (1) are zero for m < 0.3

2.4 Discretization of the Angular Variable

In discrete ordinates, the unit directional sphere is represented by a set of
discrete directions €2, with associated weights w, (see Fig. 2-3). Although there
is no unique quadrature set of directions, all such sets are chosen so as to pre-
serve physical symmetries and properties of the transport equation.!® The method
of discretization is independent of the actual quadrature set used; however, it is

somewhat dependent upon the specified geometry.
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Beginning with Cartesian geometry, the streaming operatoris 2 - V = 4 3 +

Rt Note that there is no angular coupling in the streaming operator in X — Y
y

geometry, i.e., as a particle travels through space its direction cosines pu. n. and £
remain constant until it suffers a collision. Along the quadrature direction 2, with

direction cosines p, and nn, therefore, the transport equation is

m

5 0 DR =
[png; + Mn ‘a—;} 0ng(l')+:r.g(l') ¢ng(l') = Z Z :1,9‘—-9(1') Ylmn Olmg’(r)

g'=11=0 m=0

G
+ \9 Z VSF‘QI(P)OQOQ'(I') + Sng(r)~
g'=1

(2-11)
where Yimn = Yim(¥h). Sng(r) = Sg(r.y). and the scalar flux o4 (r) has been

rewritten as the zeroth moment oggg (r) for clarity.

In cylindrical geometry. however. the discretization is not as straightforward.

since the streaming operator becomes polre) _ 19(Ce) + oe)

r Or r 00 5

first and third terms are evaluated at 2, as before. the second term represents an

Although the

angular redistribution where the direction cosines p and £ change as the particle
streams through the cylinder (see Fig. 2-4). This is reflected in the discretization

rocess by introducing coupling coefficients!? such that
p 3 g piang

0 %1 1 |
[w%(; U ;‘;[anﬂ/z Dn41/2,9(F) = Qn_1/2 On_yj2 4(r)]. (2 -12)

The coupling coefficients are evaluated by requiring Eq. (2-12) to obey the conser-
vation form of the neutron balance equation, and the streaming term go to zero

when the angular flux is uniform and isotropic, with the results!4

ay/2 =0; Qnt1/2 = Qpoy/2 — Wn ln. (2-~13)
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The diamond difference relationship in angle is used to evaluate the additional

angular fluxes. i.e.,

[On41/2.4(F) + On-1/2,4(r)]. (2 - 14)

[N

anlg(r) =

The starting angular flux can be obtained through use of the “step-start” procedure.

where ¢,;3/2 = 0,1 is used for each starting interval in angle.!?

2.5 _Spatial Discretization

Discretization of the spatial variable is performed by partitioning the spatial
dimensions into intervals that form rectangular mesh cells. where the standard
convention for denoting the mesh cells is shown at Fig. 2-3. The dimensions of
the ith. jth mesh cell are Ar, = r, 17 —Tic1j2. AY, = Y4172 = Y172 iD X =Y
geometry. and Ar; = 4 /2 =Ti—1/2. D3 = Zj412— 3,12 in R—Z geometry. Cross
sections are assumed to be constant within a cell, e.g.. &5 = Zy(rij). Tioq2 <

T < Iiy1/2-Yj-172 <Y < Yj+1,2 in Cartesian coordinates.

In X - Y geometry, we integrate the transport equation over the ith, jth

mesh cell for dr = dr dy. With the definitions

1 Zig1/2 Yi+1r/2
Oijng = m /;_1/2 o dr dy ¢ng(r), (2 — 13a)
~ 1 Tigr/2 Yi4r/2 .
S = 52w [ 1 St (21

and
Ligt/2 Vie1/2

1
. —_ D) =
Sijng = ~ AU /t dr dy Sny(r), (2 - 15¢)

i-1/2 i=1/2
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Figure 2-4 Angular Redistribution
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the result is

Ln n_
:;‘( i+1/2.jng = i-1/2,jng) + Ay ——(Bi j+1/2.ng = Di,j=1/2.ng) + ET.ijg Gijng =

G L m=|
Z Z Sul 9'—g Z Yimn étglmg' + Xy Z V-dFug’ ¢t100y + S:Jng
g'=11=0 m=0 ¢'=

(2 -16)

The volume element in R — Z geometry is dr = 2nrdrdz. Let the area of
the ith face of a mesh cell be defined as 4,4+1/2,; = 27r;4;/2 A=), and the volume

of the ith. jth cell as 1], = rr(r,z+1/2 - r?_l/Q)A:}. Let the cell-averaged flux be

defined as
Titl/2 Syet/2 -
Dijng = / 2rrdrdz ong(r), (2-17)
l} r; M

f=1/2 j=-1/2

with similar definitions for the moments and the fixed source. Upon intergrating

the transport equation over dr for the ith, jth cell. we obtain!?

| | b, (]
Nn{‘4i+1/2‘j Oi4+1/2,jng — ‘41-—1/2.; Oi~1/2.jngl — . \r [O‘n+1/‘2 Ouyn+1/2.9
n 1
;. 2 2
= Qn-1/2 oU‘n—I/Zg] + N 7’[";‘-«-1/2 - ’".-1/2] [Ol.)+l/2.ng - 0._;~1/2.ng]
G L m=l
+—*Tug¢:]n "=Zzgulg-—gz}lmnoulmg"u
'=1 =0 m=0
G
+Xg ) vEFijg Gijoog Vij + Sijng Vi
g'=

where the approximation .

Tigt/2 Zi41/2 1 N
/ / 2ndrd: éng(!‘) = (;) d)ijng ‘/,'j (2 - 19)
Ti-1/2 Zji-1/2 t

has been used. The quantity (1/r); is determined by considering the case of the

uniform, isotropic angular flux, from which

(l) _ Aivr/2 = dic1y2,

>
r 1‘,']'
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2.6 Solution of the Discretized Transport Equation

The discretized transport equation in X' =Y geometry [Eq. (2-16)] constitutes
one equation with five unknowns — ¢ijng. @i+1/2.jng. and 0; jx1/2,n, for fixed i, j.
n. and g. While two of the unknown cell edge fluxes are determined from either
boundary conditions or the previous cell's results, auxiliary equations are needed
to determine the remaining unknowns. One standard approach is that of diamond

differencing. where the auxiliary equations

1
Qijng = 3[¢i+1/2.1ng + 0—1/2.yn4) (2 ~21a)
and
! 2
Oiyng = 5[0i+1/2.ng + Oij=1/2.ng] (2 —21b)

are used. With these. the cell-centered fluxes can be uniquely determined.

The discretized transport equation in R — Z geometry (Eq. (2-18)] has two
additional unknowns due to the angular redistribution term - &,; n+1/2. These are
determined thorugh the diamond difference in angle relationship of Eq. (2-14). in

conjuction with Eq. (2-13) and the step-start procedure.

Two of the most common boundary conditions used in discrete ordinates
codes are those of vacuum boundaries and symmetry boundaries. For vacuum
boundaries, the incoming angular flux on the cell edge is fixed at zero, while for
symmtery boundaries the value of the incoming flux is set equal to the value of the
outgoing flux. A typical example of a symmetry boundary is that of the centerline

in a cylinder.
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The solution is obtained by an exact inversion of the discretized transport

operator. then assuming that the source is known. The process is an iterative one,

as can most clearly be seen by writing the transport equation as

: L m=<4{
(- Tk 2(r)], + Srg(r) 0k (1) =D Sigeg(r) D Yimp 0f,(r)
' =0 m=0
+ Qng(r)-
(2 - 22)
with
N
optle) =Y wn Yijn oh33(r). (2 - 23)
n=1

where k is the iteration index and Q,4(r) represents the source due to upscatter
and downscatter. fission. and the fixed source. This iteration process is calied the

“inner” iteration. and is continued until some convergence criteria has been met.

The cell-edge fluxes calculated using the diamond difference method are not
guaranteed to be positive, and as such can be non-physical (i.e.. negative). One
common means of remedying this is through use of a negative flux fixup where the
negative flux is set to zero.!® The cell center flux is then recalculated. along with
the remaining cell-edge flux. in order to preserve particle balance. This ensures a
positive solution, although it also introduces nonlinearites into the computational
process. However, negative flux fixup is usually not significant unless the mesh sizing

exceeds approximately two mean free paths, or has highly asymmteric dimensions.

2.7 _Limitations of Discrete Ordinates

One important problem inherent in the use of discrete ordinates is the oc-

currence of ray effects in highly absorping or vacuous mediums. (Note that a highly
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downscattering group in a multigroup problem is equivalent to a high absorber).
In these types of media, particles tend to concentrate along the discrete directions
of travel, causing non-physical maxima and minima in the angular flux. Even the
use of large quadrature sets often only partially alleviates the problem while greatly

increasing computational time.

Another inherent problem is the difficulty in mocking up complicated geome-
tries. since the geometry must be defined in terms of a finite mesh restricted to a
t\\A'o-dimensional slab or cylinder. This often forces the user to simplify the problem
when analyzing such devices as a tool used for oil well logging. Similarly. it may be
diffilcult to model geometries composed of objects with greatly varying sizes. e.g..
a point source in a slab. or an atmospheric transport problem. where the size of the

atmospheric layer dwarves the size of the ground layer.

It can also be difficult to select an appropriate mesh size. While a small
mesh size ensures accuracy and provides detailed spatial information. it also greatly
increases the computational time and memory requirements. Conversely. a large
mesh size, while reducing the cost of the calculation. can result in a serious loss of

accuracy.

While Sy provides an efficient and accurate means for solving many trans-
port problems, the limitations described above prevent it from being the method
of choice for all problems. More importantly, from our point of view, there exists
a class of problems where Sy is an appropriate solution method for part of the

problem geometry, and another method (i.e., probabilistic) is better suited for the
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remainder. It is for these types of problems that the hybrid method subsequently

described is intended for.
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CHAPTER 3.
THE MONTE CARLO METHOD

The Monte Carlo method is a stochastic means of solving the transporf
equation through simulation of a finite number of neutron histories.!®!'" While the
neutron distribution in the medium of interest typically consists of anywhere from
10!% to 102 particles, we can obtain estimates of the distribution by randomly
sampling a few thousand to a few million particles. As we sample more particles.

we obtain better estimates, at a corresponding increase in computational time.

A neutron history consists of following a neutron from its creation by either
a fixed source or fission until it is lost to the system by capture or leakage. Possible
starting locations, directions, and energies are expressed in terms of probability dis-
tribution functions, which are sampled by drawing random numbers from a pseudo
random number generator in order to determine the exact coordinates in phase
space. Another random number is then drawn to determine the track length, which

is compared with the calculated distance to the next boundary.

If the sampled track length is greater than the distance to the boundary. and
the boundary is an exterior boundary, than the particle has leaked from the system
and its history is terminated. If the boundary is an internal boundary, such as one

~ separating regions with differing material compositions, the distance to the next

boundary is calculated and compared with the remaining track length as above.
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When the sampled track length is less than the distance to the next bound-
ary, the particle undergoes a collision. The type of collision (e.g., radiative capture,
fission, elastic scattering, etc.) is determined by random sampling. If the result
is a capture-type reaction, the particle history is terminated. Otherwise, the neu-
tron is continued on in a new direction and energy determined both by sampling
from cross section data and from physical laws governing particle interactions (e.g..
conservation of momentum). The track length is again randomly sampled. and the

tracking process continued as above.

In analog Monte Carlo. the probability distributions are formulated so as
to correspond to the analogous physical behavior of a neutron. This can lead to
gross inefficiencies. as in the classic example of a shielding problem consisting of an
absorbing slab with a source on one side and a detector on the other. If the slab
is optically thick, the probability of an individual neutron reaching the detector
is small and a large number of histories must be run in order to obtain an accu-
rate estimate of the flux at the detector. Fortunately, numerous biasing procedures
have been developed to enhance the efficiency of Monte Carlo methods in this and
other problem areas.!®~!® [n general, a biasing procedure modifies the appropriate
probability distrib'ution to increase the chance of a score, while the particle’s im-
portance (weight) is adjusted so as to maintain a “fair game". Introduction of these

rocedures is referred to as “non-analog” Monte Carlo.
P

While several sophisticated, general-purpose Monte Carlo codes currently
exist. it was considered more advantageous to develop our own code for implemen-

tation with the hybrid method. Existing Monte Carlo codes are designed to accept
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input from. and return output to. a user, while the hybrid method requires interac-
tion with a discrete ordinates code (TWODANT). posing some unique problems as
.described in subsequent chapters. In addition, the relatively simple geometries and
scoring techniques considered in the hybrid method enable the use of a semi-analog
code whose efficiency can be improved through the use of vectorization (reference
Chapter 8). Therefore, the remainder of this chapter is limited to a review of proba-

bility functions and error estimates basic to all Monte Carlo methods. while details

of the actual method implemented will be described in later chapters.

3.1 Sampling Probabilitv Functions

A probability density function (PDF) p(r) is defined such that p(r)dr is
the probability that a random event will take on the value r’ between r and r +
dr.'® Probability density functions are non-negative functions normalized such that
the integral (for a continuous function) or sum (for a discrete function) over the
applicable range is one. The cumulative distribution function (CDF) P(r) is defined
as the probability that a random number z’ is less than or equal to r. Therefore.
the CDF is a non-negative, non-decreasing function with a range of zero to one. If

f(z) is the function that we wish to sample over a range of a < r < b. then the
b z
PDF is p(z) = f(r)// f(z')dz' and the CDF is P(r) = / p(z')dz'.

Let g(¢) represent a uniform distribution between zero and one such that
g(¢) = 1. Since both g(¢) and p(r) are distributions, they satisfy ¢({)|d(| =
p(z)|dz|. or. since g({) = 1,

p(z)|dz| = |d(]. (3-1)
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By integrating from a to r, we obtain

P(z) = (, (3-2)
where ¢ is a random number uniformly distributed between zero and one. Given a

random number (, the value of the distribution we wish to sample is thus
=P (3-3)

This inversion may be performed either analytically. if simple, or by rejection

techniques.!8

As an e:-':ample. consider the distribution f(r) = r? which we wish to uni-
formly sample over the range 0 < r < 1. The PDF for this distribution is
p(r) = 3r2. while the CDF is P(r) = r*. Thus. from Eq. (3-3). we could sample
f(r) directly by r = ¥(. If we wished to avoid calculating the cube root. we could
instead use a rejection technique as follows. Choose (; and ¢, uniformly distributed
between zero and one. If (; < (7. then let r = (;. If not. then choose another
pair of random numbers and test again. Note that the efficiency of a rejection tech-
nique is proportional to the area under the integral of the sampled function over the
range sampled. which in this case is only 1/3, so out of every three random number
pairs selected. only one would meet the rejection criteria. Thus, the use of a direct
inversion as opposed to rejection techniques must be evaluated on a case-to-case

basis.

3.2 _Error Estimates

Since the information provided by the Monte Carlo method is obtained by

stochastic processes. it has an associated uncertainty with it. Some estimate of this
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associated uncertainty must be provided if the user is to have any confidence in his

data.

Let p(z) represent the probability density function (PDF) (i.e.. neutron dis-
tribution function) we are sampling, where z represents some property of the PDF.

Then the expected value of z is equal to the true mean. or

b
i‘:E(r)=/ rp(r)dr. (3—-4)

while the sample mean. with .V trials z,. 1s

1 &
3—_-372:,,. (3-3)
n=]

Note that the expectation value of the sample mean is equal to the true mean. so

the sample mean is said to be an unbiased estimator of the true mean.'"

The variance of p(x) is defined as
b
02=E[(J:-i')2]=/ (r—i')zp(x)d.r. (3-6)

where o is the standard deviation. It can be then be shown that the standard
deviation of the sample distribution is related to the standard deviation of the true

distribution by!”

-~ © ‘
7= (3 -6)

The standard deviation of tL.e sample about the true mean thus decreases as the

square root of the number of histories run, and is directly proportional to the true
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standard deviation. However, neither p(r) or ¢ is known, so Eq. (3-6) cannot be

directly evaluated. Instead, let us define the sample variance S? as

1 N (3 - 7)
12 = - Zri
" a=l

It can then be shown!" that the expectation value of the sample variance E[S?] is

equal to the true variance o2, so Eq. (3-6) becomes

S
T —, 3-8
o < ( )

The approximation sign is used in Eq. (3-8) because it is the expected value of the
sample variance which is equal to the true variance. not the sample variance itself.
This approximation holds as long as .V is large enough to adequately sample the

problem and provide a good estimate of the true variance and mean.

Since the PDF we are sampling is highly unlikely to be a normal distribution.
we cannot associate the standard deviation with the typical confidence limits used
with a normal distribution. However, if we run R batches of .V histories per batch,
then the distribution of means py(T) resulting from those batches will assume a
normal distribution if .V is large enough. This is formally stated by the central

limit theorem,!®
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From Eqs. (3-6) through (3-9), we can then state that the probability of  — & <
T < T+ 7 is 68.3%, while the probabilities for two and three standard deviations

are 95.4% and 99.7%. respectively, where

1 -~
~2 __ . 5 k 212
c ____'.__.:.:_.1_5 (.rk‘-r) . (3_10)

The unanswered question from the discussion above is how big must .V be
in order to be big enough? Since the necessary value of .V is obviously problem
dependent. no fixed value can be given. However. the concept of the figure of merit
(FOM) can be used as a guide.!® From Eq. (3-8). the variance 52 behaves as 1/.N,
while the CPU time T used in a Monte Carlo calculation is directly proportional
to the number of histories run. If we define the FOM as 1/(5>T). then the FOM
should remain approximately constant for a given problem. regardless of the number
of trials run. However. if the FOM continues to fluctuate widely after the first few

trials, then the value of .V is probably too low to adequately sample the problem.

The figure of merit also provides a means of comparing the relative efficiency
between two different Monte Carlo methods. For a given problem. the method with
the largest FOM is considered to be the best overall, since it combines measures of

both how accurate and how expensive a method is.

3.3 _Advantages and Disadvantages of the Monte Carlo Method

The Monte Carlo method has some significant advantages over deterministic

methods. Since the Monte Carlo method is continuous in energy, space, and angle.
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it avoids the discretization errors inherent in the deterministic method. Thus. the

Monte Carlo method is well-suited for mocking up complicated geomteries. and has

no ray effect problems in low scattering regions.

Although the Monte Carlo method has no discretization errors. it is subject
to stochastic uncertainties. Since the standard deviation only decreases as the
square root of the number of histories run, this can be very expensive to reduce.
If only integral information is desired about the problem. such as the total leakage
from a cylinder. then oftentimes a low number of histories will suffice for an answer
within the desired error bounds. If. however. detailed spatial information about the
flux distribution in the cylinder is desired. then the required number of histories
for the same error bounds is much greater. This is due to the fact that while every
neutron which passes through the cylinder provides information to the integral
leakage tally. only those neutrons which pass through a given spatial subsection
of the cylinder will provide information about the flux in that area. In contrast,
deterministic methods provide information for each and every cell in the problem.
and although deterministic computational times do increase as the number of cells
is increased. it is usually much less significant than the computational increases

required with Monte Carlo for similarly detailed spatial information.

Also, although the Monte Carlo method is clearly better suited than deter-
ministic methods for problems with low scattering regions, the converse is true in
problems containing highly scattering regions. Consider again a cylinder composed
of graphite with a point source in the center for which we wish to determine the in-

tegral leakage. If the cylinder is optically thick, than a neutron will have to undergo
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many scattering collisions before it escapes from the surface, and the computational

time per history will be large.

Thus, neither deterministic methods nor probabilistic methods provide a
panacea for all possible computational problems involved in solving the transport
equation. It is then natural to ask if the two methods could be combined to solve
problems that neither method alone is well suited for. Our answer to that question

will be the subject of the remainder of this dissertation.
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CHAPTER 4.
THEORY OF THE RESPONSE MATRIX HYBRID METHOD

Consider a Monte Carlo region embedded in a Sy region (Fig. 4-1). where
¥'" and ¥°!! represent the boundary fluxes entering and leaving the Monte Carlo
region, and n is the outward directed normal. The elements of ¥°*! are the incom-
ing angular fluxes to the S region, where each element corresponds to a unique
combination of spatial mesh cell. energy group. and quadrature direction Q,. with
Q. -n > 0. The interface angular fluxes for 2, - n < 0 are the elements of ¥'".
The outgoing flux from the .\It;nte Carlo region is related to the incoming flux from
the Sy region by

‘I,ouf =B_‘I"" +Sou!‘ (4_ 1)

where S$°%! is the exiting flux from the Monte Carlo region under vacuum boundary
conditions (¥'" = 0). The element ry; of the response matrix R represents the
angular flux leaving the Monte Carlo region in Sy state k due to a unit incident
angular flux in Sy state k'. Because ¥*" is generally not known, Eq. (4-1) is solved
iteratively by

‘I,out(r+1) = _R_"I’m(r) + Sout' (4 _ 2)

where, for example, we can set

\I,aut(l) ___Sout, (4_3)
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¥'n(r) js obtained using an Sy solver with the prescribed boundary flux ®wou!'"),
and the response matrix R has been precalculated by the Monte Carlo method.
The Monte Carlo method is also used to sample the fixed source in the Monte
Carlo region, determining S°*'. For subcritical problems, Eq. (4-2) is expected
to be unconditionally convergent on a physical basis. Note also that the above
equations may be extended to partially embedded Monte Carlo regions by replacing

the appropriate elements of ¥'" with the specified Sy boundary conditions.

As explained in Ref. 10. it is more advantageous to perform a separate Sy
calculation with each iteration r, as opposed to precalculating a response matrix
for the Sy region. In order to precalculate a Sy response matrix. a separate Sy
calculation would be required for each state in the Sx/Monte Carlo interface. while
experience has shown that the number of iterations required for Eq. (4-2) to con-
verge is much less than the total number of states in the interface. Since the time
required per Sy calculation is approximately the same. regardless of whether the
calculation is done for a single state or all states in the interface, it is clearly more
efficient to perform separate Sx calculations at every iteration r. This also reduces

storage requirements.

Conversely, the exact opposite situation occurs in the case of the Monte
Carlo response matrix. There, the calculation time required for the response matrix
is approximately equivalent to the calculation time of the entire boundary value
problem at an iteration r. Thus, it is more advantageous to precalculate and store

the Monte Carlo response matrix.
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an Sy /Monte Carlo Interface

Figure 4-1 Boundary Fluxes at
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A straightforward evaluation of Eq. (4-2) would require a response matrix

R of size h'g x K¢ with K g-dimensional vectors ¥°*!, ¥'" and S°"!, where
Rg =K x G, (4 —4)

and

R =1IL x M/2, (4 =35)

with G defined as the number of energy groups, IL as the number of spatial mesh
cells along the Sy /Monte Carlo interface. and .\ as the total number of directions
in the Sy quadrature set. The factor of two appears in Eq. (4-3) because. in
two dimensions. we require only two out of four directional quadrants since we are

concerned only with outgoing directions.

For typical Sy mesh grids, the memory requirements of Eq. (4-2) are too
large for practical implementation. As an example. with a total of 60 spatial cells
along the S /Monte Carlo interface, an Sg quadrature set (M = 24). and 30
energy groups. over 465 million words of memory would be needed for storage of the
response matrix R, exceeding the capacities of most of today's machines. However.
significant reductions in storage requirements are possible. Let the A'-dimensional
subvectors \If‘;"', ‘Il;", and S;“' denote the group g portions of ¥°*f, ¥'" and S°¥',

Equation (4-2) may then be replaced by the equations

‘I,;ut(r-é-l) = B’gg \I,;n(") + Q;"', g= 1,... ,G, (4 - 6)
and
=" Ry, W+ S04 (4-17)

9'#9
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where R/, is the k' x K submatrix of R representing transfer from group ¢' to

group g.

For problems witfxout upscatter or fission, Eq. (4-7) reduces to
Q"= Y R, U +S3". (4-8)
9'<yg

Equations (4-6) and (4-8) can be implemented as follows:

1. Using Monte Carlo. calculate the §7“* by sampling the fixed source in the

Monte Carlo region.

a. determine R, using Monte Carlo,

b. using R, and QJ*, determine W3*' and ¥!" from Eq. (4-6). with

one Sy calculation per iteration step r,

c. calculate directly (without first determining the R, ) the contribu-

tions to QJ**, g' > g, by sampling ¥}",

d. discard R,, to make room for R,y 44,

With this algorithm, only the submatrix R, is used for calculations at any
given time, reducing the storage requirements by a factor of G2. However, this
method also introduces a penalty in efficiency, since it is more efficient to calculate
the entire response matrix at one time, versus calculating the R, and Q;"' sep-

arately. In a calculation of R, all particles eventually score by leaving the Monte

e e
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Carlo region. In calculating R ,. however, particles that down scatter are not
scored. Instead. the downscatter contribution to Q‘;,‘" is determined in a separate
Monte Carlo calculation by sampling W;". In this calculation, particles escaping
from the Monte Carlo region in group g are not scored. The inefficiency in the
calculation of R, is easily removed by replacing explicit downscatter with an ap-
propriate reduction in particle weight (reference Section 6.4), while the inefficiency
in the computation of the Q‘;.'" can be minimized by using forced collisions (refer-
ence Chapter 9). Note also that the Sy calculation in step 2.b is itself an iterative

process, involving inner iterations as per Eq. (2-22).

With upscatter and/or fission, additional iterations over energy are required
(i.e.. an outer iteration). Accordingly. we include an energy iteration index p on
pinpr)  gout(pr) and QO¥HP) and iterate over step 2 above until convergence

occurs. In effect. we are determining Eqs. (4-6) and (4-7) by the iteration process

out(p+1l,r+l1) in(p+1.r) out{p) _
‘I’y "399 wy +Q9 : (4-9)
and
+1, .
QP = Y R, WP+ SR WP 4 sou, (4 - 10)
9'<y 9'>9

where \Ilg"“"'”’ and ‘P;"'(P“’x) represent the converged fluxes from Eq. (4-9).
Since the R,, are independent of p, step 2.d is eliminated so that the response
matrices can be saved and reused at each value of p. The storage requirements for
the R ;. g =12,...,G of GR? words is still a factor of G less than those needed
for the full matrix R. Since only one submatrix is needed at a time, the rest are

stored on a mass storage device, reducing the core memory requirements to K
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words. the same as required for the pure downscatter case. Again. we emphasize
that the R, . are not actually calculated. Instead, the contributions to Q""" are

determined by sampling the ¥}"*>’ directly.

In calculating the R, with upscatter and/or fission, we again replace explicit
outscatter (up and down) and fission with appropriate modifications in particle
weight to improve efficiency. With pure downscatter, however, once a particle
scattered out of a group there was no possibility of it scattering back into that
group and scoring. This is not the case with upscatter and fission. Thus. we are
no longer calculating the true group-to-group response matrix R,,. but a group-
within-group response matrix which we denote by Egg. We correct for this when
sampling the \I’;"(p'x) for contributions to Q;,M(P). g' # g. by scoring in Qo""”’
particles that exit the Monte Carlo region in group g after having entered. at some

point. a group ¢'. Thus. Egs. (4-9) and (4-10) are replaced with

~

‘I’;ul(p+l.r+l) = ng \I,zgn(p“.r) + Q;utlp). (4-11)

and
out(p) __ in(p+1,x) in(p.x)
Qﬂ - Z —&w’ ‘I’y’ * Z B—yg' ‘I’g' +
9'<9 9'>9 (4~12)

(B-ga - -R-gy)‘p;n(p'x) + S;“‘

Note that the outer iteration process for the Monte Carlo region differs from
the outer iteration process for the Sy region (reference Section 2.2) in that both
the updated fission source and scatter source, where available, are used in Eq. (4-
12), whereas Sy uses only the updated scattering source. However, Sy also uses
acceleration techniques'® to improve convergence of its outer iteration, whereas the
Monte Carlo does not. The effects of this will be examined in Section 3.7 and

Chapter 11.




I |

I

CHAPTER 5.
IMPLEMENTATION OF THE HYBRID METHOD

Our primary goal in this dissertation is solving problems with Monte Carlo
regions either completely or partially embedded in S regions. Thus. it is natural to
implement the hybrid method by modifying the internal structure of an Sy code to
accept information from Monte Carlo routines. Since the Sy code TWODANT,!?
developed by the Los Alamos National Laboratory. is a reliable. state of the art
discrete ordinates code capable of solving varying and complex transport problems
for neutral particles in two dimensions, it was selected as the basis for the hybrid
method. While the entire TWODANT source code is somewhat large (approxi-
mately 30.000 lines), the portion of the solver requiring changes is less than 10.000
lines. and is written in relatively well-structured FORTRAN amenable to modifica-
tion. Thus, the hybrid method is implemented by modifying the discrete ordinates
code. where necessary, and adding special purpose routines to perform the Monte
Carlo functions and link them to the Sny. As explained in Chapter 3. it was de-
cided to develop our own unique Monte Carlo subroutines, both because of special

problems posed by the hybrid method, and for ease of debugging and efficiency.

This chapter describes the physical interface between the Sy and Monte
Carlo regions. the process of transferring information between the two, the com-

putational structure of the hybrid method’s implementation in TWODANT, and

" l o v . | | R e
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necessary modifications to the Sy method, while Chapter 6 will describe the details

of the Monte Carlo method.

3.1 _Physical Description of the Monte Carlo Region

While the theory developed in the preceding chapter was for an arbitrarily
shaped Monte Carlo region. including possibly multiple Monte Carlo regions in the
same problem. we consider only a single. rectangularly shaped region here. either
partially or completely embedded in an Sy region as shown at Fig. 5-1. This
enables considerable simplification in the details of tracking particles through the
Monte Carlo region, and in the development of an interface between the Monte

Carlo and the Sy. with little loss of generality.

In TWODANT. the problem geometry is broken up into rectangular coarse
mesh cells. each of which is in turn composed of a varying number of fine mesh
cells.!? The coarse mesh cells are homogeneous in composition, and thus represent a
convenient method of specifying the location of differing materials for heterogeneous
problems. The actual discrete ordinates calculation is performed upon the fine
mesh cell structure, however, since smaller spatial dimensions than those typically
provided by the coarse mesh structure are required for accurate results in the Sy

method.

Since there is no spatial discretization process involved in Monte Carlo cal-
culations, and since the speed of a Monte Carlo calculation decreases as the number

of internal boundaries increases, we choose to base the physical description of the
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Monte Carlo region upon the coarse mesh cell structure provided by the Sn. Thus.
all necessary cell boundaries and compositions are already available from the Sy,
without the extensive user input and calculations commonly required by pure Monte
Carlo codes. Instead, the desired Monte Carlo region for the hybrid method is de-
scribed by specifying just four boundaries located along Sy mesh cell edges - top,

bottom. left. and right.

5.2 The Boundary Lavers

Typically. the Monte Carlo/Sy boundaries will be located along material
discontinuities in the problem. However. the angular flux at such a boundary is
usually highly anisotropic. requiring a large number of quadrature angles for an
adequate description. From Eq. (4-3). we see that the size of the response matrix is
proportional to the square of the number of quadrature directions, so that memory
requirements would increase dramatically if the actual Sy /Monte Carlo interface

were located along a boundary between optically thin and thick materials.!?

Instead, we add an additional “boundary layer” by extending the Monte
Carlo region from the previously specified boundary into the Sy region. This then
presumably places the Sn/Monte Carlo interface in a highly scattering region where
the flux is more nearly isotropic, enabling a lower quadrature order to be used. The
distance required is determined by calculating the number of fine mesh cells needed
to meet or exceed a user specified number of mean free paths in distance for the
material along the appropriate boundary. Previous work!? has shown that a one

mean free path thick boundary is usually sufficient. It is desirable to keep the
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boundary layer as small as possible, since it will usually consist of highly scattering

materials for which Monte Carlo calculations are inefficient.

Note that since cross sections are energy dependent, the mean free path
in a material will change with the energy group. Thus, the size of the boundary
layer is also group dependent, often resulting in an “inverted wedding cake™ type
of structure as shown at Fig. 5-2. If the mean free path for a given energy is large
enough, the Monte Carlo region may constitute the entire problem geometry for
some groups, as is also shown in the sample figure. We also provide the capability
to entirely eliminate the Monte Carlo region altogether for energy groups where Sy

is sufficient throughout the entire problem geometry.

The type of structure shown at Fig. 5-2 provides further interface possibilities
between the Monte Carlo and the Sv. in addition to the boundary type fluxes
described in Chapter 4. since upscattering. downscattering. or fission may now
result in particles transferring from the Sy region into the Monte Carlo region,
and vice versa. Since this transference occurs over an entire mesh cell, it results in

volumetric sources which are handled as specified in Section 3.4.

5.3 _Interfacing Phase Space Coordinates

One of the most fundamental differences between the Monte Carlo method
and the discrete ordinates method is in their treatment of the variables in phase
space. While Monte Carlo treats these variables as continuous, Sy discretizes them.

Thus, when transferring particles from the Monte Carlo region to the Sy region,
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we must discretize the phase space coordinates, and when going from the Sy region
to the Monte Carlo region we must assign continuous values to the given discrete

.

variables used by the Sw.

Since the hybrid method employs multigroup cross sections (see Chapter 8),
the energy variable has already been discretized for both the Monte Carlo and
S\ regions. so no conversion is necessary. Conversion of spatial coordinates is
straightforward - when passing from the Monte Carlo region into the Sy region.
a particle is scored into the appropriate fine mesh cell. while particles entering the
Monte Carlo region from the Sy region are assumed to be uniformly distributed
over the area (or volume. for volumetric sources) of the fine mesh cell. The details

of the spatial conversion process are described in the succeeding chapter.

The conversion of angular coordinates is not as clear-cut. however. While
discrete ordinates represents the unit sphere of directions with a set of discrete
directions. each of which is assigned an angular weight proportional to the area
subtended on the unit sphere by that direction. the shape of the area associated with
a discrete direction is not specified. Thus, there is no unique method of determining
angular bins A2, for assigning a set of continuous Monte Carlo directions to the

discrete Sy direction Q..

The system we have chosen to use is depicted at Fig. 5-3. The dots represent
the intersections of the 2, with the unit sphere for an Sg quadrature set. The AQ,
are defined by lines of constant azimuthal angle ©2, and constant Q4. The lines
of constant 24 form levels of constant width An, where An is equal to the sum of

the weights of the discrete directions along that level divided by the total weight
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of all discrete directions in the quadrant. Each level is in turn divided into bins of
A¢. where the Ao for each bin is proportional to the weight of its assigned discrete
ordinate divided by the sum of the weights for all discrete ordinates along that level.
The bin structure for an S¢ quadrature set.'along with the corresponding discrete
ordinates. is shown at Fig. 3-4. Note that the quadrature set actually used in the

hybrid method is the level symmetric set that has been built-in to TWODANT.!3

With this bin arrangement. particles are easily scored when crossing into the
S~ region. The discrete directional level the particle enters is simply determined
by comparing its direction cosine along Q4. n. with the values of the levels as
determined above, while the bin that it enters is determined by comparing the
projection of the direction cosine along €. p/\/l_—_n?. with the cosine of the
azimuthal angle of the bin edge. Particles entering the Monte Carlo region from
the Sy region are assumi-d to be uniformly distributed in n and o across the AQ2,

corresponding to the discrete direction 2.

While the bin arrangement des:ribed above conserves the unit area of the
sphere., i.e.. _it preserves the zeroth moment of the flux. there is no guarantee that
higher orders will be preserved. That is, quadrature sets are sometimes chosen so
as to exactly integrate the highest order Legendre polynomial possible,’* so that
if an angular flux consists of only a small number of Legendre moments (in one
dimension), those moments will be preserved. However, if we uniformly distribute
the particles resulting from that angular flux over the finite bin areas associated
with the discrete directions, and then sum the moments of the individual particles.

we no longer will preserve higher order moments.

AR s s ek BN 3
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The bin structure at Fig. 5-3 does present an advantage, however, in that

it preserves an important physical property of cylindrical geometry. As previously
stated, when a particle streams in R — Z geometry its direction cosine along 2, will
change, as represented by the arrows in Fig. 5-3, while the direction cosine along €24
will remain constant. The bin configuration of Fig. 5-3 preserves this property sinct;
streaming particles can only flow into bins whose quadrature directions have the

same 4. This is not the case for the alternative bin structure shown at Fig. 5-3.

There is an additional minor advantage to the bin structure of Fig. 5-3. To
represent an isotropic point source, particles should be assigned to bins in proportion
to the bin weighis, except when the source is located at r = 0 for cylindrical
geometry. The uncollided particles emanating from a point source at r = 0 travel
exclusively in the R — Z plane, that is, Q, = 0. As r — 0. 2, becomes meaningless
and the distinction between discrete directions on the same Z-level (24 value)
disappears. For this case it would be best to assign all of the particles to the bins
along the R — Z plane in proportion to the Z-level weights (the sum of the weights
for all bins along the same Z-level). This is true for the bin structure of Fig. 5-3.
but not the the alternative bin structure of Fig. 5-5. The reason becomes evident
upon examining the two figures. Assume that bin n is the one that intersects the
R — Z plane, and let Q;H/z and 93-1/2 represent the largest and smallest €24
values of this intersection. With the arrangement of Fig. 5-3, Qp¥!/2 — )~/

equals the Z-level weight. Thus, for particles uniformly distributed in Q4 in the

R — Z plane (as would result from an isotropic point source at r = 0), the number
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between ﬂ;“/ ? and ﬂ;_l/ 2 would be proportional to the Z-level weight. This

would not be true for the arrangement of Fig. 5-5.

5.4 _Particle Transference

As each particle crosses from the Monte Carlo region into the Sy region, its
phase space coordinates are discretized as de;cribed above, and it is then placed
into the Sy state corresponding to the resulting unique combination of spatial mesh
cell, energy group, and quadrature direction. Particles physically streaming across
an Sy /Monte Carlo interface are represented as a boundary flux source into the Sv
region, while particles which enter the Sy region through a change in energy group

due to fission or scattering are represented as a volumetric source per Section 3.2

above.

At the conclusion of a Monte Carlo calculation. the quantity actually residing
in an Sy state is the total weight of all particles which have entered that state during
the calculation. For boundary flux sources, this number is converted into an Sx
boundary flux by dividing by the quantity AQ, A4,, Ny, where AR, is the angular
weight associated with the discrete direction @2,, Ad;; is the appropriate area of
the mesh cell face entered (Az; or Ay, for Cartesian geometry, 7(r? P r | j2) or
277,41 /2 Oz for cylindrical geometry), and Ny is a normalization factor dependent

upon the number of histories run.

Volumetric sources are treated somewhat differently, since, to conserve stor-

age, SN codes usually store the spherical harmonic moments of the source, not the



Figure 5-3 The Sy Angular Bin Arrangement for N =6
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Figure 5-5 Alternative Sy Angular Bin Arrangement for N = 6
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angular source itself.!? Thus. if 117,n, represents the total weight of particles trans-

ferred to cell (i,j) with discrete direc »n Q, in energy group ¢. the corresponding

Sy moment Q,,im4 is found from

N
Qijlmg = Z Yl:nn n'ung/(AVx} ~\'H )\ (3-1)
n=1

where 17} . is the complex conjugate of the Ith, mth spherical harmonic evaluated
at discrete direction Q,, and AV}, is the volume of the cell (i, ;). Note that this
conversion is not performed until the Monte Carlo calculation has been completed.
so sufficient storage must be allocated to allow the the Monte Carlo to score particles
directly in the angular source states. However. since the response matrix is not in
use when volumetric source calculations are active. its storage area may be used for

the angular source states. so no additional memory is required.

3.5 _Computational Structure of the Hyvbrid Method's Implementation

Now that we have examined in some detail the physical interface between the
Monte Carlo and the S regions, we turn to the computational interface. That is,
we now describe how the hybrid theory of Chapter 4 is meshed with the multigroup

discrete ordinates method of Chapter 2.

Figure 5-6 depicts the computational flow of the unmodified discrete or-
dinates code TWODANT. Subroutine TIGF20 is the overall driver for the solver
module. which begins by calling a series of input processing and memory allocation

routines represented by the block TINP. Next, subroutine TGND23 calculates the
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S~ grid structure, sets up the Sy cross sections. and performs other initialization
functions. The outer iteration loop [reference Eq. (2-3)] begins with subroutine
TRANSO, where. for energy groups ¢ = 1....,G, TOUTER calculates the to-
tal source to the group ¢ from fixed sources, downscatter. upscatter. and fission
[i.e.. the Qny(r) in Eq. (2-22)]. while SINNER performs the inner iterations. Sub-
routines DIFFO and DOUTER complete an outer iteration loop by updating the
- fission source. Additionally. DOUTER accelerates convergence of the fission source
through use of a Chebyshev polynomial-based method.!* (We note that conver-
gence of both the inner and outer iterations are also accelerated through the use of

diffusion synthetic acceleration.!® which will be discussed in Chapter 10).

Figure 5-7 presents the computational flow as modified to incorporate the
hybrid method. The additional input required for the hyhrid method is processed
in TINP. while TGND25 calls routines MCXS and SETUP. which define the Monte
Carlo cross sections and other arrays required for unique Monte Carlo functions.
Monte Carlo calculations actually begin with SRCMC. which samples the fixed
source to determine the Sg"' of Eq. (4~12). while SMOM computes the volumetric
sources in the Sy region resulting from SRCMC, if any. and stores the moments
in the S~ inhomogeneous source array. Next, MCRM calculates the within-group
response matrix _ﬁ._” [reference Eq. (4-11)] for groups ¢ = 1....,G, where required.
Note that the calculation of the response matrix is omitted for a group g if the
Monte Carlo region or the Sy region comprises the entire problem geometry. The

response matrices are stored on disk for recall during the iteration process.

The basic structure of the outer loop is unaffected by the hybrid method,

except for modifications to allow volumetric sources to be passed from the Monte
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Carlo region to the Sy region by SMOM. TOUTER gets the volumetric source to
group ¢ for both Monte Carlo and S regions from Sy regions in groups ¢’ # g as
before. while the volumetric source from any Monte Carlo regions in groups ¢' # ¢
to the Sy region for group g is obtained from the inhomogeneous Sy source array.
where it has been stored by SMOM. Instead of calling SINNER to perform the
S~ inner iterations, however. TOUTER calls LINK. which peforms the coupled
Sx/Monte Carlo iterations of Eq. (4-11).

LINK begins by calling SNTOMC, which determines the contribution of the
group g volumetric sources located in the Monte Carlo region. if any. to the QJ*',
g=1.... G. SMOM is then called to compute and store any further contributions
to volumetric sources in the S region which arose during the Monte Carlo calcu-
lation of SNTOMC. Next. the iteration process of Eq. (4-11) starts by getting the

response matrix Egg from disk. The initial outgoing boundary flux used by LINK

1s - _
\Il‘gm“’H'l‘” = Egg \I,agn(p.ac) + Q;ul(p}' p> 0‘

‘pzut(l.l) = Q;ut(l)' p= 0’

where ‘Il'g"(p *) is the converged incoming boundary flux from the previous outer
iteration. SINNER is then called to perform the Sy inner iterations, returning
Pt and @M PHD i¢ calculated from Eq. (4-11). If the maximum relative

t(p+1,1 (p+1.2
error between WoU!(PT1) anq gorH 1)

is less than the Sy error criteria, than
convergence is considered to have been achieved. Otherwise. the iteration proce-
dure continues until convergence is reached, or a user-input maximum number of

iterations has been reached.
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If the iteration process of Eq. (4-11) does not reach convergence, an extrap-

olation procedure developed by Filippone!®!?

is used to improve the convergence of
the outgoing boundary flux. This procedure, referred to as the method of residual
expansion functions, essentially assumes that, after a sufficient number of itera-
tions. the differences between succesive iterations (residuals) are composed of only
a limited number of eigenvectors (i.e., shape convergence). Although these eigen-
vectors (and corresponding eigenvalues) are unknown. the residuals themselves can
be used as a basis. and an expression for coefficients of these residuals which min-
imize the remaining error in the iteration process can be derived.?? Typically. five
to éight iterations will usually provide enough residuals to allow the method of
residual expansi.on functions to extrapolate a solution which is within the S error
criteria. The accuracy of the method is checked by performing another set of S~
inner iterations. based on the extrapolated solution. and measuring the largest rel-
ative diference in the extrapolated boundary flux and the resulting boundary flux

as calculated from Eq. (4-11).

The method of residual expansion functions will. however. occasionally fail
to project a more accurate solution. This occurs when use of the diffusion synthetic
accelerator, which accelerates convergence of the Sy inner iterations, results in rapid
convergence of the Sy inner iterations, thus not allowing higher order harmonics in
the boundary flux to die out. The presence of these harmonics violates the premises
upon which the residual expansion function method was derived, and so an accurate
extrapolation is not possible. The situation is easily remedied, however, either by
tightening the Sy error criteria, which forces more Sy inner iterations, or allowing

enough iterations on Eq. (4-11) for convergence to be met by the iteration process
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itself. This is economical in this situation, since the diffusion synthetic accelerator

itself enables the Sy iterations to be performed very efficiently.

Once the converg'ed boundary fluxes have been calculated, subroutine DWN\-

SRC is called to sample the ¥,"(?">) " Ag described in Chapter 4, we do not evaluate

Eq. (4-12) directly, since storage limitations preclude the calculation of the response
in(p.oc)

matrices R, . Instead. we determine the contribution of ¥, to the Q;,"”’”.

g' > g. and the Q;,M("H)

, ¢ < g. by sampling the incoming boundary flux into
the Monte Carlo region for group ¢ and scoring particles when they cross back into
the Sy region in group ¢'. Particles that reenter the Sy region while in group ¢
are separated into two classes - those that have entered a group g’ # g at some
point during their history. and those that have remained entirely within group g.
The first class of particles. which represent the third term on the left-hand side of
Eq. (4-12). is scored in QZ"'“’H). while the second class is used as a comparison to
the computed ‘Il;u”p'x) as described in Chapter 9. Finally. SMOMI is called once

again to update any contributions by the Monte Carlo calculation to volumetric

sources in the Sy region.

If no response matrix calculation is required for group g. then LINK omits
the iteration process of Eq. (4-11). Instead, if the problem geometry is entirely
represented by the Sy, then LINK merely calls SINNER once to get the Sy fluxes.
If the problem geometry is entirely in the Monte Carlo region, then no calculations

(beyond SNTOMC) are required in LINK at all.
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3.6 Discrete Ordinates Modifications

As pictured above, the principal requirements for implementation of the hy-
brid method are the addition of Monte Carlo routines, while the modifications nec-
essary to the discrete ordinates code itself are minimal. The primary modications
involved are to the logic of the Sy inner iterations. which are performed in SIN-
NER and other associated subroutines, to allow the inclusion of interior boundary

sources,

An Sy inner iteration entails sweeping through the mesh cells. from exterior
boundary to exterior boundary. for a given sweeping direction. When sweeping
from the Monte Carlo region into the Sy region, the Sy -calculated values for these
surfaces are replaced with the \IIZ"NPH‘” from Eq. (4-11). Sweeps from the S
region into the Monte Carlo region are performed normally. except that the con-
verged surface fluxes are used as the ¥}"'?*""" in Eq. (4-11). As implemented by
Alcouffe,'® the vectorization of the sweeping algorithm is unaffected. so that the
efficiency of a standard Sy calculation is retained. The introduction of these inte-
rior boundary sources does reflect a discontinuity in the solution of the transport
equation, however, which in turn affects the operation of the synthetic diffusion
accelerator previously mentioned. The solution to this problem will be discussed in

Chapter 10.

Other necessary changes to the Sy logic include modifying the calculations of
scattering and fission sources to exclude Monte Carlo regions, and alteration of the
particle balance tables to include the Monte Carlo totals. While somewhat detailed

changes are required, the only one which affects the logic of the Sy computation
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is the treatment of the fission source in DOUTER. As previously stated. the Sy
employs Chebyshev accleration to improve convergence of the fission source. Since
the required information (i.e., the fission source per fine mesh cell) is not available

for the Monte Carlo region. it is excluded from the acceleration procedure.

Finally, the Monte Carlo region is currently excluded from the outer iteration
convergence checks which the Sy performs. That is. we assume convergence in the
S~ region implies convergence throughout the entire problem geometry. While this
has been sufficient for the test problems examined so far. it is possible to imagine
problems where it may not hold (e.g.. a highly fissile material in the Monte Carlo
region, surrounded by a non-multiplying Sy region). However, this can easily be
remedied. if necessary. by adding a convergence check on the fission source in the

Monte Carlo region.

- -

5.7 _Sampling Boundary Fluxes and Volumetric Sources

From Section 5.5 above, we see that the ¥}"'?™) must be sampled for each

outer iteration p. However, a complete sampling of the \Il'g"(”'w) at each outer itera-
tion would be counter-productive. As the outer iterations converge, the differences
between the ‘P;"(P'w) and ‘Il;"(pH'OO) decrease, so that sam>ling each one from
scratch is a duplication of effort. More importantly, the resulting statistical devia-
tions in the QSM(H” will introduce fluctations into the Sy fluxes which hinder the

Chebyshev acceleration of the fission source and preclude convergence.
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in(p. . -1.
in(p.20) = \I’_:,"(P ) _ ‘II;"(" *) Thus. as the outer

Instead. we sample 6%, =

iterations converge. the §@}"'”">) tend toward zero, the number of histories per

.

_ . 1
sample can be reduced. and the statistical deviations of the Q;"'?*!) are reduced.

Similarly, with SNTOMC. we sample the change in the volumetric source in the

Monte Carlo region.

If the Sy operator were strictly linear, we would expect the 6‘11'9"(p’°°) to be

non-negative. Due to the use of negative flux fix-up in the Sy. however. this is not
the case. While it is generally advantageous to avoid tracking negative particles in
Monte Carlo calculations. since they tend to increase the variance of the results,
we assume that. in this case. the magnitude of any negative residuals will be small
enough so that it will not adversely affect the hybrid results. Thus. when an element
of 6P is negative, we assign negative weights to the particles used to sample
that state in subroutine DWNSRC. Negative particles are also used when sampling
the volumetric source in the Monte Carlo region during subroutine SNTOMC when

the change in the source between outer iterations is negative.

Physically, we expect the \Il;u“p‘” as computed in LINK to be non- negative.

‘I,;n,(p—l,oo)

However. since the sampled ¢ may be negative, as stated above, we now

ut(p) out(p.r)

have no guarantee that the Qg will remain non-negative, and thus the ¥,

may contain negative elements. Since negative interior boundary sources are not
t(p, .
acceptable to the Sy. we set the ¥j" 77 to zero for elements that are negative

and adjust the remaining elements so as to conserve particles.

Similarly, the introduction of negative particles in the Monte Carlo calcu-

lation results in the possibility of negative volumetric sources in the Sy region.
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To preclude this. after the Monte Carlo particles have been scored in subroutine
SMOM, the zeroth moments of the resulting volumetric sources in the Sy region
are checked to ensure that they are non-negative. If a negative zeroth moment is
found for a given cell, all moments for that cell are set to zero. In this case, no

adjustment is made to the other cells to conserve particles.

While the appearance of negative particles in a calculation is worrisome,
experience to date has not shown a significant impact on the viability of the hybrid
method. Since negative residuals cannot possibly appear until the second outer
iteration. negative particles are of no concern whatsoever in problems involving
only pure downscatter. Even with problems with fission and/or upscatter, and thus
multiple outer iterations. the magnitude of the residuals sarapled in succeeding outer
iterations has remained small enough in comparison to the magnitude of the first
outer iteration so that the total outgoing boundary fluxes and volumetric sources

have remained positive when the problem is adequately sampled.




CHAPTER 6.
HYBRID MONTE CARLO METHODS

As explained in Chapter 3. it was considered more advantageous to develop
our own Monte Carlo subroutines versus attempting to incorporate a more general-
purpose Monte Carlo code. Since we consider only a two-dimensional geometry
with rectangular mesh cells, the algorithms for describing geometries and tracking
particles are considerably simpler than those for a general three-dimensional geom-
etry. reducing the required coding and simplifving vectorization of the Monte Carlo
portion of the code. Additionally. the two-dimensional algbrithms permit the use
of the standard TWODANT input file with very few modifications. as opposed to
the more extensive input files usually required for three-dimensional Monte Carlo

codes.

The hybrid Monte Carlo method as implemented is almost entirely analog.
with few variance reduction techniques used. While the lack of variance reduction
techniques can lead to problems in obtaining accurate estimates in some situations,
the difficulties actually encountered are minimized due to two reasons. Since the
Monte Carlo routines used in the hybrid method are vectorized, it is relatively
inexpensive to run a large number of particles. More importantly, it is the usual

practice to designate areas where the Monte Carlo method would be expensive as

k. o b MKy b
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regions where the Sy method is to be used. This, in fact, is the entire rationale

behind the hybrid method.

The remainder of this chapter describes the details of tracking particles across
mesh cells. the treatment of collisions (scattering, capture, and fission), and the
sampling of sources. Chapter 7 describes the methods used in vectorizing the Monte
Carlo. while Chapter 8 describes how the Monte Carlo cross sections are formed.
Chapter 9 covers the implementation of error estimates with the hybrid method

and the variance reduction methods used.

6.1 _Tracking Particles in Phase Space

Let r represent the spatial coordinates. 2 the direction, and g the energy
group of a neutron which has just been emitted from a source or undergone a
collision. The coordinates r correspond to a location within a cell (i, ) as shown at
Fig. 6-1a for X —Y geometry, and Fig. 6-1b for R—Z. In order to track the particle
history, we must determine whether it has a collision within the cell or crosses its

boundaries, and the coordinates in phase space of those events.

We first determine the length of the flight path. From Chapter 1, the prob-

ability of a particle having an interaction in ds about s is

p(s)ds = T ijoexp(—XT,ij45) ds, 0<s< . (6-1)




YT 'E 9
[}
4
1]
y @ sccscscacns -0:- ------------ J
J '
.
[}
N
g.1-1/2 — 'H
Ri1/2 ¥ 1+1/2

Figure 6-1a Cell Boundaries in X — Y Geometry




81

............

N
*
[
’
’
¢
’
’
[
]
[}
’
[}

!

2:J-I/Z

q

i-1/2

Figure 6-1b Cell Boundaries in R — Z Geometry

i+1/2




82
This represents the PDF which we wish to sample uniformly. Following the methods
.outlined in Section 3.1, and realizing that sampling 1 — ( is equivalent to sampling
(. the track length of the particle is determined by

= In(¢)

E:T.:'J‘g

(6-2)

Next, we determine if s is large enough to reach a cell boundary, and if so. which

one.

In X —Y geometry, the spatial coordinates are r = zi + y}, where the origin
is located at the lower left-hand corner of the problem geometry. The directional
coordinates are (reference Fig. 2-1) @ = pé, + né, + £é.. The appropriate bound-
aries are thus g = r;4,/p for p > 0. ri-1y2 for 1 < 0. yg = y;41/2 for n >0
and yg = y,_1/2 for n < 0. Let sy y)/n and sy = (rg — z)/u. then if
s is less than both sy and sy the particle undergoes a collision in the cell (i.)).
Otherwise. it crosses the appropriate r-edge boundary if sx is less than sy. and the
y-edge boundary if sy is less than sy, with sg defined as the distance to the closest

boundary (i.e., the minimum of sx and sy ).

Tracking particles in R — Z geometry is not as straightforward asin X - Y
geometry, since our coordinate system is now curvilinear. The spatial coordinates
are represented by r = i+ z}, where the origin is located on the centerline of the
cylinder where it passes through the lower face. The directional coordinates are
(reference Fig. 2-2) Q@ = ué, + neé; + £€9. For a particle located in a cell (i, )

as shown at Fig. 6-1b, the cell boundaries are r;3+,/; and z;4;/2. As in Cartesian

geometry. the appropriate boundaries are Zg = zj4,3 for n > 0, 38 = z;_i/; for’

n <0, and rg = riyy/; for p > 0. The case for 4 < 0 is not determined simply
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by the sign of the direction cosine, as can be seen by the cross-sectional view of a
cylindes at Fig. 6-2. Instead, the cell boundary is determined by comparing the
-angle J formed by the projection of 2 on a cross section of the cylinder with the
“critical angle” a. From Fig. 6-2,sin8 = E'/ \/-1——_7]—2 and sina = r,_,/5/r. Thus,
it sin 3 > sina, then the appropriate boundary is rg = r,; /2. else. the boundary

is B =Ti-1/2:

The distance to boundaries in the axial direction is determined by sy =
(28 = z)}/n. The distance to the radial boundary is determined from the Law of

Cosines as shown at Fig. 6-2, resulting in

1

ior

If 7 > a. then the only root of Eq. (6-3) resulting in a positive sg corresponds to

SR =

(rcosJ:}:\/r?coszJ—-r'z-{—rg). (6 —-3)

the positive sign. For 3 < a. there are two possibilities. since the flight path now
intersects the cell boundary twice. The first intersection occurs at the lesser value
of sg, which corresponds to the minus sign in Eq. (6-3). The fate of the particle is
then determined as in the case of Cartesian coordinates. i.e.. boundary crossing or

collision within the cell.

6.2 _Tracking Particles Across Internal Boundaries

When a particle has a track length greater than the distance to the cell

boundary, and that boundary is an internal boundary within the Monte Carlo re-

[N
.

gion. then we must continue tracking the particle. This is accomplished by adjusting
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Figure 6-2 Determining Flight Direction and Distances in R — Z Geometry
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the track length determined by Eq. (6-2) to account for possible differences in ma-
terial composition by

)5109

s' =sp+(s—sp (6~ 4)

ST
where the identity of the new cell (i,;') is (: + 1,j) if the right-hand boundary
was crossed. (1 — 1,j) for the left-hand boundary, (¢,j + 1) for the top boundary.

and (7, — 1) for the tottom boundary. The particle history is then continued per

Section 6.1 above. using the new cell boundaries.

6.3 _Scoring Particles

If the boundary crossed represents an external boundary of the Monte Carlo
region. then the particle must be scored in the appropriate boundary flux or response
matrix element. First. we determine which side of the Monte Carlo region has been
reached by examining the distance to cell boundaries computed above and the sign
of the appropriate direction cosine (e.g., in Cartesian coordinates, if sy is less than
sy. and u is negative. then the left boundary of the Monte Carlo region has been
crossed). The sign of the remaining free direction cosine is used to determine which
SN quadrant the particle is to be placed into (e.g., with u negative, n negative
corresponds to the “down and in going” quadrant, n positive to the “up and in
going” quadrant). The specific quadrature direction the particle is assigned to is

determined by the methods described in Section 5.3.

If the particle has exited the left or right sides of the Monte Carlo region

in X — Y geometry, then the vertical position at which it enters the Sy region is
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determined by

y' =y + spn. (6~-3)

For a top or bottom edge crossing, the horizontal position is found from
r' =r+4 sgu. (6-6)

The crossing position is then compared with the appropriate Sy fine mesh cell edges

to determine which cell has been entered.

In R — Z geometry. the axial position of a left or right edge crossing is found
from

!

2 =z +s3g0. (6-1)

while the radial position of a top or bottom edge crossing is

r' = /(r+usg)? + (Es8)2. (6-8)

Also. since the direction cosines u and £ change as a particle streams in curvilinear
geometry, the direction cosine along the radial direction must be recalculated prior

to the quadrature direction being scored. The updated direction cosine is

p'= [u(r+usa)+£283]/F- (6-9)

where 7 = r' for a top or bottom edge crossing, and rg for a left or right edge

crossing.

Regardless of whether the boundary crossed is external or internal. or if the
“event cohsists of a collision within a cell, the tracklerigth of the particle (modified by

the particle weight) within the cell is scored. Since our tracking algorithm measures
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distances from the starting point of the particle, and thus a track may cross several
cells before terminating, we retain the distance to the last boundary crossed (s ) for
each particle. This distance is set to zero at the start of each particle. and updated
to sp after an internal boundary is crossed. With this information, the tracklength

in the last cell entered is sg ~ s; for a boundary crossing, and s ~ sy for a collision.

6.4 Collision Events Without Fission

When a particle undergoes a céllision within a cell. we must determine its new
coordinates in phase space which result from the collision. We make the standard
assumption that collision times are small enough so that the position of the coiliding
particle is unchanged. while the new direction and energy of the scattered particle

are determined by sampling from appropriate probability density functions.

In X — Y geometry, the collision position is found from
=z +sp _ (6 —10)

and

!

Yy =y+sm, (6 -11)

where the unprimed direction cosines refer to the pre-collision directional coordi-
nates of the particle, and the unprimed spatial coordinates to the starting location

of the particle. In R ~ Z geometry, the collision postion is

e. . . . . .. . “ v eae )

r' = (r + ps)? + (€s)? (6 —12)
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and

2=z 4 s, (6 —13)

Since neutron do not lose energy as they stream, the particle enters the collision in

energy group ¢, the energy group in which it was located when it started streaming,.

The collsion process itself is described by the set of multigroup. macroscopic
cross sections generated from the multigroup Sy cross sections as described in
Chapter 8. From Eq. (2-7). the zeroth moment group-to-group transfer cross section
from group g to group ¢’ for cell (i, ) is defined as

+1
Tijo.g—g =2m /_1 dpo Zijg—g'(#o) Polpo). (6 - 14)
From this definition. the probability of a neutron scattering from group ¢ to group
g' is then

Pg«g’ = Si}O;g—g‘ /(ST.ijg - S.-\.z]g) (6 —13)

where T 4 ;4 is the macroscopic absorption cross section. The P;_., are then used
to form a cumulative distribution function, which is sampled to determine the group

g' in which the scattered neutron emerges.

Note that to conserve storage, cross sections are actually referenced by ma-
terial, not cell identifier, since the number of materials in a problem is t}:’pically
much less than the number of mesh cells. Note also that while a cell’s material may
consist of a number of different atomic elements/isotopes, the hybrid Moite Carlo
method uses the mixed Sy macroscopic cross sections.

* . . .
. -

Once the energy group of the scattered neutron has been found, we muc* next

determine its direction. As described in Chapter 8, we generate 32 equally probable
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directional bins with respective widths Aug;, ¢ = 1....,32, from the group-to-group
transfer cross sectiont ;; g—g (o) of Eq. (2-6). The number 32 was chosen because,
historically,'® it seems to accurately reproduce the angular cross sections without
requiring large amounts of storage. Note tﬁat uo (i.e., ¥ - Q) is measured in the

laboratory frame of reference.

We then compute the bin ¢ the neutron is scattered into by drawing a random
number ¢ and setting ¢ = Int(1 + 32¢). where Int is the integer function. The
scattered particle is assumed to be uniformly located in bin {. with the actual

scattering angle computed from
po = poi.L + (i = 32¢) Apog,. (6 —16)

where po,.; denotes the angle corresponding to the left-hand edge of the ith bin.

Once the scattering angle uo has been determined. the direction cosines of
the scattered particle may be calculated, assuriing that the scattered neutrons are
uniformly distributed throughout the azimuthal scattering angle 0. In Cartesian

coordinates, the new direction coordinates y', n’, and ¢’ are!®

W' = upo + /(1 = ud)/(1 =€) (6 cos ¢ - nsin o), (6 ~ 17a)

7' =nuo+ /(1 - u3)/(1 - €) (nE cos & — usino) (6 - 17b)

and

€' = €uo — /(1 - u3) (1 = €) cos. (6~ 17c)

-
. . b . ¢ L .
. . . .
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Instead of actually calculating the cosine and sine of the azimuthal scattering angle,
they are determined through rejection sampling, where, given random numbers (,

and (; uniformly distributed on the interval [-1, 1] with rejection criteria (?+(? < 1.

coso =1 [\t + ¢k
sing =G [ /¢ + 2.

In R - Z geometry. we first calculate post-collision direction cosines y', n'.

(6 —18)

and &' per Eqs. (6-17) and (6-18) above. Since the direction cosines vary with the
position of the particle. whicl. is updated during the collision process, the radial

direction cosine corresponding to the revised particle position is
7= [y'(r-}-ps)-}-f'ﬁ.s]/r'. (6 - 19)

The axial direction cosine n’ is., of course. unchanged. Instead of directly calculating
the azimuthal direction cosine £, we first find the cosine and sine of the angle 3 (see

Fig. 6-2). which are required for tracking in cylindrical geometry. from

cosﬂ:—-[]/\/l—n’2 (6 — 20a)

and
sin8 = /1 — cos? 3. (6 — 20b)

We then calculate

£=sind1-n". (6 - 21)

. .

. « L. . .
Once the new energy group and directional coordinates of the particle have

been calculated, the updated spatial coordinates are examined to see if the particle
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is now located outside the group g’ Monte Carlo boundaries. If so. the fine mesh

cell the particle is located in is determined and the particle is scored per Section 3.4.

In analog Monte Carlo, the weight of a particle would remain a constant
when undergoing a collision, with absorption being modeled through the complete

elimination of a particle based on a sampling of the probability of survival
e=1-S444/STise (6 —22)

Instead. we choose to implement a standard variance reduction technique known as
“implicit capture” or “absorption suppression”, where explicit absorption is replaced

by reducing the particle weight by the factor c.

If ¢ « 1. or if the Monte Carlo region is large and the particles undergo
many collisions before escaping. the use of implicit capture may result in very small
particle weights. Since the time required to track a particle is independent of its
weight. this results in the expenditure of large amounts of computational resources
on particles whose weights are too small to affect the calculation’s results. This
is remedied by imposing a weight cutoff known as “Russian Roulette”.!8 Particles
with a weight w below a user-input weight cutoff of w, are assigned a probability
of survival w/w;, where w; is also a user-input number. The survival probability is
then sampled by drawing a random number ¢ on the interval {0,1). If { > w/uw;, the
particle is eliminated, otherwise, it is assigned the weight w,. While this violates

particle conservation on an individual basis, on the average it will still hold if

. “enough” histories are run. e e .
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As discussed in Chapter 4, explicit outscatter is replaced with a reduction

in particle weight during the response matrix calculation. This is implemented by

replacing the value of ¢ normally used with
crRM = Zijo.g—g / ST.ijgr (6 —23)

where ;0 g—g is as defined in Eq. (6-14). All particles remain within group g after

a collision c}uring the response matrix calculation for R, .

1.3 Collision Events with Fission

Typically, Monte Carlo codes model the fission process by sampling the prob-
ability that a collision results in a fission, and, if one occurs, sampling appropriate
distribution functions to determine the number of fission neutrons emitted and their

energies. All of the resulting particles are then tracked separately.

With the hybrid method, we chose to model fission in a manner analogous to
impleit capture, which we denote by “implicit fission”. That is, the probability of 4
fission event, the number of fission neutrons emitted, and their energy distribution
are modeled by adjustments in particle weight and outscatter probabilities of the
colliding particle, without the creation of additional particles. This is done fo:' two

reasons:

*1. The cross section”data from the Sy as obtained by the Monte Carlo is given
in terms of the quantity vZr ;. Thus, tables of v (the number of neutrons

emitted per fission) are not readily available for sampling.
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2. Generation of separate fission particles would entail increased storage re-
quirements for vectorization, since excess fission particles must be stored

until they can be included in the appropriate event stack (see Chapter 7).

In implicit fission, the particle weight modifier becomes
¢ =c+vErijg/STijg (6 — 24)
and, for response matrix calculations.
crar = CRM + VEF.ijg g/ ST jg- (6 — 25)

where Y, is as defined at in Eq. (2-4). Note that ¢', and even cz,,, may now
be greater than one. The probability of “scattering” to group g’ from group g

[Eq. (6-153)] becomes

Sijog—g + VEFRije g

Er.ijg — Ta.ijg + VIF.ijg

Also, since we assume fission neutrons are emitted isotropically, we revise
the zeroth moment of the angular scattering cross section to include the fission

neutrons, i.e.,

' , -
Eijo,g—-g‘ = E,‘jo,g_.g' + VE[-"‘,‘”X91. (6 - 27)

The revised angular scattering cross section is used in calculating the angular bins

Apo; (see Chapter 8).

Since fission neutrons are now indistihguishablefromn normally scattered neu-

trons, but we wish to include separate categories for the two when forming integral
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balance tables, we calculate the probability that a “scattered” neutron is actually

a fission neutron. This probability is

A ]

VEF.ijg Xy

Pryg—g = (6 - 28)

Zijo.g—g' + ¥ZFiygXg
This probability is used to divide the weight w of a particle between the fission
and inscatter entries of the balance table, where the fission weight entering a group
g’ after a collision in group ¢ is w Pry ¢—g, and the inscatter weight is w(1 —

PF.\'.g—-g’ )

The implicit fission method is disadvantageous in regions where ¢’ (or ¢’z ;)
is greater than one, since if a particle undergoes multiple collisions within such a
region, than its weight can grow without limit. The creation of such “heavy™ par
ticles increases the variance of a problam, as will be seen in some of the benchmark
problems of Chapter 11. Thus. consideration should be given towards reverting to
a more traditional treatment of fission neutrons in the future, since none of the
reaséns listed above for using implicit fission pose insurmountable barriers to an

analog treatment of fission.

1.6 _Sampling the Fixed Source

As explained in Chapter 4, we sample the fixed source in order to determine
the Sg"‘. We assume at present that the fixed source is entirely located within the
Monte Carlo region, although nothing in the hybrid method inherently precludes
a fixed scurce split befween the Monte Carlo and § N .regiohs, or e\;en one eAntirel‘y

located within the Sy region. We also assume a normalization of the fixed source
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intensity to one neutron per second. Provisions are currently included withiu the

hybrid method for four types of fixed sources:

1. An isotropic distributed source,

1o

An isotropic point source,
3. An isotropic surface flux source, and
4. A monodirectional beam source (X — Y geometry only).

In X - Y geometry, the isotropic distributed source is implemented with
input parameters ry, r2. y1. and yz, which refer to the left. right. bottom. and
top limits of the distributed source, respectively. To determine the starting spatial
coordinates (r.y) of a particle, we define Ar = ry — r; and Ay = y; — y;. then
draw random numbers ¢ to get ¢ = r; + (Ar and y = y; + (Ay. The initial coarse
mesh cell is found by comparing the starting spatial position with arrays containing
the Sy coarse mesh cell edge positions. Since an isotropic source is uniform in the
azimuthal angle ¢ and the sine of the polar angle 8. and dn = sin8 d8 (reference

Fig. 2-1), the initial direction cosines of the particle are found from n = 2¢ — 1 and

¢ =n(, with u = /1 -n? cos¢ and £ = /1 —n? ~ 2.

In R - Z geometry, the input parameters are ry, ry, z;, and z7, which denote
the inner, outer, bottom, and top limits of the distributed source, respectively.
The initial axial coordinate is computed as above, with Az = 2 — z;, and z =
zl‘+.C Az. In cylindri.cal geo;ntery, since we assume the source is distributed e:venly

throughout the volume of the cylinder within the limits of the input parameters,
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the distribution along the radial direction is uniform in 2, not r. In terms of the
method described at Section 3.1, our probability density function (PDF) is related

to a uniform distribution by
2r'dr'

(r: —r?)

¢’ = (6 — 29)

Integrating d¢' from 0 to ¢, and dr' from ry to r, and solving for r, we obtain

r= /00 =) + 7. (6 -30)

The direction cosines u and 7n are determined as in X — }" geometry above. while
Eqgs. (6-20) and (6-21) are used to determine £ and sin 3 (required for tracking in

cylindrical geometry as discussed in Section 6.1).

For all source options and geometries, the initial energy group of a particle is
determined from a user-input array containing the source spectrum S,;. The discrete

PDF describing the source spectrum is thus

G
Pe=5,/Y Sy (6 - 31)
9

I=l

This PDF is used to form a cumulative distribution function, which in turn is

uniformly sampled to obtain the initial energy group of a particle.

The point source options are handled similarly to the distributed source
options, except that the starting spatial position, and thus the initial coarse mesh
cell, are fixed, and the only input parameters required are z; (r;) and y; (z;). Note

that for R — Z geometry, the “point source” option actually represents a circular

ring when r; > 0.
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The isotropic surface flux option in X — Y geometry consists of an isotropic

flux impinging on the left surface of the Monte Carlo region with top and bottom

boundaries y; and y;, respectively. Thus, the z coordinate is fixed at zero, while

the y coordinate is determined as in the case of a distributed source. The initial

directional coordinates are determined by sampling the incoming current which,

since the flux is isotropic, is proportional to u. Thus, tlie PDF is related to the
uniform distribution by

2u'du' = d¢'. (6 - 32)

Integrating u' over the limits 0 to u, since it is an incoming current from the
left, and solving for u, we obtain g4 = /. Since the surface flux is isotropic. the

current is azimuthally symmetric about the u, and the remaining direction cosines

are determined by n = /1 — u? cos¢ and £ = /1 — p% — n?%, where 0 = 2x(.

In R - Z geometry. the isotropic surface flux option represents an isotropic
flux impinging on the outer face of the cylinder, with top and bottom boundaries
z9 and z;. Thus, the option is entirely analogous to the X — }" surface flux option,
except that 4 = —\/C. The sine of the angle 3 required for tracking in R — Z

geometry is computed from § = — arctan(£/u).

Finally, the monodirectional beam source in X — Y geometry consists of

initial spatial coordinates r, and y;, with fixed directional coordinates n, and 4,,

from which p, = /1 —n? cos ¢, and &, = \/1 —n? — p2.
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1.7 _Sampling the Response Matrix

From Chapter 4, we sample the group-within-group response matrix _ﬁ._gg,
where the element r;; represents the angular flux leaving the Monte Carlo region in
S state i due to a unit incident angular flux in Sy state j. The sampling is per-
formed by assigning N, histories to the jth column of Egg, which are then followed
through the Monte Carlo region to determine the ith state (row) in which they reen-
ter the Sy region. As described in Secticn 6.4 above, outscatter is not allowed, so
each history can terminate only by physically crossing a Monte Carlo/Sy interface
or an outer boundary surface. (If a weight cutoff is in effect, then histories may also
be terminated through particle elimination.) Thus, each particle contibutes to its

respective column’s score. ensuring maximum efficiency.

Currently, the same value of .N;, which we denote by Ngys, is used for
each column, regardless of its actual importance. The efficiency of the response
matrix calculation could be increased by performing a single Sy iteration, using the
boundary fluxes from the sampling of the fixed source, to determine the approximate
incoming boundary fluxes from the Sy into the Monte Car. region. The incoming
angular boundary fluxes would then be used as a weight to determine the relative
size of the ;. Alternatively, the entire problem could first be solved by a low order
Sn calculation, with t}:;e appropriate cell edge fluxes saved to be used as a weighting
function. The latter approach would be preferable in problems with large fission
or upscatter cross sections, since it would allow the use of outer iterations. The
determination of the relative merits of the two approaches, or of other methods, is

left as a future problém.
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In sampling the reponse matrix, each incoming Sy state (column) corre-
sponds to the edge of a unique fine mesh cell, located along the Sy /Monte Carlo
interface. Since the Monte Carlo region is rectangular, there are a maximum of four
different locations along the interface for a given state - top, bottom, left, or right.
The actual number may be less than four, since a boundary of the Monte Carlo
region may be located along a vacuum or reflective (R — Z geometry) boundary
condition. in which case the corresponding columns of the response matrix are not

needed.

In X - Y geometry. if a state is located along the top boundary, then the
particles used to sample that state have their initial y coordinate fixed at yr. As-
suming that the state correspbnds to the ith fine mesh cell. with width Az, and
left edge rr ,, the initial r coordinate is found from r = z;, + (Ar,. Since the
initial fine mesh cell location is already known, the starting coarse mesh cell is eas-
ily determined from previously calculated Sy arrays. For cells along the bottom
interface, the identical procedure is used, except that y is fixed at yg. Similarly, for
the left and right edges, z is fixed at r; and rg, respectively, while y is found from

y =yB.i +(Ayi.

In R - Z geometry, the left and right edges are sampled as above, with r
fixed at ry or rg, and z found from z = zg; + (Az;. Along the top and bottom
edges, however, the distribution is uniform in 72, not r, as in the case of the isotropic

distributed source in the preceeding section. Thus, the initial radial coordinate is

found from r = \/4‘(7%'1‘_'_1 - )+l
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Along each edge, there are two different quadrants of directions. For example,
the direction cosine n is always negative (“downgoing”) along the top edge, while
the direction cosine y may be negative (“incoming”) or positive (“outgoing”). The
allcwable combinations are shown at Table 6.1 below. Each quadrant consists of
a set of Sy directions 2, as shown at Fig. 5-3, with an associated solid angle
AR, as described in Section 5.3. For a given state j with associated direction §2,,
the incoming particles are assumed to be uniformly distributed over the surface of
the solid angle Af,. Thus, if ng is the cosine of the polar angle 65 associated
with the “bottom"” edge of the €2; bin, then the direction cosine n is determined
by n = ng + ¢ An. where An is as defined in Section 5.3. The sign of n is found
from Table 6-1. The azimuthal angle is determined in a similar manner, with Ao
representing the bin width, and ¢ the bin’s “left” edge. The azimuthal angle of
the incoming particle is then found from ¢ = o, + ( Ao. where the resulting value
of ¢ is in the range [0.7/2]. Depending upon the required sign of y from Table 6-1,
the constant =/2 is then added, and the direction cosines p and £ are calculated as

described above.

Table 6-1
Allowable Directional Quadrants
Edge 7 n
Top 1 -1 -1
Top 2 +1 -1
Right 1 -1 -1
Right 2 -1 +1
Bottom 1 -1 +1
Bottom 2 +1 +1
Left 1 +1 -1
Left 2 +1 +1
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1.8 _Sampling the Incoming Boundary Fluxes

As described in Sections 5.5 and 5.7, subroutine DWNSRC samples the
residual incoming boundary fluxes 6‘1’;"(” %) to determine their contribution to the
Q;," “P*+1) The mechanics for sampling the incoming boundary fluxes are identical
to those of the response matrix described above, with the exceptions that particles
are allowed to scatter to a different group upon collision (reference Section 6.4), and

the number of histories per state (.V,) is weighted to reflect the residual number of

particles entering the Monte Carlo region from the Sy region in state ;.

To begin, we calculate the total residual leakage LP into the Monte Carlo

region for outer iteration p from

9

Jq '
Lr=3"lsu " an, A4, (6 — 33)
=1

where AQ; is the solid angle associated with state j, AA; the surface area, and
Jg is the total number of states in the group g Monte Carlo/Sy interface. The
absolute value sign is used since there is no guarantee that the residuals will be
non-negative. For the first outer iteration (p = 1), the total number of histories to

be run for group g (N;) is determined from
N, = Jg x Nrm, (6 - 34)

so that approximately the same amount of effort is used in sampling the incoming
boundary fluxes as was used in sampling the response matrix. For subsequent

residuals, the decreasing importance of the residuals is reflected by using

N? = J, x Npy x LB/L21, (6 - 35)
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To prevent arbitrary increases in N? when L? > LP=! as can sometimes occur
for large p, the maximum allowable value of L?/LP=! is fixed at one. The actual

number of histories run for an individual state j is

Nj = NP6y, P> AQ; A4; [ LD (6 — 36)

To correct for roundoff error in N, since only an integral number of histories can
be run, and to incorporate the possibility of negative residuals, the weight assigned

to the state j particles is

wj = Sgn(§," P>) N; / Int(.V;), (6 -37)

where Sgn is the sign function.

1.9 Sampling the Volumetric Sources

From Section 5.4, subroutine SNTOMC determines the contribution of the
group g volumetric sources located in the Monte Carlo region to the Qg!**. Since the
Sn stores only the moments of the volumetric source f", jimg and, from Section 5.7,
we wish to sample the residual volumetric source, subroutine SNTOMC begins by

computing the residual moments for outer iteration p from

~

§VP, = VP vr-l (6 — 38)

ijlmg ijlmg = Yijlmg’
where ij denotes the fine mesh cell (¢,7), and Im the i{th, mth spherical harmonic

(reference Section 2.3). The total residual volumetric source in the Monte Carlo

region is then determined from

TP =) 16V0,| AVi s, (6 - 39)
)
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where AV ; is the volume of cell (7, ), and the sum is over all fine mesh cells located
within the group ¢ Monte Carlo region. The absolute value signs are used since the
61750% may be negative. Since we wish to assign approximately equal weight to the
sampling of the fixed source and the sampling of the volumetric sources, the total

number of histories to be run for the group g volumetric source is calculated from
NP = Int(N x I7}), (6 — 40)

where .V is the number of histories used in sampling the fixed source.

To actually sample the volumetric source in cell (i, ), we first reconstruct

the residual angular flux 6¢;;n, from

L +!
6¢?jng = Z Z Ylmn 6Vz‘,;'lmg* (6 - 41)

=0 m=0
where Y, represents the [th, mth spherical harmonic evaluated at the discrete

direction 2.

Once the residual angular flux has been reconstructed, the number of histo-
ries assigned to it is found from

NP, = NP|sgh | AV;; AQ, /TP, (6 — 42)

ijng ijng

As in the outscatter calculation, since only an integral number o1 histories may be

run, and §4%.  may be negative due to not only the use of residuals, but the use
1yng g

of the spherical harmonic representation, the weight assigned is

Wijng = Sgn(6¢%,) NViny / Int(NF, ). (6 — 43)

iyng ijng
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The sampling of the angular phase space coordinates is identical to that of the
response matrix, with the addition that since we have a volumetric source there
are now a total of four possible directional quadrants per cell. The spatial phase
space coordinates are also sampled in a similar manner, except that both spatial

coordinates are sampled for each history, of course.



CHAPTER 7.
VECTORIZATION OF THE HYBRID MONTE CARLO METHOD

Monte Carlo is inherently a sequential process. where the natural flow of
computation is to follow a single history until it terminates. and only then initiate
the next history. While this method of processing histories is perfectly acceptable for
machines with sequential processors, it fails to fully use the capabilities of machines
with vector processors. Essentially. a vector processor is capable of performing
the same operation. or series of operations, on numerous sets of data (64 on Cray
machines) at the same time. Ideally. then (neglecting overhead). a vector machine
could process 64 particles in the same amount of time it would take a sequential
machine to process just one. The catch is the requirement that the vector processor
perform an identical set of operations on a given set of data. While it is fairly easy
to adapt the logic of Sx codes to form arrays that can be processed vectorially.
the numerous possible logical paths available to individual Monte Carlo particles
(e.g., collision, internal boundary crossing, etc.) inhibit the vectorization of Monte
Carlo codes. Thus, the key to vectorizing Monte Carlo codes is to somehow group

histories into sets which require identical processing actions.

Since Monte Carlo calculations are typically much more CPU-intensive than
S calculations. it is crucial to minimize the amount of time spent in tracking

particles wherever possible. This requirement also applies equally as well to the
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hybrid method. where the time spent in the Monte Carlo portion of the code usually
far outweighs the time spent in the S portion of the code. Thus, to maximize the

efficiency of the hybrid method, it is desirable to vectorize the hybrid Monte Carlo

method.

7.1 The Event-Based Vectorization Method

The method we have chosen to vectorize the hybrid Monte Carlo method
involves the formation of event-based stacks.2! 2% where each stack consists of a
group of particles undergoing an identical event. such as a collision. To maximize
efficiency. since a vector processor requires roughly the same time to process a stack
containing one particle as one containing sixty-four, a stack is only processed. if pos-
sible. when it is full. After a stack has been processed. the particles are distributed
to other stacks for further processing. if required. Note that we do not physically
transfer a particle. of course. but rather its attributes. such as phase coordinates.
and other information required for stack processing. such as the distance to the next
boundary. As soon as another stack fills up. it to is processed. and its particles are

in turn redistributed.

Because a particle can undergo numerous events before its history is ter-
minated, and these events have no set sequence, the event stacks necessarily have
multiple connections to one another. That is, a stack can typically receive particles
from more than one other stack, and can, in turn. transfer particles to multiple

stacks. Thus, more than one stack may fill up at the “same” time, and, as a result,
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there may be an attempt to transfer more particles to a given stack than it has

space available.

To solve these pfoblems, a dynamic stack control system with individual
stack reservoirs is used: For each type of Monte Carlo calculation in the hybrid
method. there is a specific driver subroutine which controls the overall movement
of particles into and within the system. A driver subroutine begins by introducing
source particles into the system. which are then sorted according to the criteria
of Section 6.1 and placed into the appropriate event stack. As an event stack
fills up with these source particles, its associated subroutine assumes temporary
control. processing its stack and redistributing its particles as required. If the
redistribution of particles results in additional stacks filling up. control is passed
down to their associated subroutines, in a prioritized order, for their execution. If
necessary. these subroutines can also pass control down to yet another subroutine(s).
if their execution results in additional stacks filling up. As soon as a subroutine
has finished execution. including the execution of any subroutines it passed control
to. it in turn releases control back to the subroutine which originally passed it
control. Once control has been returned all the way back to the driver subroutine,
it introduces more particles into the system, either from the source or an individual

stack reservoir.

Individual stack reservoirs are required since there exists the possibility that
a subroutine may need to transfer particles to a stack in which there is no more
room. In this case, the excess particles are temporarily placed in a holding stack,
from which they will be transferred to their original destination when space is

available. The term “individual” stack reservoir is used since, unlike most other



108

vectorized Monte Carlo codes,?! =23 there is no single master reservoir into which
all excess particles are placed. Rather, the stacks where logjams may occur have
an additional stack(s) to act as a reservoir for excess particles. Individual stack
reservoirs are felt to be more efficient than a single master reservoir, since particles
in an individual stack reservoir have their destination and all necessary information
already available, whereas particles in a master reservoir must be resorted. However,
the use of individual stack reservoirs does present difficulties in problems when
particles are created through fission. since a master reservoir is easily enlarged to
hold the additional particles, while the creation of additional reservoirs is not as
straightforward. While the use of implicit fission (reference Section 6.5) renders the
problem moot, the individual stack reservoirs should probably be replaced with a

master reservoir if analog fission is used.

As previously stated. a stack contains all of the particle attributes necessary
for the execution of its associated subroutine. When a particle is transferred from
one stack to another. these attributes must he moved from their location in the
controlling stack to locations in the receiving stack. Since a single history will typi-
cally undergo several stack transfers, the overhead involved in transferring particles
can easily form a substantial portion of the computational time. Two actions have

been taken to minimize this overhead.

First, a set of Cray Assembly Language (CAL) utility routines are used to
transfer particle attributes.?!~23 CAL masking routines are first used to encode
particle destination words for each stack, where a bit value of one corresponds to a

particle to be transferred. Next, the CAL routine MOVXTOB is used to actually
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transfer the particle attributes into open slots in the destination stack. A parti-
cle's attributes are transferred vectorially, while each particle itself is transferred
sequentially. As a particle is moved, MOVXTOB resets the appropriate bit in the
particle destination word to zero, thus maintaining a record of which particles have
been transferred. This is important in the event the destination stack fills up, and

particle transferrence must be suspended while it is executed.

Second. the number of attributes that need to be transferred are kept to a
minimum, since not all stacks require all attributes. Because the utility routine
MOVXTOB requires a transferred particle’s attributes to be arranged sequentially
in memory, the attribute lists are structured so that the minimum number of at-
tributes required to meet the needs of the target subroutine. or its chain of pos-
sible subsequent target subroutines, are actually moved, within the limits of the
sequential memory requirement of MJOVXTOB. Furthermore. some attributes are
calculated only as needed, and not saved for transferrance. if the time required for

their computation is minimal.

The vectorization scheme employed in the hybrid method is shown at Fig. 7-
1. The names in the boxes refer to the vectorized Monte Carlo subroutines. while
the associated event stack a subroutine executes is listed below. The stacks in
dashed boxes without subroutines are individual stack reservoirs. The lines and
arrows represent possible particle transfer paths between the subroutines, while the
numbers adjacent to the lines refer to the number of particle attributes transferred
between stacks. Where there are two numbers, the first refers to X ~ ¥ geometry,
while the second, in parenthesis, is for R — Z geometry. Note that there are eight

event stacks, with three individual stack reservoirs (Stack 7 is not currently used).
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The number of attributes required to be transferred between stacks ranges from 9

to 20. The stack attributes are listed at Table 7-1 below, where the symbols are as

defined at in Chapter 6, with the exception that =as, yy, rar, and zy refer to the

appropriate Monte Carlo region boundary for a given direction and energy group.

The attributes CONST, XCOSB, SINB, and YSIN are used only. for cylindrical

geometry calculations.

Table 7-1
Stack Attributes

~Name Symbol SO | S1 | S2 |S3 | S4 [S5 |S6 [S11

CONST ré(cos* 3 — 1) o o ° o o

XCOSB rcos J3 ° ° o ° °

SINB sin J ° ° o o .

YSIN V1 —-n? o . o o °

X z(r) ° ° ° . ° ° . °

Y y(2) . . o o ° ° . o

U u ° ° ° o . . . .

ETA n o ) ° . o o o °
TSI -€ . . . . . ° ° °

WT w ) ° ° . ° ° . °

S s . ° . . ° ° ° °

IR (1.7) o o o . o ° . °

IG* g ° o . ° ° ° o °

SL St . . ° ° ° ° °

SBX sx (sr) ° ° ° ° ° e

SBY sy (sz) ° ° ° . ° .

XMAX oy (tm) ° ° ° . °

YMAX ym (2m) o . . .

BOUNDX zg (rg) o . o .

BOUNDY v (2B) ° ° . °

* For response matrix calculations, IG contains the particle’s starting column

The vectorization scheme begins with the determination of the starting coordinates

in phase space for 64 particles located in Stack 0, which is performed by subroutine
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SRCGET for fixed source Monte Carlo calculations (Section 6.6), and RMGET
for all others (Sections 6.7 through 6.9). The remaining attrib;xtes in Stack 0 are
‘then calculated by a call to subroutine CALCO, which determines the path length
s and performs the distance to boundary calculations described in Section 6.1.
Once all necessary attributes have been determined, the particles are transferred
to Stack 1, and their destination (i.e., their next event stack) is determined by
subroutine TRCK as also described in Section 6.1. Particles exiting the Monte
Carlo region are transferred to XSCORE (Stack 4) or YSCORE (Stack 3) for scoring
(reference Section 6.3), those crossing an internal Monte Carlo boundary are sent to
XRW (Stack 6) or YRW (Stack 3) (reference Section 6.2). while those undergoing
a collision are sent to subroutine COLL (Stack 2) (reference Sections 6.4 and 6.5).
For response matrix calculations. subroutine COLL is replaced with subroutine
RMCOLL. which uses the modified cross sections required for group-within-group

only scattering.

If a stack or stacks fill up during the transfer process from TRCK, the particle
transferrance process is suspended while the target stack is executed. For Stacks 4
and 3 this presents no problem, since a particle’s history is terminated when it leaves
the Monte Carlo region. Execution of Stacks 2, 3, and 6 is not as straightforward,
however, since they attempt to feed back into Stack 1, which may still contain
particles. This conflict is resolved by having the target stack fill the available slots
in Stack 1, thus partially emptying the target stack and enabling the transferrance
process from TRCK to resume. As more slots in Stack 1 open up, the remaining
particles in the target stack are transferred into them. The process is very similar

to juggling, where, instead of balls, we are using particles.



113

The juggling orocess breaks down, however, when two, or even all three, of
Stacks 2. 3. or 6 fill up and attempt to feed back into Stack 1 simultaneously. To
resolve this conflict, priority is given to one of the stacks, which places a lock on
Stack 1, forcing the remaining stacks to transfer their particles to the individual
particle reservoir. Stack 3 (YRW) is assigned the highest priority, followed by
Stack 6 (XRW), and then Stack 2 (COLL). This scheme is used since less memory
is required to store the particle attributes of Stack 2. Because of the above priority
scheme and control structure, one individual stack reservoir is sufficient for XRW

and YRW. while two are required for COLL.

Subroutine COLL generates new phase space coordinates and weights for
all scattered particles. and performs the “Russian Roulette™ weight cutoff process
described in Section 6.4. COLL then checks to see if the new phase space coordinates
place a particle outside the Monte Carlo region. If so. it is tagged for transfer to
Stack 11. When (and if) subroutine COLL has filled up Stack 11. it passes control to
subroutine MCTOSN, which scores the volumetric source in the S region resulting
from particles scattering out of the Monte Carlo region (reference Section 35.4).

Subroutine MCTOSN returns control to COLL once it finishes execution.

If there are slots available for COLL to transfer its remaining particles to
Stack 1, it does so, and then calls subroutine CALC (identical to subroutine CALCO)
to calculate the remaining attributes required by subroutine TRCK. If Stack 1 is
already being used by another subroutine, COLL instead transfers its particles to
an individual stack reservoir as described above. Control is then relinquished to the

subroutine which called COLL.
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When subroutines XRW or YRW are executed and transfer their contents
back into Stack 1, Stack 1 should contain 64 particles, since particles are not lost
(hopefully) in an internal boundary crossing. This is not the case with subroutine
COLL, where particle histories may be terminated through either a weight cutoff
or by scattering into the Sy region. To ensure that only full stacks are executed,
when possible, the driver routine transfers enough particles from Stack 0 to fill up
Stack 1. If there are not enough particles remaining in Stack 0 to fill up Stack 1,
the driver routine introduces another set of 64 particles into Stack 0. Other than
this “topping off” of Stack 1, the driver routine only releases source particles into
the system when all event stacks contain less than 64 particles, and all individual
reservoir stacks have been emptied. This ensures thé.t the capacity of the system

will not be exceeded.

Once all the source particles have been exhausted. the driver routine proceeds
to “flush out” the collision and internal boundary crossing stacks. The stack with
the largest number of particles is executed first, then the next largest, etc.. until all
rarticles have been forced into a scoring stack. Note that the collision and internal
boundary crossing stacks may have to be executed more than once apiece, since a
particle can undergo more than one collision or boundary collision before scoring.
The driver routine then concludes by cleaning up the scoring stacks, which, since
they do not feed particles back into the vectorization scheme, need only be executed

once apiece.



7.2 _Comparison of Sequential and Vectorized Code Execution Times

Ideally, the vectorization of a code would result in a 64-fold increase in speed,
since we can track 64 particles in the time it previously took to track just one. How-
ever. not all portions of a code are vectorizable, and vectorization itself is subject to
a considerable amount of overhead (e.g.. the movement of particles between stacks).

Thus. a 64-fold increase in speed is not achievable in practice.

To measure the actual increase in speed. we compare two versions of the hy-
brid Monte Carlo/S~ code which are identical. except that one has had its Monte
Carlo tracking routines vectorized, while the other retains sequential methods. We
choose four representative sample problems for comparison. since the increases in
speed will vary from problem to problem. All comparisons are performed on \Ma-
chine 6. a Cray Y)MP. at Los Alamos. and all times are measured in CPU seconds.
The results obtained with the sequential and vectorized versions agree within sta-

tistical uncertainties.

The first problem consists of a one group. homogeneous 11 by 11 cm block
in X — Y geometry, where the Monte Carlo region (including boundary layers) runs
the entire width of the block between y = 4 and y = 7 cm. The fixed source consists
of an isotropic distributed source with 1 cm dimensions at the center of the block.
The (fictitous) cross sections are defined so that E7 =1 cm, and £s = .95 cm with
isotropic scattering. The CPU times required to sample the fixed source (subroutine
SRCMC) and the response matrix (subroutine RM) are shown at Table 7-2 for both
the sequential and vectorized versions of the code, along with relative increase in

speed. The identical number of histories were used in both versions (approximately
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455,000 for the fixed source, and 1.3 million for the response matrix). Both the
source and response matrix calculations show approximately a factor of four and a

half increase in speed with the vectorized version.

Table 7-2
Sequential vs. Vector Comparison,
Problem # 1
Type SRCMC RM
SEQ 57.33 sec 114.7 sec
VEC 12.53 sec 24.16 sec
SEQ/VEC 4.6 1.7

The second sample problem is a three group. homogeneous 10 by 21 cm
block in X — Y geometry with isotropic scattering. where the Monte Carlo region
(including boundary layers) runs the width of the block between y = 9 and y = 12
cm. The boundaries of the Monte Carlo region are group-independent. since 7 = 1
cm for all three groups. Downscattering only is allowed, with €5, ., = Sg,3 =
025 cm. £g2-3 = .05 cm, and 54y = .95 cm. There is a small amount of
absorption present in the third group, with £33 = .05 cm. The fixed source
consists of an isotropic distributed source located along the width of the block
between y = 10 and y = 11 cm. Approximately 710,000 histories were used to

sample the fixed source, and 160,000 for each response matrix.

A comparison of the source and response matrix calculation times is shown
below at Table 7-3. While the response matrices again show about a factor of four
and a half increase in speed with the vectorized version, the source calculation’s in-

crease is “only” a factor of four. This reduction in efficiency is due to the presence of
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two loops in subroutine COLL which could not be vectorized for multigroup prob-
lems. These two loops, of which one determines a scattered particle's new group,
and the other the group a particle is to be scored within for the integral balance
tables, require multiple passes for multigroup problems. Since the response matrix
calculations do not use subroutine COLL, but rather subroutine RMCOLL. which
requires group-within-group scattering only (reference Section 6.4), they are not
subject to this fixed overhead and subsequent reduction in efficiency for multigroup
problems. Note also that since the size of the Monte Carlo region is identical for
each group. as are the response matrix cross sections. the calculation times are also

almost identical betwen groups.

Table 7-3
Sequential vs. Vector Comparison.
Problem # 2
Type SRCMC RM1 RM2 RM3
SEQ 77.33 sec 13.91 sec 13.91 sec 13.96 sec
VEC 19.23 sec 3.03 sec 3.03 sec 3.05 sec
SEQ/VEC 4.0 4.6 4.6 4.6

The third sample problem is a one group, homogeneous cylinder with a radius
and height of 11 cm, and a isotropic distributed source located between r = 5 to 6
cm, z = 5 to 6 cm. The Monte Carlo region consists of the area from z =4 cm to
z = 7 cm. Linearly anisotropic scattering is used, with £7 = 1 cm and £5 = .95
cm. Approximately 85,000 histories were used to sample the source, and 190,000
for the response matrix. The respective computation times for the sequential and
vectorized codes are shown below at Table 7-4. For R — Z geometry, the increase
in speed with the vectorized version is between a factor of five and five and a half.

This increase is greater than that for X — Y geometry. since more calculations are
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required when tracking a particle in cylindrical geometry, and thus more benefit is

obtained from vectorization.

Table 7-4
Sequential vs. Vector Comparison,
Problem # 3
Type SRCMC RM
SEQ 12.5 sec 24.8 sec
VEC 2.29 sec 4.82 sec
SEQ/VEC 5.5 5.1

The final sample problem is a two group, hetrogeneous cylinder with a radius
of 10 cm and a height of 25 cm. The designated Monte Carlo region is composed of a
strong absorper with cross sections £y = .1 ecm. £5,~; =.005 cm. £5,;—; = .003
cm, L5220 = .01 ecm. and £ 4 = .09 cm. The boundary layver and Sy regions
consist of a pure scattering region with ¥ =1 cm. L5, = Tg;-2 = .5 cm.
and £s52-2 = 1 cm. The Monte Carlo region (including boundary layers) is the
area between z = 10 and : = 15 cm. and the fixed source consists of an isotropic
point source located along the axis at r = 12.5 cm. Approximately 730.00 histories
were used to sample the fixed source, and 265.000 for each response matrix. The
increase in speed of the vectorized version over the sequential version (Table 7-3) is
again between a factor of five and five and a half, with the source calculation being
slightly less efficient since it is a multigroup problem. Since the total cross sections

are group independent, the Monte Carlo region is also group independent, and the
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response matrices require similar computational times.

Table 7-3
Sequential vs. Vector Comparison.
Problem # 4
! Type SRCMC RM1 RM?2
SEQ 71.78 sec 24.86 sec 13.96 sec
VEC 14.09 sec 4.54 sec 3.05 sec
SEQ/VEC 3.1 3.3 5.5

The percentage of the total computational time used in transferring particles
between stacks (subroutine NIOVXTOB) in the sample problems varied between
6% to 12%. with the other vectorized Monte Carlo routines (e.g.. XSCORE. COLL,
TRCK. etc.) using from less than 3% to almost 15% each. and totaling between
357 and 33 of the total execution time. About 3% to 10% of the time was spent
in routines for intrinsic FORTRAN functions (square roots. logs. cosines. etc.). with
another 3% to 10% used in specialized Cray functions (random number generators,
vector mask functions. etc.). Of the remaining time. the “outer” Monte Carlo
routines (SRCMC, MCRM) used less than 3%. while the Sy required between 8%
and 17%.

While the proportion of execution time required for the Sy is highly depen-
dent upon such factors as the relative sizes of the Monte Carlo and Sy regions,
the Sy quadrature order, and the number of particle histories, it is clear from the
above sample problems that, even with vectorization, the time required for the
Monte Carlo calculations will generally outweigh that used in the Sy. Also, the
overhead involved in vectorization, such as transferring particles between stacks

and constructing particle destination words, is significant, and must be minimized
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when developing a vectorization scheme as described above. When the FORTRAN
equivalent of the subroutine MOVXTOB was used in place of the CAL utility rou-
tine, the Monte Carlo calculation times for the vectorized version approximately

doubled.
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CHAPTER 8.
CROSS SECTIONS AND THE HYBRID METHOD

The process of neutron interactions with nuclei in the medium of interest is
quantified through the concept of cross sections. where the microscopic cross section
o is defined as the number of interactions per unit atom density per unit tracklength,
and is commonly measured in units of barns. where 1 barn is equal to 10~%* cm?.
With this definition. the macroscopic cross section T as defined in Chapter 1 can
be calculated from the relationship £ = N0, +... + N 0,. where .V, represents
the atom density of the type jth nuclei in the medium. Microscopic neutron cross
section data is obtained through both theoretical and experimental means. with
the data being stored in computer-based files such as the Evaluated Nuclear Data
File (ENDF). In essence, all the “pl.ysics” of the problem is contained in the set of
cross sections used when solving the transport equation. Applying identical solution
methods to identical problems with different cross section data will thus result in

different solutions, since the physical basis of the problem has been altered.

Both discrete ordinates and Monte Carlo codes require some processing of the
primary ENDF cross sections prior to their use, since the primary data is not in a
format appropriate for use by either technique. The processing requirements vary for
each technique, however, introducing differences into the cross section sets actually

used. Thus, care must be used when comparing Sy and Monte Carlo results, since
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even if thé}' are based on the same set of primary cross section data. the data sets
actually used in the codes differ due to the processing. More importantly (from our
viewpoint ). integration of the hybrid Monte Carlo algorithm with the Sy requires
the generation of a set of Monte Carlo cross sections that is consistent with the

cross sections used in the Sy.

8.1 _Background

The ENDF files contain extensi\;e amounts of data on neutron reactions for
most isotopes. including cross section values for a large number of energies. angular
distributions of scattered neutrons for both elastic and inelastic collisions. fission
spectrums. etc. Although there are a large number of possible types of neutron
reactions (reference Lamarsh,?* Chapter 2). for our purposes we will consider the

set of all possible interactions to be divided into just ten types:
a. Radiative capture (o),
b. Fission (oy),
c. Elastic scattering (o,),
d. Inelastic scattering (o),
e. (n,2n) and (n,3n) interactions (o2, and o3, ),

f. “Second chance” fissions (o;,f and o2, ¢), and



g. (n.p) and (n.a) reactions (o, and o4).

The use of cross sectional data by standard Monte Carlo methods is straight-
forward in principle.!® Random numbers are drawn to determine the species of nu-
cleus struck (if more than one isotope is present in a given region), and the type
of resulting reaction. Typically, the processed data has been tabulated at suffi-
cient energy values so that linear interpolation for non-tabulated energy values is
within required accuracy bounds (i.e.. “continuous—energy"” data). The scattering
angle for elastic and inelastic reactions is determined by sampling from 32 equally
probable angular bins formed when the primary nuclear data is processed. The
exiting neutron's energy for elastic and some inelastic scattering is then calculated
from physical laws for conservation of energy and momentum. while energy distri-
bution tables are provided for most inelastic scattering. The number of neutrons
resulting from a fission reaction is determined by sampling a distribution function.
while the direction and energy of emitted neutrons are sampled from fission angular

distribution and fission spectrum tables, respectively.

The use of cross section sets in discrete ordinates codes is somewhat more
convoluted, since the Boltzmann transport equation is formulated in terms of a
particle balance, and energy is now a discrete variable (see Chapters 1 and 2). The

primary data set is first processed to generate multigroup reaction cross sections by
Eﬂ
oy = / dE' g(E')a(E'). (8-1)
-1

where g(E) represents the spectral weighting function discussed in Section 2.2.

Scattering cross sections are also processed to generate scattering matrices for each



Legendre order (reference Sections 2.3 and 2.4). where
+1

E E,
Olg—g =27 d,uoPl(po)/ ’ dE'/ dE g(E)o(E. ). (8-12)
-1 Ep'-l E,-[

Although we have now generated group reaction cross sections for each spe-
cific interaction. the Sy requires cross sections that provide overall interaction rates,
i.e.. total. scattering (elastic and inelastic). fission, and absorption. These Sy mi-
croscopic cross sections must be defined in terms of the group reaction cross sections
generated by processing the primary data. These definitions. dropping the group

(and Legendre order) indices for simplicity. are?3

OT =0, +0,+0, +0f+02n +03n + 0,y + 020§ +0a +0p. (8—3a)

0s 0.+ 0, + 2025 + 303, + 0,5 + 200, 5. (8 — 3h)

OF S05+ 0,5+ 02n.J. (8 = 3c)
and

04 =0,+0, +0p+0f—03n =203, — 020 5. (8 = 3d)

where 0. 05, oF, and o4 are the total. scattering. fission. and absorption cross
sections, respectively. The integer multiplier signs are used in Egs. (8-3b) and (8-
3d) since some reactions result in the creation, or loss, of more than one neutron.
while the minus signs are required in Eq. (8-3d) in order to preserve the total
particle balance. Note that although ¢4 is not explicitly required for solution of
the transport equation, it is needed when calculating integral balance tables, and
that the integral absorption in a problem can be negative when materials with
large (n,2n) cross sections (e.g.. beryllium) are present. Once the Sx microscopic

cross sections have been formed, the macroscopic cross sections actually used in the
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S~ code are easily constructed as above, given the densities and locations of the

isotopes comprising the problem.

Thus. even though the cross sections used by a Monte Carlo code and an
S~ code may have been derived from the same primary set of data, they are no
longer equivalent, but rather more like apples and oranges. The Monte Carlo cross
sections reproduce each reaction type for each isotope. and are “continuous” in
energy. while the Sy cross sections are in terms of overall reaction rates, represent
a mixture of isotopes, and are averaged over an energy group. More importantly,
angular distributions for scattering events in Monte Carlo codes are given in terms
“of tables of equiprobable cosine bins, while angular distributions in Sy codes are
repsented by tables of Legendre moments. The effects on the hybrid method of this

dichotomy in cross sections is the subject of the remainder of this chapter.

8.2 Hvbrid Method Cross Sections

The hybrid Monte Carlo method has been implemented in the solver portion
of the discrete ordinates code TWODANT, as described in Chapter 5. At this
point in the code, the material types and densities specified in the input file have
already been used to form macroscopic cross sections for each region in the problem.
Thus, the cross sectional information available to the hybrid Monte Carlo method
from the Sy consists of the total cross section (¥74), the absorption cross section
(S4.4). the average number of neutrons per fission times the total fission cross
section (VI F 4 ), the discrete fission spectrum (\,), and tables of Legendre scattering

moments (; g.g). The individual microscopic cross sections are no longer available
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in the Sy solver. and the original angular distribution data for scattered particles
was never available, since it was lost when the primary ENDF file was processed to
generate the Sy cross sections. Thus. it is clearly impossible to employ standard

Monte Carlo methods with the available Sy cross section data.

One obvious solution is to use a separate set of continuous-energy cross sec-
tions within the Monte Carlo region. This would enable the use of standard Monte
Carlo methods. and presumably an increase in accuracy as well. since energy would
now be treated in a more realistic (i.e., continuous) fashion. With appropriate def-
initions. neutron interactions could be grouped into the categories required for the
Sy integral balance tables. and particles entering the Sy region from the Monte
Carlo could easily be scored into the appropriate energy group. While the basis for
formation of a probability density function (PDF) in energy for particles entering
the Monte Carlo region from the Sy is not as clear-cut [e.g.. uniform. g(E). etc.].

it would not appear to present insurmontable difficulties.

This approach was not selected for two reasons. First. it would require
the user to undergo the not inconsequential effort of preparing two separate and
distinct sets of cross sections for each problem, not to mention the additional code
necessary for processing two cross section sets with different formats. Second. it
would inhibit the benchmarking of the hybrid code. Since the hybrid method is
implemented as an enhancement to the discrete ordinates code TWODANT. the
simplest, and most effective, means of validating the hybrid code is to bench it
against the Sy only version of TWODANT (reference Chapter 11). If the hybrid
code used an additional set of cross sections entirely different from those used in

the standard version of TWODANT, it would present another potential source of
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difference between the discrete ordinates and the hybrid method. which might mask
subtle errors in the hybrid code. Thus, it was decided to use the already available

S cross sections in the Monte Cazlo region of the hybrid code, at least as an initial

effort.

Since we are employing implicit fission in the hybrid method (reference Sec-
tion 6.3). we do not require explicit values of Zf 4, and the values of ', ¢'g ;. Py—gr.
S{,_g_g,. and Ppx g—g are readily computed from Egs. (6-23) through (6-27). The

determination of a scattered neutron’s scattering angle presents difficulties. how-

ever.

The S furnishes tables of Legendre moments £ 4 for { = 0..... L. where
L is the order at which the series representation is terminated. From Eq. (2-6).
the distribution in angle 4 for neutrons scattering from group g to group ¢’ is then

(where we have included a factor of 27 in the definition of T, ;4 )

L o
20+1
Tog—g Z —5—Stg—g' Pilo). (8 —4)

I=1 =

SL.g—-g’(PO) = ;

| —

Thus. for L > 0, there is no guarantee that the scattering function £,_ is non-
negative, and so it does not constitute a PDF which may be directly sampled

(reference Section 3.1).

It is possible to generate a PDF from the scattering function of Eq. (8-4) by

employing absolute values with an appropriate normalization, i.e.,

+1
fL.g—-—g'(PO)= |SL.9-—9’(PO)|/ d#'lgL,g—-'g'(#l)L (8 -3)
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The scattering angle yo is determined by sampling f 4—g (1), while the particle

weight is multiplied by the factor

SL‘Q“Q'(W)/[fL.g-‘g'(M))S:).g~g'] (8 —6)

to conserve the total particle weight (on average).

However. this method has several disadvantages, the most important of which
is the introduction of negative particle weights into the calculation.?® Although
we already allow the possibility of negative residuals. and subsequently negative
particle weights. for multiple outer iteration problems as discussed in Section 5.7.
the residuals are presumed to be small enough so that the overall boundary fluxes
and volumetric sources will remain positive, and the increase in statistical errors due
to the negative weights will be minimal. If we use Eqgs. (8-3) and (8-6) to sample
the distribution of scattered neutrons, however. not only will we have introduced
the possibility of negative particle weights into the first outer iteration, but into the
sampling of the fixed source as well. Thus, negative weight particles will have a place
of much greater importance in the calculation, and the problems associated with
their use will be correspondingly magnified. Therefore, an alternative approach.

which we will refer to as the equiprobable bin (EPB) method, is selected.

We divide the scattering function £ g () of Eq. (8-4) into 32 equiprob-
able bins Ay ; by determining wy; 1 and g, g such that
1 MHoi.R - , _
1/32 = g5 du'Sp g—g ('), (8-17)
“=~0,9—9' Yuoi.L
where 1o;.1 and p,; g represent the angles corresponding to the left and right-hand

edges of the ith bin. respectively, and A, = po,.r — i, L. To determine the
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to... and pg, r. we use the following iterative process. We assume that the bins are
contiguous, so that for the ith bin, we set ;.1 = o,~1.r, With 11, = —-1. We
know that y; g must lie within the range u; = o, to ug = +1. so we estimate
Moi.R by # = (ur + u1)/2. We then begin an iterative process on g by computing

the value of the integral

- 1 +1
' !
d=:5 /; du' Tp.gmg (') (8-8)
=—0.g—g' u
via a simple recursive procedure.?” and comparing it with the exact value if g =
Hor. R
32 -1

If 4 > 4. weset u; = p. otherwise we set ug = . We then re-estimate g from the
new values of ;1 and pg. and perform another iteration. The iterative process is
terminated after 23 iterations. ensuring an absolute error in the placement of g, g

of less than 107,

8.3 _Benchmark Problems for Hvbrid Method Cross Sections

Now that we have developed an algorithm for constructing Monte Carlo cross
sections from the available Sy cross sections, we ekamine it for possible discrepan-
cies or limitations in actual use. To do this, we choose four sample problems and
compare the results obtained with the hybrid method to those obtained with pure
discrete ordinates. The geometry for all four problems is identical, consisting of a
homogeneous four by five cm cylinder with an isotropic distributed source located

between z = 2 to : = 3 cm, and extending from r = 0 to r = 1 cm. The coarse mesh
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size in both the Sy and hybrid method geometries is set at 1 cm by 1 cm. with a
varying number of fine mesh cells per coarse mesh used in the Sy. The boundary
layers for the designated \Monte Carlo region are defined so as to encompass the
entire problem; thus, the hybrid Monte Carlo method is used throughout the entire

problem geometry. maximizing any differences with the Sy.

The first benchmark is a one group problem with a parabolic scattering
function defined by f(u) = 312 /2. so that f(u) represents f(ug) exactly for L =2
[reference Eq. (8-3)]. We let 7 = 1.0 cm and £4 = .05 cm, so that 5, = .93
cm. and £;,; = .38 cm. Table 8-1 presents a comparison of the integral self-
scattering (SS) and net leakage (NL) results between the hybrid Monte Carlo t HMC)
and Sy methods. along with the associated absolute error (one standard deviation)
in the hybrid Monte Carlo self-scattering. The S\ entries reflect the number of
fine meshes per coarse mesh. which was varied to examine the effects of mesh sizing
on the Sv. as was the quadrature order. Both Sy and hybrid Monte Carlo runs
were performed with isotropic scattering (Py) for comparison with the P, results.
The total execution time (in CPU seconds) is also shown for all runs. Note that
250.000 histories were used to sample the fixed source in both hybrid Monte Carlo
runs, and that since the Monte Carlo region comprises the entire problem geometry,
no response matrix or boundary flux sampling was required. The exact scattering

function f(u) and the equiprobable bin (EPB) approximation to it for L = 2 are
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shown at Fig. 8-1.

Table 8-1
Cross Section Benchmark Problem #1

ﬁ"f:vpe P 5SS NL Time

S20/8 x 8 P 6.582 6336 7.3 sec
HMC P 6.576 + .009 6539 31.0 sec
Se/2 x 2 P, 6.101 6473 2.5 sec
S20/2 x 2 P, 6.729 16439 4.3 sec
S20/4 x 4 P 6.666 6492 6.3 sec
S520/8 x 8 P, 6.647 6301 11.7 sec
HMC P; 6.641 £ .007 6305 31.5 sec

From Table 8-1, it can be seen that the use of the EPB method with hybrid
Monte Carlo cross sections results in excellent agreement with the Sy. especially
for small Sy mesh sizes and large quadrature orders., which better approximate
the Monte Carlo's continuous treatment of spatial and angular phase coordinates.
Although the differences in integral results between the Py and P, representations
are small, as expected due to the parabolic (even) shape of the scattering function.
they are real, and show up quite clearly in both the S and hybrid Monte Carlo
calculations. It is interesting to note that the calculation times for the P, and
P, hybrid Monte Carlo runs are almost identical, as expected for the EPB method.
while the comparable Sy runs show over a 60% increase in execution time for L = 2

over L = 0, due to the increased number of moments.

The second benchmark problem is identical to the first, except that the
parabolic scattering function is replaced with the step function f(w) = O(w),
where O represents the Heaviside step function. For this function, a Legendre

expansion requires L = oo for an exact representation. Figures 8-2 and 8-3 present
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comparisons of the exact step function (EX) with P, and Ps approximations. and
the EPB methods’s representations of the Legendre approximations. The first four
non-zero moments of the scattering function are &g,y = .93 cm, &, ., = 473
cem, 3,y = —.11873 cm, and T, = .059375 cm. Results for the discrete
ordinates and hybrid Monte Carlo methods are shown below at Table 8-2. For
the final hybrid Monte Carlo run listed, the EPB scattering function was replaced
with the exact scattering function. Although the hybrid Monte Carlo results using
the exact scattering function are in good agreement with the Sy, results. even for
Sy values of L = 1, the hybrid Monte Carlo fails to reproduce the correct integral
values when using the EPB approximation of the scattering function, even with

L =3

Table 8-2
Cross Section Benchmark Problem #2
Type Py SS NL Time
Se/S x 8 P, 4.880 7432 5.7 sec
520/8 X 8§ P] 4.868 L1438 16.8 sec
HMC P, 4.974 + .006 1382 23.6 sec
S520/8x 8 P, 4,866 7439 18.9 sec
HMC P; 4.933 £ .005 7404 22.3 sec
520/8 x 8 P5 4,866 7439 22.9 sec
HMC ' Py 4.932 £ .007 7404 22.3 sec
HMC EX 4.856 £ .006 444 22.1 sec

To provide a more realistic test, the remaining two benchmark problems use
a set of sixteen-group Hansen-Roach cross sections. The Hansen-Roach cross section
set provides multigroup cross sections for energies ranging from 10 MeV down to
the thermal range (~.025 eV), and includes transport-corrected! values for o, 0 4.

vor, and 09 gy (downscattering and self-scattering only). In, addition, tables of
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#1,g—g are provided for hydrogen and deuterium. The problem geometry remains

identical to the previous problems, with the fixed source located in the first group.

For the third benchmark problem, the cylinder material is composed of a
mixture of O'® (.16 atoms/b-cm) and hydrogen (.02 atoms/b-cm). Ouce again.
the Sy mesh size and quadrature order was varied. and the problem was run with
both L = 0 (isotropic) and L = 1 (linearly anisotropic) scattering. From Table 8-3
below. we see that that the hybrid Monte Carlo method is in good agreement with

S« for both isotropic and linearly anisotropic scattering.

Table 8-3
Cross Section Benchmark Problem #3
Type P; SS NL Time
Se/2x 2 P, 1.002 9776 3.8 sec
520/2 x 2 Po 1.002 9774 14.8 sec
520/4 x 4 Po 1.000 9775 29.4 sec
S20/8 x 8 P, 0.9986 9775 64.6 sec
HMC P, 0.9989 + .0030 9775 14.6 sec
Ss/2 x 2 P, 0.9328 9776 3.9 sec
S20/2 x 2 P, 0.9326 9774 16.9 sec
S20/4 x & P, 0.9306 9775 39.9 sec
S20/8 x 8 P, 0.9291 9775 75.3 sec
H\C P, 0.9296 + .0026 9775 13.9 sec

Finally, to examine the effects of increasing the L = 1 moment, the composition
of the fourth benchmark problem consists of hydrogen only, with a density of .18
atoms/b-cm. Although excellent agreement is still obtained for L = 0, as can be
seen from Table 8-4 below, the hybrid Monte Carlo and Sy results do not agree for

L =1, with the divergence clearly being outside the limits of reasonable statistical
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Table 8-4
Cross Section Benchmark Problem #4
Type Py SS NL Time
56/2 x 2 Po 31.12 .8026 3.4 sec
Sy0/2 %2 P, 31.34 .8042 12.8 sec
Sa/d x 4 Py 30.77 .8049 22.6 sec
S20/8 x 8 P, 30.72 .8052 44.36 sec
HMC Py 30.77 £ .08 .8049 304.1 sec
Se/2 x 2 P 13.32 9167 4.0 sec
Sa0/2 x 2 P 13.04 9183 19.0 sec
Sa/4 x4 P, 13.01 .9186 39.0 sec
S20/8 x 8 P 13.00 9187 88.7 sec
HMC P 153.75 + .07 9012 145.0 sec
HNC Pr 13.77 £ .10 .9139 109.9 sec

8.4 _Discussion

The hybrid Monte Carlo method, when using multigroup cross sections based
on the available Sy cross sections, provides results in agreement with the discrete
ordinates method, for the selected benchmark problems, when isotropic scattering
is used. However, the EPB method of forming a PDF from the existing Legendre
moments fails to accurately reproduce the angular distributions of scattered neu-
trons for L > 0 in some cases, and in these cases the hybrid Monte Carlo method
results and the Sy results diverge. Specifically, the EPB method appears to fail
when f1(u) is not positive definite, as is the case for cross sections with large P,

components. This failure of the EPB method is exacerbated since the Sy cross
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sections are in the laboratory frame of reference, so that elements such as hydro-
gen, which are generally isotropic in the center-of-mass frame of reference, appear

as strongly anisotropic.

The failure of the EPB method is due to the requirement that the entire
scattering range (4 = —1 to +1) be divided into contigous, non-negative bins.
Thus. a particle has a finite probability of scattering into any given angle in range
—1 to +1 for all events ¢ — ¢'. This violates physical laws of conservation of
momentum and energy. since. depending upon the value of g'. some angles of 4y are

impossible.

Mathematically. we state that the EPB method fails because it does not
conserve the moments of the scattering cross section. other than the zeroth moment.
while. in fact, conservation of at least the first several moments is important for
an accurate representation of the scattering function.?® The Sy cross sections do
conserve moments, and thus its succes in approximating the step function of the
second benchmark problem with just two moments (L = 1). The EPB method fails
to provide accurate results for the same problem. however, even with L = 3, since
its approximation of the Sy scattering function £, ,__, (1) does not conserve the

moments of ¥f g—g (o).

The EPB method does not fail in all cases, just those in which the scattering
function £ 44 (o) is negative for some range of 1. For isotropic scattering, or for
cross sections in which the scattering function is anisotropic but positive definite,

as in the first and third benchmark problems, the EPB method will provide a good
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representation of £ ;¢ (o). and thus implicitly conserve moments, at least ap-
proximately. However, this severely limits the problems to which the EPB method,
and hence the hybrid Monte Carlo/Sy method, can sucessfully be applied. since
most multigroup cross section sets cannot be guaranteed to be positive definite for
a finite order L. Since it is impossible to resconstruct the (presumably) positive
definite original scattering function T, (1) from the finite order Legendre repre-
sentation £ 4.4 (o), and we do not wish to sample £, 4, (1) directly because
it might entail a large number of histories with negative particle weights. we are

left with two alternatives.

The first is. of course. to use continuous-energy cross sections in the Monte
Carlo region. as described above. Although this has the disadvantages of requiring
two sets of cross sections for every calculation. and integration of continuous-energy
Monte Carlo data with multigroup Sy data, as well as requiring an additional
calculation in the collision subroutine (conversion of center-of-mass scattering co-
ordinates to the laboratory frame), the approach is reliable and well established.
Furthermore. the EPB method can be retained as an available code option for

benchmarking isotropic or weakly anisotropic scattering problems.

The second is to use a method which forms a PDF from the Legendre series
+1

representation which conserves the polynomial moments dpp' o(p). at least
-1

approximately. Two examples of such a method are the discrete angle represen-

tation, and the equally probable step function representation, which are described
in Ref. 26. Although each representation has its advantages and disadvantages, we

note that the processing required to generate the discrete angles or equally probable
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step functions is not negligitie, but is instead probably ccmparable to that of using

continuous-energy cross sections.

As an example of the effect of conserving moments. we replace the EPB
method of generating bins with a derivative of the equally probable step function
for the fourth benchmark problem (Table 8-4). where we now generate a single bin
with one boundary fixed at —1 or +1, depending upon the sign of o, 4y, . and the
other boundary chosen at the value of p which preserves the first moment. The
results of this method are shown at the last entry in Table 8-4. and are clearly

more accurate than those of the EPB method.

In conclusion. the EPB method is sufficient for the henchmarking of the
hybrid Monte Carlo/Sy code. and the investigation of problems with simplified
scattering functions (i.e.. isotropic scattering. or scattering with small anisotropic
components). but is not robust enough for general use. For general use of the hybrid
Monte Carlo/Sn method, consideration should be given towards use of one of the

alternative approaches discussed above.
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CHAPTER 9.
VARIANCE MEASURES AND REDUCTION

As discussed in Section 3.2, information obtained using Monte Carlo meth-
ods has an associated uncertainty (variance). Most Monte Carlo codes provide a
variance estimate for all calculated results. as well as numerous methods of reducing
the variance. In addition, a figure of merit (FO\!). as defined at Chapter 3. is also

provided for selected results as a measure of the reliability of the variance estimates.

With standard Monte Carlo methods. one runs a single calculation of A’
batches of .V histories each, from which an estimate of the variance of the results
is directly obtained from Eq. (3-10). Thus, only a single Monte Carlo calculation
is required to determine the variance. However. with the hybrid method. such a
straightforward evaluation of the variance is not possible due to the coupling of the

Monte Carlo and Sy regions, as can be seen by the following argument.

With the hybrid method, we first sample the fixed source using Monte Carlo.
thus obtaining the boundary flux S°*! at the Monte Carlo/Sx interface, of which
each element has an associated variance cr§|,», which is clearly obtainable. Next, we
calculate the incoming boundary flux for iteration 1 from Eq. (4-2) (assuming a
one-group problem) by

@in(l) = T gout, (9-1)
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where T represents an Sy calculation. Although we do not calculate an Sy response
matrix. for reasons discussed in Chapter 4, consider for the moment that T is
represented by such a matrix, where T,; corresponds to the angular flux entering
the Monte Carlo region in state i due to a unit incident flux upon the S region in

state j. The incoming boundary flux for state ¢ is then determined from

N
u':n(”:ZTIJ S;Ju!‘ (9__2)

=1

where .\ is the number of states along the Monte Carlo/S v interface. and §7*' is

in(l) . 28

the jth element of S°*‘. Given the 0% . the variance in v," ' is

A%
ol =Y Tio%, +3 ) T, TuCov[So. 534, (9-3)

=1 ) k
where the prime upon the summation indicates that the summation is over the
values j # k. and Cov represents the covariance of 57" And Sput. The covariance is
required because the individual elements of S°*! are clearly not independent. Since
the covariance of S°*! is not known. nor easily determined. the direct calculation of

the variance in the Monte Carlo/S~ boundary fluxes is not feasible.

An alternative solution is to simply run A sets of the entire problem, thus
providing R independent sets of results for both the boundary fluxes. and the
information most likely desired by the user, the cell fluxes. While, in theory, this is
entirely analogous to the Monte Carlo procedure of running A" batches of histories,
the costs are quite different. For Monte Carlo calculations, the time required to run
R batches of NV histories per batch is approximately the same as the time required
to run one batch of .V x A" histories. However. with Sy, the time required per

calculation is fixed. so that running A" sets of a calculation would increase the S
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~alculation time by a factor of A". Since the minimum value of A" needed to get a
valid statistical sample is on the order of 20, the time spent in Sy comiputations
would be similarly increased by a factor of at least 20. Even though the time spent
in Sy calculations does not usually constitute a majority of the CPU time, it is still
significant. and an increase of this magnitude is not desirable. In addition, since the
number of histories used in the Monte Carlo calculation for each set would now be
. instead of VK. each Sy calculation would now be based on a reduced number
of Monte Carlo histories. This could result in increased problems with negative flux
fixup in the Sx. and negative residuals at the Monte Carlo/Sy interface. Thus. we

choose to implement a less rigorous measure of the variance in the hybrid method.

9.1 Variance Estimation in the Hvbrid Method

Currently. the user has two separate inputs into the number of histories run
in the Monte Carlo portions of the hybrid code, the number of histories used in
sampling the fixed source, and the number of histories per column used in sam-
pling the response matrix. The number of histories used in sampling the incoming
boundary fluxes and any volumetric sources located in the Monte Carlo regions
are determined from the above values (reference Sections 6.8 and 6.9). Thus, what
is needed is not just some measure of the variance of the results, but the relative
merits of increasing the number of histories used in sampling the response matrix,

versus the number of histories used with the fixed source.

To acquire some measure of the variance in the fixed source calculation,

we use the standard technique of dividing the number of histories into A" batches

e A A oSt
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of Vs histories each. For each batch. the tracklength for each coarse cell in the
Monte Carlo region is calculated, as well as the integral self-scattering. Once the
sampling of the fixed source has been finished. the variance of the tracklengths is
calculated from Eqgs. (3-7). (3—8),_ and (3—16). In addition, the FOM for the integral
self-scattering is printed out for each batch as a measure of the reliability of the

variance estimation.

While the variance in S°*! is not directly calculated. measuring the variance
of the coarse meshes due *o the fixed source does indicate how well the various cells
of the Monte Carlo region are being sampled during the fixed source calculation.
More importantly. it is anticipated that oftentimes one of the cells in the Monte
Carlo region will represent a physical detector for which the flux is desired. in which

case some knowledge of the variance in that cell is important.

We do not attempt to directly measure the variance of the individual elements
of the response matrix, both because the variance of the individual elements them-
selves is of little importance, and because storage of the o}, , Would approximately
double the memory requirements. Instead, when sampling the converged incoming
boundary flux ‘Il;"(”) during the first outer iteration (reference Section 5.3). we
recalculate the outgoing boundary flux, denoted by \i;“‘. We then perform an L2
error comparison between the two outgoing boundary fluxes, that is, we calculate

the relative error
Repp = |[¥g" - W5 || /|1 Tg* — s5%/||. (9-4)

As the number of histories used to sample the reponse matrix goes to infinity. that

is, as Npasr — oc, we expect Rerp — 0. For a finite Ngy. Rerg gives a better
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“feel” of the variance due to the response matrix than the individual %, j» since
the importance of a given column in the response matrix may be zero, if the the

value of the incoming flux for the associated Sy state is also zero.

While the variance measures described above are not rigorous in the sense
that they do not provide a variance estimate for each cell, they do provide a means
of determining how well the fixed source calculation samples the individual cells
in the Monte Carlo region. and how precise the response matrix calculation is.
Furthermore. by examining the variances in the fixed source calculation. the size
of Rerr. and the relative leakages from the Monte Carlo region due to S°*! and

WUt one has some idea if Ngyr. Vs, or both should be increased.

9.2 \Variance Results in Sample Problems

We now apply the variance estimation methods described above to a one
group, sample problem consisting of a homogeneous, 4 by 5 cm cylinder with &1 =
1.0 cm and £s = 0.95 cm. The fixed source consists of an isotropic distributed
source located radially between r = 0 to r = 1 cm, with axial limits z =2to 2 =3
cm. The problem geometry is divided into coarse mesh cells with 1 cm by 1 cm

dimensions.

We begin by letting the Monte Carlo region comprise the entire problem
geometry, so that we may examine the effects on the variance estimates of varying
Ns. We perform three groups of problems, each with A = 200. but with N's values

of 81, 625, and 2401. Each group consists of three separate runs, where each run
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has a different initial random seed. Table 9-1 lists the number of histories per
batch (.Vs), the integral self-scattering (SS) with the relative error (one standard
deviation), the difference (in standard deviations) from the Sz; benchmark. and
the resulting FOM, while Table 9-2 presents the coarse mesh fluxes (multiplied by
a factor of 10. with a relative error of one standard deviation) for the center cells
(: =25 cm, r = .35, 1.3, 2.5, and 3.5 ecm). Table 9-3 shows the differences (in
standard deviations) in the center coarse mesh cell fluxes between the Monte Carlo
runs and the Sy benchmark. Each table identifies the run by the initial random
seed. For comparison, the results of an Sy calculation with 64 fine meshes (8 x 8)

per coarse mesh (CM) are also included in Tables 9-1 and 9-2.

Table 9-1
Integral SS and FOM Results. Monte Carlo Results

Seed N SS Diff ~ FOM

240 81 6.5865+.0044 +0.17 15.485
250 81 6.5666+.0046 -0.49 14.642
260 81 6.3252+.0043 -1.92 15.114
220 623 6.5537+.0016 ~2.46 21,711
230 625 6.5778£.0017 -0.33 20.322
270 625 6.5783+.0017 -0.29 21.806
200 2401 6.5745%.0008 -1.33 23.995
210 2401 6.9699+.0008 -2.21 24 467
280 2401 6.5787+.0008 -0.33 22317
Sa20 - 6.9815 - -
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Table 9-2
Center Coarse Mesh Cell Fluxes, Monte Carlo Results
Seed CM#1 CM#2 CM#3 CM#4
240 10.262+.0054 8.8777£.0079 4.7323+.0120 2.2489+ .0164
250 10.177£.0057 8.8137+.0075 4.74424+.0121 2.3278+ .0170
260 10.104+.0057 8.7082+.0078 4.6864+.0121 2.2610+ .0182
220 10.178+.0020 8.8447+.0029 4.6412+.0043 2.2784+ .0057
230 10.179+.0020 8.8162+.0029 4.6747£.0044 2.2927+ .0060
270 10.180+.0021 8.8351+.0028 4.6853+.0041 2.3004+ .0060
200 10.197£.0011 8.8202+.0013 4.6837+.0023 2.2875% .0032
210 10.186+.0011 8.8008+.0013 4.6864+.0022 2.2048+ .0031
280 10.181£.0010 8.7946+.0014 4.6794+.0022 2.2943+ .0030
Sy 10.180 8.8231 4.6810 2.2878
Table 9-3
Center Coarse Mesh Cell Differences. Monte Carlo Results

Seed Ns CM#1 CM#2 CM#3 CM#4

240 81 +1.48 +0.78 +0.90 -1.05

250 81 -0.05 -0.14 +1.10 +1.01

260 81 -1.32 -1.69 +0.10 -0.65

220 625 -0.10 +0.84 -1.95 -0.72

230 625 -0.03 -0.27 -0.31 +0.36

270 625 0.00 +0.49 +0.22 +0.91

200 2401 +1.532 -0.22 +0.25 -0.04

210 2401 +0.54 -1.95 +0.52 +0.98

280 2401 +0.10 -2.31 -0.16 +0.94

Examining Table 9-1, we see that the integral self-scattering results from the Monte
Carlo runs, although appearing to be be systematically smaller than the S3¢ bench-
mark value, are within one to two standard deviations. Note that the error (standard
deviation) behaves approximately as the v/N'. The overall Figures of Merit appear
to be consistent within a given group (i.e.. the same value of Ng). while between

groups the FOM increases with increasing Ns. This is due to the vectorization



148

of the Monte Carlo. where particles are followed in groups of 64 particles until all
source particles have been exhausted, at which time the remaining particles are
“flushed” from the system (reference Section 7.1). Since it requires approximately
the same time to execute a stack with 64 particles as to execute a stack with one, the
runs with smaller values of .Vs require proportionally more time to flush particles

from their system. reducing their FOM.

The Figures of Merit for each run as a function of batch number are shown
at Fig. 9-1 for Vs = 81. Fig. 9-2 for Vs = 625. and Fig. 9-3 for N's = 2401, where
each curve corresponds to a differing initial random seed. Although the Figures of
Merit for a specified value of Vg eventually settle upon approximately the same
value. as expected. it takes a fairly large number of batches (30-100). This implies
a large variance of the variance. which could be reduced by decreasing the batch
size, since the variance of the estimated variance is minimized with a batch size of
one.?®3% Indeed. this can be seen in Figs. 9-1 through 9-3. where the behavior of the
FOM's for .Vs = 81 is much steadier than that for an equivalent number of histories
with Ng = 625 (26 batches) and .Ng = 2401 (7 batches). However. decreasing the
batch size also reduces the efficiency of the vectorization, as previously stated. and

as is apparent in the respective FOM's for the differing batch sizes.

In examining the coarse mesh cell fluxes (Tables 9-2 and 9-3), we see that the
Monte Carlo fluxes are within one to two standard deviations of the S;¢ benchmark
fluxes, and that the error in the fluxes behaves approximately as the vV.N. Note
also that the error in the fluxes increases with radius, since the source is located

at the centerline cell. Thus, the cells closest to the centerline have more particle
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tracks than those nearer to the outer edge, and as a result their fluxes have a smaller

variance.

We now examine a problem where the geometry is composed of both Monte
Carlo and S regions. We use the same problem geometry as before, except that the
region r = 0 to r = 1 cm, extending the length of the cylinder. is designated as the
Monte Carlo region. A one mean-free-path boundary layer is specified. so the total
Monte Carlo region extends out to r = 2 cm. An Sg solver is used in the Sy region.
with 4 fine meshes (2 x 2) per coarse mesh. For the Monte Carlo calculation. we fix
R at 200, while Vs and .Vgy are varied. To obtain estimates of the coarse mesh
cell variances, we perform 15 runs, with differing initial seeds. for each combination
of Ngar and Ng. Table 9-4 below shows the resulting average value of Rgrg and
associated relative error (one standard deviation) for each combination of N pys and
XNVs. along with the average value of the absolute particle balance (PBAL). Tables 9-
5a and 9-3b list the average coarse mesh cell fluxes (multiplied by a factor of 10),
with relative errors, for the center cells, along with the flux values in the Monte
Carlo region due to the fixed source alone (i.e., the flux values for Ngyy = 0. Note
that the first two cells are in the Monte Carlo region, while the last two are located
in thﬁ Sn. For comparison, Table 9-5¢ lists the coarse mesh cell fluxes calculated
from an Sy solution with 64 fine meshes per coarse mesh, and an Sg solution with
16 fine meshes per coarse mesh (8 x 2) in the first two meshes, and four fine meshes
(2 x 2) in the last two. Finally, Tables 9-6 and 9-7 contain the differences, in terms

of standard deviations, between the coarse mesh cell fluxes calculated by the hybrid
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method and those calculated by the pure Sy solutions.
Table 9-4
Average Rppp and Particle Balance Values, Hybrid Results
Ns/Nrat RErr PBAL
81/16 .0612 £ .0932 9.3526 x 10~* +.7062
81/81 0227 £ .0936 4.8715 x 107* + .8421
81/256 .0103 +.0703 2.2609 x 10~* + .6687
625/16 .0605 £ .0954 11.7399 x 10~* + .6738
625/81 .0229 + .0635 5.8763 x 10~% £ .7344
625/256 .0098 £ .0522 1.6055 x 10~ £ .8932
able 9-5a
Average Coarse Mesh Cell Fluxes, Vg = 81
AYYY CM#1 CM#2 CM#3 CM#4
0 9.760+.0054 7.21714£.0076 - -
16 10.169+.0060 8.8104+.0105 4.7937+.0118 2.2667+.0112
- 81 10.172+.0033 8.7787£.0067 4.8120+.0092 2.27284+.0072
256 10.1684.0038 8.7830+.0069 4.8173+.0079 2.2765%.0071
Table 9-3b
Average Coarse Mesh Cell Fluxes, Vg = 625
Nra CM#1 CM#2 CM#3 CM+#4
0 9.760+.0019 7.16641.0028 - -
16 10.184+£.0038 8.8005+.0073 4.8215+.0106 2.2690+.0104
81 10.181+£.0028 8.8080+.0037 4.8240+.0055 2.2774+.0043
256 10.182+.0019 8.7922+.0028 4.8196+.0036 2.2741£.0030
Table 9-5¢
Coarse Mesh Cell Fluxes, Sy Results
Npy CM#1 CM#2 CM#3 CM#4
Se 10.137 8.7526 4.7636 2.2743
S20 10.180 8.8231 4.6810 2.2878

/
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Table 9-6
Coarse Mesh Cell Differences, Hybrid Results vs. Sg
Ns/Ngy CM#1 CM#2 CM#3 CM#4
81/16 +0.52 +0.62 +0.33 -0.30
81/81 +0.63 +0.44 +1.09 -0.09
81/256 +0.53 +0.50 +1.42 +0.14
625/16 +1.21 +0.75 +1.13 -0.22
625/81 +1.54 +1.70 +2.28 +0.32
625/256 +2.33 +1.61 +3.23 -0.03
Table 9-7
Coarse Mesh Cell Differences, Hybrid Results vs. Sy
Ns/Nry CM#1 CM#2 CM#3 CM#4
§1/16 -0.18 -0.14 +1.99 -0.82
81/81 -0.14 -0.76 +2.96 -0.92
81/256 -0.20 ~-0.66 +3.60 -0.70
625/16 +0.10 -0.35 +2.75 -0.80
625/81 +0.04 —0.46 +3.39 -1.06
625/256 +0.10 -1.26 +7.99 -2.01

From Table 9-4, we see that the decrease in R gp is roughly proportional to /N g.;.
as expected, and that Rpgp is a good predictor of the precision of the response
matrix, as indicated by its small relative error values. We note that the average
particle balance also decreases approximately as the \/Ngas, but that the relative
error in the particle balance is much larger, so it cannot be relied upon as an
indication of the response matrix accuracy. Particle balance is affected by the value
of Ngrar through the response matrix calculation and the sampling of the incoming
boundary fluxes. Using R, we iterate to find the W°**(>) and ¥'"(*®), We then
sample the ¥'™(>) and determine i’;“'. Since WouH(>=) 2 ‘f’;"', there will be a

discrepancy in the particle balance, because the particle balance in the Sy region is
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based upon Wo**(>) while that of the Monte Carlo region is based upon \ilg"'. As

Nrym — . \flg"‘ — Pout() and the discrepancy in the particle balance decreases.

From Tables 9-5 through 9-7, it is clear that the behavior of the coarse
mesh cell variances is quite different in the hybrid case than that of the pure Monte
Carlo case. Examining the first coarse mesh cell, we see that the variance is almost
completely independent of the value of .Vras. Since the source is located in this cell,
almost all of the flux is due to particles emanating directly from the source, with
very little attributable to particles which reenter the Monte Carlo region from the
S~. In fact. if we examine the values in Tables 9-3a and 9-3b for Vg = 0, we see
that over 95% of the flux in the first cell is directly due to the calculation of S°*!, so
that the error in this cell is insensitive to the value of Vgas. For the second coarse
mesh cell. a value of Vg3 = 16 results in an error somewhat greater than that due
solely to S°*!, while values of Vg1s = 81 and 256 give errors approximately equal to
that of the fixed source calculation. Since the second coarse mesh is adjacent to the
Sn region. it sees a higher flux from the Sy region, as can be seen in Tables 9-3a
and 9-3b, and thus is more strongly affected by a poorly defined response matrix

(Ngry = 16) than the first coarse mesh is.

The third and fourth coarse meshes are in the Sy region, and at a greater
distance from the fixed source, so their variances are more strongly influenced by
the response matrix and Sy transport operator. Comparing Tables 9-2 and 9-3,
we see that while in the pure Monte Carlo problem the variance increases mono-

tonically with distance from the fixed source, this is not the case in the hybrid
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problem. There, the variance in the Sy region tends to remain constant, or de-

crease somewhat. as'the distance from the Monte Carlo/Sy interface decreases. As

NpaMm increases, the error initially decreases. then remains constant.

Consider that we have some variance o2, in ¥°*!(*) due to both the sam-
pling of the fixed source and the response matrix. As we increase .Vras, we decrease
the response matrix component of 02,,, but we are still left with the component due
to the sampling of the fixed source. Thus, as Ngpy — oc, 02, goes to a constant.
but non-zero, value. Consider also that the Sy transport operator is a deterministic
operator, and as such tends to average out the statistical fluctations in the prob-
lem. Thus, as we proceed away from the Monte Carlo/Sy interface into the Sy.
the variance tends towards a constant value. However, the sampling of the fixed

source introduces a certain inherent variance into the problem. which no amount of

increase in .Ngys, or distance from the Monte Carlo/S~ interface, can reduce.

Examining Tables 9-6 and 9-7, we see that the coarse mesh fluxes calculated
by the hybrid method are generally within one to two standard deviations of both
the Sg and Sp¢ results, with the e)_cception of the third coarse mesh cell. In the
third cell, there appears to be a definite, systematic difference with the Sy results.
However, this is not completely unexpected, as the third mesh cell lies just beyond
the border of the Sy/Monte Carlo interface. Thus, while the fluxes in the first
two mesh cells are determined principally by the Monte Carlo method, those in the
last two are determined by the Sy method, using an Sg quadrature order with 4
fine meshes (2 x 2) per coarse mesh. In contrast, Table 9-7 is based on an S,
operator with 64 fine meshes per coarse mesh, so it has a much more detailed fine

mesh structure in the last two coarse mesh cells than the hybrid method, as well
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as a higher quadrature order. When we attempt to approximate the hybrid mesh
structure by using 16 fine meshes per coarse mesh in the first two coarse meshes,
and four fine meshes per coarse mesh in the last two (Table 9-6), we see that we

do obtain a somewhat better agreement between the fluxes in the third and fourth

coarse mesh cells.

This illustrates an important point to be considered when employing the
hybrid method. While the the fluxes in the Monte Carlo region are effectively
determined by an S, quadrature order with a fine mesh structure of size zero
(neglecting the effects of any coupling with the Sy region), the fluxes in the Sy
are determined by a low quadrature order with a finite mesh size. Thus, when
we employ the hybrid method in order to extend the benefits of a more accurate
Monte Carlo solution in one region to a lower order Sy solution in another. we
also, to some extent, extend the less accurate Sx ‘solution into the Monte Carlo
problem. The importance of this effect will depend upon the amount of coupling
between the Monte Carlo and S regions, and the accuracy of the Sy solution.
However. since we place the Sy /Monte Carlo interface at least one mean-free-path
from the physical material interface, presumably placing it in an area where a low

S~ quadrature order solution is suffucient, the effects should be minimal.

As a final sample problem, we use the same cross sections and definition of
the Monte Carlo region as above, but enlarge the Sy region by increasing the radius
of the cylinder to 10 cm. With Ng = 625, K = 200, and Ngp = 256, we once again
perform 15 separate runs with different initial random seeds. In comparison with
Table 9-4, the average particle balance was 2.2847 x 10~* +.5952, while the average

difference in the computed outgoing boundary fluxes was Rggr = .0099 % .0806.
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The average coarse mesh cell fluxes (multiplied by a factor of 10) and relative errors
(one standard deviation) are presented below at Table 9-8, along with the fluxes
from an Sg calculation with 4 fine meshes per coarse mesh, and an Sy¢ calculation
with 64 fine meshes per coarse mesh. We see that the error in the fluxes in the
S~ region does remain approximately constant, and that the hybrid flux values

generally fall between those of a pure Sg and Sy calculation, with the exception of

the third mesh cell.

Table 9-8
Coarse Mesh Cell Fluxes, 5 Cm by 10 Cm Cylinder
CM# MC/Ss Se S0
1 10.220 £ .0023 10.231 10.219
2 8.9503 + .0025 9.1288 8.9625
3 5.1411 £ .0030 4.9251 5.0062
4 3.0017 £ .0026 2.9493 3.0096
) 1.7890 £ .0024 1.7689 1.8281
6 1.0652 £ .0026 1.0540 1.0219
7 0.6272 £ .0025 0.6217 0.6401
8 0.3621 £ .0022 0.3589 0.3685
9 0.2000 + .0018 0.1982 0.2030
10 0.0932 £ .0022 0.0924 0.0944

9.3 _Variance Reduction Measures Emploved in the Hybrid Monte Carlo Method

As discussed in Chapters 3 and 6, the Monte Carlo used in the hybrid method
is almost entirely analog, with few variance reduction techniques currently em-
ployed. However, this is not as disadvantageous as it may first appear, as can be

seen by the following arguments. Aside from the reasons previously mentioned in
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Chapter 6 (vectorization and designation of Sy regions), all particle histories fol-
lowed by the hybrid Monte Carlo method result in a score, where a score is defined
as exiting the Monte Carlo region, since implicit capture is used. The only exception
to this is in the sampling of the incoming boundary fluxes in subroutine DWNSRC,
where particles which enter ar.xd remain in the same group for their entire history
are not scored in Qg"‘. However, at least for the first outer iteration, even these

histories are not entirely wasted, since they are used in the computation of Rggg.

While almost all particle histories do result in a score, this is not sufficient to
ensure that all areas of the problem geometry are thoroughly sampled. One means
of increasing the sampling rate of a particular area. aside from increasing the overall
number of histories. is through biasing in direction. space, or energy, so that more
particles are directed into the required area. At present, the hybrid Monte Carlo
method does not include any such methods. although they could be included in the

future. perhaps at the expense of some interference with the vectorization.

The hybrid Monte Carlo method does use stratified sampling,'® however.
in which the possible initial spatial and angular coordinates of a particle are sub-
divided, with equal numbers of particles forced to start within each subdivision.
Stratified sampling is used when sampling the fixed source, the response matrices,
and the incoming boundary fluxes, but not the Sy volumetric sources located within

the Monte Carlo region.

Assume that we have m independent spatial and angular coordinates in phase
space, and that we wish to run N histories in a given Monte Carlo calculation. For

an isotropic point source, the spatial coordinates are fixed, so the value of m is two,
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while for an isotropically distributed source, m = 4. When sampling a column of
the response matrix, we have one independent spatial and two angular variables,
so m = 3. Given m, we then let N, = Int(V!/™), and divide each independent
phase space variable into Ny, equal intervals. Thus, we have now subdivided our
phase space into .N g “boxeé“. By forcing one particle to start somewhere within
each “box", with the specific location determined by a random number, we can
ensure a more uniform sampling of the initial phase space coordinates. Note that
for the sampling of the fixed source and response matrix, the actual number of
histories run will be N7, not the specified value of .Ng A or .NGpy. When sampling
the incoming boundary fluxes. we run an additional N - N™ histories without
stratified sampling, after first runnning .V stratified histories, in ordér to maintain

the proper weighting between the individual states.

When using stratified sampling with the fixed source, we stratify the angular
coordinates by Aom = /Ny and Anm = 2/, except for the isotropic surface flux
source, where Ay, = 1/Np, (reference Section 6.6), and the beam source, where
the starting angular coordinates are fixed. The spatial coordinates are sampled,
where appropriate, using “boxes” of Az = Az/Nm and Aym = Ay/Nm for X =Y
geometry, and Ar2, = Ar?/Npy and Ayn = Az/N,, for R — Z geometry. The
spatial coordinates are sampled in a similar manner for the incoming boundary
fluxes and the response matrix, and the angular bin A, is subdivided into “boxes”

of Apm = A¢/Np and Anm = An/Np.

Essentially, stratified sampling is “free”, since the determination of a parti-
cle’s initial coordinates in phase space is performed outside of the tracking routines,

and is easily vectorized. Thus, the amount of CPU time required is negligible, and
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stratification is not expected to adversely affect the FOM under any circumstances.
.To see how much of a gain we achieve, if any, we examine our sample problem
(4 by 3 cm cylinder) again from two different perspectives, one in which stratified
sampling is employed in sampling the fixed source, and one in which it is not. For
simplicity. the Monte Carlo region is defined as the entire problem region. with
Ns = 2401 and K = 200. The results, in terms of integral self-scattering and FOM,
are shown below at Tables 9-9 and 9-10 for three runs apiece. each with a different
initial random seed. The average FOM for the runs without stratified sampling was
25.163. while that for the runs using stratified sampling was 28.144. an increase of
12%. Thus, the use of stratified sampling results in a clear. if modest. increase in
the FOM. (We note that the FOM’s in Table 9-10 are slightly higher than those
- for the equiavlent runs in Table 9~1 because the runs in Table 9-10 were performed

with a later version of the code, containing improved vectorization of some loops.)

Table 9-9
Sample Problem Without Stratification
Seed SS FOM
0 6.5805 £ .0009 25.162
10 6.5771 £ .0009 24.472
20 6.5640 £ .0008 25.860
Table 9-10
Sample Problem With Stratification
Seed SS FOM
30 6.5765 £+ .0008 26.677
40 6.5699 £ .0008 29. 448
30 6.5704 £ .0008 28.306
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Another applicable variance reduction method is the use of forced collisicns. With
this method. the total optical di ance to the nearest boundary of the Monte Carlo
region is determined. and the probability of a particle reaching that boundary with-
out a collision is calculated. The particle is then split into two separate particles
with appropriate weights. one of which reaches the boundary without a collision.
and thus scores. and the other which has a collision at some point, determined by
random sampling. along the flight path. Particle histories are now terminated by
the weight cutoff procedure described in Section 6.4. since otherwwise they would
continue indefinitely. Each particle history now provides several scores. since it will
undergo multiple collsions (and subsequent weight reductions) before being termi-
nated. Additionally. the use of forced collisions increases the probability of a particle
scattering into another group during the sampling of the incoming boundary fluxes.

which in turn increases the number of scores in QJ*".

However. the implementation of forced collisions is not “free”, unlike the use
of stratified sampling. since it substantially increases the amount of computational
time required to track a particle. This increase occurs beacuse we now must trace
the flight path of a particle from its collision point to the nearest boundary of
the Monte Carlo region, not just the nearest boundary of its current coarse mesh
cell as described in Chapter 6. Since the flight path to the nearest boundary may
cross several coafse_mesh cells, the relevant calculations for the distance to the
nearest cell boundary are correspondingly multiplied. In addition, the calculations
of probability of survival to the nearest boundary and the collision point along the
flight path entail the use of exponnential and natural log functions,!? which are in

themselves expensive.
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Some preliminary studies on employing forced collisions with the hybrid
Monte Carlo/S~y method have been performed during the course of this work.
Clearly. the use of forced collsions as a variance reduction method in the hybrid
method is feasible, and offers the possibility of a reduction in the FOM. However,
the preliminary results indicate that the additional computational time requi}ed
precludes any decrease in the FOM, unless a more efficient means of implemeta-
tion is used. Such an implementation would require a redesign of the vectorization
scheme described in Chapter 7. in order to allow particles to be followed across
multiple coarse mesh cells. Since this would require a not insubstantial amount of
effort. and the use of forced collisions is not central to the hybrid Monte Carlo/Sy

problem. the irﬁplementation of forced collions has been left as a future problem.
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CHAPTER 10.
DIFFUSION SYNTHETIC ACCELERATION

Consider the discretized representation of the discrete-ordinates form of the
transport equation. where we have assumed a one-group. one-dimensional Cartesian
geometry with isotropic scattering and source for simplicity. In this case, the inner

iteration [Egs. (2-22).and (2-23)] becomes

k k k ~k
,Lln(On-:_l*_/f/z - On-.tl/l2/2) + ST‘,’ Onxl/rz‘ll‘i = Ss.,' OSJ A.I‘,‘ + Q‘ A.Z‘,’. (10 -1)

where
N

ortt =Y waopt. (10-2)

n=}

Larsen3! has shown via Fourier stability analysis that .the source iterative method
[Egs. (10-1) and (10-2)], while stable for all mesh sizes Az;, has a spectral radius
of p = T5/T1, where p represents the slowest possible reduction in error from one
iteration to the next. Thus, for optically thick, highly scattering regions, the source
iterative method will have a slow rate of convergence. Since these are the very types
of regions we desire to use Sy in with the hybrid method, we require some means

of accelerating the rate of convergence.

The Fourier stability analysis by Larsen also shows that the most slowly
converging modes of the angular flux are those that are nearly linear functions of

p. Thus, if we could generate the exact scalar flux ¢¢.; in one iteration, given an
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angular flux ¢;(u) which is linear in u. we will have devised an effective acceleration
method for the source iterative method. Since the assumption that the ahgu]ar
flux is linear in p corresponds to the P;, or diffusion theory, approximation of the
transport equation,’ the essential idea behind diffusion synthetic acceleration is to
replace Eq. (10-2) with a diffusion-like solution for e:)k'*'l We use the term diffusion-

like. since the diffusion equation itself is often a poor approximation to the transport

equation. so an appropriate correction term must be included.

The diffusion synthetic acceleration (DSA) equation for Eq. (10-1). i.e.. the

equation for o0 ! that replaces Eq. (10-2). is

-1 Thk+1 Tk+1 1 “k+1 Th+1
(o -0 ) + —._.___.__(O -0 *_ )
3_\:7_.1_'_l Al‘,.H 0.:4+3/2 0.14+1/2 3ST',A1‘, 0.i+1/2 0.t—1/2
1 1_-
1e Tk+1 k41 fe “k+1 Tk 1 -
+4-R.1+1 —\1':+1(00 ,+3/2+Oo ,.'_1/2)+4~R.1A~r (OO ,+1/2+OO, 1/2)

;(Qm Az + QA1) - R,

(10 - 3)
where the correction term R is
1 ~k+1/2  “k+1/2 ~k+1/2  Th+1)2
R =3ST:+1 AZir (0, i+3/2 ~ @0, :+x/2) 3 ( C0.u+1/2 = ©0.-1/2)

~k+1/2 _ ~k+1 2
(10 -4)

Er,i is defined as the removal cross section £r; — Tg;, and

~k+1/2 an k+1/2. (10 = 3)

n=1
Egs. (10-3) and (10-4) are obtained from Eq. (10-1) by taking the zeroth and

first moments, as defined at Eq. (10-5), then defining acceleration equations by
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~k+1/2 k41 ~k+1/2 k4l ~k+1/2 ~k+1/2

0y = op; and o, '* — o7 . and eliminating 0, ; '" in terms of o;, '“ and
offl/ 2. Note also that the diamond difference relationship

‘ 1

On.i = 5(Onit1/2 + Oni-1/2) (10 - 6)
is used.

To construct boundary conditions3? for the left-hand edge. consider that we

have an incident boundary flux J, 1/2 (¢n > 0) which is linear in angle. i.e..

1"k+1 3 “k+1 -
Jn.1/2= 500,1/2+§#" 01.1/2- (10 - 7)

from which we obtain. by multiplying by u, and summing over y, > 0.
Jt = 1“’k+1 L ~p _ (10 = 8)

For vacuum boundary conditions. .]:'1/2 = 0. and we have the constraint o**!

112 =

-SS:}.z/?. Thus, the DSA equation at the left boundary becomes
-1 (5k+1 — ok+1 )+1231A11(5k+1 + ok+1 ) + _1_5&-4-1
3Sr, Ar, 03/2 0.1/2/T 4 —H 0.3/2 0.1/2) T 5%.1/2

) - (10 -9
= 5Q1 Al‘l - R,.

where the modified correction term R' is

1 ~k+1/2  Thk+1/2\ | “k+1/2  ~k+1/2  L~k41)2
R = 37 Az, (%032 T % Jtor ' -0l 5%, (10-10)

Similar conditions can be derived for the right boundary.
The method of diffusion synthetic acceleration was first succesfully imple-

mented by Alcouffe,3® who determined that stability was dependent upon a consis-

tent spatial differencing scheme between the transport and diffusion-like equations.
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Later. Larsen®! showed that the use of diffusion synthetic acceleration results in a re-
duction of the spectral radius to p = .2247 £5/Z 1. Diffusion synthetic acceleration
schemes have been developed for two-dimensional geometries, including spherical

and cylindrical, as well as the outer iteration,'®?? and are fully implemented into

TWODANT.H

10.1 Incorporating DSA with the Hvbrid Method

As expained in Section 3.6, the hybrid method is implemented in the code
TWODANT through the inclusion of interior boundary sources. so that the sweep-
ing algorithms are unaffected. However. the inclusion of interior boundary sources
does affect the operation of the DSA. either reducing its effectiveness. or eliminating

it entirely for some problems.

This loss of effectiveness is essentially due to the introduction of a singularity
in the transport equation. Consider Fig. 10-1. which represents a one-dimensional
Monte Carlo/Sy hybrid problem. The interface boundary is located at r ;4.
with the Monte Carlo region consisting of the left-hand cells, and includes some
fixed source @, while the Sy region consists of the remaining right-hand cells. In
the hybrid method, Eq. (10-1) is essentially replaced by

k+41/2 k+1/2 k+1/2 ~k
"(¢n.i+1/2 - ¢n‘i~l/2) +I7i6,;  Azi=TIs,0, A1,

+ oun(Bn.J-H/Z - ¢z:tf_/12/2)6i,.l+h pn > 0,

(10 -11)

where &;, 741 represents the delta Kroniker function, and By ;4,/; is the outgoing

boundary flux determined by Eq. (4-11). Note that sweeps from right to left (u, <
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0) are unchanged. in this case, and that the fluxes for cells in the Monte Carlo

region are determined separately from Eq. (10-1) (reference Section 6.3).

Our goal is to derive, starting from. Eq. (10-11), an equivalent form of the
acceleration equations of (10-3) and (10-4). We begin by replacing the interior
boundary source with an inhomogeneous source located in cell J. where the inho-
mogeneous source is defined so that it gives the identical boundary flux at r 4,/

for each iteration k + 1/2. Thus, we define

1 1/ 1
Qk+1/'_§.rj = Bn'_]+1/2(/~ln + §ST.J Ary) - O;T;.{flg(lv‘n - :jST.J Ary). tn > 0.
(10 — 12a)
~and
where we have set ¢ ; = 0. Equation (10-11) then becomes
#n(oﬁt':-/lz/Z - Oﬁtl/lz/z) +SrionttAr, = Ssi08, Ar + QA0
(10 - 13)

Taking the zeroth and first moments of Eq. (10-13). we obtain

~k+1/2 ~k+1/2 ~k+1/2

Oy tikTe = Oriihta + i gy PAzi = Ts, 66 . Az + Qg5 Ay 6,5 (10 - 14)

and

2 ~k41)2 _ gk ~k+1/2  Tk+1/2 ThH1/2 | ~k+1/2

5(‘352 +1/2 ~ 2: 1/2)+ (d’o i+1/2 ~ %0, 1/2)+ST1‘91. =Q,.; Ay bi,
(10 - 19)

where the moments of QHI/ ? are

~k+1/2 _ p+ ~+.kt1/2 1 =4+ ~4 . k+1/2
Q = Bl J+1/2 ~ P1u-1/2 + §ST-JA“(BO j+1/2 T 90 u-1/2 ) (10 —16a)
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and
Sk+1/2 2 ~+.k+1/2 ~4 k+1/2
Q. §(B;J+l/2 mng—l/2) 3(B;J+1/2 éo.J—1/2)+ (10 - 16b)
1 T+.k+1/2 -
-2--T.J AIJ(B?-J-H/Z +015-1/2 1

and the plus sign denotes summation only over the positive pup,.

We then define acceleration equations
“k+1 ~k 1 +1 L 1, k+1 2 -

and

2 ~k41/2 ~k+1/2 1~ Fk+1/2 X
3(02 x+/1/7 - °2.i—/1/2) + 5(0(’;111/2 OSTll/o) + _.T,ol“A.r, Qi /2 Az 6,7

(10 - 18)
Subtracting Eq. (10-17). evaluated at i + 1. from the same equation evaluated at ..

and using the diamond difference relationship. we obtain

1 ~
Oft}—l ‘Dﬁl'*'.,(-«R i+1 AT 4 C’gﬂ—x +ZriAr, Ogtl) =
1 A (10 - 19)
7_)'(5=‘+1,J+6i,l) 0‘4-}1/ Azxy
From Eq. (10-18), we substitute in for a'ffil and 0"+l to get
-1 5k+1 — oFt! ) + ! (e)k-f-l — okl )
3ST1'+1 A-l'i+1 0,i+3/2 0,i4+1/2 3< T,Ar 0,i+1/2 0,:—1/2
1 1
1 ~p 1
5(6.“ 1+ 860 ALy~ — (610 - 60 G

+ 3 Pr=asueneadl §#] .
3ST,i+l Ali+1 ¢2‘l+3/2 ¢2 l+1/2) SST" AI( ( 2.i+1/2 ¢2 i— 1/2)

(10 — 20)
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Finally, substituting in for the second moments from Eq. (10-153), we obtain the

acceleration equation

-1 ~k+1 ~k+1 1 “k+1 Th+1
3:7..”_[ Al‘.—n( 0.:43/2 0.4+1/2) 35:7“‘. Ar, 0.:1+1/2 0,:—1/2)

“k+1 )

A “k+1 Tk+1 lv A (o k+1
+ 7 TR+t DTk (0g 50 + Sg 4y 2) + 3~ R Ari(0g 112 %212

] -

1 ~k

5 (01410 +607) Qéj}m Ary —- R,

} (10 — 21)
where R is as defined at Eq. (10-4). Thus. by replacing the interior boundary source
with a distributed source in cell J. and setting s ; = 0. we obtain an acceleration

equation almost identical in form to that of Eq. (10-3). The boundary conditions

are identical to those of Eqgs. (10-9) and (10-10).

When Eq. (10-21) is converged. and we let ©7,,y = 7, and Ar,,, = Ar,.

it reduces to

—

~ - ~ ~ 1 -
Oli+1 — OLi+ 5 SRAT (0041 + 004) = 5 (8410 +0,7)Qoy Ar. (10 -22)

Comparing this with the zeroth moment of Eq. (10-13). we see that the {iffusion

acceleration equation [Eq. (10-21)] converges to the transport equation. as required.

10.2 _Application of the Hvbrid DSA Method to a Sample Problem

We now apply the diffusion synthetic method derived above to an appropri-
ate sample problem. The sample problem consists of a one-dimensional mesh in

Cartesian geometry. 10 ¢cm in length, with isotropic scattering, Sy = 1.0 cm, and
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Ts =0.95 cm. To avoid negative fluxes. we set Ar = .25 cm. so there are a total of

40 meshes. Vacuum boundary conditions are used on the left and right-hand edges.

We begin by studying the single region. pure S problem. with a fixed source
located in cell J = 20. and a convergence criteria of 10™*. We first apply the
source iterative method of Egs. (10-1) and (10-2), which requires 98 iterations for
convergence. Next. we apply the DSA method of Egs. (10-3) and (10-4). and find

that the number of iterations required for convergence is reduced to 6.

For the hybrid method, we divide the problem geometry into Sy and “Monte
Carlo” regions. where the Sy regions consists of cells 21 through 40. The fixed
source in cell 20 is now replaced by known boundary fluxes at the Monte Carlo/S~
interface. where the boundary fluxes used in this case are those determined by the
source iterative method above. We first apply the hybrid equivalent of the source
iterative method. Egs. (10-11) and (10-2), where ©s ; = 0. and find that it requires
73 iterations for convergence. and results in scalar fluxes in the Sy region that are
within .1% of the standard source iterative method. Next, we implement Eq. (10-
21) with the hybrid problem, and find that the hybrid DSA method reduces the
number of iterations required for convergence to 8, again with fluxes that‘are within

1% of the Sy region values.

Comparing the actual rates of convergence (i.e.. the ratio of the error in one
iteration to the error in preceeding iteration) between the four different methods,
we see that the standard source iterative method demonstrates a spectral radius of
p = .93, while the hybrid source iterative method has p = .89. The maximum ratio

in the standard DSA method is .20, while that in the hybrid DSA method is .28.
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Thus. we see that Fourier stability analysis accurately predicts the spectral radii for
the source iterate and standard DSA methods (.93 versus .95, and .20 versus .21,
respectively), while the hybrid source iterate method has a spectral radius slightly
lower than the standard source iterate method (.89 versus .93). and the hybrid DSA

method has a higher spectral radius than the comparable standard DSA method

(.28 versus .20).

Since Eq. (10-11) is very similar to Eq. (10-1). the standard source iterate
method. we would expect the two methods to posses similar convergence properties.

Comparing the respective DSA equations, however. [Eqs. (10-3) and (10-21)]. we
~k+1/2
0.J

~4 k+1/2
0.J-1/2 and o ;1

see that the hybrid DSA method contains the unaccelerated source term
. . ~+.k+1/2
(Eq. (10-16a)]. so that. depending upon the magnitudes of o
the spectral radius of the hybrid DSA method is increased. However. by setting
L. = 0 throughout the entire Monte Carlo region. 8;’;1’11/22 and o:'_‘;:'l'/.; vanish
for our problem geometry. and the source term in Eq. (10-21) goes to a constant.
In this case, we expect the spectral radius to be the same as. or less than (since
we have reduced the overall amount of scattering). the standard DSA method.

Upon implementing the change, we find that the number of iterations required for

convergence is reduced to 7, with a spectral radius of .16.

10.3 _Implementation of the Hybrid DSA Method in TWODANT

The above discussion and sample problem is based on a one-dimensional

geometry. In the two-dimensional geometry actually used by the hybrid method,
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however. the replacement of the interior boundary sources with an exact inhomo-
geneous source [Eq. (10-12)] is not feasible. Instead. as implemented by Alcouffe,?
we construct a fixed source. located inside the Monte Carlo region. from the interior
boundary sources, and zero out all within-group scattering sources. This construc-
tion has proven to be as successful in accelerating the inner iterations as the standard
DSA method. i.e., the number of inner iterations required for an Sv calculation in
the hybrid method is less than or equal to the number of inner iterations required

by the standard S\ method.




CHAPTER 11.
BENCHMARKS

We now apply the hybrid Monte Carlo/Sy method to several relatively sim-
ple problems. where the results of standard Sy calculations may be used as bench-
marks. Although we have examined the behavior and validity of the individual
components of the hybrid Monte Carlo/Sn theory in the preceeding chapters, the
purpose of these comparisons are to assess the overall performance and accuracy
of the hybrid method in a semi-realistic environment. Thus. we use the set of 16-
group Hansen-Roach cross sections previously described in Chapter 8 with problems
of varying geometry and composition, where the selected materials and specified
densities are representative of those encountered in typical calculations. Note that
these problems have been selected for their ease of computation by the standard Sy
method. and are thus not necessarily typical of the types of problems the hybrid

method was designed for.

11.1 _The Graphite Block Benchmark

We begin by examining a 22 cm by 22 cm homogeneous block (X -} geom-
etry), where the block is composed of graphite with a density of 1.6 gm/cm?®. The

block is divided into 121 coarse meshes with dimensions of 2 cm by 2 cm, with an
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isotropic distributed source located in the center of the block between r = 10 to
12 em. y = 10 to 12 cm. the source neutrons being emitted in group 1. The mean
free path of neutrons in this material ranges from A, = 10.1 cm, for group 1. to
A1e = 2.8 cm, for group 16. Since there are no fissionable materials present in the
problem geometry. and the Hansen-Roach cross sections do not include upscatter.
the calculation is a pure downscatter problem and requires only one outer iteration.
Note that, for group 1, the source is located only approximately 1 mfp from the

block edge. so that transport effects may be expected to be important.

For the hybrid Monte Carlo/Sy code. we designate the region r = 8 to
r=12cm.y=8to y =12 cm as the “fixed" Monte Carlo region (Fig. 11-1). and
specify a boundary layer thickness of 1 mfp. If we examine a group-dependent cross-
sectional view of the block (Fig. 11-2). we see that the actual Monte Carlo portion
of the problem geométry resembles an inverted wedding cake. and that the Monte
Carlo region comprises the entire problem geometry for groups 1 and 2. Thus. the
calculations for the first two groups will be done entirely by Monte Carlo. while all
other groups will require some linkage between the Monte Carlo regions and Sy
regions via response matrices. An Sg solver is used in the S\ region. with one fine

mesh per coarse mesh.

We use 250,000 histories to sample the fixed source, located in group 1.
While this results in relative errors (one standard deviation) of less than 3% for
the coarse mesh tracklengths in the first two groups, and less than 5% in the fifth
group, the error rapidly increases as we move further down in group structure, since
the number of particles reaching a given group decreases. However, the need for an

accurate determination of the flux due to the source alone also decreases. since most
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of the flux in lower energy groups is due to particles that have crossed between the
Monte Carlo and Sy regions, so the large variances in the fixed source calculation
at lower energy groups are not disastrous. In contrast. as can be seen at Table 11-1
below. approximately the same number of histories are used to sample the incoming
boundary fluxes for each group. regardless of their size. This preserves the dccuracy'

of the solution at lower energy groups,.

Table 11-1
Numbers of Histories and Particle Balances, Graphite Block Problem
Group Lrpx Lpr Try Igr Rerr PBAL
3 1.5739%-1 3.2717e-2 82.944 95.797 .0071 -2.5107e-4
4 8.3656e-2 3.2090e-2 82.944 95.803 .0069 -8.3290e-4
3 2.8144e-2 3.2354e-2 62.208 71.856 0074 2.4083e-4
6 8.3440e-3 1.9599e-2 62.208 71.832 .0072 9.7063e-4
7 2.6200e-3 1.0462e-2 62.208 71.851 .0074 2.3276e-3
8 8.1600e-4 5.8015e-3 62.208 71.854 .0069 -4.2840e-4
9 2.5600e-4 3.2610e-3 62.208 71.861 0072 -1.6513e-3
10 7.2000e-5 1.4992¢-3 62,208 71.853 0071 -7.0129e-4
11 2.4000e-5 9.0443e-4 62.208 71.855 .0076 8.6142e-4
12 1.6000e-5 6.3568e-4 62.208 71.863 0075 2.3851e-4
13 8.0000e-6 3.8876e-4 62.208 71,853 .0076 1.5884e-4
14 4.0000e-6 2.3105e-4 62,208 71.861 0074 8.1138e-5
15 4.0000e-6 2.1708e-4 62.208 71.850 .0070 5.1439%e-4
16 3.9981e-6 3.5249e-4 62.208 71.846 .0063 6.0797e-5

Lrx - Particle Source in Monte Carlo Region Due to Sampling of Fixed Source
Lgr - Particle Leakage from Sy Region into Monte Carlo Region

Tgrar - Total Number of Histories Used in Response Matrix Calculation

Tgr - Total Number of Histories Used to Sample Incoming Boundary Fluxes
ReRrr - Relative Error Between Calculated Outgoing Boundary Fluxes

PBAL - Total Particle Balance for Group

.For comparison, we perform several standard Sx calculations with varying quadra-

.

ture order and fine mesh structure. The CPU times required for the various Sy

calculations, as well as the hybrid calculation, are shown below at Table 11-2. where
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the notation 1 x 1 or 2 x 2 refers to the fine mesh structure used in the calculation (1
fine mesh per coarse mesh or four fine meshes per coarse mesh, respectively). The
narticle leakage as a function of energy group is shown at Fig. 11-3, while the total
reaction rates for the coarse mesh cells along the left edge of the block are shown

at Fig. 11-4 for group 1. and Fig. 11-3 for group 16.

Table 11-2
Computational Times. Graphite Block Problem
Type CPU Time ]
Se/1x1 4.3 sec
S12/2x 2 14.3 sec |
S20/2x2 32.9 sec
MC/S6 120.4 sec

From Fig. 11-3. we see that the leakage calculated by the hybrid method
closely matches that calculated by the Sy method over all 16 energy gr'oups. even
though there is over a factor of 10* decrease from group 1 to group 16. In Fig. 11-
4. the Sg and 5,2 calculations clearly show ray effects, while the MC/Ss and S3
calculations do not. Of course, ray effects are no longer a factor by the time group 16
is reached, so that all Sy calculations are within 3% of one ancther. as is the
hybrid calculation. It is somewhat surprising that the hybrid calculation shows little
statistical variation in Fig. 11-5, even though the reaction rates are two orders of
magnitude less than those in group 1. This may be due to the “smoothing” effects of
the Sx operator in the hybrid code, since the left edge is entirely contained within
the Sn region for groﬁp 16 (reference Fig. 11-2). An ‘attempt to obtain the same
accuracy with analog Monte Carlg alone would require a much larger number of

histories to be run than for the hybrid case. since the probability of an individual

particle reaching group 16 without leaking is less than .04%. Thus, for an equal
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number of total histories (approximately 2.2 million). less than 900 would even
reach group 16, clearly not enough to provide an adequate sample. The agreement
in Fig. 11-3 also illustrates that the hybrid method is capable of producing accurate
results even after a large amount of coupling' has occurred between the Monte Carlo

and Sy regions.

11.2 The Uranium Rod Benchmark

The next benchmark problem consists of a uranium (U02) rod surrounded
by a graphite reflector in R — Z geometry. The uranium rod has a radius of 2 cm.
a density of 10 gm/cm?®. and is 10% enriched in U233. while the graphite reflector
is 13 cm thick and has a density of 1.6 gm/cm3. The height of the cylinder is
30 cm (reference Fig. 11-6). An isotropic source is spatially distributed uniformly
throughout the uranium rod. with an energy spectrum identical to the fission spec-
trum of U233, for which only the first six groups have non-zero values. The mean
free path in uranium ranges from A; = 6.3 cm to A\;¢ = .6 cm. while that in the
graphite varies between A; = 10.1 cm and A\ = 2.8 cm. The problem is divided

into coarse meshes of size 1 cm by 2 cm.

For the hybrid calculation, the region consisting of the uranium oxide rod
is designated as the Monte Carlo region, and a 1 mfp boundary layer is specified,
resulting in the Monte Carlo/Sy structure shown at Fig. 11-7. An S solver is used
in the $x region, avith two fine meshes (1.x 2) per coarse mesh. 250,000 histories are
used to sample the fixed source, resulting in relative errors in the tracklengths for the

first five groups of less than 3%, and increasing afterwards as the group sampling
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frequency decreases. The size of each response matrix is identical. with 77.760
histories used to sample each one. The Monte Carlo region source (including fission
and downscatter) due solely to the fixed source. the size of the incoming boundary
currents, and the numbers of histories used to sample the incoming boundary fluxes
are shown below for each group and outer iteration. The particle balance for all

groups was < 7 x 1074,

Table 11-3
Numbers of Histories, Uranium Rod Problem
Group Lrx Leri | Tgr Rerr Lpr; Tsr,
1 2.1809e-1 2.8732e-3 64.325 .0105 2.5020e-5 441
2 1.494%e-1 2.8694e-2 61.306 .0093 2.5017e-4 154
3 2.8584e-1 2.8222e-2 36.821 .0104 2.4830e-4 167
4 3.4305e-1 6.8156e-2 53.327 .0089 3.3737e-4 144
) 2.3938e-1 1.0609e-1 53.819 .0083 8.5701e-4 439
6 7.1481e-2 7.8252e-2 52.325 .0083 6.0819e-4 120
T 1.3344e-2 4.2133e-2 32,314 .0079 3.2074e-4 422
8 2.5531e-3 2.2454e-2 52.322 .0078 1.6661e-4 111
9 4.6359e-4 1.1559e-2 52.316 .0079 8.5007e-3 410
10 5.083%e-5 4.7356e-3 52,319 .0090 3.4983e-3 414
11 4.6383e-6 2.5691e-3 52.319 .0081 1.8800e-5 418
12 0.0000e-0 1.6111e-3 52.323 .0089 1.1960e-5 424
13 0.0000e-0 9.2686e-4 52,321 .0085 6.8299¢-6 121
14 0.0000e-0 5.2495e-4 52,322 .0083 3.9655e-6 431
15 0.0000e-0 4.5132e-4 52.310 0087 3.3694e-6 422
16 0.0000e-0 5.5720e-4 52.312 0074 4.1072e-6 420

Note that the size of the incoming boundary fluxes for the second outer iteration
is approximately a factor of 100 less than the first outer iteration. Since the fissile

matecial is contained entirely within the Monte Carlo region, most of the multipli-

cation within the system is determined when the fixed source is sampled. This is
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confirmed by comparing the fission source (FS) resulting from the sampling of fixed

source (6.79 x 10~2) with the total fission source (7.67 x 1072).

The hybrid results were comr,ared with three different Sy calculations. The
computation times. number of outer iterations required for convergence, and cul-
culated fission sources are shown below at Table 11-4. The particle leakage as a
function of energy group is shown at Table 11-3, while the total reaction rates along
the centerline of the cylinder (r = .3 cm) are compared at Figs. 11-7 and 11-8 below

for groups 1 and 16, respectively.

Table 11-4
Computational Times and Fission Sources. Uranium Rod Problem
Type CPU Time # Outers FS
Se/1 x2 8.9 sec 3 7.97e-2
S12/2x 4 31.6 sec 3 7.70e-2
S12/4x 8 127.0 sec 3 7.69e-2
MC/Sg 152.8 sec 2 7.67e-2

U




Table 11-3
Particle Leakage, Uranium Rod Problem
Group Se/1 x2 S12/2x 4 MC/S¢
1 9.26e-2 9.37e-2 9.36e-2
2 2.56e-1 2.58e-1 2.57e-1
3 1.03e-1 1.05e-1 1.06e-1
4 1.61e-1 1.61e-1 1.60e-1
3 1.73e-1 1.72e-1 1.72e-1
6 1.09e-1 1.08e-1 1.08+-1
7 5.96e-2 5.86e-2 5.86e-2
8 3.45e-2 3.38e-2 3.37e-2
9 1.86e-2 1.82e-2 1.82e-2
10 7.98e-3 T.77e-3 7.80e-3
11 4.49e-3 4.36e-3 4.38e-3
12 2.84e-3 2.75e-3 2.77e-3
13 1.63e-3 1.58e-3 1.5%-3
14 9.09e-4 8.79%e-4 8.85e-4
135 7.81e-4 7.95e-4 7.6le-4
16 9.87e-4 9.50e-4 9.61e-4

189

From Table 11-5, we see that while the hybrid MC/Ss and S;; particle

leakages are in good agreement with each other. the standard Sg calculation differs

somewhat. not only in the first group. which is not surprising. but in lower energy

groups as well. Thus, the advantage of using the more accurate Monte Carlo method

in the uranium rod region carries through for all energy groups. Examining Figs. 11-

8 and 11-9, we see that the hybrid S¢ calculation, despite some statistical variation

since the centerline region is contained entirely within the Monte Carlo region,

agrees well with the Sy2 calculations, while the the Sg calculation is clearly off. If

we compare the reaction rates at the outer edge of the cylinder (Fig. 11-10). we see

that the hybrid results have been sm:)oth;zd.by the Sy operat.or, and are in good

agreement with the Sy2 calculation, while the standard S results are slightly larger.

L
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The hybrid Monte Carlo/Ss calculation clearly provides more accurate results for
all regions of the problem than a standard Ss calculation, even for this simple
geometry. This is also reflected in the respective fission sources computed by the

respective methods.

11.3 _The Al/U235 Block Problem

We now examine a more difficult problem for which the hybrid method is
better suited. The problem geometry consists of an aluminum plate. 10 cm long
and 3 cm high. with a density of 3 gm/cm3. sandwiched between two uranium
(TO2) blocks. each 10 cm long and 5 em high. The uranium blocks are 100%
enriched in U233. and have a density of 10 gm/cm3. The source consists of an
1sotropic boundary source on the left edge. located between y = 6 to y = 7 cm. in
group 1 (reference Fig. 11-11). The mean free path in the aluminum plate ranges
from Ag = 12.2 ¢m to As = 3.9 cm, while that in the uranium blocks ranges from
A2 = 6.3 cm to A; = .2 cm. The problem is divided into coarse meshes of size 1
cm by 1 em. Since the length of the aluminum plate is approximately 1 mfp for
the source neutrons, an accurate determination of the fluxes at the right-hand edge

should present problems for the standard Sy method.

The aluminum plate is designated as the Monte Carlo region, and a 1 mfp
boundary layer is once again specified, resulting in the Monte Carlo/Sy structure
shown at Fig. 11-12 below, where the Monte Carlo region comprises the entire

problem geometry for the first two groups. Since the flux decreases rapidly after
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group 7. the calculations for groups 8 through 16 are done entirely by Sv. Approx-
‘imately 530.000 histories are used to sample the fixed source. resulting in relative
errors in the coarse mesh tracklengths of less than 2% in group 1, 11% in group 6.
and 67% in group 7. 103,680 histories apiece are used to sample each response ma-
trix in groups 3 through 7. The particle balances for the Monte Carlo/S~ groups
were all less than 3 x 10~*, while the Rgrpr values were between .0038 and .0073.
The group sources and number of histories run are shown below at Table 11-6 for
group 4. where OITNO is the outer iteration number. Lsy represents the fission
source from Sy regions to the group 4 Monte Carlo region. and Tsy is the number
of histories used to sample the Sy fission source. Note that Tsy is a constant. and
Tgr goes to a constant, because their respective sources start at or reach a level
where only one history is used to sample each state. Although some of the sampled
residuals for later outer iterations contain negative elements. their magnitudes are

small and do not adversely affect the calculation.

Table 11-6
Source Strengths and Numbers of Histories, Group 4, Al/U235 Problem
OITNO Lsn Ts~ Lpr Tgr
1 - - 3.3999%e-2 119.767
2 3.3919-3 6.720 9.2667e-3 32.470
3 3.6550e-4 6.720 1.4379e-3 4.861
4 5.2505e-5 6.720 2.1485e-4 617
5 7.2478e-6 6.720 2.9681e-5 480
6 1.0413e-6 6,720 4.6696e-6 480
T 1.9434e-7 6.720 9.2425e-7 480

Table 11-7 below lists the run times, number of outer iterations required for con-

vergence, and the calculated fission sources for the hybrid method. various Sy runs,
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and a Monte Carlo run. The Monte Carlo run was performed by defining the entire
problem geometry as the Monte Carlo region. and increasing the number of his-
tories used to sample the fixed source to approximately 2.1 million. Figure 11-13
presents a comparison of particle leakage for the S¢ case and the hybrid method.,
Figs. 11-14 and 11-13 show the group 1 total reaction rates for the left and right
edges, respectivley, while Fig. 11-16 shows the left edge total reaction rates for

group 6. and Fig. 11-17 the same for group 7.

Table 11-7
Computational Times and Fission Sources, Al/U235 Problem

Type CPU Time # Outers FS
MC/Se 144.7 sec T 0426
MC 133.6 sec - .9440
Se/2 x 2 15.6 sec T 9679
S12/2x 2 35.3 sec ) 9444
S20/2 x 2 95.9 sec 6 9544
S30/2x 2 206.8 sec 6 .9560
S3p/+x 4 438.9 sec 6 9462

Although there are 18 orders of magnitude difference between the particle
leakages between group 1 and group 16 (Fig. 11-13), both the hybrid method and
the Sv (all Sy runs showed similar leakages) are in good agreement over the entire
spectrum. In contrast, the pure MC calculation (not shown), with an approximately
equivalent amount of computational effort, shows zero leakages past group 8 since,
for analog Monte Carlo, the probability of particles reaching group 8 is vanishingly
small for a reasoniable number of histories. Thus, the hybrid Monte Carlo/Sy

method is clearly preferrable to a standard analog Monte Carlo calculation.
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Surprisingly. all the Sy calculations were within about 15% of one another
when determining the left edge total reaction rates for group 1, although the best
agreement with the Monte Carlo and hybrid Monte Carlo/Sg runs was obtained with
the S3p/4 x 4 calculation (Fig. 11-14). As expected, however, the Sy calculations
exhibited severe ray effects when trying to determine the reaction rates at the right
edge (Fig. 11-13), and a high quadrature order and small mesh size was required to
match the hybrid results. The hybrid method mitigates any ray effects. of course,

since the entire calculation for group 1 is performed by the Monte Carlo method.

By group 6. the S no longer suffers from ray effects. and all calculations,
including the Monte Carlo and‘hybrid method. are in good agreement (Fig. 11-
16). For group 7. however (Fig. 11-17). it is evident that statistical variations are
begining to severly affect the accuracy of both the analog Monte Carlo and hybrid
Monte Carlo/Sy methods. It is interesting to note. however. that while both the
Monte Carlo and the hybrid Monte Carlo/Sy calculations required approximately
the same amount of computational time ’ eference Table 11-7 above). the hybrid
method appears to match the Sy results better. Of couse. if a biased Monte Carlo
method that increased the number of samples in lower energy groups was employed.

it might reduce the variance of the results for a given computational time.

The advantage of the hybrid Monte Carlo/Sy method is most clearly shown
at Table 11-7, where an S3¢ calculation with reduced mesh size is required to match
the results of a hybrid Se calculation in determining the fission source. Note that
the standard Sy method requires over three times the amount of compuatational

time to match the results of the hybrid Monte Carlo/S~ method.




CHAPTER 12.
CONCLUSIONS AND FUTURE EFFORTS

The hypothesis of the hybrid Monte Carlo/Sy method is that. by coupling
the two methods together in the same problem. we can solve certain types of prob-
lems more efficiently than either the Monte Carlo method or the Sy method can by
themselves. While Alcouffe and Filippone demonstrated the feasibility of the hybrid
approach for one-group problems in simplified X — Y geometries with fictitous cross
sections.!?'!! the ability of the hybrid method to handle the complexities posed by
more realistic problems remained undetermined. The goal of this dissertation was
to extend the capabilities of thé hybrid method and examine its feasibility when

applied to problems containing such complexities.

To allow the hybrid method to solve more complex problems. the following

significant additions were made:

a. The ability to solve multigroup problems (including upscatter and fission) .

using response matrices with reasonable storage requirements and variable

thickness boundary layers.

b. Improved performance of the diffusion synthetic accelerator within the Sx

portion of the method.
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. Approximately a five-fold increase in the speed of the Monte Carlo calcula-

(g}

tions through vectorization.

d. Developing Monte Carlo tracking algorithms which allow the hybrid method
to solve any problem geometry and material composition which can be input

into TWODANT for X — Y or R — Z geometries.

e. Generalizing the hybrid Monte Carlo method to allow use of the multigroup

S\ cross sections.

f. Incorporating anisotropic scattering into the Monte Carlo collision routines,

and

g. Developing limited estimates of the errors in the Monte Carlo calculations.

With these additional capabilities. we were able to apply the hybrid Monte
Carlo/S~ method to the benchmark problems of Chapter 11. For the first two

benchmarks (Graphite Block and Uranium Rod). even though not ideal cases for

. the hybrid method, we saw that the basic premise of the method held. That is,

we were able to obtain results with a low order Sy solver in the hybrid method

that required a higher order (i.e., larger quadrature order and smaller mesh size)

standard Sy solver. With the third benchmark (Aluminum-U235 Block), which

was better suited for the hybrid method since it combined both optically thick and

thin regions, we saw that the hybrid method clearly outperformed the Sy method.

Of the hybrid method enhancements listed above, the most important is the

ability to handle multigroup problems. We have shown that the hybrid method

b b i
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is capable of solving not just multigroup problems involving downscatter only. but
those with upscatter and/or fission as well. and in reasonable amounts of time. With
improved Monte Carlo methods (i.e.. the use of non-analog Monte Carlo). we can
expect orders of magnitude reductions in the computational time required by the
Monte Carlo portion of the hybrid method. Since the Monte Carlo method usually
requires the large majority of the computational time. this will further enhance the

practicality of the hybrid method.

The second most important addition to the hybrid method is that we are able
to implement it within TWODANT without adversely affecting the acceleration of
the S inner iterations. Thus. the efficiency of the Sy methods in TWODANT
are retained for pure downscatter and non-highly multiplying problems. While
this may seem unimportant in relation to the Monte Carlo computational times.
experience has shown that the expense of unaccelerated S\ calculations rapidly
becomes prohibitive for complex problems in two dimensions. However. for highly
multiplying problems, some means of accelerating the outer iterations in the hybrid
method is still required, if it is desirable to apply the hybrid method to these types

of problems.

It would also be desirable to use the hybrid method in problems involving
both geometrically complicated and geometrically simple regions, where the Monte
Carlo method would be used in the geometrically complicated region, and the Sy
method in the geometrically simple. To include geometrically complicated (i.e.,
three dimensional) regions in the hybrid method, additional input to define the
geometry and more extensive tracking routines would be required, in addition to

some averaging algorithm for the transition between the three dimensional Monte
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Carlo region and the two dimensional Sy . In addition. since the Monte Carlo region
is no longer necessarily optically thin, more extensive variance reduction measures
would be required. None of the above items would appear to require any substantial
revisions in the hybrid method's theory, while the ability to handle geometricaly

complicated problems method would greatly increase the number of “real™ problems

the hybrid method could be applied to.

Before the hybrid method could be applied to any “real” problems. however,
the ability to accurately process cross sections including anisotropic scattering must
be added. As previously pointed out. however, there are already several relatively
straightforward methods in existence for doing so. any one of which could be em-
ploved with the hybrid method. It might also be noted that use of anisotropic
scattering would enhance the desirability of the hybrid method. since the computa-
tion time for higher order S\ quadrature sets increases with the degree of anisotropy

due to the increased number of moments that must be computed.

Perhaps the one unresolved issue in the application of the hybrid method
to more complex problems is the ability to provide a rigorous error estimate in the
quantities of interest, as all standard Monte Carlo codes currently do. As previously
explained, standard variance estimation techniques are not practical to implement
in the Eybrid technique, and it is currently unclear as to whether some other means
of estimating the variance is even possible. A more fruitful approach may be that
of enhancing and expanding the error estimates already provided which, although
not rigorous, at least provide some indication as to the precision of the Monte Carlo

calculation.
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Although work in the areas mentioned above is required before the hybrid
method can be applied to more complex problems for which it is better suited,
we have shown that the hybrid method is capable of solving multigroup problems
in X - Y or R~ Z geometries using the 5\ method while mitigating standard
Sy deficiencies such as ray effects and streaming effects. Those areas requiring
additional work have been delineated and, with the possible exception of error
estimates, it seems clear that there are no significant remaining obstacles towards
development of a practical hybrid Monte Carlo/Sy code. Since. even with basically
analog Monte Carlo téchniques, isotropic scattering. and simplified test problems:"*
the hybrid method generates run times of the same order as Sy calculations for
comparable accuracy., we believe that further development of the hybrid Monte
Carlo/S~ method is warranted. and that it will furnish an attractive alternative to

existing solution methods for certain types of problems.
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