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ABSTRACT

The neutron transport equation is solved by a hybrid method that iter-

atively couples _'egions where deterministic (SN) and stochastic (Monte Carlo)

methods are applied. Unlike previous hybrid methods, the Monte Carlo and S.v

regions are fully coupled in the sense that no assumption is made about geometri-

ca] separation or decoupling. The hybrid method provides a new means of solving

problems involving both optically thick and optically thin regions that neither

Monte Carlo nor S,v is well suited for by themselves.

The fully coupled Monte Carlo/..q,_ technique consists of defining spatial

and/or energy regions of a problem in which either a :Monte Carlo calculation or

an S:,¢ calculation is to be performed. The Monte Carlo region may comprise

the entire spatial region (with vacuum boundary conditions) for selected energy

groups, or may consist efa rectangular area that is either completely or partially

embedded in an arbitrary S,.v region. The Monte Carlo and SN regions are then

connected through the common angular boundary fluxes, which are determined

iteratively using the response matrix technique, and volumetric sources.

The hybrid method has been implemented in the SN code TWODANT by

adding special-purpose Monte Carlo subroutines to calculate the response matri-

ces and volumetric sources, and linkage subroutines to carry out the interface flux
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iterations. The common angular boundary fluxes are included in the S,,,, code as

interior boundary sources, leaving the logic for the solution of the transport flux

unchanged, while, with minor modifications, the diffusion eynthetic accelerator

remains effective in accelerating the SN calculations. The special-purpose Monte

Carlo routines used are essentially analog, with few variance reduction techniques

employed. However, the routines have been succesfully vectorized, with approxi-

mately a factor of five increase in speed over the non-vectorized version.

The hybrid method is capable of solving forward, inhomogeneous source

problems in X - Y and R- Z geometries. This capability includes muItigroup

problems involving upscatter and fission in non-highly multiplying (k_/l <_ .8)

systems. The hybrid method has been applied to several simple test problems

with good results.
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CHAPTER 1.

INTRODUCTION

Knowledge about the distribution of neutrons in a medium is essential in

many of today's applications in nuclear science. Most obviously, the distribution

of neutrons in a reactor directly relates to the energy released by fission, thus

determining power levels and safety margins. Many other applications also exist.

however, such as oil well logging, in which the distribution of neutrons emitted from

a source placed in a well can be correlated to the possible presence or absence of

hydrocarbons in the surrounding soil. Both these, as well as other areas, require an

accurate means of evaluating the neutron distribution.

The distribution of neutrons in a medium is best described by the Bohzmann

transport equation, which can be derived from the requirements of particle conser-

vation across an element of phase space. 1 If the distribution N(r,E,f_)dr. dE df_

represents the number of neutrons in volume dr about location r, with energy

in dE about E, and moving in solid angle dn about direction f_, then the to-

tal track length per second of the particles in the phase space element dr dE df_

is v(E)N(r,E,f_)drdEdl], where v(E) is the neutron speed. In transport the-

ory, the quantity v(E)N(r,E, f_) is commonly defined as the angular neutron flux
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o(r. E. n). and the linear, steady state Boltzmann transport equation is written in

terms of the angular flux as

n. V_(r,E,n) + ET(r,E)Q(r,E,[_) =

dE' df_' _ s( r, E' --, E. f_' • _ )¢( r, E', f_' ) (1 - 1)

+\(E) dE'v(E')_F(r,E')o(r,E') + S(r, E, f_).

The total macroscopic cross section _r(r, E) is the number of neutron interactions

of all types per unit track length, the differential macroscopic scattering cross sec-

tion _s(r. E' _ E. f_'. f_) dE df_ represents the number of particles per unit track

length scattered from energy E' and direction f_' to dE about E and df_ about f_.

and the fission macroscopic cross section Er(r. E) is the number of fission interac-

tions occuring per unit track length. The average number of neutrons em,,itted per

fission is defined as u(E). while the fission spectrum x(E)dE represents the prob-

ability of a fission particle appearing in energy range dE about E. The scalar flux

o(r. E) is defined as the integral [ df_' 0(r, E. f_'). and the inhomogeneous source
J4 a.

S(r. E. n) dr dE df] is the number of neutrons emitted in volume dr about location

r. with energy in dE" about E, and moving in solid angle dN about direction f].

The first term on the left-hand side of Eq. (1-1) is interpreted as the rate

of change of particles in the phase space due to streaming, while the second term

represents the loss of particles from the phase space due to all types of collisions,

The first term on the right-hand side is the rate of gain of particles in the phase

space due to scattering from all phase space elements at r, while the second term

is the gain due to fissions.
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Several physical assumptions are inherent in Eq. (1-1 ). Scattering is assumed

to be dependent only upon the scattering angle fl. fl _, which is valid for isotropic
it

media. The fission spectrum \(E) is assumed independent of the fission energy E r.

and is also assumed to be identical for both prompt and delayed fission neutrons.

The angular distribution of fission neutrons is assumed to be isotropic, which is

reasonable at energies under consideration here (< 20 Y,leV). To preserve linearity.

macroscopic cross sections are assumed to be independent of the neutron flux.

Equation (1-1) is an integro-differential in six variables (three spatial, two

a_lgular, and one in energy), and a general solution has not been found. While an-

al)'tic solutions have been obtained for simplified cases. 1 realistic problems require

a numerical solution by one of several methods, which can be divided into two gen-

eral classes - deterministic, of which the most popular method is discrete ordinates

(S.,¢). and probabilistic (.Monte Carlo).

While both S,\- and Monte Carlo are well suited for specific types of problems,

neither is efficient for all types. The S._ method is difficult to apply to problems

with complicated geometries and encounters numerical difficulties in low scattering

regions. While, in theory, Monte Carlo can be used to solve any problem, the

computational time required for an accurate solution can be enormous, especially

for problems with highly scattering regions.

Previous efforts at developing hybrid techniques that enable the best features

of discrete ordinates and Monte Carlo to be exploited in a single problem have been

limited. One of the first approaches was to employ the:,results of a one-dimensional

adjoint S,_- calculation as a biasing function in a three-dimensional Monte Carlo
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shielding problem. 2 Note, however, that the Monte Carlo and SN methods were not

directly linked; rather, the SN results provided additional information to the Monte

Carlo, which performed the actual calculation. In the code DOMINO (Discrete

Ordinates Monte Carlo Interface Operationi. 3'4 the boundary fluxes resulting from

a discrete ordinates code were used as input to the .Monte Carlo code _IORSE,

either directly as a source, or indirectly as an importance function. However. the

S,," and _Ionte Carlo regions were assumed to be decoupled, in that the solution to

the SN problem was not affected by the Monte Carlo region. Thus. even though

the methods were coupled, the problem geometry was not. Similarly. Monte Carlo

calculations have been used to provide a surface source (forward or adjoint ) for S.,,-

calculations. 5-T again, with a decoupled geometry.

Another means of coupling Xlonte Carlo and 5".,,-is the first collision source

method, s in which source particles from a localized source are tracked to their first

collision via .Monte Carlo. then tallied to form a source for the 5"..,,..This removes the

difficulties encountered in running Sx with singular sources, such as a point source.

while the time involved in the Monte Carlo calculation is minimal, since particles

are only followed until their first collision. However. Sx is still used to compute

the final fluxes throughout the entire problem geometry, so the first collision source

method only partially alleviates any problems due to the presence of low scattering

regions.

In Ref. 9, Monte Carlo methods are implemented within the 5',_ method

itself. This is accomplished by choosing the SN quadrature directions randomly,

which are then used with standard 5",_,.techniques. The use of random angular
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quadrature directions helps mitigate ray effect problems, but does not eliminate

errors due to spatial differencing (i.e., problems due to optically thin regions).

In contrast, the fully coupled SN/Monte Carlo technique described here con-

sists of defining spatial regions in which either a Monte Carlo calculation or an S.,;

calculation is to be done. The regions are then connected through the common

boundary fluxes, which are determ;.ned iteratively using the response matrix tech-

nique. This technique is completely consistent in that the solution obtained is not

dependent upon any assumptions of geometric separation or decoupling.

As an example of a configuration suitable for analysis by the fully coupled

hybrid technique, consider a geometrically complicated neutron source located in a

low scattering material, such as air. encased in a large cylinder of highly scattering

material, such as steel. Due to the "complex source geometry and streaming in

air. the S.x" technique by itself would be unreliable. On the other hand.._Ionte

Carlo alone would be inefficient because of the significant multiple scattering in

the steel. Even a decoupled linking technique that used a Monte Carlo calculation

in the source and air regions, followed by an Sx analysis in the steel, would be

inadequate if particles were likely to reenter the air region after having entered the

steel region. By using the Monte Carlo technique for the air and source regions, the

S.,¢ technique for the steel region, and the response matrix method to determine

the interface currents between the air and steel regions, we are able to apply both

methods where they are most efficient and still obtain a fully coupled solution.
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The hybrid technique, as originally developed by Alcouffe and Filippone, 1°'11

was first implemented for monoenergetic transport in simple X - Y geometry prob-

lems, thus demonstrating the feasibility of the method for one-group problems in

two dimensions. (Although three dimensional SN codes are currently under de-

velopment, past limits in computational resources have restricted development of

practical discrete ordinates codes to two dimensions.) Although application of the

hybrid method to realistic problems would require the inclusion of multiple energy

groups, a "'brute force" extension of the method was not possible due to physical

limits on data storage. In addition, numerous other features and capabilities were

needed in order to handle the complexities posed by realistic problems. Although

the hybrid method showed promise, it was unclear if it could be extended to more

complicated problems.

The goal of this dissertation is to determine the feasibility of the application

of the hybrid method to problems of real world complexities by:

a. Extending the hybrid method to include multiple energy groups.

b. Generalizing the treatment of neutron scattering to allow anisotropic scat-

tering.

..

c. :ncluding the capability for treating fission and upscatter.

d. Allowing the treatment of more complicated geometries, including cylindri-

cal.
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e. Enhancing the efficiency of the ,Monte Carlo portion of the hybrid method

through vectorization.

L Increasing the efficiency of the SN portion of the hybrid method through

improved acceleration :echniques.

g. Developing a method for estimating the variance of quantities calculated by

stochastic techniques in the hybrid method.

Chapters 2 and 3 of this dissertation will provide a brief review of discrete

ordinates and _Ionte Carlo techniques, respectively, while Chapter 4 will detail

the theory behind the response matrix hybrid technique. Chapter $ will describe

the actual implementation of the hybrid method, i.e., how the .Monte Carlo and

Sx are coupled together. Chapter 6 describes the specifics of the Monte Carlo

techniques used in the hybrid method, while Chapter 7 covers the vectorization

of the hybrid Monte Carlo method. Chapter 8 describes how multigroup cross

sections are obtained for the Monte Carlo from the S\.. and explores some of the

related effects of using such derived cross sections. The use of statistics and variance

estimators in the hybrid method is explained in Chapter 9, while the use of diffusion

synthetic accleration in the SN with the hybrid method is covered in Chapter 10.

Chapter 11 presents a series of benchmark comparisons between pure S.,¢ and the

hybrid method. Finally, conclusions and recommendations about the hybrid method

are presented in Chapter 12.
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CHAPTER 2.

DISCRETE ORDINATES

The discrete ordinates (Sx) method is a deterministic means of solving the

transport equation through discretization of the independent variables. The energy

domain E is subdivided into G groups (i.e., the multigroup method i_ used), and the

spatial domain r is partitioned into "rectangular" ceils. A set of discrete angular

variables (ordinates) is then selected and the transport equation evaluated along

these directions. Because of the nature of the linear Bohzmann integro-differential

equation, its solution is most conveniently developed by a process of yon Neumann

or source iteration.

Many discrete ordinates codes currently exist today, some of which have

been constructed in a different manner. The following review of discrete ordinates

is tailored to TWODANT, 12the SN code within which the hybrid method has been

implemented, and is based upon Refs. 13 and 14.

2.1 .C0ordinate Systems

A two dimensional X - Y geometry consists of a block with finite x and

y dimensions, and an infinite length in the z direction. In the coordinate system
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shown at Fig. 2-1. p is the direction cosine along et, r/the direction cosine along 6y.

and _ the direction cosine along 6=. The phase space thus consists of five dimensions
,i

- z, y. E, p. and r/. since we have the constraint #2 + r/2 + _2 = 1.

A two dimensional R- Z geometry consists of a finite cylinder with radius R,

height H. and azimuthal symmetry. In the coordinate system shown at Fig. 2-2. p

is the direction cosine alone 6r. r/the direction cosine along 4_. and _ the direction

cosine along ee. Again, the phase space has five dimensions - r, :, E. _. and ¢7.

2.2 The MultizrouD 3Iethod

The energy groups are represented bb the group index g, where increasing 9

corresponds to decreasing energy. Let 0 < E1 < E._ < ... < Ec-I < £'G. where Ec

is the maximum energy of interest in the system, then the definition of the group

flux is

/E Fg E' ,
_g(r, fl) -= dE' o(r. fl). (2 1)

g-1

Similarly. the group source is

rE:_'
Sg(r, fl) -- dE' S(r,E',fl). (2- ,'2)

9-1

The group total and fission cross sections are defined so that

1 /E F'Er, g(r, fl) =  g(r,n) dE' ¢)(r,E',n)Zr(r,E'), (2- 3a)g--t

[_a E', E' E' -
1

_,EFg(r,f_) = dE'¢(r, fl)t_( )EF(r, ), (2 3b)
' O9(r.n) Jtr,_,





_4

Figure2-2 CylindricalCoordinateSystem
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and the group-to-group transfer cross section is

1/EW'[E"Ea,_a(r. fl' • f_) - dE dE'C_(r,E',f_)Es(r.E'_ E,f_'.f_).
_g,(r,N) ,_, JE,,_t

(2 - 3c)

Since the angular flux ¢(r, E, fl) is not known a priori, multigroup cross sections are

generally calculated by assuming that the angular flux is sepaxable into functions

f(r, fl)g(E), where f(r,f_) need not be determined, and the spectral weighting

function g(E) is estimated. Then, the group macroscopic cross sections are functions

of r only.

With the definitions at Eqns. (2-3), integration of Eq. (1-1) over the energy

group g results in

'Lf_. V o_(r. f_) + Er, g(r) og(r, f_) = Z df_' Eg'-_(r" f_' ' f_/°9' (r' f_')
gl= 1

G G

+ E /4 dn'Eg'-g(r'f_"f_)¢g'(r'n')+_tg ZVEF.g'(r)°9'(r) +Sy(r'l'_)"
g' -- g + l 7r gl=l

(2-4)

where '_g is defined as dE' _(E') and • 9(r) as dE' O(r, E' ).
9-I 9-I

Note that the first term on the left-hand side is due to neutrons scattering

from higher energy groups to lower energy groups (plus within group scatter), and

is referred to as "downscatter", while the second term is due to neutrons scattering

from lower energy groups to higher energy groups, and is referred to as "upscatter".

For problems without upscatter or fission, the multigroup equation may be solved

directly by solving for the flux in group one, calculating its contr_.bution to the sec-

ond and lower groups, solving for the second group's flux, etc., until all groups have

been solved. With upscatter or fission, an iterative procedure is most conveniently
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used. Letting p be the iteration index, and using the updated scatter source where

available, Eq. (2-4) becomes

g _ P+l(r" ft')fl. Wo_+Z(r.l']) + Er,g(r)%"+_(r,ft)= _ dfl' Eg,_g(r. fl'. ft)og,
g'=l

G G

9'----9+1 lr 9e... 1

(2-5)

This iteration procedure is referred to as the "outer" iteration in discrete ordinates

codes.

'2_.3 The Scattering Cross Section

Before we proceed with the discretization of the angular variables, the scat-

tering cross section must be further specified. Letting _0 = f'/'" f_. and expanding

the group-to-group transfer cross section in Legendre polynomials, we obtain

L 2l+1
= _9'--g(r'#°)=Z 4rr Zt,g,-g(r)Pd/z0). (2-6)

I---0

where Pl(/z0) is the Ith Legendre polynomial and the infinite series representation

has been truncated after L terms. Truncation at L = 0 corresponds to isotropic

• scattering, while truncation at L = 1 is referred to as linearly anisotropic scatter:ug

Since the Legendre polynomials are orthogonal, the coefficients of the expansion are

/_+z.. Ei,g,--g(r) = 2rr d/_o Zg,--g(r./_0) P_(#0). (2 - 7)
1
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The Ith Legendre polynomial can be expressed as

m----+t47r

Pt(_o) = 21 + 1 E }_.,(fl)}_(f_'), (2 - 8)

by using the addition theorem for spherical harmonics, with }_,m(n) representing

the Ith. ruth spherical harmonic, and }t,*m(n) its complex conjugate. If we now

expand the group angular flux in terms of the spherical harmonics, i.e.,

L m--'-+ l

og(r.n) = _ _ }tm(fl)o/mg(r)
t=0 .,=-: t°. - 9)

or,rig(r) = df_ }tm(f_) og(r. f_).
7T

The scattering source (including both upscatter and downscatter) then becomes

dft' v' f_, ft'-9 -g(r. •n )og,(r. ) = Et.g,--g(r) t;.( n )ot_g,<r)0

g'" l tr g"-I /--0 rrt-'--I

(2- 10)

Note that because of symmetry considerations for two dimensional geometries, the

moments ot,,,g,(r) are zero for m < 0.13

2.4 Discretization of the Angular Variable

In discrete ordinates, the unit directional sphere is represented by a set of

discrete directions fl. with associated weights w. (see Fig. 2-3). Although there

is no unique quadrature set of directions, all such sets are chosen so as to pre-

serve physical symmetries and properties of the transport equation, is The method

of discretization is independent of the actual quadrature set used; however, it is

somewhat dependent upon the specified geometry.



28

0
Beginning with Cartesian geometry, the streaming operator is f_. _ = _ _xx+

0

'q_9" Note that there is no angular coupling in the streaming operator in X - Y

geometry, i.e., as a particle travels through space its direction cosines/_, q. and

remain constant until it suffers a collision. Along the quadrature direction f_,, with

direction cosines/_n and r/n, therefore, the transport equation is

Ong(r)+Zr.g(r)O,g(r)= Zl.g,--g(r) Z })m. oe_g,(r)
g_-'l l=O m--O

G

+ \g Z uEF.g,(r)ooog,(r) + S.g(r),
g'---I

(2-11)

where }trn. = }_.,(N,,). S.g(r) = Sg(r.f].). and the scalar flux og,(r) has been

rewritten as the zeroth moment o00g,(r) for clarity.

In cylindrical geometry, however, the discretization is not as straightforward,

since the streaming operator becomes p 0(r.) 10(_e ) O(•)r Or r O0 +q"_z" Although the

first and third terms are evaluated at f_n as before, the second term represents an

angular redistribution where the direction cosines p and _ change as the particle

streams through the cylinder (see Fig. 2-4). This is reflected in the discretization

process by introducing coupling coefficients 13 such that

O[_g(r,n)] 1 [a.+l/_ _.+a/2,_(r)- a.-_/2 o.-_/2 g(r)] (9 _ z2)OO = w"_ ' " -

The coupling coefficients are e,_aluated by requiring Eq. (2-12) to obey the conser-

,cation form of the neutron balance equation, and the streaming term go to zero

when the angular flux is uniform and isotropic, with the results 14

ax/2 = O; a.+i/2 = an-I/2 - u,,, #.. (2 - 13)
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The diamond difference relationship in angle is used to evaluate the additional

angular fluxes, i.e.,

1
vn,g(r) = __[o.+l/2.g(r) + _.-l/2,g(r)]. (2 - 14)

The starting angular flux can be obtained through use of the "'step-start'" procedure.

where 0U,3/2 = o0,1 is used for each starting interval in angle, lz

2.5 Spatial Discretization

Discretization of the spatial variable is performed by partitioning the spatial

dimensions into intervals that form rectangular mesh cells, where the standard

convention for denoting the mesh cells is shown at Fig. 2-5. The dimensions of

the ith. jth mesh cell are -kx, = x,+112 - x,-1/2. Ayj = Yj+I/2 - Y_-1/2 in X - }"

geometry, and _ri ----r,+ l /2 -- ri_1/2 , _zj -- Zj+l_--.zj_]/2 in R-Z geometry. Cross

sections are assumed to be constant within a cell, e.g.. _.,_g - Eg(rq). x,-1/2 <

x < z,+1/2, yj-1/2 < Y < Yj+I/_ in Cartesian coordinates.

In X - }" geometry, we integrate the transport equation over the ith, jth

mesh cell for dr = dz dy. With the definitions

1 f'++'/'/_+'/'- dx dy ¢_,,g(r), (2 - 15a)
6i).g - Axi_t i .,z_-_/2 .'_._-t/_

- 1 /'=,+t/= /'_,+t/, .
- [/ dx d_t_t,.g(r), (2 - 15b)

¢iilrng -- _.-_Xi/%yj gz,-t/_ "_Y_-l/2

and

1 _z'+'/'[ yi+'/'
- dx dy Sng(r), (2 - 15c)

_iing -- '_Xl /ky i zi-tl2 "lg_-tl2



o
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o,o °**

Figure 2-4 Angular Redistribution
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the result is

L._.ri(Oi+l/2.jng -- Oi-l/2,jng) "_ (Oi,j+l/2,ng -- _)i,3-1/2.ng) 4" _T, i3gt_iing -"

G t m=! G

g'=l !=0 m---O g'----.l

(2- z0)

The volume element in R- Z geometry is dr = 2rrr dr d:. Let the area of

the ith face of a mesh cell be defined as A,±l/2,j = 2rr_±1/2 ,Xzj, and the volume

of the ith. jth cell as I,j = _(r 2 2,+1/2 - ri-1/2)AzJ" Let the cell-averaged flux be

defined as

1 ["'+"'f_,+" 2- 2rrrdrdz o,,9(r), (2 - 17)
©ijn9 -- _'l,j Jri_l/2 J,T.j_l/_

with similar definitions for the moments and the fixed source. Upon intergrating

the transport equation over dr for the ith, jth cell. we obtain la

I'u (!)[a"+z12°u'"+'/'2"[.ln[Ai-t-1/2.j 0i+I/2,1n9 -- A,_l/2. J Oi-1/2,jn 9] - tt'n

-- ctn-ll2 0U,n-1/2,g ] + r/n _r[r_2+I/2 2- r,_1/2][o,.j+_/2.,_- o,.)-1/2.,g]
G L m=l

g' -.- 1 /--0 m=O

G

g'=l

(2- zs)

where the approximation

f+ f+ ()2_rdr dz One(r) = - eij,g 16j (2 - 19)
vri_t/_ j zj_t/2 r i

has been used. The quantity (Z/r)i is determined by considering the case of the

uniform, isotropic angular flux, from which

(1_ = Ai+x/2,i-A,_,/24. (2- 20)
\/r , _,j
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2.6 Solution of the Discretized Transport Equation

The discretized transport equation in X- t" geometry [Eq. (2-16)] constitutes

one equation with five unknowns - ¢_i._, O_±l/2,jng, and O_,j±l/2,.g for fixed i, j,

n, and g. While two of the unknown cell edge fluxes are determined from either

boundary conditions or the previous cell's results, auxiliary equations are needed

to determine the remaining unknowns. One standard approach is that of diamond

differencing, where the auxiliary equations

1
0_.9 = "_[6i+I/2,:n9 + O,-1/_,j.g] (2 -- 21a)

and

1
Olgng "- y2[Oi,3+ll2,ng "b ©i,j-I/2.ng] (2 -- 21b)

are used. V,'ith these, the cell-centered fluxes can be uniquely determined•

The discretized transport equation in R- Z geometry [Eq. (2-18)] has two

additional unknowns due to the angular redistribution term - 6_,n±1/2. These are

determined thorugh the diamond difference in angle relationship of Eq. (2-14), in

conjuction with Eq. (2-13) and the step-start procedure.

Two of the most common boundary conditions used in discrete ordinates

codes are those of vacuum boundaries and symmetry boundaries. For vacuum

boundaries, the incoming angular flux on the cell edge is fixed at zero, while for

symmtery boundaries the value of the incoming flux is set equal to the value of the

outgoing flux. A typical example of a symmetry boundary is that of the centerline

in a cylinder.
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The solution is obtained by an exact inversion of the discretized transport

operator, then assuming that the source is known. The process is an iterative one,

as. can most clearly be seen by writing the transport equation as

L m----+l

i---0 rnm0

+ Ong(r),
(2- 22)

with
N

_k+l Z o, k-l- I/2ring(r) = u', _tmn o,g (r), (_'2- 23)
nml

where k is the iteration index and Qng(r) represents the source due to upscatter

and downscatter, fission, and the fixed source. This iteration process is called the

"inner" iteration, and is continued until some convergence criteria has been met.

The cell-edge fluxes calculated using the diamond difference method are not

guaranteed to be positive, and as such can be non-physical (i.e,. negative). One

common means of remedying this is through use of a negative flux fixup where the

negative flux is set to zero. 13 The cell center flux is then recalculated, along with

the remaining cell-edge flux, in order to preserve particle balance. This ensures a

positive solution, although it also introduces nonlinearites into the computational

process. However, negative flux fixup is usually not significant unless the mesh sizing

exceeds approximately two mean tree paths, or has highly asymmteric dimensions.

2.7 Limitations of Discrete Ordinates

One important problem inherent in the use of discrete ordinates is the oc-

currence of ray effects in highly absorping or vacuous mediums. (Note that a highly
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downscattering group in a muhigroup problem is equivalent to a high absorber).

In these types of media, particles tend to concentrate along the discrete directions

of travel, causing non-physical maxima and minima in the angular flux. Even the

use of large quadrature sets often only partially alleviates the problem while greatly

increasing computational time.

Another inherent problem is the difficulty in mocking up complicated geome-

tries, since the geometry must be defined in terms of a finite mesh restricted to a

two-dimensional slab or cylinder. This often forces the user to simplify the problem

when analyzing such devices as a tool used for oil well logging. Similarly. it may be

diffilcuh to model geometries composed of objects with greatly varying sizes, e.g..

a point source in a slab. or an atmospheric transport problem, where the size of the

atmospheric layer dwarves the size of the ground layer.

It can also be difficult to select an appropriate mesh size. While a small

mesh size ensures accuracy and provides detailed spatial information, it also greatly

increases the computational time and memory requirements. Conversely. a large

mesh size, while reducing the cost of the calculation, can result in a serious loss of

accuracy.

While SN provides an efficient and accurate means for solving many trans-

port problems, the limitations described above prevent it from being the method

of choice for all problems. More importantly, from our point of view, there exists

a class of problems where SN is an appropriate solution method for part of the

problem geometry, and another method (i.e., probabilistic) is better suited for the

......................................................................... :............................ _ ....... _ .................... _........................... ........................



37

remainder, It is for these types of problems that the hybrid method subsequently

described is intended for.
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CHAPTER 3.

THE MONTE CARLO METHOD

The Monte Carlo method is a stochastic means of solving the transport

equation through simulation of a finite number of neutron histories, l°'lr While the

neutron distribution in the medium of interest typically consists of anywhere from

10l° to 102o particles, we can obtain estimates of the distribution by randomly

sampling a few thousand to a few million particles. As we sample more particles,

we obtain better estimates, at a corresponding increase in computational time.

A neutron history consists of following a neutron from its creation by either

a fixed source or fission until it is lost to the system by capture or leakage. Possible

starting locations, directions, and energies are expressed in terms of probability dis-

tribution functions, which are sampled by drawing random numbers from a pseudo

random number generator in order to determine the exact coordinates in phase

space. Another random number is then drawn to determine the track length, which

is compared with the calculated distance to the next boundary.

If the sampled track length is greater than the distance to the boundary, and

the boundary is an exterior boundary, than the particle has leaked from the system

and its history is terminated. If the boundary is an internal boundary, such as one

separating regions with differing material compositions, the distance to the next

boundary is calculated and compared with the remaining track length as above.
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When the sampled track length is less than the distance to the next bound-

ary, the particle undergoes a collision. The type of collision (e.g., radiative capture,

fission, elastic scattering, etc.) is determined by random sampling. If the result

is a capture-type reaction, the particle history is terminated. Otherwise, the neu-

tron is continued on in a new direction and energy determined botl_ by sampling

from cross section data and from physical laws governing particle interactions (e.g.,

conservation of momentum). The track length is again randomly sampled, and the

tracking process continued as above.

In analog Monte Carlo. the probability distributions are formulated so as

to correspond to the analogous physical behavior of a neutron. This can lead to

gross inefficiencies, as in the classic example of a shielding problem consisting of an

absorbing slab with a source on one side and a detector on the other. If the slab

is optically thick, the probability of an individual neutron reaching the detector

is small and a large number of histories must be run in order to obtain an accu-

rate estimate of the flux at the detector. Fortunately, numerous biasing procedures

have been developed to enhance the efficiency of Monte Carlo methods in this and

other problem areas. 16-18 In general, a biasing procedure modifies the appropriate

probability distribution to increase the chance of a score, while the particle's im-

portance (weight) is adjusted so as to maintain a "fair game". Introduction of these

procedures is referred to as "non-analog" Monte Carlo.

While several sophisticated, general-purpose Monte Carlo codes currently

exist, it was considered more advantageous to develop our own code for implemen-

tation with the hybrid method. Existing Monte Carlo codes are designed to accept
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input from, and return output to, a user, while the hybrid method requires interac-

tion with a discrete ordinates code (TWODANT), posing some unique problems as

'described in subsequent chapters. In addition, the relatively simple geometries and

scoring techniques considered in the hybrid method enable the use of a semi-analog

code whose efficiency can be improved through the use of vectorization (reference

Chapter $). Therefore, the remainder of this chapter is limited to a review of proba-

bility functions and error estimates basic to all Monte Carlo methods, while details

of the actual method implemented will be described in later chapters.

3.1 Sampling Probability Functions

A probability density function (PDF) p(x) is defined such that p(z)d.r is

the probability that a random event will take on the value x' between z and x +

dx.ls Probability density functions are non-negative functions normalized such that

the integral (for a continuous function) or sum (for a discrete function) over the

applicable range is one. The cumulative distribution function (CDF) P(z) is defined

as the probability that a random number xp is less than or equal to ,r. Therefore,

the CDF is a non-negative, non-decreasing function with a range of zero to one. If

f(z) is the function that we wish to sample over a range of a < z < b, then the

PDF is i_z) = f(z)/ f(z')dz' and the CDF is P(z) = p(z')dz'.

Let g(_) represent a uniform distribution between zero and one such that

g((_) = 1. Since both g(_) and p(z) axe distributions, they satisfy g((_)Id_l =

p(.r i[dz[, or. since g(_) = 1,

p(z)ldz[ = ld¢l. (3- 1)
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By integrating from a to x, we obtain

P(x) = (, (3- _2)

where _"is a random number uniformly distributed between zero and one. Given a

random number (, the value of the distribution we wish to sample is thus

x = P-'((). (3- 3)

This inversion may be performed either analytically, if simple, or by rejection

techniques. 18

As an example, consider the distribution f(x) = x 2 which we wish to uni-

formly sample over the range 0 < x < 1. The PDF for this distribution is

p(x) = 3x 2. while the CDF is P(x) = xa. Thus. from Eq. (3-3). we could sample

f(x) directly by x = _/_. If we wished to avoid calculating the cube root. we could

instead use a rejection technique as follows. Choose (_1and q2 uniformly distributed

between zero and one. If _2 <_ (_, then let x - _1. If not. then choose another

pair of random numbers and test again. Note that the efficiency of a rejection tech-

nique is proportional to the area under the integral of the sampled function over the

range sampled, which in this case is only 1/3, so out of every three random number

pairs selected, only one would meet the rejection criteria. Thus, the use of a direct

inversion as opposed to rejection techniques must be evaluated on a case-to-case

basis.

3.2 Error Estimates

Since the information provided by the ._lonte Carlo method is obtained by

stochastic processes, it has an associated uncertainty with it. Some estimate of this
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associated uncertainty must be provided if the user is to have any confidence in his

data.

Let p(x) represent the probability density function (PDF) (i.e.. neutron dis-

tribution function) we are sampling, where x represents some property of the PDF.

then the expected value of x is equal to the true mean. or

b/,

5"= E(x) = ]4 xp(x)dx. (3-4)

while the sample mean. with N trials x,, is

N

_= .V z.. (3-5)
n--I

Note that the expectation value of the sample mean is equal to the true mean. so

the sample mean is said to be an unbiased estimator of the true mean. 17

The variance of p(z) is defined as

a 2 = E[(x - 2) 2] = (x - 2)2p(x)dx. (3 - 6)

where a is the standard deviation. It can be then be shown that the standard

deviation of the sample distribution is related to the standard deviation of the true

distribution by 17
o'

8= _ (3-6)

The standard deviation of tke sample about the true mean thus decreasesas the

square root of the number of histories run, and is directly proportional to the true
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standard deviation. However, neither p(x) or a is known, so Eq. (3-6) cannot be

directly evaluated. Instead, let us define the sample variance S 2 as

S2 = 1 _ N "" _2-- (z. - = "V -I (z2 - ).
.=I (3- 7)

-"- I .v

X2 = .V xr_"
n--1

It can then be shown lr that the expectation value of the sample variance E[S 2] is

equal to the true variance 0"2, so Eq. (3-6) becomes

S

-_ _-. (3 - 8)

The approximation sign is used in Eq. (3-8) because it is the expected value of the

sample variance which is equal to the true variance, not the sample variance itself.

This approximation holds as long as N is large enough to adequately sample the

problem and provide a good estimate of the true variance and mean.

Since the PDF we are sampling is highly unlikely to be a normal distribution.

we cannot associate the standard deviation with the typical confidence limits used

with a normal distribution. However, if we run K batches of N histories per batch,

then the distribution of means p:q('£) resulting from those batches will assume a

normal distribution if N is large enough. This is formally stated by the central

limit theorem, Is
-

p,,v('_) = x/N/2r¢-I exp N ---,_ (3- 9)a 2a 2 ' "
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From Eqs. (3-6) through (3-9), we can then state that the probability of _ - _ <

< _"+ 8 is 68.3%, while the probabilities for two and three standard deviations

are 95.4e_ and 99.7e_. respectively, where

h"

1 Z(_k __)_._2=K(K_l) (3-I0)
k--I

The unanswered question from the discussion above is how big must N be

in order to be big enough? Since the necessary value of N is obviously problem

dependent, no fixed value can be given. However. the concept of the figure of merit

(FO.'kl) can be used as a guide. 18 From Eq. (3-8), the variance _2 behaves as 1/.V,

while the CPU time T used in a Xlonte Carlo calculation is directly proportional

to the number of histories run. If we define the FOX[ as 1/(_2T), then the FOXI

should remain approximately constant for a given problem, regardless of the number

of trials run. However. if the FOX/continues to fluctuate widely after the first few

trials, then the value of 3," is probably too low to adequately sample the problem.

The figure of merit also provides a means of comparing the relative efficiency

between two different Monte Carlo methods. For a given problem, the method with

the largest FOM is considered to be the best overall, since it combines measures of

both how accurate and how expensive a method is.

3.3 Advantages and Disadx_antages of the Monte Carlo Method

The Monte Carlo method has some significant advantages over deterministic

methods. Since the Monte Carlo method is continuous in energy, space, and angle,
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it avoids the discretization errors inherent in the deterministic method. Thus, the

,_Ionte Carlo method is well-suited for mocking up complicated geomteries, and has

no ray effect problems in low scattering regions.

Although the .Xlonte Carlo method has no discretization errors, it is subject

to stochastic uncertainties. Since the standard deviation only decreases as the

square root of the number of histories run, this can be very expensive to reduce.

If only integral information is desired about the problem, such as the total leakage

from a cylinder, then oftentimes a low number of histories will suffice for an answer

within the desired error bounds. If. however, detailed spatial information about the

flux distribution in the cylinder is desired, then the required number of histories

for the same error bounds is much greater. This is due to the fact that while every

neutron which passes through the cylinder provides information to the integral

leakage tally, only those neutrons which pass through a given spatial subsection

of the cylinder will provide information about the flux in that area. In contrast,

deterministic methods provide information for each and every cell in the problem.

and although deterministic computational times do increase as the number of cells

is increased, it is usually much less significant than the computational increases

required with Monte Carlo for similarly detailed spatial information.

Also, although the Monte Carlo method is clearly better suited than deter-

ministic methods for problems with low scattering regions, the converse is true in

problems containing highly scattering regions. Consider again a cylinder composed

of graphite with a point source in the center for which we wish to determine the in-

tegral leakage. If the cylinder is optically thick, than a neutron will have to undergo
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many scattering collisions before it escapes from the surface, and the computational

time per history will be large.

Thus, neither deterministic methods nor probabilistic methods provide a

panacea for all possible computational problems involved in solving the transport

equation. It is then natural to ask if the two methods could be combined to solve

problems that neither method alone is well suited for. Our answer to that question

will be the subject of the remainder of this dissertation.
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CHAPTER 4.

THEORY OF THE RESPONSE MATRIX HYBRID METHOD

Consider a Xlonte Carlo region embedded in a S,,- region (Fig. 4-1). where

0'" and _out represent the boundary fluxes entering and leaving the .Monte Carlo

region, and n is the outward directed normal. The elements of _o,,t are the incom-

ing angular fluxes to the SN region, where each element corresponds to a unique

combination of spatial mesh cell. energy group, and quadrature direction f_,_. with

f_n ' n > 0. Theinterface angular fluxes for il.. n < 0 are the elements of _,n

The outgoing flux from the Monte Carlo region is related to the incoming flux from

the S x region by

_o,,t = R ,_i. + So,,t, (4 - 1)

where S °ut is the exiting flux from the Monte Carlo region under vacuum boundary

conditions (@i. = 0). The element rkk, of the response matrix tt represents the

angular flux leaving the Monte Carlo region in SN state k due to a unit incident

angular flux in S,'v state k'. Because @i. is generally not known, Eq. (4-1) is solved

iteratively by

_o=t(r+l) = It _i.(r) + Sour (4- 2)

where, for example, we can set

_out(_ ) = SO=t, (4 - 3)
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_'"(_) is obtained using an SN solver with the prescribed boundary flux @o,t_r)

and the response matrix l:t has been precalculated by the ,Monte Carlo method.

The Monte Carlo method is also used to sample the fixed source in the" Monte

Carlo region, determining Sot, t. For subcritical problems, Eq. (4-2) is expected

to be unconditionally convergent on a physical basis. Note also that the above

equations may be extended to partially embedded Monte Carlo regions by replacing

the appropriate elements of t_/in with the specified S,_" boundary conditions.

As explained in Ref. 10, it is more advantageous to perform a separate S._"

calculation with each iteration r, as opposed to precalculating a response matrix

for the SN region. In order to precalculate a S.\, response matrix, a separate S.\-

calculation would be required for each state in the S._/*[onte Carlo interface, while

experience has shown that the number of iterations required for Eq. (4-2) to con-

verge is much less than the total number of states in the interface. Since the time

required per S._, calculation is approximately the same. regardless of whether the

calculation is done for a single state or all states in the interface, it is clearly more

efficient to perform separate S._ calculations at every iteration r. This also reduces

storage requirements.

Conversely, the exact opposite situation occurs in the case of the Monte

Carlo response matrix. There, the calculation time required for the response matrix

is approximately equivalent to the calculation time of the entire boundary value

problem at an iteration r. Thus, it is more advantageous to precalculate and store

the Monte Carlo response matrix.
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Figure 4-1 Boundary Fluxes at an S/v/Monte Carlo Interface



50

A straightforward evaluation of Eq. (4-2) would require a response matrix

R of size Kc x KG with K_-dimensional vectors @out, @in, and S°t't, where

KG = K x G, (4-4)

and

K = IL x M/2, (4-5)

with G defined as the number of energy groups, IF. as the number of spatial mesh

cells along the S.x-/3Ionte Carlo interface, and 3I as the total number of directions

in the S.,c quadrature set. The factor of two appears in Eq. (4-5) because, in

two dimensions, we require only two out of four directional quadrants since we are

concerned only with outgoing directions.

For typical S,v mesh grids, the memory requirements of Eq. (4-2) are too

large for practical implementation. As an example, with a total of 60 spatial cells

along the S.,,./.SIonte Carlo interface, an $6 quadrature set (M = 24). and 30

energy groups, over 465 million words of memory would be needed for storage of the

response matrix _.R,exceeding the capacities of most of today's machines. However.

significant reductions in storage requirements are possible. Let the K-dimensional

subvectors _ou, @_n, and _qoutdenote the group g portions of @out, @in and S °u'--g , --g , .

Equation (4-2) may then be replaced by the equations

@og,,t(r+l)_ Rgg _in(r) OOU,---- --g +"a ' g=l,...,G, (4-6)

and

E out__gO°ut = Rgg, @_, + Sg , (4- 7)
g' :_ g

.......................................... _......... _._ ........ _ _ , ...........
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where Bgg, is the K x K submatrix of _R representing transfer from group g' to

group g.

For problems without upscatter or fission, Eq. (4-7) reduces to

Q;"'=Z a...;." +s;" (4-st
g'<g

Equations (4-6) and (4-8) can be implemented as foUows:

1. Using Monte Carlo. calculate the $_,t by sampling the fixed source in the

Monte Carlo region.

2. For g = 1..... G.

a. determine _.Rggusing Monte Carlo,

b. using _a.gg and QgU, determine _;ut and _g" from Eq. (4-6t. with

one SN calculation per iteration step r,

c. calculate directly (without first determining the l_gg, ) the contribu-

tions to Q_,Ut g, > g, by sampling _",

d. discard Rgg to make room for __.Rg+l,g+l.

With this algorithm, only the submatrix _Rggis used for calculations at any

given time, reducing the storage requirements by a factor of G2. However, this

method also introduces a penalty in efficiency, since it is more efficient to calculate

the entire response matrix at one time, versus calculating the __Rggand ",90°"tsep-

arately. In a calculation of R, all particles eventually score by leaving the Monte
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Carlo region. In calculating P_gg, however, particles that down scatter are not

scored. Instead. the downscatter contribution to no.t is determined in a separate

Monte Carlo calculation by sampling @_". In this calculation, particles escaping

from the Monte Carlo region in group g are not scored. The inefficiency in the

calculation of Rag is easily removed by replacing explicit downscatter with an ap-

propriate reduction in particle weight (reference Section 6.4), while the inefficiency

in the computation of the Q_,"' can be minimized by using forced collisions (refer-

ence Chapter 9). Note also that the S,._. calculation in step 2.b is itself an iterative

process, involving inner iterations as per Eq. (2-22).

With upscatter and/or fission, additional iterations over energy are required

(i.e.. an outer iteration). Accordingly, we include an energy iteration index p on

@,,,(p.,.) @o,,,p.r), and Qou,p) and iterate over step 2 above until convergence

occurs. In effect, we are determining Eqs. (4-6) and (4-7) by the iteration process

_out(p+l,r+l) in(p+l,r) out(p)
g = F_gg _IIg + Qg , (4- 9)

and

E E ,n,p.:,¢.) ou,-- _,n(p+l,_) + R_gg, _P_, + (4- 10)_.gO°""p) - Rgg, --g, Sg ,
g' <g g'>g

where _r_"t(p'°¢) and _,.(p+l.:¢) represent the converged fluxes from Eq. (4-9).

Since the P,.gg are independent of p, step 2.d is eliminated so that the response

matrices can be saved and reused at each value of p. The storage requirements for

the P,.gg, g = 1, 2,..., G of GK 2 words is still a factor of G less than those needed

for the full matrix P,.. Since only one submatrix is needed at a time, the rest are

stored on a mass storage device, reducing the core memory requirements to K 2

........ , ......................... .......................... : ..... _ ,_._ ................. _. ....
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words, the same as required for the pure downscatter case. Again, we emphasize

Nout(p)
that the Rgg, are not actually calculated. Instead, the contributions to ,._g are

|n(p,_)
determined by sampling the _g directly.

In calculating the Rgg with upscatter and/or fission, we again replace explicit

outscatter (up and down) and fission with appropriate modifications in particle

weight to improve efficiency. With pure downscatter, however, once a particle

scattered out of a group there was no possibility of it scattering back into that

group and scoring. This is not the case with upscatter and fission. Thus. we are

no longer calculating the true group-to-group response matrix l:tgg, but a group-

within-group response matrix which we denote by _.Rgg.We correct for this when

n°"t(P) g' # g, by scoring in Q_.t(p)m'nlP'_l for contributions to _g,sampling the --g , .

particles that exit the Monte Carlo region in group g after having entered, at some

point, a group g'. Thus. Eqs. (4-9) and (4-10) are replaced with

. = _,.(p+l.r)+ Q._.t(p) (4- II).I.7"(.'+'

and
ou in(p-{- I,_) _In(p,_c,)E a., + Y'.a.. +

g'<g g'>g (4- 12)

(Rgg - Rgg)_g _g .

Note that the outer iteration process for the Monte Carlo region differs from

the outer iteration process for the SN region (reference Section 2.2) in that both

the updated fission source and scatter source, where available, are used in Eq. (4-

12), whereas SN uses only the updated scattering source. However, SN also uses

acceleration techniques z3 to improve convergence of its outer iteration, whereas the

Monte Carlo does not. The effects of this will be examined in Section 5.7 and

Chapter 11.

............... ........... ' ................................................... ' ............... _- "...... _ ........................ ,T ..............................................
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CHAPTER 5.

IMPLEMENTATION OF THE HYBRID METHOD

Our primary goal in this dissertation is solving problems with .Monte Carlo

regions either completely or partially embedded in S.,,. regions. Thus. it is natural to

implement the hybrid method by modi_'ing the internal structure of an S.,¢ code to

accept information from .Monte Carlo routines. Since the S.,¢ code TWODANT, 12

_ developed by the Los Alamos National Laboratory. is a reliable, state of the art

discrete ordinates code capable of solving varying and complex transport problems

for neutral particles in two dimensions, it was selected as the basis for the hybrid

method. While the entire TWODANT source code is somewhat large (approxi-

mately 50.000 lines), the portion of the solver requiring changes is less than 10.000

lines, and is written in relatively well-structured FORTRAN amenable to modifica-

tion. Thus, the hybrid method is implemented by modi_'ing the discrete ordinates

code. where necessary, and adding special purpose routines to perform the Monte

Carlo functions and link them to the SN. As explained in Chapter 3, it was de-

cided to develop our own unique Monte Carlo subroutines, both because of special

problems posed by the hybrid method, and for ease of debugging and efficiency.

This chapter describes the physical interface between the SN and Monte

Carlo regions, the process of transferring information between the two, the com-

putational structure of the hybrid method's implementation in TWODANT, and
-gin
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necessary modifications to the SN method, while Chapter 6 will describe the details

of the Monte Carlo method.

5.1 Physical Description of the Monte Carlo Region

While the theory developed in the preceding chapter was for an arbitrarily

shaped 3Ionte Carlo region, including possibly multiple .Monte Carlo regions in the

same problem, we consider only a single, rectangularly shaped region here. either

partially or completely embedded in an SN region as shown at Fig. 5-1. This

enables considerable simplification in the details of tracking particles through the

.Monte Carlo region, and in the development of an ;,r_terface between the _Ionte

Carlo and the SN. with little loss of generality.

In TWODANT. the problem geometry is broken up into rectangular coarse

mesh cells, each of which is in turn composed of a varying number of fine mesh

cells. 12The coarse mesh cells are homogeneous in composition, and thus represent a

convenient method of specifying the location of differing materials for heterogeneous

problems. The actual discrete ordinates calculation is performed upon the fine

mesh cell structure, however, since smaller spatial dimensions than those typically

provided by the coarse mesh structure are required for accurate results in the SN

method.

Since there is no spatial discretization process involved in Monte Carlo cal-

culations, and since the speed of a Monte Carlo calculation decreases as the number

of internal boundaries increases, we choose to base the physical description of the
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Figure 5-1 Monte Carlo Region as Implemented in the Hybrid Method
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Y,lonte Carlo region upon the coarse mesh cell structure provided by the S,v. Thus.

all necessary, cell boundaries and compositions are already available from the SN,

without the extensive user input and calculations commonly required by pure Y,lonte

Carlo codes. Instead, the desired Monte Carlo region for the hybrid method is de-

scribed by specifying just four boundaries located along SN mesh cell edges - top,

bottom, left. and right.

5.2 The Boundary Layers

Typically, the ._Ionte Carlo/Sx boundaries will be located along material

discontinuities in the problem. However. the angular flux at such a boundary is

usually highly anisotropic, requiring a large number of quadrature angles for an

adequate description. From Eq. (4-5). we see that the size of the response matrix is

proportional to the square of the number of quadrature directions, so that memory

requirements would increase dramatically if the actual S.,;/._Ionte Carlo interface

were located along a boundary between optically thin and thick materials. 1°

Instead, we add an additional "boundary layer" by extending the Monte

Carlo region from the previously specified boundary into the S v region. This then

presumably places the SN/Monte Carlo interface in a highly scattering region where

the flux is more nearly isotropic, enabling a lower quadrature order to be used. The

distance required is determined by calculating the number of fine mesh cells needed

to meet or exceed a user specified number of mean free paths in distance for the

material along the appropriate boundary. Previous work 1° has shown that a one

mean free path thick boundary is usually sufficient. It is desirable to keep the
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boundary layer as small as possible, since it will usually consist of highly scattering

materials for which Monte Carlo calculations are inefficient.

Note that since cross sections are energy dependent, the mean free path

in a material will change with _he energy group. Thus, the size of the boundary

layer is also group dependent, often resulting in an "inverted wedding cake" type

of structure as shown at Fig. 5-2. If the mean free path for a given energy is large

enough, the ._Ionte Carlo region may constitute the entire problem geometry for

some groups, as is also shown in the sample figure. We also provide the capability

to entirely eliminate the Monte Carlo region altogether for energy groups where S._"

is sufficient throughout the entire problem geometry.

The type of structure shown at Fig. 5-2 provides further interface possibilities

between the Monte Carlo and the S.,,'. in addition to the boundary type fluxes

described in Chapter 4. since upscattering, downscattering, or fission may now

result in particles transferring from the S,v region into the Monte Carlo region,

and vice versa. Since this transference occurs over an entire mesh cell, it results in

volumetric sources which are handled as specified in Section 5.4.

5.3 Interfacing Phase Space Coordinates

One of the most fundamental differences between the Monte Carlo method

and the discrete ordinates method is in their treatment of the variables in phase

space. While Monte Carlo treats these variables as continuous, SN discretizes them.

Thus, when transferring particles from the Monte Carlo region to the SN region,
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we must discretize the phase space coordinates, and when going from the S,v region

to the Monte Carlo region we must assign continuous values to the given discrete

variables used by the S_v.

Since the hybrid method employs multigroup cross sections (see Chapter 8),

the energy variable has already been discretized for both the .X,lonte Carlo and

Sx regions, so no conversion is necessary. Conversion of spatial coordinates is

straightforward - when passing from the Monte Carlo region into the S.,,. region.

a particle is scored into the appropriate fine mesh cell. while particles entering the

Monte Carlo region from the S,,_, region are assumed to be uniformly distributed

over the area (or volume, for volumetric sources) of the fine mesh cell. The details

of the spatial conversion process are described in the succeeding chapter.

The conversion of angular coordinates is not as clear-cut, however. While

discrete ordinates represents the unit sphere of directions with a set of discrete

directions, each of which is assigned an angular weight proportional to the area

subtended on the unit sphere by that direction, the shape of the area associated with

a discrete direction is not specified. Thus, there is no unique method of determining

angular bins Ann for assigning a set of continuous Monte Carlo directions to the

discrete SN direction n,.

The system we have chosen to use is depicted at Fig. 5-3. The dots represent

the intersections of the f_n with the unit sphere for an Se quadrature set. The Ann

are defined by lines of constant azimuthal angle n_ and constant n0. The lines

of constant no form levels of constant width Arl, where Arl is equal to the sum of

the weights of the discrete directions along that level divided by the total weight
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of all discrete directions in the quadrant. Each level is in turn divided into bins of

A_, where the AO for each bin is proportional to the weight of its assigned discrete

ordinate divided by the sum of the weights for all discrete ordinates along that level.

The bin structure for an $6 quadrature set, along with the corresponding discrete

ordinates, is shown at Fig. 5-4. Note that the quadrature set actually used in the

hybrid method is the level symmetric set that has been built-in to TWODANT. 13

With this bin arrangement, particles are easily scored when crossing into the

S.\- region. The discrete directional level the particle enters is simply determined

by comparing its direction cosine along n0, r/, with the values of the levels as

determined above, while the bin that it enters is determined by comparing the

projection of the direction cosine along f_o. p/v/1- 172. with the cosine of the

azimuthal angle of the bin edge. Particles entering the 3Ionte Carlo region from

the S.,¢ region are assumed to be uniformly distributed in r/and o across the _Xf_

corresponding to the discrete direction f_n.

While the bin arrangement des_ribed above conserves the unit area of the

sphere, i.e.. it preserves the zeroth moment of the flux, there is no guarantee that

higher orders will be preserved. That is, quadrature sets are sometimes chosen so

as to exactly integrate the highest order Legendre polynomial possible, TMso that

if an angular flux consists of only a small number of Legendre moments (in one

dimension), those moments will be preserved. However, if we uniformly distribute

the particles resulting from that angular flux over the finite bin areas associated

with the discrete directions, and then sum the moments of the individual particles,

we no longer will preserve higher order moments.
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The bin structure at Fig. 5-3 does present an advantage, however, in that

it preserves an important physical property of cylindrical geometry. As previously

stated, when a particle streams in R- Z geometry its direction cosine along fio will

change, as represented by the arrows in Fig. 5-3, while the direction cosine along no

will remain constant. The bin configuration of Fig. 5-3 preserves this property since

streaming particles can only flow into bins whose quadrature directions have the

same no. This is not the case for the alternative bin structure shown at Fig. 5-5.

There is an additional minor advantage to the bin structure of Fig. 5-3. To

represent an isotropic point source, particles should be assigned to bins in proportion

to the bin weights, except when the source is located at r = 0 for cylindrical

geometry. The uncollided particles emanating from a point source at r = 0 travel

exclusively in the R- Z plane, that is. no = 0. As r --, 0. fl o becomes meaningless

and the distinction between discrete directions on the same Z-level (fie value)

disappears. For this case it would be best to assign all of the particles to the bins

along the R- Z plane in proportion to the Z-level weights (the sum of the weights

for all bins along the same Z-level). This is true for the bin structure of Fig. 5-3,

but not the the alternative bin structure of Fig. 5-5. The reason becomes evident

upon examining the two figures. Assume that bin n is the one that intersects the

R- Z plane, and let fie and fi_- represent the largest and smallest fie

n+l/2 1/2
values of this intersection. With the arrangement of Fig. 5-3, fi0 - fi_-

equals the Z-level weight. Thus, for particles uniformly distributed in fi0 in the

R- Z plane (as would result from an isotropic point source at r = 0), the number
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.+1/2 and t'l_-1/2 would be proportional to the Z-level weight. Thisbetween I'_0

would not be true for the arrangement of Fig. 5-5.

5.4 Particle Transference

As each particle crosses from the Monte Carlo region into the SN region, its
I

phase space coordinates are discretized as described above, and it is then placed

into the S,,,,,state corresponding to the resulting unique combination of spatial mesh

cell, energy group, and quadrature direction. Particles physically streaming across

an S.,¢/.Monte Carlo interface are represented as a boundary flux source into the .q.,¢

region, while particles which enter the S.v region through a change in energy group

due to fission or scattering are represented as a volumetric source per Section 5.2

above.

At the conclusion of a Monte Carlo calculation, the quantity actually residing

in an S,v state is the total weight of all particles which have entered that state during

the calculation. For boundary flux sources, this number is converted into an S..,.

boundary flux by dividing by the quantity An,, AA,I NH, where An,, is the angular

weight associated with the discrete direction 1"!,1,AAij is the appropriate area of

2
the mesh cell face entered (Azi or Ayj for Cartesian geometry, rr(r_+l/2 -ri_1/2) or

2rr,±1/2 _xz) for cylindrical geometry), and Nn is a normalization factor dependent

upon the number of histories run.

Volumetric sources are treated somewhat differently, since, to conserve stor-

age, SN codes usually store the spherical harmonic moments of the source, not the
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• Figure 5-3 The S N An$_lar Bin Arrangement for N = 6
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Figure5-5 AlternativeS N AngularBin ArrangementforN = 6
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angular source itself. 13 Thus. if II_ing represents the total weight of particles trans-

ferred to cell (i,j) with discrete direc "_n fin in energy group g, the corresponding

S._. moment Qutmg is found from

N

where }i_nn is the complex conjugate of the lth, ruth spherical harmonic evaluated

at discrete direction fin, and Al_ s is the volume of the cell (i,j). Note that this

conversion is not performed until the Monte Carlo calculation has been completed.

so sufficient storage must be allocated to allow the the Monte Carlo to score particles

directly in the angular source states. However. since the response matrix is not in

use when volumetric source calculations are active, its storage area may be used for

the angular source states, so no additional memory is required.

_4,

5.5 _Computational Structure of the Hybrid .kIethod's Implementation

Now that we have examined in some detail the physical interface between the

Monte Carlo and the S.,< regions, we turn to the computational interface. That is.

we now describe how the hybrid theory of Chapter 4 is meshed with the multigroup

discrete ordinates method of Chapter 2.

Figure 5-6 depicts the complltational flow of the unmodified discrete or-

dinates code TWODANT. Subroutine TIGF'20 is the overall driver for the solver

module, which begins by calling a series of input processing and memory allocation

routines represented by the block TINP. Next, subroutine TGND25 calculates the
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S.,,. grid structure, sets up the 5',_¢cross sections, and performs other initialization

functions. The outer iteration loop [reference Eq. (2-5)] begins with subroutine

TRANSO, where, for energy groups g = 1..... G, TOUTER calculates the to-

tal source to the group g from fixed sources, downscatter, upscatter, and fission

[i.e.. the Q,g(r) in Eq. (2-22)]. while SINNER performs the inner iterations. Sub-

routines DIFFO and DOUTER complete an outer iteration loop by updating the

fission source. Additionally. DOUTER accelerates convergence of the fission source

through use of a Chebyshev polynomial-based method. 1'3 (We note that conver-

gence of both the inner and outer iterations are also accelerated through the use of

diffusion synthetic acceleration. 13 which will be discussed in Chapter 10).

Figure 5-7 presents the computational flow as modified to incorporate the

hybrid method. The additional input required for the hybrid method is processed

in TINP. while TGND2g calls routines .kICXS and SETUP. which define the XIonte

Carlo cross sections and other arrays required for unique .klonte Carlo functions.

Monte Carlo calculations actually begin with SRCMC. which samples the fixed

source to determine the gout of Eq. (4-1")), while $MOM computes the volumetricvg

sources in the SN region resulting from SRC.X,IC, if any, and stores the moments

in the Sx inhomogeneous source array. Next, MCRM calculates the within-group

response matrix Rgg [reference Eq. (4-11)] for groups g = 1.... , G, where required.

Note that the calculation of the response matrix is omitted for a group g if the

Monte Carlo region or the SN region comprises the entire problem geometry. The

response matrices axe stored on disk for recall during the iteration process.

The basic structure of the outer loop. is unaffected by the hybrid method,

except for modifications to allow volumetric sources to be passed from the Monte



69

Carlo region to the S\" region by SMOM. TOUTER gets the volumetric source to

group g for both Monte Carlo and S,_, regions from S._, regions in groups g' ¢- g as

before, while the volumetric source from any Monte Carlo regions in groups g' 7_g

to the S.v region for group g is obtained from the inhomogeneous SN source array,

where it has been stored by SMOM. Instead of calling SINNER to perform the

S.,," inner iterations, however. TOUTER calls LINK. which peforms the coupled

S\./Monte Carlo iterations of Eq. (4-11).

LINK begins by calling SNTOMC, which determines the contribution of the

group g volumetric sources located in the Monte Carlo region, if any. to the Q_yt.

g' = 1..... G. SMOM is then called to compute and store any further contributions

to volumetric sources in the S.\- region which arose during the .llonte Carlo calcu-

lation of SXTOXIC. Next. the iteration process of Eq. (4-11) starts by getting the

response matrix R_g from disk. The initial outgoing boundary flux used by LINK

is
, oout(p)eaout_p+lg21= --fi'gg_"IP"_t + --g ' P> 0,

(_-2)
_out( l,l ) -- oout(1)

g --_9 ' p=0,

where _"(P'm_ is the converged incoming boundary flux from the previous outer

iteration. SINNER is then called to perform the SN inner iterations, returning

_,_1p+1,1) and _ut_,+l,2) is calculated from Eq. (4-11). If the maximum relative

_outlt,+l,2_ is less than the SN error criteria, thanerror between _,,t(p+l,ll and =g

convergence is considered to have been achieved. Otherwise. the iteration proce-

dure continues until convergence is reached, or a user-input maximum number of

iterations has been reached.
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If the iteration process of Eq. (4-11) does not reach convergence, an extrap-

olation procedure developed by Filippone 1°'19 is used to improve the convergence of

the outgoing boundary flux. This procedure, referred to as the method of residual

expansion functions, essentially assumes that, after a sufficient number of itera-

tions, the differences between succesive iterations (residuals) are composed of only

a limited number of eigenvectors (i.e., shape convergence). Although these eigen-

vectors (and corresponding eigenvalues) are unknown, the residuals themselves can

be used as a basis, and an expression for coefficients of these residuals which min-

imize the remaining error in the iteration process can be derived. _° Typically. five

to eight iterations will usually provide enough residuals to allow the method of

residual expansion functions to extrapolate a solution which is within the S.\- error

criteria. The accuracy of the method is checked by performing another set of S.\"

inner iterations, based on the extrapolated soIution, and measuring the largest rel-

ative diference in the extrapolated boundary flux and the resulting boundary flux

as calculated from Eq. (4-11).

The method of residual expansion functions will. however, occasionally fail

to project a more accurate solution. This occurs when use of the diffusion synthetic

accelerator, which accelerates convergence of the SN inner iterations, results in rapid

convergence of the SN inner iterations, thus not allowing higher order harmonics in

the boundary flux to die out. The presence of these harmonics violates the premises

upon which the residual expansion function method was derived, and so an accurate

extrapolation is not possible. The situation is easily remedied, however, either by

tightening the S_,, error criteria, which forces more SN inner iterations, or allowing

enough iterations on Eq. (4-11) for convergence to be met by the iteration process

.... , ................. ............ .,,_ ................ ;;_ _ .............. _,_._
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itself. This is economical in this situation, since the diffusion synthetic accelerator

itself enables the S.v iterations to be performed very efficiently.

Once the converged boundary fluxes have been calculated, subroutine DWN-

SRC is called to sample the @_"IP'_¢). As described in Chapter 4, we do not evaluate

Eq. (4-12) directly, since storage limitations preclude the calculation of the response

tTari n ( P ,_c ) l,_ o u t ( p _
matrices l:l.gg, Instead. we determine the contribution of =g to the• ,_gl •

g_ > g. and the Qout(p+l) g_g, , <_ g. by sampling the incoming boundary flux into

the Monte Carlo region for group g and scoring particles when the5" cross back into

the S.v region in group g_. Particles that reenter the S.,," region while in group 9

are separated into two classes - those that have entered a group 9 t _ 9 at some

point during their history, and those that have remained entirely within group 9.

The first class of particles, which represent the third term on the left-hand side of

OU

Eq. (4-12). is scored in Q9 t(p+l), while the second class is used as a comparison to

the computed @_,ttp _1 as described in Chapter 9. Finally. S._IO._I is called once

again to update any contributions by the Monte Carlo calculation to volumetric

sources in the S,,¢ region.

If no response matrix calculation is required for group g, then LINK omits

the iteration process of Eq. (4-11). Instead, if the problem geometry is entirely

represented by the S,,v, then LINK merely calls SINNER once to get the S,,- fluxes.

If the problem geometry is entirely in the Monte Carlo region, then no calculations

(beyond SNTOMC) are required in LINK at aU.
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5.6 Discrete Ordinates Modifications

As pictured above, the principal requirements for implementation of the hy-

brid method are the addition of Monte Carlo routines, while the modifications nec-

essary to the discrete ordinates code itself are minimal. The primary modications

involved are to the logic of the Sx inner iterations, which are performed in $I3"-

NER and other associated subroutines, to allow the inclusion of interior boundary

sources.

An S.,; inner iteration entails sweeping through the mesh cells, from exterior

boundary to exterior boundary, for a given sweeping direction. When sweeping

from the .kl:onte Carlo region into the S,; region, the S v-calculated values for these

out(p+l r)
surfaces are replaced with the @g ' from Eq. (4-11). Sweeps from the S.\-

region into the .X,lonte Carlo region are performed normally, except that the con-

ln(p+l r)
verged surface fluxes are used as the @g ' in Eq. (4-11). As implemented by

Alcouffe, 1° the vectorization of the sweeping algorithm is unaffected, so that the

efficiency of a standard SN calculation is retained. The introduction of these inte-

rior boundary sources does reflect a discontinuity in the solution of the transport

equation, however, which in turn affects the operation of the synthetic diffusion

accelerator previously mentioned. The solution to this problem will be discussed in

Chapter 10.

Other necessary changes to the SN logic include modifying the calculations of

scattering and fission sources to exclude Monte Carlo regions, and alteration of the

particle balance tables to include the Monte Carlo totals. While somewhat detailed

changes are required, the only one which affects the logic of the S,,; computation
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is the treatment of the fission source in DOUTER. As previously stated, the S.\'

employs Chebyshev accleration to improve convergence of the fission source. Since

the required information (i.e., the fission source per fine mesh cell) is not available

for the Monte Carlo region, it is excluded from the acceleration procedure.

Finally, the Monte Carlo region is currently excluded from the outer iteration

convergence checks which the SN performs. That is. we assume convergence in the

S.v region implies convergence throughout the entire problem geometry. While this

has been sufficient for the test problems examined so far, it is possible to imagine

problems where it may not hold (e.g.. a highly fissile material in the .Xlonte Carlo

region, surrounded by a non-multiplying S.v region). However, this can easily be

remedied, if necessary, by adding a convergence check on the fission source in the

._Ionte Carlo region.

5.7 Sampling Boundary Fluxes and Volumetric Sources

_n(p._c)
From Section 5.5 above, we see that the _g must be sampled for each

outer iteration p. However, a complete sampling of the _n(p._) at each outer itera-

tion would be counter-productive. As the outer iterations converge, the differences

between the _gin(p':x_) and _n(p+l,_) decrease, so that sam)ling, each one from

scratch is a dupIication of effort. More importantly, the resulting statistical devia-

tions in the Q_U,(p+l) will introduce fluctations into the Sx fluxes which hinder the

Chebyshev acceleration of the fission source and preclude convergence.
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Instead. we sample 6_ hip's) --'-- =gl]_in(P'_C) -- =glT_n(p-l'_c). Thus, as the outer

iterations converge, the 6_ nlp'_¢) tend toward zero, the number of histories per

sample can be reduced, and the statistical deviations of the Qg tip+l)ou are reduced.

Similarly. with SNTOMC. we sample the change in the volumetric source in the

.Monte Carlo region.

tn{p.:_)
If the S\' operator were strictly linear, we would expect the _g to be

non-negative. Due to _ae use of negative flux fix-up in the S:,,, however, this is not

the case. While it is generally advantageous to avoid tracking negative particles in

.X.lonte Carlo calculations, since they tend to increase the variance of the results,

we assume that. in this case. the magnitude of any negative residuals will be small

enough so that it will not adversely affect the hybrid results. Thus. when an element

of ¢@_n_p.xj is negative, we assign negative weights to the particles used to sample

that state in subroutine DWNSRC. Negative particles are also used when sampling

the volumetric source in the ._Ionte Carlo region during subroutine SNTO._IC when

the change in the source between outer iterations is negative.

Physically, we expect the @_ut(p,_l as computed in LINK to be non- negative.

in,( p-- l ,oo )
However. since the sampled _g may be negative, as stated above, we now

ffdou t( p,r )
have no guarantee that the Q_Ut(p) will remain non-negative, and thus the =g

may contain negative elements. Since negative interior boundary sources are not

acceptable to the S.w. we set the _ut(p,r) to zero for elements that are negative

and adjust the remaining elements so as to conserve particles.

Similarly, the introduction of negative particles in the Monte Carlo calcu-

lation results in the possibility of negative volumetric sources in the SN region.
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To preclude this. after the .Monte Carlo particles have been scored in subroutine

SMOM. the zeroth moments of the resulting volumetric sources in the S,_,. region

are checked to ensure that they are non-negative. If a negative zeroth moment is

found for a given cell, all moments for that cell are set to zero. In this case, no

adjustment is made to the other ceils to conserve particles.

While the appearance of negative particles in a calculation is worrisome,

experience to date has not shown a significant impact on the viability of the hybrid

method. Since negative residuals cannot possibly appear until the second outer

iteration, negative particles are of no concern whatsoever in problems involving

only pure downscatter. Even with problems with fission and/or upscatter, and thus

multiple outer iterations, the magnitude of the residuals sampled in succeeding outer

iterations has remained small enough in comparison to tile magnitude of the first

outer iteration so that the total outgoing boundary fluxes and volumetric sources

have remained positive when the problem is adequately sampled.
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CHAPTER 6.

HYBRID MONTE CARLO METHODS

As explained in Chapter 3. it was considered more advantageous to develop

our own *Ionte Carlo subroutines versus attempting to incorporate a more general-

purpose Monte Carlo code. Since we consider only a two-dimensional geometry

with rectangular mesh ceils, the algorithms for describing geometries and tracking

particles are considerably simpler than those for a general three-dim,nsional geom-

etry. reducing the required coding and simplifying vectorization of the 3Ionte Carlo

portion of the code. Additionally. the r,vo-dimensional algorithms permit the use

of the standard T\VODANT input file with very few modifications, as opposed to

the more extensive input files usually required for three-dimensional Monte Carlo

codes.

The hybrid Monte Carlo method as implemented is almost entirely analog,

with few variance reduction techniques used. While the lack of variance reduction

techniques can lead to problems in obtaining accurate estimates in some situations,

the difFiculties actually encountered are minimized due to two reasons. Since the

Monte Carlo routines used in the hybrid method are vectorized, it is relatively

inexpensive to run a large number of particles. More importantly, it is the usual

practice to designate areas where."the Monte Carlo method would be expensive as
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regions where the S_,_"method is to be used. This, in fact, is the entire rationale

behind the hybrid method.

The remainder of this chapter describes the details of tracking particles across

mesh cells, the treatment of collisions (scattering, capture, and fission), and the

sampling of sources. Chapter 7 describes the methods used in vectorizing the Monte

Carlo, while Chapter 8 describes how the .Monte Carlo cross sections are formed.

Chapter 9 covers the implementation of error estimates with the hybrid method

and the variance reduction methods used.

6.1 Tracking Particles in Phase Space

Let r. represent the spatial coordinates, f_ the direction, and g the energy

group of a neutron which has just been emitted from a source or undergone a

collision. The coordinates r correspond to a location within a cell (i, j) as shown at

Fig. 6-1a for X- It"geometry, and Fig. 6-1b for R- Z. In order to track the particle

history, we must determine whether it has a collision within the cell or crosses its

boundaries, and the coordinates in phase space of those events.

We first determine the length of the flight path. From Chapter 1, the prob-

ability of a particle having an interaction in ds about s is

p(s)ds = Er, ijgexp(-ET, ijgs)ds, 0 <_s <. z¢. (6- 1)
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This represents the PDF which we wish to sample uniformly. Following the methods

outlined in Section 3.1, and realizing that sampling 1 -( is equivalent to sampling

(, the track length of the particle is determined by

- ln(()
s= _. (6-2)

..-,T, t j 9

Next, we determine if s is large enough to reach a cell boundary, and if so. which

one.

A

In X - Y geometry, the spatial coordinates are r = zi + yj, where the origin

is located at the lower left-hand corner of the problem geometry. The directional

coordinates are (reference Fig. 2-1) fl = p6_ + r/__ + _6:. The appropriate bound-

aries are thus xB = z,+1/2 for p > 0..r _ ",-1/2 for _ < 0. yB = gj+l/2 for 17> 0

and YB = Y_-l/2 for r/ < 0. Let sv y)/r/ and _.x"= (xs - z)/_, then if

is less than both sx and s,_" the particle undergoes a collision in the cell (i.j).

Otherwise. it crosses the appropriate z-edge boundary if sx is less than sv. and the

y-edge boundary if sv is less than sx, with sB defined as the distance to the closest

boundary (i.e., the minimum of sx and sv ).

Tracking particles in R- Z geometry is not as straightforward as in X - Y

geometry, since our coordinate system is now curvilinear. The spatial coordinates

are represented by r = ri + zj, where the origin is located on the centerline of the

cylinder where it passes through the lower face. The directional coordinates are

(reference Fig. 2-2) I1 = ufi,. + r/6= + _fi0. For a particle located in a cell (i,j)

as shown at Fig. 6-1b, the cell boundaries are vi.4.1/2 and zj±_/2. As in Cartesian

geometry,'the hppropriate boundarie's are z:a = _j+1/'2 for rI > 0, zB = zj-i/2 for"

r/ < 0, and rB = ri+l/2 for _ _ 0. The case for _t < 0 is not determined simply
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by the sign of the direction cosine, as can be seen by the cross-sectional view of a

cylind_ at Fig. 6-2. Instead, the cell boundary is determined by comparing the

angle 3 formed by the projection of f_ on a cross section of the cylinder with the

"'critical angle" a. From Fig. 6-2, sin_ = (/V/1- 02, and sina = r,_l/2/r. Thus.

if sin3 > sina, then the appropriate boundary is rB = r,+1/2, else. the boundary

is rB = ri-s/_.

The distance to boundaries in the axial direction is determined by sA =

(-'o - -)/r_. The distance to the radial boundary is determined from the Law of

Cosines as shown at Fig. 6-2, resulting in

8R -- V/1 , ;72 3-- r2 ' --

If 3 > a, then the only root of Eq, (6-3) resulting in a positive sn corresponds to

the positive sign. For 3 < a. there are two possibilities, since.the flight path now

intersects the cell boundary twice. The first intersection occurs at the lesser value

of sR, which corresponds to the minus sign in Eq. (6-3). The fate of the particle is

then determined as in the case of Cartesian coordinates, i.e., boundary crossing or

collision within the cell.

6.2 Tracking Particles Across Internal Boundaries

When a particle has a track length greater than the distance to the cell

boundary, and thgl; boundary is an internal boundary within the Monte Carlo re-
II o • • ,, ,

tl •• e

gion. then we must continue tracking the particle. This is accomplished by adjusting
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Figure6-2 DeterminingFlightDirectionand DistancesinR- Z Geometry
o 4 • Q • • •
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the track length determined by Eq. (6-2) to account for possible differences in ma-

terial composition by

_T, ij,._......__g, ( 6 -- 4 )
s ' = SB + (s -- SB) E r,i,j,g

where the identity of the new cell (i',j') is (i + 1,j) if the right-hand boundary

was crossed. (i- l, j) for the left-hand boundary, (i,j + 1) for the top boundary.

and (i,j- 1) for the k vttom boundary. The particle history is then continued per

Section 6.1 above, using the new cell boundaries.

6.3 Scorinz Particles

If the boundary crossed represents an external boundary of the Xlonte Carlo

region, then the particle must be scored in the appropriate boundary flux or response

matrix element. First. we determine which side of the Monte Carlo region has been

reached by examining the distance to cell boundaries computed above and the sign

of the appropriate direction cosine (e.g., in Cartesian coordinates, if s\- is less than

sy. and _zis negative, then the left boundary of the Monte Carlo region has been

crossed). The sign of the remaining free direction cosine is used to determine which

CoNquadrant the particle is to be placed into (e.g., with /J negative, 7?negative

corresponds to the "down and in going" quadrant, r/ positive to the "up and in

going" quadrant). The specific quadrature direction the particle is assigned to is

determined by the methods described in Section 5.3.

If the particle has exited the left or right sides of the Monte Carlo region
• _ , ,e . t

in X -t" geometry, then the vertical position at which it enters the S.,¢ region is
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determined by

y' = y + sBrl. (6 -- 5)

For a top or bottom edge crossing, the horizontal position is found from

x' = x + _B_. (6- 6)

The crossing position is then compared with the appropriate Sx fine mesh cell edges

to determine which cell has been entered.

In R- Z geometry, the axial position of a left or right edge crossing is found

fi'om

z' =Z+_Bq. (6-7)

while the radial position of a top or bottom edge crossing is

r' = _/(r+.._B)2+ (__B)2. (6- s)

Also. since the direction cosines/_ and _ change as a particle streams in curvilinear

geometry, the direction cosine along the radial direction must be recalculated prior

to the quadrature direction being scored. The updated direction cosine is

where _" = r' for a top or bottom edge crossing, and rB for a left or right edge

crossing.

Regardless of whether the boundary crossed is external or internal, or if the

• "event cohsists of a collision witl_in a cell, thugtrack'ler[gth of the particle (mollified b_""

the particle weight) within the cell is scored. Since our tracking algorithm measures
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distances from the starting point of the particle, and thus a track may cross several

ceils before terminating, we retain the distance to the last boundary crossed (st+)for

each particle. This distance is set to zero at the start of each particle, and updated

to sB after an internal boundary is crossed. With this information, the tracklength

in the last cell entered is sB - SL for a boundary crossing, and s - SL for a collision.

6.4 Collision Events Without Fission

When a particle undergoes a collision within a cell. we must determine its new

coordinates in phase space which result from the collision. We make the standard

assumption that collision times are small enough so that the position of the colliding

particle is unchanged, while the new direction and energy of the scattered particle

are determinedby sampling from appropriate probability density functions.

In X - Y geometry, the collision position is found from

z'= z +s_ (6- 10)

and

y'= y + st/, (6 - II)

where the unprimed direction cosines refer to the pre-collision directional coordi-

nates of the particle, and the unprimed spatial coordinates to the starting location

of the particle. In R- Z geometry, the collision postion is
g • o. • • • # " _ "41 O

+'= + + (++)+ (+-
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and

z' = z + _r/. (6- 13)

Since neutron do not lose energy as they stream, the particle enters the collision in

energy group g, the energy group in which it was located when it started streaming.

The collsion process itself is described by the set of multigroup, macroscopic

cross sections generated from the multigroup S.\- cross sections as described in

Chapter 8. From Eq. (2-7). the zeroth moment group-to-group transfer cross section

from group g to group g' for cell (i, j) is defined as

v',_0.9_ 9, =2_" dlloZ,j,9_9,(t_o)Po(l_o). (6-14)
1

From this definition, the probability of a neutron scattering from group g to group

g_ is then

Pg-9' = E,j0:_-¢/(-v'r,i_9 - EA.,_) (6- 15)

where E.4.09 is the macroscopic absorption cross section. The Pg-9' are then used

to form a cumulative distribution function, which is sampled to determine the group

gt in which the scattered neutron emerges.

Note that to conserve storage, cross sections are actually referenced by ma-

terial, not cell identifier, since the number of materials in a problem is typically
..

much less than the number of mesh cells. Note also that wh'.le a cell's material may

consist of a number of different atomic e].ements/isotopes, the hybrid Mo_,te Carlo

method uses the mixed SN macroscopic cross sections.

• • $ q

Once ihe energy group of the scattered neutron has been found, we mu"*_next

determine its direction. As described in Chapter 8, we generate 32 equally probable
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directional bins with respective widths A#0i, i = 1..... 32, from the group-to-group

transfer cross section Ezj,g-g,(#0) of Eq. (2-6). The number 32 was chosen because,

historicaUy, is it seems to accurately reproduce the angular cross sections without

requiring large amounts of storage. Note that #0 (i.e., f/_ • f_) is measured in the

laboratory frame of reference.

We then compute the bin i the neutron is scattered into by drawing a random

number ( and setting i = Int(1 + 32(). where Int is the integer function. The

scattered particle is assumed to be uniformly located in bin i, with the actual

scattering angle computed from

p0 =/_0_.L + (i -- 32_) '--k#0,. (6 -- 16)

where Poz.L denotes the angle corresponding to the left-hand edge of the ith bin.

Once the scattering angle #0 has been determined, the direction cosines of

the scattered particle may be calculated, assuIi:ing that the scattered neutrons are

uniformly distributed throughout the azimuthal scattering angle o. In Cartesian

coordinates, the new direction coordinates #1 rl', and (_ are is

#'=/_#0 + V/(1 -/_02)/(1 __2) (p_ cos ¢- r/sine), (6- 17a)

•rl'=rlp0+ , 1-#02)/(1-_2)(r/_cos¢-psinO), (6-17b)

and

- _#0 - V/(1 - #02)(1 - _2) cos¢. (6 - 17c}
• l ,m

• • • • _, qu •
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Instead of actually calculating the cosine and sine of the azimuthal scattering angle,

they are determined through rejection sampling, where, given random numbers (1

and (2 uniformly distributed on the interval [-1, 1] with rejection criteria (_ +¢:_ _<i,

(6- lS)

= +sin

In R - Z geometry, we first calculate post-collision direction cosines p', 9'.

and (' per Eqs. (6-17) and (6-18) above. Since the direction cosines vary with the

position of the particle, whicL is updated during the collision process, the radial

direction cosine corresponding to the revised particle position is

= [,'(,.+,_)+_'_]/,-'. _6- 19)

The axial direction cosine 9' is. of course, unchanged. Instead of directly calculating

the azimuthal direction cosine _', we first find the cosine and sine of the angle 3 (see

Fig. 6-2). which are required for tracking in cylindrical geometry, from

cos3 = -_ l V/1- _,2 (6- 20a)

and

sin 3 = X/'i- cos2 3. (6 - 20b)

We then calculate

_"= sin '3 _i - 9' 2. (6 - 21)

Once the new energy group and directional coordinates of the particle have

been calculated, the updated spatial coordinates are examined to see if the particle
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is now located outside the group g' Monte Carlo boundaries. If so, the fine mesh

cell the particle is located in is determined and the particle is scored per Section 5.4.

In analog Monte Carlo, the weight of a particle would remain a constant

_'hen undergoing a collision, with absorption being modeled through the complete

elimination of a particle based on a sampling of the probability of survival

c = 1 - EA,ijg / Er, ijg. (6 - 22)

Instead. we choose to implement a standard variance reduction technique known as

"'implicit capture" or "absorption suppression", where explicit absorption is replaced

by reducing the particle weight by the factor c.

If c << 1. or if the Xlonte Carlo region is large and the particles undergo

many collisions before escaping, the use of implicit capture may result in very small

particle weights. Since the time required to track a particle is independent of its

weight, this results in the expenditure of large amounts of computational resources

on particles whose weights are too small to affect the calculation's results. This

is remedied by imposing a weight cutoff known as "Russian Roulette". is Particles

with a weight w below a user-input weight cutoff of u'2 are assigned a probability

of survival w/wl, where wl is also a user-input number. The survival probability is

then sampled by drawing a random number ( on the interval [0,1]. If (: > w/u'l, the

particle is eliminated, otherwise, it is assigned the weight wl. While this violates

particle conservation on an individual basis, on the average it will still hold if

"" • , :eaou%h histories are run. - • • .
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As discussed in Chapter 4, explicit outscatter is replaced with a reduction

in particle weight during the response matrix calculation. This is implemented by

replacing the value of c normally used with

cnM = _,jo.g--g /Er.,ig, (6- 23)

where E,i0.g_g is as defined in Eq. (6-14). All particles remain within group g after

a collision _ring the response matrix calculation for Rgg.

1.5 Collision Events with Fission

Typically, ._Ionte Carlo codes model the fission process by sampling the prob-

ability that a collision results in a fission, a.'ld, if one occurs, sampling appropriate

distribution functions to determine the number of fission neutrons emitted and their

energies. All of the resulting particles are then tracked separately.

With the hybrid method, we chose to model fission in a manner analogous to

implcit capture, which we denote by "imlSlicit fission". That is, the probability of a

fission event, the number of fission neutrons emitted, and their energy distribution

are modeled by adjustments in particle weight and outscatter probabilities of the

colliding particle, without the creation of additional particles. This is done fo:" two

reasons:

" - •1. The cross section" da'ca from [he SN as dDtained by the "Monte Carlo is givgn - '

in terms of the quantity I]_F, ijg. Thus, tables of v (the number of neutrons

emitted per fission) are not readily available for sampling.
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2.Generationof separatefissionparticleswould entailincreasedstoragere-

quirementsforvectorization,sinceexcessfissionparticlesmust be stored

untiltheycanbe includedintheappropriateeventstack(seeChapter7).

Inimplicitfission,theparticleweightmodifierbecomes

c' = c + VEF._#g/Er, og, (6 - 24)

and, for response matrix calculations.

' 25cRM = cRM + vEF.OgXg/Er,,)g, (6 - )

where "_g is as defined at in Eq. (2-4). Note that c', and even c_M, may now

be greater than one. The probability of "scattering" to group g' from group g

[Eq. (6-15)] becomes

EUo,9-. 9, "Jr"z)EV, ijg \g, (6- 26)
Pg-g' = Zr, ug - ZA.,_g + v..,f,,jg_' '

Also, since we assume fission neutrons are emitted isotropically, we revise

the zeroth moment of the angular scattering cross section to include the fission

neutrons, i.e.,

ij0,g--g, = E_j0,g--g, + vEF, i)gXg,. (6- 27)

The revised angular scattering cross section is used in calculating the angular bins

&/_0s (see Chapter 8).

i, . .. ,,o, •

Since fission neutrons are now inkli_tihguishable_rom normally scattered neu-

trons, but we wish to include separate categories for the two when forming integral

1

/ --
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balancetables,we calculatetheprobabilitythata "scattered"neutronisactually

a fissionneutron.Thisprobabilityis

vZr,Og_g, (6- 28)
PFN,g--g' = Zi30,g_..g ' + gZF, ijg_g ' •

This probability is used to divide the weight w of a particle between the fission

and inscatter entries of the balance table, where the fission weight entering a group

g_ after a collision in group g is w PrN,g--g', and the inscatter weight is u,(1 -

PF.v.g-.g, ).

I

The implicit fission method is disadvantageous in regions where c' (or cR.xl)

is greater than one, since if a particle undergoes multiple collisions within such a

region, than its weight can grow without limit. The creation of such "heavy" par

ticles increases the variance of a problem, as will be seen in some of the benchmark

problems of Chapter 11. Thus. consideration should be given towards reverting to

a more traditional treatment of fission neutrons in the future, since none of the

reasons listed above for using implicit fission pose insurmountable barriers to an

analog treatment of fission.

1.6 Samplin_ the Fixed Source

As explained in Chapter 4, we sample the fixed source in order to determine

the _o,,t We assume at present that the fixed source is entirely locate,t within thewg •

Monte Carlo region, although nothing in the hybrid method inherently precludes

a fixed source split between the Monte Carlo and SN regions, or even one entirelY"

located within the SN region. We also assume a normalization of the fixed source
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intensity to one neutron per second. Provisions are currently included withill the

hybrid method for four types of fixed sources:

1. An isotropic distributed source,

2. An isotropic point source,

3. An isotropic surface flux source, and

4. A monodirectional beam source (X - Y geometry only).

In X - Y geometry, the isotropic distributed source is implemented with

input parameters xl, z2. !l_, and y_, which refer to the left. right, bottom, and

top limits of the distributed source, respectively. To determine the starting spatial

coordinates (z.y) of a particle, we define Az = x.2 - xl and Ay = yz -//1, then

draw random numbers ff to get z = zl + (Ax and y = yl + _Ay. The initial coarse

mesh cell is found by comparing the starting spatial position with arrays containing

the SN coarse mesh cell edge positions. Since an isotropic source is uniform in the

az.imuthal angle ¢ and the sine of the polar angle 0. and dr/ = sin 0 dO (reference

Fig. 2-1), the initial direction cosines of the particle are found from 17= 2( - 1 and

= _'_, with _ = V/1 - 02 cos _ and _ = _1 - r/2 - #2.

In R- Z geometry, the input parameters are rl, r2, zl, and z_, which denote

the inner, outer, bottom, and top limits of the distributed source, respectively.

The initial axial coordinate is computed as above, with Az = z2 - zl, arid z =

zl + _Az.. In cylindrical geomtery, since we assume the source is _tistributed evenly

throughout the volume of the cylinder within the limits of the input parameters,
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the distribution along the radial' direction is uniform in r 2, not r. In terms of the

method described at Section 3.1, our probability density function (PDF) is related

to a uniform distribution by
2r'dr t

aC'= (r_- ,,_) (6- 29)

Integrating d(' from 0 to (, and dr' from rl to r, and solving for r, we obtain

The direction cosines/_ and r/are determined as in X- }" geometry above, while

Eqs. (6-213) and (6-21) are used to determine _ and sin 3 (required for tracking in

cylindrical geometry as discussed in Section 6.1).

For all source options and geometries, the initial energy group of a particle is

determined from a user-input array containing the source spectrum Sg. The discrete

PDF describing the source spectrum is thus

G

p_=s_/_ s_,. (o- 31)
gl=l

This PDF is used to form a cumulative distribution function, which in turn is

uniformly sampled to obtain the initial energy group of a particle.

The point source options are handled similarly to the distributed source

options, except that the starting spatial position, and thus the initial coarse mesh

cell, are fixed, and the only input parameters required are zl (rl) and yl (zl). Note

that for R- Z geometry, the "point source" option actually represents a circular

ring when rl > O.
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The isotropic surface flux option in X - Y geometry consists of an isotropic

flux impinging on the left surface of the Monte Carlo region with top and bottom

boundaries Y2 and Yl, respectively. Thus, the x coordinate is fixed at zero, while

the y coordinate is determined as in the case of a distributed source. The initial

directional coordinates are determined by sampling the incoming current which,

since the flux is isotropic, is proportional to p. Thus, tt_e PDF is related to the

uniform distribution by

2#' d#' = de;'. (6 - 32)

Integrating g' over the limits 0 to #, since it is an incoming current from the

left, and solving for #, we obtain # = v/_. Since the surface flux is isotropic, the

current is azimuthally symmetric about the p, and the remaining direction cosines

are determined by r/= C'I - #2 cos o and _ = v/i - #_ - r/2, where v = 2rr(.

In R - Z geometry, the isotropic surface flux option represents an isotropic

flux impinging on the outer face of the cylinder, with top and bottom boundaries

z2 and zl. Thus, the option is entirely analogous to the X - Y surface flux option,

except that # = -V_. The sine of the angle ,.'3required for tracking in R- Z

geometry is computed from/3 = -arctan({/p).

Finally, the monodirectional beam source in X - Y geometry consists of

initial spatial coordinates xl and yl, with fixed directional coordinates r/, and ¢_,

from which #, = x/'l - r/_ cos ¢, and _s = _1 - 772- #_.
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1.7 Sampling the Response .XIatri:_

From Chapter 4, we sample the group-within-group response matrix P,,gg,

where the element rij represents the angular flux leaving the Monte Carlo region in

_¢::state i due to a unit incident angular flux in S_v state j. The sampling is per-

formed by assigning N3 histories to the j th column of P,.gg, which are then followed

through the Monte Carlo region to determine the ith stare (row) in which they reen-

ter the S.v region. As described in Secticn 6.4 above, outscatter is not allowed, so

each history can terminate only by physically crossing a Monte Carlo/SN interface

or an outer boundary surface. (If a weight cutoff is in effect, then histories may also

be terminated through particle elimination.) Thus, each particle contibutes to its

respective column's score, ensuring maximum efficiency.

Currently, the same value of Nj, which we denote by NRM, is used for

each column, regardless of its actual importance. The efficiency of the response

matrix calculation could be increased by performing a single S.v iteration, using the

boundary fluxes from the sampling of the fixed source, to determine the approximate

incoming boundary fluxes from the SN into the Monte Car._ region. The incoming

angular boundary fluxes would then be used as a weight to determine the relative

size of the Nj. Alternatively, the entire problem could first be solved by a low order

SN calculation, with the appropriate cell edge fluxes saved to be used as a weighting

function. The latter approach would be preferable in problems with large fission

or upscatter cross sections, since it would allow the use of outer iterations. The

determination of the relative merits of the two approaches, or of other methods, is

left as a future problem.
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In sampling the reponse matrix, each incoming S N state (column) corre-

sponds to the edge of a unique fine mesh cell, located along the SN/Monte Carlo

interface. Since the Monte Carlo region is rectangular, there are a maximum of four

different locations along the interface for a given state - top, bottom, left, or right.

The actual number may be less than four, since a boundary of the Monte Carlo

region may be located along a vacuum or reflective (R- Z geometry) boundary

condition, in which case the corresponding columns of the response matrix are not

needed.

In X - }" geometry, if a state is located along the top boundary, then the

particles used to sample that state have their initial y coordinate fixed at Yr. As-

suming that the state corresponds to the ith fine mesh cell. with width Ax, and

left edge x t.,i, the initial x coordinate is found from z = x L,, + (Ax_. Since the

initial fine mesh cell location is already known, the starting coarse mesh cell is eas-

ily determined from previously calculated SN arrays. For cells along the bottom

interface, the identical procedure is used, except that y is fixed at VS. Similarly, for

the left and right edges, x is fixed at ZL and xR, respectively, while y is found from

y = YB,, + _/XYi.

In R- Z geometry, the left and right edges are sampled as above, with r

fixed at rL or rR, and z found from z = zs,I + _Az,. Along the top and bottom

edges, however, the distribution is uniform in r 2, not r, as in the case of the isotropic

distributed source in the preceeding section. Thus, the initial radial coordinate is

found from r = V _ L,1+1 - r_,,) + r_,,.
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Along each edge, there are two different quadrants of directions. For example,

the direction cosine 17is always negative ("downgoing") along the top edge, while

" the direction cosine # may be negative ("incoming") or positive ("outgoing"). The

allowable combinations are shown at Table 6.1 below. Each quadrant consists of

a set of S.,,, directions f_,, as shown at Fig. 5-3, with an associated solid angle

An,, as described in Section 5.3. For a given state j with associated direction f_j,

the incoming particles are assumed to be uniformly distributed Over the surface of

the solid angle Af_. Thus, if r/s is the cosine of the polar angle 8s associated

with the "bottom" edge of the f_j bin, then the direction cosine r1 is determined

by r} = rls + ¢ Aq. where &q is as defined in Section 5.3. The sign of 77is found

from Table 6-1. The azimuthal angle is determined in a similar manner, with Ao

representing the bin width, and oL the bin's "left" edge. The azimuthal angle of

the incoming particle is then found from 0 = OL + (, &O. where the resulting value

of o is in the range [0.7r/2]. Depending upon the required sign of g from Table 6-1,

the constant _/2 is then added, and the direction cosines p and _ are calculated as

described above.

Table 6-1

Allowable Directional Quadrants
.....

Edge # O
Top 1 -1 -1
Top 2 +1 -1

,, ,

Right 1 - 1 - 1

..... Right 2 ..... "]. .. + 1
Bottom I I +I

Bottom 2 + 1 .... _ + 1
LeftI +I -I

Left 2 +I +I
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1.8 _Sampling the Incoming Boundary Fluxes

As described in Sections 5.5 and 5.7, subroutine DWNSRC samples the

residual incoming boundary fluxes `5_/gn(p,_) to determine their contribution to the

Q_Ut(p+x). The mechanics for sampling the incoming boundary fluxes are identical

to those of the response matrix described above, with the exceptions that particles

are allowed to scatter to a different group upon collision (reference Section 6.4), and

the number of histories per state (,Yj) is weighted to reflect the residual number of

particles entering the Monte Carlo region from the S._ region in state j.

To begin, we calculate the total residual leakage L p into the Monte Carlo

region for outer iteration p from

30

L; = E ""n'P'°C)l[,5,.g.j Af_ AAj, (6 - 33)
./=1

where Af_j is the solid angle associated with state j, AA: the surface area, and

J9 is the total number of states in the group g Monte Carlo/S.,¢ interface. The

absolute value sign is used since there is no guarantee that the residuals will be

non-negative. For the first outer iteration (p - 1), the total number of histories to

be run for group g (N_) is determined from

N_ = Jg x NaM, (6 - 34)

so that approximately the same amount of effort is used in sampling the incoming

boundary fluxes as was used in sampling the response matrix. For subsequent

residuals, the decreasing importance of the residuals is reflected by using

1.2/1.2-1
N_ = dg X zYRM X _gt_ 9 . (6- 35)
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To prevent arbitrary increases in N_ when/2_ > /:_-l, as can sometimes occur

for large p, the maximum allowable value of Lt_/L_ -l is fixed at one. The actual

number of histories run for an individual state j is

To correct for roundoff error in Nj, since only an integral number of histories can

be run, and to incorporate the possibility of negative residuals, the weight assigned

to the state j particles is

wj Sgn( i.(p,z¢)= 6_.,g,j )Nj / Int(.Vj), (6- 37)

where Sgn is the sign function.

1.9 Samplin_ the_Volumetric Sources

From Section 5.4, subroutine SNTOMC determines the contribution of the

group g volumetric sources located in the Monte Carlo region to the no,,, Since the,_91 •

SN stores only the moments of the volumetric source I'}jim9 and, from Section 5.7,

we wish to sample the residual volumetric source, subroutine SNTOMC begins by

computing the residual moments for outer iteration p from

= 1,O'.,g- Vo_-',g' (6 - 38)

where ij denotes the fine mesh cell (i,j), and Irn the lth, ruth spherical harmonic

(reference Section 2.3). The total residual volumetric source in the Monte Carlo

region is then determined from

= I,SXooogIz.%v,,j, (6- 39)
i,j
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where Al/,,y is the volume of cell (i,j), and the sum is over all fine mesh cells located

within the group g Monte Carlo region. The absolute value signs axe used since the

61v,_00gmay be negative. Since we wish to assign approximately equal weight to the

sampling of the fixed source and the sampling of the volumetric sources, the total

number of histories to be run for the group g volumetric source is calculated from

N_ = Int(N x T_), (6- 40)

where N is the number of histories used in sampling the fixed source.

To actually sample the volumetric source in cell (i, j), we first reconstruct

the residual angular flux $¢,j.g from

L +l

1=0 m=0

where }tin. represents the /th, ruth spherical harmonic evaluated at the discrete

direction l')..

Once the residual angular flux has been reconstructed, the number of histo-

ries assigned to it is found from

N_.g Y_ P= 16¢,i,,g]AV, j Aft,, / T;. (6 - 42)

As in the outscatter calculation, since only an integral number of histories may be

p
run, and 6¢,jng may be negative due to not only the use of residuals, but the use

of the spherical harmonic representation, the weight assigned is

w,y.g : Sgn(6¢f/.g).N_.ng / Int(N_.g). (6 - 43)
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The sampling of the angular phase space coordinates is identical to that of the

response matrix, with the addition that since we have a volumetric source there

are now a total of four possible directional quadrants per cell. The spatial phase

space coordinates are also sampled in a similar manner, except that both spatial

coordinates are sampled for each history, of course.
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CHAPTER 7.

VECTORIZATION OF THE HYBRID MONTE CARLO METHOD

Monte Carlo is inherently a sequential process, where the natural flow of

computation is to follow a single history until it terminates, and only then initiate

the next history. While this method of processing histories is perfectly acceptable for

machines with sequential processors, it fails to fully use the capabilities of machines

with vector processors. Essentially. a vector processor is capable of performing

the same operation, or series of operations, on numerous sets of data (64 on Cray

machines) at the same time. Ideally. then (neglecting overhead), a vector machine

could process 64 particles in the same amount of time it would take a sequential

machine to process just one. The catch is the requirement that the vector processor

perform an identical set of operations on a given set of data. While it is fairly easy

to adapt the logic of S.x" codes to form arrays that can be processed vectorially.

the numerous possible logical paths available to individual Monte Carlo particles

(e.g., collision, internal boundary crossing, etc.) inhibit the vectorization of Monte

Carlo codes. Thus, the key to vectorizing Monte Carlo codes is to somehow group

histories into sets which require identical processing actions.

Since Monte Carlo calculations are typically much more CPU-intensive than

S v calculations, it is crucial to minimize the amount of time spent in tracking

particles wherever possible. This requirement also applies equally as well to the
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hybrid method, where the time spent in the ),Ionte Carlo portion of the code usually

far outweighs the time spent in the S.,¢ portion of the code. Thus, to maximize the
Q

ef_ciency of the hybrid method, it is desirable to vectorize the hybrid Monte Carlo

method.

7.1 The Event-Based Vectorization Method

The method we have chosen to vectorize the hybrid Monte Carlo method

involves the formation of event-based stacks, 21-23 where each stack consists of a

group of particles undergoing an identical event, such as a collision. To maximize

efficiency, since a vector processor requires roughly the same time to process a stack

containing one particle as one containing sixty-four, a stack is only processed, if pos-

sible, when it is full. After a stack has been processed, the pa_'ticles are distributed

to other stacks for further processing, if required. Note that we do not physically

transfer a particle, of course, but rather its attributes, such as phase coordinates,

and other information required for stack processing, such as the distance to the next

boundary. As soon as another stack fills up. it to is processed, and its particles are

in turn redistributed.

Because a particle can undergo numerous events before its history is ter-

minated, and these events have no set sequence, the event stacks necessarily have

multiple connections to one another. That is, a stack can typically receive particles

from more than one other stack, and can, in turn, transfer particles to multiple

stacks. Thus, more than one stack may fill up at the "same" time, and, as a result,
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there may be an attempt to transfer more particles to a given stack than it has

space available.

To solve these problems, a dynamic stack control system with individual

stack reservoirs is used: For each type of Monte Carlo calculation in the hybrid

method, there is a specific driver subroutine which controls the overall movement

of particles into and within the system. A driver subroutine begins by introducing

source particles into the system, which are then sorted according to the criteria

of Section 6.1 and placed into the appropriate event stack. As an event stack

fills up with these source particles, its associated subroutine assumes temporary

control, processing its stack and redistributing its particles as required. If the

redistribution of particles results in additional stacks filling up. control is passed

down to their associated subroutines, in a prio_itized order, for their execution. If

necessary, these subroutines can also pass control down to yet another subroutine(s).

if their execution results in additional stacks filling up. As soon as a subroutine

has finished execution, including the execution of any subroutines it passed control

to. it in turn releases control back to the subroutine which originally passed it

control. Once control has been returned all the way back to the driver subroutine,

it introduces more particles into the system, either from the source or an individual

stack reservoir.

Individual stack reservoirs are required since there exists the possibility that

a subroutine may need to transfer particles to a stack in which there is no more

room. In this case, the excess particles are temporarily placed in a holding stack,

from which they will be transferred to their original destination when space is

available. The term "individual" stack reservoir is used since, unlike most other
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vectorized Monte Carlo codes, 21-23 there is no single master reservoir into which

all excess particles are placed. Rather, the stacks where logjams may occur have

an additional stack(s) to act as a reservoir for excess particles. Individual stack
)

reservoirs are felt to be more efficient than a single master reservoir_ since particles

in an individual stack reservoir have their destination and all necessary information

already ax-ailable, whereas particles in a master reservoir must be resorted. However.

the use of individual stack reservoirs does present difficulties in problems when

particles are created through fission, since a master reservoir is easily enlarged to

hold the additional particles, while the creation of additional reservoirs is not as

straightforward. While the use of implicit fission (reference Section 6.5) renders the

problem moot. the individual stack reservoirs should probably be replaced with a

master reservoir if analog fission is used.

As previously stated, a stack contains all of the particle attributes necessary

for the execution of its associated subroutine. When a particle is transferred from

one stack to another, these attributes must he moved from their location in the

controlling stack to locations in the receiving stack. Since a single history will typi-

cally undergo several stack transfers, the overhead involved in transferring particles

can easily form a substantial portion of the computational time. Two actions have

been taken to minimize this overhead.

First, a set of Cray Assembly Language (CAL) utility routines are used to

transfer particle attributes. 21-23 CAL masking routines are first used to encode

particle destination words for each stack, where a bit value of one corresponds to a

particle to be transferred. Next, the CAL routine MOVXTOB is used to actually
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transfer the particle attributes into open slots in the destination stack. A parti-

cle's attributes are transferred vectorially, while each particle itself is transferred

sequentially. As a particle is moved, MOVXTOB resets the appropriate bit in the

particle destination word to zero, thus maintaining a record of which particles have

been transferred. This is important in the event the destination stack fills up, and

particle transferrence must be suspended while it is executed.

Second. the number of attributes that need to be transferred are kept to a

minimum, since not all stacks require all attributes. Because the utility routine

MOVXTOB requires a transferred particle's attributes to be arranged sequentially

in memory, the attribute lists are structured so that the minimum number of at-

tributes required to meet the needs of the target subroutine, or its chain of pos-

sible •subsequent target subroutines, are actually moved, within the limits of the

sequential memory requirement of .XIO\'XTOB. Furthermore. some attributes are

calculated only as needed, and not saved for transferrance, if the time required for

their computation is minimal.

The vectorization scheme employed in the hybrid method is shown at Fig. 7-

1. The names in the boxes refer to the vectorized Monte Carlo subroutines, while

the associated event stack a subroutine executes is listed below. The stacks in

dashed boxes without subroutines are individual stack reservoirs. The lines and

arrows represent possible particle transfer paths between the subroutines, while the

numbers adjacent to the lines refer to the number of particle attributes transferred

between stacks. Where there axe two numbers, the first refers to X - Y geometry,

while the second, in parenthesis, is for R - Z geometry. Note that there are eight

event stacks, with three individual stack reservoirs (Stack 7 is not currently used).
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The number of attributes required to be transferred between stacks ranges from 9

to 20. The stack attributes are listed at Table 7-1 below, where the symbols are as

defined at in Chapter 6, with the exception that :M, YM, rM, and ZM refer to the

appropriate Monte Carlo region boundary for a given direction and energy group.

The attributes CONST, XCOSB, SINB, and YSIN are used only for cylindrical

geometry calculations.

Table 7-1

Stack Attributes

Name Symbol SO $1 $2 $3 $4 $5 $6 Si 1
C0'NST r2(cos 2 3 -'1) • • • • .... •

....

XCOSB r cos 3 "' • • • • •
, ,,, ,, .....

SINB sin3 • • • • •
", , .... , ii ......

,,'six 4!- • • • • ,
X x(r) • • • • • • • •, ,.

Y g(z) • • • • • • • •,.,,, ,. ,

U tt • • • • • • • ,,
ETA 7/ • • • . • • • •,, ,,,,

TSI "_ • • • • • • • •
WT w • • • • • • • •

, , ,,,.. ,,. ....

S ,_ • • • • • • • •

....(.:? ..........IE ) • • • • • • • •
,, ,,,

IG* g .......... • • • • • • • •
SL sC • • • ,, • • •

, ,.,.

SBX ......._,_(sR) • • • • • •

SBY st" (sz) • • • • • •
XMAX xM (rM) • • • • •, ,, ,

YMAX YM ( zM ) • • • •
, ,,

BOUNDX XB (rB ) • • • •,i

BOUNDY.. j YB(ZB) • ,, • •

• For response matrix calculations, IG contains the particle's starting column

The vectorization scheme begins with the determination of the starting coordinates

in phase space for 64 particles located in Stack 0, which is performed by subroutine
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SRCGET for fixedsource Monte Carlo calculations(Section6.6),and RMGET

forallothers(Sections6.7through 6.9).The remainingattributesin Stack0 are

then calculated by a call to subroutine CALC0, which determines the path length

and performs the distance to boundary calculations described in Section 6.1.

Once all necessary attributes have been determined, the particles are transferred

to Stack 1, and their destination (i.e., their next event stack) is determined by

subroutine TRCK as also described in Section 6.1. Particles exiting the Monte

Carlo region are transferred to XSCORE (Stack 4)or YSCORE (Stack 5) for scoring

(reference Section 6.3), those crossing an internal Monte Carlo boundary are sent to

XRW (Stack 6) or YRW (Stack 3) (reference Section 6.2), while those undergoing

a collision are sent to subroutine COLL (Stack 2) (reference Sections 6.4 and 6.5).

For response matrix calculations, subroutine COLL is replaced with subroutine

RMCOLL, which uses the modified cross sections required for group-within-group

only scattering.

If a stack or stacks fill up during the transfer process from TRCK, the particle

transferrance process is suspended while the target stack is executed. For Stacks 4

and 5 this presents no problem, since a particle's history is terminated when it leaves

the Monte Carlo region. Execution of Stacks 2, 3, and 6 is not as straightforward,

however, since they attempt to feed back into Stack 1, which may still contain

particles. This conflict is resolved by having the target stack fill the a_-ailable slots

in Stack 1, thus partially emptying the target stack and enabling the transferrance

process from TRCK to resume. As more slots in Stack 1 open up, the remaining

particles in the target stack are transferred into them. The process is very similar

to juggling, where, instead of balls, we are using particles.

, , .... . .... _ .... , ..... _............. , ........... ,,, i .... , _ ...... ........................... ............ _.................... _........... _,__,_,,_,,, ...... _..........
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The juggling process breaks down, however, when two, or even all three, of

Stacks 2. 3. or 6 fill "up and attempt to feed back into Stack 1 simultaneously. To

resolve this conflict, priority is given to one of the stacks, which places a lock on

Stack 1, forcing the remaining stacks to transfer their particles to the individual

particle reservoir. Stack 3 (YRW) is assigned the highest priority, followed by

Stack 6 (XRW), and then Stack 2 (COLL). This scheme is used since less memory

is required to store the particle attributes of Stack 2. Because of the above priority

scheme and control structure, one individual stack reservoir is sufficient for XRW

and YRW. while two are required for COLL.

Subroutine COLL generates new phase space coordinates and weights for

all scattered particles, and performs the "Russian Roulette" weight cutoff process

described in Section 6.4. COLL then checks to see if the new phase space coordinates

place a particle outside the .Monte Carlo region. If so. it is tagged for transfer to

Stack 11. When (and if) subroutine COLL has filled up Stack 11. it passes control to

subroutine .XICTOSN, which scores the volumetric source in the S.,_,region resulting

from particles scattering out of the Monte Carlo region (reference Section 5.4).

Subroutine .x,ICTOSN returns control to COLL once it finishes execution.

If there are slots available for COLL to transfer its remaining particles to

Stack 1, it does so, and then calls subroutine CALC (identical to subroutine CALC0)

to calculate the remaining attributes required by subroutine TRCK. If Stack 1 is

already being used by another subroutine, COLL instead transfers its particles to

an individual stack reservoir as described above. Control is then relinquished to the

subroutine which called COLL.
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When subroutines XRW or YRW are executed and transfer their contents

back into Stack 1, Stack 1 should contain 64 particles, since particles are not lost

(hopefully) in an internal boundary crossing. This is not the case with subroutine

COLL, where particle histories may be terminated through either a weight cutoff

or by scattering into the SN region. To ensure that only full stacks are executed,

when possible, the driver routine transfers enough particles from Stack 0 to fill up

Stack 1. If there are not enough particles remaining in Stack 0 to fill up Stack 1,

the driver routine introduces another set of 64 particles into Stack 0. Other than

this "topping off" of Stack 1, the driver routine only releases source particles into

the system when all event stacks contain less than 64 particles, and all individual

reservoir stacks have been emptied. This ensures that the capacity of the system

will not be exceeded.

Once all the source particles have been exhausted, the driver routine proceeds

to "flush out" the collision and internal boundary crossing stacks. The stack with

the largest number of particles is executed first, then the next largest, etc.. until all

r,_ticles have been forced into a scoring stack. Note that the collision and internal

boundary crossing stacks may have to be executed more than once apiece, since a

particle can undergo more than one collision or boundary collision before scoring.

The driver routine then concludes by cleaning up the scoring stacks, which, since

they do not feed particles back into the vectorization scheme, need only be executed

once apiece.
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7.2 Comparison of Sequential and Vectorized Code Execution Times

Ideally, the vectorization of a code would result in a 64-fold increase in speed,

since we can track 64 particles in the time it previously took to track just one. How-

ever. not all portions of a code are vectorizable, and vectorization itself is subject to

a considerable amount of overhead (e.g., the movement of particles between stacks).

Thus. a 64-fold increase in speed is not achievable in practice.

To measure the actual increase in speed, we compare two versions of the hy-

brid Monte Carlo/S.v code which are identical, except that one has had its .XIonte

Carlo tracking routines vectorized, while the other retains sequential methods. We

choose four representative sample problems for comparison, since the increases in

speed will vary from problem to problem. All comparisons are performed on ._Ia-

chine 6. a Cray Y._IP. at Los Alamos, and all times are measured in CPU seconds.

The results obtained with the sequential and vectorized versions agree within sta-

tistical uncertainties.

The first problem consists of a one group, homogeneous 11 by 11 cm block

in X- Y geometry, where the Monte Carlo region (including boundary layers)runs

the entire width of the block between y = 4 and y = 7 cm. The fixed source consists

of an isotropic distributed source with 1 cm dimensions at the center of the block.

The (fictitous) cross sections are defined so that Er = 1 cm, and Zs = .05 cm with

isotropic scattering. The CPU times required to sample the fixed source (subroutine

SRCMC) and the response matrix (subroutine RM) are shown at Table 7-2 for both

the sequential and vectorized versions of the code, along with relative increase in

speed. The identical number of histories were used in both versions (approximately
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455,000 for the fixed source, and 1.3 million for the response matrix). Both the

source and response matrix calculations show approximately a factor of four and a

half increase in speed with the vectorized version.

Table 7-2

Sequential vs. Vector Comparison,
Problem # 1

- Type SRCMC RM................... , _ ,,,,

SEQ 57.53 sec 114.7 sec
\'EC 12.55 sec 24_.16sec

..... SEQ/VEC 4.6 .... 4.7....

The second sample problem is a three group, homogeneous 10 by 21 cm

block in X- Y geometry with isotropic scattering, where the ._Ionte Carlo region

(including boundary layers) runs the width of the block between y = 9 and y = 12

cm. The boundaries of the Monte Carlo region are group-independent, since _ r = 1

cm for all three groups. Downscattering only is allowed, with E s.l--2 = Es.I--_ =

.025 cm. _s.2--3 = .05 cm, and _S,g-g = .95 cm. There is a small amount of

absorption present in the third group, with EA,3 = .05 cm. The fixed source

consists of an isotropic distributed source located along the width of the block

between y = 10 and y = 11 cm. Approximately 710,000 histories were used to

sample the fixed source, and 160,000 for each response matrix.

A comparison of the source and response matrix calculation times is shown

below at Table 7-3. While the response matrices again show about a factor of four

and a half increase in speed with the vectorized version, the source calculation's in-

crease is "only" a factor of four. This reduction in efficiency is due to the presence of
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two loops in subroutine COLL which could not be vectorized for multigroup prob-

lems. These two loops, of which one determines a scattered particle's new group,

and the other the group a particle is to be scored within for the integral balance

tables, require multiple passes for multigroup problems. Since the response matrix

calculations do not use subroutine COLL, but rather subroutine RMCOLL. which

requires group-within-group scattering only (reference Section 6.4), the.v are not

subject to this fixed overhead and subsequent reduction in efficiency for multigroup

problems. Note also that since the size of the Monte Carlo region is identical for

each group, as are the response matrix cross sections, the calculation times are also

almost identical betwen groups.

Table 7-3

Sequential vs. Vector Comparison.
Problem # 2

_ _ sRc.  c i R. I3 ,,
SEQ 77.35 see 13.'91 sec 13.91 sec 13.96 sec

- \'EC 19.'"23 sec 3.05 sec - 3.05 sec ...... 3.05 sec

- SEQ/VEC 4.0 4.6 " 4.6 .....4.6 .......

The third sample problem is a one group, homogeneous cylinder with a radius

and height of 11 era, and a isotropic distributed source located between r - 5 to 6

cm, z = 5 to 6 cm. The Monte Carlo region consists of the area from z - 4 cm to

z = 7 era. Linearly anisotropic scattering is used, with Er = 1 cm and Zs - .95

cm. Approximately 85,000 histories were used to sample the source, and 190,000

for the response matrix. The respective computation times for the sequential and

vectorized codes are shown below at Table 7-4. For R- Z geometry, the increase

in speed with the vectorized version is between a factor of five and five and a half.

This increase is greater than that for X - r geometry, since more calculations are
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required when tracking a particle in cylindrical geometry, and thus more benefit is

obtained from vectorization.

Table 7-4

Sequential vs. Vector Comparison,
Problem # 3

_ T,_pe SRCMC RM
SEQ ....._12.5see ' 24.8 'see
VEC 2.29 sec 4.82 sec

SEQ/VEC o.o"" ............... 5.1....

The final sample problem is a two group, hetrogeneous cylinder with a radius

of'10 cm and a height of 25 era. The designated Monte Carlo region is composed of a

strong absorper with cross sections ET = .1 cm. V's.l_l = .005 cm. -v's,l_2 = .005

cm, Es,2-2 = ,01 cm, and EA = .09 cm. The boundary layer and S.,,- regions

consist of a pure scattering region with ET = 1 cm. Es, l--1 = Es, l--_ = .5 cm.

and Es,2-2 = 1 cm. The Monte Carlo region (including boundary layers) is the

area between z = 10 and z = 15 era, and the fixed source consists of an isotropic

point source located along the axis at r = 12.5 cm. Approximately 750,00 histories

were used to sample the fixed source, and 265.000 for each response matrix. The

increase in speed of the vectorized version over the sequential version (Table 7-5) is

again between a factor of five and five and a half, with the source calculation being

slightly less efficient since it is a multigroup problem. Since the total cross sections

are group independent, the Monte Carlo region is also group independent, and the
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response matrices require similar computational times.

, Table 7-5

Sequential vs. Vector Comparison.
Problem # 4

Type " SRCMC - R.M1 R312
SEQ .... 71.78 sec 24.86 sec .... 13.96 sec
VEC " 14.09 sec 4.54 sec 3.05 sec

....VEC o.o o.o
..........

The percentage of the total computational time used in transferring particles

between stacks (subroutine ._IOVXTOB) in the sample problems varied between

6_ to 12c_, with the other vectorized .Monte Carlo routines (e.g., XSCORE. COLL,

TRCK. etc.) using from less than 5_ to almost 15c_ each. and totaling between

35c?_and 55c?_of the total execution time. About 5c?_to 10cA of the time was spent

in routines for intrinsic FORTRAN functions (square roots, logs. cosines, etc.), with

another 5c_ to 10_ used in specialized Cray functions (random number generators,

vector mask functions, etc.). Of the remaining time, the "outer" 3Ionte Carlo

routines (SRCkIC, MCRM) used less than 5_. while the S.v required between 8cA

and 17_.

While the proportion of execution time required for the S.v is highly depen-

dent upon such factors as the relative sizes of the Monte Carlo and SN regions,

the SN quadrature order, and the number of particle histories, it is clear from the

above sample problems that, even with vectorization, the time required for the

Monte Carlo calculations will generally outweigh that used in the S N. Also, the

overhead involved in vectorization, such as transferring particles between stacks

and constructing particle destination words, is significant, and must be minimized
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when developing a vectorization scheme as described above. When the FORTRAN

equivalent of the subroutine MOVXTOB was used in place of the CAL utility rou-

tine, the Monte Carlo calculation times for the vectorized version approximately

doubled.

w
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CHAPTER 8.

CROSS SECTIONS AND THE HYBRID METHOD

The process of neutron interactions with nuclei in the medium of interest is

quantified through the concept of cross sections, where the microscopic cross section

_ris defined as the number of interactions per unit atom density per unit tracklength,

and is commonly measured in units of barns, where 1 barn is equal to 10-_4 cm '_.

With this definition, the macroscopic cross section r, as defined in Chapter 1 can

be calzulated from the relationship Z = Sial +... + Njcrj, where .\'j represents

the atom density of the type jth nuclei in the medium.._licroscopic neutron cross

section data is obtained through both theoretical and experimental means, with

the data being stored in computer-based files such as the Evaluated Nuclear Data

File (ENDF). In essence, all the "pt_ysics" of the problem is contained in the set of

cross sections used when solving the transport equation. Applying identical solution

methods to identical problems with different cross section data will thus result in

different solutions, since the physical basis of the problem has been altered.

Both discrete ordinates and Monte Carlo codes require some processing of the

primary ENDF cross sections prior to their use, since the primary data is not in a

format appropriate for use by either technique. The processing requirements _ry for

each technique, however, introducing differences into the cross section sets actually

used. Thus, care must be used when comparing S,,¢ and Monte Carlo results, since
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even if they are based on the same set of primary cross section data. the data sets

actually used in the codes differ due to the processing. More importantly (from our

viewpoint), integration of the hybrid Monte Carlo algorithm with the SN requires

the generation of a set of Monte Carlo cross sections that is consistent with the

cross sections used in the S:v.

8.1 Background

The ENDF files contain extensive amounts of data on neutron reactions for

most isotopes, including cross section values for a large number of energies, angular

distributions of scattered neutrons for both elastic and inelastic collisions, fission

spectrums, etc. Although there are a large number of possible types of neutron

reactions (reference Lamarsh, 24 Chapter 2). for our purposes we will consider the

set of all possible interactions to be divided into just ten types:

a. Radiative capture (a_),

b. Fission (ai),

c. Elastic scattering (_r,),

d. Inelastic scattering (ai),

e. (n,2n) and (n,3n) interactions (cr2, and cr3,),

f. "Second chance" fissions (ai,I and a2n,/), and
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g. (n.p) and (n.c_) reactions (°v and co).

The use of cross sectional data by standard Monte Carlo methods is straight-

forward in principle. 's Random numbers are drawn to determine the species of nu-

cleus struck (if more than one isotope is present in a given region), and the type

of resulting reaction. Typically, the processed data has been tabulated at suffi-

cient energy values so that linear interpolation for non-tabulated energy values is

within required accuracy bounds (i.e., "continuous-energy'" data). The scattering

angle for elastic and inelastic reactions is determined by sampling from 32 equally

probable angular bins formed when the primary nuclear data is processed. The

exiting neutron's energy for elastic and some inelastic scattering is then calculated

from physical laws for conservation of energy and momentum, while energy" distri-

bution tables are provided for most inelastic scattering. The number of neutrons

resulting from a fission reaction is determined by sampling a distribution function,

while the direction and energy of emitted neutrons are sampled from fission angu!ar

distribution and fission spectrum tables, respectively.

The use of cross section sets in discrete ordinates codes is somewhat more

convoluted, since the Boltzmann transport equation is formulated in terms of a

particle balance, and energy is now a discrete variable (see Chapters 1 and 2). The

primary data set is first processed to generate multigroup reaction cross sections by

/E;_'
_g = dE'g(E')_r(E'), (8- 1)

#-1

where 9(E) represents the spectral weighting function discussed in Section 2.2.

Scattering cross sections are also processed to generate scattering matrices for each
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Legendre order (reference Sections 2.3 and 2.4). where

;, rat,g-9, = 2rr dpoPt(po) dE' dEg(E)a(E, po). (8 - 2)
I J Ee'-_ e-t

Although we have now generated group reaction cross sections for each spe-

cific interaction, the S.\, requires cross sections that provide overall interaction rates.

i.e.. total, scattering (elastic and inelastic), fission, and absorption. These S.v mi-

croscopic cross sections must be defined in terms of the group reaction cross sections

generated by processing the primary data. These definitions, dropping the group

(and Legendre order) indices for simplicity, are zs

aT =--a._ + as + a, + a I + a2n + a3n + a,.f + a2n.l + ao + Crp. (S -- 3a)

as _- a, + a, + 2a2n + 3a3n + az.f + 2a2n.I. (S - 3hi

(7"F _-_ Of + O'l. f + O'2n,f. (S -- 3C)

and

a..t =-a.y + aQ + ap + a/- a2 n - 2a3, - a.,,1, f. (S - 3d )

where aT. aS, aF, and aA are the total, scattering, fission, and absorption cross

sections, respectively. The integer multiplier signs are used in Eqs. (8-3b) and (8-

3d) since some reactions result in the creation, or loss, of more than one neutron.

while the minus signs are required in Eq. (8--3d) in order to preserve the total

particle balance. Note that aJ'.though aA is not explicitly required for solution of

the transport equation, it is needed when calculating integral balance tables, and

that the integral absorption in a problem can be negative when materials with

large (n,2n) cross sections (e.g., beryllium) are present. Once the Sh. microscopic

cross sections have been formed, the macroscopic cross sections actually used in the
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S,¢ code are easily constructed as above, given the densities and locations of the

isotopes comprising the problem.

Thus, even though the cross sections used by a Monte Carlo code and an

S.,¢ code may have been derived from the same primary set of data, they are no

longer equivalent, but rather more like apples and oranges. The Monte Carlo cross

sections reproduce each reaction type for each isotope, and are "'continuous" in

energy, while the S._,,cross sections are in terms of overall reaction rates, represent

a mixture of isotopes, and are averaged over an energy group. More importantly,

angular distributions for scattering events in Monte Carlo codes are given in terms

of tables of equiprobable cosine bins, while angular distributions in S,¢ codes are

repsented by tables of Legendre moments. The effects on the hybrid method of this

dichotomy in cross sections is the subject of the remainder of this chapter.

8.2 Hybrid Method Cross Sections

The hybrid Monte Carlo method has been implemented in the solver portion

of the discrete ordinates code TWODANT, as described in Chapter 5. At this

point in the code, the material types and densities specified in _the input file have

already been used to form macroscopic cross sections for each region in the problem.

Thus, the cross sectional information available to the hybrid Monte Carlo method

from the SN consists of the total cross section (ET, g), the absorption cross section

(Ea,g), the average number of neutrons per fission times the total fission cross

section (uE F,g), the discrete fission spectrum ("_g), and tables of Legendre scattering

moments (Et,g_g,). The individual microscopic cross sections are no longer available
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in the Sx soh'er, and the original angular distribution data for scattered particDs

was never available,' since it was lost when the primary ENDF file was processed to

generate the Sx cross sections. Thus. it is clearly impossible to employ standard

Monte Carlo methods with the available Sx cross section data.

One obvious solution is to use a separate set of continuous-energy cross sec-

tions within the ._Ionte Carlo region. This would enable the use of standard ._Ionte

Carlo methods, and presumably an increase in accuracy as well. since energy would

now be treated in a more realistic (i.e., continuous) fashion. With appropriate def-

initions, neutron interactions could be grouped into the categories required for the

Sx integral balance tables, and particles entering the Sx region from the ._Ionte

Carlo could easily be scored into the appropriate energy group. While the basis for

formation of a probability densit.v function (PDF) in energy for particles entering

the XIonte Carlo region from the Sx is not as clear-cut [e.g.. uniform, g(E). etc.].

it would not appear to present insurmontable difficulties.

This approach was not selected for two reasons. First. it would require

the user to undergo the not inconsequential effort of preparing two separate and

distinct sets of cross sections for each problem, not to mention the additional code

necessary for processing two cross section sets with different formats. Second. it

would inhibit the benchmarking of the hybrid code. Since the hybrid method is

implemented as an enhancement to the discrete ordinates code TWODANT. the

simplest, and most effective, means of validating the hybrid code is to bench it

against the S,_¢only version of TWODANT (reference Chapter 11). If the hybrid

code used an additional set of cross sections entirely different from those used in

the standard version of TWODANT, it would present another potential source of
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difference between the discrete ordinates and the hybrid method, which might mask

subtle errors in the hybrid code. Thus_ it was decided to use the already available

SN cross sections in the ,Monte Ca:io region of the hybrid code, at least as an initial

effort.

Since we are employing implicit fission in the hybrid method (reference Sec-

tion 6.5), we do not require explicit values of Er,g, and the values of c' c' Pg...g,, RM'

r', and PF.v.g--g' are readily computed from Eqs. (6-23) through (6-27) The-,O,g_..gl • . .

determination of a scattered neutron's scattering angle presents difficulties, how-

ever.

The Sx furnishes tables of Legendre moments v't,g_ 9, for 1 = 0..... L, where

L is the order at which the series representation is terminated. From Eq. (2-6),

the distribution in angle p0 for neutrons scattering from group g to group g' is then

(where we have included a factor of 2rr in the definition of St.g-g, )

t 2l+1
I_,EL,g--g'(PO) -_ 9-O,g--g' + _EI,g--g' Pl(].lo). {8-4)

!--1

Thus. for L > 0, there is no guarantee that the scattering function Eg_g, is non-

negative, and so it does not constitute a PDF which may be directly sampled

(reference Section 3.1).

It is possible to gezterate a PDF from the scattering function of Eq. (8-4) by

employing absolute _ues with an appropriate normalization, i.e.,

Z'fL,g--g'(PO)---- IEL,g-g,(po)[/ dt_'lEL,g-9'(l_')[. (8-5)
1
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The scattering angle p0 is determined by sampling fL.g--g'(MO), while the particle

weight is multiplied by the factor

_e
_L,g--g,(IJO )/[fL,g--g'(/_O).O,g__g,] (S -- 6)

to conserve the total particle weight (on average).

However. this method has several disadvantages, the most important of which

is the introduction of negative particle weights into the calculation. 26 Although

we already allow the possibility of negative residuals, and subsequently" negative

particle weights, for multiple outer iteration problems as discussed in Section 5.7.

the residuals are presumed to be small enough so that the overall boundary fluxes

and volumetric sources will remain positive, and the increase in statistical errors due

to the negative weights will be minimal. If we use Eqs. (8-5) and (S-6) to sample

the distribution of scattered neutrons, however, not only" will we have introduced

the possibility of negative particle weights into the first outer iteration, but into the

sampling of the fixed source as well. Thus, negative weight particles wiU have a place

of much greater importance in the calculation, and the problems associated with

their use will be correspondingly magnified. Therefore, an alternative approach.

which we will refer to as the equiprobable bin (EPB) method, is selected.

We divide the scattering function EL,g.._g,(I.lO) of.Eq. (8-4) into 32 equiprob-

able bins Ap0,i by determining _0i,L and #0i.n such that

1/32 1 /_0,.s= dg'_L,g.--.9'(l_'), (8- 7)
2Z_,g_g,__,,

where #0i,L and P0i,R represent the angles corresponding to the left and right-hand

edges of the ith bin, respectively, and A#0,, = #0,,R -- #0i,L. To determine the
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P0,.L and _,.R, we use the following iterative process. We assume that the bins are

contiguous, so that for the ith bin, we set P0,.L = _,-t.n, with _t.m = -1. We

know that POi,Rmust lie within the range/_a = po,.a to/aR = +1. so we estimate

P0,.R by _ = (/JR + PL)/2. We then begin an iterative process on _ by computing

the value of the integral

f;.'= dp'---,L,g--g,(/_') (8 - 8)
" O,g-.-.g'

via a simple recursive procedure. 2r and comparing it with the exact value if _ =

PO,.R ,

32- i
A = -----. (S- 9)

32

IrA > A. we set PL = P. otherwise we set PR = P, \Ve then re-estimate _ from the

new values of PL and PR. and perform another iteration. The iterative process is

terminated after 25 iterations, ensuring an absolute error in the placement of _,,R

of less than 10-r

8.3 Benchmark Problems for Hybrid Method Cross Sections

Now that we have developed an algorithm for constructing Monte Carlo cross

sections from the available SN cross sections, we examine it for possible discrepan-

cies or limitations in actual use. To do this, we choose four sample problems and

compare the results obtained with the hybrid method to those obtained with pure

discrete ordinates. The geometry for all four problems is identical, consisting of a

homogeneous four by five cm cylinder with an isotropic distributed source located

between z = 2 to z = 3 cm, and extending from r = 0 to r = 1 cm. The coarse mesh
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_ize in both the Sx and hybrid method geometries is set at 1 cm by 1 era. with a

varying number of fine mesh cells per coarse mesh used in the S._. The boundary

layers for the designated Monte Carlo region are defined so as to encompass the

entire problem; thus, the hybrid Monte Carlo method is used throughout the entire

problem geometry, maximizing any differences with the Sx.

The first benchmark is a one group problem with a parabolic scattering

function defined by f(p0 ) = 3_/2, so that ft.(_ ) represents f(p0) exactly for L - 2

[reference Eq. (8-5)]. We let ET = 1.0 cm and EA = .03 era, so that 20.1-1 = .03

cm, and E2.1-1 = .38 era. Table 8-1 presents a comparison of the integral self-

scattering (SS) and net leakage (NL) results between the hybrid .klonte Carlo i HSIC)

and S.\" methods, along with the associated absolute error (one standard deviation t

in the hybrid ._Ionte Carlo self-scattering. The S x" entries reflect the number of

fine meshes per coarse mesh. which was varied to examine the effects of mesh sizing

on the S,,'. as was the quadrature order. Both S.\' and hybrid Monte Carlo runs

were performed with isotropic scattering (P0) for comparison with the P2 results.

The total execution time (in CPU seconds) is also shown for all runs. Note that

230.000 histories were used to sample the fixed source in both hybrid .Monte Carlo

runs, and that since the Monte Carlo region comprises the entire problem geometry,

no response matrix or boundary flux sampling was required. The exact scattering

function f(_0) and the equiprobable bin (EPB) approximation to it for L = 2 are
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shown at Fig,8-I.

Table8-I

CrossSectionBenchmarkProblem#I

Type .....PL i'isS _ - NL Time........, , ,:u

Po 6.582 .6536 7.3 sec
HMC P0 6.576 :i:.009 .... .6539 31.0 sec
S6'/2×2 ....... P._ 6.7'01..... .64;3 .o.5_
•.920/2 x 2" P_ 6.729 .6459 ....4.3 sec--

..... $2o/4 X 4 ...... P2 6.666 .649_2.... 6.3 Sec.......
$2o/8 x s P2 6.647 .6501 J.1.7sec
H._[c ..................P2 6.641_:.00T ..... .6505 3_.__

From Table 8-1, it can be seen that the use of the EPB method with hybrid

_[onte Carlo cross sections results in excellent agreement with the S.\.. especially

for small S\. mesh sizes and large quadrature orders, which better approximate

the Monte Carlo's continuous treatment of spatial and angular phase coordinates.

Although the differences in integral results between the P0 and P.., representations

are small, as expected due to the parabolic (even) shape of the scattering function.

they are real, and show up quite clearly in both the Sx and hybrid Monte Carlo

calculations. It is interesting to note that the calculation times for the P0 and

P2 hybrid .Monte Carlo runs are almost identical, as expected for the EPB method,

while the comparable S.,¢ runs show over a 60_ increase in execution time for L = 2

over L = 0, due to the increased number of moments.

The second benchmark problem is identical to the first, except that the

parabolic scattering function is replaced with the step function .f(g0) = O(_),

where O represents the Heaviside step function. For this function, a Legendre

expansion requires/'- = _c for an exact representation. Figures 8-2 and 8-3 present
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comparisons of the exact step function (EX) with Pl and P5 approximations, and

the EPB methods's representations of the Legendre approximations. The first four

non-zero moments of the scattering function are E0.,-, = .95 cm, E,.,-, = .475

cm, Z3.l--1 = -.11875 era, arid Es,,-.., -'- .059375 era. Results for the discrete

ordinates and hybrid Monte Carlo methods are shown below at Table 8-2. For

the final hybrid Monte Carlo run listed, the EPB scattering function was replaced

with the exact scattering function. Although the hybrid Monte Carlo results using

the exact scattering function are in good agreement with the $20 results, even for

S,¢ x_alues of L = 1, the hybrid Monte Carlo fails to reproduce the correct integral

values when using the EPB approximation of the scattering function, even with

£=5.

Table 8-2

Cross Section Benchmark Problem #2

Type - PL SS NL Time
$6/8 × $ PI 4.880 ....... .7432 5.7 sec.....
$2o/8 x 8 P1 4.868 .7438 16.8 sec
HMC P,.... 4.9_'4/='['006 .7382 "' 2'3.6 sec
$20/8 x 8 P_ 4:866 7439 18.9 sec
HMC /'3 ....4.933/='.005 .7404 ..... 22.5 sec
$2o/8X 8 P5 .... 4.8'66 .7439 .... 22.9 sec.....
H._I(_ P5 4.932/= .007 .7404 22.5 sec
HMC .... EX 4.8_56/= :006 .7444 '..'2..1sec

,.,

To provide a more realistic test, the remaining two benchmark problems use

a set of sixteen-group Hansen-Roach cross sections. The Hansen-Roach cross section

set provides multigroup cross sections for energies ranging from 10 MeV down to

the thermal range (_,.025 eV), and includes transport-corrected 1 values for aT, aA.

VaF, and ao.g-.9, (downscattering and self-scattering only). In, addition, tables of
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P1 COMPARISON

Figure8-2 Step ScatteringFunction,L = 1
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l_ COMPARISON

Figure8-3 StepScatteringFunction,L = 5
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crl.g_g, are provided for hydrogen and deuterium. The problem geometry remains

identical to the previous problems, with the fixed source located in the first group.

For the third benchmark problem, the cylinder material is composed of a

mixture of 016 (.16 atoms/b-cm) and hydrogen (.0_'2atoms/b-cm). Oucc again.

the S.,¢ mesh size and quadrature order was varied, and the problem was run with

both £ = 0 (isotropic) and/; = 1 (linearly anisotropic) scattering. From Table 8-3

below, we see that that the hybrid .Monte Carlo method is in good agreement with

S._"for both isotropic and linearly anisotropic scattering.

Table 8-3

Cross Section Benchmark Problem #3

Type PL SS NL Time
$6/2 × 2 P0 1.002 .9776 3.s sec...........
$2o/2 x 2 Po 1.00:2 .9774 14.s sec
$20/4x 4 P0.... i1000 .9775 29.4 sec
$2o/8 x 8 Po 0.9986 " .9775 64.6 sec
H._IC P0 0.9989 + .0030 .9775 14.6 sec

$6/2 x 2 P1 0.9328 .9776 3.9 sec
$20/2 x __ P1 0.9326 .9774 16.9 sec
S_o/4 x 4 P1 0.9306 .....9775 39.9 sec
$2o/8 x 8 t:,1 0.9291 .9775 75.3 sec

' H._IC P_ 0.9296 +.0026 ........ .9775 1'3.9 sec..................

Finally, to examine the effects of increasing the/2 = 1 moment, the composition

of the fourth benchmark problem consists of hydrogen only, with a density of .18

atoms/b-cm. Although excellent agreement is still obtained for L = 0, as can be

seen from Table 8-4 below, the hybrid Monte Carlo and S_. results do not agree for

L = 1, with the divergence clearly being outside the limits of reasonable statistical
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deviation. (The last entry will be discussed subsequently.)

Table 8-4

Cross Section Benchmark Problem #4
....

Type PL SS NL Time

'" $6/2 x 2 Po 31.12 .8026 3.4sec

$2o/2 x 2 Po 31.34 ' .8042 12.8sec

$2o/4 x 4 Po 30.77 .8049 22.6sec

.....$2o/8 x 8 Po ........ 30.72 .8052 44.56 sec

H.XIC Po 30.77 4. .08 .8049 304.1 sec
,, ,, , .,,,,,,,.

$6/2 x 2 PI 13.32 .9167 4.0 sec

So.o/:2 x 2 Pl 13.04 .9185 19.0 sec

$2o/4 x 4 PI 13101 .9186 39.0 sec

.... $2o/8 x 8 PI 13.00 .9187 '- 88.7 sec

HMC P_ 15.75 4-.07 .9012 145.0 sec
.... ,,,, ,,,,,,

HMC PI* 13.774-.I0 .9139 109.9sec....

8.4 Discussion

The hybrid Monte Carlo method, when using multigroup cross sections based

on the available SN cross sections, provides results in agreement with the discrete

ordinates method, for the selected benchmark problems, when isotropic scattering

is used. However, the EPB method of forming a PDF from the existing Legendre

moments fails to accurately reproduce the angular distributions of scattered neu-

trons for L > 0 in some cases, and in these cases the hybrid Monte Carlo method

results and the SN results diverge. Specifically, the EPB method appears to fail

when fL(PO) is not positive definite, as is the case for cross sections with large PI

components. This failure of the EPB method is exacerbated since the S:v cross
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sections are in the laboratory frame of reference, so that elements such as hydro-

gen, which are generally isotropic in the center-of-mass frame of reference, appear

as strongly anisotropic.

The failure of the EPB method is due to the requirement that the entire

scattering range (p0 = -1 to +1) be divided into contigous, non-negative bins.

Thus. a particle has a finite probability of scattering into any given angle in range

-1 to +1 for all events g ---, g'. This violates physical laws of conserx-ation of

momentum and energy, since, depending upon the value of g', some angles of _ are

impossible.

.XIathematically. we state that the EPB method fails because it does not

conserve the moments of the scattering cross section, other than the zeroth moment.

while: in fact, conservation of at least the first several moments is important for

an accurate representation of the scattering function. 26 The S.,,' cross sections do

conserve moments, and thus its succes in approximating the step function of the

second benchmark problem with just two moments (L = 1). The EPB method fails

to provide accurate results for the same problem, however, even with £ = 5, since

its approximation of the SN scattering function EL,g--¢(_0) does not conserve the

moments of EL,_--¢(_).

The EPB method does not fail in all cases, just those in which the scattering

function EL,g--g,(_) is negative for some range of _0. For isotropic scattering, or for

cross sections in which the scattering function is anisotropic but positive definite,

as in the first and third benchmark problems, the EPB method will provide a good
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representation of E L.g-g,(_), and thus implicitly conserve moments, at least ap-

proximately. However, this severely limits the problems to which the EPB method,

and hence the hybrid Monte Carlo/S.v method, can sucessfully be applied, since

most multigroup cross section sets cannot be guaranteed to be positive definite for

a finite order L. Since it is impossible to resconstruct the (presumably) positive

definite original scattering function Eg_g,(p0) from the finite order Legendre repre-

sentation EL,g--g,(l.tO ), and we do not wish to sample EL.g--9,(Po) directly because

it might entail a large number of histories with negative particle weights, we are

left with two alternatives.

The first is. of course, to use continuous-energy cross sections in the _Ionte

Carlo region, as described above. Although this has the disadvantages of requiring

two sets of cross sections for every calculation, and integration of continuous-energy

XIonte Carlo data with multigroup S v data, as well as requiring an additional

calculation in the collision subroutine {conversion of center-of-mass scattering co-

ordinates to the laboratory frame), the approach is reliable and well established.

Furthermore. the EPB method can be retained as an available code option for

benchmarking isotropic or weakly anisotropic scattering problems.

The second is to use a method which forms a P DF from the Legendre series

/_+'
representation which conserves the polynomial moments d/__t _(_), at least

1
approximately. Two examples of such a method are the discrete angle represen-

tation, and the equally probable step function representation, which are described

in Ref. 26. Although each representation has its advantages and disadvantages, we

note that the processing required to generate the discrete angles or equally probable
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step functions is not negligigie, but is instead probably comparable to that of using

continuous-energy cross sections.

As an example of the effect of conserving moments, we replace the EPB

method of generating bins with a derivative of the equally probable step function

for the fourth benchmark problem (Table 8-4), where we now generate a single bin

with one boundary fixed at -1 or +1, depending upon the sign of cr1._-9,, and the

other boundary chosen at the value of g which preserves the first moment. The

results of this method are shown at the last entry in Table 8-4. and are clearly

more accurate than those of the EPB method.

In conclusion, the EPB method is sufficient for the benchmarking of the

hybrid ._Ionte Carlo/Sv code. and the investigation of problems with simplified

scattering functions (i.e.. isotropic scattering, or scattering with small aniso_ropic

components), but is not robust enough for general use. For general use of the hybrid

Monte Carlo/SN method, consideration should be given towards use of one of the

alternative approaches discussed above.
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CHAPTER 9.

VARIANCE MEASURES AND REDUCTION

As discussed in Section 3.2, information obtained using Monte Carlo meth-

ods has an associated uncertainty (variance)..XIost .XIonte Carlo codes provide a

variance estimate for all calculated results, as well as numerous methods of reducing

the variance. In addition, a figure of merit (FO3I). as defined at Chapter 3. is also

provided for selected results as a measure of the reliability of the variance estimates.

With standard Monte Carlo methods, one runs a single calculation of I(

batches of N histories each, from which an estimate of the variance of the results

is directly obtained from Eq. (3-10). Thus, only a single Monte Carlo calculation

is required to determine the variance. However. with the hybrid method, such a

straightforward evaluation of the variance is not possible due to the coupling of the

Monte Carlo and SN regions, as can be seen by the following argument.

With the hybrid method, we first sample the fixed source using Monte Carlo.

thus obtaining the boundary flux SOUr at the Monte Carlo/SN interface, of which

each element has an associated variance _r_,i, which is clearly obtainable. Next, we

calculate the incoming boundary flux for iteration 1 from Eq. (4-2) (assuming a

one-group problem) by

_.(11 = T S TM, (9 - 1)
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where T represents an S,v calculation. Although we do not calculate an S.\ response

matrix, for reasons discussed in Chapter 4, consider for the moment that T is

represented by such a matrix, where T,j corresponds to the angular flux entering

the Monte Carlo region in state i due to a unit incident flux upon the S.v region in

state j. The incoming boundary flux for state i is then determined from

N

,n(l) E T'I o.t_,, = Sj (9- 2)
1=1

where .V is the number of states along the _[onte Carlo/S.\. interface, and S_;ut is

,n(l) is2Sthe jth element of S O"' Given the a = the variance in t.',• S,1'

N

'=E r,3 °°.' (9-a)
I =1 1 k

where the prime upon the summation indicates that the summation is over the

values j _ k. and Coy represents the covariance of S_'_'t and S_ ut. The covariance is

required because the individual elements of S °ut are clearly not independent• Since

the covariance of Sour is not known, nor easily determined, the direct calculation of

the variance in the Monte Carlo/SN boundary fluxes is not feasible.

An alternative solution is to simply run K sets of the entire problem, thus

providing K independent sets of results for both the boundary fluxes, and the

information most likely desired by the user, the cell fluxes. While. in theory, this is

entirely analogous to the Monte Carlo procedure of running K batches of histories,

the costs are quite different. For Monte Carlo calculations, the time required to run

K batches of N histories per batch is approximately the same as the time required

to run one batch of N x K histories. However. with S.,v, the time required per

calculation is fixed, so that running K sets of a calculation would increase the S.,¢
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calculation time by a factor of K. Since the minimum value of K needed to get a

valid statistical sample is on the order of 20, the time spent in SN computations

would be similarly increased by a factor of at least 20. Even though the time spent

in SN calculations does not usually constitute a majority of the CPU time, it is still

significant, and an increase of this magnitude is not desirable. In addition, since the

number of histories used in the Monte Carlo calculation for each set would now be

.Y, instead of .\7_'. each S,_,"calculation would now be based on a reduced number

of._Ionte Carlo histories. This could result in increased problems with negative flux

fixup in the S.,¢, and negative residuals at the .Monte Carlo/S.\-interface. Thus. we

choose to implement a less rigorous measure of the variance in the hybrid method.

9.1 Variance Estimation in the Hybrid _Iethod

Currently, the user has two separate inputs into the number of histories run

in the Y.lonte Carlo portions of the hybrid code, the number of histories used in

sampling the fixed source, and the number of histories per column used in sam-

piing the response matrix. The number of histories used in sampling the incoming

boundary fluxes and any volumetric sources located in the ,Monte Carlo regions

are determined from the above values (reference Sections 6,8 and 6.9). Thus, what

is needed is not just some measure of the variance of the results, but the relative

merits of increasing the number of histories used in sampling the response matrix,

versus the number of histories used with the fixed source.

To acquire some measure of the variance in the fixed source calculation,

we use the standard technique of dividing the number of histories into K batches
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of Ns histories each. For each batch, the tracklength for each coarse cell in the

Monte Carlo region is calculated, as well as the integral self-scattering. Once the

sampling of the fixed source has been finished, the variance of the tracklengths is

calculated from Eqs. (3-7), (3-8), and (3-10). In addition, the FOM for the integral

self-scattering is printed out for each batch as a measure of the reliability of the

variance est imat ion.

While the variance in S TM is not directly calculated, measuring the variance

of the coarse meshes due to the fixed source does indicate how well the various cells

of the Monte Carlo region are being sampled during the fixed source calculation.

More importantly, it is anticipated that oftentimes one of the ceils in the .Xlonte

Carlo region will represent a physical detector for which the flux is desired, in which
t

• case some knowledge of the variance in that cell is important.

We do not attempt to directly measure the variance of the individual elements

of the response matrix, both because the variance of the individual elements them-

selves is of little importance, and because storage of the _r2 would approximatelyR,aj -

double the memory requirements. Instead, when sampling the converged incoming

mi"t_) during the first outer iteration (reference Section 5.5). weboundary flux =g

recalculate the outgoing boundary flux, denoted by fit °'t We then perform an L2--g •

error comparison between the two outgoing boundary fluxes, that is, we calculate

the relative error

RERR= - g g -Sg 11. (9-4)

As the number of histories used to sample the reponse matrix goes to infinity, that

is, as NnM _ _c, we expect Rv, nn -.', O. For a finite NRM, REnR gives a better
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"feel"ofthevariancedue totheresponsematrixthantheindividuala2n,,i,since

theimportanceofa givencolumnintheresponsematrixmay be zero,ifthethe

valueoftheincomingi_uxfortheassociatedS._,stateisalsozero.

While thevariancemeasuresdescribedabovearenot rigorousinthesense

thattheydo notprovidea varianceestimateforeachcell,theydo providea means

ofdetermininghow wellthefixedsourcecalculationsamplestheindividualcells

inthe .klonteCarloregion,and how precisethe responsematrixcalculationis.

Furthermore.by examiningthevariancesinthefixedsourcecalculation,thesize

ofRERR. and therelativeleakagesfrom the.MonteCarloregiondue toSTM and

_¢o,t.one hassome ideaif-\'R.xt..Ys.orbothshouldbe increased.

i

9.2 Variance Results in Sample Problems

We now apply the variance estimation methods described above to a one

group, sample problem consisting of a homogeneous, 4 by 5 cm cylinder with ET =

1.0 cm and Es = 0.95 cm. The fixed source consists of an isotropic distributed

source located radially between r = 0 to r = 1 cm, with axial limits z = 2 to z = 3

cm. The problem geometry is divided into coarse mesh cells with 1 cm by 1 cm

dimensions.

We begin by letting the Monte Carlo region comprise the entire problem

geometry', so that we may examine the effects on the variance estimates of varying

Ns. We perform three groups of problems, each with K = 200. but with Ns values

of 81,625, and 2401. Each group consists of three separate runs, where each run
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has a different initial random seed. Table 9-1 lists the number of histories per

batch (Ns), the integral self-scattering (SS) with the relative error (one standard

deviation), the difference (in standard deviations) from the 5'20 benchmark, and

the resulting FOM, while Table 9-2 presents the coarse mesh fluxes (multiplied by

a factor of 10. with a relative error of one standard deviation) for the center cells

(z = 2.5 cm, r = .5, 1,5. 2.5, and 3.5 cm). Table 9-3 shows the differences (in

standard deviations) in the center coarse mesh cell fluxes between the .Monte Carlo

runs and the 5"20benchmark. Each table identifies the run by' the initial random

seed. For comparison, the results of an S20 calculation with 64 fine meshes (8 x 8)

per coarse mesh (CM) are also included in Tables 9-1 and 9-2.

Table 9-1

Integral S$ and FO.XI Results. Monte Carl() Results

Seed ...... Ns SS .....Diff ...... FOM
240 81 6.5865 :k.0044 + O.i 7 15.485

,, .... ,,,.....

250 81 6.5666:t:. 0046 -0.49 14.642
260 ........ 81 6.5252±.0045 .... -1.92 15,114

220 ....... 625 6.5557=i:.00i6 -2.46 21,711
230 ' 625 ..... 6.5778::k.0017 -0.33 20.322
270 625 6.5783±.0017 .... -0.29 ....... 21.S06
200 ...... 2401 6.5745:i:.0008 -1.33 ...... 23.995
210 .... 2401 6.5699:i:.0008 -2.21 .... 24.467
280 2401 ..... 6.5787:_:0008 .......... -():53 ....... 22.317

,, m,, ,,, b,,

S20 - 6.5815 - -,,
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Table 9-2

Center Coarse Mesh Cell Fluxes, Monte Carlo Results

S_d CM# i .... ' ' CM#2 .......... C.\i#3 C.\I#4
b_40 .........10.262±.0'054 ...... s.serr±.0dn.... 4:7323+.012o '2.2489, .0164
250 ..... 10.177'_.0057 8.8137_.'{}075 ..... 4.744_2'+.012i......... 2.3278+ .017(}
2'60 10.104:t:.0057 8.7082'_.0078 .... 4.6864±.'0121 ' 2.2610± .0182
220 1_6".178=t:.002b 8.8447±.0029 4.6412+.0043 ............2.2784± .'005'T

.....:230 1{}'.179'_.0'020 8.8162±.0029 4.6747+".0044 '2':2927+ :0060
270'10.180+.0021 8:"835"1±.0028..........4'.6853±'0041 ! 2.300'4±' .0060
200 10.197'±.00il 8.8202±.{)015 ' ' 4.683{'±.0023 2.287'_± .0032
'210 10'.186±.0'011 " 8:8008±.0013 4'.6864±.'0622 ' 2.2943-t-' .0031
230 10.181±.00i0 8.7946±.0014 ..... 4'.6794±.0022 2.2943+ .0030

Sao ....10.'i80 ..... 8':"8231 ........ 4.6810 " ;2.2878 "..........

Table 9-3

Center Coarse Mesh Cell Differences, _lonte Carlo Results

Seed .... .Vs C.\I# 1 ' CM#2 C.\I#3 CM#4
240 81 + 1.48 +0.78 +0.90 -1.05
250 81 ....0.05.... -0.14 + 1.10 + 1.01

, , ,,,,,,, , ...... , ,.....

260 81 - 1.32 - 1.69 +0.10 -0.65
220 ...........(3'25 '0.10 +0.84 "__1.95 -0.72
230 625 "0.05 -0.27 -0:31 +0.36
270 ....... 625 .... 0.00 +0.49 +0.22 +0.91
200 2401 + 1.52 '-0.22 ......... +0.25 ......-0.04 ......

'210" 2',t01 ' +0.54 -1.95 +0"152 +0.98
280 '" 2401 +0.i0 .... -2.31 '0'.16 +0.94

Examining Table 9-1, we see that the integral self-scattering results from the .Xlonte

Carlo runs, although appearing to be be systematically smaller than the $20 bench-

mark value, are within one to two standard deviations. Note that the error (standard

deviation) behaves approximately as the v'_. The overall Figures of Merit appear

to be consistent within a given group (i.e.. the same value of Ns). while between

groups the FOM increases with increasing Ns. This is due to the vectorization
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of the .Monte Carlo. where particles are followed in groups of 64 particles until all

source particles have been exhausted, at which time the remaining particles are

"flushed" from the system (reference Section 7.1). Since it requires approximately

the same time to execute a stack with 64 I:articles as to execute a stack with one, the

runs with smaller _'alues of Ns require proportionally more time to flush particle_

from their system, reducing their FOM.

The Figures of Merit for each run as a function of batch number are shown

at Fig. 9-1 for Ns = 81. Fig. 9-2 for .Vs = 625. and Fig. 9-3 for Ns = 2401, where

each curve corresponds to a differing initial random seed. Although the Figures of

Merit for a specified value of Ns eventually settle upon approximatel.v the same

value, as expected, it takes a fairly large number of batches (50-100). This implies

a large variance of the variance, which could be reduced by decreasing the batch

size, since the variance of the estimated _'ariance is minimized with a batch size of

one. 29'3° Indeed. this can be seen in Figs. 9-1 through 9-3. where the behavior of the

FOM's for Ns = 81 is much steadier than that for an equivalent number of histories

with Ns = 625 (26 batches) and Ns = 2401 (7 batches). However, decreasing the

batch size also reduces the efficiency of the vectorization, as previously stated, and

as is apparent in the respective FOM's for the differing batch sizes.

In examining the coarse mesh cell fluxes (Tables 9-2 and 9--3), we see that the

Monte Carlo fluxes are within one to two standard deviations of the S_0 benchmark

fluxes, and that the error in the fluxes behaves approximately as the v/_'.V. Note

also that the error in the fluxes increases with radius, since the source is located

at the centerline cell. Thus, the ceils closest to the centerline have more particle
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Figure 9-I Figure of Merit Comparison, Ns = 81 Particles/Batch
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Figure9-2 Figureof Merit Comparison,Ns - 625 Particles/Batch
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tracks than those nearer to the outer edge, and as a result their fluxes have a smaller

,_'ariance.

We now examine a problem where the geometry is composed of both .Xlonte

Carlo and Sx regions. We use the same problem geometry as before, except that the

region r = 0 to r = 1 cm, extending the length of the cylinder, is designated as the

.Monte Carlo region. A one mean-free-path boundary layer is specified, so the total

XIonte Carlo region extends out to r = 2 cm. An $6 solver is used in the Sx region.

with 4 fine meshes (2 x 2) per coarse mesh. For the ._Ionte Carlo calculation, we fix

K at 200, while Ns and NRM are varied. To obtain estimates of the coarse mesh

cell variances, we perform 15 runs, with differing initial seeds, for eachcombination

of NR._t and Ns. Table 9-4 below shows the resulting average value of RZRR and

associated relative error (one standard deviation) for each combination of -\'RM and

Ns, along with the average value of the absolute particle balance (PBAL). Tables 9-

5a and 9-5b list the average coarse mesh cell fluxes (multiplied by a factor of 10),

with relative errors, for the center ceils, along with the flux values in the .klonte

Carlo region due to the fixed source alone (i.e., the flux values for NR.xt = 0. Note

that the first two cells are in the Monte Carlo region, while the last two are located

in the SN. For comparison, Table 9-5c lists the coarse mesh cell fluxes calculated

from an $20 solution with 64 fine meshes per coarse mesh, and an $6 solution with

16 fine meshes per coarse mesh (8 x 2) in the first two meshes, and four fine meshes

(2 x 2) in the last two. Finally, Tables 9-6 and 9-7 contain the differences, in terms

of standard deviations, between the coarse mesh cell fluxes calculated by the hybrid
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method and those calculated by the pure S.,_,solutions.

Table 9-4

Average REnn and Particle Balance Values, Hybrid Results

Ns/NRM R ERa ..... PBAL
81/16 .0612 4-.0932 9.3526 x 10-4 ± .7062
81/81 ..... 10227 4- .0936 4.8715 x 10-4 + .8421

81/256 .0103 ± .0703 2.2609 x10 "4 ± .6687
625/16 "10605+ .0954 11.7599 x 10-4 _-.675'8
625/81 ......... 10229 4- 10655 5.8'763 × 10-4 ± .73J,4
625/2'56 .0098 ± .0522 1.6055 x 10"4_ .8932,,,

Table 9-5a

Average Coarse :,,Iesh Cell Fluxes, Ns = 81

.\'n._l CM#I CM#2 CXI#3 CM#4
, ,... , , ,,,

0 9.7604-.0054 7.21714-.0076 - -
16 10.169±.0060 8.8104±.0105 4.7937±.0118 2.2667+.0112
81 10.172±.0055 8.7787±.0067 4.8120+.0092 2.2728±.0072

256 I0.168±.0058 8.7830+.0069 4.8173±.0079 2.2765_-.0071

Table 9-5b

Average Coarse .Mesh Cell Fluxes, Ns = 625

NRM CM#I ..... CM#2 ..... CXI_3 CM#4
0 9.760+.d0f9 7.i6644-.0028 .... - ..... -
16 10.1844-.'0038 8.8005±.0073 4.8215:_.0106 2.26904-.0104

81 10.181±.0'028 " 8.80804-.0037 4.8240"1-.0055 r' 2.27;7,i_.0043
256 1'0.182:t=.0019 8.7922+.0028" 4.8196-+-.0036 2.27414-.0030

....

Table 9-5c

Coarse Mesh Cell Fluxes, SN Results

NRM CM#I CM#2 CM#3 CM#4
$6 10.137 8.7526 4.7636 2.2743

S20 .....10.1S0 8.8231 4.'6810 2.2878.....

I
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Table 9-6

Coarse Mesh Cell Differences, Hybrid Results vs. $6

.Vs/-VRM C.Xl# I 'CM # 2 C.XI#3 C.Xl#4
8'1/16 +0.52 +0.62 +0:53 -0.30
81/S1 +0.63 +0.44 .1.09 -0.09

........81/256 +0.53 +0':50 + 1.42 +0.i4
625/16 ....... + 1.21 ........... +0':'75 + 1.13 -0.22 "
625/81 ] +1.54 +1.70 +2.28 ......... +0.:32

625/256 ......... +'2.33 +1.61 "+3.23 -0.03...............

Table 9-7

Coarse ._Iesh Cell Differences, Hybrid Results vs. $20

.\'S/.VR._t.......CM#I C.XI#2 C.XI#3 .....C.XI#4
'81/ 16 -'0.18 -0.14 + 1.99 -0.82

'" 81/$1 -0.14 -0.76 t +2.96 -0.92

8!/256 -0.20 ' -0:66 +3.60 -0.T0 .....
625/16 +0. i0 -0.35 ......+2.75 -0.80
625/81 .... +0.(}4 ...... -0.4(3' '+5'39 " -1.56

625 / 256 +'0.10 - 1.26 + ?.99 - 2.01,.,

From Table 9-4, we see that the decrease in RERR is roughly proportional to V'_R._I.

as expected, and that RERR is a good predictor of the precision of the response

matrix, as indicated by its small relative error values. We note that the average

particle balance also decreases approximately as the _, but that the relative

error in the particle balance is much larger, so it cannot be relied upon as an

indication of the response matrix accuracy. Particle balance is a_ected by the value

of NRM through the response matrix calculation and the sampling of the incoming

boundary fluxes. Using l:t, we iterate to find the @out(_¢) and @,n(_¢). We then

"" _o,,t there will be asample the @,,,¢o0) and determine _o.t Since @o,,t(_) _ --g

discrepancy in the particle balance, because the particle balance in the S..,; region is
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based upon Ct°ut(:_), while that of the Monte Carlo region is based upon Clout. As

""out _ Clout(o¢) and the discrepancy in the particle balance decreases.NRM "* _, Clg

From Tables 9-5 through 9-7, it is clear that the behavior of the coarse

mesh cell variances is quite different in the hybrid case than that of the pure Monte

Carlo case. Examining the first coarse mesh cell, we see that the variance is almost

completely independent of the value of NRM. Since the source is located in this cell,

almost all of the flux is due to particles emanating directly from the source, with

very little attributable to particles which reenter the .Monte Carlo region from the

SN. In fact. if we examine the values in Tables 9-5a and 9-5b for NRM = 0, we see

that over 95_ of the flux in the first cell is directly due to the calculation of S °ut, so

that the error in this cell is insensitive to the value of NRM. For the second coarse

mesh ceil. a value of .VRM = 16 results in an error somewhat greater than that due

solely to S°ut, while values of NR._t = 81 and 256 give errors approximately equal to

that of the fixed source calculation. Since the second coarse mesh is adjacent to the

Su region, it sees a higher flux from the 5.,,. region, as can be seen in Tables 9-5a

and 9-5b, and thus is more strongly affected by a poorly defined response matrix

(NRM = 16) than the first coarse mesh is.

The third and fourth coarse meshes are in the S N region, and at a greater

distance from the fixed source, so their variances are more strongly influenced by

the response matrix and SN transport operator. Comparing Tables 9-2 and 9-5,

we see that while in the pure Monte Carlo problem the variance increases mono-

tonically with distance from the fixed source, this is not the case in the hybrid
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problem. There, the variance in the ,.,ONregion tends to remain constant, or de-

crease somewhat, asthe distance from the Monte Carlo/SN interface decreases. As

NRM increases, the error initially decreases, then remains constant.

2 in @out(o_) due to both the sam-Consider that we have some variance aou t

pling of the fixed source and the response matrix. As we increase .VRM, we decrease

the response matrix component of ao2ut, but we are still left with the component due

2 goes to a constantto the sampling of the fixed source. Thus, as NRM .._ OC, aou t

but non-zero, value. Consider also that the S.,¢ transport operator is a deterministic

operator, and as such tends to average out the statistical fluctations in the prob-

lem. Thus, as we proceed away from the Monte Carlo/Sty interface into the S._.',

the variance tends towards a constant value. However, the sampling of the fixed

source introduces a certain inherent variance into the problem, which no amount of

increase in NRM, or distance from the Monte Carlo/S._ interface, can reduce.

Examining Tables 9-6 and 9-7, we see that the coarse mesh fluxes calculated

by the hybrid method are generally within one to two standard deviations of both

the S_ and $20 results, with the exception of the third coarse mesh cell. In the

third cell, there appears to be a definite, systematic difference with the S,_ results.

However, this is not completely unexpected, as the third mesh cell lies just beyond

the border of the SN/Nlonte Carlo interface. Thus, while the fluxes in the first

two mesh cells are determined principally by the Monte Carlo method, those in the

last two are determined by the SN method, using an $6 quadrature order with 4

fine meshes (2 x 2) per coarse mesh. In contrast, Table 9-7 is based on an $20

operator with 64 fine meshes per coarse mesh, so it has a much more detailed fine

mesh structure in the last two coarse mesh cells than the hybrid method, as well

..... ............
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as a higher quadrature order. When we attempt to approximate the hybrid mesh

structure by using 16 fine meshes per coarse mesh in the first two coarse meshes,

and four fine meshes per coarse mesh in the last two (Table 9-6), we see that we

do obtain a somewhat better agreement between the fluxes in the third and fourth

coarse mesh cells.

This illust_'ates an important point to be considered when employing the

hybrid method. While the the fluxes in the Monte Carlo region are effectively

determined by an S_ quadrature order with a fine mesh structure of size zero

(neglecting the effects of any coupling with the SN region), the fluxes in the S._¢

are determined by a low quadrature order with a finite mesh size. Thus, when

we employ the hybrid method in order to extend the benefits of a more accurate

Monte Carlo solution in one region to a lower order SN solution in another, we

also, to some extent, extend the less accurate S:,. solution into the Monte Carlo

problem. The importance of this effect will depend upon the amount of coupling

between the Monte Carlo and SN regions, and the accuracy of the S.,¢ solution.

However. since we place the S N/Monte Carlo interface at least one mean-free-path

from the physical material interface, presumably placing it in an area where a low

SN quadrature order solution is suffucient, the effects should be minimal.

As a final sample problem, we use the same cross sections and definition of

the Monte Carlo region as above, but enlarge the SN region by increasing the radius

of the cylinder to 10 cm. With Ns = 625, K = 200, and NRM = 256, we once again

perform 15 separate runs with different initial random seeds. In comparison with

Table 9-4, the average particle balance was 2.2847 x 10-4 :t=.5952, while the average

difference in the computed outgoing boundary fluxes was RERR = .0099 d: .0806.
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The average coarse mesh cell fluxes (multiplied by a factor of 10) and relative errors

(one standard deviation) are presented below at Table 9-8, along with the fluxes

from an 5'6 calculation with 4 fine meshes per coarse mesh, and an $20 calculation

with 64 fine meshes per coarse mesh. We see that the error in the fluxes in the

S,,,, region does remain approximately constant, and that the hybrid flux values

generally fa/l between those of a pure So and S_0 calculation, with the exception of

the third mesh cell.

Table 9-8

Coarse Mesh CeU Fluxes, 5 Cm by 10 Cm Cylinder
.....

CM# MC/S6 56 S2o
I 1'0.220 4- .0023 10.231 ...... 10.219

" 2 .... 8.9503 -}-.0025 9.1288 8.9625
3 5.1411 4- .0030 4.9251 ....... 5.0062
4 3.0017 4- .002'6 2.9493 3.0096
5 1.7890 + .0024 ..... 1.7689 1.8281

' 6 1.0652 ± .002'6 i.0540 1.0219
...... 7 0.6272 4- .0025 0.6217 '0.6,i0i

8 0.3621 4- .0022 0.3589 0.3685
9 ' 0.2000 4- .0018 0.i982 0.2030

.... 10 0.0932 4-.0022 0.0924 ....... 0.094,t

9.3 Variance Reduction Measures Employed in the Hybrid Monte Carlo Method

As discussed ix, Chapters 3 and 6, the Monte Carlo used in the hybrid method

is almost entirely analog, with few variance reduction techniques currently em-

ployed. However, this is not as disadvantageous as it may first appear, as can be

seen by the following arguments. Aside from the reasons previously mentioned in
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Chapter 6 (vectorization and designation of $_ regions), all particle histories fol-

lowed by the hybrid Monte Carlo method result in a score, where a score is defined

as exiting the Monte Carlo region, since implicit capture is used. The only exception

to this is in the sampling of the incoming boundary fluxes in subroutine D_,¥NSRC,

where particles which enter and remain in the same group for their entire history

are not scored in O °ut However at least for the first outer iteration, even these

histories are not entirely wasted, since they are used in the computation of RERR.

While almost all particle histories do result in a score, this is not sufficient to

ensure that all areas of the problem geometry are thoroughly sampled. One means

of increasing the sampling rate of a particular area, aside from increasing the overall

number of histories, is through biasing in direction, space, or energy, so that more

particles are directed into the required area. At present, the hybrid Monte Carlo

method does not include any such methods, although they could be included in the

future, perhaps at the expense of some interference with the vectorization.

The hybrid Monte Carlo method does use stratified sampling, 16 however.

in which the possible initial spatial and angular coordinates of a particle are sub-

divided, with equal numbers of particles forced to start within each subdivision.

Stratified sampling is used when sampling the fixed source, the response matrices,

and the incoming boundary fluxes, but not the SN volumetric sources located within

the Monte Carlo region.

Assume that we have rn independent spatial and angular coordinates in phase

space, and that we wish to run N histories in a given Monte Carlo calculation. For

an isotropic point source, the spatial coordinates are fixed, so the value of rn is two,
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while for an isotropically distributed source, rn - 4. When sampling a column of

the response matrix, we have one independent spatial and two angular variables,

so m -- 3. Given m, we then let Nm - Int(Nl/m), and divide each independent

phase space variable into N,. equal intervals. Thus, we have now subdivided our

phase space into Nmm "boxes". By forcing one particle to start somewhere within

each "box", with the specific location determined by a random number, we can

ensure a more uniform sampling of the initial phase space coordinates. Note that

for the sampling of the fixed source and response matrix, the actual number of

histories run will be "m-_m, not the specified value of Ns/_" or NRM When sampling

the incoming boundary fluxes, we run an additional N _\m histories without

stratified sampling, after first runnning Nm_ stratified histories, in order to maintain

the proper weighting between the individual states.

When using stratified sampling with the fixed source, we stratify the angular

coordinates by AO,n -- rr/Nm and Ar/m ----2/Nm, except for the isotropic surface flux

source, where Ap_ -- 1/Nm (reference Section 6.6), and the beam source, where

the starting angular coordinates are fixed. The spatial coordinates are sampled.

where appropriate, using "boxes" of Az_ = Az/Nm and _ym -- Av/Nm for X- Y

geometry, and Ar_ ----Ar2/N_ and Ay_ --- Az/N,_ for R- Z geometry. The

spatial coordinates are sampled in a similar manner for the incoming boundary

fluxes and the response matrix, and the angular bin _f_j is subdivided into "boxes"

of ,x_m = ,x_/.¥m and ,x_ = _/Nm.

Essentially, stratified sampling is "free", since the determination of a parti-

cle's initial coordinates in phase space is performed outside of the tracking routines,

and is easily vectorized. Thus, the amount of CPU time required is negligible, and
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stratification is not expected to adversely affect the FO.XI under any circumstances.

To see how much of a gain we achieve, if any, we examine our sample problem

(4 by 5 cm cylinder) again from two different perspectives, one in which stratified

sampling is employed in sampling the fixed source, and one in which it is not. For

simplicity, the Monte Carlo region is defined as the entire problem region, with

Ns = 2401 and K = 200. The results, in terms of integral self-scattering and FOM,

are shown below at Tables 9-9 and 9-10 for three runs apiece, each with a different

initial random seed. The average FOM for the runs without stratified sampling was

25.165. while that for the runs using stratified sampling was 28,144. an increase of

12t_. Thus, the use of stratified sampling results in a clear, if modest, increase in

the FO.XI. (We note that the FOM's in Table 9-10 are slightly higher than those

for the equiavlent runs in Table 9-1 because the runs in Table 9-10 were performed

with a later version of the code, containing improved vectorization of some loops.)

Table 9-9

Sample Problem Without Stratification

Seed ..... SS FO.XI
' 0 6.5805 5:.0009 25' 169_....

10 6.5771 5:.0009 24. 472
20 6.5646 5:.0008 25. 860

Table 9-10

Sample Problem With Stratification
..

Seed SS FOM
30 6.5765 5:.0008 26.677
40 6.5699 5:.0008 29.448
50 6.5704 5:.0008 28.306
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Another applicable variance reduction method is the use of forced collisiens. With

this method, the total optical di ante to the nearest boundary of the Y,lonte Carlo

region is determined, and the probability of a particle reaching that boundary with-

out a collision is calculated. The particle is then split into two separate particles

with appropriate weights, one of which reaches the boundary without a collision.

and thus scores, and the other which has a collision at some point, determined by

random sampling, along the flight path. Particle histories are now terminated by

the weight cutoff procedure described in Section 6.4. since otherwwise they would

continue indefinitely. Each particle history now provides several scores, since it will

undergo multiple collsions (and subsequent weight reductions l before being termi-

nated. Additionally. the use of forced collisions increases the probability of a particle

scattering into another group during the sampling of the incoming boundary fluxes.

which in turn increases the number of scores in Q_,_t

However. the implementation of forced collisions is not "'free", unlike the use

of stratified sampling, since it substantially increases the amount of computational

time required to track a particle. This increase occurs beacuse we now must trace

the flight path of a particle from its collision point to the nearest boundary of

the 3Ionte Carlo region, not just the nearest boundary of its current coarse mesh

cell as described in Chapter 6. Since the flight path to the nearest boundary may

cross several coarse mesh ceils, the relevant calculations for the distance to the

nearest cell boundary are correspondingly multiplied. In addition, the calculations

of probability of survival to the nearest boundary and the collision point along the

flight path entail the use of exponnential and natural log functions, la which are in

themselves expensive.
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Some preliminary studies on employing forced collisions with the hybrid

Monte Carlo/S_. method have been performed during the course of this work.

Clearly. the use of forced collsions as a variance reduction method in the hybrid

method is feasible, and offers the possibility of a reduction in the FOM. However,

the preliminary results indicate that the additional computational time required

precludes any decrease in the FOM, unless a more efficient means of implemeta-

tion is used. Such an implementation would require a redesign of the vectorization

scheme described in Chapter 7. in order to allow particles to be followed across

multiple coarse mesh cells. Since this would require a not insubstantial amount of

effort, and the use of forced collisions is not central to the hybrid .Monte Carlo/S.v

problem, the implementation of forced collions has been left as a future problem.
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CHAPTER 10.

DIFFUSION SYNTHETIC ACCELERATION

Consider the discretized representation of the discrete-ordinates form of the

transport equation, where we have assumed a one-group, one-dimensional Cartesian

geometry with isotropic scattering and source for simplicity. In this case, the inner

iteration [Eqs. (2-22).and (2-23)] becomes

A.+1/2 k+_/ k+1/2 o k Axi+Q, Ax, (10- 1)/_.(o.,,+_/2 - o.., 2) + Er., o.,, ..Xx, = Es,, o.,

where
.\"

"k+l E k+l/2o0._ = u'non,, . (I0-2)
n'l

Larsen 31 has shown via Fourier stability analysis that the source iterative method

[Eqs. (10-1) and (10-2)], while stable for all mesh sizes Ax,, has a spectral radius

of p = Es/Er, where p represents the slowest possible reduction in error from one

iteration to the next. Thus, for optically thick, highly scattering regions, the source

iterative method will have a slow rate of convergence. Since these are the very types

of regions we desire to use SN in with the hybrid method, we require some means

of accelerating the rate of convergence.

The Fourier stability analysis by Larsen also shows that the most slowly

converging modes of the angular flux are those that are nearly linear functions of

#. Thus, if we could generate the exact scalar flux ¢0,i in one iteration, given an
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angular flux Vi(/_) which is linear in _. we will have devised an effective acceleration

method for the source iterative method. Since the assumption that the angular

flux is linear in p corresponds to the Pl, or diffusion theory, approximation of the

transport equation, 1 the essential idea behind diffusion synthetic acceleration is to

replace Eq. (10-2) with a diffusion-like solution for 7k+1 We use the term diffusion-_O,i "

like. since the diffusion equation itself is often a poor approximation to the transport

equation, so an appropriate correction term must be included.

The diffusion synthetic acceleration (DSA) equation for Eq. (10-1), i.e.. the

equation for _-'k+l that replaces Eq. (10-2), isOO.t

-1 , ~k-+l 7k+1 I _-'k+1 _t-,- l
3Er.,+_ Ax,+I (°°''+3/2 -°°"+1/2) + 3Zr.,,xx,(°°"+l/2 - o.,-_/2)

I 7k+1 _k+1 I " __k+l 7k+l
+_En.,+1_Xz,+_(Oo.i+312+ _o.,._12)+_ZR.i'Xz'(°o.,+i/2+ °o.,-i/2)=

1
_(Qi+l Az,+l + Q, ,..kz,)- R.m

(10-3)

where the correction term R is

Tk+l/2 _k+l/2 1 _k+l/2 ,_k+l/2

1 (°0,i+3/2 - "0,i+1/2) - 3Er.i Ax, (('°''+1/2 - "-'0,,-1/2)R =3Er.,+1Az,+l
7k+ _/2 ~k+ _/2

+ _1,,+1 - _1,, ,
(10-4)

ER,, is defined as the removal cross section ET, i -- _S,i, and

N

i,, = Z wn Pt(p,,).,,,, • (10- 5)
n:l

Eqs. (10-3) and (10-4) are obtained from Eq. (10-1) by taking the zeroth and

first moments, as defined at Eq. (10-5), then defining acceleration equations by
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~k+1/2 7k+1 and Fk+t/2 _k+_ "t_+1/2 ~t,.+112°o.4 _ °0., '-'1., _ 1., , and eliminating o2. i in terms of Oo., and

~k+l/2 Note also that the diamond difference relationshipOl ,i '

1

_n,i = _(On.i+llZ+ o,.,-1/2) (10-6)

is used.

To construct boundary conditions 32 for the left-hand edge, consider that we

have an incident boundary flux J,,.1/2 (gn > 0) which is linear in angle, i.e..

1 7k+1 3 _-'k+1
J.,I12= _Oo,i12+ _#n oi.I12. (10- 7)

from which we obtain, by multiplying by #. and summing over #, > 0.

OT+ I Fk+1 I Fk+1
1.11_= _Vo.112+ _01,11,.. (I0-S)

~ 7k+l
For vacuum boundary conditions..I+1/2 = 0. and we have the constraint o1.1/2 =

-°0,1/2/-'Tk+x/9Thus, the DSA equation at the left boundary becomes

Fk+1 _k+1 1 t :k+1 Fk+_ 1 :k+1
-I (°0.3/2 --'_'0,1/2)+4ER'I A'rl _(J0,3/2 Jr"O0,i/2 ) + S)(P0,1/'23ET,1Axl

(10-9_

:=101 ,xzl - R'.

where the modified correction term R' is

R' = 1 (,_k+l/2 ,"7k+1/2 ""k+1/2 Fk+l/2 I _k+l / 2
3ET, I Axt _'0,3/2 -- _0,1/2 ) + g)l.1 -- ¢'1.1/2 - __ 0.1/2 • (10 - 10)

Similar conditions can be derived for the right boundary.

The method of diffusion synthetic acceleration was first succesfully imple-

mented by Alcouffe, 33 who determined that stability was dependent upon a consis-

tent spatial differencing scheme between the transport and diffusion-like equations.
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Later. Larsen 3t showed that the use of diffusion synthetic acceleration results in a re-

duction of the spectral radius to p = .2247 Es/Er. Diffusion synthetic acceleration

schemes have been developed for two-dimensional geometries, including spherical

and cylindrical, as well as the outer iteration, t_'33 and are fully implemented into

TWODANT. 34

10.1 Incorporating DSA with the Hybrid XIethod

As expained in Section 5.6, the hybrid method is implemented in the code

TWODANT through the inclusion of interior boundary sources, so that the sweep-

ing algorithms are unaffected. However. the inclusion of interior boundary sources

does affect the operation of the DSA. either reducing its effectiveness, or eliminating

it entirely for some problems.

This loss of effectiveness is essentially due to the introduction of a singularity

in the transport equation. Consider Fig. 10-1. which represents a one-dimensional

Monte Carlo/SN hybrid problem. The interface boundary is located at .rj+l/2.

with the Monte Carlo region consisting of the left-hand cells, and includes some

fixed source Q, while the SN region consists of the remaining right-hand cells. In

the hybrid method, Eq. (10-1) is essentially replaced by

,.,k+1/2 ,_k+1/2 _k+1/2 _zi = Es,, _k _xl'tn(Wn,i+I/2 -- Wn,i-I/2) + ET, i_'n,i 0,, i
(10 - 11)

+ p.(B.,j+I/_ - _..,,__/2)6i,j+_, #. > 0,

where 6i,j+l represents the delta Kroniker function, and Bn,J+i/2 is the outgoing

boundary flux determined by Eq. (4-11). Note that sweeps from right to left (#,, <
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0) are unchanged, in this case, and that the fluxes for ceils in the ._Ionte Carlo

region are determined separately from Eq. (10-1) (reference Section 6,3).

Our goal is to derive, starting from Eq. (10-11), an equivalent form of the

acceleration equations of (10-3) and (10-4). We begin by replacing the interior

boundary source with an inhomogeneous source located in cell J, where the inho-

mogeneous source is defined so that it gives the identical boundary flux at z j+l/2

for each iteration k + 1/2. Thus, we define

Qk+, /_ Iv, _.+_/'2 I _.
n.J ",XXj -- Bn,J+l/2(I.tn + "_..-'T,J z-_£J)--On.J_l/2([.ln - _..-'T.J ._._.rj). [.in > O,

(I0- 12a)

and

Qk+!
.,j/2:..Xzj = 0. M. < 0. (10 - 12b)

where we have set Zs, J = 0. Equation (10-11) then becomes

k+1/2 _'+_/2 k+_/2 0 k --kz + _k+_/2_Zj _,t_,,(o.,i+1/2 - o.,i_1/2) + Er, i o.,, &z, = Es.i o,, , "_.,j ,J,

(I0 - 13)

Taking the zeroth and first moments of Eq. (10-13). we obtain

_k+1/2 _k+1/2 "Yk+l/2 ~k ,,_k+ 1
1,,+l/2 --Ql,i_l/2 Jc'._.T,i_o,i z-_Xi -- ES, i(90,,._I_'JrW, O,j /2z-_XJ_i,J (10-14)

and

2 tik+,/2 ,%k+,/2 1 :_k+,/2 ik+I/2 _,k+l/2_z ' _k+l/2
"3_'_'2,i+1/2 -- w2,i-1/2)'_- 3''O,_+I/2 -- wO,z-1/2) + ET, i ©I,i ="¢l,J '--_XJ¢_i, J'

(I0- 15)

_k+_/2
where the moments of ,_.,j are

_+1/2 =/_+ Z+,k+x/2 1v, 2"+,k+1/2
O,J l,J+l/2 -- 'vl,J-1/2 + _'-'r, J i"XzJ(B+o,j+I/2 + <a0,:-1/2 ) (10- 16a)
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Figure 10-1 One-Dimensional Hybrid Monte Carlo/5'N Geometry
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and

_)k+,12 2 + _+.k+ll2 1 --+ %+,k+t12,,j =_(B_,j+,/_-_2,j_,/2)+-_(Bo.j+,/_-..o.j_,/2)+
(i0 - 16b)

_'T, J A£J( l,J+I/2 +'+'l,J-'/2),

and the plus sign denotes summation only over the positive p..

We then define acceleration equations

~k+: g_+, gk+:Az _= 2s., ok+lAx + 7.k+,/2_O1.,+I/2 -- I.,--I/2. _T., o.i o., , C4o,S ,.xxjb,.j (I0--17)

and

+1/2-k+,/2 :k+,/2 1 ok+_ :k+1 -k+,.Xz,= _.j .j
(02.t+1/2 -- _2,i-1/2 ) + 5 ( 0.,+1/2 -- _0.,-1/2 ) + 2T.t 01., 'XXj6, .

(I0- IS)

SubtractingEq.(I0-17).evaluatedati+ I.fromthesame equationevaluatedati.

and usingthediamonddifferencerelationship,we obtain

ok+, "k+, I %k+, v" A.r ok+'
,,,+, - o,,i +._(rn,i+i &.r,+, "o.i+, +--n,i i o,i ) =

1 (10- 19):3k+_/2
(6i+,,j + 6i,j) wo,j Azj.

m

~+1
From Eq. (10-18), we substitute in for _'k+l and o_. i to get'+"1,t+l

-1 :7k+1 %k+I _ 1 ,-k+1 %k+,
3Er, i+x /k£i+l _'q)0'i+3/2 -- _'0,i+1/2/ + 3Er,, Ax, t%,,+I/2 - _o,,-1/2)

1 2}+I 1 _k+1
+_ Zn,i+t Axi+l _o,,+, + _ Zn,i Az, o,i =

_ _k+,/2
1 _k+1/2Axj 1 (6i+ 1 J_ 6i,j)_,gl, J
2 (6i+l'J "_"¢_i'J)"gO'J ET, s '

7k+1/2 7k+_/2 2 7k+_/2 %k+t/2
2 (q:_,,+3/2 - 'v2,i+,/2) - 3Er,, Azi (%.i+1/2 - "2,i-1/2)"+ 3ET,i+I Azi+l

(I0- 20)
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Finally, substituting in for the second moments from Eq. (10-!5), we obtain the

acceleration equation

-I Fk+l _k+l I 7k+l Fk+l
3ET.,+I '.-kx,+l(°°''+3/2 - ¢)o.,+1/2)+ 3ET.,--Xx,(°°''+l/2 - °°"-t/2)

1 Fk+l "k+l 1 Fk+l Fk+l
+-_ ER.,+I -Xzi+] (%.,+3/2 + ¢o.,+1/2) + _ ER., _z, (%.,+]/2 + Oo.,_l/2) =

I tSk+l/2
-_(,5,+l,j + 6,,j) '_o,J .Xxj - R,

(10- 21)

where R is as defined at Eq. (10-4). Thus, by replacing the interior boundary source

with a distributed source in cell J. and setting Es.J = 0. we obtain an acceleration

equation almost identical in form to that of Eq. (10-3). The boundary conditions

are identical td those of Eqs. (10-9) and (10-10).

When Eq. (10-21) is converged, and we let Er.,+l = v'r.i and -.Xx,+l = &x,.

it reduces to

--- -- 1 -- -- 1 --
O1,,+1 -- Ol.l + _ ZR a.-_x (O0.l+l + O0.,) = _ (3,+l.J + O,,J) Q0,J tXX. _10 -- 22)

Comparing this with the zeroth moment of Eq. (10-13). we see that the diffusion

acceleration equation [Eq. (10-21)] converges to the transport equation, as required.

10.2 Application of the Hybrid DSA Method to a Sample Problem

We now apply the diffusion synthetic method derived above to an appropri-

ate sample problem. The sample problem consists of a one-dimensional mesh in

Cartesian geometry, 10 cm in length, with isotropic scattering, Er = 1.0 cm, and
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V's = 0.95 cm. To avoid negative fluxes, we set Ax = .25 cm. so there are a total of

40 meshes. Vacuumboundary conditions are used on the left and right-hand edges.

We begin by studying the single region, pure S.,,, problem, with a fixed source

located in cell J = 20. and a convergence criteria of 10 -4 We first apply the

,ource iterative method of Eqs. (10-1) and (10-2), which requires 98 iterations for

convergence. Next. we apply the DSA method of Eqs. (10-3) and (10-4). and find

tilat the number of iterations required for convergence is reduced to 6.

For the hybrid method, we divide the problem geometry into S,_. and "'3lonte

Carlo" regions, where the S,v regions consists of cells 21 through 40. The fixed

source in cell 20 is now replaced by known boundary fluxes at the Xlonte Carlo/S.\

interface, where the boundary fluxes used in this case are those determined by the

source iterative method above. We first apply the hybrid equivalent of the source

iterative method. Eqs. (10-11)and (10-2), where Es.j = 0, and find that it requires

73 iterations for convergence, and results in scalar fluxes in the S.,,. region that are

within .1(7_ of the standard source iterative method. Next, we implement Eq. (10-

21) with the hybrid problem, and find that the hybrid DSA method reduces the

number of iterations required for convergence to 8, again with fluxes that are within

.lea of the S:_ region values.

Comparing the actual rates of convergence (i.e.. the ratio of the error in one

iteration to the error in preceeding iteration) between the four different methods,

we see that the standard source iterative method demonstrates a spectral radius of

p = .93, while the hybrid source iterative method has p = .89. The maximum ratio

in the standard DSA method is .20, while that in the hybrid DSA method is .28.
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Thus, we see that Fourier stability analysis accurately predicts the spectral radii for

the source iterate and standard DSA methods (.93 versus .95, and .20 versus .21,

respectively), while the hybrid source iterate method has a spectral radius slightly

lower than the standard source iterate method (.89 versus .93), and the hybrid DSA

method has a higher spectral radius than the comparable standard DSA method

(.28 versus .20).

Since Eq. (10-11) is very similar to Eq. (10-1). the standard source iterate

method, we would expect the two methods to posses similar convergence properties.

Comparing the respective DSA equations, however. [Eqs. (10-:3)and (10-21)]. we

e3k+l/2
see that the hybrid DSA method contains the unaccelerated source term "_0,J

_+.k+l/2 _+.k4-1/2

[Eq. (10-16a)]. so that. depending upon the magnitudes of o0.j_l/2 and c,1..t_1/2.

the spectral radius of the hybrid DSA method is increased. However. by setting

._+t/2 S+.k+l/2
Es., = 0 throughout the entire Monte Carlo region, go+j_1/2 and "x.J-l/2 vanish

for our problem geometry, and the source term in Eq. 110-21) goes to a constant.

In this case, we expect the spectral radius to be the same as. or less than (since

we have reduced the overall amount of scattering), the standard DSA method.

Upon implementing the change, we find that the number of iterations required for

convergence is reduced to 7, with a spectral radius of .16.

10.3 Implementation of the Hybrid DSA Method in TWODANT

The above discussion and sample problem is based on a one-dimensional

geometry. In the two-dimensional geometry actually used by the hybrid method,
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however, the replacement of the interior boundary sources with an exact inhomo-

geneous source [Eq. (10-12)] is not feasible. Instead, as implemented by Alcouffe, 35

we construct a fixed source, located inside the Monte Carlo region, from the interior

boundary sources, and zero out all within-group scattering sources. This construc-

tion has proven to be as successful in accelerating the inner iterations as the standard

DSA method, i.e., the number of inner iterations required for an S._ calculation in

the hybrid method is less than or equal to the number of inner iterations required

by the standard S.,,. method.
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CHAPTER 11.

BENCHMARKS

We now apply the hybrid Monte Carlo/Sx method to several relatively sim-

ple problems, where the results of standard S,_. calculations may be used as bench-

marks, Although we have examined the behavior and validity of the individual

components of the hybrid Monte Carlo/SN theory in the preceeding chapters, the

purpose of these comparisons are to assess the overall performance and accuracy

of the hybrid method in a semi-realistic environment. Thus. we use the set of 16-

group Hansen-Roach cross sections previously described in Chapter 8 with problems

of varying geometry and composition, where the selected materials and specified

densities are representative of those encountered in typical calculations. Note that

these problems have been selected for their ease of computation by the standard Sx

method, and are thus not necessarily typical of the types of problems the hybrid.

method was designed for.
.,

11.1 The Graphite Block Benchmark

We begin by examining a 22 cm by 22 cm homogeneous block (X - }" geom-

etry), where the block is composed of graphite with a density of 1.6 gm/cm 3. The

block is divided into 121 coarse meshes with dimensions of 2 cm by 2 cm, with an



176

isotropic distributed source located in the center of the block between x = 10 to

12 cm. y = 10 to 12 cm, the source neutrons being emitted in group 1. The mean

free path of neutrons in this material ranges from Al = 10.1 cm, for group I, to

Al8 = 2.8 cm, for group 16. Since there are no fissionable materials present in the

problem geometry, and the Hansen-Roach cross sections do not include upscatter.

the calculation is a pure downscatter problem and requires only one outer iteration.

Note that, for group 1, the source is located only approximately 1 mfp from the

block edge. so that transport effects may be expected to be important.

For the hybrid .Monte Carlo/S_. code, we designate the region :r = 8 to

z = 12 cm. y = 8 to y = 12 cm as the "'fixed" Monte Carlo region (Fig. 11-1). and

specify a boundary layer thickness of 1 mfp. If we examine a group-dependent cross-

sectional view of the block (Fig. 11-2). we see that the actual 3lonte Carlo portion

of the problem geometry resembles an inverted wedding cake. and that the ._Ionte

Carlo region comprises the entire problem geometr.v for groups 1 and 2. Thus. the

calculations for the first two groups will be done entirely by .Monte Carlo, while all

, other groups will require some linkage between the Monte Carlo regions and 5'.\.

regions via response matrices. An $6 solver is used in the S.\. region, with one fine

mesh per coarse mesh.

We use 250,000 histories to sample the fixed source, located in group 1,.

While this results in relative errors (one standard deviation) of less thrln 3% for

the coarse mesh tracklengths in the first two groups, and less than 5c7cin the fifth

group, the error rapidly increases as we move further down in group structure, since

the number of particles reaching a given group decreases. However, the need for an

accurate determination of the flux due to the source alone also decreases, since most
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Sn Region

o Figure ll-L Graphite Block-Problem. Geometry
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of the flux in lower energy groups is due to particles that have crossed between the

_Ionte Carlo and S.v regions, so the large variances in the fixed source calculation

" at lower energy groups are not disastrous. In contrast, as can be seen at Table 11-1

below, approximately the same number of histories are used to sample the incoming

boundary fluxes for each group, regardless of their size. This preserves the accuracy

of the solution at lower energy groups,.

Table 11-1

Numbers of Histories and Particle Balances, Graphite Block Problem
.,

Group £FX LBF TRM TBF RE'RR PBAL
3 1.5739e-I 3.2717e-2 "' 82.944 ....95.797 10071 -2.5107e-4"
4 8.3656e-2 3.2090e-2 82.944 95.803 .0069 -8.3290e-4

'5' 2.8144e-2 3.2354e-2 62.208 7i.856 .0074....... 2.4083e-4
6 8.3440e-3 1.9599e-2 62.208 _;1.852 .0072 9.7063e-4
7 2.6200e-3' ' 1.0462e-2 62.208 71'.851 .0074 2.3276e-3'
8 8.1600e-4 F 5.80i5e-3 62.208 71.$54 •0069 -4.2840e-4
9....... 2.5600e-4 3.2610e-3 ...... 62.208 71.861 .0(}72 .... -1.6513e-3

10 7.2000e-5 1.4992e-3 62,208 71.853 .0(}71 .... -7.0129e-4
11 2'.4000e-5 9.0:143e-4 6'2.208 71.855 .0076 .... 8.6142e-4
12 1.6000e-5 6.3568e-4 62.208 71,863 .0075 2.3851e-4
13 8.0000e'6 3.8876e-4 62.208' 71,853 .0076 ....1.5884e-4
14 4.0000e-6 2.3105e-4' 62,208 71.861 ''_ .0074 8.1158e-5
15 4.0000e-6 2.1708e-4 62,208 _1.850 .0070 5.1439e-4
16 3.9981e-6 3.5249e-4 62.208 71.846 .0063 6.0797e-5

Zvx - Particle Source in Monte Carlo Region Due to Sampling of Fixed Source

/:BE - Particle Leakage from ,-qNRegion into Monte Carlo Region

TRM - Total Number of Histories Used in Response Matrix Calculation

TBF - Total Number of Histories Used to Sample Incoming Boundary Fluxes

RERR - Relative Error Between Calculated Outgoing Boundary Fluxes

PBAL- Total Particle Balance for Group

.For comparison, we perform several standard S;¢ calculations with varying quadra-

ture order and fine mesh structure. The CPU times required for the various S,,¢

calculations, as well as the hybrid calculation, are shown below at Table 11-2. where
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the notation 1 x 1 or 2 x 2 refers to the fine mesh structure used in the calculation ( 1

fine mesh per coarse mesh or four fine meshes per coarse mesh, respectively). The

particle leakage as a function of energy group is shown at Fig. 11-3, while the total

reaction rates for the coarse mesh ceils along the left edge of the block are shown

at Fig. 11-4 for group 1. and Fig. 11-5 for group 16.

Table 11-2

Computational Times. Graphite Block Problem

Type ' CPU Time

S_/1 x 1 _i.5 sec

$12/2 x 2 1"4.3 sec

S_o/2 x2 3'2.9 see

_IC/S6 i20.4 sec

From Fig. 11-3. we see that the leakage calculated by the hybrid method

closely matches that calculated by the S\" method over aH 16 energy groups, even

though there is over a factor of 103 decrease from group 1 to group 16. In Fig. 11-

4. the $6 and $12 calculations clearly show ray effects, while the MC/S6 and $20

calculations do not. Of course, ray effects are no longer a factor by the time group 16

is reached, so that all SN calculations are within 5c'A of one another, as is the

hybrid calculation. It is somewhat surprising that the hybrid calculation shows little

statistical variation in Fig. 11-5, even though the reaction rates are two orders of

magnitude less than those in group 1. This may be due to the "smoothing" effects of

the SN operator in the hybrid code, since the left edge is entirely contained within

the SN region for group 16 (reference Fig. 11-2). An attempt to obtain the same

. . . accuracy with analog Monte Carlo alone w_ul.d require a much !arger number ofo o
• • •

histories to be run than for the hybrid case. since the probability of an individual

particle reaching group 16 without leaking is less than .04e_. Thus, for an equal
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number of total histories (approximately 2.2 million), less than 900 would even

reach group 16, clearly not enough to provide an adequate sample. The agreement

in Fig. 11-5 also illustrates that the hybrid method is capable of producing accurate

results even after a large amount of coupling' has occurred between the Monte Carlo

and S.,_-regions.

11.2 The Uranium Rod Benchmark

The next benchmark problem consists of a uranium (UO2) rod surrounded

by a graphite reflector in R- Z geometry. The urarhum rod has a radius of 2 cm.

a density of 10 gm/cm 3. and is 10% enriched in U235. while the graphite reflector

is 13 cm thick and has a density of 1.6 gm/cm 3. The height of the cylinder is

30 cm (reference Fig. 11-6). An isotropic source is spatially distributed uniformly

throughout the uranium rod. with an energy spectrum identical to the fission spec-

trum of U235, for which only the first six groups have non-zero values. The mean

free path in uranium ranges from AI "-" 6.3 cm to A16 = .6 cm. while that in the

graphite varies between A1 = 10.1 cm and A18 = 2.8 cm. The problem is divided

into coarse meshes of size 1 cm by 2 cm.

For the hybrid calculation, the region consisting of the uranium oxide rod

is designated as the .Monte Carlo region, and a 1 mfp boundary layer is specified,

resulting in the Monte Carlo/Sg structure shown at Fig. 11-7. An 5'6 solver is used

. in the $N region, with two fine meshes (1 x 2) per coarse mesh. 250,000 l_istorie, s are • •

used to sample the fixed source, resulting in relative errors in the tracklengths for the

first five groups of less than 3%, and increasing afterwards as the group sampling
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frequency decreases. The size of each response matrix is identical, with 77.760

histories used to sample each one. The Monte Carlo region source (including fission

and downscatter) due solely to the fixed source, the size of the incoming boundary

currents, and the numbers of histories used to sample the incoming boundary fluxes

are shown below for each group and outer iteration. The particle balance for all

groups was <__7 x 10-4.

Table 11-3

N_:mbers of Histories, Uranium Rod Problem

Group LFX .... LBF1 TBF1 REI:tR £BFZ TBP_
1 2.1S09e-1 2.8732e-3 64.325 .0105 2.5020e-5 441
2 4.4949e-1 2.$694e-2 61.306 .00§'3 2.50i'7e-4 454
3 2.8584e-1 2.$222e-2 56.821 .0104 2.4830e-4 -467

3.4305e-1 6':8156e-2 55.327 .0089 5.5757e-4 444
5 2.3938e'-1 i:0609e-1 53,819 .0083 8.5701e-4 439

'6 7.1481e-2 7'.8252e-2 52:325 .0085 6.0Si'9e-4 420
7 1.3344e-2 4.2133e-2 52,314 .0079 3.2074e-4 422
8 " 2.5531e-3 2.2454e-2 52.322 .0078 1.6661e-4 411
9 4.6359e-4 1".1559e-2 52.3'16 .0079 8.5007e-5 410
10 5.0839e-5 4:7356e-3 " 52,319 .0090 3.4983e-5 4i4
il 4.6383e-6 2.5691e-3 " 52,319 .0081 1.8800e-5 418

'i2 ....0.0000e-0 f:6111e-3 52.323 .00'89 " 1.1960e-5 424
13 0.0000e-0 9:2686e-4 52,321 .0085 6.8299e-6 421

.......i4 o.ooooe-o 5:2495e-4 52,322 .0083 3.9655e-6 4'31
15 0.0000e-0 4.5132e-4 5'2.310 .0087 3.3694e-6 422
16 o,ooooe-o 5':5720e-4 .-52.312 .0074 4.i072e-6 420

....... _......

Note that the size of the incoming boundary fluxes for the second outer iteration

is approximately a factor of 100 less than the first outer iteration. Since the fissile

mate=ial is contained entirely within the Monte Carlo region, most of the multipli-

cation within the system is determined when the fixed source is sampled. This is
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confirmed by comparing the fission source (FS) resulting from the sampling of fixed

source (6.79 x 10-2) with the total fission source (7.67 x 10-2).

The hybrid results were comr,ared with three different Sx calculations. The

computation times, number of outer iterations required for convergence, and cal-

culated fission sources are shown below at Table 11-4. The particle leakage as a

function of energy group is shown at Table 11-5, while the total reaction rates along

the centerline of the cylinder (r = .5 cm) are compared at Figs. 11-7 and 11-8 below

for groups 1 and 16, respectively.

Table 11-4

Computational Times and Fission Sources. Uranium Rod Problem

Type .... CPU Time # Outers FS
$6/1 x 2 ..... 819 sec 3 7.97e_2

- $12/2 x 4 51.6 sec 3 7.70e-2
,,,,,,,,, ,- , ,H , _ i

$12/4 x 8 127.0 sec 3 7.69e-2_ _ _....

" .XIC/S6 152.8 sec 2 7.67e-2-,,.

• Q

" _ " ' ' I_ ..... _,, 1,11_ ' " ..... "" ........ '.........._'......
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Table 11-5

Particle Leakage, Uranium Rod Problem

Group S6/lx 2 $12/2 x 4 .... MC/S6
1 9.26e-2 .......... 9'.37e-2 9.36e-2
2 2.56e- 1 2.58e- 1 2.$'Te-1
"3 1.05e- 1 1.05e- 1 1.06e- 1......
4 1.61e-1 1.6ie-1 1.60e-1 ......
....'5 ....I.T3e-I i".Z2e-I I.72e-'I

6 1.09e- 1 1.0Be-1 i,08_- 1
7 - 5.96e-2 5.86e-2 5.86e-2

- 8 3.45e-2 3.38e-2 .... 3.37e-2
9 1.86e- 2 1.82e: 2 ' ]..$2e-2
10 T.98e-3 7.77e-3 T.S0e-'3
11 ' 4.49"e-3 J,.36e-3 4.38e-3

...... 12 2.84e-3 ' 2.75e-3 2.77e-3
' 13 1.63e-3 1.58e-3 1.59e-3

14 " 9.00e-,i ' 8.79e-4 8.85e-'4
.....15 7.81e-4 7.55e-4 T.61e-4
'16 9.87e-4 9.50e-4 9.61e-4

,.,

From Table 11-5, we see that while the hybrid ._IC/S6 and $12 particle

leakages are in good agreement with each other, the standard $6 calculation differs

somewhat, not only in the first group, which is not surprising, but in lower energy

groups as well. Thus, the advantage of using the more accurate Monte Carlo method

in the uranium rod region carries through for all energy groups. Examining Figs. 11-

8 and 11-9, we see that the hybrid $6 calculation, despite some statistical variation

since the centerline region is contained entirely within the Monte Carlo region,

agrees well with the $12 calculations, while the the $6 calculation is clearly off. If

we compare the reaction rates at the outer edge of the cylinder (Fig. 11-10). we see

" " " " m'o d'by " " "that the hybrid results have been s othe the S.,_' operator, and are in good

agreement with the $12 calculation, while the standard $6 results are slightly larger.

'Ni' ' ' ' n .... _ ,, ' I| ' ' ; ' ....' .......
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The hybrid .Monte Carlo/S6 calculation clearly provides more accurate results for

all regions of the problem than a standard $8 calculation, even for this simple

geometry. This is also reflected in the respective fission sources computed by the

respective methods.

11.3 The A1/U235 Block Problem

_\'e now examine a more difficult problem for which the hybrid method is

better suited. The prob!em geometry consists of an aluminum plate. 10 cm long

and 3 cm high. with a density of 3 gm/cm 3, sandwiched between two uranium

(UO2) blocks, each 10 cm long and 5 cm high. The uranium blocks are 1007,

enriched in t.'235, and have a density of 10 gin/era 3. The source consists of an

isotropic boundary source on the left edge. located between y = 6 to y = 7 cm. in

group 1 (reference Fig. 11-11). The mean free path in the aluminum plate ranges

from As = 12.2 _m to A5 = 5.9 cm, while that in the uranium blocks ranges from

As = 6.3 cm to A16 = .2 cm. The problem is divided into coarse meshes of size 1

cm by 1 cm. Since the length of the aluminum plate is approximately 1 mfp for

the source neutrons, an accurate determination of the fluxes at the right-hand edge

should present problems for the standard Sx method.

The aluminum plate is designated as the Monte Carlo region, and a 1 mfp

boundary layer is once again specified, resulting in the Monte Carlo/S.v structure

shown at Fig. 11-12 below, where the Monte Carlo region comprises the entire

problem geometry for the first two groups. Since the flux decreases rapidly after
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group 7, the calculations for groups 8 through 16 are done entirely by S.,,.. Approx-

imately 530.000 histories are used to sample the fixed source, resulting in relative

errors in the coarse mesh tracklengths of less than 2c2[ in group 1,119_ in group 6,

and 67c'A in group 7. 103,680 histories apiece are used to sample each response ma-

trix in groups 3 through 7. The particle balances for the Monte Carlo/Sx groups

were all less than 5 x 10 -4, while the REnR values were between .0058 and .0073.

The group sources and number of histories run are shown below at Table 11-6 for

group 4, where OITNO is the outer iteration number. Lsx represents the fission

source from S.\, regions to the group 4 Monte Carlo region, and Ts.\, is the number

of histories used to sample the S.\. fission source. Note that Ts.\" is a constant, and

TBv goes to a constant, because their respective sources start at or reach a level

where only one history is used to sample each state. Although some of the sampled

residuals for later outer iterations contain negative elements, their magnitudes are

small and do not adversely affect the calculation.

Table 11-6

Source Strengths and Numbers of Histories, Group 4, A1/U235 Problem

OITNO Lsy Tsx I.SF TSF
1 - - .... 3.3999e-2 119.767

2 3.3919e-3 6,720 .... 9.2667e-3 32.470

3 3.6550e-4 6,720 1.,t379e-3 4.861

4 5.2505e-5 6.720 2.1485e-4 617

5 _:12478e-6 6,720 2.9681e-5 480

6 1.0413e-6 6,720 4.6696e-6 480

7 1.9434e- 7 6,720 9.2425e- 7 480
....

Table 11-7 below lists the run times, number of outer iterations required for con-

vergence, and the calculated fission sources for the hybrid method, various Sx runs,
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and a ._Ionte Carlo run. The Monte Carlo run was performed by defining the entire

problem geometry as the Monte Carlo region, and increasing the numbeI of his-

tories used to sample the fixed source to approximately 2.1 million. Figure 11-13

presents a comparison of particle leakage for the $6 case and the hybrid method,

Figs. 11-14 and 11-15 show the group 1 total reaction rates for the left and right

edges, respectivley, while Fig. 11-16 shows the left edge total reaction rates for

group 6. and Fig. 11-17 the same for group 7.

Table 11-7

Computational Times and Fission Sources, AI/U235 Problem

Type CPU Time # Outers FS
_IC/$6 144.7sec 7 .9426

_IC 155.6 sec - .9440

S_/2 x 2 1516sec 7 ..... .9679......
S12/2 x 2 35.3 sec 5 '.93,44 '
S.2o/2 x 2 95.9 sec 6 .9544 ....
$3o/2 x 2 206.8 sec 6 .9560
S.30/4 x 4 458.'5 sec 6 ........ .9462

Although there are 18 orders of magnitude difference between the particle

leakages between group 1 and group 16 (Fig. 11-13), both the hybrid method and

the S._, (all S,,v runs showed similar leakages) are in good agreement over the entire

spectrum. In contrast, the pure MC calculation (not shown), with an approximately

equivalent amount of computational effort, shows zero leakages past group 8 since,

for analog XIonte Carlo, the probability of particles reaching group 8 is vanishingly

small for a reasonable number of histories. Thus, the hybrid Monte Carlo/S.v

method is clearly preferrable to a standard analog Monte Carlo calculation.
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Surprisingly. all the S.v calculations were within about 15c,_of one another

when determining the left edge total reaction rates for group 1, although the best

agreement with the .Monte Carlo and hybrid Monte Carlo/S6 runs was obtained with

the $3o/4 x 4 calculation (Fig. 11-14). As expected, however, the S_v calculations

exhibited severe ray effects when trying to determine the reaction rates at the right

edge (Fig. 11-15), and a high quadrature order and small mesh size was required to

match the hybrid results. The hybrid method mitigates any ray effects, of course,

since the entire calculation for group 1 is performed by the .Monte Carlo method.

By group 6. the S.v no longer suffers from ray effects, and all calculations,

including the .Monte Carlo and hybrid method, are in good agreement (Fig. 11-

16). For group 7. however (Fig. 11-17). it is evident that statistical variations are

begining to severly affect the accuracy of both the analog Monte Carlo and hybrid

Monte Carlo/S.\; methods. It is interesting to note. however, that while both the

Monte Carlo and the hybrid Monte Carlo/Sx calculations required approximately

the same amount of computational time ' eference Table 11-7 above), the hybrid

method appears to match the Sx results better. Of couse, if a biased 3Ionte Carlo

method that increased the number of samples in lower energy groups was employed.

it might reduce the variance of the results for a given computational time.

The advantage of the hybrid Monte Carlo/S._ method is most clearly shown

at Table 11-7, where an S_0 calculation with reduced mesh size is required to match

the results of a hybrid $6 calculation in determining the fission source. Note that

the standard SN method requires over three times the amount of compuatational

time to match the results of the hybrid Monte Carlo/Sx method.
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CHAPTER 12,

CONCLUSIONS AND FUTURE EFFORTS

The hypothesis of the hybrid .Monte Carlo/S.,¢ method is that. by coupling

the two methods together in the same problem, we can solve certain types of prob-

lems more ei_iciently than either the Monte Carlo method or the S.v method can by

themselves. While Alcouffe and Filippone demonstrated the feasibility of the hybrid

approach for one-group problems in simplified X -Y geometries with fictitous cross

sections, 1°'xl the ability of the hybrid method to handle the complexities posed by

more realistic problems remained undetermined. The goal of this dissertation was

to extend the capabilities of the hybrid method and examine its feasibility when

applied to problems containing such complexities.

To allow the hybrid method to solve more complex problems, the following

significant additions were made:

a. The ability to solve multigroup problems (including upscatter and fission)

using response matrices with reasonable storage requirements and variable

thickness boundary layers.

b. Improved performance of the diffusion synthetic accelerator within the SN

portion of the method.
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c. Approximately a five-fold increase in the speed of the Monte Carlo calcula-

tions through vectorization.

d. Developing Monte Carlo tracking algorithms which allow the hybrid method

to solve any problem geometry and material composition which can be input

into TWODANT for X - Y or R- Z geometries.

e. Generalizing the hybrid Monte Carlo method to allow use of the multigroup

S.\, cross sections.

f, Incorporating anisotropic scattering into the Monte Carlo collision routines,

and

g. Developing limited estimates of the errors in the Monte Carlo calculations.

With these additional capabilities, we were able to apply the hybrid .XIonte

Carlo/Sx method to the benchmark problems of Chapter 11. For the first two

benchmarks (Graphite Block and Uranium Rod). even though not ideal cases for

the hybrid method, we saw that the basic premise of the method held. That is.

we were able to obtain results with a low order S:v solver in the hybrid method

that required a higher order (i.e., larger quadrature order and smaller mesh size)
...

standard SN solver. With the third benchmark (Aluminum-U235 Block), which

was better suited for the hybrid method since it combined both optically thick and

thin regions, we saw that the hybrid method clearly outperformed the SN method.

Of the hybrid method enhancements listed above, the most important is the

ability to handle multigroup problems. We have shown that the hybrid method
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is capable of solving not just multigroup problems involving downscatter only. but

those with upscatter and/or fission as well, and in reasonable amounts of time. With

improved 3lonte Carlo methods (i.e., the use of non-analog .X,lonte Carlo). we can

expect orders of magnitude reductions in the computational time required by the

._Ionte Carlo portion of the hybrid method. Since the .'kIonte Carlo method usually

requires the large majority of the computational time, this will further enhance the

practicality of the hybrid method.

The second most important addition to the hybrid method is that we are able

to implement it within TWODANT without adversely affecting the acceleration of

the S.\- inner iterations. Thus. the efficiency of the Sx methods in T\VODANT

are retained for pure downscatter and non-highly multiplying problems. While

this may seem unimportant in relation to the ._Ionte Carlo computational times.

experience has shown that the expense of unaccelerated S.v calculations rapidly

becomes prohibitive for complex problems in two dimensions. However. for highly

multiplying problems, some means of accelerating the outer iterations in the hybrid

method is still required, if it is desirable to apply the hybrid method to these types

of problems.

It would also be desirable to use the hybrid method in problems involving

both geometrically complicated and geometrically simple regions, where the Monte

Carlo method would be used in the geometrically complicated region, and the S x

method in the geometrically simple. To include geometrically complicated (i.e.,

three dimensional) regions in the hybrid method, additional input to define the

geometry and more extensive tracking routines would be required, in addition to

some averaging algorithm for the transition between the three dimensional Xlonte
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Carlo region and the two dimensional Sx. In addition, since the 3Ionte Carlo region

is no longer necessarily optically thin, more extensive variance reduction measures
Q

would be required. None of the above items would appear to require an?"substantial

revisions in the hybrid method's theory, while the ability to handle geometricaly

complicated problems method would greatly increase the number of "'real'" problems

the hybrid method could be applied to.

Before the hybrid method could be applied to any "'real" problems, however,

the ability to accurately process cross sections including anisotropic scattering must

be added. As previously pointed out, however, there are already several relatively

straightforward methods in existence for doing so, any one of which could be em-

ployed with the hybrid method. It might also be noted that use of anisotropic

scattering would enhance the desirability of the hybrid method, since the computa-

tion time for higher order S.\" quadrature sets increases with the degree of anisotropy

due to the increased number of moments that must be computed.

Perhaps the one unresolved issue in the application of the hybrid method

to more complex problems is the ability to provide a rigorous error estimate in the

quantities of interest, as all standard Monte Carlo codes currently do. As previously

explained, standard variance estimation techniques are not practical to implement

in the hybrid technique, and it is currently unclear as to whether some other means

of estimating the variance is even possible. A more fruitful approach may be that

of enhancing and expanding the error estimates already provided which, although

not rigorous, at least provide some indication as to the precision of the .Monte Carlo

calculation.
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Although work in the areas mentioned above is required before the hybrid

method can be applied to more complex problems for which it is better suited,

we have shown that the hybrid method is capable of solving multigroup problems

in X - ]" or R- Z geometries using the S,_, method while mitigating standard

S,'_" deficiencies such as ray effects and streaming effects. Those areas requiring

additional work have been delineated and, with the possible exception of error

estimates, it seems clear that there are no significant remaining obstacles towards

development of a practical hybrid Monte Carlo/Sv code. Since, even with basically

analog _Ionte Carlo techniques, isotropic scattering, and simplified test problems,"

the hybrid method generates run times of the same order as S.\- calculations for

comparable accuracy, we believe that further development of the hybrid Monte

Carlo/S.v method is warranted, and that it will furnish an attractive alternative to

existing solution methods for certain types of problems.
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