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Abstract
i i

Motion-dependent fluid forces acting on a tube array were measured as a

function of excitation frequency, excitation amplitude, and flow velocity. Fluid-

damping and fluid-stiffness coefficients were obtained from measured motion-

dependent fluid forces as a function of reduced flow velocity and excitation

amplitude. The water channel and test setup provide a sound facility for obtaining

key coefficients for fluidelastic instability of tube arrays in crossflow. Once the

motion-dependent fluid-force coefficients have been measured, a reliable design

guideline, based on the unsteady flow theory, can be developed for fluidelastic

instability of tube arrays in crossflow.

1 Introduction
=,l

The components of many heat exchangers and steam generators comprise a

group of tubes submerged in crossflow. Fluid flow is a source of energy that can

induce vibration and instability. In general, the excitation forces can be divided into

two groups. When a tube array is rigid, it disturbs the flow field and the fluid forces



acting on the tubes (called fluid excitation forces) are the result of the fluid flow.

For example, steady and fluctuating drag and lift forces are typical fluid excitation

forces. When the tubes in an array oscillate in the flow, the oscillating motion will

disturb the flow field and the fluid forces acting on the tubes will depend on the

motion of the tubes. All the fluid-force components that are a function of tube

motion are called motion-dependent fluid forces. Typical examples are fluid added

mass, fluid damping, and fluid stiffness.

Fluid excitation forces will excite tube vibration and cause forced vibration and

resonance. In general, they do not change tube characteristics. On the other hand,

motion-dependent fluid forces can change the characteristics of coupled tube/fluid

systems and may induce instability. Mathematically, it can be stated that fluid

excitation forces appear on the right-hand side of the differential equations that

describe the coupled fluid/tube system, whereas motion-dependent fluid forces

appear on the left-hand side of the equation. The main objective of this study is to

present the motion-dependent fluid forces that act on a tube array.

2 UnsteadyowTheor of Motion-De endent Fluid Forces

Consider a group of n tubes vibrating in a flow as shown in Fig. 1. The axes of

the tubes are parallel to one another and perpendicular to the x-y plane. The radius

R of each tube is the same, and the fluid is flowing with a gap flow velocity U. The

displacement components of tube j in the x and y directions are uj and vj,

respectively. The motion-dependent fluid-force components acting on tube j in the x

and y directions are, respectively, _ and gj, and are given by Chen (1987b) as
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 2vk) /c)2Uk + _jk _ + -- aik "-_ + a jk "-_fj =-P _R2 _jk _t2 _t 2 co (1)k=

+pU 2 0C;:kUk + CTi'kVk
j=l

and

c)2Uk +_jk _t 2 _ z__/ jk "_+ _ik "-_gj=-P _R2 _jk _t 2 ._ k=l _,

_ .... /,
+PU 2 _jkUk + _jkVk

(2)
/

j=l

where p is fluid density; t is time; co is circular frequency of tube oscillations; ajk,

_jk, ajk, and _jk are added mass coefficients; aik, _ik' aik' and _ik are fluid-
damping coefficients; and aik, _ik' Cik' and _ik are fluid-stiffness coefficients.

Motion-dependent fluid forces depend on deviation from a reference state of

steady flow, which can be grouped according to three different theories: quasistatic

flow, quasisteady flow, and unsteady flow.

2.1 Quasistatic Flow Theory

At any instant in time, the fluid-dynamic characteristics of tubes oscillating in

a flow are equal to the characteristics of the same stationary tubes whose

configuration is identical to the actual instantaneous configuration. The fluid forces

depend on the deviation from a reference state of steady flow, i.e., the fluid forces

depend only on uj and vj, not on dj, _j, iij, and Vj (the dot denotes differentiation with

respect to t), so that

fj: .
if1
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and

j=l

In this case, the fluid forces are determined uniquely by the tube configuration.

2.2 Ouaslsteady Flow Theory

At any instant in time, the fluid-dynamic characteristics of tubes moving in

flow are equal to the characteristics of the same tubes moving with constant

velocities equal to the actual instantaneous values. The fluid forces depend on tube

configuration and are proportional to tube motion. This is reflected by the changes

of amplitude and phase of the fluid force with respect to tube motion. In this case,

the fluid-force components are given by Eqs. 1 and 2. The fluid-stiffness coefficient

" _j'k "matrices are constant, i.e., O_jk, ' _jk' and _"jk, and are independent of the

reduced flow velocity. The fluid-damping coefficient matrices are functions of the

reduced flow velocity.

2.3 Unsteady Flow Theory

In general, the fluid-force components are nonlinear functions of uj, vj, dj, _j, iij,

and _j. The general expressions for the fluid-force components are given in Eqs. 1

and 2; however, the fluid-force matrices and fluid-coefficient matrices are functions

of U, uj, vj, dj, _j, iij, and _j.
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3 Brief Review of Moti0n-Dependent Fluid Forces ....

The crux of stability analysis of tube arrays in crossflow is the information on

motion-dependent fluid-force coefficients, in particular, fluid-damt ,ng coefficients

and fluid-stiffness coefficients. Several approaches can be used to obtain these

coefficients, including analytical and numerical methods and experimental

techniques.

3.1 Analytical Methods

A series of attempts has been made to analyze the fluid forces acting on tube

arrays oscillating in crossflow. Theoretically, this analysis should be based on the

Navier-Stokes or Reynolds equation. Various approximate methods are used to

analyze this problem because of the difficulty in solving the problem exactly.

Potential-flow theory. An investigation of fluid forces based on the potential-

flow theory was performed by Chen (1976). The main conclusion of the

investigation was that the potential-flow theory is applicable to added mass

coefficients but, in general, it is not applicable to fluid-damping and fluid-stiffness

coefficients. Additional studies were made by Paidoussis, Price, and Mavriplis

(1984) and Van der Hoogt and Van Campen (1984).

Quasistatic flow theory. Typical examples are those by Connors (1970) and

Blevins (1977); however, the fluid-stiffness forces are measured experimentally. At

this time, no analytical solution is available for the quasistatic flow theory.

Quasisteady flow theory. Several forms of fluid forces based on the

quasisteady-flow theory were presented by Price and Paidoussis (1983 and 1984)
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and Paidoussis, Price, and Mavriplis (1984). Some heuristic parameters are also

included to improve the quasisteady flow theory.

Unsteady flow theory. Lever and Weaver (1982, 1984) formulated a one-

dimensional model based on mass and momentum conservation equations, and

conducted a series of experiments to verify the basic assumption. Additional

studies, by Yetisir and Weaver (1988, 1992), were conducted to improve the theory.

Another approach, which uses a vorticity formulation for two-dimensional fluid

motion, was developed by Marn and Catton (1991).

3.2 Numerical Methods

Effective methods for working with moving boundary problems with small-to-

medium deformations are based on various algorithms, including Eulerian,

Lagrangian, and Eulerian-Lagrangian. For example, the wake interference behind

two flat plates normal to the flow was numerically calculated by a finite-element

method for two Reynolds numbers, 80 and 160 (Behr, Tezduyar, and Higuchi 1991).

The flow patterns were found to vary with Reynolds number and gap size. At this

time, although several algorithms are available to work with the motion-dependent

fluid forces, no systematic study has been conducted for tube arrays.

3.3 Experimental Techniques

The assumption of quasisteady flow was considered by Price, Paidoussis, and

Sychtera (1988) for two tubes, one behind the other. It was found that the

discrepancy between the quasisteady and unsteady fluid-force coefficients depends

not only on reduced flow velocity but also on the position of the leeward tube

relative to the windward tube. When reduced flow velocity is large, the quasisteady
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flow theory is applicable; however, greater caution is required when the quasisteady

flow assumption is applied to small reduced flow velocity.

One method to obtain fluid forces is to base the calculation of force coefficients

on measured structural responses, such as accelerations and displacements. In

some cases, because direct measurement of fluid forces is difficult, e.g.,

measurements of high buildings or heat exchanger tubes, some attempts have been

made to use the inverse method (Xie 1988, and Holzdeppe and Ory 1988). The

technique is useful when detailed dynamics of the system are well known, such as

in a simple bridge section (Xie 1988). Granger (1990) also used an inverse method

to obtain fluid forces. He studied a flexible tube in an otherwise rigid tube bundle

that Was subjected to water crossflow. Some fluid forces compare reasonably well

with the data of Tanaka and Takahara (1981) and Tanaka, Takahara, and Ohta

(1982). For a group of flexible tubes, it will be difficult to obtain all fluid-force

coefficients.

Several experiments focused on measuring motion-dependent fluid forces

directly. Teh and Goyder (1988) measured fluid forces acting on a tube that was

excited to oscillation. These fluid forces were related to the oscillating t,be only;

therefore, they can be used for fluid-damping-controlled instability only. Hara

(1987) measured unsteady fluid forces acting on a tube row and studied the detailed

flow field. Funakawa et al. (1990) performed an experimental study of unsteady

fluid forces acting on tube arrays with a pitch ratio of 1.41 in two-phase flow.

However, these authors only measured a single component of the fluid forces for a

specific motion. The results provide some insights into the instability of tube arrays

in two-phase flow but cannot be used for practical prediction of instability. The

most extensive measurements of motion-dependent fluid forces were by Tanaka

(1980); Tanaka and Takahara (1981); and Tanaka, Takahara, and Ohta (1982), who

measured motion-dependent fluid forces for tube rows and square arrays with pitch



ratios of 1.33 and 1.42. This technique was also used by Jendrzejczyk and Chen

(1987).

In this study, we used the unsteady flow theory. Fluid-force coefficients can be

determined by measuring the fuid forces acting on the tubes that are due to

oscillations of a particular tube. For example, if tube k is excited in the y direction,

its displacement in the y direction is given by

Vk= v cos cot. (5)

The fluid force acting on tube j in the x direction can be written

1 2 )v, (6)fj -- _pU Cjk cos(o)t + _jk

where Cjk is the fluid-force amplitude and ¢jk is the phase angle by which the fluid

force acting on tube j leads the displacement of tube k.

With Eqs. I and 5, we can also write the fluid-force component as

2 ,, pU2_ikV sincot" (7)fj = (p_tR2c_2aj_ +pU _jk)VCOS(Ot-

Combining Eqs. 6 and 7 yields

1 _3I!

¢Yjk = _Cjk COS_jk - U---'_rajk (8)

and

, 1

_jk = _Cjk sinCjk, (9)

where Ur is the reduced flow velocity (Ur ffi_UkoR).
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The added mass coefficient C_jkin Eq. 8 can be calculated by applying the
! tt

potential-flow theory (Chen 1975, 1987a). Then Gjk and Gjk can be calculated from

Eqs. 8 and 9, when the force amplitude Cjk and phase angle _jk are measured.

Other fluid-force coefficients can be obtained in the same manner.

Fluid-force coefficients depend on tube arrangement, tube pitch, oscillation

amplitude, oscillation frequency, and flow velocity. For a given tube array, fluid-

force coefficients are a function of oscillation amplitude (d_) and reduced flow

velocity (Ur), where d is vibration amplitude and D i8 _ube diameter. For small-

amplitude oscillations, fluid-force coefficients can be considered a function of

reduced flow velocity only.

4 Experimenta! Setup

4.1 Water Channel

The test channel is shown in Fig. 2. Water is pumped into an input tank. The

flow passes through a series of screens and honeycombs and then into a rectangular

flow channel. The water level is controlled by standpipes in the output tank and the

flow is controlled by the running speed of the pump motor.

Flow velocity is measured with a current flow meter. The rate of propeller

rotation is directly proportional to stream velocity and therefore the sensor output

signal is not effected by other factors, such as water conductivity, temperature, and

suspended particulates.
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4.2 Force Transducers

A schematic representation of a force transducer is shown in Fig. 3a. The

relatively rigid main bodies of the tubes are constructed from stainless steel tubing

with a 2.54-cm (1-in.) OD, a 0.071-cm (0.028-in.) wall thickness, and a 38.1-cm

(15-in.) length. Thin brass end caps are soldered to both ends of each tube and a

smaller, relatively flexible tube, with a 0.635-cm (0.25-in.) OD, a 0.089-cm (0.035-

in.) wall thickness, and a 12.07-cm (4.75-in.) length, is fastened to the upper end cap

of each tube (Fig. 3b). Two sets of strain gauges are placed on the outer surface of

the smaller tube where the outer surface of the tube has been machined to a smaller

diameter or a hexagonal section (Fig. 3c). When the cross section is circular the

transducer is denoted Type A; when it is hexagonal, the transducer is denoted

Type B. The two sets of strain gauges measure the force components in the two

perpendicular directions with a sensitivity of =1 V for 0.05 N (0.01 lb) of force acting

on the middle of the active tubes.

The forcetransducersarecalibratedby two methods,staticand dynamic. In

the staticmethod in air,the activetubeisheldfixedatthe supportedend and a

givenforceisappliedtothemiddleoftheactivelength.Inthedynamic method in

airand water,the tube isexcitedat a givenfrequencyand amplitudein airor

water. Then, the inertiaforcesdue to the sinusoidaloscillationsare used to

determinethecalibrationconstant.

All calibration constants used in the measurement are determined in water.

For a single tube vibrating uniformly in water, the inertia force is given by

fj = (mt + p_D2//4) c_2dsin(_t), (10)

where mt is tube mass, l is tube length, p is water density, o_is oscillation frequency

(rad/sec), and d is oscillation peak amplitude. In testing, the inertia force fj is
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measured for a given excitation co and vibration amplitude d. In the calibration,

varies from =0.25 Hz to 2.0 Hz and d varies from 0.5 to 5.0 mm. From Eq. 10, the

ratio of fj/d (or gj/d) is proportional to 0)2. From the data, a power-law curve is used

to determine the constant. Theoretically, the ratio fj/d (or gj/d)should be

proportional to co2;the actual power is very close to 2.0. All force transducers are

calibrated in two directions.

4.3 Test Sect|on

An array of tubes is assembled in the test area. Figure 4 shows a row of tubes.

The tubes denoted by solid and shaded circles are active, while the others, denoted

by open circles, are dummy tubes. All tubes except the middle one, denoted as Tube

I by a solid circle, are clamped to a support plate with a nut attached to a smaller

supporting tube. Tube I is not attached to the support plate, but passes through a

circular hole in thv support plate and is connected to an electromagnetic shaker.

The shaker provides the support for Tube 1. In addition, specific oscillations can be

assigned to Tube 1 in the x or y direction, and both the oscillation amplitude m,_

frequency of the shaker can be controlled in the appropriate range.

During tests, the water surface is kept at such a level that the active length of

the tubes is submerged in the flow. Normally, only a small portion of the

supporting tube (less than 1.3 cm) is submerged in water. Therefore, the strain

gauges do not require waterproofing.

5 Test Procedures and Data Analysis ,

A flow diagram of the instrumentation and exciter is shown in Fig. 5. The

exciter provides sinusoidal displacement at a frequency varying from =0.1 Hz to
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2.0 Hz. Displacement and force signals are first filtered by band-pass filters to

eliminate low- and high-frequency noises and then digitized and stored in the

analyzer. These signals are analyzed to obtain the oscillation displacement of the

tube, the magnitudes of the forces acting on the active tubes, and the phase between

the motion-dependent fluid force and tube displacement.

In Fig. 5, the test facility, instrumentation, and data analysis systems are

shown ready for a series of tests. The first tube array tested was a row of tubes

with a pitch-to-diameter ratio (T/D, where T is the gap) of 1.35 (Fig. 4)_ Motion-

dependent fluid forces were measured for Active Tubes 1, 2, and 3, with Tube 1

oscillating in the lift (x) or drag (y) direction.

6 Test Results

6.1 Added Mass Coefficients

The added mass coefficients for a row of tubes were measured as a function of

excitation amplitude and frequency. Typical results are shown in Figs. 6a and b,

which show the ratio of measured force to tube displacement as a function of tube

displacement for two frequencies, 0.5 Hz and 1.0 Hz. Tube 1 was excited in the x

direction, and the forces acting on Tubes 1-3 in the x direction were measured. The

amplitude ratios for the three tubes were independent of the excitation amplitude

and the forces acting on Tubes 2 and 3 were equal.

The calculation of the added mass coefficients is based on the measured forces.

The results are given in Table 1 for excitation at 0.5 Hz.

The added mass coefficients were measured for a series of excitation

amplitudes, ranging from =0.8 to 5 mm, which correspond to =10-60% of the gap

between the tubes. The effects of vibration amplitude on the added mass
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coefficients in this range of motion are not significant. The added mass coefficients

were also measured ,_'orvarious excitation frequencies. For example, the values for

the added mass coefficient _11, obtained for three excitation frequencies, 0.5, 1.0,

and 1.5 Hz, were 1.098, 1.122, and 1.144, respectively. The experimental data

confirm two characteristics: (1) at low excitation amplitude, the linear flow theory,

based on the potential flow theory, will provide added mass coefficients with

sufficient accuracy. (2) at high kinetic Reynolds number (which is equal to the

circular frequency of oscillation multiplied by tube diameter squared and fluid

kinetic viscosity, Chen 1987a), the oscillation amplitude is insignificant.

6.2 Vortex Shedding

One of the main excitation sources for tube vibration in crossflow is vortex

shedding. For a tube row in crossflow, vortex shedding is important. Tests are

conducted for the tube row by measuring the resultant lift and drag forces acting on

the three active tubes at different flow velocities. From the frequency spectra of the

fluid excitation forces in the lift direction, the vortex shedding frequencies can be

identified and the Strouhal number St can be calculated:

St = fD/U, (11)

where f represents the frequencies corresponding to the peaks in the power spectra

of lift forces. In the drag direction, the frequencies are twice those of the lift

direction; therefore, from the frequencies corresponding to the peaks in the power

spectra of drag forces,

St = fD/2U. (12)
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Based on the power spectra of the lift forces and drag forces at different flow

velocities, three Strouhal numbers were calculated: 0.105, 0.22 and 0.43. The

detailed flow field across the tube row was not studied in this test. Differing vortex

shedding frequencies are associated with differing flow patterns for steady flow

across a tube row.

Many studies have focused on the vortex shedding process for a single tube in

crossflow (Chen 1987a). The Strouhal number is a function of the Reynolds number

and in the subcritical region, it is equal to =0.2. In this test, Reynolds number

varies from =2500 to 3800. It is in the subcritical region. Various investigators

have found different vortex shedding frequencies for tube rows in crossflow (Chen

1968; Borges 1969; Clasen and Gregorig 1971; Ishigai, Nishikawa, and Yagi 1973;

Auger and Coutanceau 1978). Figure 7 shows results obtained in the present study

and published data, as a function of the pitch-to-diameter ratio (T/D) of tube rows.

The three values obtained during this study compare reasonably well with the

published data.

Vortex shedding for a flow across a tube array is fairly complicated. In this

study, the vortex shedding frequencies were determined from the frequency spectra

of the resultant lift and drag forces and not from the direct measurements of flow

velocity or fluid pressure. Figure 7 shows that there are five vortex shedding

frequencies for a tube row with T/D = 1.35. Two vortex shedding frequencies that

can be measured in the wake do not appear in the resultant forces acting on the

tubes. To understand the detailed vortex shedding process, direct measurements of

local flow velocity and fluid pressure behind the tube row, as well as visualization of

flow patterns, provides a better understanding. Measurements of resultant fluid

forces are useful for predicting tube response in crossflow.
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6.3 Motion.Dependent Fluid Forces

Fluidforceson thetubesarerelativelysmallexceptforthe forceon thetube

beingexcitedby theshaker.The magnitudeoftheforcesdependson theexcitation

amplitude,excitationfrequency,and flowvelocity.The dominantfrequencyoffluid

forcesisthe same as theexcitationfrequency;however,thefluidforcecomponents

arenotinphasewiththetubedisplacement.Dependingon thephasebetweenthe

tubedisplacementand fluidforces,thefluidforcesmay be an excitationmechanism

orenergydissipationmechanism.

Figure 8 shows the loci of the unsteady fluid forces gl at excitation frequencies

of 0.15 and 2 Hz. At 0.15 Hz, the component gl is negative when the displacement

is positive and vice versa; therefore, it acts as an excitation force. At 2.0 Hz, the

component gl is positive when the displacement is positive; therefore, it acts as a

damping force. A damping force will contribute to energy dissipation, which will

reduce tube response, whereas an excitation force will contribute to negative

damping, which may result in fluidelastic instability.

The phase angle is defined as the angle between the fluid-force component and

the tube displacement. This angle can be obtained from the correlation between the

two time histories of fluid force and tube displacement, or from the time history

plots. When the reduced flow is small, =<10, the fluid forces decrease rapidly with

increasing reduced flow velocity. This is attributed to the effect of the inertia force

of added mass of fluid. At higher reduced flow velocity, the magnitude of the fluid

force is almost independent of the reduced flow velocity. Similar trends are noted

for the phase angle. At low reduced flow velocity, the phase angle varies more

dramatically with reduced flow velocity, while at large reduced flow velocity, the

variation of the phase angle with reduced flow velocity is much smaller.
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6.4 Fluid-Force Coefficients

The critical elements for predicting fluidelastic instability of tube arrays in

crossflow are motion-dependent fluid-force coefficients. A reliable method to obtain

these coefficients will contribute significantly to the development of accurate

prediction techniques. From the motion-dependent fluid forces acting on the

exciting tube itself and the surrounding tubes and their phase angles with respect

to the displacement of the excitation tube, as well as the added mass coefficients

based on the potential flow theory, fluid-damping and fluid-stiffness coefficients can

be calculated by the method described in Section 3. Several series of tests were

performed for the tube row with a pitch-to-diameter ratio of 1.35 with Type A and B

force transducers. The excitation amplitude was set at different values by

controlling the voltage at the shaker. The displacement of the excited tube depends

on the excitation frequency. For example, at 0.1 m/s, the excited RMS tube

displacements with an excitation force denoted by 1.5 v vary from 2.65 mm at

0.1 Hz to 1.68 mm at 2 Hz.

Type-A force transducers: Fluid forces were measured for three flow velocities,

with the reduced flow velocity varying from =2 to 60 for excitation in the x direction.

Only one flow velocity was used in the y direction.

Type-B force transducers: The flow velocity is set at 0.1 m/s. Two series of

tests were performed with Type-B force transducers:

• The excitation in the x direction was given at three excitation levels

and the reduced flow velocity varied from =2 to 160. In the y direction,

the excitation was given at five excitation levels and the reduced flow

velocity varied from =2 to 40.
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• The reduced flow velocity varied from =2 to 200. The excitation was set

at two different levels.

In this paper, only the results of the first series of tests using force transducer

Type B are presented in Figs. 9-12. More data can be found in a report (Chen, Zhu,

and Jendrzejczyk 1993).

Several interesting characteristics of the fluid-force coefficients were noted.

* At high reduced flow velocity, all fluid-force coefficients are

approximately constant. In this range, fluid-force coefficients obtained

at a particular reduced flow velocity are applicable for all values of

reduced flow velocity. This characteristic was also noted for structural

components with other shapes (Chen 1987b).

• Fluid-force coefficients obtained at different flow velocities are

approximately the same. Therefore, for relatively small-amplitude

oscillations, fluid-force coefficients are a function of reduced flow

velocity only. In the measurement of motion-dependent fluid forces, an

appropriate combination of flow velocity and oscillation frequency can

be utilized to obtain the best results.

• At small reduced flow velocity, all fluid-force coefficients are a function

of reduced flow velocity and the fluid-force coefficients must be

measured for all values of reduced flow velocity. In this range of

reduced flow velocity, the functional dependence of fluid force

coefficients with reduced flow velocity is difficult to characterize.
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Fluid-force coefficients obtained in this study agree reasonably well with those

based on Tanaka's data (Tanaka 1980). However, some of the details are not in

complete agreement. This is probably due to different experimental setup. The

experimental parameters in the two tests were not identical. The flow across a tube

row is fairly complicated, as demonstrated in the measurement of vortex shedding.

Different flow patterns will affect the motion-dependent fluid forces. For example,

the direction of f2 due to the motion of ul is differevt from and opposite to the one

measured by Tanaka and his colleagues (1980, 1981, 1982). However, the direction

of fs in this test is the same as f2 in the test by Tanaka and his colleagues (1980,

1981, 1982). It is apparent that the flow patterns in the two tests might be exactly

opposite to each other.

6.5 Effects of Oscillation Amplitudes and Excitation Frequencies

To obtain reliable fluid forces, the excitation amplitudes of Tube I must vary

with flow velocity and excitation frequency. Several series of measurements of fluid

forces for various tube motions were performed to understand the effect of tube

oscillation amplitude. Fluid force coefficients were obtained for various values of

oscillation amplitude (d), which is the RMS displacement of Tube 1.

The fluid force coefficients are obtained with a Type-A force transducer for d

varying from I mm to 4.5 mm at 0.12 Hz and from 1.2 mm to 3.7 mm at 1.2 Hz. The

flow velocity is 0.15 m/s; therefore, the corresponding reduced flow velocities are 50

and 5 for 0.12 and 1.2 Hz respectively.

Two flow velocities, 0.13 m/s and 0.1 m/s, and two frequencies, 0.06 and 0.12

Hz were tested with a Type-B force transducer. The corresponding reduced flow
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velocities were 42.5 and 85 for 0.13 m/s at 0.12 and 0.06 Hz and 32.8 and 65.5 for

0.1m/s at 0.12 and 0.06 Hz. Typical results are given in Figs. 13 and 14.

From Figs. 13 and 14 and other data, it is evident that there is no noticeable

difference. The maximum peak magnitude of 6._6 mm (RMS 4.5 ram) is -70% of the

gap between tubes. The amplitude of tube displacement has been tested at higher

values than those of Tanaka and his colleagues (1980, 1981, 1982); the results

shown agree well with their data.

Although fluid.force coefficients are not affected by an oscillation amplitude

= 70% of the gap, larger oscillation amplitudes are expected to have a significant

influence. As demonstrated in a stability study (Chen 1987a), two instability limits,

intrinsic and excited, are encountered. The difference between these two instability

limits is partially due to the dependence of fluid-force coefficients on oscillation

amplitude. At the largest displacement, all fluid-force coefficients begin to change

significantly. To protect the integrity of the force transducers, larger amplitude

oscillations were not tested.

The effect of tube oscillation amplitude can be summarized as follows. Because

fluid-force coefficients are independent of tube oscillation amplitude if the tube

displacement is less than -70% of the gap, small-amplitude oscillations of the tubes

due to other excitation sources are not expected to affect the threshold of fluidelastic

instability. However, if the tubes are excited to perform large-amplitude

oscillations, the nonlinear characteristics of fluid forces become important. In

predicting tube motion in the post critical region, nonlinear fluid-force coefficients

will be needed to predict nonlinear behavior, including chaotic motion, more

accurately.
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6.6 Symmetry end Antlsymmetry of Fluld Forces

The symmetric or antisymmetric characteristics of the fluid-force coefficients

provide some insights into their effects on fluidelastic instability of tube arrays in

crossflow. The details are given by Chen (1987a) in the form of a generalized theory

for fluidelastic instability of a fuid-structure system. The symmetric or

antisymmetric properties of added mass, fluid damping, and fluid stiffness for

fluidelastic instability of tube arrays considered here are based on the data obtained

in this test.

The added mass coefficients are symmetric and have been proved by the

potential flow theory for small-amplitude oscillations (Chen 1987a). In a viscous

fluid, it is believed that the added mass coefficients are also symmetric for small-

amplitude oscillations. Although this has not been proved rigorously, numerical

results and experimental data are in agreement with this observation. Based on the

potential flow theory, the added mass matrix for a row of three active tubes with

T/D = 1.35 can be written as

Lll -0.28 -0.281 0 0 0
I

-0.28 I. 11 -0.04 I 0 0 0
' 1 I o o o-0.28-0.04x11, *m,am

.gj_jkJ 0 0 0 ]1.13, 0.34 0.34
0 0 0 10.34 L13 0.13

j,k= 1, 2, 3 I

. 0 0 0 10.34 0.13 t13 (13)

It is apparent that the added mass matrix is symmetric.

For fluid-damping and fluid-stiffness coefficients, no such symmetric property

exists. In the past, the use of symmetric and antisymmetric properties has been
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based on physical and geometrical considerations. The coefficient matrices for a

tube row are assumed to be of the following form:

Matrix for fluid-damping coefficient:

¢,

! ! ! | ! !

all °1'12 a12 I 0 _12 -°"12

a12 (Zll 0 ' _'' ' I- 12 O 0
, I , "1 , , ! ,

ajk I Crjk| (x,,, 0 (x.,4 , ¢y-.., 0 0
.__._,.| = --_ ........ _-_--_ ..... (14)
gjk I PJI_J 0 _12 -I;12 i _11 _12 _12

' :_12 _ o-Z12 0 0 ,

' :_2 o I_.__12 0 0 ,

Matrix for fluid-stiffness coefficient:

B

l! t! _tf! | l! Illall a12 12 I 0 a12 -_12
It tl tl

a12 all 0 'I-012 0 0
I . I . "] ,, ,, I ,,

OtjklOjk/ o_ 0 _1_ 0 o._I;I .... I___ (15)
/-', --,'-_--/ o
L_j_ I pj_j _12 -_'121 _11 _12 _12

l!

" :_2 _1_ o-g12 0 0 ,
II It

_12 o o ll}x2, o I}_x

Test results from this experiment can be used to verify the validity of these

assumptions.

In general, Figs. 8-12, and other data (Chen, Zhu, and Jendrzejczyk 1993),

which show fluid force coefficients (_1, (X31, (Y21, {Y31, _' ' " " "' 21, _81, _21, _31, 0t21, C{31, (Y21,

(_Sl,"_21,"gSl,"_1 , and I}_I,indicate that
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21 = (131,

! !

(121 - "_31p
(16)

and

(11! (11!21 = 31,

!! 1....,._t !(121 31_
(17)

_'21 --- P'31

These equations agree with Eqs. 13 and 14. As pointed out earlier, there is a minor

difference between our test and that of Tanaka and his colleagues (1980, 1981,

1982), in which the signs of :21 are opposite at high reduced flow velocities. This

difference is believed to be associated with the different patterns used by us and

them.

7 Closing Remarks

In the unsteady flow theory, all fluid force components are included and

quantified properly and the theory is applicable in all cases for all system

parameters. On the other hand, quasistatic and quasisteady flow theories are
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applicable in some specific parameter ranges because of the approximations made in

the characterization of flow effect. Therefore, the unsteady flow theory is the only

theory that can be used to assess the validity of other approximate flow theories on

fluidelastic instability of tube arrays in crossflow.

Tanaka and his colleagues (1980, 1981, 1982) in Japan were the first group to

measure the motion-dependent fluid forces acting on tube arrays, which are the

critical elements of fluidelastic instability. In their studies, no effort was made to

develop the fluid-force coefficients. It appears that the group at Argonne National

Laboratory was the first team to develop the nondimensional motion-dependent

fluid-force coefficients for tube arrays in crossflow. It also has been verified that at

high reduced flow velocity, these coefficients are independent of reduced flow

velocity. Knowing this characteristic significantly reduces the effort necessary to

develop prediction models.

In earlier studies, only a portion of the motion-dependent fluid forces was

measured. In the applications of fluid forces to predict fluidelastic instability,

several assumptions must be made about the symmetry or asymmetry of fluid

forces. In this study, all fluid-force components were measured. The symmetry or

asymmetry of motion-dependent fluid forces is not necessarily correct, and in the

future, measurements should be performed to verify the symmetry or asymmetry of

fluid forces. Because of the symmetry or asymmetry of fluid forces, the instability of

tube arrays subject to reversed flow may be different from that for uniform flow.

Motion-dependent fluid forces are a function of the amplitude of tube

oscillations. The amplitudes of oscillations range up to 17% of tube diameter (-50%

of tube gap) in tests performed in Japan. The fluid forces measured were practically

independent of oscillation amplitudes in this range. In the study reported here, the
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oscillation amplitudes were up to -70% of the tube gap. The effect of oscillation

amplitudes on fluid force coefficients was still insignificant.

To develop a reliable design gtddeline for fluidelasric instability of tube arrays

for application to heat exchangers and steam generators, the unsteady flow theory

is the only reliable theory to use. The key elements are the morion-dependent fluid

force coefficients, in this study, a reliable method was developed and shown capable

of providing all necessary fluid force coefficients. A systematic study can now be

performed to measure all fluid force coefficients for various tube arrays, including

square and triangular arrays with differing pitch-to-diameter ratios. Once the

necessary fluid force coefficients are determined, the unsteady flow theory can be

applied to practical components for the evaluation of fluidelastic instability.
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Table 1. Experimental and theoretical values of added

mas3 coefficients with excitation at 0.5 Hz

i i i ii i i i i i ill i i i

Added Mass Theoretical Results Experimental

Coefficients of Chen 1975 Data
ii i i llllli i i illL i llll ill if i IIIlllll

al I 1.113 1.098

ai2 -0.282 -0.282

a13 -0.282 -0.298

_11 1.114 1.089

_12 0.340 0.336

_13 0.340 0.336
i illll i i i i i i i i



Figure Captions

Fig. 1. Tube array in crossflow

Fig. 2. Test channel

Fig. 3. Schematic representation of force transducer: (a) force transducer, (b)

flexible tube, (c) cross section of flexible tube for swain gauges,

Fig. 4. Schematic representation of first tube array tested, i.e., row of tubes in

crossflow

Fig.5. Flow diagramofinstrumentationfordataanalysis

Fig. 6. Force-to-displacement ratio as a function of RMS displacement when

frequency is (a) 0.5 and (b) 1 Hz

Fig. 7. Strouhal number for tube row as a function of pitch-to-diameter ratio

Fig. 8. Fluid force gl as a function of tube displacement Vl for frequencies of 0.15

and 2 Hz

t t t t t t

Fig. 9. Fluid-damping coefficients Otll, 0t21, or31, _11, _21, and _31, force

transducer Type B, reduced flow velocity from 2 to 160

t ! t

Fig. 10. Fluid-damping coefficients _11,_21, _31, °11, (_21, and (Y31, force transducer

Type B, reduced flow velocity from 2 to 40
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Fig. ii. Fluid-stiffness coefficients a_l, a21, (zSl, :!1, :21, and :81, force transducer

Type B, reduced flow velocity from 2 to 160
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Fig. 12. Fluid-stiffness coefficients _11, _21, _81, °11, °21, and 081, force transducer

Type B, reduced flow velocity from 2 to 40

! 0 0 t !

Fig. 18. Fluid.damping coefficients _11, _21,[381, a11, a21, and a81 as a function of

RMS tube displacement oscillating at 0.06 Hz, force transducer Type B

¢1 00 Ii 01

Fig. 14. Fluid-stiffness coefficients J3_1,_1, J_Sl,a11, a21, and as1 as a function of

RMS tube displacement oscillating at 0.06 Hz, force transducer _ B
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