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ABSTRACT

We discuss a conjugate gradient type method--the conjugate residual--
suitable for solving linear elliptic equations that result from discretization of
complex atmospheric dynamical problems. Rotation and irregular boundaries
typically lead to nonself-adjoint elliptic operators whose matrix representation
on the grid is definite but not symmetric. On the other hand, most established
methods for solving large sparse matrix equations depend on the symmetry and
definiteness of the matrix. Furthermore, the explicit construction of the matrix
can be both difficult and computationally expensive. An attractive feature of
conjugate gradient methods in general is that they do not require any knowledge
of the matrix; and in particular, convergence of conjugate residual algorithms
do not rely on symmetry for definite operators. We begin by reviewing some
basic concepts of variational algorithms from the perspective of a physical
analogy to the damped wave equation, which is a simple alternative to the
traditional abstract framework of the Krylov subspace methods. We derive two
conjugate residual schemes from variational principles, and prove that either
definiteness or symmetry ensures their convergence. We discuss issues related
to computational efficiency and illustrate our theoretical considerations with a
test problem of the potential flow of a Boussinesq fluid flow past a steep, three-
dimensional obstacle.

*The National Center for Atmospheric Research is sponsored by the National Science Foundation.
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1. Introduction

The differential equations modeling many important meteorological phenomena often

support high-speed propagating gravity or acoustic waves, and can become prohibitively

expensive to solve using explicit numerical integration methods. A common alternative is

to formulate such problems implicitly. This in turn leads to a linear elliptic problem, often

with complex boundary conditions. The model elliptic equation, representative of those

that arise in atmospheric applications, may be written as

where the operator L takes, in continuous notation, the form

£:(¢) = V. (PF(¢)) - A¢. (lb)

Each of the M <_3 components of the pressure force vector PF may depend both on the

pressure ¢ and its spatial partial derivatives

M

PF_(¢) = Z CI'J 0¢ ,r¢0z---7 + D , (lc)
J=l

where A, R, C I'J and D I are known functions of the coordinates. The boundary conditions

of interest include periodic, Dirichlet (i.e., ¢ is assumed to be known at the boundary), or

Neumann type (i.e, the normal component of PF is assumed known at the boundary).

There are several difficulties associated with inverting (1) for ¢ on discrete meshes.

First, modern prognostic atmospheric models employ large grids (_ 106 grid points) so

that solving (1) at each of numerous time steps represents a serious computational task.

Second, in atmospheric applications the discretized operator £ frequently does not possess

certain regularity properties (discussed later in this paper) that makes some otherwise

attractive methods for (1) inadequate. Third, there are only a few classes of methods
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that are capable of handling (1) at a reasonable computational cost within the context

of a prognostic dynamical code. These methods, however, are fairly recent and not yet

well-established in atmospheric modeling.

The computational complexity of the problem in (1), would make generally available

software packages particularly attractive. However, even the most powerful and advanced

multigrid software package (MUDPACK) that is available nowadays to the atmospheric

community (Adams 1989, 1991, 1993; Adams et al. 1992) is inadequate for the general

case of (1). This is not due to any inadequacy of multigrid techniques--MUDPACK

could be customized for (1); John Adams, personal communication--but rather reflects

the difficulties associated with designing general, efficient, yet user-friendly software.

Furthermore, powerful software packages are usually written in terms of matrix inversion

and, in a general three-dimensional case, may require storing up to 27 matrices of

coefficients (cf. Kapitza and Eppel 1985). Also, such software packages often require

some form of initialization, which becomes computationally intensive if C x'J and D I are

t;,me-dependent--as is usually the case in implicit elastic codes, as well as anelastic codes

in time-dependent geometry.

The difficulties associated with the numerical solution of (1) are recognized in the

atmospheric literature as a serious drawback of those fundamental formulations of the

equations of motion that lead to complex elliptic problems (cf. Durran 1989, Skamarock

and Klemp 1992). This situation, where numerical difficulties limit one's abilities to

investigate potentially attractive formulations of physical problems, is annoying. The

current study seeks to overcome such limitations by documenting a simple, yet powerful

scheme capable of solving (1) for a variety of complex atmospheric applications. The

strategy adopted here differs from that in the mathematical literature where (1) is usually

discussed in terms of solving a large sparse matrix equation. Here we keep in mind that

(1) results from a discretization of the atmospheric equations of motion, and so constitutes
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an element of a much larger problem. Under these conditions, .several considerations

enter into the choice of a solver or the underlying technique on which a solver should be

based. First, the solver should strictly preserve the symmetries of the solution. 1 Second,

the overall accuracy and effciency of the solver need to be evaluated in the context of

the entire dynamical model, and not merely for elementary test problems. Insofar as

elementary tests (e.g., the constant-coefficient Poisson equation with Dirichlet boundary

conditions) are concerned, the scheme discussed below is not expected to be competitive

with generally :,vailable software _uch as MUDPACK or FISHPACK (Swarztrauber and

Sweet 1975). However, this same scheme becomes highly competitive when applied to

complex dynamical codes, where neither MUDPACK nor FISHPACK can be implemented

in a straightforward manner, viz., their implementation may require substantial effort [e.g.,

block iterations or predictor-corrector procedures to accommodate the cross-derivatives

appearing in (1)] which is both cumbersome and unnecessary, providing (1) can be solved

in its generic form.

The scheme discussed in this report is a variant of conjugate gradient (CG) methods

known as conjugate residuals (CR). Although CG methods have a long tradition in the

mathematical literature (see Stoer 1983, and Ashby et al. 1990, for comprehensive reviews),

they have become important in practical applications only recently. In the meteorological

literature, CG methods were primarily considered in the context of objective analysis

and data assimilation (see Ramamurthy and Navon 1992, for an overview). Insofar as

computational fluid dynamics is concerned, we are only aware of two recent works (Kapitza

and Eppel 1992, Smith et al. 1992) that discuss the successful implementation of the CG

approach to modeling geophysical flows. It is important to realize that there are many

1 Our experience with MUDPACK indicates that schemes based on Gauss-Seidel relaxation

technique may generate small asymmetries in solutions, which is undesirable when

studying such phenomena as the growth of physical instabilities in a direction normal
to the mean flow.



different versions of CG schemes which, from the viewpoint of basic methodology, often

differ only by details. In order to expose the flexibility of the approach and available degrees

of freedom, in section 2 we review some basic concepts of variational elliptic solvers. We

begin our discussion with the three-term recurrence formula, following the development of

Birkhoff and Lynch 1984, chapter 5. Although this is a rather unconventional approach

in the context of CG methods, we believe it is particularly illustrative in the context

of atmospheric modeling. In section 3, we focus attention on an algorithm suitable

for atmospheric applications and discuss two alternate formulations of the CR scheme.

Sections 2 and 3 are devoted to the mathematical foundations of variational methods. The

practical issue of computational efficiency is addressed in section 4, where we illustrate our

theoretical considerations with examples of three-dimensional potential flows of Boussinesq

fluid past a steep, isolated hill.

2. Variational solvers

Iterative solvers for (1) are often derived from the physical analogy to the damped

wave equation
02¢ I 0¢

d =/:(¢)- R, (2)0r 2 T 0r

whose steady-state solution in pseudo-time r represents the solution to the governing

problem (1) (cf. Birkhoff and Lynch, 1984, chapter 4.15). Discretizing (2) in pseudo-time

with an increment Ar and damping scale T -- 77-1Ar (both assumed uniform in space)

and using, respectively, centered- and one-sided differencing for the first and second term

on the lhs of (2), leads to a three-term recurrence fornmla

cn+l .._ ,_¢n + (I -- ,_)(_n--1 __ _(z(¢n) _ R) , (3)

where _ = (2 + 7/)/(1 + _), /3 = (Av)2/(1 + r/), and the superscript n labels successive

iterations. Spatial discretization of (3) leads to the equation

cn+l ._ 7¢n + (1 --.),)¢n-1 + /3(_|(¢n) _ nl) , (3')
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where the subscript i = (il,...,i M) denotes position on a computational grid (is -

1,...,N J), and 1:i refers to discrete forms of (lb) and (lc). For simplicity of notation,

we shall further refer to (3) with understanding that it implies (3') on the grid.

The recurrence formula in (3) constitutes the common basis for many iterative

schemes. Depending on the choice of the parameters 7 and fl, (3) becomes, for instance,

Richardson (viz. Jacobi), Frankel, Chebyshev, or a CG technique (Birkhoff and Lynch

1984). The underlying goal of all possible schemes embodied by (3) is computational

efficiency--i.e., convergence to a steady state in as few iterations as possible, in order

to minimize the effort associated with costly evaluations of £(¢) on the mesh. In terms

of the physical analogy to (2), efficiency implies advancing the solution in pseudo-time

r as far as possible with the largest Ar admitted by the computational stability of the

scheme. In this context, the Richardson method (7 = 1) reduces, in essence, to numerical

evaluation of the diffusion equation with the maximal constant _ admitted by the linear

stability of the scheme, whereas the Frankel or Chebyshev algorithms integrate (2) with,

respectively, constant or variable _ and 7 determined by the spectral properties of the £:

operator. Although the latter technique may be quite efficient for simple elliptic problems

(cf. Potter 1973, section IV.6.e), it is of little use in the general case of (1), when the

spectral structure of 1: is difficult to determine.

As in the Chebyshev method, CG schemes integrate (2) with Ar and T variable

in pseudo-time; however, the resulting parameters 7 and fl in (3) are determined from

variational principles. Defining a local residual error at nth iteration as

rn - f_(¢")- R , (4)

equation (3) may be rewritten as

¢n+1 ._. _¢n__ (1 --_)¢n--1 ._ _rn . (5)
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The requirement that 4 n+l satisfies periodic, Dirichlet, or Neumann boundary conditions

(given their fulfillment at preceding iterations) implies, respectively: periodic, r n = 0, or

the normal component of PF(r n) = 0 boundary conditions on rn. Acting with the linear

operator/_ on both sides of (5), assuming spatial homogeneity of 7 and/3, and adding R

to both sides of the resulting equation, leads to the recurrence formula

= +(1- + (6)

which predicts residual errors £(4 "+1) - R one iteration ahead of (5). Consequently, (6)

may be employed to determine an optimal selection of 7 and /_ in (5) which assures a

minimal total error after n + 1 iterations. In essence, this is the basic idea of CG methods.

Apparently, many different variational schemes can be designed depending on the means

of error minimization (norm selection), the temporal discretization in (2) [e.g., 4" in/:(4)

on the rhs of (3) may be replaced, in the spirit of Adams-Bashforth approximations, by a

linear combination of 4" and 4 "-1 thereby intrOducing an additional degree of freedom],

or the order of the wave equation (2) [i.e., the lhs of (2) may be further expanded by

including higher-order derivatives with different pseudo-time scales].

The classic CG algorithm for symmetric negative definite 2 operators /_ is due to

Hestenes and Stiefel 1952. It relies on powerful theorems (see chapter 5.3 in Birkhoff

and Lynch) that assure the minimization of the error < -(4 '*+' - _)/Z(4 "+1 _ _) > and

convergence of (5) to the exact (in the absence of roundoff errors) solution _ =/_-' (R) in

a finite number of iterations 3 for any initial guess 4 ° if and only if the residuals of any two

k # l iterates are orthogonal in the sense

k l rkrlrl rl -< >= 0, (7)
i

2 In order to associate £: with the diffusion-type operator, we refer to negative definiteness

rather than, as is more traditional in the mathematical literature, positive definiteness,

and adjust signs accordingly [e.g., note the definition of the residual in (4)].
3 Theoretically, this makes the CG algorithm a direct rather than an iterative method; see

Birkhoff and Lynch for a discussion.



(see chapter 5.3 in Birkhoff and Lynch)

An important corollary is the l:-orthogonality of the differences of subsequent iterates:

V_t < (¢_+1_ ¢k)z:(¢t+l_ ¢t) >= 0. (s)

The relationship (7) leads immediately to optimized coefficients 7 and fl in (5): redefining

/9 --/3'7 and requiring < rn+lr n >=< rn+lr n-1 >-- {}results in

< rnr n
fl' = - (9a)

< rnZ;(r")>

and
< rn-lr n-1 >

3' = , (9b)
<,rn-lr n-1 > --1_' < r n-l_(r n) >

which together with (5) and (6) completes the algoritt_m.

The traditional form of CG schemes as they usually appear in the literature can be

recovered from (5) after some manipulations. We rewrite (5) as

((,)in -- 1) . _ cn--1) rn ) q_n t_n (olnpn--1 3t_rn) ;__ q_n 4- /_n t_n_ n- a ( ¢ n fln_ l 4- _ 4-
¢.+1

where _n _ (Tn _ 1)_.-1/_. pn - (¢,_+1 _ ¢.)/_n, and the superscripts appearing on

-y, /_, and c_ refer to values of the coefficients at different iterations. This leads to the

algorithm in the form

¢n+1 = Cn 4- flnpn , (10a)

Tn-.t-1 _._ Tn 4- _nf_(pn) , (lOb)

pn+l __ ctn+lpn 4- rn+l (10c)

Employing the orthogonality relationships and the symmetry of l:, the coefficients fl" and

a,+l can be recovered either from (9a) and (9b) or, more directly, from (10b) and (10c)



by requiring < r"+lr" >=< p,+l £(pn) >= 0. After some manipulations (see appendix A

for details), the latter relations lead to

< rnr n >
fin -- (11a)

< pnf_(pn) > '

< r n+l rn+l
a "+1 = , (llb)

< rnr n >

which complete the classic CG scheme (cf. algorithm 3.1 in Hestenes and Stiefel 1952).

Several different but mathematically equivalent expressions can be derived by exploiting

(7), (8) and the symmetry of the operator £: (cf. Theorem 5.5 in Hestenes and Stiefel

1952).

The CG schemes discussed above strongly depend on the symmetry of the elliptic

operator £. In essence, they derive from the minimization of the "energy" norm
1

< ¢n R > _ < _¢n/:(¢n) >, whose minimum (for negative definite £) is equal to the

exact solution ¢ only if the relationship < _L:(C) >=< CZ:(_) > holds for all fields _ and

(cf. Birkhoff and Lynch, chapter 4.9). If this relation, heavily exploited in the proofs of

key theorems and in the derivation of (11), does not hold, i.e., if _C is not symmetric, then

the schemes in Eqs. (5, 6, 9) and Eqs. (10, 11) are not equivalent, and their convergence

is not ensured. In typical atmospheric applications, the discrete counterparts of (lb) and

(lc) are usually negative definite [i.e., the governing equation (1) is elliptic] but are rarely

symmetric. Frequently, the lack of the symmetry is due to difficulties in imposing free-slip,

rigid-lid conditions at irregular lower boundaries (we shall return to this point later in this

paper).

The CR schemes overcome such difficulties, in essence, by a direct minimization of the

< rn+lrn+_ > norm in (5), which leads to algorithms as in (5) and (6) or (10a), (10b) and

(10c) but with different coefficients/3 and 7 or/3 and a, respectively. In the next section,

we shall discuss two alternate forms of a CR solver convenient for atmospheric applications.
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As in the classic CG scheme discussed above, we will start with the three-term recurrence

formulae (5) and (6), and then follow with the traditional form (10).

3. Conjugate residual schemes

Based on semi-intuitive considerations about the accumulation of roundoff errors, we

anticipate that certain groupings of the terms in the scheme, as well as certain forms of

the coefficients "7and/3 in (5) and (6) will be more attractive than other, mathematically

equivalent forms. From this point, therefore, all key formulae will take exactly the same

form as they appear in the numerical codes discussed in section 4 of this study.

The recurrence formulae (5) and (6) are rewritten as

cn+l __ '7(¢n _ cn--1) jr. cn-1 .__ /3r n, (12a)

_.+_=_(_._ _.-1)+_.-_ +_(_.). (12b)

The coefficients 3, and/3 are determined from the minimization requirements

O9 rn+lrn+l 0 rn+lrn+l
07 < >= 0_ < >= 0, (la)

which combined with (12b) lead to the orthogonality relationships

< rn+a(r n - r "-a) >-< rn+a£:(r ") >= 0. (14)

The relations in (14) imply an inhomogeneous system of two linear equations for 7 and/3:

AA . "7+ AB . _ = -AC , (15a)

AB.7 + BB. _ -- -BC , (15b)

with the corresponding solutions

(BC. AB - AC. BB) (16a)
"7- (AA. B B - AB. AB) '
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(AB . AC- AA. BC) (16b)
= (AA. B B - AB. AB) '

and the definitions of the coefficients

AA -< (r n - rn-1)(r n - r n-a) >, (17a)

AB =_< (r n - rn-1)f-.(r n) >, (17b)

AC -< (r n - rn--1)r n-1 > , (17C)

BB =< C(r")C(_")>, (_7d)

BC-< _(_")_"-')> (17_)
<_ot:(ro)>

For any initial guess ¢o at n = O, "/is set to unity, which implies/3 = < _(_0)c(_0)>
from the minimization of (12b). Here r ° = Z:(¢°) - R is computed from the definition

in (4); also r -1 and ¢-1 are set to zero, for convenience of coding. By design, 7 and

in (16) minimize the norm of a total residual error without invoking the symmetry of Z:.

In appendix B, we provide an elementary proof of the monotone convergence of (12) that

relies on the negative-definiteness of, but does not require the symmetry of the operator

Z:. Conversely, the convergence of CR schemes discussed in the literature (cf. Ashby et

al. 1990, section 5.2) usually invokes symmetry of the operator but does not require its

definiteness. Apparently, either symmetry or definiteness is sufficient for the convergence of

a CR scheme. This flexibility is rarely noted in the literature where symmetry is frequently

assumed a priori.

Using (12b) and the orthogonality relationships (14), one can derive a number of

auxiliary relations and different forms for 3, and/3 that hold in absence of roundoff error.

Employing those relations, one can eliminate two of the five sums in (17) (see appendix B).

In our experience, however, it is not always worthwhile to employ analytic relationships to

simplify (14a)-(14e). On vector machines, the elimination of two sums in large dynamical
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codes results in a negligible speed-up of computations, whereas it may slow down the

convergence due to the accumulation of roundoff errors.

As in the classic CG scheme discussed in the preceding section, the alternate,

traditional form of the CR algorithm can be derived directly from (10) by requiring

C_ rn+lrn+l 0 rn+2rn+2 (18)< >= _ < >= 0 •
03" 0c_,,+1

The nfinimization requirements (18) combined with (10b) lead to the orthogonality

relationships

< rn+l_(pn) >_< rn+2_(pn) >__ O, (19)

which imply

fl" = - < rn E'(pn ) > , (20a)
< f_(pn)f_(p.) >

c_'*+1 = < £(r"+I)Z:(P") > (20b)
< C(p-)Z:(p-)>

straightforwardly from (10b) and (10c). The derivation of (20b) makes use of an important

relation

£(pn+l) = /_(rn+l) Jr" o_n+l£(p n) , (21)

which results from acting with L: on both sides of (10c). Note that (20b) requires both

£,(p") and £(r n+ l ) in every iteration. This double evaluation of £: can be avoided by using

(21), which expresses 12(pk) through its vaiue at preceding iteration and the current value of

£(rk). Similar to the algorithm in (17), (16) and (12) (hereafter CR1), the current scheme

[(20a), (10a), (10b), (20b), (10c) and (21); hereafter CR2] starts with the minimization of

r 1 -- r 0 4- j3r 0 which is realized, for any initial guess ¢0, by setting r ° = p0 and evaluating r °

from its definition in (4). By design, the coefficients 3 and c_in (20) minimize the norm of

a total residual error arid assure the monotone convergence of iterations without invoking

the symmetry of £. As with the CR1 scheme in appendix B, the proof of convergence
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reduces to showing that < rn+lrn+l >-< rnr n > +fin < r"£(r") > and that _n >_ 0,

with the equality holding if and only if < rnr n >- O.

The discussion so far documents that many forms of either similar or equivalent

variational schemes are possible. The CR2 form appears in Eisenstat et al. 1983, whereas

Stoer (1983) discusses some other forms that can be obtained from CR2 after employing

(19), (21) and assuming the symmetry of £. The CR1 formulation is definitely less popular,

as we have not encountered it in the literature. Insofar as applications are concerned, CR1

and CR2 are essentially equivalent and, in our experience, usually lead to identical results.

The CR2 scheme is somewhat more efficient than CR1 as it requires evaluating two fewer

sums per iteration. On the other hand, CR1 has the advantage of being a straightforward

derivative of the damped wave equation (2) and, therefore, provides a natural basis for

further developments. In our research of CG methods we have also considered higher-

order wave equation augmentations of (1), which lead to more-than-three term recurrence

formulae (5) and (6) and form the basis of the truncated orthomin methods (see Eisenstat

et al. 1983, and Stoer 1983, for discussions). Although some of those schemes do result

in a slightly faster asymptotic convergence rate than that in CR1 and CR2, overall, we

have not found them advantageous for applications. Their somewhat better performance

in nontrivial convergence tests (potential flows of density-stratified fluids past two- and

three-dimensional mountains) has been usually offset by the increase in computational

effort that is required. In the next section we shall elaborate on the performance of the

advocated algorithms, and their utility for atmospheric applications.

4. Computational efficiency of CG schemes

a. Introductory remarks

In assessing the computational efficiency of elliptic solvers, it is customary to considcr

both the storage required and the number of arithmetic operations involved as well as to
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evaluate their asymptotic convergence rates. However, such quantities may not be tile best

measure of efficiency in the context of a dynamical code used for a diversity of applications.

• The CR schemes described above require storage for four auxiliary fields; however the

application models addressed do not require any additional memory allocation that would

not already be available in the code regardless of the solver employed. Furthermore,

depending on the design of a particular model, the coefficients of the operator £ may

be either preprocessed and stored (requiring up to 27 additional matrices but increasing

the efficiency of the scheme), or may be computed directly from (lb) and (lc) at every

iteration. Thus the issue of computational efficiency is, to a large extent, a function of the

code architecture as well as the complexity of the applications addressed.

Insofar as estimates of the convergence rates are concerned, it is important to realize

that those are informative only in a relative sense. The convergence of iterative methods

depends, in general, on the eigenvalue spectrum of £. For any given algorithm, convergence

may vary substantially for different problems, depending on the temporal and spatial

variability of the coefficients in (1), boundary conditions, spatial discretization, and the

staggering and size of the mesh. The convergence of variational schemes may be further

accelerated by some form of operator preconditioning (see Stoer 1983,Kapitza 1988, Smith

et al. 1992, for discussions and examples of applications). This adds another dimension to

the problem. In essence, preconditioning procedures replace (1) (e.g., by means of operator

splitting and/or composition) with a modified governing equation £'(q_) - R' = 0 that can

be more easily inverted on the grid. This has little to do with the CG formalism itself, as it

reduces tile elliptic problem at hand to a simpler problem to be solved with a CG scheme.

In general, the more work done by the preconditioner, the less work needs to be done by the

CG algorithm, and vice versa. Powerful preconditioners can substantially complicate the

entire solution procedure, but in many applications may lead to significant improvements

in the overall efficiency of computations. However, in large prognostic problems (especially

where the coefficients of £ evolve in time), the additional operations and storage required
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: by such procedures often offset the increased efficiency due to accelerated convergence. In

the applications discussed below, we shall employ a simple preconditioner dictated by the

problem's physics.

The relative performance of different CG schemes has been evaluated frequently in

the literature (see Saad and Schultz 1986, Kapitza and Eppel 1987, Smith et al. 1992, for

examples) using a diversity of test problems. Here we compare the classic CG algorithm,

the CR2 scheme, and the elementary Jacobi (Richardson) method using an idealized test

problem that is representative of atmospheric applications. The Jacobi scheme is included

as a reference. Like CG schemes, the Jacobi scheme does not require an explicit knowledge

of the matrix resulting from the discretization of £. Since its convergence rate is known

to be half that of the Gauss-Seidel (Liebman) relaxation scheme (cf. Roache 1972, section

III.B.2), including the Jacobi scheme in our comparison also provides information about

the rel:_tive performance of the CG schemes compared to basic relaxation techniques.

The pl:ysical problem we chose is potential flow of a Boussinesq fluid past an isolated

three-dimensional mountain, whose height and width are comparable to each other as

well as to the depth and horizontal extent of the domain (Fig. 2). This test problem

ensures significant variability of the coefficients in (1). Before elaborating on the results

of the convergence tests, we will discuss the model design and the formulation of the

relevant elliptic problem in some detail. Since the following discussion introduces the

background for an anelastic model that will be reported elsewhere, we shall refer to a

density-stratified anelastic fluid rather than to a Boussinesq fluid, and will recover the

Boussinesq approximation later.

b. Model description

The governing equations of the potential flow of a density-stratified anelastic fluid

may be written in the form

v = v_ - _7¢ , (22a)
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V._v = 0, (22b)

where v_, ¢, and _ denote the ambient velocity, velocity potential, and reference density

= _(z) respectively. Equations (22) are cast in a nonorthogonal terrain-following system

of coordinates [z,y,z] = [xc,yc, H(zc - h)/(H- h)] with the subscript c referring to

Cartesian coordinates, H to a model depth, and h = h(xc,yc) to the mountain profile.

Since the terrain-following transformation is fairly standard in atmospheric applications,

we shall freely introduce the metric coefficients GTM = _-_(Oxl/Oxgc) • (OxJ/Ox_ ") and the
K

Jacobian of the transformation G ='Det(Ox_/Ox) = (Det(GIJ)) -_/2 and refer the reader

interested in further details to Gal-Chen and Somerville (1975), Clark (1977), and the

recent work of Kapitza and Eppel (1992). The transformed Eqs. (22) take the form

0¢ G130_¢¢ (23a)u = u_ Ox Oz '

0¢ G23 0_.¢¢ (23b)
v = v_ Oy Oz '

w = w_ - G -1 0¢Oz ' (23c)

Op*u Op*v Op*_
t -_ - 0, (23d)

Ox Oy Oz
where

p* = G_, (24)

and the contravariant "vertical" velocity w in (23d) is related to the covariant velocity

components through

= G-l w + G13 u -f- G23 v . (25)

The discrete boundary value problem for the velocity potential is fornmlated in three steps.

First, the spatial discretizations of (23a), (23b), and (23c) are substituted into (25); second,

the discrete forms of (23a), (23b), and the result of the first substitution are substituted

into (23d). These manipulations lead to

V. (p*PF*(¢))=0, (26)
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where the components of the P F* force are

0¢ a_a O¢ (27a)PFX* = u_ Ox Oz '

0¢ (27b)
PFY* = ve Oy Oz '

PFZ* = _._e -- G13 0.._¢ __ 623 0_¢ __ G33 0_¢
cOx cOy cOz ' (27c)

with

we = G-lwe + Glaue + G23ve ,

and
i

= + + .
1

In the third step, (26) is premultiplied by -_- resulting finally in

1

(p*PF'(*)) - V. (p'(v" - PF(¢))) = 0 (28)p* p* '

where v* - (u_, v_, w_). Equation (28) is a modified form of (1) with A = D - 0

where: a) the rhs of (la) [here, R = -V. (p'v*)] has been included under the divergence

operator in (lb); b) p* has been factored out from C 1g coefficients in (lc) as well as R in

(la); and c) the entire (la) has been preconditioned with the inverse of p*. The first two

modifications have been introduced essentially for the convenience of coding, whereas the

third ensures uniform convergence throughout the entire domain of integration regardless

of the variability of _ and G. In a future study, we will discuss gravity wave dynamics in

deep atmospheres _ O(10 s) m, where the density of air decreases to _ O(10 -4) kg m -3

There, a simple density preconditioner in (27) assures the same degree of incompressibility

(the same accuracy) throughout the entire depth of the model.

The elliptic problem in (28) is supplemented by Neumann boundary conditions on

the lower and upper surfaces of the model, and by either periodic or Neumann conditions
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at the lateral boundaries. The Neumann conditions appear in consequence of specifying

the normal velocity components at the boundaries in (22a). By design, they reduce to

setting appropriate components of PF*in (28) to the specified values. Mathematically,

(28) admits any specification of the normal velocities that satisfy the integrability condition

f p*PF* • nda = O. Physically, for a potential flow past an isolated obstacle, we assume

w = 0 (PFZ* = 0) at the lower and upper boundaries, and u = u, (PFX* = u_) and

v = ve (PFY* = v_) at the lateral Neumann boundaries.

The discrete form of (28) follows from the definitions of the partial derivative operators

on the grid. Here, we consider two grid configurations: the unstaggered A-grid, where all

variables are defined at the same positions; and the staggered B-grid, where a pressure

variable (here the velocity potential) is staggered one-half grid interval in all directions

with respect to all other variables defined at the same grid positions. The partial derivative

operators are approximated with standard centered-differences appropriate to each grid

configuration, e.g.:

0¢[ 1 (¢i+l,i,k -- ¢i-l,i,k) (29a)_x i,j,k = 2AX

and
0¢ 1

,,3,k = 4AX (¢i+l/2,j+l/2,k+l/2 - ¢_-l/2,j+l/2,k+l/2

+¢i+l/2,j-1/2,k+l/2 -- ¢_-1/2,1-1/2,k+1/2 (29b)

+¢i+1/2,i+1/2,k-,/2 - ¢i-_/2,i+,/2,k-_/2

"+ff.)i+l/2,j-l/2,k-1/2 -- _)i-l12,j-l12,k--1/2) ,

for the A- and B-grids respectively. At the Neumann boundaries, the discrete partial

differential operators in (29) are undefined wherever they reach outside the computational

domain. A standard procedure at the boundaries is to replace the centered approximations

with one-sided difference formulae (cf. Chorin 1968, Glowinski 1992) where required. In

essence, this is equivalent to retaining the centered-differences in (29) while assuming

extrapolated values of a pressure variable (consistent with Neumann conditions) at
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fictitious points outside the domain. This seemingly minor aspect of model design has

important consequences. Because of local anisotropies of the difference formulae, the

numerical operator Z: may not be symmetric, and spurious vorticity may be generated

at the free-slip boundaries. In the general three-dimensional case of (1), this is a

nontrivial issue that so far does not seem to have a rigorous yet practical solution (cf.

Bernard and Kapitza 1992).4In three spatial dimensions, a possible formal solution may

require incorporation of six two-dimensional, and twelve one-dimensional additional elliptic

equations. Here we adopt the following approach. At the Neumann boundaries, we

evaluate all but the normal partial derivatives in (27) explicitly from pressure field values

available on the grid. On the A-grid, this employs standard centered-differences as in (29a),

whereas on the B-grid, the difference formulae in (29b) assume extrapolated pressure values

at fictitious points outside the computational domain. The normal derivatives are then

computed from the boundary conditions and substituted into (27) for other-than-normal

components of PF. On the A-grid, the divergence operator uses one-sided differencing

in the direction normal to the boundary, whereas on the B-grid, it employs centered-

. differences as in (29b). For either grid, the symmetry of the discrete elliptic operator in

(28) is not assured.

The convergence tests discussed in the next section assume a constant _ ---- po

cilaracteristic of the noussinesq approximation (po = 1 kg m-3), [Ue,Ve, We] = [5,0,0]

m s -1, and the axially-symmetric cosine hill h = ho(1 +cos(Trr/L))if r = (x 2 + y2)1/2 < L

(h = 0 otherwise) with ho = 1.5.103 m, and L = 3.103 m. The uniform mesh consists

of NX x NY x NZ = 101 x 81 x 41 grid points with grid increment AX = AY = zXZ =

0.15.103 m. The boundary conditions are rigid-lid in x and z, and periodic in y.

c. Results of convergence tests

Here we return to the main topic of section 4, and elaborate on the relative

performance of selected CG schemes within the potential flow model discussed above.
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The results of a series of tests are summarized in Fi_. 1. Although the discussion in

section 3 referred to the norm < rnr n >1/2 of the residual errors, here we display

e = maxl-_TV. (p*v)lAt = maxlr"lAt which is more informative for the physical

ml

g-

problem. A time step At = 10s has been introduced for the sake of normalization with

reference to the Courant number C =11vAt/AX I1_ 1 that would result if the flow were

allowed to evolve in time due to an imposed stratification of a typical buoyancy frequency

N = 10-2s -1. The evolution of errors is displayed over a range of iteration numbers

that is about two orders of magnitude larger than is required in typical applications

with prognostic dynamical models. Nevertheless, the asymptotic convergence rates are

informative, since the effects of the iterations at subsequent time steps of a prognostic

model are cumulative for the slowly evolving scales of motion. Although the discussion

below refers to a particular test problem, the conclusions are much more general and reflect

our experience with many different applications.

Figure 2 shows the solution after 500 iterations with the CR2 scheme on the A-grid;

the isolines of the Bernoulli pressure perturbation, normalized by density,

1
p'= re- < re. v¢ >)

2po

are superimposed with the flow vectors. The maximal residual error is essentially zero

(e < 10-1°; Fig. la). The solution exhibits an excellent upwind/downwind symmetry,

which indicates zero drag on the mountain and, consequently, the lack of spurious

vorticity generation at the boundaries. This documents a posteriori the adequacy of the

finite-difference approximations at the Neumann boundaries, which were discussed in the

preceding section. Figure 3 shows the equivalent solution on the B-grid. As with the A-

grid, this solution exhibits excellent upwind/downwind symmetry. The maximal residual

error e _ 10 -4 (Fig. lb) is six orders of magnitude larger than that on the A-grid, and there

are some apparent differences between the two solutions. An obvious question to ask is
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whether these differences are due to the slower convergence of the iterative solver on the B-

grid than on the A-grid (Fig. 1), or rather are due to the different distribution of truncation

errors associated with the finite-difference approximations to the partial derivatives in (29).

The solution on the B-grid after 5000 iterations (not shown) is hardly distinguishable from

that in Fig. 3 even though the residual error is four orders of magnitude smaller (Fig. lb).

This suggests that truncation errors are responsible for the differences in the solutions on

the two grids. To substantiate this assertion, we show in Fig. 4 the solution on the A-grid

after 100 iterations where the residual error is about the same as that on the B-grid after

500 iterations. Comparing Figs. 2 and 4 clearly shows that the differences between the

two solutions are hardly noticeable, the six orders of magnitude difference in the maximal

residual error notwithstanding (cf. Fig. la). Finally, Fig. 5 shows the solution on the B-

grid after 100 iterations where the residual error is about twice of that for the solution in

Fig. 4. Comparing this solution with that in Fig. 3 shows small but noticeable differences

that are, however, much smaller than those between Figs. 2 and 3--apparently, the latter

differences axe due to the different discretization formulae in (29).

The discussion above exposes another important aspect of the computational efficiency

of CG schemes. Since the expense associated with an iterative solution of an elliptic

problem is proportional to the number of iterations, the choice of a stopping criteria has

a direct impact on the overall efficiency of the scheme. Unfortunately, there is no strict

rule when to stop the iteration process (cf. Roache 1972, section III-D, for discussion).

In principle, one could continue to iterate until one achieves convergence to the machine

precision; however, this is highly impractical, as illustrated by the examples above. The

maximal residual error e .._ 10 -4 is already small and further diminishment would have

negligible impact on the overall accuracy of the solutions. Thus, relating the stopping

criteria to a physically meaningful accuracy requirement (here, e .._ 10-4C) is preferable to

a specified reduction of the initial residual error.
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One conclusion of the discussion so far is that it is not the asymptotic convergence rate

but the overall convergence properties that are of primary interest for applications. We

now focus on the details of the convergence rates of different schemes during the first 100

iterations, where CR schemes produced overall accurate results. Fig. 6 shows a magnified

portion of Fig. 1. It is evident i:l the figure that even after 5 iterations, CR schemes

reduce the initial residual error to a value obtained only after 100 iterations with the Jacobi

method. After 50 iterations they achieve an accuracy that requires ,,_2000 Jacobi iterations

(cf. Fig. 1). Since the major computational expense in CR schemes is still associated with

evaluating £: on the grid and not with the evaluations of the sums in (17) or (20), these

comparisons also provide a rough estimate of the comparative overall efficiency of the two

methods. Figure 6 demonstrates that the classic CG algorithm is unreliable for the class of

applications addressed. As the symmetry of £ is not ensured,SWe have explicitly verified

the negative-definiteness of/_, which is also illustrated by the convergence of the Jacobi

scheme, there is no guarantee that the latter scheme would converge. This is evident on

the B-grid. On the A-grid, the CG scheme does converge for this particular test problem

but even so, its overall performance is worse than that of the CR schemes. In contrast

to CR schemes, the lack of symmetry of the discrete operator destroys the mathematical

equivalence of alternate versions of the classic CG algorithm. In our test problem, the

scheme based on the three-term recurrence formula (Eqs. 5, 6, and 9) does converge on

the B-grid but, in turn, does not converge on the A-grid (not shown). Again, even when it

converges, its overall performance is worse than that of the CR schemes.6However, when

/_ is both symmetric and definite, CG converges faster to the exact solution than CR (cf.

Chandra 1978, section 4.5).

Insofar as the absolute measures of computational efficiency are concerned, the actual

cost of the CR2 scheme per iteration and per grid point is 3.4.10 -7 s on a single processor

CRAY YMP for the A-grid and twice that on the B-grid. The latter is due to the B-grid

requiring about twice as many arithmetic operations for evaluating the £: operator as does
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the A-grid. These numbers are representative of a complete nonhydrostatic anelastic code,

whose start-up procedure has been employed here for test purposes, with more elaborate

pressure forces than those in (27) and with the operator _ computed from (lb) and (lc) at

every iteration. Thus the numbers quoted are conservative as they take no advantage

from preprocessing nor from storing the coefficients of the sparse matrix (with up to

27 diagonals) that represents the elliptic operator on the grid. Given well-posed initial

conditions that satisfy the mass continuity equation (22b) and the imposed boundary

conditions, typical applications with the anelastic model require (in our experience) a few

tens of iterations per time-step in order to achieve adequate overall accuracy. This already

makes CR schemes effective enough to be useful in a variety of complex atmospheric

applications. A further gain in computational efficiency is derived from the generality of

the solver that integrates (1) directly in its generic form. The latter admits attractive

formulations of entire dynamical models that are both simple and efficient.

5. Concluding remarks

A majority of numerical models used for the simulation of atmospheric dynamics solve

initial value problems. In principle, if one were provided with unlimited computational

resources such models could be designed without any reference to solving elliptic equations

characteristic of boundary value problems. However, the solutions to these initial value

problems contain high-speed waves, which are usually of only minor relevance to the

physics being modeled, but whose explicit treatment imposes severe restrictions on the

computational timestep. As a practical matter, the latter often makes a straightforward

explicit integration of the equations prohibitively expensive. A common alternative is to

use time-implicit methods and/or filtered formulations of the governing equations that are

free of the high-speed waves. These, howf ver, lead ultimately to elliptic equations that

also require efficient integration schemes.
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The complexity of the elliptic problems that arise in atmospheric applications can be

a serious obstacle to meteorological modeling. The availability of a general, simple, yet

efficient solution technique would represent an important advance that could significantly

influence current trends in model design. Unfortunately these desirable properties are

found to conflict with each other: efficient and general approaches such as multigrid require

substantial programming effort, whereas simple general methods such as Jacobi iteration

are extremely inefficient.

This paper is the result of our search for a general method that offers a reasonable

compromise between efficiency and simplicity. While exploring various alternatives, we

found that a particular class of conjugate gradient methods, the conjugate residual

(CR) schemes, appears attractive for atmospheric applications. Although theoretically

less efficient than multigrid methods, the CR algorithms lead to accurate and efficient

computations when incorporated into a variety of dynamical models.

The strength of the CR schemes lies in their robustness, combined with extreme

simplicity, flexibility and reasonable efficiency. CR schemes do not require any explicit

knowledge of the matrix resulting from the discretization of the elliptic operator. Their

coding is straightforward, and does not require any experience with elliptic problems.

Moreover, their computational efficiency can be further improved by preconditioning, or

even by incorporation of multigrid ideas.

The conjugate gradient methods have a long tradition in the mathematical literature.

There they are usually discussed in the abstract terms of Krylov subspace methods. In this

paper, we have presented the CG approach from a somewhat unconventional perspective--

we have derived the CR schemes from the physical analogy to the damped wave equation.

Although such an interpretation may not capture all of the subtle properties of the

advocated algorithms, it has certain advantages. First, it is simple. Second, it offers

additional insights into the entire class of methods. Third, it exposes new degrees of
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freedom and the potential for further development. In particular, it has led us to an

alternate proof that ensures convergence of CR schemes for negative-definite but not

necessarily symmetric operators £ in (1). The latter is important for many atmospheric

applications.
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Appendix A. Variational solvers: Further details

The derivation of (11a) from (10) and the orthogonality relationships < r"+lr" >=<

pn+_£.(p,,) >= O, starts with the formation of the inner product of (lOb) with r":

< rn+lr n >--- 0 =< rnr n > -b/_n < rnZ:(p n) > (Ai)

Employing the symmetry of £, (A1) may be rewritten as

< r"r" > +8" < Pn£:(r') >= 0. (A2)

Acting with/2 on both sides of (10c) taken at nth iteration results in

_.(p") = orhE(V"-') +/:(r"). (A3)

Substituting from (A3) for/:(r") in (A2) gives

< rnr n > +i_n < pn/:(pn) > _/3n_- < pn/:(pn-1) > = 0. (A4)

Since < pn£(p,-l) >= 0 from the preceding iteration, (A4) implies /_" in (lla). Note

that from the negative definiteness of/:, we must have /_n >_ 0 with fin = 0 implying

< rnr n >= 0, viz., the exact solution at nth iteration.

Tile derivation of (llb) starts with the formation of the inner product of (10c) with

z:(p"):

< pn+lL:(pn) >= 0 = c_n+l < pnff,,(pn) > + < rn+l/:(pn) > . (A5)

Substituting for Z:(p n) from (10b) in the second term on the rhs of (A5) results in

1 rn+lrn+l 1 ,+1 n (A6)
0 = a'"+1 < pn£(p.) > +._ < > /_. < r r >

The last term on rhs of (A6) vanishes by the orthogonality of the residuals, and also

< pn_,(p.) >= _ < r'rn > //_" from (lla). Thus (A6) becomes

0= -a n+l < r"r n > + < rn+lr n+l > , (A7)
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which implies (11b).

Appendix B. Conjugate residual schemes: Further details

An outline of the convergence proof of the algorithm in (12), (16) and (17) starts with

forming the inner product of (12b) with r "+1

< rn+lrn+l >= 3' < rn+l( rn - rn-1) > + < rn+lrn-1 > +fl < rn+lf-.(rn) > • (B1)

Since the first and the third term on the rhs of (B1) vanish from the orthogonality

relationships in (14), (B1) reduces to

< rn+lr n+l >--< rn+lr n-I > . (B2)

From the first of the relations in (14),

< rn+lrn-I >--< rn+lr n > . (B3)

After substituting for the rhs of (B2) we derive

< rn+lr n+l >=< rn+lr n > , (B4)

which implies another useful relationship

< r"+'(,,"+' - ,.")>= o. (Bs)

Substituting (12b) for r "+_ on the rhs of (B4) leads to

< rn+lr"+l >= 7 < r"(r" - r "-1) > + < r"r "-1 > +/3 < r"£(r") > . (B6)

Invoking (B5) and (B4) at the preceding nth iteration reduces (B6) to

< r"+lr "+1 >=< r"r" > 4./3 < r"£(r") > . (BT)
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The monotone convergence of the algorithm in (12), (16) and (17) requires <

rn+lr n+l > < < rnr n > with the equality holding if and only if < rnr n >-- 0. Since

£ has been assumed negative definite, the latter requires/3 > 0 in (B7) with the equality

holding only if < rnr n >- O. In order to show this, consider the following arguments.

Exploiting the orthogonality relationships discussed above, it is easy to show that the

coefficients in (17a) and (17c) satisfy

AC =< rnr n > -- < rn-lr n-1 >=-AA , (B8)

whereupon the numerator in (16b) satisfies

AB.AC-AA.BC = AC(AB+BC)= (< rnr n > - < rn-lr n-1 :>) < r_£(r n) > • (B9)

From (B8) and (17a), < rnr n > - < rn-_r n-1 > < 0, which together with the negative

definiteness of £ results in a nonnegative numerator in (16b). Now the denominator in

(16) is always nonnegative by the Cauchy-Schwarz inequality; this proves that/3 in (16b) is

nonnegative for all n. The special case of/3 = 0 implies either < r"£:(r ") >= 0 (which by

the negative definiteness of £: implies the exact solution) or < r"r" >=< rn-lr n-1 >.

By induction and (B7), the latter implies /3 = 0 for all preceding iterations up to

flo = _ < r°£(r°) > [see discussion following (17e)]. This proves that < r°r ° >= 0
< >

and thus < r"r n >= 0 for all n.

Note that the relationship (B8) may be exploited to eliminate one of the five sums

in (17). Another sum may be eliminated, for instance, by relating AA to the coefficients'

values at a preceding iteration: Rewriting (12b) as r "+1 - r" = (7" - 1)(r" - r "-1) +

/3"L:(r"), forming the inner product < (r "+1 -rn) 2 >, and employing the definitions in (17)

leads to A A"+1 = (.yn _ 1)2AA, + 2(7n _ 1)/3nAB, + (/3-)2BB-, where the superscripts

on the coefficients refer to their values at appropriate iterations.
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FIGURE CAPTIONS

Figure 1 Convergence rates of different iterative schemes for the potential flow

1 v .
test problem. The logarithm of the error measure e = max IP*
(p*v)lAt is displayed in function of a number of iterations. Panels A

and B refer to the solutions on the A- and B-grid, respectively. Solid

lines are for CR2 algorithm, long-dashed lines for the classic CG scheme,

and short-dashed lines for the Jacobi method.

Figure 2 Potential flow solution after 500 iterations with CR2 scheme on the A

grid. The upper and lower panels show the solution at the center plane

and surface, respectively. The velocity vectors are superimposed on

isolines of Bernoulli pressure perturbation (normalized hy th,_ r!ensity)

displayed with contour interval 0.5m2s -2. Solid lines and dashed

contours refer to positive and negative field values, respectively; zero

contour lines ,_ , not shown.

Figure 3 As in Fig. 2 but for the solution on the B grid.

Figure 4 As in Fig. 2 but after 100 iteratior,.s.

Figure 5 As in Fig. 2 but for the solution on the B grid after 100 iterations (cf.

Fig. 3).

Figure 6 Magnified fragments of Fig. la mid lb.
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