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PREFACE

Cun'cnfly available technology is not adequate to assess environmental contamination at
Department of Energy (DOE) sites, take permanent remedial action, and eliminate or minimize
the environmental impact of futm'eoperations. Technical resources to address these shortcomings
exist within the DOE community and the private sector, but the involvement of the private sector

] in attaining permanent and cost=effective solutions has been limited.
L

During 1990, on bohalf of DOE's Office of Technology I_velopment, Argonne Nadonal
Laboratory (ANL) conducted a competitive procurement of research and development projects
addressing soil remediation, groundwater remediation, site characterization, and contaminant
containment, Fifteen contracts were negotiated in these areas.

This report documents work performed as part of the Private Sector Research and
D_velopment Program sponsored by the DOE's Office of Technology Development within the
Environmental Restoration and Waste Management Program. The research and development
work described herein was conducted under contract to ANL.

On behalf of DOE and ANL, I wish to thankthe performing contractor and especially the
report authors for their cooperation and their contribution to development of new processes for
characterizationand remediation of DOE's environmental problems. We anticipate that the R&D
investment described here will bc repaid many-fold in the application of better, faster, safer, and
cheaper technologies.

Details of the procurement process and status reports for all 15 of the contractors
performing under this program can be found in "Applied Research and Development Private
Sector Accomplishments =Interim Report" (Report No. DOE/CH-9216) by Nicholas J. Beskid,
Jas S. Devgun, Mitchell D. Erickson and Margaret M. Zielke.

Mitchell D. Erickson
Contract Technical Representative

Research and Development
Program Coordination Office

Chemical Technology Division
Argonne National Laboratory

Argonne, IL 60439-4837
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ABSTRACT

This report describes the results of laboratory investigations of several performance
parameters relevant to the deployment of instrumentation employing microfabricated
surface-acoustic-wave (SAW) chemical sensor arrays for the measurement of volatile organic
compounds (VOCs) in contaminated soil and groundwater. Instruments employing SAW
sensor arrays have the potential to provide rapid identification and quantification of vapor
phase contaminants. The small size, low cost, sensitivity and selectivity of such instruments
promise improvements in the quality and quantity of data used to guide site assessment and
restoration efforts.

In this investigation, calibrations were performed for 15 different coated SAW sensors.
Each sensor was exposed to six VOCs selected to represent three chemical classes of
contaminants that are commonly found at waste sites (i.e., aliphatic, aromatic and
chlorinated hydrocarbons). A new pattern recognition method was developed for
determining which coated sensors would maximize the selectivity and accuracy of
quantitation for a given set of vapor contaminants. Using this method, an optimal subset of
four coated sensors was selected for testing in a prototype microsensor instrument.
Additional laboratory experiments were performed with this optimized array to assess the
limits of detection and linear response ranges for the representative vapors, as well as the
additivity of responses to vapors in binary mixtures, temperature and humidity effects, aging
effects, and other performance parameters related to the application of this technology to
soil and groundwater VOC monitoring.

Results demonstrate that SAW microsensor arrays can identify and quantify specific
VOCs at concentrations in the _g/L to mg/L range when present alone or in simple (e.g.,
binary) mixtures. Limits of detection, while sufficiently low for monitoring most VOCs in
many applications, could be improved. Recent advances in SAW sensor design can
apparently provide an order of magnitude reduction in detection limits, which would expend
the range of applications. Sensor responses are dependent on temperature and, in certain
cases, on relative humidity, indicating that compensation or control for these variables is
may be necessary. Given the small size, ruggedness, low power requirements, selectivity,
accuracy of quantitation, expected low cost of manufacture, and potential for continuous
unattended operation, SAW sensor technology offers a potentially effective alternative to
existing field instrumentation for headspace analysis, soil vapor monitoring, and vacuum
extraction process monitoring of VOCs in subsurface media. Present configurations of SAW
microsensor arrays may have several limitations which restrict their application in subsurface
VOC monitoring. These include a lack of sensitivity for trace level contaminants, and
uncertain ability to identify some components of complex mixtures.



EXECUTIVE SUMMARY

The analysis of volatile organic compounds (VOCs) in soil and groundwater at
contaminated DOE sites is currently impeded by cost and performance issues of field
monitoring instrumentation. Microfabricated surface-acoustic-wave (SAW) chemical sensor
arrays have the potential to provide rapid identification and quantification of VOCs found in
contaminated subsurface media. Incorporation of these sensor arrays into small, inexpensive
instruments for continuous selective measurement of VOC concentrations would lead to

considerable improvements in the quality and quantity of analytical data used to guide
assessment and restoration efforts at contaminated sites.

This report describes laboratory investigations of several performance parameters
relevant to the deployment of SAW-sensor based instrumentation for VOC-contaminated
soil and groundwater monitoring applications.

Techno)ogy Description
The SAW sensors used in this investigation consisted of 158-MHz quartz delay-line

oscillators having approximate dimensions 0.7 cm x 0.7 cm. The SAW device functions by
i generating mechanical (acoustic) waves along the surface of the piezoelectric quartz

substrate. Oscillation occurs when the device is used as the frequency controlling element in
a feedback circuit. Small changes of mass or elastic modulus at the surface of the deviceil

result in measurable changes in the oscillation frequency. Sensitivity to organic vapors is
achieved by coating the SAW device with a polymer or high-boiling liquid into which the
vapor will reversibly partition: vapor sorption increases the mass of the surface coating and
causes a proportional shift in the oscillation frequency.

The response of a given coated sensor will depend on the volatility of the vapor and the
strength of the coating-vapor solubility interactions (e.g., hydrogen bonding, dispersion, and
dipole-dipole interactions). Using an array of SAW sensors, each with a different coating,
will provide a response pattern that is characteristic of a particular vapor or class of vapors.
Pattern recognition analysis of the multidimensional sensor array output permits
determination of the identity and quantity of the vapor. With proper design, a simple array
can identify and quantify a wide range of vapors, when present individually or in simple
mixtures.

The prototype instrument tested here included an array of four sensors. The
instrument occupied about 8500 cm3 (0.3 ft3) and required about 2 W of power, but was not
optimized for field use. While this and several other SAW sensor array instrument designs
are commercially available, many aspects of their performance, including their applicability
to subsurface VOC monitoring applications, have not been investigated.

Technology Performance
A new pattern recognition method, referred to as extended disjoint principal

components regression analysis (EDPCR), was developed to (1) aid in the selection of
coated sensors to include in the array, (2) predict the performance of a specified sensor
array with respect to sensitivity and selectivity of vapor measurement, and (3) determine the
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identity and concentration of unknown vapors and vapor mixture components from the
sensor array response patterns. EDPCR represents an effective alternative to more
commonly used pattern recognition methods for analyzing array responses.

Initial screening tests entailed measuring the responses of 15 different coated SAW
sensors to each of six VOCs using controlled test atmospheres of the individual vapors at 25
°C and 50% relative humidity. Two vapors from each of three chemical classes were
selected as being representative of fuels and solvents commonly found as soil contaminants,
namely hexane and isooctane (aliphatics), benzene and xylene (aromatics), and chloroform
and trichloroethylene (chlorinated aliphatics). These calibrations yielded response factors
and limits of detection for each of the 90 coating-vapor combinations.

The first application of EDPCR used this set of individual-vapor calibrations to select
the subset of four coated sensors that would provide the best discrimination between the
vapors when present alone or in binary mixtures. EDPCR was then used to predict the
performance of this optimized four-sensor array. Noise was added to simulate typical
variations in environmental conditions and sensor responses. Results indicated that vapors
would be correctly identified an average of 95% of the time in single and binary vapor
mixtures and that vapors could be distinguished both within and between the three chenfical
classes.

The selected set of coatings was then applied to the SAW sensors for laboratory
investigations of performance parameters relevant to the use of this technology in assessing
VOC contamination in soil and groundwater applications. Concentration ranges covered
varied from 400 to 40,000 t_g/L, depending on the vapor and the sensitivity of the coating to
that vapor. Results indicated that sensor responses to individual test vapors were linear over
the concentration ranges examined. Responses to each of several binary mixtures were
linear and additive functions of the component responses, indicating that no significant
vapor-vapor interactions were occurring. From experimental data involving exposures to
nearly 100 test atmospheres of individual vapors and binary vapor mixtures, correct
identifications were obtained in 91% of the cases, and concentrations were accurately
determined in blind tests restricted to target compounds. Errors in classification were
usually associated with mixtures where one component was present in large excess.

The effect of relative humidity (RH) on the responses to several individual vapors was
then examined from 0 to 80% RH at 25 °C. For the sensor coated with the most polar
polymer, a decline of from 26-34% was observed in the responses to the selected vapors.
For the sensor coated with the least polar polymer, responses decreased by 10-18% at the
highest RH level. There were no detectable effects for the two other coatings evaluated.
The RH sensitivities of intermediate polarity coatings were smaller than those of the most
and least polar coatings. The humidity sensitivity observed must be accounted for during
calibration procedures to ensure accurate sensor responses. However, since RH changes
will be small in many practical situations, this does not represent a serious problem.

Sensor responses exhibited a negative exponential (Arrhenius) temperature
dependence from 15 to 40 °C, the magnitudes of which were slightly different for each
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vapor, though similar for a given vapor across the four coated sensors. Temperature effects
are well-behaved and could be accounted for via temperature monitoring and calibration.

Sensor responses were quite stable, showing no significant variation over a period of
two to three months. For individual coating-vapor pairs, calculated limits of detection
(LODs) at 25°C ranged from about 30 to several thousand _g/L. While improvements in the
limits of detection (approximately 10-fold) could be achieved by using recently developed
SAW resonators in place of the SAW oscillators employed here, the LODs obtained in this
study were sufficiently low and linear response ranges sufficiently wide for many application
in site assessment and restoration.

!

Technology Application
Results indicate that SAW microsensor arrays can identify and quantify VOCs from

chemical classes typically found in contaminated soils and groundwater. Sensor responses
are linear and additive over a wide concentration range. Detection limits vary significantly
depending on the vapor being considered, the coatings employed in the sensor array, and the
operating temperature, however, LODs in the range of 20 to 500 ug/L (or about 5 to 125
ppm) are achievable for many VOCs of concern. Recent improvements in SAW sensor
design could reduce these limits by an order of magnitude. Coupled with other advantages
of this technology, i.e., ruggedness, low power requirements, expected low cost of
manufacture (--$1000 for a four-sensor array and necessary electronics in large scale
production), and the capability for continuous unattended operation, these results support
the use of SAW sensor instrumentation for applications such as headspace analysis, soil gas
monitoring, and vacuum extraction process monitoring. Further, it appears feasible to
develop battery powered instruments that could fit into 2 to 4 inch diameter wells and pipes,
or be used as handheld instraments for use in screening waste drums, compatibility analyses,
and other applications. Applications of microsensors in small (1.5 inch diameter) cone
penetrometers that are driven in the ground would require further ruggidization (e.g., high
impact and shock resistance) and miniaturization. While inherently rugged, the
microsensors require a purge gas for baseline correction that might be difficult to provide in
this application.

The tested SAW microsensor array configuration may have several limitations which
restrict its application in subsurface VOC monitoring. These include a lack of sensitivity at
the trace (ppb or low ppm) levels that may be relevant in some soil environments. However,
recent advances in SAW sensor design can apparently provide an order of magnitude
reduction in detection limits, which would expend the range of applications. A second
limitation is the uncertain performance of the microsensor array in identifying and
quantifying components of complex mixtures. For some vapors, SAW microsensor response
patterns are very similar. These similarities, in conjunction with potential response shifts of
the coatings, due to long-term aging, poisoning, and other features, may cause errors in
identifying some vapors.

Vlll



1.0 INTRODUCTION
1.1 Background

Soil and groundwater at DOE sites may contain various inorganic, organic and
radioactive contaminants. Fuels and solvents, whJ[choften comprise the major fraction of
the organic contaminants, can migrate through both the unsaturated (vadose) and
saturated subsurface zones. Measurement of the volatile organic compounds (VOCs) in
soft and groundwater is a critical component of site assessment and remediation efforts.

1.1.1 Site Assessment and Remediation

In site assessment, chemical analyses are used to identify the extent of contamination,
determine the effects of environmental factors, evaluate and select the remediation
options, evaluate risks to the public, and determine the permanence of the remediation
action. VOC concentrations in soil are most commonly determined by collecting soil
samples or cores, separating phases using head-space or other techniques, and chemically
analyzing the separated phases. Most in situ or surface flux soil-gas measurements are
made by collection of samples on sorbent tubes or in syringesand subsequent analysis with
field insmmaentation or in a mobile (on-site) or central (off-site) laboratory facility.

VOC analysis is also a critical factor in monitoring and controlling site remediation
processes. Many cleanup actions have quite similar monitoring requirements. In situ
remediation approaches applicable to VOCs include vacuum extraction for the vadose
zone; soil vapor extraction augmented with air sparging (also called in situ volatilization)
for the saturated zone (Loden, 1992); and pump and treat for groundwater. Monitoring of
both liquid and gas phases is needed to ensure proper operation of process components,
including air and water pollution controls and treatment devices (e.g. air strippers).

VOC analyses are also required for routine waste handling act';vities, such as
screening the contents of drums and testing the compatibility of waste from different
sources. Additionally, VOC measurements are collected to determine imminent safety
hazards, such as those encountered in confined spaces and potentially explosive

i environments. In some of these applications, VOC concentrations may approach
saturation levels.

1.1.2 Vacuum Extraction

For the purposes of this study, approximate specifications or design goals for VOC
monitoring instrumentation are taken from vacuum extraction systems (VIES)(also called
vapor extraction and soil venting). VES places significant demands on soil gas monitoring.

VESs involve the in situ volatilization of VOCs and induction of air flow by the
application of a vacuum within the soil matrix. A typical VES uses one or many extraction
wells, connecting tubing and manifolds, carbon adsorption towers (or other VOC emission
control approaches), fans or vacuum pumps, and an exhaust stack. The vacuum is applied
at the extraction well(s) positioned in the contaminated zone, and soil gases are drawn into
the extraction well. During the development of the well, soil surrounding the well is dried,
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air flow paths are developed, a well's maximumradius of influence is reached, and steady
state flows are established (EPA, 1989). A vapor/liquid separator removes contaminated
water for treatment; contaminants in the air stream are removed by passage through
activated carbon canisters. Purging will eventually remove contaminants which favorably
partition into the gas phase at subsurfacetemperatures. The VES approach is effective for
manyVOCs over a range of environmentalconditions (Hurler et al., 1990). It is applicable
to volatile and hydrophobic compounds, including solvents (TCA, TCE, PER, DCE,
CH2C12,Freons, etc.) and fuels (toluene, benzene, ethylbenzene, xylenes, etc.). VESs have
been successfullyused on various scales, including at very large Superfund sites. Costs are
low in comparison to other remediation technologies. The major costs are associated with
equipment, energyfor pumping, and chemical analysis.

Wellhead concentrations and flows are monitored during VES operation to estimate
VOC removal and determine when remediation is complete. Vacuum extraction continues
(typically for several months) until wellhead concentrations drop. Intermittent operation
may be used if significant increases in vapor concentratiom occur after pumping ceases. If
so, extraction continues; ff not, soil borings are taken to ensure that soils trove reached the
desired equilibrium concentrations. Intermittent blower operation is probably the most
energy efficient approach (Hutler et al., 1990). While initial concentrations may approach
vapor saturation, typical VOC levels during pumping are 50 to 25,000 ppm. The VES is
typically shutdown when concentrations fall below a few ppm. Appendix I reviews a
number of VES applications and VOC concentrations found.

1.1.3 Summary
In sununary, instrumentation is needed to identify and quantify VOC concentrations

in soil and groundwater in both site assessment and site remediation activities. VOC
concentrations requiring quantification range from low-ppm levels to vapor saturation.

1.2 Technology Scope
This research addresses the measurement of VOCs that are found at thousands of

sites across the country. This section describes the status of current technologies used to
measure VOCs and the anticipated systems that might use microsensors.

1.21 CurrentBaseline Technology
A number of instrumental methods have been explored for monitoring VOCs in soil

and groundwater. Unfortunately, their application is limited by their sensing capabilities,
expense and/or complexity. For example, photoionization detectors (PID) provide low- or
sub-ppm detection of certain organic vapors, but they neither identify individual vapors nor
discriminate between components of vapor mixtures. PIDs are also rather expensive, with
typical costs of $4,000 per instrument. Flame ionization detectors (FID) have similar costs
and performance limitations as PIDs, and also require supplies of compressed hydrogen
and air to support the detector flame. Catalytic filament detectors, while less expensive
that PID and FID instruments, are also non-selective, have limited sensitivity and can be
poisoned by various reactive gases and vapors. Portable gas chromatographs equipped with
PIDs or FIDs provide improved selectivity, but are more expensive (> $8,000), have lower
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through-put, and require a higher level of user training and maintenance than the other
instruments mentioned.

To circumvent their limitations, portable instruments are generally used in a
screening mode, serving to detect the presence of broad classes of compounds.
Identification and quantification is performed by collecting water, soil, gas, or absorbent-
based samples, transporting them to an off-site or mobile laboratory, and using
conventional analytical laboratory methods. The costs and time associated with collecting,
transporting, mainta/n/ng and analyzing such samples has historically limited the quantity
and quality of data collected.

1.2.2 Anticipated Products and Technology
Small, inexpensive, continuous monitoring instruments are needed to allow the

collection and analysis of greater numbers of samples, and to improve the quality of data
used to guide remediation efforts (DOE, 1989). Such instnanents would permit significant
increases in the speed and cost-effectiveness of restoration by better utilization and control
of resources.

This research has focused on a relatively new sensor technology to determine its
suitability for use in monitoring VOCs in assessment and restoration efforts. Ostensibly,
this technology has several inherent advantages for this application, including potentially
high sensitivity and selectivity, ruggedness, low cost, low power requirements, continuous
operation, and the possibility of/n s/tu monitoring in penetrometers and wells. However,
detailed reports on the capabilities of this technology have not been provided.

1.2.3 SAW Sensor Technology
SAW devices respond with high sensitivity to changes of surface mass and, as a result,

can be used for a wide range of potential organic vapor analytes (Nieuwenhuisen et al.,
1989). Fig. 1 depicts the basic components of the SAW oscillator. The SAW sensors used
in this investigation consisted of 158-MHz quartz delay-line oscillators having approximate
dimensions 0.5 em2. The SAW device functions by generating mechanical (acoustic) waves
along the surface of the piezoelectric quartz substrate. Oscillation occurs when the device
is used as the frequency controlling element in a feedback circuit. Small changes of mass
or elastic modulus at the surface of the device results in measurable changes in the
oscillation frequency. Sensitivity to VOCs is achieved by coating the SAW device with a
polymer or high-boiling liquid into which the vapor will reversibly partition: vapor sorption
increases the mass of the surface coating and causes a proportional shift in the osciUation
frequency. Advantages of using sorptive polymer coatings include the rapid and reversible
sensor responses obtained, and the ability to repeatedly expose the sensor without
significant changes in the physical or chemical properties of the coating, thus extending the
sensor's service life. The amount of vapor sorbed by the sensor coating is typically a linear
function of the vapor concentration over the useful concentration range, and efficient
operation is possible at ambient temperatures, reducing power requirements. Since vapor
sorption decreases exponentially with increasing temperature (Rogers, 1985), sensitivity
increases at lower temperatures.



Fig. 1. Diagram showing SAW delay-line oscillator and surface wave between transducers.

INTER DIGITA L POLISHED
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TRANSDUCERS SUBSTRATE

Sensor arrays consist of several SAW sensors, each coated with a different paniaUy-
selective polymer (Rose-Pehrrson et al., 1988; Carey et al., 1987; ZcUers, et al., 1993). The
response of a given coated sensor will depend on the volatility of the vapor and the strength
of the coating-vapor solubility interactions (e.g., hydrogen bonding, dispersion, and dipole-
dipole interactions). Using an array of SAW sensors, each with a different coating, will
provide a response pattern that is characteristic of a given vapor or class of vapors. Since
the sensor response to a given vapor depends on the functional groups incorporated into
the structure of the polymer, judicious selection of polymers can lead to significant
differences in the response patterns for different vapors (Grate and Abraham, 1991;
Patrash and Zellers, 1993). With proper design, such an array can measure several
different vapors individually or in simple mixn]res. However, the problem of identifying
and quantifying the components of vapor mixtures using coated SAW sensor arrays has not
been extensively studied (Rose-Pehrrson ct al., 1988).
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The selection of coatings in sensor arrays is based principally on sensitivity and
selectivity considerations. Each coating should contribute unique information about the
vapor, otherwise, coatings with similar structure will provide redundant or colinear
responses. Some qualitative guidance for coating selection can be obtained _rom coating
and vapor physicochemical properties that affect the magnitude of the solubility
interactions (Grate and Abraham, 1991), and by using principal components or cluster
analyses of sensor calibration data (Care)' et al., 1986). However, no general methods for
accuratelypredicting sensor responses and selecting sensor coatings have been developed.

1.Z4 Polymer Coated SA W Sensor Responses
Partitioning phenomena govern responses of polymer-coated SAW sensors. The

partition coefficient, K, typically derived from gas-liquid chromatographic (GLC) analysis,
represents the equilibrium vapor-polymer solubility at a given temperature (Littlewood,
1970)

K=Cc/Cv (1)

where Cc is the vapor concentration in the chromatographic stationary phase and Cv is the
vapor concentration in air. The predicted sensor response from a vapor sorbed in a
polymer-coated SAW oscillator is (Grate et al., 1988 and 1992; Patrash and Zellers, 1993)

Afv=zecHeCvl,)c (2)

where Afv is the sensor response measured as a frequency shift,/x fc is the initial
fi'equency shift caused by deposition of the coating, Pc is the coating density, and subscript
e indicates that K is determined experimentally using sensor responses. Assuming the
coating is thin, isotropic and non-conducting, the coating mass is related to A fc by

afc- (kl + k2) fo m / a (3)

where kl and k2 are substrate constants, fo is the oscillator frequency prior to coating, and
m/a is the mass per unit area of the coating film (Wohltjen, 1984).

Inherent in Eqs. 2 and 3 is the assumption that the sensor response is dominated by
mass=loading effects. Under this condition, K and Ke should be equivalent. However, Ke
values determined using Eq. (2) may exceed K values determined using GLC
measurements due to changes in the polymer modulus accompanying swelling (Grate et al.,
1992, Patrash and ZeIIers, 1993). To the extent that modulus changes contribute to
measured values, Ke is not a true partition coefficient, as defined in Eq. 1. Nonetheless,
the prevailing evidence indicates that Ke is proportional to K, and that Ke is a useful
summary of the sensitivity. That is, Eq. 2 provides an accurate description of polymer-
coated SAW sensor responses to organic vapors over a wide range of concentrations.

1.2.5 Environmental Applications of SA W Sensors
The performance of SAW sensors with respect to humidity, temperature, vapor
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mixtures, and other factors has not been well characterized. The effect of these factors
must be understood priorto field applicationsof this technology.

With respect to humidity, VOCs are generally present in soil that is saturated with
water vapor. The very high concentration of water vapor may interferewith the sorption of
VOCs present at much lower concentrations. The effect of temperature on SAW sensor
responses has been mentioned. Temperatures may be quite constant in some proposed
applications of the technology, e.g. wells may remain at 15-20 °C for much of the year.
However, remediation activities such as vacuum extraction may alter these temperatures.
Temperature variations may be quite extreme in certain other appLications,e.g., handheld
use and placement in above-ground manifolds. Finally, most soil contaminants and many
groundwater contaminantsare present as mixtures. The response of SAW sensors to vapor
mixtures, and in particular, the assumptions of response linearity and additivity to vapor
combinations, has not been extensively tested.

In some cases, it may be possible to condition the sensor array and the vapor to
achieve constant temperatures and humidities, however, this may significantly increase the
complexity, size, weight, and cost of the instrumention. In cases where responses to factors
are well behaved and predictable, it may be possible to use calibrations and mathematical
corrections. For example, if sorption processes follow an Arrhenius relationship, a simple
temperature measurement could be used to correct SAW responses and determine
concentrations.

1.3 TechnologyProgrammatic Requirements
The programmatic requirements for SAW microsensor arrays at DOE sites are

basically the development of ruggidized instruments that incorporate automatic processing
of sensor output and appropriate interfacing for sampling and user control. No significant
programmatic requirements beyond that needed to train users in the use, maintenance, and
quality assurance of the technology are needed as the microsensor array would simply
replace or augment existing instrumentation.

Some applications would require more significant programmatic requirements. For
example, control of vacuum extraction systems based on real-time sensing of VOC levels,
would require variable speed fans and pumps that are interfaced to a monitoring and
control system.
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2.0 METHODOLOGY AND APPROACH
2.1 Facilities and Equipment

Data were collected using a prototype AC-powered instrument supplied by
Microsensor Systems Inc. (Bowling Green, KY) which consisted of an array of four 158-
MHz SAW oscillators (each with a separate sealed reference osdUator), radio-_equency
electronics modules, frequency counters and a microcomputer. Fig. 2 is a photograph of
the SAW sensor mounted on its TO-8 header (providing mechanical and electrical
connections), showing its small size. Fig. 3 is a photo of the array instrument.

To screen coating materials and examine various operating characteristics, the SAW
instrument was incorporated into an exposure and data aquisition system. Fig. 4 shows the
experimental setup used in most experiments. Difference frequency measurements
between the coated and reference sensors were collected every 2 s and logged on a
personal computer. Dynamic (i.e., continuous flow) test atmospheres of the vapors were
generated by passing N2 gas through a flitted bubbler containing the liquid solvent and
then into a metered dilution-air stream maintained at a preset temperature and relative
humidity. Dilution air was pre-filtered to remove any particulate or organic vapor
contamination. For certain experiments, dry N2 gas was used as the diluent instead of
humidified air (see below). After allowing for proper mixing of the vapors in the dilution
stream, a portion of the stream was passed through a calibrated infrared gas analyzer
(MIRAN 1A, Foxboro, MA). The remainder was diverted to a solenoid valve that directed
the flow of contaminated air either to the sensor array or to a vent in the system. A
separate humidified clean-air line was directed to the array for the purpose of measuring
baseline sensor responses before and after contaminant exposures.

For mixture exposures, an additional bubbler was incorporated into the system. Air
concentrations were verified by taking aliquots with a gas-tight syringe and injecting them
into a gas chromatograph (GC) (Varian Model 2860, Mountain View, CA) equipped with a
packed column (2 ft, 1/8-inch o.d., 1% SP-1OO0on acid washed Chromosorb P) and an
FID. Peak areas were quantified using an electronic integrator. The GC was calibrated

before each experiment using solutions of the analytes in CS2.

Each sensor was capped with a nickel-plated Lidthat could be sealed with a Teflon
gasket to the TO-8 header on which each sensor was mounted. Exposure to the test
atmospheres was achieved through inlet and outlet tubes soldered to the sensor lids. The
sensor lids were held in place with machined aluminum blocks (one for each coated-
sensor/reference-sensor pair) placed on top of the lids and bolted through the floor of the
instrument chassis. The temperature of the sensor array was maintained within 0.1 °C of
the preset value by circulating water through the aluminum blocks in contact with the
sensor lids using a thermostatted circulator. A 0.001-in diameter type-K thermocouple was
fed through the seal of one of the sensor lids and the temperature just above the sensor was
monitored with a digital temperature meter (Model HH-71 K1, Omega Engineering,
Stamford, CT). All system connections were made using either Teflon or stainless steel
tubing and fittings to avoid any losses of vapors.
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Fig. 2. Photograph of the SAW sensor mounted on TO-8 header.

Fig. 3. Photograph of the array instrument. Pen indicates location of SAW sensor.
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Fig. 4. Test setup used in most experiments.

Flow rates over the sensors were maintained at 0.250 L/rain and monitored
continuously with four downstream rotameters. For an internal volume of about 0.5 cm3,
the theoretical mixing time is well under 1 s. Humidified contaminant-free air (or dry N2)
was continuously passed over the sensors to establish a baseline frequency. The average
short-term (i.e., 2-s) noise level of the baseline response was about 10 to 15 Hz. Limits of
detection (LOD) for the vapors were calculated using 45 Hz as the minimum detectable
sensor response.
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Reagents and Supplies
Sensor coatings examined are listed in Table 1. Several of the coatings were chosen

based on an analysis of GC retention data reported by Huber and Reich (1984).
Additional coatings were selected based on general considerations of structure and
anticipated affinities for the test vapors. Collectively, this set of coating materials span a

range of polarities and structural features. All coatings were obtained from Scientific
Polymer Products (Ontario, NY) with the exception of OV-215 and DEGA which were
obtained from Ohio Valley Specialty Chemicals (Marietta, OH). The solvents used and

corresponding boiling points are trichloroethylene (TCE), 87 °C; chloroform, 61 °C;
hexane, 69 °C; isooctane, 98 °C; benzene, 80 °C; xylene, 138 °C. Solvents were all > 98%

(Aldrich, Milwaulkee, Wl) and were used without further purification.

Table 1. List of coatings, abbreviations, physical forms, and frequency shifts due to coating
deposition (4 re)"

,,,, , , ,,, n ........... __

SOLID (S)
NO. SYMBOL COATING LIQUID (L) AFc (kHz)

'_'11 iii II I |

1 PECH Polyepichlorohydnn S 201

2 PDPP PolydiphenoxTphosphazene S ,.0,.'_"

3 OV-215 Vinyl modified tnfluoropropylmethyl-silicone L 228

4 DEGA Diethylene glycol adipate L 200

5 PIB Polyisobub'lene S 195
,.,

6 PCP Polvchloroprene S 179

7 ABC Acr)lonitrile/butadiene copol.vmer (41% acr)lonitrile) S 199
m,,

8 TBEP Tn-butox3.'ethyl phosphate L 222
" ,........ k.,

9 PHA Pol.v(hex_.'lacr3.late) 25% solids in toluene S 162
,,,

10 OV-275 Btsc').anoallyl polysiloxane L 196

11 PHOEA Poly(2-hydrox3'ethyl acr2,.late) S 193

12 OV-25 Phen.vlmethyldiphenylsilicone ('75% phen.vl) L 220
, i ......

13 ETSA N-Ethyl o,p-toluenesulfonamide L 193
......

14 PMMA Pob (methyl methacD'late) S "_"--.;7

15 PPE Polyphenylether 6-nngs L 192
............
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2.3 Experimental
Solutions of the coatings (approximately 0.2% by weight) in toluene or a mixture of

toluene and acetone were applied by airbrush to the sensors. The amount of coating
deposited was inferred from the net frequency shift Afc observed after evaporation of the
carrier solvent using Eq. 3. Values of afc were all in the range of 190 - 275 kHz.
Estimated film thicknesses were in the range of 0.05-0.1 _m. All of the reference sensor
frequencies were higher than the coated sensor frequencies prior to coating, thus difference
frequencies increased steadily during coating deposition. (Note: If the reference sensor
frequencies had been lower initially, then the difference frequency would have passed
through a minimum).

In a typical exposure experiment, the array was exposed twice for 60 s to a given
concentration of vapor, with each exposure separated by a 60-s purge with clean air (or
N2). The last 15 frequency measurements (30 s) in each exposure period were averaged
and compared to the pre- and post-exposure baseline frequencies to determine the sensor
response. This procedure was repeated for a minimum of four different concentrations of
each test vapor to develop calibration curves covering a 4 to 10-fold concentration range,
depending on the vapor. For calibrations performed subsequent to initial screening
experiments, concentrations covering a 12 to 30 fold range were used. The minimum
vapor concentration used was typically that yielding responses greater than the LOD for at
least three of the four sensors. These tests were performed at 25 °C and 50% relative
humidity.

Following initial testing, it was found that at the higher N2 flow rates needed to
generate high concentrations of cert,tin vapors, a measurable baseline shift occurred in
several sensors, due to changes in RH (typically less than 5%). Therefore, all tests were
performed with N2 gas added to the clean-air stream at a relative flow rate equivalent to
that used for vapor introduction into the contaminated-air stream. As a result, the actual
exposure RH for these initial tests was somewhat lower than 50%, however, the RH was
held constant.

Calibrations were performed for each of the 15 coatings (typically in sets of four) and
six vapors. Following exposure to the six vapors, the coating was dissolved from the SAW
sensor surface and a new coating applied as described previously. Of the 15 coating
materials initially examined, five were eliminated from further analysis because of
problems with baseline and/or response instability (OV-25, PPE, and ETSA) or due to
extreme water sensitivity to water vapor (PHOEA). A frith coating, PMMA, was omitted
due to its very low response to all vapors. Analyses of the 60 calibration curves from the
remaining 10 coatings used techniques presented in the next section. An "optimal" subset
of four coatings, selected in order to maximize selectivity, was used for subsequent testing
of the effects of temperature, humidity, and vapor mixtures on the array responses.

Temperature effects were examined by exposure to a subset of three vapors at 15, 25,
30 and 40 °C using dry N2 as the diluent stream. Additional tests were performed at
relative humidities (RH) ranging from 0 to 77% RH, while maintaining the sensor array at
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25 °C. Sensor responses to VOCs as a function of relative humidity were determined using
multipoint calibration curves. Additionally, sensor responses to water vapor alone were
determined.

Binary mixture exposures were then performed in an N2 atmosphere and 25 °C for a
subset of vapors. The concentration of each component was varied during these
experiments to examine whether the relative concentration of the vapo_o affected their
combined response or the ability to discriminate each component using pattern
recognition. From seven to 18 exposures were performed for each binary mixture.

Preliminary experiments were conducted to examine uses of the sensor array
instnament for heaclspace and in-situ soil characteriz_ation studies. Soil column simulators
were constructed of 5.4 cm dia. glass cylinders with Teflon endcaps. Each cap contained
stainless steel connectors and support screens to contain the soil. After measuring soil
density and porosity, soil was uniformly packed into the column. Controlled flows of
humidified air and vapor, produced by dynamic dilution, passed through the soil column
and also through three different VOC detectors: the SAW sensor array, an FID (Horiba
FID-23A, Ann Arbor, MI), and a Fourier transform infrared spectrophotomer (Bomem
100A, Montreal, Canada). Headspace experiments utilized a conventional automated
headspace analysis instrument (Tekmar 7010 GT, Youngstown, OH) interfaced to a Varian
3700 GC (Mountain View, CA) equipped with FID and computer data acquisition system.
To perform parallel analyses with the SAW 3ensor array, a manifold was constructed from
Teflon tubing that received headspace vapor that had passed through the GC sample loop.
This manifold then distributed the vapor to each of the sensors in the array (parallel flow).
A multiport valve was used to send clean air to the sensors for baseline measurements.

2.4 Data Reduction and Interpretation

Calculations of average responses, standard deviations and linear regressions were
performed using Lotus 123 (Cambridge, MA) on a personal computer. EDPCR analyses
were performed on a personal computer using programs written in MATLAB R
(Mathworks, Inc., Natick, MA). Certain additional statistical analyses were performed
using SAS R Version 6.07 (SAS Institute, Cary, NC) on an IBM ES-9000 series mainframe
computer, and SYSTAT R 5.0 (Evanston, IL) on a personal computer.

2.4.1 Calibration Curves

The average sensor response at each concentration for each vapor-coating
combination was determined by the net frequency shift of duplicate exposures. Sensor
responses were then regressed against vapor concentrations to obtain the sensitivity
(slope), standard error, and coefficient of correlation (R2). Ke values were calculated by
Eq. 2 using the Afc values for each coating. Limits of detection (LOD) were determined
by extrapolating the response curves to a frequency shift of 45 I-Iz, representing 3 to 4 times
the RMS noise observed.

2.4.2 Performance Evaluan'on

To evaluate the performance of various coated-sensor subsets, and to select an
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optimal subset, the individual vapor-coating calibration curves (from linear regression)
were used in a Monte Carlo simulation of responses to each vapor and binary vapor
mixture. The synthetic responses for each possible subset of four coatings were then
processed using EDPCR for identification and quantification. Responses to binary
mixtures were generated as linear combinations of sensor responses to the component
vapors. For both individual-vapor and binary-mixture simulations, noise was added to the
responses to simulate variations in sensor responses expected under normal operating
conditions. The following equation was used to generate the responses used in the model:

Rj = Y_i(Ci,m + klolZXCi) Sid (1 + k2a 2) + k3_ 3 (4)

where Rj is the sensor response for coating j (Hz), Ci,m and LxCi respectively are the mean
concentration and range of concentrations for va'_or i _g/L), Si,_ is the slope of the
calibration curve for vapor i and coating j (Hz/(_g/L)), k 1 adjusts the range of
concentrations generated, k2 specifies the level of slope noise, k3 specifies the fraction of
noise, al is a uniformly distributed random variable (-l_<el_<1), and a 2 and a 3 are
independent normally distributed, zero mean, and unit variance random variables. As
nominal values, ACi = concentration range used in the calibration, Ci m is the midpoint of
the same range, kl = 0.5, k2 = 0.025, and k3 = 15or 22 Hz. The 2.5b/0Gaussian error was
superimposed on individual vapor responses to simulate possible temperature changes that
would affect the sensor sensitivity (this number was determined from an unpublished study
of calibration slope errors for a PIB-coated SAW sensor exposed to xylene). The
additional + 15Hz represents a typical level of random noise. Thus, Eq. 4 produces slightly
noisy but linear and additive responses at values that span experimental conditions, a range
known to be valid. As described later, the additivity assumption was verified
experimentally.

The analysis of one set of four coated sensors for each possible vapor combination
(either single vapors or binary mixtures) utilized 100 simulations generated using Eq. 4.
This number of simulations was found to give stable results. The analysis of a specific
coating set for the 6 pure vapors and the 15binary mixtures, or 21 combinations, required a
total of 2100 analyses. The percentage of correct identifications was then determined from
EDPCR. Partially correct identifications were scored by the fraction correct, e.g., a correct
identification of 1 of 2 compounds .yielded 0.5. For those correctly identified, the relative
error in the predicted concentration was calculated. There are 210 possible coating sets
containing 4 of the 10 coatings in the screening set. Each coating set was ranked according
to the percentage of correctly classified vapors and vapor mixture components.

2.5 Quality Assurance
Collected data during the laboratory investigation included temperature, humidity,

vapor concentration, air flows, and sensor output frequencies. Measures taken to maintain
the quality of collected data included: the use of well-controlled and monitored
experimental conditions; replicate exposure measurements at each concentration level;
multipoint calibration curves for sensors and analytical instrumentation; continuous
measurement of flow rates in the experimental system at all critical points (vapor and
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dilution flows, and at each sensor); verification of vapor concentrations in test
atmospheres at each concentration level; daily calibrations of IR and GC analyzers; and
regular calibration of thermocouples, humidity sensors and other instruments using
standard methods.

Results presented below include the outcome of quality assurance measurements.
These include the uncertainty of experimental determinations and other statistical
measures that indicate data quality, e.g. goodness of fit statistics like R2. Additionally,
coating stability was repeatedly examined over the course of the data collection period by
exposure to either benzene or xylene.
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3.0 RESULTS AND DISCUSSION

3.1 Extended Disjoint Principal Components Regression (EDPCR)

Various methods have been developed for correlating the pattern of responses from
an array of chemical sensors with the identity or class of a given analyte (Sharaf et al., 1986;
Massart et al., 1988; Carey et aL, 1986). Typically, principal components analysis (PCA)
and cluster analysis (CA) are performed on the concentration-normalized matrix of sensor

responses to assess qualitatively the uniqueness of th,_,response pattern for each species.
One of several classification methods can then be used to identify an unknown provided
that its sensor responses are contained in the calibration set (also referred to as the training
set). For an unknown mixture to be correctly identified it is necessary to have previously
defined the spatial locations associated with the mixture over the range of component
concentrations. Once the identity of an unknown is determined a second analysis, such as
multiple linear regression (MLR), partial least squares (PLS) or principal component
regression (PC'R), is performed to determine the concentration(s) of the analyte(s) (Caxey
et al., 1987; Carey et al., 1986).

Disjoint principal components modelling (Wold, 1978) and its more familiar
derivative SIMCA (soft independent modelling of class analogy) (Sharaf et al. 1986;
Massart et al., 1986; Albano et al., 1978) incorporate several features of PCR. In these
methods, principal components models are developed for individual groups within a data
set. Classification of an unknown is based on the goodness of fit of its response vector to
each of the models. This approach differs from standard PCR where principal components
are derived from the data matrix as a whole (Dunn, et al. 1989; Vogt et al., 1987; Scott,
1986).

The concepts underlying these methods can be extended to identify both individual
vapors and the components of vapor mixtures from sensor response patterns. This
extended disjoint principal components regression (EDPCR) method takes advantage of
the integration of the qualitative and quantitative aspects of the sensor responses. Since
information on the vapor concentrations is retained in the classification models,
misclassification can be _ed and estimation of vapor concentrations is facilitated. In
addition, by using a single model for the responses to each vapor, the data matrix can be
summarized by a series of equations and the computational burden is reduced.

For our initial investigations of the feasibility of using EDPCR for sensor array
analysis we used previously reported data from an array of polymer-coated SAW sensors
exposed to each of several organic vapors (Rose-Pehrrson et al., 1988). The results of
these investigations are provided in the publication included as Appendix II of this report.
Oniy the salient features of the EDPCR modeling approach are given here.

The first step in the method is the application of PCA to each group of sensor
responses (i.e., the collection of sensor responses to all concentrations of a single vapor).
The response vectors for that vapor are then modelled using the most significant principal
component(s). Since the only preprocessing that is performed is mean-centering,
information about the concentrations of the vapors is accessible during classification.
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Themodelusedtoclassifyvaporiisgivenby

r= mi+ Y_Nn=1ai,nmi,n + • (5)

where r is the response vector for the vapor at a given concentration, mi is the mean
response vector determined from all of the calibration concentrations measured for that
vapor, ai n is the projection coefficient corresponding to the location of each response

)

vector along the nth pnncipal component represented by the unit vector mi,n, • is the
residual error vector of the model for the vapor at the measured concentration, and N is
the number of principal components. The accuracy of the model can be assessed by
inspecting the residual error or by constructing confidence intervals.

Provided that at least one sensors in the arrayresponds differently to a given vapor,
each vapor will be represented by a unique response model. The response vector from a
given concentration of an unknown vapor (ru) can be tested for its goodness of fit to each
of the models estab'Ashedduring calibration by replacing r by ru in Eq. (5) and solving for
au to minimize [[ c II2 (see Appendix U).: The identity of the unknown is determined from
the model for which the smallest [[ • [[z is obtained. Once the identity of the vapor has
been established, it_ concentration is determined by interpolation or linear regression of ai
versus concentration because the projection of the response vector along the line (one-
principal-component model) is directly related to its concentration when sensor responses
are linearly related to concentration.

For mixtures of two components with additive responses, the response vector can be
projectedonto the plane bounded bythe pure-vaporresponse vectors. Each binary mixture
canthenbethoughtofasanadditionalgroupconsistingoftwopurevapors,iandj,insome
combinationofconcentrations.A classificationmodel fora binarymixturecanbe
establishedusingthefollowingequation(note:a one-principal-componentmodelis
assumedandthesubscriptn=N = Ihasbeenomittedforsimplicity):

r= m i+ mj + aimi+ ajmj+ e (6)

whererrepresentstheresponsevectorforthemixtureofiandjandtheremaining
variablesaredefinedasaboveforthepure-vaporcase.Foreachcombinationofvapor

concentrationstherewillbe specificvaluesofaiandaj.Here again,thesmallestresidual
errorobtainedbyfittinganunknownresponsevectortoallpossiblemodelsdeterminesthe
correct class for the unknown vapor.

The response vector for the binary mixture can be projected onto the principal
component of each vapor and the concentrations obtained from the calibration data for the
individual vapors. The estimated vapor concentrations aci:ount for the nonorthogonal
components of each vapor. Models analogous to (6) can be used for ternary or more
complex mixtures.
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Use of the concentration predictions in the classification scheme can aid in
minimizing classification errors. Misclassification can arise from the intersection of the
vector corresponding to one vapor (or vapor mixture) with those of other vapors. Where
the response vectors extend to infinite concentration, there is an increased likelihood of
intersection. In practical situations there is a limit to the concentrations encountered. In
fact, standard quality control protocols require that an instrument detector be calibrated
over a concentration range that brackets the range to be encountered during normal
operation. Measurements obtained outside of the calibration range are not strictly valid. If
the range of allowable concentrations is rendered finite, the probability of misclassification
is reduced. An unknown sample initially classified into this group but falling outside of
these concentration limits would be re-classified to the group for which the next lowest
residual error is obtained and for which the concentrationfalls within the permitted range.

As described below, we have found that EDPCR is a useful tool for analyzing sensor
responses. Applications of EDPCR to the selection of optimal coatings and the prediction
of vapor responses are demonstrated.

3.2 Sensor Calibration and Linearity
Figure 5 shows a series of response profiles for four different coated sensors exposed

alternately to a vapor (7670 _g/L of TCE) and then clean air. These responses are typical
of those obtained for all of the vapors and vapor mixtures. In all cases, sensor responses
and recoveries reached >90% of their' equilibrium values within 6-10 s of introduction and
removal of the vapor.

Plots of vapor concentration versus a fv were generally linear with regression
correlation coefficients (R 2) exceeding 0.99. Representative results for four coatings are
shown in Figure 6 for exposure to TCE over a concentration range of 300 to 13,000_g/L.

Table 2 provides statistics for all coatings and vapors in the screening set, showing the
sensitivity, standard error, and R 2 obtained from linear regression, as well as Ke and the
calculated LOD for each vapor-coating combination. In general the linearity and precision
of determinations were excellent. Some variability in sensitivity was observed for vapors
giving low responses with a given coated sensor (e.g. hexane and DEGA). This can be
attributed to random oscillator noise and errors in concentration measurements. Small

differences in relative humidity between the clean and contaminant flow streams may also
have contributed to the variability in the DEGA and OV-275 sensor responses since these
highly polar coating show the greatest sensitivity to RH fluctuations.

Calculated LODs ranged from about 30 ug/L to several thousand _g/L The general
trends are as expected, with higher LODs being associated with the more volatile vapors
and/or with coating-vapor combinations where the strengths of the solubility interactions
are expected to be low.
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Fig. 5. Traces of SAW sensor responses to 7670 _g/L of TCE vapor.
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3.3 Coating Selection
As discussed earlier, coated-SAW sensors allow a degree of selectivity that can be

exploited using pattern recognition methods that identify and quantify vapors present. The
identification and quantification problem increases in difficulty as concentration spans
increase; as the possibility of more compounds increases; as exposures move from pure
compounds to binary, tertiary, and more complex mixtures; as sensor noise, nonlinearity
and compound-compound interactions increase; and if unknown compounds may be
encountered. Restrictions on the general pattern recognition problem can improve the
ability to identify and quantify unknowns. For example, a four sensor array can not identify
more than four compounds simultaneously because the problem is underdetermined
mathematically. However, ff only individual compounds or binary mixtures are present, the
four sensor array may be able to correctly identify and quantify compounds from a large set
of possible compounds. Restricting the number of compounds that can be present
simultaneously is justified in many applications. In contamination of soil and groundwater,
for example, a number of small sets of organic vapors that are frequently observed have
been identified from a universe of about 20 compounds (DOE, 1992).

3.3.1 Selection Factors and Criteria

Coatings can be selected using a number of criteria: (1) Coatings must be stable,
e.g., resistant to changes over time due to aging, reaction with the gas stream, etc. (2) The
LOD achieved with the coating must be acceptable. (3) The sensor output (e.g., frequency
shift) must be linear or nearly so with concentration. Transformations made to obtain
linear forms can be used, but may be problematic for mixtures. (4) The coatings must
maximize selectivity, that is, the ability to discriminate among different compounds. (5) To
reduce costs, the smallest number of sensors (coatings) should be employed. (6) The
largest number of compounds should be discriminated. (7) Overall results obtained should
be robust, that is, not highly influenced by sensor noise and minor miscalibration. These
multiple criteria suggest that trade-offs will occur, i.e., no single set of coatings will provide
the optimal performance with respect to all goals. For example, selectivity may be
achieved at the expense of sensitivity.

Collinearity. To correctly identify compounds, microsensor array responses to each
target compound must be unique, i.e., the vector containing frequency shifts for various
coatings at a specific concentrations must be linearly independent of the vectors obtained
for all other compounds. CoUinearity may be caused by pairwise dependencies that involve
two compounds. For example, compound A may produce the same response pattern as
compound B (at the same or different concentrations). This situation is easily detected by
high correlation coefficients between response vectors for the two compounds. Three or
more compounds also can cause dependencies that are harder to detect. For example,
sensors 1 and 2 may respond to compound A, and sensor 3 to compound B. Compound C
may elicit a response in sensors 1, 2 and 3. In this case, while the response for each
compound differs, the mixture of three compounds may be difficult to resolve: sensor
responses may indicate compound C, compounds A and B, or some combination of the 3
compounds. This situation may escape detection by pairwise measures of dependencies,
e.g., correlation coefficients would not indicate an unusual degree of collinearity.
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3.3.2 Cluster and K-means Analysis
Several different clustering methods were used as a first approach to coating

selection. These methods used a 10x6data matrix consisting of the sensor sensitivities for
all coating/vapor combinations in the screening set. In the matrix, rows (groups)
represented sensor coatings, and columns represented vapors.

Figs. 7a and b show results from two hierarchical cluster analyses where different
metrics were used to assign clusters. The dendrograms group the coatings according to
their similarity in response patterns to the six vapors: those connected at a lower point
(from the left) are more similar. The choice of which four coatings to include in the final
optimal arrayis equivocal. From Figure 7a, coatings would be chosen from the following
four groups: (1) PIB, ABC, TBEP, PHA; (2) DECH, DEGA, PCP; (3) OV-215, OV275;
and (4) PDPP. This provides 24 different choices. Groupings in Fig. To, which used a
different clustering criterion, are somewhat different and thus would provide yet more
choices.

The K-means procedure is an alternative to cluster analysis that also provides
groupings of similar coatings. Used iteratively, it can obtain groups that satisfy a criterion
such as minimum within group variance. This procedure was performed for the screening
data set using four groups and a large iteration limit (100). These results are identical to
splitting the cluster analysis dendrogram using Euclidian distance and the complete linkage
method (Fig. To). Again, the final selection of coatings is equivocal.

An assumption implicit in the cluster and K-means analyses is that all coatings within
an identified group perform equally well. This assumption, however, has not been tested.
In addition, these analyses do not indicate the performance of the various coating sets, such
as the identification success rate, the vapors that would be misclassified, and the
performance obtained when vapor mixtures are present. Some qualitative insight can be
obtained using PCA, but many of these issues would remain unanswered.

In summary,clustering and K-means analyses provide groupings that are equivocal in
that many different selections are possible. Groupings depend on the proximity and
distance measures used, and little guidance can be given a priori concerning the best
measures. No quantitative information regarding the success rate of vapor identification is
obtained. Finally, results from cluster and K-means analyses do not necessarily ensure that
the optimal coating set will be found. Indeed, some differences are found when compared
to exhaustive simulation studies using EDPCR, as discussed below.
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Fig. 7. Two dendrograrns from cluster analysis showing coating classification.
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3.3.3 EDPCR

The preceding results show the need for a more rigorous method to select coatings.
To this end, a series of simulations using EDPCR was performed to rank all 210 possible
combinations of four coatings in the screening set accordingto the percentage of correctly
classified vapors using response data generated for individual vapors and all binary
mixtures. The synthetic responses were generated using the error modeL,Eq. (4), and two
levels of random noise (k3 in Eq. 4).

Table 3 shows results of the numerical analysis for the top 40 coating sets. Not
surprisingly,many different combinations provide similar performance: the top 20 coating
sets have classification rates from 93 to 95%. Also, the error model affects the
classification success rate, and thus the coating set rankings. Coating sets near the middle
and bottom of the rankings (omitted from Table 3) had significantly lower classification
success rates. The lowest ranked coatings (rankings 200 to 210) had classification success
rates from 67 to 75%. The table helps to illustrate the equivocal nature of results obtained
using hierarchical clustering and K-means procedures.

The PDPP, PIB, DEGA, and PCP coating set ranked first with the low error model
(±15 Hz), and remained in the top five with the higher error model (±22Hz). Overall, this
set of coatings provided the best results with respect to vapor classification, so it was chosen
as the "optimal" set for further analysis. The results indicate that an average of 5%
misclassification is expected with this coating set.

3.4 Optimized Sensor Array
After identification of the optimal coating set, existing coatings on the sensor array

were dissolved and the new coatings applied. Calibrations were again performed for the six
vapors. Table 4 provides statistics for the optimized array, showing sensitivities, Ke, R2,
and estimated LODs for the six vapors. As before, excellent linearity was achieved, and
sensor sensitivities were determined with a high degree of Frecision (RSI_ 1%).

Because the coating selection procedure maximized the ability to discriminate among
vapors, the response patterns of the optimized array for the six vapors should be quite
different. Fig. 8 shows the relative responses (as sensor sensitivities) for each vapor. In
most cases, the response patterns or "signatures" among vapors vary. As expected, vapors
within chemical classes, e.g. benzene and m-xylene, show more similar response patterns
than vapors between classes, e.g. TCE and isooctane. The chlorinated vapors show both
qualitative and quantitative differences, suggesting that chloroform and TCE can be easily
distinguished. Pairs of the aromatic and aliphatic compounds, however, have similar
patterns. In addition, hexane has very low sensitivity and thus the possibility of higher noise
levels. These two factors may make separation more problematic for isooctane and
hexane.
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Table 3. Ranking of top 40 coating combinations.

...... CORRECT
RANKING COATING SET CLASSIFICATION DEVIATION

(%) (%)
II iiir i I ,u ,,,

1 PDPP DEGA PIB PCP 95.2 3.5
2 PECH PDPP DEGA PIB 94.9 3,9
3 PDPP DEGA PIB OV275 94.7 3.6
4 PECH OV215 DEOA PIB 94.7 4.0
5 PDPP PIB PHA OV275 94.6 4.2
6 OV215 DEGA PIB OV275 94.5 3.9
7 PDPP PIB TBEP OV275 94.5 3.9
$ OV215 DEGA PIB PCP 94.5 4.1
9 PDPP DEGA "I'BEP OV275 94.2 4.4

10 PDPP DEGA PHA OV275 94.2 3.9
11 PECH OV215 DEGA OV275 94.0 4.4
12 PECH PDPP TBEP OV275 94.0 4.3
13 PDPP DEGA PCP TBEP 93.9 4.0
14 PECH PDPP DEGA OV275 93.8 3_8
15 PIB PCP PHA OV275 93.6 4.7

16 PECH PDPP PHA OV275 93.6 4.2
17 PDPP DEGA PIB ABC 93.5 3.9
18 PDPP PCP TBEP OV275 93.4 4 0
19 PECH DEGA PIB PCP 93.4 4,7
20 PDPP OV215 DEGA OV275 93.3 4.7

21 PDPP PIB PCP TBEP 93.3 4.5
22 PDPP DEGA PCP PHA 93.3 3.6
23 PECH PDPP PII:I OV275 93.2 4.2
24 OV215 DEGA PCP OV275 93.0 4.2
25 PDPP PIB ABC OV275 93.0 4 3
26 PDPP PIB PCP PHA 93.0 4 6
27 PECH OV215 DEGA TBEP 92.9 4 3
28 PECH DEGA PCP TBEP 92.9 40
29 PDPP PCP PHA OV275 92.9 3.8
30 PECH DEGA PCP PHA 92.8 4.3
31 PECH OV215 DEGA PCP 92.7 4.2
32 OV215 DEGA PIB ABC 92.7 4.7
33 PECH PDPP PIB PHA 92.6 4.1
34 PDPP ABC "I'BEP OV275 92.5 4.3
35 PECH PDPP DEGA PHA 92.4 4.4
36 PDPP DEGA PCP OV275 92.3 4.9

37 PECH PIB PHA OV275 92.2 4 7
38 DEGA PIB PCP OV275 92.1 4 7
39 OV215 PIB PCP OV275 92.0 4 5
40 PDPP OV215 TBEP OV275 92.0 5 (_
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Table 4. Sensitivities, K values, and detection limits for optimized coating set.

I III I l ' " '=" |, ,it ,,, ii i ,i

VAPOR COATING PIB PDPP DEGA PCP

/iF,:Oc]-Lz) 185 199 275 198
I II I I I I I I I I III I

Cq41X)ROFORM Sen._tivity(Hz/(_,/L)) 0.0883 0.0773 O.108 0.0803
Standard Error 0.00085 0.00037 0._ 0.00032
R2 0.999 1.000 1.000 1.000

Kc 440 466 454 499

LOD (_) 509 582 418 560
LOD (ppm) 104 119 86 115

Conc. Range (_.g/L) 300 - 21(_30
, ,, .,,.,, ,. , ,

HEXANE Sensitivity (Hz/(_g/L)) 0.0506 0.0133 0.0004 0.0166
Standard Error 0.00041 0.00013 0.00014 0.00027
R2 0.999 0.999 0.903 0.999

K, 252 80 2 103

LOD (_g/L) 889 3370 I08000 2710
LOD (ppm) 252 955 30627 766, .,, ,

Conc.Range(_g/L) 3800 -54000
, , , ,,

BENZENE Sensitivity(Hz/(_g/L)) 0.159 0.142 0.0695 O.150
StandardError 0.00296 0.00262 0.00117 0.00300

R2 0.996 0.996 0.997 0.995

K, 790 854 294 931
I.ADD(_.g/L) 294 318 647 300

LOD (ppm) 89 99 202 , 94
Conc.Range (_g/L) 500-20000

,, , .,,, .,,,

TRICHLOROETHYLENE Sensitivity (Hz/(_tg/L)) 0.281 0.183 0.127 0.207
Standard Error 0.00157 0.00072 0.00113 0.00113
R2 0.999 1.000 0.998 0.999

K, 1400 1110 537 1290
LOD (I.tg/l.,) 160 246 354 217
LOD (ppm) 30 _ 46 66 40

Conc.Range(_g/L) 300- 13000
, .,, , ,,......... .,, ,. ........... ,,,,

ISOOCTANE Sensitivity.(Hz/(_g/L)) 0.244 0.0571 0.0100 0.0750

StandardError 0.00108 0.00066 0.00045 0.00065
R2 1.000 0.999 0.974 0.999

K, 1210 344 42 466
LOD (_g/L) 185 789 4490 600
LOD (ppm) 39 168 959 128

Conc. Range (_g/L) 1200 - 15000
, ,, , ,,, ,, ,

m-XYLENE Sensitivity' (Hz./(pg/L)) 1.74 1.11 0.424 1.40
Standard Error 0.01327 0.00795 0.00409 0.00907
R: 0.999 1.000 0.999 1.000

K, 8670 6710 1790 8670
LOD (_g/L) 26 40 ]06 32
LOD (,ppm) 6 9 24 7,,,, , ....

Conc.Range (_g/L) 50- 1700
....... im i.i iiii ,. iI I l
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Fig. 8. Optimized seusor arrayresponse patterns for six VOCs.
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3.5 Additivity of Sensor Responses
An important assumption in EDPCR and other pattern recognition methods that

interpret sensor responses is additivity,meaning that vapor mixturesgive a sensor response
that is the sum of responses obtained individually from each vapor. Although Rose-
Pehrrson et al. (1988) report results of binary mixture exposures and claimed additivity of
responses in most cases, they also indicated some exceptions. Unfortunately, data were not
provided in their report and could not critically assessed. As mixtures are present in many
or most environmentalapplications, additivityis a critical assumption.

Experiments were performed to evaluate the assumption of additivity using seven
binary mixtures of four vapors, namely, benzene + isooctane, benzene + xylene, benzene
+ chloroform,chloroform + TCE, TCE + isooctane, isooctane + hexane, and isooctane +
TCE. Thus, both within and between class combinations were tested. For each mixture,
the optimized sensor arraywas exposed to between seven and 18 different test atmospheres
covering all conditions of relative concentration (i.e., high-high, high-low, low-high, low-
low, etc.). A total of 62 mixtureexposures were performed. The operating temperature for
these experiments was 25°C and dry N2 was used as the diluent stream.

With few exceptions, additivity of sensor responses was found, as demonstrated by
several methods, including:

1. Comparison of predicted sensor response based on purevapor calibrations, to the actual
response measured duringvapor mixture exposures. Differences between measured and
predicted shifts were typically below 10%. Occasionally, larger errors occurred at lower
concentrations or where sensor responses were small, owing largely to signal-to-noise
problems.

! 2. Multiple linear regression of vapor concentrations onto sensor responses to obtain
sensor sensitivity [(Hz/(_g/L)]. Here, sensor responses (in Hz) were regressed against
the vapor concentrations (in _,g/L) for each binary vapor mixture. Several sensitivities
may result if several vapor combinations are tested using the same solvent and the same
sensor coating. For example, PIB was tested with three mixtures (benzene + TCE,
benzene + chloroform, and benzene + isooctane), resulting in three sensitivity factors
for benzene with PIB.

Table 5 shows these results and compares them to the pure vapor sensitivities. The R2
values for binary mixture regressions typically exceeded 0.98, supporting the additivity
(and linearity) assumptions.

3. Multiple linear regression using a global data base consisting of all mixture experiments.
Like Method 2 above, sensor responses were regressed against the vapor concentrations.
In this case, however, all binary mixture data were used together in the regression. If a
vapor was not present in a particular test, its concentration was assigned to be zero.
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Table 5. Sensitivities for pure and mJxtm'edata for optimized coating set.
i

....v,O+.'.............. _ Pm J,m,J,_ DZCA P_

• II IIIIIIIIIIII I II

_,._.,,'_' _ " 0.1_""'' o.oo30 0.1416 0._+ 0.0691 0.0012 0.1499 00030
_s.J,axrusms o.167_ o.oo2o o.14u o.oo, o.o749 0.0015 0.1_9 0ore+
m_ Bo 0.1713 0.0016 0.141_ 0.0010 0.0_99 0.oo2o 0.1524 oom_
mm ,.xY,. 0.1_ 0.0018 0.1424 o.oou o.o+'r+ 0.oo13 0.1494 0r0022

_ 0.1n9 o,o01s0,1sso o.o01so.o'_s o.om8 0.1626 0o019o.16_ o.14+i o._3 o.1_3
L_D(_) +.'_ =.8ss8 6._8 3.1ml

,f,, __ , i i i i i i i ,, ,

CHLOIIOIrOP.M PUP_ 0.0113 0.0OO9 0.077_ 0.0004 0.1076 0.0007 0.0103 00003

ALL MIXTU_ 0.0916 0.OOlI 0.011_ 0.0OO7 0.1153 0.0008 0.0_ 0.0009

CHL BEN 0.0913 0.0OO9 0.0798 0,0011 0.1171 0.0017 0.01151 0.0013,

CIR. TCE 00933 0.0013 0.0t17 0,0013 0. 1147 0.OOi4 0.0855 0 0013

MEAN 0.0911 0.0798 O,1137 0.0838

RSD (%) 1,9521 2.0194 3,1964 2 4626
, _ • ,, ,.,,i _ i +1.,, i i ,, i i i u, u .,

FRIC'HI.,OIIO. _ O.2814 00016 O.1832 00007 0,1271 00011 0.20,72 0 0011

[TI'P,'L[._E +A,L,Llv0)CT'UR_ 0.26911 0,00,44 O,1762 0.0030 O.1169 0.0034 0.19"PO 0 0036

TCE CHL 0.2197 0+00._2 O.1669 0 0053 O.!107 O+0056 O,1874 0 0054

TCE ISO 0.2814 0.0000 0.1832 0.0000 0.1271 O0000 0.2072 0 0003

0.2731 O+1774 O.1204 O.1997

KSD (%) 3.3113 3.7_47 5,1233 4.1232

tSOOC'I'A,,.'_E. PURE O.243_ 0.0011 0.0571 0.O007 0.0100 00005 0 075,0 0 00_"

ALL _ 0.23112 00031 0.0575 0.0021 0.0112 0.0024 0 0734 0 0(32._

LSO BEN 0.2279 0.0045 0.0528 00008 00075 0.0016 0 06'7.3 0 0<317.

[.SO _ 0.2338 0 0049 00551 00012 00087 0 0007 0 0689 0 00_",

LSO ICE 0.2435 00000 0 0571 013000 0.0100 0.00(30 0 075G 0 GOOC

0.23"74 0 0559 00095 0.0719

R_D (%) 25165 3.1531 13 4369 4 4518
..u ,, , , , ,,

m.XTL£_£ _ 1.7415 0,0133 1.1122 0.0079 04244 00041 1.3970 0 _9;

ALL-MIX'TUR_ 1.8338 00356 I+IUI 00229 0.4333 0.0256 1.5105 00: T",

ira-X'Y'L BJE_ 1.9201 0.0214 i.2471 0.0253 04949 O.0146 1,5810 0 025?
ME&N !.11318 i.11105 0 4509 1.4962

RSD (%) 3 9792 4 6671 6+9_7 5.0666
i1,| i i t _ , ,

Htr_4,._E PU'_E 0.0506 0.0004 O.0133 0OO01 00004 0.0(301 0.0166 0 00_3

ALJ, _ 0.0_ 0001 i 0.0140 0000'7 0.0005 0.0OO8 0 0164 00009

ISO 0.0508 0 0014 0.0138 0.0003 0.0006 0.0002 0,0166 000_._

0.0_3¢ 0.0137 00005 0.016.S

RSD (%) 0.3425 !.9370 14.2_46 0.5976
mN -- JJ JJfl J J I II I i I
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This method is similar to training procedures used in partial least-squares fitting and
estimation. It has several advantages. First, it obtains the six sensitivities of one sensor
to all vapors in one regression, and thus is simple and fast. Second, it increases the
degrees-of-freedom available, thus uncertainties associated with estimated sensitivities
may be decreased. Third, the procedure combines results from the different tests.
Here, it was used to combine results from various binary mixtures,however, it also could
be used to consolidate results from calibrations using individual vapors, as well as
binary, tertiary, or more complex mixtures. Finally, it permits calibrations when
mixturescan not be generated, or would not be relevant.

Table 5 shows the results using this method and compares them to the individual vapor
sensitivities. Again, R2 values generally exceeded 0.98 and the coating-vapor
sensitivities closely match those determined using individual calibrations.

4. Application of fitting algorithms that assume Linearityand additivity, such as EDPCR,
to identify and quantify vapor mixtures. In this case, a high correct classification rateI

and high accuracyin quantification shows the validity of the assumptions. This analysis
is described below (Section 3.7.1).

The average sensitivity and relative standard deviation (RSD) among sensitivities obtained
using Methods 2 and 3 above are listed in Table 5. The RSDs for most coating-solvent
pairs are below 5%, which is comparable to the analytical precision of the experiments.
Results for the DEGA coating with benzene, isooctane, m-xylene, and hexane, show
greater variability largely due to the relative insensitivity of this coating to these vapors. By
any measure, these data support the assumptions of linearity and additivity of responses.

3.6 Sensor Stability and Response to Environmental Variables
3.6.1 Temperature

Temperature can affect the sensor performance in two ways. First, a shift in
temperature alters the baseline frequency of each sensor due, in part, to the thermal
expansion of the quartz substrate: the oscillation frequency generally decreases with
increasing temperature. Use of an uncoated reference sensor and collection of the
difference frequency can reduce temperature-dependent baseline drift, however, coated
and uncoated sensors will generally vary slightly in their temperature responses. Second,
temperature changes vapor sorption equilibria. A negative Arrhenius temperature
dependence is generally observed for vapors partitioning into organic polymers (ZeUers et
al., 1990; Brace, et al., 1986;Grate et al., 1992), and is found here, as discussed below.

With respect to baseline frequency drift, the need for thermostatting the sensors
depends on the temperature stability of the monitored environment. Measurement of
baseline frequency as a function of temperature from 15-40 °C gave average temperature
coefficeints of 680, 130, 70 and 235 Hz/°C for the PIB, PDPP, DEGA, and PCP coated
sensors, respectively. If the environmental temperature is reasonably stable it may not be
necessary to control the temperature of the sensor, but merely to monitor it, since exposure
measurements can be collected over a relatively short period of time.
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The effect of temperature on vapor-coating sensitivity was experimentally measured
for benzene, isooctane and TCE using the optimal coating set. Multipoint calibrations
were performed at 15, 25, 30 and 40 °C for each vapor. Calibration curves were linear in
all cases. The sensitivities decreased and LDDs increased with increasing temperature, as
shown in Table 6. Arrhenius plots of Table 6 data were linear (R2 > 0.99), with slopes
rangingfrom 2.4 to 2.9 for benzene and isooctane on the four coatings, and from 3.2 to 3.6
for TCE (Figure 9).

Table 6. Temperature response of sensors.
...... t II I H I'lll I

VAPOR TEMPERATURE COATING.........

(°C) PIB PDPP DEGA PCP
I I IIIIIIIlili iliil i ' I'

ISOOCTANE Sensitivity 0.313 0.0779 0,0177 0.101
15 _ (H_(_s_L))

LOD ()._/L) 144 578 2540 445

Sensitivity 0.257 0.0566 0.0055 0.0775
25 (H_(_gL))

L-OD(_) 175 796 8180 581

Sensttlvtt3. 0.216 0,0478 0.0029 0,0650
30 ()v.'()_gL))

- LOD'LO.g/L) '" 208 941 15400 692b ,, ,,

Sensitivity 0.162 0.0351 0.0049 0.0511
40 (l-Lt.(lagL))

LOD(o.g/L) 278 1280 9210 881
,, , , ,

TRICHLOROETHYL, ENE Sensittvttx 0.391 0.257 0.200 0.308
15 (Hz,,(lagL))

LOD(_g/L) 115 175 225 146

Sensihvtt2,. 0.283 0.175 0.131 0.216
25 (Hz{_gL))

LOD (O.#L) 159 257 345 209
,,, ,, ,,

Sensitivlb 0.223 0.136 0.102 0.173
30 (Hz(_gL))

.,, LOD()_g/L) 202 331 443 261

Sensittvit3. 0.165 0.100 0.0755 0, 129
40 (Hz(pgL))

LOD (_./L) 273 450 596 350
,, ,,,,,, , , ....

BENZENE Sensitivit_ 0.225 0.202 0.123 0,228
15 (Hz()_gL))

LOD(O.a/L) 200 223 367 198

Sensitivity 0.180 0.149 0.0837 0.176
25 (H_(_gL)).....

LOD t0,g/L) 250 302 538 256

Sensitivity 0,155 0.128 0.0745 0.153
30 (Hz(_gl.))

LOD ()ag/L) 291 351 604 293

Sensitlvit3. 0.113 0.0955 0,0533 0 115
40 (HzC_g_L))

LOD(laf./L) 398 471 844 393
qi i a I ii r i i it "1'[_' ilv '
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The slope of the Arrhenius plot is proportional, for a given coating, to the molar heat
of vapor sorption. Differences in slopes listed in Table 7 suggest that certain vapors might
be discriminated from one another on this basis. For example, two identically coated
sensors operating at two different temperatures would provide response ratios that are
vapor-specific. From Table 7, this would be sufficient to differentiate TCE from either
benzene or isooctane, regardless of the coating considered. The slopes for benzene and
isooctane are not significantly different, and these vapors could not be differentiated using
this approach. Still, the use of sensors operated at different temperatures represents an
interesting possibility for enhancing the capabilities of sensor arrays. Higher temperatures
decrease sensitivity, and thus may limit the applications of this approach. Water vapor
condensation problems may preclude the use of lower temperatures unless the vapor is
dried, e.g. using a selectively permeable membrane.

The importance of temperature on the sensor performance is evident from the results
presented. Although only temperature monitoring may suffice in certain cases, most
applications will require precise temperature control. As discussed in the next section,
thermostatting can also decrease the high relative humidity found in field applications that
may interfere with sensor responses. Given the small volume occupied by the array, the
use of low-power Peltier-type temperature controllers are feasible for field applications.

3.6.2 Relative Humidity
Sorption and desorption of water vapor by the sensor coatings will cause frequency

shifts similar to those for the target vapors considered here. Additionally, the amount of
water vapor in the coating at a given humidity level may affect the response to other
vapors. Although several reports have examined the former issue (Brace et al., 1988; Lee
et al., 1982; Randin and Zullig, 1987), the latter has not received much attention. In one
recent report, the response to butanol was influenced strongly by humidity with both highly
polar and non-polar coatings (Patrash and Zellers, 1993). Therefore, several tests of
relative humidity (RH) effects were performed.

Sensor responses to atmospheric humidity changes were determined by exposing the
array alternately to dry N2 and to air at RHs ranging from 20 to 85%. Responses were
rapid and reversible in all cases. Fig. 10 shows measured frequency shifts versus RH for
the four coatings. Responses for PIB, PDPP and PCP were similar and small. In contrast,
DEGA showed considerable water sensitivity, an anticipated effect since water has a
greater affinity for more polar coatings. Even PIB, which is a non-polar aliphatic
hydrocarbon, still sorbs some water vapor.
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Fig. 9. Arrhenius temperature response plots.

Table 7. Slopes of An-henius plots.

mill II1|1 I III II III ,, ,, i i I

VAPOR SLOPE
.,, ,,

PIB PDPP DEGA PCP

BENZENrE 2480 2700 2980 2470

ISOOCTANE 2400 2880 N_ 2500

TILICHLOROETH_'LENE 3160 3450 3560 3190
I1' t . . Ill II ' ' I
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Fig. 10. Sensor responses to water vapor fi'om 0-85% RH.
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Effects of water vapor on sensor responses to benzene and trichloroethylene were

tested by comparing sensitivities in dry N2 to those at 20, 50 and 77% RH over a range of
vapor concentrations. In the case of the DEGA-coated sensor, a steady decline in response
with increasing humidity was observed: the sensitivity decreased by 26% and 34% for TCE
and benzene, respectively, over the RH range examined. For the PIB-coated sensor, there
was no effect at lower RH levels, but a 10-20% decline in response was observed for these
vapors between S0 and "]7% RH. Neither the PDPP nor PCP coated sensors were affected
by RH.

The decreased responses under highly humid conditions for the PIB coated sensor is

most likely due to competition between water and the test vapors for polar sorption sites at
the surface of the underlying quartz substrate. A similar explanation was given by Grate et
al. (1992) to account for variations in the responses of coated SAW devices whose
substrates had been cleaned by different methods.
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Fig. 11.Sensitivities as a function of relative humidity.
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For the polar DEGA coating, the amount of water vapor present in the coating
increases significantly with increasing RH. In this case, inteffacial adsorption at the
substrate probably contributes relatively little to the overall response. The observed
decrease in the vapor responses is consistent with a gradual increase in the net polarity of
the water-laden polymer film. As the coating becomes more polar, the affinity for the
moderately polar benzene and TCE becomes progressively lower. The water might also
reduce any interchain interactions within the polymer, thereby rendering the polar ester
groups in the DEGA more available to interact with the vapors. For the moderately polar
PDPP and PCP, any effects of water vapor on the substrate or the coating would tend to
offset one another.

The implications of these findings for practical sensor array applications will depend
on the application. Where humidity levels are relatively constant, baseline drifts will be
small, with the possible exception of the DEGA (and probably other highly polar coatings).
Effects of RH on vapor responses might be addressed via calibration coupled with RH
measurements using the sensor array itself or other inexpensive sensors. Alternatively, the
sensor array operating temperature could be adjusted for the purpose of humidity control.
For example, soil gas at 100% RH and 15 °C contains 21 mg/L of water; heating the
airflow to 26.2 °C decreases the RH to 50%. In ambient applications at 25 °C and 100%
RH (e.g. drum sampling), heating the airflow to 37.1 °C again decreases the RH to 50%.
Temperature increases of 11 or 12 °C (and thermostatting) are easily accomplished via
resistance heating or Peltier devices. Thermostatting should encompass the sensors and
precondition the incoming gas stream.

In summary, this limited examination of the effects of relative humidity on coated
sensor responses to VOCs shows that sorbed water vapor can have a significant effect on
responses obtained using relatively polar sensor coatings (e.g., DEGA). For the vapors
examined here a decrease in response was observed with increasing RH. For more polar
vapors, such alcohols, the effect may be reversed. Decreases in response were also
observed for the highly non-polar PIB coating at high RH levels. In contrast, vapor
responses for sensors with moderately polar coatings appear to be independent of RH
changes. For high-humidity field applications, this factor would be either controlled via
thermostatting, or accounted for during initial sensor calibration and incorporated into the
pattern recognition analysis.
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3.63 CoatingStability
Duringthe course of initial screeningexperiments,five coatingswere eliminated from

furtherconsiderationbased on coating instability(PPE, ETSA, OV-25), poor response to
most vapors (PMMA), and extremewater sensitivity (PHOEA). The sensitivity of OV-25
to xylene increased by 25% over the first two weeks of exposure and then remained
relatively stable. For PPE, the sensitivitydecreased by about 10% over the firsttwo weeks
and appeared to stabilize, but then showed a furtherdecline over the remaining weeks of
the trialperiod: the final value was46% of the initial value.

For the remaining 10 coatings, repeated exposure to benzene or xylene over the
course of 2-3 months (typical of the time period associated with a set of exposure
experiments) indicated that the sensitivities remained quite constant,with relative standard
deviationsbelow 10% and no discerniblesystematic driftsover time. PCPshowed a slightly
higher level of variability(14%). These data are shownin Table 8.

Intercoating reproducibility was not examined in detail for most coatings - in most
cases, testswere limited to duplicate coatingsexamined at differenttimes during the study.
In one case, however, a more detailed investigation was performed by coating all four
sensors in the arraysimultaneouslywith OV-275 and collecting repeated measurements of
xylene responses over several days. Since there were slight differences in the amount of
coating on each sensor, comparisons mustbe based on Ke values rather than sensitivities
(This assumes that sensitivity is a linear function of the amount of coatings on the sensor,
which is generallythe case).

The Ke values for each of the OV-27S-coated sensors were quite stable over time,
with a relative standard deviation (RSD) of 4% (Table 8). The Ke values between coatings
ranged from 1482 to 2020, giving an average of 1675 and a RSD of 14%. The uncertainty
in a fc values used to determine Ke must be recognized, as Ke estimates depend upon an
accurate measure of the frequency shift obtained after coating the sensor (see Eq. 2).
Since there is considerable drift in the response occurring just after coating, some
uncertainty is associated with this determination: a rapid drift associated with solvent
evaporation (--minutes) was sometimes followed by a slower drift (_-days)apparently
associated with structuralrelaxations of the polymer chains. Differences in wetting and
adhesion of the coating filmto the substratemay also affect responses.

For the remaining coating materials for which more than one coating film was
characterized, there was fairly good agreement between successive Ke values (i.e. RSDs
were generally below 15%). In some instances, Ke values did varyby as much as 50%.
This range of intercoating Ke variability, however, is similar to that reported by other
researchers (Grate et al., 1992).
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Table 8. I¢e values based on responses to xylene or benzene for successive depositions of
coatings.

I I I

MEAN STANDARD

COATING VAPOR SENSITIVITY DEVIATION RSD
(Hz/(.g/L)) 0-1z/(.g/L)) (%)

IllllIl III I I

PECH BENZENE 0.15"] 0.0148 9

PDPP BENZENE 0.107 0.0126 I 1

OV-215 BENZENE 0.043 0.0037 9

DEGA BENZENE 0.082 0.0046 6

PIB BENZENE 0.127 0.0086 7

PHA BENZENE 0.184 0.0149 8

TBEP BENZENE 0.162 0.0124 8

ABC BENZENE 0.200 0.0235 12

OV-275 m-X_ LENE 0.350 0.0144 4

PCP BENZENE 0.080 0.0110 14

3.7 Performance of Sensors

3.7.I Validation of EDPCR with Mixtures
The capabilities for EDPCR and the optimal array to identify and quantify the vapors

were assessed using experimental responses to 37 individual vapor concentrations and 62
binary mixtures (with varying relative concentrations of the mixture components). Overall,
the correct classification rate was 91%, in close agreement with the 95% rate predicted
from the synthesized response data described above.

For the mixtures, at least one of the components was correctly identified in all cases.
Classification errors were most often associated with cases of mixtures where one

component was present in excess and the mixture was identified as being the higher
concentration component alone. Errors in identifying individual vapors were limited, with
two exceptions, to cases where the vapor was identified as a mixture and where the second
component was predicted to be present at low concentrations. The only cases of complete
misclassification were for one concentration of benzene, which was identified as TCE, and
one concentration of isooctane, which was identified as hexane. These errors are not
surprising given the similarity in response patterns for these latter two vapors.

Concentration predictions for the correctly classified vapors were generally very
accurate. For the 149 concentrations predicted, the geometric mean of ratios of predicted-
to-actual concentrations was 1.02, indicating a very slight tendency toward overestimation.
Overall ratios ranged from 0.5 to 4.2, but the vast majority of predicted concentrations were
within 10% of the experimental values. This is reflected in the geometric standard



38

deviation of the ratios, which was a very low 1.26, and in the 95% confidence interval
around the mean ratio, which was 0.98 to 1.06. As with the classification errors, the large
errors in concentration predictions usually occurred at the lower vapor concentrations.

3.Z2 LOD and Dynamic Range
LODs for SAW sensors are a function of many factors, including SAW device

configuration, temperature, vapor, coating, application, and data reduction and analysis
techniques. Individual sensor sensitivities and LODs for the six vapors have been provided
at 25 °C in Tables 2 and 4, and at varying temperatures in Table 6. Overall, LODs range
from a few ug/L to several thousand ug/L. As discussed earlier, higher LODs are
associated with more volatile vapors and/or with low coating-vapor solubility interactions.

For several vapors, e.g. benzene, TCE, m-xylene, LODs are sufficiently low to
consider applications such as soil-gas and groundwater monitoring where detection of
vapors in the low-ug/L range is often needed. However, several vapor/coating
combinations yielded LODs of several thousand vg/L. Coating selection for the optimal
array emphasized selectivity, rather than LODs, however, examination of LODs for the
screening set (in Table 2) shows few coatings have much greater sensitivity than those in
the optimal set.

Several techniques can be used alone or together to lower LODs. These include (1)
lowering the sensor temperature; (2) preconcentrating the vapor on a sorbent; (3)
replacing the coating(s); (4) using SAW resonators (rather than SAW oscillators used
here) that provide up to a 10-fold improvement in signal-to-noise ratio (Bowers and Chuart,
1989) and thus a commensurate reduction in the LOD; and (5) reducing noise by
improved data filtering and other design, operation and data handling techniques. The u_e
of SAW resonators, devices that became available after this research started, is the simplest
and possibly most cost-effective approach to improving LODs.

The LOD needed to ._ vapor concentrations differs from the LOD needed to
identify_vapors. For quantification, the LOD for the most sensitive sensor in the array will
apply, assuming that a single vapor is present and that the vapor has been identified. If
multiple vapors are present, quantification of each component requires measurable signals
from several sensors. For identification, measurable signals from several sensors are
usually required, whether single or multiple components are present. This discussion shows
the complexity of determining LODs for the array. Such circumstances are not unusual, as
many instruments have LODs and other performance characteristics that vary with the
number and nature of components present and on factors related to a specific application.

3.8 Applications Related to Hazardous Waste
This section reviews applications of vapor sensors in hazardous waste applications.

Models and experiments are used to gauge the suitability of the sensor array in these
applications.



39

3.8.1 Water Sampling and Analysis

A major application of VOC analytical instrumentation is to determine VOC
concentrations in surface and groundwater. Two commonly used techniques are headspace
analysis, and purge and trap methods. Headspace analysis is applicable to field sensing,
and depends on the equilibrium partitioning of VOC_ between air and water media. The
Henry's Law coefficient, H, which represents the ratio of air to water concentrations at
equilibrium in dilute solutions at specific temperatures, provides the proportionality factor,
and

Cwater = Cair/H (7)

where the water concentration, Cwater, may be estimated by measuring the headspace
concentration, Cai r, using the appropriate value of H for the specific VOC and the
temperature employed. As Henry's Law is linear with (low) concentration, we can base the
limit of detection for contaminants in water, LODwate r, on the limit of detection in air,
LODair:

LODwate r = LODair/H (8)

These calculations neglect the volume of the headspace, which is reasonable if relatively
little of the dissolved VOC partitions into the headspace. This would occur with smali
headspace extractions. These calculations further assume equilibrium conditions, which is
also reasonable for most groundwater situations.

Henry's Law coefficients and LODs in water for the six VOCs considered here are
shown in Table 9. These were determined using LODai r values obtained from the final
coating set, and the most sensitive coating in the optimal set. LODs range about from 0.4
to 3.7 mg/L except for the two aliphatic hydrocarbons that are very hydrophobic, and have
LODs in water that are orders of magnitude lower. These LODs are sufficiently low for
field applications including drum testing, soil vapor testing, and process monitoring.
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Table 9. Estimated limits of detection for VOCs in water and soil. Other physical
parameters taken from Mackay and Shiu (1981).

" v_oa .......
'"" I ' 'l ,, ,,, _ ' "'" ''

PARAMETER ' Ch lor- lso- Trich loro-

_e oform Hexane octane m-Xylene ethylene
_ _ I I _ _ '1 I ' _ _ _'_ t_ ," ' ,

Vapor Pressure at 25 oC, 1 arm.

(ppm) 124405 257133 197871 64445 10853 97133

(rag/L) 397.4 1255.3 697.4 301.0 47.1 521.5
, i i , i

Henry's Constant

(atm*m3/mol) 0.0056 0.0032 1.6778 3.2569 0.0026 0.0089
ii , i , i,| i i i ii , ,, ,

Solubility in Water

(rag/L) 1780 9300 13 0.56 198 1100
i i ii i lll l i , i,i ,

Sensor Limit of Detection (Vapor)

(pprn) 100 100 300 50 10 40

(ug/L) 319 488 1057 234 43 215

Estimated LOD for VOCs in Water

(rag/L) 1.41 3.74 0.0154 0.0018 0.42 0.59
i i i

Estimated LOD for VOCs in Soil

(mg/kg) 119.8 204.0 2.3 0.5 66.5 43.2k , , ,, ,,,,,,, .....

3.8.2 Soil Sampling and Analysis
Another common application of VOC instrumentation is to identify and quantify

contaminants in soils. VOCs in soils can exist in several phases, namely as free liquids in
interstitial voids, as solutes in soil pore water, as adsorbed species on the internal or
external surfaces of soil particles, and as vapor in unsaturated voids. VOC phase
partitioning increases the difficulty of accurately quantifying contaminants in soils.
Common methods include methanol extraction followed by GLC analysis, supercritical
fluid extraction followed by GLC analysis, CFC extraction followed by IR analysis for total
hydrocarbons, and headspace sampling (using water or other solutions) with GLC analysis.

To fully explore the performance of SAW sensors for such an application, accurate
isotherms relating soil concentrations to water and/or air concentrations are required.
Isotherms are functions of soil type, contaminant, exposure history, environmental
conditions, etc., and are difficult to measure and generally unavailable. We use an
alternative approach which is adequate for estimating detection limits based on headspace
extraction using water as a solvent. The Organic Leachate Model predicts leachate
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concentrations in wet soils COin mg/L as:

CO -- 0.00211 Cs0.678 S0.373 (9)

where Cs is the soft concentration (rag/L) and S is the solubility of VOCs in water (rag/L).
We can solve for the soil concentrations knowing the leachate concentration as:

Cs -- [CO/ (0.00211 S0.373)] 1.47 (10)

Based on the LOD for VOCs in water given in (8), the LOD in soil is:

LODsoil = [LODair/(H 0.00211 S0.373)]1.47 (11)

Table 9 lists the estimated LODs for VOCs in soils. To obtain fractional

concentration measures, we assume a soil porosity of 0.4, a soil density of 2.65, and that the
soil void space is saturated. This yields an overall bulk density of approximately 2.0 g/cc.
Results presented in Table 9 parallel the estimates of the LODs in water, with the
chlorinated and aromatic compounds having very LODs. The aliphatics again have much
lower detection limits. These LODs are low enough for field screening applications such as
detecting "hotspots".

Because of the simplicity of the Organic Leachate Model, these estimates axe very
approximate, providing only order-of-magnitude estimates. Variations in soil structure,
composition, exposure history, and other factors could have large effects. In practice,
isotherms would be developed to relate vapor and water concentlations to the total
contaminantinthe soft.

3.8.3 Laboratory Demonstranbns of Soil and Headspace Sampling
Several laboratory demonstrations using the SAW microsensor we:e performed to

test potential applications and to identify issues that might affect field deployment. Two
specific sets of experiments were co:_ducted: (1) continous flow experiments to portray
vapor transport, diffusion and sorption in soil columns; and (2) headspace monitoring.
These experiments provided valuable experience and design constraints relevant to the
development of field imtnanentation.

Soil column simulations. Soil column simulations were used to demonstrate the

feasibility of using SAW sensors in applications where continuous (real-time) measurement
is necessary or desirable. The experiments were designed to simulate vapor-laden flows in
unsaturated soils in order to compare three measurement approaches: FID, FT-IR, and
the SAW sensor array. Additional details are presented in Appendix HI, a conference
paper presented on these experiments.

A wide range of toluene, TCE and hexane concentrations were used to develop
breakthrough curves that represent advective and diffusive transport of the contaminants in
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the soil columns. Because the columns were nearly water-saturated, the relative humidity
of the discharge air was high. Results obtained for step changes in inlet vapor
concentrations showed that SAW responses paralleled those of the other detectors for most
vapor-coating combinations. This applied to both the individual vapors and vapor mixtures
used. The breakthrough curves typically obtained start at low or zero concentrations, and
then gradually reached a peak (approximately 10-20% of saturation concentration),
following a logistic curve.

These experiments did not use the optimal coating set. In some cases, anomalous
results were obtained with several coatings, largely due to signal-to-noise problems at low
concentrations. This concentration range exceeded levels used in the calibration of the
SAW sensors, and also approached or fell below estimated sensor LODs. One SAW sensor
responded significantly to humidity changes. Additionally, some baseline drift over the
duration of the experiment was apparent for the sensors, which was problematic at the
lower vapor concentrations.

Several results are generalizable. Such soil column experiments with SAW sensors
have the potential to estimate diffusion, retardation and recovery (e.g., mass balances
relevant to vacuum extraction) parameters in contaminated and clean softs. ('Treatibility"
tests measure these parameters, which are complex functions of the contaminant(s), soil
conditions, exposure history, etc.) The use of SAW sensors in these and/n _tu applications
(in-wells, for VES monitoring, etc.) appears feasible, given the following constraints:
special care is required at high relative humidities. In this case, humidifies must be held
constant or decreased (e.g., by dilution or by increasing the sensor operating temperatures).
In addition, baseline drift of the sensors must be accounted for where long duration
measurements -- without baseline references -- are involved.

Headspace expedrnents. In the headspace experiments, the SAW array was adapted to
a conventionaJ automated headspace analysis instrument for parallel tests. The headspace
systems consists of a Tekmar 7010 GT, interfaced to a Varian 3700 GC equipped with FID
and computer data acquisition system. Such headspace systems can analyze soil and water
samples placed in small (22 mL) vials. The vials are pressurized (nominally to 5-10 psi), a
small quantity of the headspace vapor from the vial is extracted into a sample loop
(nominally 1 cc) for injection into the GC. This section describes parallel analyses
obtained using the GC-FID and SAW sensors.

SAW sensor responses obtained using this setup were not very reproducible despite
several modifications to the system. The major problem was the insufficient headspace
volume in the small vials. Normal vial pressurization provided the SAW sensor array with
a total sample volume of only 5 - 10 cc. While this is greater than the array dead volume
(approximately 2-3 cc), the sample volume and pressure available was probably insufficient
for distribution among the four sensors. Additionally, the vapor pulse was short, and
failure to reach sorption equilibrium may have affected the results. The small pulse of
sample introduced to the sensor array may have had a different temperature and humidity
from the purge gas used to take baseline references.
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Two alternative headspace sampling systems could be employed that would resolve
the problems encountered. (I) A static system might directly expose the sensors to the
headspace vapor. The sensors, covered by a permeable screen or membrane for physical
protection, would be set directly into the headspace. Vapors would diffuse to the sensors.
This requires a much smaller configuration in order to allow the sensors to be mounted
directly on the (5 cm diameter) lid of standard sampling bottle. Baseline could be
established prior to sampling by active purging. (2) A dynamic system requiring fewer
modifications would use a small sampling pump that continuously passed headspace vapor
over the sensor and then back to the sampling container. This system would allow real-
time purging using mulfiport valves. The design and engineering for both systems appears
practicable.
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4.0 TECHNOLOGY STATUS

4.1 Technology Development Evaluation
The laboratory research in this project demonstrated the potential for coated SAW

sensor arrays in VOC monitoring applications related to site characterization and
remediation process control. For the six vapors examined, relatively simple and rapid
sensor measurements provided compound-specific concentrations of VOCs. In particular,
our research indicated that:

* The pattern recognition and quantification method developed during this work, called
EDPCR, provides a useful means for selecting coated sensors for use in an array and
for predicting, quantitatively, the performance of any set of coated sensors.

* EDPCR is well-suited for polymer-coated SAW sensor arrays where responses to
individual vapors are linear and additive. The method is computational efficient. It
uses both sensor response patterns and predicted concentrations in the identification
process.

* Optimal selection of coatings (using EDPCR analysis) increases the ability of the
array to discriminate among vapors. Correct identification and quantification of
binary vapor mixture components was possible both within and between chemical
classes.

* Sensor responses are a linear function of vapor concentration over a wide
concentration range and vapor mixture responses are additive functions of the
component vapor responses, indicating no significant vapor-vapor interactions.

* Humidity effects on sensor responses to VOCs can be significant for highly polar
sensor coatings and must be compensated or controlled for during calibration and
field operation. Thermostatting the array provides a viable means for Limitingthesc

i effects for subsurface VOC monitoring applications.

* Sensor responses to VOCs show a negative Arrhenius temperature dependence which
can be accounted for via calibration and thermostatting of the array. Differences in
the magnitude of the temperature effect between vapors can be used to enhance
selectivity the selectivity of the array.

* Medium-term (2-3 months) aging effects are small, reducing the need for
recalibration of the sensors.

° Coating-to-coating response reproducibility was less than optimal, with typical
variations of +/-15% around average responses being observed. This indicates that
calibration of individual sensors is required, although improvements in coating
deposition techniques may reduce this problem.
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* Limits of detection, while sufficiently low for monitoring most VOCs in many
potential applications, could be improved. Recent advances in SAW sensor design
can apparently provide an order of magnitude reduction in LOD, which would
expand the range of applications.

4.2 Technology Integration Evaluation
Use of coated-SAW sensor arrays coupled with EDPCR analysis has the capacity to

provide screening and process control monitoring for VOCs encountered in many activities
related to site assessment and restoration. In addition to its potential for incorporation
into small, rugged field instrumentation, a key advantage of this technology is the ability to
identify and quantify VOCs, whether present individually, or in simple mixtures. The
versatility associated with the ability to easily replace individual sensors in the array, and
thereby adapt it to specific monitoring problems, represents another unique feature of this
technology, relative to other portable VOC screening instruments.

The 158-MHz SAW oscillators used in this study had relatively high LODs for certain
of the VOC_ examined. Newer SAW resonators operating at 200-250 Mt-Izshould provide
significantly lower LODs, while retaining the other features described above. The
development of SAW-sensor based field instruments employing these resonators is
recommended.

In addition to the sensor array, several ancillary components will be required to
constnict field-deployable SAW-sensor based instruments. Although diffusional transport
of vapors to the sensor arraycan be considered in certain applications, active transport (via
a small pump) will most likely be required for subsurface VOC monitoring. Thermostatting
of the sensor and inlet flowstream will also be required in most cases. A small gas scrubber
(e.g., Tenax or activated carbon) and valving is required for periodic baseline
measurements. Additionally, a data processing module for pattern recognition analysis and
output display is required. This module might also control other aspects of sample
collection and data processing and archiving. In general, these components are readily
available. As in any instrument, however, good engineering and design is required to
integrate these components and obtain a small, self-contained, and reliable instrument.
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Appendix I. VOC Concentrations Found in Vacuum Extraction Systems

A review of literature concerning vacuum extraction systems is used to illustrate
typical VOC concentrations. While not exhaustive, the review shows initial VOC
concentrations ranging to saturation, and VOC levels during VES operation from 50 to
25,000 ppm. VES is typically shutdown when concentrations fall below a few ppm. In
cases, concentrations reported below were estimated based on the reported flow rates and
VOC quantifies recovered, assum/ng a typical VOC molecular weight (e.g. toluene's).

1. Reference: Malot, JJ, R. Piniewski, "Innovative Technology for Simultaneous In Situ
Remediation of Soil and Groundwater," Groundwater Control, 1991, Terra Vac,
Puerto Rico.

Site description: Combined vacuum vapor extraction and groundwater recovery in
New York. Contaminant involved largely methylene chloride also cyclohexane,
dichloroethylene, trichloroethane, methanol, etc. Phase I recovered 2675 lbs in 24
days (VES system only) with extraction rates of 100 to 320 CFM from 2 wells. In
phase II, 3276 lbs were recovered in 170 days using the same system.

Concentrations: Initial concentrations were 3000 ppm. Typical concentrations
ranged from 10 to 800. Average concentrations over the operational period were 6
mg/L (1500 ppm) in phase 1 and 1.1 mg/L (275 ppm) in phase 2.

2. Reference: US EPA, "Terra Vac In Situ Vacuum Extraction System, Groveland,
Massachusetts," EPA/540/S5-89.003, May, 1989.

Site desc@tion: SITE Technology demonstration at Valley Man_actured Products
NPL site in Groveland, MA. Contaminant involved largely trichloroethylene.

Concentration: Soil gas concentrations reached 3600 ppm. Concentrations during
extraction ranged from 1 to 700 ppm.

3. Reference: PezzuUo, J.A. et al., "Full Scale Remediation at a Superfund Site Using In
Situ Vacuum Extraction and On-Site Regeneration Case Study-Phase I," Superfund
'90, Proceedings of the l lth National Conference, Nov. 26-28, 1990, Hazardous
Materials Control Research Institute, Silver Springs, MD, pp 624-7.

Site description: A full scale remediation at the Tyson's NPL site near Philadelphia
PA involving 180 vapor extraction wells, two 700 hp vacuum units. The major
contaminants included trichloropropane, and BTEXs. 95,000 lbs of VOCs were
removed over 27 months with a nominal flow of 5000 CFM.

Concentration." The average concentration over the operation period is 0.26 mg/L or
65 ppm.
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4. Reference: Fuerst, D., B.L. Underwood, "Vacuum Extraction of Volatile and Semi-
Volatile Compounds at a Superfund Site Remediation," Terra Vac, Atlanta, GA.

Site description: Pilot test of VF_ for VOCs and semivolatiles at a South Carolina
site containing a variety of contaminants. The major contaminants recovered were
carbon tetrachloride and TCE. Flow rates ranged from 50 to 135 CFM at three wells.
1186 lbs of VOCs were recovered after 190 hours of pumping.

Concentration: Average total VOC over pumping period is 5.6 mg/L or 1300 ppm.

5. Reference: Malmanis, E., et al., "SuperfundSite Soil Remediation Using Large-Scale
Vacuum Extraction, Monitoring and Sampling, Terra Vac Corp, Tampa, FL

Site description: A full scale remediation at a NPL site in Michigan using 23
extraction wells with typical well flows of 150 CFM. 28,675 lbs of VOCs were
recovered over 55 days.

Concentran'on: Typical initial wellhead concentrations ranged to 250 ppm. Average
concentrations over the operation period were 1.7 mg/L or 425 ppm.

6. Reference: Malot, J.J., "Soil Remediation and Free Product Removal Using In-Situ
Vacuum Extraction with Catalytic Oxidation," Terra Vac, San Juan PR.

Description: Subsurface contamination at a gasoline and diesel fuel terminal. 15
extraction wells operating at 40 to 120 CFM removed 52,000 lbs of VOCs in 250 days.

Concentration: Initial soil gas concentrations approached 25,000 ppm. Average
concentrations over operating period were 1.5 mg/L or 375 ppm.

7. Reference: Malot, J.J., "Soil Remediation and Free Product Removal Using In-Situ
Vacuum Extraction with Catalytic Oxidation," Terra Vac, San Juan, PR.

Description: Leak at a petroleum refinery. 1000 lbs of VOCs were removed in 28
days using a 500 CFM extraction well in initial tests; 150,000 lbs were removed after
system expansion.

Concentrations: Initial concentrations were 345 mg/L (95,000 ppm). Typical
concentrations range between 350 mg/L and 5 to 8 mg/L. Low concentrations
indicate a vaporization of mass transfer limited with vapors partitioning from the
liquid hydrocarbons at a rate nearly equal to the extraction rate.

8. Additional reference: Hutler, N.J., B.E. Murphy, J.S. Gierke, "State of Technology
Review: Soil Vapor Extraction Systems," Risk Reduction Engineering Laboratory,
Cincinatti, OH, US Environmental Protection Agency, EPA/600-S2-89/024 (1990).
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