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Abstract

This thesis is an investigation of methods for processing multidirnensional signals

acquired using modern tomography systems that have an anisotropic or spatially

variant response function. The main result of this research, is the discovery of a new

method to obtain better estimators of an unknown spatial intensity distribution by

incorporating detailed knowledge about the tomograph system response function and

statistical properties of the acquired signal into a mathematical model. In this model,

dat.a acquisition is represented by a linear transformation, Fok, of functions, b, on a

continuous domain object space to functions, pok, on a discrete domain observation

space as described by

= Fok.b = _dyfRdzfok(z,y) b(x,y ).
pok

71,

This data acquisition model and the singular value decomposition,
lt

Fok = UokS' V T,

of this model into the left singular vectors, Uok, right singular functions, V, and the

singular value operator, S, form a common, unifying structure for the three areas of



this work: identification, estimation, and optimization. For system identification, the

model is easily adapted to represent tomography systems that, are spatially invari- w

ant, spatially variant with symmetry, or spatially variant without symmetry. Least

squares, normal maximum likelihood, and Poisson maximum likelihood estimators

and the corresponding covariance have been formulated to compensate for all three

types of spatial responses. While bias is reduced by these estimators, undesirable

statistical and systematic fluctuations can result due to pixelization effects. To re-

duce these fluctuations new estimators such as the filtered singular value least, squares

estimator

b = v. STD(S.ST)+uTp_

with diagonal filter matrix, D, were developed. These nea, estimators use an or-

thonormal pixel basis decomposition of the unknown spatial distribution to eliminate

systematic error and minimize statistical errors that occur using square oi' polar pixel

bases. Characterizing the effects which sampling density has on reconstructed image

resolution and noise using singular value analysis has led to a method to optimize

sampling strategies to obtain better estimates of the unknown spatial distribution

given bounds for noise and resolution. Symmetries in the data acquisition process

lead to very efficient implementations of the new inverse problem algorithms.
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Chapter 1

Introduction

1,1 Statement of thesis

My thesis is that, by incorporating detailed knowledge about the tomograph system

response function and statistical properties of the acquired signal into a mathemati-

cal modcl, better estimators of an unknown spatial intensity distribution will result.

These estimators, which are based on a generalized orthonormal pixel basis decom-

position that. is fundamental to the tomograph, will have reduced local bias, will

minimize systematic error due to pixelization, and will simplify error propagation

when used as input to quantitative models of physiologically important processes

such as the iT_vivo density of neuroreceptors.

_l_l lr _ li _lr_ III 'I+ p_4 _lll'II ' IP l'+lll ' l I llIPr'll.... _ l 11l I l ' l l II IlIIIll q ll ll_ _



1.2 Motivation

J,

Many emission tomography systems have an a_isotropic or spatially variant, response

function; i,e,, resolution varies throughout the field of view, Tra.ditionally, estima-

tion (reconstruction) algorithms have not included knowledge about the processes

that cause spatially v_iant resolution. Whe_ images reconstructed with a spatially

invariant, algorithm are used as input to a physiological model, significant bias can

be introduced into the parameters of the physiological model. Consider the images

shown in figure 1.2 which were reconstructed from data taken with a positron emis-

sion tomograph (PET). The upper image was reconstructed using a backprojection

of filt,ered projections [1] algorithm that does not account for spatial variance and

the lower image was reconstructed using a new separable algorithm [2] that. includes

spatial Variance in the system response function, Qualitatively the lower image is a

bet,ter representation of the 37-point phantom, shown in figure 1.1, which it depicts

and will int,roduce less bias in the physiological model,

1.3 Previous work

For continuous space noiseless measurements of line integrals from parallel projec-

tions, an inverse Radon transform [3] [4] [5] can be used to perform reconstruction,

An inverse of the attenuated or exponential Radon transform can be used lo," single

photon emission computed tomography (SPECT) with known attenuation and con-

tinuous space parallel line integral projections [6] [7], rI'he reconstruction approach

propose(] by O [8] includes a continuous space model for detector response in addit, ion



4 Into

]"?igttre1,]: Sc]lc_lrla,t,i<'cli_g,a,m o[' _/,pha,tlt,orzlwii,h ;:Y7]inc sourc!,e,_iii ,_,%)0chi <]ia,lnei,er
¢:ylillclc,r(>t'lu¢:il.(,,

l,o ],;llowll a.i,i,('lllla,l,ion,

Mo_t. l:_ll,y,_ic¢_]lyxc,_lzz_,l_l-.,t,(:>nzogr_q:)lzy,_y,s't,e,llxs Ilowe.ver t_c,(:lUiredis(:ret,e I_r¢_i(:(:l,ion

(II_l,[,'l,, A l)lI_r(.)Nilll_d, iolls II,g.'iri_ ,,_,sa,ml_le(1l_.a,d,,n l' ] ' _:_ I ] I ] _ ['¢ ")]' ] "1 . ] (: _ _L ]--1 I :)e a,pl:,liec:l[9] [10] Ill]

'l'Ile filI,,-,l'¢,_lI_zlCl¢l)r(),ie(.'.t:i(:)na,lzd l:>t_,Ckl:_ro,ie('l,iouof filt,ered pro,iec.t,i(ms al_;oril,lzzn_aa,rc
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have been developed which include direct, and optimizattion t,echniques [17], The di-

rect reconstruction methods are usually implemented as linear matrix algorithms;

e,g,, the pseudo-inverse [18], aa_d the statistical properties of the resulting images are

straightforward. Conversely, the optimization or series expansion methods are gen- ,' ._
' ",', s-

ii'

erally implemented as iterative algorithms; e.g,, iterative least squares [191 algebraic

reconstruction t,echniques [:20], and maximum likelihood estimation [:21] [{2:2]. The

statistical properties of images reconstructed using optimizal, ion t,echniques are oft,en

difficult, to charact, erize [2], Both techniques ab initio discrel_ize the object _pace into

square or sometimes polar pixels [23] [24]. Substantial systematic errors or artifacts

in the reconst, ruct,ed images can result from pixelization [25] [26],

Buonocore, et, al, [:27]also worked on a nat,ural pixel decomposition that, uses each

projectiola ray as a pixel. Buonocore's definition fox' a pixel eliminates systematic

errors due t,o pixelization; however, it, usually leads to pixels that, are not spa_t±ially

orthogonal. This can be an undesirable property especially for interpreting covariance

between estimates of the intensity at two different pixels that may spatially overlap.

Several researchers have used regularization techniques to de-emphasize recon-

sl;ruction artifacts due to pixelizat, ion and ill-posedness of the tomographic inverse

problem. The method of sieves by Snyder and Miller [28] [9.9]is one example. The

" sieve or blurring function modifies the expectation maximizat, ion (EM) [30] maximum

likelihood approach of Shepp and Vardi [21] by const,raining the estima,te to a set, of

images where the likelihood is bounded. The choice of blurring function is object

dependent, and is found by trial and error. Evaluating the statistical properties of



b

,' their estimators is extremely difficult even in an asymptotic sense. The computa-

tion acceleration scheme of' Lewitt and Muehllehner [31] can also be classified as a

regularization technique.

Incorporation of prior information about the spatial properties of the distribution

to be reconstructed has received attention by several researchers [32]. In their maxi-

mum a poste'r'iori (MAP) algorithm, Levitan and Herman used a normal (Gaussian)

prior [33] to reduce "irregular high amplitude patterns." Their MAP EM algorithm

is a special form of penalized EM algorithm. Leahy et al have used Markov random

fields as a prior in their MAP algorithm which includes depth dependent resolution

in SPECT [34]. The Markov property ensures that values at nearby pixets do not

differ too much from each other. This tends to smooth the reconstructed image and

may add significant bi_.

An extensive bibliography on tomographic reconstruction was presented by Ran-

gayyan et al [35].



Chapter 2

Theoretical Framework

2.1 Data acquisition

Projection formation can be described by the discrete-continuous model [36], [37]_

[:32]

Pok = .Fok"b (2.1)

where p0k is the measured projection at angle index 0 and bin position k. F0k is a

second order tensor functional operating on the two dimensional object distribution

. b. 'The operation of equation 2.11represents the integration of the product of the

impulse response fok(x,y) and the object, distribution b(:c,y) over the imaging field

as depicted in figure 2.1. The symbol • indicates integration over the imaging field.

The impulse response function is the spatial response of a projection at angle 0 and

7



8

bin k to a point, source moved to every position within the sampling domain. There

are O different angles and K projection bins at, each angle.

To simplify notation 1, the projection formation equation is written in vector f'orm

p = F. b (2.3)

by combining the 0 and k indices into one index. Specifically[38],

b E L2[R2], (2.4)

p E Ret¢, and (2.5)

F ' L2 [R2] _ Re;`". (2.6)

Because the model is based on the fact that the detection process is defined on a

discrete domain and the original distribution is defined on a continuous domain, the

model is easily adapted to include a variety of physical effects found in many imaging

modalities. For positron emission tomography (PET), Fok can include radioactive

decay, positron range, non-collinearitv of photons, sampling geometry, attenuation,

inter-crystal scatter, crystal penetration, and detection efficiency [2],

The singular value decomposition of the tomograph system response function is

F : US'. V r. (2.7)
R

U is an orthogonal matrix containing the left, singular vectors of F and is defined by

the eigenvalue decomposition of the projection normal matrix,

1Lower case bold symbols denote vectors, lower case script symbols denote functions or scalars,
upper case bold symbols denote matrices, and upper case script symbois denote operators.



b(x,y) !. y

e

x

Figure 2.1' Schematic of projection formation.
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i

A - F.F T (2.8) "

= US. sTu T, (2.9) -

An element, ,40,1,.,Ok is tile project, ion at. angle 0' and bin /:' of the backprojectiori at,

a]@e 0 and bin k of a unit, project.ion value, poJ,.= 1. A schematic of t,his operation

is shown in figure 2.2. As shown in sect,ion A.1, the project, ion normal mat, rix is;

symmet, ric and posit;ive semidefinite, V are t,he right, singular functions of F and are

defined by the relationship

FrF = V. s'Ts '.V y. (2.10)

A proof of equat.ion 2.7 is given in appendix A.1.

For the real Hilbert, space operat.or F, the corresponding adjoint, operator denot, ed

by the symbol F r is defined by' equating the inner product, in t,he range space of F'

wit,h t,he inner product, in t,he doinain space of F as follows

which is the sum in t.he projection spa,ce and the integral in the objecl, spa,ce

(aJ-- 1 l_'- 1 O- 1 I(- 1

0=0 k=0 " ' 0-----()k=O

(2.12)
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Y
F (x,y) ,,
e'k' i

Figure 2.2' Schematic of projection normal matrix.
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, After exchanging the order of summation and integra,tion,

®-1 I(-1 @-1 tq-1

F__,pok li

0=0 k=O ' 0=0 k=O

(2.13)

Equation 2.13 must hold for an arbitrary object, b, and an arbitrary projection, p,

except for a space of measure zero, Therefore., the adjoint of F is almost everywhere

= f0k( ,Y) (2.14)

which is just the impulse response function. F can be interpreted as a column vector

of integrM functions and /;,7' ms a rows vector of functions; hence, the use of the

symbol T. The adjoint operation for a rem matrix is the transpose of the matrix.

The functional S operates similarly to F in that it maps continuous domain l'unc-

t ions to discrete domain samples. Thus, Iz performs an infinite dimensionM ro_ation

on the continuous domain object space, S selects and scales a, finite number of the

rotated functions, and U performs a finite dimensional rotation into the discrete

domain projection measurement, space as shown in equations 2.15-2.17.

U ' Res" H Res_', (2.15)

' []S' L_ R_"_-+Reh',and (2.16)
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A geometric interpretation is given in figure 2.3, In the next chapter, this singu.

lar value decomposition will be used to define pixels and formulate reconstruction

algorithms, To my knowledge, this work is the first time that, a singular value decom-

position has been formulated for a system that maps continuous domain functions to

discrete domain samples.

VT S U
,,,

K

L2[R

Figure 2.3: Singular value decomposition of the projection operator. The operator
1,j'r performs an infinite dimensional rotation on the continuous domain object space,
S selects selects and scales a finite number of the rotated functions, and U performs
a finite dimensional rotation into the discrete domain projection measurement space.

As a simple example, consider the spatial sampling system of figure 2.4 that has

three projection angles and two projection bins at each angle. The angles are equally

. spaced between zero and rr radians. The impulse response functions are defined by

1 if/e-1 < -:csin (0_) -t-y cos (0_) < It and x2+ y_ <1

f0k(a:,9) = - - (2.1.8)
0 otherwise
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a,nd are shown in figure 2,4, The projection normal matrix and t,he singular value

decomposition of the projection normal matrix are

A = F, F T

3021 12

031221

rr 2 I 3021

= 6 1 2 0 3 1 2 (2119)

1 221 30

211203

-'-: US' sTu r

1
1 1 1 : 1 1 _,

1

1 -1 -1 --1 '1 1 "v_
1

1 1 -1 -1 0 -2 -4rF_.
1 -1 1 1 0 -2 17_

1

1 0 -2 1 -1 1 77i
1

1 0 2 -1 -1 1
9

6rr
4

6rr
4

67r
1

67r

0

0

, ]7d 1 1 1 1 1 1
1

7g I 1 -1 i -1 0 0 "
1 I

I 1 -1 -1 1 -2 2 (2.20)

-v_ I 1 -1 -1 1 1 -1 "1 1 1 0 0 - 1 - 1
7{

1 J 1 1 -2 -2 1 1

whe,'e the left singulm' vectors, U, are giver: as the product of a,m:_trix and the inverse
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_x,y) f'o_(X,y)

Y x Y-

Y

X X
i

Figure 2.4' Schematic of spatial sampling functions for a simple parallel beam tomo-
graphic system with three equally spaced projection angles and two projection bins
at each angle,
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of the norm ot' that, matrix, There are four non-zero singular values for t,his exa,mple

para31el beam s_'unpling system meaning tlmt of the six measurements only four _u'e ,,

linearly independent. Iabr paa'allel beam sampling on a circular domain using uniform
,p

impulse response functions with ® angles and K bins at. each angle, there will be at

most ®(K- 1) + 1 singulm' values that are non-zero, This new result is proved by

considering all the impulse response functions at, two different angles, Recall, that the

impulse response funct,ion, fek(x,y), is the Sl)etti_l response of _ p_rticular detect.or

at. angle 0 and bin k to a point sou:'ce moved to every position, (x,y), within the

sampling domain. By subtracting all but one of the impulse response functions at

one angle from ali of the impulse response functions at. the other angle, the resulting

difference is equal to the impulse response function that was not included in the

difference; e.g., for the system of figure 2,4,

foo(', ')+ fm(', ')- fao(', ') = ,faa(', '). (2.21)

For one angle paired with the other O- 1 angles paired this wilt be true; thus, at,

least, O- 1 of the impulse response functions are linea,rly dependent. Since there are

OK measurements, t,here will be at, most Oh'- (O - 1) = O(k'- 1) + 1 linearly

independent impulse response functions each corresponding to a non-zero singular

value.
t,

Figure 2.5 shows images of the impulse response functions, fok(a:, F), for a paral-

lel beam sampling of a circular doma,in using sixteen projection angles _.mdsixteen

projection bins at, each angle, Images across a row correspond to different, projection

iilIii, , ,', i,iii
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2,1.1 Separable product operators

Separation ofthe tomograph systern response into product operators h_ significant

computational advazltages when solving the tomographic inverse problem. There are

two classes of physical effects that can be represented by a product decomposition

of the tomograph response function [39]. The first of these, denoted by the operator

H, can be interpreted as a modification of the object distribution before an ideal

experiment; e.g., radioactive decay and the positron range etl'ect. The second class of

effects, denoted by the matrix G, can be interpreted as modifying the dataset fl'om an

ideal experiment; e.g., attenuation in PET, intercrystal scatter, crystal penetration,

and instrumental effects such as detection efficiency and dead-time. For these two

classes of physical effects the non-ideal data acquisition, process is represented by

p = Gr_0 • H.b (2.22)

where F0 represents line integral parallel projection.

2.1.2 Rotational invariance

When the elements of the projection normal matrix are a function of only the dif-

ference AO = O' - 0 modulo ® as shown in equation 2.23, the system is rotationall9

" invariant. If it is not a function of the difference between k and k' modulo h', then

the system is 'radially variant. The system is spatially variant if it is rotationally oi"

radially variant.
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Ao,k,o_,. = A[(o-O')mod®]l,.'ok (2.23)

-- A[A0mod-8]_..'0k (2.24) "

= f. dyf. d.TJi_Omo_OJk(x,y)So_(x,_) (2.25)

\'Vhen the system is rotationally invariant, the projection normal matrix can be writ-

ten in block circulmat form. The block circulant structure is

Ao A1 ,4-,_ .. .4e-2 Ae-1

•4-8-1 ,4o ,4.1 .. .,48-3 ,'-18-2

Ae-'2 Ae-1 ,40 .. A-8-4 ,4®-3
A = (2.26)

• ° o 0 o

,40. ,43 ,44 .. ,40 .41

.41 ,42 ,43 .. .4®-! ,40

There are_ x ® blocks each of sizeK × K.

Let f_:(x, tj) denote the impulse response of a rotationa]ly invariant, radially variant

system, Lhen equation 2.1 can be rewrit.ten as

The block circulant projection normal matrix has elements given by
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" Ae,k,ek = _dy/dxfk, [ xcos(O'-_).+ysin@'--_),

_
- f dy_dxfk,[ xcos\ ®./+ysin(A0-_),

-x sin (A0-_)+ y cos (A0-_)]

fk (2.29)

By using the rotational invariance properties of this matrix, computationally fast

and efficient algorithms can be implemented for the procedures described in chapters 3

and 4. One such fast. algorithm is described in chapter 5.

For the simple system of figure 2,4 the projection normal matrix can be written

in block circulant, form by reversing the direction of the projection axis for projection

angle 0 = 1. With this change,

301212

032121

123012

A = _ (2.30)210321

121230

212103

There are three blocks each of size two by two.



24

2.2 Organization of models

,d

The data acquisition model presented in section 2.1 and the novel singular value

decomposition of that model form a common, unifying structure for the rest, of the

material in this work. In chapter 3, it, will be used for identification of the tomo-

graph system response function and estimation of the unknown spatial distribution.

Chapter 4 will discuss optimization of the system response function to obtain better

estimates of the unknown spatial distribution using this fomlalism.

2.2.1 Identification

The first, task is to identify the important phenomena in the data acquisition process

for a particular imaging modality. The response of the tomograph is found using a

combination of deterministic and stochastic simulations and measured point response

data. For positron emission tomography, the effects modeled include radioactive

decay, positron range, sampling geometry, attenuation, int,er-crystal scatter, crystal

penetration, and detection efficiency.

2.2.2 Estimation

An estimator for the unknown spatial distribution is formulated using the known re-

sponse function and the statistical characteristics of the acquired data. Several of the

above phenomena lead to position dependent resolution and reconstruction algorithms

based on the spatially variant model have reduced bias when compared to spatially
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invariant, methods. Least squares, normal maximum likelihood, and Poisson maxi-

, mum likelihood estimators and the corresponding covariance have been formulated to

compensate for a spatially variant response. While bias is reduced by these estima-

tors, undesirable statistical and systematic fluctuations can result, due to pixelization

effects. To study the effects of basis selection, each of the three estimators has been

implemented using three different, pixel bases; square pixels, projection ray natural

pixels, and new orthonormal basis determined from the singular value decomposition

of the tomograph response function.

2.2.3 Optimization

The data acquisition system may be optimized so better estimates of t,he unknown

spatial distribution will result, The criterion used is Lo minimize the norm of t,he

covariance matrix while keeping t,he estimator unbiased.



Chapter 3

Estimation and Identification

3.1 Pixel Basis Representation

The goal of tomography is to reconstruct the unknowi_ distribution, b, from one real-

iza,tion, __p,of the projection measurement, process p, Reconstructing tile true cont,in-

uous space distributiorl, b, from sampled 1)rojections is I)roba,bly impossible without

prior informa,tion about the distribution, I11st,ead, a dl.c, etlzed ,'el:)resentat,ion, c.,,_

.".s generalized pixel.is estimated from the measurements whe,'e B..,.,(x, y) defil_e, a,

b(x,y) _ _B,_£,,(x,y)c,,,,, (3,1) .
?I1tl

In vector forn_ t,lle pixelization is

b ,_ B:rc, (3.2)

26
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A set, of generalized pixel coefficients can be found by minimizing t,he square of

, the L2 norm [38] of the difference between the continuous space object, b, and the

generalized pixel representation of the object, B Tc, over all possible generalized pixel

coet_cients, c; i.e.,

(, ,127

c --argmin_lb-BTcJl:j_, (3,3)

Following the derivation of section a,2, the generalized pixel coefficients are given by

c = (B. BT)+B . b. (3.4)

The operator + is the Moore-Penrose pseudo-inverse and satisfies the following rela.-

tions [40] [41] [18].

MM+M = M (3.,5)

.It/I+l_4 M + = M + (3.6)

.MM + = (MM+) T (,3,7)

. M+M = (M+M) T (3.8)

Tile explicit represent_a.t,ion of t,he object, by the generalized pixel btksis of equation 3.1

has not, appeared previously in t_het,omography litera,t..;.re.

The basis set used t,o describe the pixels influences t,he types of art, ifacts that.

appear in the reconstructed image. In this work, three bases are evaluat, ed. The
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first,, /5'1, is t,he traditional square pixel oi' Hea.vyside basis, The second ha,sis set,,

192, consislas of the set, of funcl,ions Lla,_t,comprise t,he t,omograpll s3,s/;ern response

funct, iona.l _md was proposed by Buonocore [27], The t.hird, 133, is original t.o t.his
).

worl< arid is composed of the righi, singular funct, ions I/, defined by equal:ion 2,7, ttla,l,

llave been select;ed t:)3, ,.q'and normalized t:)3, t,he L:a norm,

B1 - Heavyside (3,9)

Rg_- _' (:!_,10)
1

_,_ , , VT ,-__j _5, (,_,1_)

Nol,e thal; the b_is set, ,93 can be calculated from linea,r combinat, iorls of t,he basis

set, 15'2as follows

1

t ' provecl I.-)yrepl_._cingthe definit, ion definit, ion of t,he nat,ural pixelThis result, can _(:

basis from ectua,t,ion 3.10 in equat, ion 3.19._,whereby,

1

_ r_ _. .,,F .I23

and at't,e,r subst.iLut,i.ng t,he sitlgulm' value decomposit, ion of t,he t,omogva,l:_hsyst.em

response function from equa,t,ion 2.7,
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Removing the identity uTu yields

q

1

which is equiva.lent, to equation 3,11,

3.1.1 Example

Figures 3.1-3,3 show, respectively, a possible set, of b_is functions for square pixels,

Buonocore's natural pixels, and orthonormal natural plxels using the sampling defined

133,the impulse response functions of figure 2 4,

Consider the wedge shaped object of figure 3.4 which is defined mr

landx>Oandm2+y2< i

if Ivl<_ _ . _ ,1
b(x,y) = :" " (3,16)

0 ot,herwise.

The pixel coemcients using the square pixel basis of figure 3,1 are

[ ]7,1 1 (3.1.7)c = _ 0 0 5

n

and were found t33,solving equation 3.4, In Buonocore's natural pixel b_tsis of fig-

" ure 3,2, t,he pixel coet_cient, s are

1,[c- 7"-2 4 4 13-5 13-5 (3.18)
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h

0 1 0

B lo(x,y) B 11(x,y)

B12(x,Y) B13(x,y)

Figllre 3,1' _ pixel or __..qua;re Hea,vvside basis for a. sirr:tl._lepa,r_llel I::,ea,rn I;onaogra,pl:tic
_,p, tr, '_l..k,,t,cm wit;ta t,hr(_, equally spa.ted project, ion m-lgles _tlld t,wo projecLio.n bins a.I.etmtl
a.l_gle.
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B2o(X,Y) B21(x,Y)

B_(x,y) B23(x,y)

1

a

B24(x,Y) B25(x,y).,

F'igure 3.2: Buonocore's natural pixel basis for a simple par,,llel beam t,omographic
system wit,h three equally spaced projection angles and t,wo projection bins a,t, each
angle.
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B30(x,Y) B31(x,Y)

±

B32(x,Y) B33(x,y)

o

B34(x,Y) B35(x,y) .

Figure 3.3' New orthonormal pixel 'basis for a simple parallel betma t,omographic
syst,enl wit,h t,hree equally spaced project, ion angles and t,wo project:ion birls a,t, e_ch

; _mgle,
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Figure 3,4: Wedge sha,ped phant, orn object,,

:rod for the orthonormal nat,urM pixel basis shown in figure 3,3

C -'- _ 1 1
1 7d -7_, 0 0 0 . (3,19)

Figure 3.5 shows, respectively, the continuous space represent_tion of the wedge

shaped object, using square pixels, Buonocore's natural pixels, and orthonormM nttt,-

urM pixels with the sampling defined by the impulse response funct;ions of figure 2,4,

3.1.2 Reprojection

When an object, is pixelized by bases such as Bl or polar pixels [24] the project, ions of

the pixelized object; i,e,,/s". BTc, will not, in general, yield the same set, of projections

as the original object, This results iI._a systematic error in tt'.e estimates of unknown

spa.tia.l dist,ribut.ioia when algorithms theft, require batcl<l._roject,ion mid/or reproject,ion
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1 5

Fig_._re :3,5: Representation of a wedge shaped object using top) square pixels, middle)

Buonocore's natural pixe!s, and bottom) orthonormal natural pi_:e[s.
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are used. Eliminating this systematic error is especially important in iterative algo-

,. rithms [1] [42] [43]. When tile wedge shaped object shown in figure 3.4 is sampled by

the system of figure 2.4 gives projections

rr 1 1 1 0 1 0 (3.20)P = 6 _ _-

Projecting the square pixelized version of the wedge yields

1 1 5 1 5 1 (3.21)= 6 __ 2 6 6 6 6

Projection of a pixelized object using Buonocore's natural pixel basis, B2, is

i) = F . B2T c. (3.22)

Substituting the definition of Buonocore's natural pixel basis from equation 3.11 gives

= F. F Tc (3.23)

., and after substituting equation 3.11 into equation 3.4,

= e. F (r. 6. (8.24)

-- Using the properties of the pseudo-inverse in equations 3.6-3.7,

=



36

b = F.b (3.25) '

which from equation 2.3 yields

/5 = p. (3.26)

Thus, the projections, lh, of the Buonocore pixelized object are identical to t.he plo-

ject, ions, p, of the original object, For t.he wedge example,

1 1

b- _ _ _ 1 o 1 o (3.27)

Likewise, for the orthonormal natural pixel basis, B3, projection of t,he discretized

object, is

= F. B37c (3.2S)

which after replacement with equat, ion 3.11 becomes

1 m,

= . . • c. (3.29)

Substituting for c the result of combining equation 3.11 and equation 3.4,

[ ]'[ 1
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Replacing F with the right hand side of equat.ion 2.3 gives

.. _ = US' . Vr . V . ST (S. Sr)+ S. Vr . b (3.31)

and since the operation of the adjoint of the right singular functions on the right

singular functions is the identity operator,

The properties of the pseudo-inverse in equations 3.6-3.8 can be used t,o sllow

= US. I/r. b. (3.33)

Upon substitution of equation 2.7,

which from equation 2.3 yields

= p. (3.35)

Tile project, ion of the wedge example using the orthonorrnal natural pixel basis, B3,

is
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[ ]Tlb = _Tr _1 _l 1 0 1 0 (3.36) "6 2 "2.

Ali systematic reprojection errors due t.o pixelization m'e eliminated using a basis like

B2 oi"B3 as shown in t,able 3.1 for the wedge phantom. While t.his is t.rue in pa,rticulm"

for B2 and /33, any basis that spans the subspace of functions defined by S, VT

will also have this property. A geometric interpretation of the error associat, ed with

computing projections of pixelized object, is shown irl figure 3.6, Man3' of these basis

may represent the original object, distribution, b, better than B2 or/33. However, no

information about, the coefficients for t.he functions that. are outside t,he space S. V T is

available from the projection measurements, By using aprio'ri informat.ion about, the

cont,inuous space distribution of b, the formulation of Bayesian estimators that, use

b_is funct, ions not ira S. VT is an exciting area for future research. Thus, the basis

, subset, contained in S. V T is from a channel model for F and the subseL contained in

_..7"_ S. I.-T is from a process model for b.

i

3.2 Least Squares

In t,his sect,ion, a least, squares estimator (LSE) is formulated t,o estimate t,he mean in-
ii

t.ensity of the generalized pixels,/:, used to described the unknown spatial dist,ribution

S -4 "from one measured projection dat,aset p. While the result.ing I,,_E formula is quit,e

general specific applicat, ion to image reconst, ruction using square pixels, Buonocore s

nat.ural pixels, and the new orthonormal nat,ural pixels is shown. The lea_st,squares

est.imat,or for t.he mean int.ensit.y of t,lle generalized pixel image is found by miilimizing
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Basis Object Estimate Projection Estimat, e

Squared Error Squared Error

IIb-BT III
B 1 4 ,____23 ,_324

7 0B2

7 0B3 _,

Table 3.1" Errors due to pixelization for a wedge shaped phantom sampled with a,
parallel beam tomographic system with three equally spaced projection angles and
t,wo projection bins at, each angle.

V T S , U

L2[R

Figure 3,6: Simplified geometric representation of tile systematic error that results
from computing model projections from pixelized versions of an object. Pixel bases
that, include the subspace S. V T eliminate systematic pixelizat, ion error.

=_ ._
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t,he square of the L2 norm of the difference between the projection veer, or, p, and the

est, imat.ed projection, F. Brc, over ali possible image vectors, c; i.e.,

i: _ argm_n {lp- F. BTc i}' (3.37)

After substituting the definit, ion of t,he L,, norm,

= argmin c',lcp-F'BTc) T" {p-F,Brrc)_, "_ (3,38)
i:

Fiilding the gradient vector with respect t.o unknown parameters, c, arid equating it,

wit,li t,he zero vector, yields a (_A" × (gK system of simultaneous linear ecluations.

{.lt)on rearrai_gement, t,he equations in normal form are

.B, FrF . Bmi: = B, ]7,Tp. (3.40)

The solution for" this system using the second property, equation 3.7, ai_d the third

propert.y, equation 3.8, of the pseudo-inverse is

& = (B, FTF . f37) + B. FYp, (3.41)

Substit, utioIl (:ifthe singula,r value decomposit, ion of the projection format;loll operagor,

e(luation 2.7, yielcls
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' a = (B._,',sTs,¢",B'_)+B,v, s_uTp. (a,421

- By equation 3.7, the minimum L2 norm least squares estimator (LSE)for the mean

value'of the intensity of the generalized pixel image is

a = (s. _,_.B_'). v_p, (3.4a/

Using the measured projection vector, p, as a single sample estimate of the mean

projection vector gives

a - (s, v_'.B_)*zT_v, (a.44)

The fluctuations of the generalized pixel least squares estimat.or due to random

variations in t,he measurements can typically be characterized in terms of the co-

variance between pixel estimates. The covarianc¢, matrix for the generalized pixel

estimator is defined by

h

Substitution of equation 3.43 yields
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Applying the relationship for the transpose of a product, yields

The reconstruction filter can be brought outside the expectation so

Again using the relationslfip fbr transpose,

The term inside t,he expectat, ion is tile covariance of t,he project, ions; i,e,,

_,, = u [(v- uv)(v- Ep)_], (a,_0)

tllerefore, the covariance matrix for the generalized pixel least square estimator is

"_/2 := ('-q' VT ' BT) + UT',p_p U (B. V , q'T) +, ,_ / , (3,_1)

The estimator for t,he mean of the intensity of t;he object in cont,ix-mous space

is found by al:_plying the adjoint of the basis operator, t_', to the generalized pixel
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estimator of the intensit, y mean, For the continuous space object, the least squares

estimator for the mean of the intensity is

,m

b = B_r_ (3,52)

= B_'(s, v_,B_)+v_p, (_,,._3/

When using the Heavyside basis, the generalized pixel least, squares estimat, or for

the mean of the int,ensity, the covariance for that, estimat, or, and t,he cont,inuous space

least squares estimator for the mean of the int,ensit,y become

a = (s,_,,'_,s_)+vT_p (a,54)

_ - (_,,,,_,_1_). _._._(_ ,,,,._,,.)-_ (_,_)
= B__(S,v_,B_)+t__p (a,S6)

a,ndfor Buonocore's natura,1pixel basis

,_,_= v (,._'.,<)+v"_,,v(,_'.,_,T)+vT (_,_,_s)
t, V, ,q,T(S, _,r'_+= _ ,. } ur_p. (a,_,9)

teinally, the estime_tors and covm'ia,i-lcefor t,l._eort,honormal natural pixel basis are

, ur_p (:_,60)
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v (s, s ) (a,(_l)
t

= v, ,__(,s',._':")+u"e, (a,_:_.;)
,,

b

Note that the lc'._kst,.squares est,lrrm,tor for the mean of t,he continuous spa,c'.edlst,rll u-

t,ion, b, using both Buonocore's rl&t,ur&l pixel btuds &.hdt,he orl,hono.rln&l lla.tur_d plxel

basis &re the st,me,

3.2.1 Singular Value Filtering

lead t;o lttrge st,_:_t,isticalerrors ill the reconst;ruc, ted iinage, t'_,135'n,pplying & diagonal

weight, ing ma,trix, D, to t,he f_,t,er, the rne&n square error of the object est,ima,l,es rn_._y

be clecre_L,_ed[32],The resulting estima,tes &hd cowzri&nce a,re

= ', (a,0a)
l 1

._a D _' ,5'r) + _U'V_PpU ,., ,5'T + _

b = F/, ,5'TD (,5', ,5'"')+ UTp, (,3,(_;5)

I)et,ermir_izlg l,}lc'weighl,ing values is tlm subject ot' oIlgoiilg rese&rch, ,.lnce b_._,_is

vect,ors &re _msumed to be &rr&nged so the siIlgul&r wdues &rc' in noll-incl'e_.mil_gorder,

orlc; l)_)sslbilil,y is to truncate the Immber of singtll&r v&lues used in the singult_r v&lue

filt,er so only tile ,] l_r _esl,singula,r v&lues will be inc,lucled A weighl, illg _n_tl,rix wit,h

C'IC!I1-1(!H1 t,S
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(
| ] it'j'=jandj<J,

D+;,;= / (3,(_G)0 otherwise
,,+

will select, only t,he J ltu'gest, singulm' vaJues, Since the basis is orthonormaJ, t,he

resulting object, est,ima.te is t,he sun1 of the estimt_t,es of each pixel tha, t was mult, lplied

by one; i.e,,

J-1

g' = E BaTYl (3,67)
j=o

J- 1

--:E v',++;"(++,:)+ :'e, (aGs)
j=O

,,,+

3.2.2 Noiseless Example

]:_et,ut'rdtlg t,he exmnple of' figure 3,4, the est,ima,toedpixel coeKicient, s using the square

pixel basis of figure 3,1 are found from equation 3,54 t,obe

[ ]",_ 1 t s (3,69)= 1_ "-_ -"1_ 1_ '

In Buonoc.ore's natural pixel basis of figure 3,2, the pixel coef[icient;s m'e foutld from

, equa, t,ion 3,57 t,o be

..+

I 1'+'1 ,+. (3,70)= 7-_ 4 d lo-5 13--5

and for t,he ort,honorma,I na,t,ured pixel btmis shown in figure 3,3 the solut, iot+lot' equa,-

t ion 3,60 is
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lT
.- vq _ _ 0 0 0 , (a,71)-T 1 _ -7-,

Figure 3,7 shows, respect, ively, t,he continuous space reconst, ruction of t,he wedge

shN)ed object, using square pixels, Buonocore's natural pixels, and ort;hom)rnlal nat,-

ural pixels wii:h t,he sampling defined by t,he impulse response funct, ions of figure 2,4,

The object, and project, ion estimate squared errors when using the least, squm'es es-

I,ilnat, ora, re showll in table 3,2, In ali three basis there is zero project, ion est,imat,e

error for the wedge object, I-tow,ever, the natural pixel and ort,honormal nat,uteri pixel

esl.ima,tes have smaller ob.lect, error than t,he square pL,¢elest,lmat,es.

Basis Object, Estimat, e Project, ion Estimat, e

Error'Squm'ed Squared Error

lib- II,'-F.BT I
B 1 _ 012

B2 _7 06

B3 _7 06
.......

']'able 3,2: Least, squares reconstruction errors for a, wedge shal)ed plaa,nt,onl sam-
pied wit,hour, noise by a parallel beam tomographic system witll three equally spaced

projection angles and two project, ion bins at, each angle. ,_

3.2.3 Noisy Example

The previous example comput, ations were done using a t,:Ilowil vt_lue for t,he proje(>

• "1 _-_t,ions, i.e., la()noise. To t,esI, t,lle LSE in t,he presence of noise, a noisy l)rt)je(:t.ion
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. Figure 3,7: Least, squares reconstruct, ion of a wedge shaped object using l;op) square
pixels, middle) Buonocore's nat,ural pixels, and bot,t,om) ort;honormal nat,uteri pixels,
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dat_et,

TP = [ 0.8579 0.2920 1.4252 0.0000 0.4829 0.0000 (3.72)

will be used. This projection dat,_et, was created bF"sampling an independent muki-

variate normal (Gaussian)distribution with mean a.nd variance equal to the :noiseless

projections of equation 3.20. The estimated pixel coeffLcierlt,s and the covariance of

those estimates using the square pixel basis of figure 3.1tare

= O.ooO_ -0.3602 0.0981 1.0092 (3.7::;)

O.i7;38 0.0014 -0.085,'4 0.0870

0.0014 0.0677 -0.0191 -0.08.54
_a = (3.74)

__ '}_0.0_ 54 -0.01191 0.0677 0.0014

0.0870 -0.0854 0.0014 O.1738

In Buonocom's natural pixel b_is of figure :3.2, the pixel coefficient estimates and

covariance are

= 0.1534 0.0629 0.5383 -0.3220 0.i336 0.05_')-_ (3,'-St,) "

.-=

_

_
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0.1810 -0.1771 -0.1428 0.1468 0.1556 --0.1517

" -0,1771 0.1810 0.1556 --0.1517 -0.1428 0.1468

-0.1428 0.1556 0.189. -0.1771 -0.1384 0.1512
_e "= (3.76)

0.1468 -0.1517 -0.1771 0.1722 0.1512 -0.1561

0.1556 -0.1428 -0.1384 0..1512 0,1899 -0,1771

-0.1517 0.1468 0.1512 --0.1561 -0.1771 0.'1722

and for the orthonormal natural pixel basis shown in figure 3.3

7'

_: = 0.5751 0.6879 -0.3641 -0.2124 0.0000 0.0000 (3.77)

0.0556 0.0340 -0.0589 0.0000 0.0000 0.0000

0.0:340 0.1250 0.0000 0.0000 0.0000 0.0000

-0.0589 0.0000 o.125o 0.0000 0.0000 0.0000
re = (3.78)

0.0000 0.0000 0.0000 0.5000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 3.8 shows, respect.ively, the continuous space reconstruct.ion of the wedge

shaped object, using square pixels, Buonocore's nature,1 pixels, anct orthonormal nat-

ural pixels with the sampling defined by' the impulse response funct.ions of figure 2.4.

Table a.3 sho-,s the mean and observed object squared error and t.he the observed

- projection squared error for these reconstructions. The natural pixel and ort.honor-

real natural pixel estimal:es have bet.t.er observed squared error than the square pixel

est.ira.ares. The square pixel estimator" has better mean squared error characteristics

than the unfiltered estimat, ors b_sed on .natural pixels or orthonormal natural pixels

_

_

q
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for the wedge shaped object.

m

B_is Mean Object Observed Object, Observed Project, ioi_

Squaa'ed Error Squared Error Squarecl Error

• L- _") _l °t31 1 1775 3,.(_36 0 3001

[32 1.3571 2.6294 0,2348

/3'3 1.3571 2.6294 0.2:348
...............

Table 3,:3: Least squares reconstruction errors for a wedge shaped pliant, ore sanl-

pled with noise by a parallel beam t,omographic system with three equally spa,cecl

project, ion angles and t,wo projection bins at each angle.

Table 3.4 shows the effects of using t,he diagonal weighting matrix definect in

equation 3.66 with the value J varied from one t,o four for t,he example of figure 3.4.

The projectioil est imat, e error decreases wit,h t,tle inclusion of each ort, honormal nat, ural

pixel basis function; however, adding the image corresponding t,o t,he t,hird basis

vector, ,1 = 4, incre_es the mean object squared error. The increase in meail object,

squared error is due to noise being added to t,he reconstructed image wllile no new

information about t,he _)bject, is beitlg added since the wedge phant, om otlly has non-

zero project i(:ms oIlto the first three ort, honormal natural bmsis vectors as sllown in

equation 3.19.
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.O3099

-0.3099

: . Figure 3.8: Least squares reconst, ruction of a wedge shaped object using top) square

pixels, middle) Buonocore's nat, ural pixels, and bot.t,om) ort honormal natural pixels.
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Truncatiorl Index Mean Object. Observe( Object, Observed Proiection

-" SSquared Error Square( Error ,_quared Error

. _I1___T_I-__ limb_BTU.I"o _.- F._11_11 ".... .

1 1,4762 1.91;55 1.5270

2 1.3839 2.8', 0.5360

3 0.8571 2.41i71 0.2584

4 1,3571 2.6', )4 0,,,34_

Table 3.4: Effects of truncating the number of singular values included in the singular
value filter oil orthonorma.l natural pixel least, squares reconstruction errors for a
wedge sha,ped phaa_torn sampled with noise by a parallel beam tomographic system
with three equally spaced projection a,ngles and two projection bins at, each angle,

3.3 Normal Maximum Likelihood

The least, squares estimator in the previous section did not use any information about,

t.he variance of the measurements. In this section, it, is assumed that, the projection

measurements _.tresamples from multi-normal random variables with known variance.

The likelihood for the measurements is given by

L (c) = P,,{VlC} (a.79)
1

°'"i I-"= (2rr)--7 Ep

exp [-_2

The normal n_laxilnunl likelihood est,imator (NMLE) can 1.)efound by ma.xinlizi,lg this

expression oi" alt,ernatively the log-lil;ehoocl,

-Z

_=

2
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w

l(_) - log{L(c)} (3.81)

= _oKlog(2_)- 1logl_,,2 2

1 (p_ F' BT'c) _ BTc) (3.82)-5 . _/;' (v- F. ,

since the na,tura,1 logarithm is a monotorlic_dly increasing function, Derivation of the

NMLE follows,

6. _-- arg n_x l (c) (3,83)
( b-)Ix 1

= arg max J,---_---_"log (2rr)- _log E v

1 (p_/_, BTc)7' (p F. BTc) )7) . _p' -- } (3.84

As w_ done for the least, squa,res estimator, the gradient vector with respect to

unknown paramet,ers, c, is comput, ed and equated with the zero vector, yielding a

G)A"x 6)If system of simultaneous linear equations ..

- _r_{(__/T.__(;-_ _) : 0} (_
In normal form, the systern is

B . F T.y.Tp F . = B . [7'T._ "1_1p . (3,86)

,-%pl:)ls'ingt,lle t)seudoinverse of the' t,lle l-lOI'll-ltdmatrix yields
z

-
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a = (B, FT._-_ + _,TZ,-, (387) "1' F. B T) B. p p

which is equivalent to

The estimator shown irl equation 3.88 is commonly called a weighted least, squares

e__:.s,,zmatorbecause it is equivalent t,o the least, squares method with the model and

measurement, s preweight.ed by the inverse of the concomitant standard deviation.

The covariance for the normal maximum likelihood estimator is

For the Heavyside basis, the est.ima,tors and the covariance become

_1 )+ _!
/: = _'p_ F ' BIT _'P"P_ (3.90

E/: = (Bl. FT2?,plF . B1T ) + (3.91
,t

: B_'_'(s. v_'.,_)_ utp_ (a.92i

and for t,tle natural pixel basis



55

_ = u is. sTu"z;,_us.s_]. u_' (3._4)

The normal maximum likelihood estimators and covmiance for the orthonormal nat,-

urM pixel basis are

= +

1

(S, Sr)_ Ur.F,p'p_, (3,98)

When the system is non-singular, the matrix S. S T is invertible and the natural

pixel estimator and orthonormal natural pixel estimator will not depend on the co-

variance of t,he projections. The same is true when the projection data acquisition

process is homoscedastic; i.e,, the covarimace matrix is a constant times the identity

matrix. In t.hese cases, the least, squares solution and the normal maximum likelihood

solutions -are equivalent. But,, most, importantly, the estimators (:an be precomputed

and applied to multiple projection datasets for time-series analysis of dynamic pr(:>-

. cesses. Singularities in the system response will be considered further in clle_pt;er 4.

3.4 Poisson Maximum Likelihood

In emission t.omography, the expect, ed number of photons count, ed in a. saml:_ling time

interval may not, be large enough to just, ify ai)proximal_ing t,he measurenlent, process
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as multi-normal, When the count, rate iu low, a more realist, it model is t,o asstllile

t,he measurenlent, s are samples frorn a mult, i-vana,t;e Poisscm random dist, ribut, lon. The

measurements m'e assumed t,o be st,at,ist.ically independent, and l;lle resulting likelihood

funct, ion is

0k p0k! (3,99)

As iri section 3.3, the Poisson maximum likelihood est,imator (PMLE) can be found

by maximizing this expression or alternat, ively the log-likehood,

Ok

over all possible image vectors, c; i.e.,

a - (3.101)

OI,,

Comput, ing the gradient vect,or wit,h respect_ to the unknown parameters, c, and equaL-

ing it, with the zero vector results in a, set, of OK non-linear equations

J.

I ,31o3,/} = arg tP0k.B 7' 1- F0/,,'B rc '

There are no known closed form solutions for the Poisson nlaximum likelihood es-

t,imat.or (PMM£) of equat, ioll 3.103. Instead, an iterat, ive solution is used. A t,ecllnique
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by Dempster [30] known as expect, at,ion rnaxin_izat, ion (EM) was first, applied t.o t,o-

m mography by Shepp and Vm'di [21], Their algorit, hm h_ been extended to generalized

pixels as

a(t+l> = aft} 1 _B,Gr p0k
_ok B. Fo_ o_. Fok ' BT6 (t)' (,3.104)

Ttle iteration st,ep is denot, ed 1)3't, Under appropriate condit.ions [44], t,he covariance

matrix for the generalized pixel estimates is approximated by

.£,a _ [E -O:l(c) ] +Oc,,_,,,,0c,,,,_ (3,10,5)

= (B. fi,TQ-I_-_,/z_P)+ (3.106)

where Q is a diagonal matrix given in tensor form by

Qo,k,ok = Fok' BTa 60,o6k,k. (3.107)

For the ttea.vyside basis, the Poisson maximum likelihood estimat, ors and t,he

covariance become

6{,+1) = 6{t} 1
Y_2,okI31. F_ _ t31. F'or_ Pok (3.108)ok Fok. Bl.T6 {_}

= + (3.109)

Qo,k,o,¢ = t;'ok' B1Tc 6o,o&.,k (3.110)

and for the natural pixel basis
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1 Pok o

- o ,-_ok q, q,TrrT ) (3,111)_{'+_}- _{'}zo_,us,s_'d_£I2GS,:'_,_"oA, Uo_,_,,..-.{?{t

= T ,S,T)+ U T ,27a U (S. S'TU Q-_US. (3,112)

Qo,h.,oh. = UokS" s'TuT_. 5o,o6_,.,k. (3,113)

The Poisson rnaximunl likelihood estimators mad covariance for the ort,honormtd nat-

ural pixel basis are

a{,+l} = a{,} 1 ZU (S, sT) _ po_k (3,114)
go,, U (S, S:r')}kok o,,Uop,(,9, ST) ½a(')

= +
1

Qo,_,.,o_ = Uop,.(£" sT) :/: 50,06k,k. (3,116)

3.5 Separable Inversion

In section 2,1,1, a, separable model for projection formation was proposed. Estima-

tors for the unknown spatial distribution for systems t,hat are separable have special

properties tha,t lead to computationally fast, and efficient imt)lementations. Substi-

tuting the model of equation 2.22 into the generalized pixel le_t squares estimator "

in equation 3,43 yields

.)

6. = (t3 ......H T boTGTGFo H BT)+13 H T .oCj.;,T--a'_p, (3,117)
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When the basis set chosen to represent the object has the property that; BTB is

,. the product of delta functions, e,g,, the basis is c,omposed of unique point, s_mples,

the least squares est,.imt_tor becomes

z.,,.7'r,:/'p _ ) "'GT_,6 = B, H T, BTB,., o '-* ,..,,1'o' BTB ' H, B T + B, H "I', BTB , .t;_1

(3,118)

If the matrix B, H, B T whldl is a pixelized version of the object, blurring operator,

H, is invertible, then

(BHB")-_(Brg'c,_'C,FoB'_)+B "_"= ..... .Fd G _p, (3,119)

Haber's [45] spatially invaxiant method to correct for positron range blurring in PET

with no projection blurring, i.e., G is an identity matrix, is nn example of this least;

squa,res technique even though it was not, expressed formally as equation 3.119,

Additionally, if the projection blurring matrix, G, is invertible, an estimate for

the mem_ of the generalized pixel representation of the object, distribution is

. _.= (,. H.,'_)-_(., Fg_.B")+B.F:c,-'__ (a._20)
aald the covariance of those estim_,tes is

..... (a,12_)
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This suboptimal estimator has many desirable computa,tion properties, The matrix

(7 -t can be precomputed and is sometimes rota,tionally inwriant, G-' is applied to a

projection dataset which is then processed by a discretized Ra,don inversion algorithm

' i ¢ _ i

such as filtered backprcuectlon to form an image, The resulting roage is then filtered

by the inverse of the pixelized version of H.

3.6 Simulation studies

A series of simulations was performed on a cylindrical phantona, shown in figure 3,9,

The phantom has non-zero constant intensity inside a circle with diameter v_ and is

zero outside that circle. The cylindricd phantom studies were performed to compute '

regional bias and squa'ed error between the estimate of the mean of the intensity

and the true meaal of the intensity, in these st,udies, a noiseless set of projections

was created using the parallel bean tomograph model described in figure 2.5, The

silnulated projections for the cylindrical phantom were then scaled to a fixed image

intensity. Two noisy sets of projections were created using either a normal or Poisson

pseudo-random number generator with the meaal and variance set to the value of the

noiseless projections [46], These three sets ot' projections were then reconstructed

using the least, squares estimator of section 3,2 using square pixels, natural pixels,

and orthonormal natural pixela which are shown in figure 3.10, The contirmous space

represenl, ation of the cylindrical phantom using orthonormal natural pixels is shown

in figure 3,11, The simulation and reconstruct, ions for the noisy projections were

repeated for 16 saanple paths of the pseudo-random number genera,tor. The results
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t,omography syst,ems that, have more spa.tial variance, the observed bias is generally

. more pronounced. _ /
' , '/I ,
,

, , iI , /

The effect,s of using _?_e'_}i.ago{'lalsingular value filt,er mat,rix defined by equa-

tion 3.66 on tile projection sum of squared errors,

112

Ep- F. [?,rb.ll_,, (3.123)

are shown in figure 3.15 and on the object, integral of' squared errors,

,-1

lE,,-B, II;, 124)
are shown in figure 3,16, The solid line corresponds t,o a noiseless simulat, ion; t,he

ot,l_er three curves are for simulations tohat used a projection dataset sampled from a

multivaria.t,e normal distribut, ion wit,h variaa_ce parameter, as defined in equat, ion 4.8,

equal t,o 1 (dot.t,ed line), 4 (long dashed line), and 16 (short, d_l_ed line). In t,his

context, t,he variance parameter is equivalent t,o a signal t,o noise ratio for t,he projec-

t.ion measurement.s. Each curve was normalized by t,het, ot,al expect,ed object, int,ensit;y

squared t,o compare simulat, ions with different, object, int,ensit, ies.

The project.ion error decreases with the inclusion of each ort.hot._ormal pixel basis
i

fullction independellt, of noise level. However, for squm'_, pixels, t,he project.ion error

- will increase wit.li the inclusion of more generalized pixel basis fmlct, ions wit.li t,he

lll()st, ral._id increase at. high noise levels, i,e., small variance parmnet, er, For t,lle noise-

less simulat.ion, t.he project.ion error for square 1)ixels does llot. beconle zero because

there is syst.elnat, ic error in t.he represent, al.ion of t,lle cylindrical object, in t.lle square
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est,imat, e and t,he project, ion of cylindrical object versus number of generalized pixels
reconst, ructed as the expect, ed int,ensit.y is varied using upper) square pixels a,ild lower)
ort, llonormal nat.ural pixels.
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pixel basis, For display purposes only, a lower lirnit, of 10-1° was imposed on the

. project, ion sum of squared errors for ort,honorm_l natural pixels in figure 3,16, T,he

projection sum of squared errors was l0 -as when 256 ort,honormal nat,ural pixels were

reconst, ructecl; i,e,, t,here is ve.ry lit,tie systemat, lc reproject, ion error using ort,honornlal

nt.,t,ural pixels,

The average of t,he object, int,egI'al of squared errors decreases and then incre&ses

for both plxelizat, ions in t,he noisy simulations as more gener_lized pixels are included

in the reconstruct, ion, The increase in object, squared error is due to st,at,istical noise

being added t,o t,he recons!_ruct,ed image while no new ip,forrnatioI_ about, t,he object,

is being added, An addit;ional syst,emat, ic error is present, in the square pi\el recon-

st,ruction and since t,his error is riot, st,ochastic, it, will also be present, in noiseless

simulal_ions, When using square pixels, the object error decreases and then begins t,o

increase rapidly as the truncation index is increased in t,he noiseless simulat, ion, By

using orthonormal natural pixels, the syst,ematic error due to the matheia_atical rnodel

is eliminated Ks evidenced by the non-increasing object, integral of squm'ed errors for

t,he noiseless simulat, ion. Wit,h noise present, reconstruct,ions using either pixeliza-

t,ion undergo a rapid increase in object, int.egral of squared error beyond a pa,rt,icular

t,runcaLtioi, index t,he_t,corresponds t,o fixed resolut,ion. A detailed discussion of the

dramatic increase iri the object, erro.i"and it,s relat,ionship t,o st,a_t,ist,ical fiuct,ua,tions in

. It,he na_easured projection data is in chapter 4.

Wllen dat,asets sampled from a Poisson distribut, ion were used, similar result,s

were observed. Typically, t,he number of generalized pixels lleecled to observed a

rapid increase in object, errol' is somewhat, less and the pro,ject,ioll sum of squared

lr _ll,jl, qr ,, , , _, ,, ,
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errors is almost always grea_er,

4

3.7 Experimental studies

,411exa,mple of t;he ident,ificat,ion procedure usecl for a positron t,omc)graph follows,

Attenuation in the ' _ e ,.tlSSU., clue t,o phot,on absorption was measured by performing a

t,rmlsmission exFJeriment,, In t,his experirnent,, a positron emit, t,er is orbited around

the object, mid a set of projections was measured wit,h t,he position o[' the source

known [47], A projection da,taset was acquired without, t,he object, present,, e,g, in air,

t,o comput, e del,ect,or efficiency, A reconst, ruction of t,heat, t,enuat,ion coeft'icient,s was

perfornled as described by Huesman et 'al [12], Ii; was assumed l;hat, at,t,enual;ion of

I_hot,ons within the object, vm'ies slowly such thato attenua, t,ion cml be considered con-

st,ant, across a p:",_iect,ion ray and therefore a line int;egral al)proximat, ion was ,jusl.ified,

Also, the st,atist, ical quality of t,hese measurements was assumed t,o be such t,hat t,he

fluctua,tions ofF do not, need t,o be considered during emission reconstruct, ion.

Cryst, al penet, rat,ion was st,udied under the _ssumption of separabilit, y as described

in sect, ion '2,1.1 [2]. Stochastic and del;erministic simulations were used t,o der,ermine

O 't,he projection blurring matrix G of equat, ion ,.,22, A lower l;riangular circulant, block

form for G was obt,ained by arranging the element, s of t,he project;ion vect,or, p, accord-.

ing t;o t,he distance from t,he center of the t,omograpll and by or,lering t,he elements
w

wit,bin each block according t,o angle, G was invert;ed using a fast algorithm that,

uses bot,h t;he lower t,riangulm' and t,he circulant, block propert;ies, This inverse was

a,I._pliedt,o ata a,t,t,enuation and det,ect,or efficiency correct,ed emission dat,aset, of the 37

-=
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point hot spot phantom, shown in figure 1,1, acquired ' '' using the Donner 600-Crystal

. Positron Tomograph [47], The resulting projection data.set was reconstructed using

t,lle backprojection of filtered projections algorithm and the reconstructed image is

shown in the lower part of figure 1,2, Points t,hat, are on the out,er edge are clearly

improved over those shown in t,he upper image of figure 1,2 which have not, been

corrected for crystal penetrat, ion,

Also visible on the penetra,tlon compensated image are artifact, s due to t,he correc-

t,ion procedure. These artifacts arise from t,he fa,ct t,hat in t,he st,oct lastic simulation of

t,he project, ion blurring mat,rix, G, the elements of G are coml._uted as average l,ransi-

tion probabilities between two projection bins and the me_.usuredprolect, lon,: of a point

source will have different transition probabilities than the a,verage, The method ap-

pears t,o amplify statistical noise a great, deal in order to gain a modest, improvement

in radial resolution, Further work to characterize the st,atlstl''c.al correlations bet,wee_

pixel estimates is under way,

!
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Chapter 4

Optimization

The generalized pixel estimators in chapter 3 were derived for a tomogr_tpl_ with

known syst,em response, F, It, was shown that the fluctuations of these estimators

due to raa_dom variations in the me_urements can be characterized in terms of the

covariance between estimates, Irl this chapter, a technique to cha,racterize the effects

a,ngular and lateral sampling density have on reconstruct, ed image resolution and

noise is developed and used t,o examine an example system, These results lea,d to a,

method to opt, imize sampling stra,tegies given bounds for noise m_d resolution, The

opt, imiza,tion procedure uses a, criterion that is a function of the corm'lance matrix,

4.1 Covariance

'ii'truleast squares, normal maximum likelihood, and Poissoll inaximum likelillood gen-

eralized pixel estimators for t,),e mean of the urll<nown distribution, b, have asymp-

t,otically a, covariance matrix

74
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if the measurernent, s are assl.lirled t,o be independent and homoscedastoic wit,h wu'iance

To bound the st_Ltistica.1error associELt,ed with t,he reconstruct, ion process, the L:_

norm of tile covariance mt_larix is computed using induced norms, '1.]) compuLe the

induced norm, a unit, vect,or c is mull_iplied by the covaritmce ma,trix trod the norm of

t,he result, ing vect,or is calcul_:_t,ed, Tlm lengt,la oi' tlm unit vect,or is sc,.ded up or down

_.mdthe ltu'gest, steele facl;or is the induced norm. Symbolicedly, the operat, lons are

,Z'/:[2 = ma.x [[_ec [ (4 2)IIc11._=1 '2'

Subst.it,ut,ion of equal;ion 4,1 int,o t,he definition of induced norm yields

= , . e (4,a)
Ilclla=l :_

C 0which for the orthonormal nat.ural pixel basis, B3 of e tut, t,lon 3,11 is

ll  LXII' { II_e :, - ,_,_=, , ) ,s', , ,v',S , ) _ 4,,1)

Aft,er simplifying the t,erms of t.he pseudo-inverse by subst, itut, ing the singul_.u' wxlue

decomposit, ion of t,he projection form,._t,ion oper,_t,or,
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-- J /SS / of2 '
Tlm induced norm of a diagonal matrix is equal to the maximum of the absolute value

of the matrix elements; therefore,

1 (4.6)
_1 ._ = maxp(S.ST)ii

and since the maximum of a reciprocal is the reciprocal of the minimum

(4.7)
2_e112 = mini(S. ST)ii"

From the induced norm, it can be seen that the bound on the noise amplification

during reconstruction is inversely proportional to the square of the smallest singular

value of the projection formation operator. Thus, it is necessary to find the square

of the singular values of F to compute the error bound. This differs from the deter-

ministic error propagation approach where the noise amplification is tile ratio of the

largest singular value to the smallest singular value; i.e., tile condition number [14]

[lS].

4.2 Simulation studies

A parallel beam tomographic system with equally spaced projection angles and lateral

projection bins similar to the one in figure 2.5 was simulated to examine the effects
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of angular and 1; :eral sampling density on reconstruction. The number of angles

, sampled, ®, was varied from 1 to 80 while keeping the number of lateral sampling

bins, K, fixed at 16 in one set of simulations. A family of plots of the norm of the

covariance matrix versus the number of generalized pixels reconstructed or equiva-

lently the truncation index, J, is shown in figure 4.1. Recall that the truncation ind:,_

defined in equation 3.66 is the index of the smallest singular value included in the

reconstruction; thus, according to equation 4.7, the norm of the covariance matrix

will be equal to the inverse of the singular value of the projection normal matrix at

the truncation index. To compare the simulations with a different number of angular

samples, the variance parameter, 15,was varied such that ali the simulations are noise

equivalent; i.e.,

Tr (_p) = OK15 = constant. (4.8)

Therefore, 15is inversely proportional to the total number of projection measurements,

®A', and the covariance nor;n plots have been divided by the value of ®A" used in

the simulation.

When the number of projection angles is 16 or greater the moving average of the

" norm of the covariance matrix increases almost linearly with a slope of approximately

0.6 on a log-log plot as the truncation index increases until there is a more rapid

increase at truncation index 150. In other simulations, not shown here, that had 8

and 24 lateral sampling bins, a similar increase in the moving average of the norm of

the covariance matrix with approximate slope 0.6 and then a rapid increase is observed
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Figure 4.1' Norm of covariance matrix versus number of generalized pixels recon-
structed for a set of parallel beam tomographic systems with 19= { 1, 2, 4, 6, 8, 10,
12, 14, 16, 18, 20, 24, 28, 32, 40, 48, 56, 64, 80 } equally spaced projection angles
and Iq= 16 projection bins at. each angle.
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when the number 'of projection angles is greater them or equal to the number of lateral
i

, projection bins. Note that norm of the covariance matrix changes most significantly

over only a three order of magnitude range implying that numerical error from the
I

robust technique used to compute the singular values should be negligible.

There is a correspondence between the point where the moving average of the

norm begins to rapidly increase and the total number of projections measurements.

The analysis used to obtain equation 2.21 where the number of linearly independent

projection rneasurements was found 'to be O(K - 1) + 1 was based upon the zeroth

spatial moment of the mean of the object distribution. By considering the higher order

spatial moments of the mean of the object distribution using a technique similar to

that proposed by Ein-Gal et at [48], there will be O- 1 degrees of freedom lost for the

zeroth moment when each angle is paired with one angle, O - 2 degrees of freedom

are !ost for the first moment when each angle is mated with two angles, and so on up

t.o the Ix'- 1 moment. Thus, there me approximately

1,'-_ K 2 + K
®K- _(®-k.-1) = (4.9)

k=o 2

measurements that are independent in the zero through K- 1 moments. This analysis

" relies upon continuous lateral sampling and is therefore only a lower bound on the

number of independent measurements for discrete lateral sampling.

Tile important feature of figure 4.1 is for reconstruction spatial resolutions coarser

than a well defined resolution threshold, increasing the number of angles sampled will

decrease the noise in images reconstructed from data acquired by a system that has



8O

more angular samples than the number of lateral samples. For resolutions finer than

that resolution threshold, very little improvement in resolution is obtained without

a large increase image noise. For K = 16, the lower bound from equation 4.9 is 136
P

• generalized pixels and the number observed from simulations is 150 generalized pixels.

Huesman [49] was one of the first to realize the implications of finite angular and

lateral sampling on statistical reconstruction noise. He performed a detailed study

of these effects using a projection model based on parallel line integrals sampling a

circular grid of square pixels. His analysis suggests the number of projection angles

should be 1.5 D/d and the number of lateral samples should be 2.0 Did to maintain an

appropriate bound on reconstruction noise amplification. D is the linear dimension

of the reconstruction region and d is the linear dimension of the cells into which

the reconstruction region is subdivided (resolution length); therefore, the number of

square pixels should be _®A'. For K = 16, Huesman would predict 67 square pixels.

This bound is much more conservative than the bound from the moment analysis or

the bound from the simulations of figure 4.1. It is possible that while trying to study

" only statistical errors, Huesman was also experiencing significant deterministic errors

. due to line integral model sampling of square pixels and the numerical instability

of the matrix inversion technique being used. These determinist, ic errors may have

: influenced his choice for the angular and lateral sampling bounds.

o Figure 4.2 shows a family of plots of the norm of the covariance matrix versus the .

truncation index, J, for a set. of simulations where the number of latera! sampling

bins was varied from 1 to 80 while keeping the number of angles sampled fixed at 16.

When the number of laterally smnpled bins is less than or equal to the number of
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angles sampled, a sharp increase in the moving average of the norm of the covariance

matrix is again observed above the index predicted by equation 4.9; e.g., for/_" = 8,

moment anelysis yields 36 generalized pixels and the value from simulation is 38

generalized pixels. When the number of laterally sampled bins is greater than the

number of angles sampled, there isa less abrupt change in the slope of the covariance

norm moving average.

By increasing the number of lateral projection bins, resolution and reconstructed

image noise are always improved. However, for any angular' and lateral sampling

density, there is a resolution threshold beyond which improvements in resolution are

only achieved with a large increase in image noise. Furthermore, the number of

generalized pixels corresponding to that resolution threshold are far fewer than the

total number of projection measurements.

To elaborate the utility of this method to optimize sampling, consider a parallel

beam tomographic system with equally spaced angular and lateral sampling that has

the number of angular samples constrained to be O = 16. The desired resolution for

a reconstructed image is 100 pixels. From figure 4.2, the number of lateral sampling

bins should be K = 14 to obtain a reasonable bound on reconstructed image noise.
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Chapter 5

Implementation of Algorithms

5.1 Orthonormal Least Squares

The continuous space representation of the truncated minimum Le norm least squares

estimator for the mean value of the orthonormal natural pixel image is from equa-

tion 3.68

d-1

= 2 v. _%r(s. s_)+u__v. (5.11
j=O

This image is converted to a square pixel representation by performing the operations
iv

of equation 34 using the Heavyside basis operator, Bl, of equation 3.9. The resulting

square pixel representat _n is

83
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and a£ter substituting equation 3,12 into equation 5.2,

¥

J-1

j=0

In general, the computation of the projection normal matrix requires ®(®21(2)

integral evaluations a 2. An f_(®3K3) singular value or eigenvalue decompo,fition rou-

tine is used to compute U and S, S T. After the singular value decomposition of

the projection normal matrix is known, evaluation of equation 5,3 uses O(®2K _)

operations, i

For a rotationally invariant system, described in section 2.1.2, the evaluation of the

projection normM matrix requires only O(OK 2) integral evaluations and its singular

value decomposition requires _2(OK a) operations using the block circulant singular

value decomposition algorithm described in section 5.2. The rotationally invariant

1Let n, no E N and _ 6 R, e > 0. Also, f,g :N ---. R. Then, define
[51]

1. Upper bound

O(f(n)) =. {g(n):g(n) 5ef(n) Vn> no}

2. Lower bound

_'_(f(n)) _=. {g(n): g(n) :> ef(n)Vn > no}

3. Combined bound

O(f(n)) - O(f(n))A_(/(.))

4. Asymptotic

f(n) .-- 9(n)_ lira f(m! =1
,1--oo g(n)

2Using the symbol ® for the number of projection angles measured and the combined bound

function ®(.) is somewhat confusingbut parenthesis distinguish between the two uses.
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c!,rthonormal least squares es'eimator is computationally tractable on current com-
ii
[

tl,uter systems. The separable estimators discussed in section 3.5 also have similar

,!:ompuiational properties.

5.1.1 Implementation

The C programming language [50] function call

1 "

orthols (i_,F. B1T Bl. FT,svd(A) (S. sT) _ integration_fact,or), , jj '

will compute the estimator of equation 5.3. The source code for a sequential imple-
'i

mentation is given in section B.1 and a block diagram of the algorithm is shown in

figure 5.1. The first argument is a vector of square pixel image amplituiies that will

be computed by the function. The second and third arguments are, respectively, the

projector and backprojector functions which are compatible with the R;;CLBL [12]

reconstruction software. The fourth argument is a routine that will returl_ the singu-

lar value decomposition of the projection normal matrix, A; an example :C language

routine is given in section B.2. The fifth argument is the minimum singular value to

be used in the reconstruction and the last argument is an integration factoI as defined
L

by RECLBL.



86

p,F. Blr,Blo Fr,(saSr)_j
l

f l _' '¢
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F,F r

P

I Orthonormal

Backprojection __ U

c = Utp J

(s®sr)jj_ Singular ValueFilter _ S.S r_ c_ D(S.Sl)+_

Con rt to lquare,=e,ilj u

t "
Figure 5.1' Block diagram of orthonormal natural pixel least squa,res estimation al-

gorithm.
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5.2 Block Circulant Singular Value Decomposi-

tion

A special class of matrices have the block circulant structure shown in equation 5,4,

There are M × M blocks each of dimension m × n. This form of matrix arises quite

frequently when a function is invariant under rotation. As an example for the rest of

this section, the case where M = m = n = 64 shall be used because it is representative

of typical SPECT reconstructions.

Ao A1 A2 ,, AM-2 AM-1

AM-1 Ao Ai .. AM-3 AM-',.

AM-2 AM-1 Ao .. AM-4 AM-3

A = (5.4)

A._ A3 A4 .. Ao A1

A1 A_. A3 .. AM-1 Ao

A O(mnMlog M)fast Fourier transform (FFT)technique [15] [52] and an

.Q(M min(m,n)mn) singular value decomposition (SVD) algorithm are used to com-

pute the factorization [53]

lt

A = (_-M _ Zm) t D (_'M _) I.) (5,5)

-- (_'M _) Ira) Jf UDSDV 5 (_'M Q In] (5.6)

"- USD V? (5.7)

= us, vr (5.s)
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where _-M is a normalized M x M discrete Fourier operator matrix, I,n is an m x m

identity matrix, and In is an n x n identity matrix. U and V are unitary matrices ,'

whose columns are respectively the left and right singular vectors of A. a S is a

generalized diagonal matrix containing tile singular values of A. The operator t

is conjugate transpose and ® is the outer product operation. A proof is given in

sectvm A.2.

5.2.1 Implementation

The C language function call

zbcsvdc (A, M, m, n, S, UD, V D, compute_uv, status)

is used to compute the singular value decomposition of A that is shown in equa-

tion 5.6. The source code for a sequential implementation is given in section B.3.

Each of the rnn discrete Fourier transforms of equation 5.6 can be computed

independently; i.e., each sum does not need the result or input of another sum. The

SVD of the blocks of D also do not have input/output dependencies with other blocks

and can be computed without explicit synchronization. Therefore, parallel processing

implementations of the block circulant singular value decomposition algorithm are

possible.

Two parallel versions of the BCSVD algorithm were implemented and tested on

a Cray-2 supercomputer using macrotasks [53]. The ®(M log M) grain size of FFT

aThe matrix A of equation 5.4 is more general than the one defined by equation 2.26 because
tile matrix in equation 5.4 has rectangular blocks and complex elements. Also, the symbols U, V,
and 8' have different meanings than ill equation 2.7.
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tasks is extremely small. For the example, it takes about 0.45 ms [54] [55]. This is

'_ comparable to the 0.31 ms necessary to synchronize with a server process and is much

smaller than the 2.63 ms necessary to create a new process. It is thus advantageous

to increase the grain size of FFT tasks by computing m FFTs per task. The resulting

granularity of ®(mM log M) is about 29 ms. The task granularity of an SVD process

is _(min(m,n)mn) which is 428 ms for the example problem.

A prescheduled algorithm was impler ented by cre:_ting one process for each of

' the n FFT tasks and another processes for each of the M SVD tasks. The parent

task starts k processes with either an FFT or an SVD task. All of the k processes run

to completion before another k processes are started. This method is very easy to

implement because all synchrcnization is implicit in the fork and join like paradigm

[56].

To overcome the process creation overhead, a self-scheduling algorithm was con-

structed [57]. This method is more complex than the prescheduled algorithm but has

a. smaller time overhead. It requires explicit synchronization between server processes

and a task manager, k server processes are created and each waits for a start signal

after initial setup of local state information. After receiving the start signal from the

task manager, a server checks what part of the matrix it is to work on next. When

finished the server sends a ready signal to the hibernating manager. The manager=

, then reassigns each of the server processes until the task queue is empty.
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5.2.2 Results

Figure 5.2 shows the computation time for different, sizes of input matrices. The

speedup of the algorithm, shown in figure 5.3, increases as the size of M, m, and n

are increased. The prescheduled algorithm is faster for very small matrix sizes because

the self-scheduled algorithm server processes have a larger startup overhead than a

process started by the prescheduled algorithm. The self-scheduled algorithna is faster

for medium sized problems that have small grain sizes but the preschedc!ed algorithm

again approaches the speedup of self-scheduling as the problem size increases.

The efficiency, shown in figure 5.4, does not approach unity as quickly as expected.

This might be attributed to the timesharing scheduling algorithm used by the CTSS

operating system and not to synchronization overhead because the overhead, shown

in table 5.1, is less than 1.0% for M,, m, and n larger than 64 [58] [59]. It, was not.

possible to verify this conjecture by using the machine without other users present.

M = m = n prescheduled self-scheduled
overhead (ms) _, overhead overhead (ms % overhead

4 25.7 29.9
8 46.8 42.77 32.3 5.09

16 80.2 10.89 37.3 1.29
32 155.7 2.66 47.2 0.32
64 306.8 0.61 67.1 0.07

Table 5.1" Synchronization ov,erhead versus problem size.
s

The process creation time was found to ge 2.63 ms. Task synchronization in the,

self-scheduling algorithm was 0.31 ms. A typical procedure call was measured to take

4.7 ps. Self-scheduling has less time overhead than prescheduling but is still 66 times

_2



91

Execution time versus Matrix size
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Multitasking efficiency versus Matrix size
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more expensivethan a procedure invocation.

Data memory usage and overhead is shown in table 5.2, Very little memory is

necessary for the synchronization of tasks, Each of the processes needs some local

working storage for computing FFTs and SVDs. Code memory usage and overhead

is shown in table 5.3, The code space sharing was small due to a problem in the

Fortran compiler that made code replication necessary.

M = m = n sequential prescheduled sel5scheduled
usage (kB) usage kB i % overhead usage (kB) % overhead,,

8 112 409 265,2 475 324 1
16 240 533 130.4 604 151.7
32 1648 1946 18.1 1948 18.2
64 12400 12698 2,4 12888 3.9

_--

Table 5.2: Data memory usage and overhead versus problem size with four tasks.

k sequential prescheduled self-scheduled
usage (kB) usage (kB) % overhead usage (kB) % overhead

1 404 450 11.4 447 10.6
2 404 489 21.0 492 21.8
3 404 530 31.1 537 32.9
4 404 570 41.1 582 44.1

Table 5.3: Code memory usage and overhead versus number of active tasks.

¥

Dynamic memory allocation costs arc b_ically independent of the block size be-

ing allocated for small blocks. The cost depends almost entirely on the number of

blocks being allocated. Each block takes approximately 0.68 ms to allocate. The

server processes of the self-scheduling algorithnq avoid this overhead by reusing their

local storage during each a,ctivation. The prescheduling algorithm originally allocated
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local storage blocks within each child process. This was deemed to be unsatisfactory

, and another parameter with working storage was passed to each child to avoid the

overhead of dynamic memory allocation.
v,

The BCSVD algorithm p:'ovides orders of magnitude speedup by utilizing the

circulant structure of matrices. A further speedup was obtained using macrotasking.

This does not reduce central processing unit charges because time on all processors is

billed to the job [59]. However, a substantial savings in memory charges is achieved

because the program memory residency time is reduced by the multiprocessor speedup

[60] [61]. For typical problems M, m, and n are approximately 256. This requires

approximately 800 megabytes of memory which can be quite costly to use.

Self-scheduling is useful when the task granularity is small. As the task granularity

increases, prescheduling overhead becomes less important. Prescheduling is much

easier to implement and debug. There are no explicit synchronizations to consider

since the operating system handles the process allocation and scheduling. The parent

only has to wait for the operating system tosignal that the child has finished. Self-

scheduling needs explicit synchronization with the server tasks and is therefore more

difficult to implement and debug.

The Fortran compiler does not allocate local variables on the stack properly. It
V

puts some local variables into static storage. Thus, code sharing is not possible for

the Fortran subroutines. Each process must have a separate copy of the code andlD

local data space. This was done by creating c_,pies of the subroutines and giving

each copy a unique name space by appending the process number to the name of the

subroutine and all of' its descendants.



Chapter 6

Summary and Conclusion

The work for my dissertation has focused on novel configuration space models (CSM)

for processing multidimensional signals acquired using modern tomography systems

that have an anisotropic or spatially variant response function. A motivation for the

project is accurate estimation of radiotracer distributions from emission tomograph

data. Accurate estimates are necessary for use in quantitative models of physiologi-

cally important processes such as the in vivo density of neuroreceptors. My research

of algorithms and architectures for reconstructing tomographic data has three distinct

parts: identification, estimation, and optimization.

An identification procedure is performed where the response function of the tomo-
t

graph is found using a combination of deterministic and stochastic simulations and

measured point response data. Because the model assumes the detection process has

a discrete domain and the original distribution has a continuous domain, the model

is easily adapted to include a variety' of physical effects found in positron t.omography

96
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(PET), single photon emission computed tomography (SPECT), and nuclear mag-

, netic resonance imaging (NMRI). For PET, the response function model can include

radioactive decay, positron range, non-collinearity of photons, sampling geometry, at-

tenuation, inter-crystal scatter, crystal penetration, and detection efficiency. Several

of these phenomena lead to position dependent resolution.

An estimator for the unknown spatial distribution is formulated using the known

response function and the statistical characteristics of the acquired data. Generalized

pixel least squares, normal maximum likelihood, and Poisson maximum likelihood

estimators and the corresponding covariance have been formulated to compensate for

a spatially variant response. Reconstruction algorithms based on the spatially variant

model have reduced bias when compared to spatially invariant methods. While bias

is reduced by these estimators, undesirable statistical and systematic fluctuations due

to pixelization effects can result. To reduce these fluctuations, an algorithm that uses

a orthonormal pixel basis decomposition of the unknown spatial distribution was de-

veloped. The pixel basis functions are chosen from the right singular functions of the

system response operator and therefore are fundamental to a particular tomography

system. With this pixel basis, systematic error is zero and statistical error can be re-

duced by filtering the singular values of the impulse response function as evidenced by

analytical calculations and simulation studies. Additionally, these simulation studies

• suggest the existence of a resolution threshold beyond which improvements in resolu-

tion are achieved only with a large increase in image noise. The convergence rate and

the computation time for each iteration of iterative algorithms can also be adjusted

: by weighting the singular values without adding systematic error which is in contrast
_
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to square and polar pixel multigrid approaches. However, some estimator bi_ will

usually result for this suboptimal estiinator, Comput, ation burden is sometimes re- ,

duced when using the orthonormal natural pixel basis because symmetries in the data
Q

acquisition process are preserved. For some systems, further computational efficiency

can be achieved using suboptimal separable estimators.

The third part, of the work is to optimize the 'Jystem so better estimates of the

unknown spatial distribution will result. The criterion used is to minimize the norm

of the covariance matrix while keeping the estimator unbiased, This is typically done

by simulating a change in one of the parameters used to identify the system respoI,se

function and evaluating the criterion; closed form solutions are not, usually possible.

In the orthonormal pixel basis described previously, the norm is readily computed

from the singular values of the projection normal matrix, t:,br emission tomogra-

phy, the system parameters that are most easily changed are the angular and lateral

sampling density. The important result for parallel sampling with equally spaced

angles and bins is that for spatial resolutions coarser than a well defined resolution

threshold, increasing the number of angles sampled will decrease the noise in images

reconstructed from data acquired by a system that has more angular samples than

the number of lateral samples. For resolutions finer them the resolution threshold,

very little improvement in resolution is obtained without a large increase image noise.

By increasing the number of lateral projection bins, resolution and reconstructed im-

age noise are always improved, However, for any system configuration, there exists

a resolution threshold beyond which improvements in resolution are achieved only

with a large increase in image noise. Furthermore, the number of generalized pixels
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corresponding to that resolution threshold m'e far fewer than tile total number of

, projection measurements. In fact from moment and singular value analysis, the num-

ber of generalized pixels is approximately equal to one-half the number of projection
o

measurements.

The identification, estimation, and optimization methods described above all re-

quire the solution of large systems of linem' and non'linear equations. For example,

the Donner 600-Crystal Positron Tomograph takes 120,200 projection measurements

and the resulting linear system is 120,200 x 120,200, The computational complex.

ity of the CSM has led to the use of a distributed computing environment in whi,:h

workstations are used to analyze results from o_lr identification, estimation, and opti-

mization algorithms running on supercomputers, Several of the algorithms have been

implemented using large grain parallel processing and also remote procedure calls,

The block circulant singular value decomposition (BCSVD) algorithm uses dis-

crete Fourier transforms to rotate the blocks of a block circulant matrix into block

diagonal form. Each block on the diagonal is then factored using a general singu-

lar value decomposition (SVD) algorithm. The BCSVD algorithm provides orders of

m_gnitude speedup over general SVD algorithms, I%r a 642 x 642 block circulant ma-

trix, computation time decreased from 12 hours to 23 seconds on a Cray-2. Because

the BCSVD algorithm is easy to partition, a further speedup can be achieved using

, parallel processing. The orthogonality properties of multidimensional fast. Fourier

transforms (FFT) allows the FFT portion of the algorithm to partition into macro-

tasks. The SVD of the blocks of the block diagonal matrix can be computed indepen-

dently and a macrotask can be assigned to each SVD. A multiprocessor speedup of
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3,06 was achieved for prescheduling and for self-scheduling a multiprocessor speedup

of 3,25 was observed using four processors on a Cray-2, Relative time overhead was

0,5% for the prescheduled algorithm and 0,07% for the self-scheduled algorithm, Rel-

atlve memory overhead was 4% for both cases, Self-scheduling is useful when the

task granularity is small, As the task granularity increases, prescheduling overhead

becomes less important, The prescheduled algorithm is satisfactory for most emission

tomography problems because all the dimensions of the matrices are greater than 64

and the task granularity will therefore be large when compared to the synchronization

overhead,

Multitasking the block circulant singular value decomposition algorithm decreases

overall computation costs by reducing the time large sections of memory are in use.

Little or no gain comes from reduced central processing unit charges since processing

time on all processors is charged to a job.
l

The data acquisition model presented in this work provides a mathematical frame-

work to incorporate detailed knowledge about the response function of a tomography

system and the statistical properties of the signals acquired using that, system. Us-

ing this mathematical model, it is easy to represent, systems of varying complexity;

e.g., simple spatially invariant systems, systems with spatially variant response that

have symmetries, and the most general linear case, a spatially variant system with-

out, symmetry. The novel singular value decomposition of the projection formation=

operator used in the data acquisition model is a powerful mathematical description

of a tomography system and is fundamental to the identification, estimation, and
_
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Projection formation

p=F,b

. Projection formation singular value decomposition _

F = US,V T '_

,P

Projection normal matrix

A =. F,F T

"- US ' sTu T

Generalized pixel representation

b,_ BTc

Orthonormal natural plxel basis
1

Generalized pixel least squares estimation

e2 = (s . vT , BT) + UTp

._ "" (,_q" V T' BT) + U T._.,_pv (B. V. sT) +

Orthonormal natural pixel filtered singular value least squares estimation
1

1 1

= v.gv(s g)+, UTp
Variance bound

' p

[[_[[o = mini (S. ST)ii

. Block circulant singular value decomposition

A = (.T'M (")Im) _ UDS;DV; (_M @ In)

Table 6,1' Summary of major mathematical results,
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optimization methods developed here. While the results presented for several repre-

sentative tomography systems are not inconsequential, the mathematical techniques,

which are summarized in table 6. I, used to obtain these results are the primary contri-

bution from this work. These techniques should find the most utility in modeling the

spatial sampling of each unique tomograph. Extensions of the model to include sam-

pling in three or more spatial dimensions as well as time should be straightforward;

but,, in practice, higher dimensional applications may be limited by computational

tractability without using special computing technology.

Because the data acquisition process is represented as a linear map from a con-

tinuous domain object space to a discrete domain observation space, it is a more

physically realistic model of many systems than approximations using continuous-

continuous maps or discrete-discrete maps. Thus, the validity of many results that

were obtained using these approximations, e.g., angular and laterm sampling density

irl emission tomography, may need to be reexamined using the new, more robust

techniques presented in this work. While the verification of old results is worthwhile,

it. is the unanswered questions such as the efficacy of iterative algorithms and stop-

ping rules, the formulation of Bayesian estimators that use basis functions in the null

space of the projection formation operator, the representation of object functions that

W

are convex cones, and the efficiency of algorithm implementations that. provide chal-

lenging new research opportunities for the application of the mathematical methods

resulting from this thesis.



Bibliography

[1] Budinger TF, GT Gullberg, and RH Huesman. Emission computed tomography.

In Herman GT, editor, Image Reconstruction from Projections, pages 147-246,

Springer-Verlag, New York, NY, 1979.

[2] Huesrnan Rtt, EM Salmeron, and JR Baker. Compensation for crystal penetra-

tion in high resolution positron tomography. IEEE Trans Nucl Sci, NS-36"1100-

1107, 1989.

[3] Radon J. (lber die bestimmung von funktionen durch ihre integralwerte lgngs

gewisser mannig_altigkeiter. Berichte Sd'chsische Akadernie der Wissenschaflen,

69:262-267, 1917.

[4] Cormack AM. Representation of a function by its line integrals, with some

, radiological applications, d Appl Phys, 34(9):2722-2727, 1963.

[5] Cormack AM. Representation of a function by its line integrals, with some

radiological applications II. J Appl Phys, 35(10):2908-2913, 1964.

[6] Gullberg GT and TF Budinger. The use of filtering methods to compensate for

constant attenuation in single-photon emission computed tomography. 1981.

103



104

[7] Tretiak O and C Metz. The exponential Radon transtbrm. SIAM J Appl Math,

39(2)'341-354, 1980.

[8] O Y. An ECAT reconstruction method which corrects for attenuation and de-

tector response. IEEE Trans Nucl Sci, N$-30(1):632--635, 1983.

[9] Ramachandran GN and AV Lakshminarayanan. Three-dimensional reconstruc-

tion from radiographs and electron micrographs: application of convolutions

instead of Fourier transforms. Proc Nat Acad Sci, 68(9):2236-2240, 1971.

[10] Chang L. A method for attenuation correction in radionuclide computed tomog-

raphy. IEEE Trans Nucl Sci, N$-25(1):638-643, 1978.

[11] Deans SR. The Radon Transform and some of its Applications. John Wiley

Sons, New York, 1983.

[12], Huesman RH, GT Gullberg, WL Greenberg, and TF Budinger. User's Manual:

Donner Algorithms for Reconstruction Tomography. Technical Report PUB-214,

LBL, 1977.

[13] Hsieh RC and WG Wee. On methods of three-dimensional reconstruction from a

set. of radioisotope scintigrams. IEEE Trans Systems, Man, Cybernetics, SMC-
l"

6(12):854--862, 1976.

[14] Wood SL. A system theoretic approach to image reconstruction. May 1978.

Ph.D. Thesis.



105

[15] Brigham EO. The Fast Fourier Transform. Prentice, Hall, Englewood Cliffs, NJ,

,, 1974.

[16] Mart RB. On the reconstruction of a function on a circular domain from a,m

sampling of its line integrals. J Math Anal Appl, 45:357-374, 1974.

[17] Budinger TF and GT Gullberg. Three-dimensional reconstruction in nuclear

medicine emission imaging. IEEE Trans Nucl Sci, N$-21:2-20, 1974.

[18] Strang G. Linear Algebra and Its Applications. Academic Press, Orlando, FL,

1980.

[19] Goitein M. Three-dimensional density reconstruction from a series of two-.

dimensional projections. Nucl Instrum Meth, 101'509-518, 1972.

[20] Gordon R, R Bender, and GT Herman. Algebraic reconstruction techniques

(ART) for three-dimensiona,1 electron microscopy and x-ray photography. J Theor

Biol, 29:471-481, 1970.

[21] Shepp LA and Y Vardi. Maximum likelihood reconstruction in positron emission

tomography. IEEE Trans Med Imaq, 1:910-913, 1982.

, [22] Lange I,: and RE Carson. EM reconstruction algorithms for emission and trans-

mission tomography. J CAT, 8'302-316, 1984.
sm,

[2:3] Censor Y. Finite series expansion reconstruction methods. Pr'oc IEEE,

71(3):409-419, 1983.



106

[24] Floyd CE, RJ Jaszczak, and RE Coleman. Image resampling o11a cylindrical

sector grid. IEEE Trans Med Imaging, MI-5(3):128-131, 1986. *

[25] Oppenheim BE. More accurate algorithms for iterative 3-dimensional recon-

struction. IEEE Trans Nucl Sci, NS-21:72-77, 1974.

[26] Trussell HJ, H Orun-Ozturk, and MR Civanlar. Errors in reprojection methods

in computerized tomography. IEEE Trans Med Imaging, MI-6:220-227, 1987.

[27] Buonocore MH, WR Brody, _d A Macovski. A natural pixel decomposition

for two dimensional image reconstruction. IEEE Trans Biomed Eng, BME-

28(2):69-78, 1981.

[28] Snyder DL and MI Miller. The use of sieves to stabilize images produced with

the EM algorithm for emission tomography. IEEE Trans Nucl Sci, NS-32:3864--

3872, 1985.

[29] Snyder DL, MI Miller, LJ Thomas, and DG Politte. Noise and edge artifacts in

maximum-likelihood reconstructions for emission tomography. IEEE Trans Med

Imaging, MI-6:223-238, 1987.

[30] Dernpster AP, NM Laird, and DB Rubin. Maximum likelihood from incomplete
F

data via the EM algorithm. J Roy StatSoc, 39'1-38, 1977.

&

[31] Lewitt RM and G Muehllehner. Accelerated iterative reconstruction for positron

emission tomography based on the EM algorithm for maximum likelihood esti-

mation. IEEE Trans Med Imaging, MI-5(1)' 16-22, 1986,



107

[32] Hanson KM, Bayesian and related methods in image reconstruction from in-

,, complete data. In Stark H, editor, Image. Recovery: Theory and Application,

pages 79-123, Academic Press, Orlmldo, 1987,

[33] Levitan E and GT Herman. A maximum a posteriori probability expectation

algorithm for image reconstruction in emission tomography. IEEE Trans Med

Imaging, MI-6:185-192, 1987.
t'

[34]Leahy R, TJ Hebert, and R Lee. Applica,tions of Mm'kov random fields in medical

imaging. Prog Clin Biol Res, 363:1-14, 1991.

[35] Rangayyan R, AP Dhawan, and R Gordon. Algorithms for limited-view com-

puted tomography: An annotated bibliography and a challenge. Appl Opt,

24(23)'4000-4012, 1985.

[36] Andrews HC and BC Hunt. Digital Image Restoration. Prentice-Hall, Englewood

Cliffs, NJ, 1977.

[37] Baker JR and TF Budinger. Advanced models for medical imaging. In High

Speed Computing: Scientific Applications and Algorithm Design, pages 221-226,

Urbana, IL, 1987.

• [38] Luenberger DG. Optimization by vector space methods. In Howard RA, editor,

' Decision and Control, John Wiley and Sons, Inc., New York, 1969.

[39] Huesman RH and BM Mazoyer. Kinetic data, analysis with a noisy input function.

Phys Med Bio, 32(12):1569-1579, 1987.



' 108
i

[40] Moore EH. Bull Amer Math Soc; 26:394-.395, 1920.

[41] Penrose R. A generalized inverse for matrices, Cambridge Philosophical Soc,

51:406-413, 1955.

[42] Nassi M, WR, Brody, BP Medoff, and A Macovski. Iterative reconstruction-

reprojection: an algorithm for limited data cardiac-computed tomography. LF,EE

Trans Biomed Eng, BME-29(5):333-341, 1982,

[43]Kim JH, KY Kwak, SB Park, and ZH Cho. Projection space iteration

reconstruction-reprojection. IEEE Trans Med Imaging, MI-4(3):139-143, 1985,

[44] Bi&el PJ and KA Doksum. Mathematical statistics: Basic ideas and selected

topics. In Lehmann EL, editor, Holden-Day Series in, Probability and Statistics,

Holden-Day, San Francisco, 1977.

[45] Haber SF, SE Derenzo, and DC Uber, Application of mathematical remova.l qf

positron range blurring in positron emission tomogra,phy. IEEE Tta'ns Nucl Zoci,

9 "'£NS-37(3)' 1,,93-1299, 1990

[46] Knuth DE. The Art qf Computer Pr'ogramming. Volume 2, Addison Wesley,

Reading, MA, 1981.

[47] Derenzo SE, RH Huesman, JL Cahoon, A Geyer, DC Uber, T Vuletich, and TF
&

Budinger. Initial results from the Donner 600-crystal tomograph. IEEE Trans

Nucl Sci, NS-34(1):321-325, 1987.



109

[48] Ein-Gal M, D Rosenfeld, and A Macovski, The consistency of the shadow: An

. approach t,o preprocessing in computerized tomography. In Gordon R., editor,

Image PT'ocessing for 2-D and $-D Reconstruction ft'ore Projections: Theory and

PT'actice in Medicine and the Physical Sciences, pages WBS.I-WB5.4, Optical

Society of America, St,anford, CA, 1975.

[49] Huesman RH. The effects of a finite number of projection angles and finit,e lat,eral

sampling of projections on the propagation of statistical errors in transverse

section reconstruction. Physics in Medicine and Biology, 22(3):511-521, 1977.

[50] Kernighan BW and DM Ritchie. The C Progr'ammin9 LaTzguage. Prentice Hall,

Englewood Cliffs, 1978.

[51] Knuth DE. The Art of Computer Programming. Volume 1, Addison Wesley,

Reading, MA, 1981.

[52] Bracewell RN. Fourier techniques in two dimensions. In Price JR,, editor, FmLrier

'Techniques and Applications, pages 45-71, Plenum Press, New York, 1985.

[53] Baker JR. Macrotasking the singular value decomposition of block circulant

matrices on the Cray-2. In Proceedings of Supercomputin9 '89, pages 243-247,

' Reno, NV, 1989,

" [54] Buneman O. Vector FFT for the r, _' _,t_,ra_-z. NMFECC' Buffer, 10(11):10-11, 1986.

[55] Despain AM. Very fast Fourier transform algorithms for hardware implementa-

tion. IEEE Tr(msactio,,s o7_C'ompT_ters, C-28(5):333-341, 1979.



110

[56] Mundle DA and DA Fisher, Para,llel processing in Ada, (.omt_l, tcr, 19(8):20--25,

1986,

[57] Quinn MJ. Designing EJficient Algo'PithmsfoT' Paraild ComputeT,:, McGra,w-Hill, ,

New York, NY, 1987.

[58] Mirin A, Farallehzat, lon of a 3-d MHD code, part I: met,hodology a,nd results,

NMFECC' Buffer, 11(7):14-:16, 1987.

[59] Mirin A, Parallelization of a 3-d MHD code, part. II: analysis of mult,iprocessing

efficiency on the Cray-2, NMFECC BuJJ'er, 11(8):11-13, 1987,

[60] Patton PC. Multiprocessors: _rchit, ect,ures m_d applica,tions, 6'omp,Lt,eP,

18(6):29-40, 1985.

[{31] Gelernter D. Domesticating parallelism. Computer, 19(8):12-16, 1986.



Appendix A

Singular Value Decomposition

.A.1 Projection Formation Singular Value Decom-

position

The projection normal matrix is symmetric and positive semidefinite because for an

arbitrary projection vector, p,

®-1 I(-1 ®-1 K-1

pTAp -- E E po,k, E E Ao,k,okpok (A,1)
0I=O kI=O 0=0 k=o

®-1 I(-1 ®-1 K.-1

, -- _ _.7_,Po'k'_. __.,/RdyfRdxfo'k'(x,Y) fok(x,Y)Pok (A,2)01=0 k'=0 0=0 k=O

®-1 K-1 ®-1 K-1

• 0I=O k I=O 0:=0 k=O

0=0 k=O

>__ 0, (A,5)
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Since A is positive senlideflnite, the eigenva,lues, 5,5 '_'', are rlori-nega,tive, [,el, tile

eigenvalues be ordered such t,lmt

0,0 -- -- r- l',r-1

> 0= (S',,9 T) = .,, = (S',S 'r) , (A,6)-- - r,,' ®N- 1,OI(- 1

Also, let, U1 be the submatrix of ortllonormal eigenvectors corresponding t,o tile

non-zero eigen,,_lues, (S, S T) (S", S T)0,0 '_ ' ' r-1,,,-1' a,nd U,, be the submt_trlx of or-

thonormal eigenvectors corresponding t,o the zero eigenvalues,

[ ]U - U, m2 and (A,7)

S'. S T [ S'_, £,T 0= " (A,8)

k o &. sr

&,S r oi
= . (A.9)

0 0

Therefore,

u",'.._u, = s,.,?_', (A,_O)

U_'.4U,2 = 0 and consequently (A,11)

u_'.F = o, (A,12)

(,boos{. lq so
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mad choose V2 such tha,t

V = [V1 1/_] and (A,14)

V, vT = _, 1,I1T 0 (A, 15)

= _(,_"- x)5(y'- y), (A,16)

[ [ ]UTF , V = Ua U2 F, 1/1 1,'_. (A,17)

_ [NTuT F'[V1 l/;.,] (A,18)

U_'F.I,q U_'F,14
= (A,19)

uTP, v, U_F,_,5

5'1,VI, V_ S_, V_T , _4 ]

= ] (i,2,0). 0, _q 0, _4

$1 0
,, = (A,21)

0 0

= S, (A,22)

Finally, the singular value decomposition of F is
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t

F = US', V T, (A.23)

A.2 Block Circulant Singular Value Decomposi-

tion

Let a A''Lbe the p, q element of the K, L block of the matrix A in equa,tion 5.4, Since. -p,q

A is block circulant,

AK,L __ AO,L.-.Ii+M'>,_ .... v,q (A,24)

= A_,_ (A,2_)

anti it, can be decomposed as follows

A K,L _ 1 M- I e -ud'('_ 1 M-1

= v=0

1 ^4 - 1 M- 1
e *uh "lfr e -wL_-' *_ '_

,,.,=0 _ E ",% (A.2S)Lt=O

1 M -- 1 M - 1.2,r 1 2_r

= _--- u_O e -zuh"lfr-- v=-O

1 M- _ M-1
_,.I,"_1,/_ ,,.,=o _ E _-'_'++Ao.L'-,,"+M""v,,_ (A,27)

I/=0

1 M-_ m-1

v-'O

1 M- 1 2M+K _- 1

X/_ _ e""K"_ 1 u,(L'+A".-M)-_ 40,L',,-,::o _/_ E _='- (A,2S)"--p,q
LI=KI+M
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M- _ M-

M-1 M-1

K,:o _ L'=o_-_ e-"L"_ _p,qA°'L' (A,29)

i M-_ M-_

_6_, _ I M-I-"'L'_A°'L' (A,30)
Ll=O

1 M-_ M-

- _ ,,=o_ e-"a_""_'_I __] e'_c_ 6'""--,,,qD"'" (A,31)v"O'

1 M-1 M-1 '

u_=oe_mK _,, 1 '_.6_, Do,u_t,
- ^w._ _ e'vC_ ,_' (A,32),/i7 v3-7 'tJ:O

Thus, in matrix form, the block circulant decomposition of A is

A = (YM ® I_) t UDSDVtD (.T'MQ I.), (A.33)



Appendix B

Software and Documentation

B.1 orthols.c

/*

** Header: _(#) orthols.c 1.5 91/10/29 16:12:21 baker penguin UCB/LBL
**

** Name: orthols

** Purpose: The subroutine orthols reconstructs the array image
** using the orthonormal natural pixels least squares method.

** Input parameters:

** prj entry point of projector

** bck entry point of backprojector
** fftsvd entry point of singular value decomposition routine
** min_sing minimum singular value to be used in the solution
** int_fac integration factor

** Output parameters:

** imge orthonormal least squares solution

** inmge [parm. ipar.ndimu] [parm. ipar.ndimu]

** Dependencies:

** libreclbl.a
** cemesg error message routine
** clgtxt print text banner
** memst memory management
** rchek initialization check
** orthobck

** orthonormal natural pixels backprojection
** orthosquare
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** orthonormal natural pixels <-> square pixels conversion

*/
l

#include <stdio. h>
#include <errno. h>

' #include <sys/types .h>
#include "error oh"

#include "math. h"

#include "reclbl.h"

int

orthols (image, prj, bck, fftsvd, min_sing, int_fac)

double *image ;
inr (*prj) ();
inr (*bck) ();
inr (*fftsvd) ();

double *min_sing;
inr *inr_f ac ;

{
static char SccsId[] = "©(#) orthols.c 1.5 91/10/29 16:12:21

baker penguin UCB/LBL";

static inr name[3 = { 'E' 'N' 'D' ' ', J P ,

'0' 'K' 'T' 'H' '0' 'L' 'S', J P D J J

};

double *proj, *proj_pointer;
double *error, *error_pointer ;
double *ortho_image, *identity ;
double *u, *ssr;

double min_sst ;
double sum;

inr ,ix_index, proj_index, angle_index;
inr number_of_proj, size;
inr maxfw, length;

inr status ;

inr one = I, two = 2;

** Check that setup has been called.

if (setchk()< O)
cemesg(_one, name[4] , &one) ;

length = 7;
clgtxt (,_n.ame[4], &length) ;

printf ("\n\n\n\n PARAMETERS FOR SUBROUTINE ORTHOLSkn\n") ;
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printf (" DESCKIPTION\n" );
printf("MINSING - 7,10.3e MINIMUM SINGULAK VALUE\n",

*min_sing) ; }
printf ("INTFAC -- _,Td INTEGKATION FACTOKXn",

*int_fac) ;

/* ,,
** Check the backprojector and projector to see if they match.
*/
rchek(bck, prj, _one);

/*
** Compute maximum storage size needed.
*/
number_of_pro3 = trgcom.nang * trgcom.kdimu;
size = number_of_proj * number_of_proj ;

/*
** Allocate dynamic memory
*/
if ((u = (double *) malloc(size * sizeof(double))

) == NULL)
Perror("unable to allocate u");

if ((set = (double "1 malloc(number_of_proj * sizeof(double))
) == NULL)
Perror("unable to allocate ssr");

if ((proj = (double *) malloc(number_of_proj * sizeof(double))
) == NULL)
Perror("unable to allocate proj");

if ((error = (double *) malloc(number_of,proj * sizeof (double))
) == NULL)

Perror("unable to allocate error");

if ((ortho_image = (double ,) malloc(number_of_proj * sizeof(double))
) == NULL)

Perror("unable to allocate ortho_image");
if ((identity = (double *) malloc(number_of_proj * sizeof(double))

) == NULL)

Perror("unable to allocate identity");

/*
** Get the right singular vectors and singular values of
** the projection normal matrix.
*/
status = (*fftsvd) (u, ssr, pr3, bck, int fac) ;

/*
** Eliminate singular values less than the minimum. "
*/
'min_sst = MAX(O.O, *min_sing) * *min_sing;
for (proj_index = O; proj_index < number_of_proj; proj_index++)
{

if (sst[proj_index] < min_sst)
set [proj_index3 = 0.0;

}

/,
** Get projection data and errors.
*/
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proj_pointer = proj ;
error_pointer = error;
for (angle_index = I; angle_index <= trgcom.nang; angle_index++)

gettu_(_angle_index, proj_pointer, error_pointer) ;
proj_pointer += trgcom.kdimu;
error_pointer += trgcom.kdimu;

/*
•* Backproject from projections to orthogonal natural pixels.
•_ Normalization is incorporated in the singular value filter.

for (pix_index = O; pix_index < number_of_proj; pix_index++)
identity [pix_index] = I.0 ;

orthobck(ortho_i,m_ge, proj, u, identity) ;

•* Singular value filter. Singular values smaller than the
•_ minimum have already been zeroed.

for (pix_index = O; pix_index < number_of_proj; pix_index++)

if (sst[pix_index] > 0.0)

ortho_image[pix_index] /= ssr [pix_index] ;
else

ortho_image [pix_index] = 0.0 ;

if (prtcom.tprint [.'3]== TRUE)
for (pix_index = O; pix_index < number_of_proj; pix_index++)

if (ssr [pix_index] > 0.0)
printf ("ssr [7.4d]'+ = 7.18.lOe\n", pix_index, I.O/ssr [pix_index] );

else

printf ("ssr [7.4d]'+ = 7.18.lOe\n", pix_index, O. O) ;

/,
•* Convert from orthogonal natural to square pixels.

•* Normalization is incorporated in the singular value filter.

orthosquare(ortho_image, image, prj, bck, u, identity, _one);

•_ Free dynamic memory.

' free (u) ;
free (ssr) ;

free (proj)
free (errori ;

free (ortho_image) ;

length = -I;
memst(_maxfw, _length) ;
printf("\n\n MAXIMb_ SIZE OF BLANK COMMON THUS FAR=7,Td ", maxfw) ;
printf ("FLOATING POINT WORDS. \n") ;
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** Output trailer.
,/
length = 11;

clgtxt(_name[O], _length);

/,

** Return SVD status.
,/
return(status);

}

B.2 fftsvd.c
/*
** Header: ©(#) fftsvd,c 1,5 91/10/29 16:08:26 baker penguin UCB/LBL
**

** Name: fftsvd
**

** Purpose: Compute the singular value decomposition of the

** projection normal matrix generated using the backprojector
** bck and the projector prj.

** Input parameters:

** prj entry point of projector

** bck entry point of backprojector
** int_fac integration factor

** Output parameters:

** u left singular vectors of projection normal matrix
** u[parm. ipar. nang] [pan.. ipar.kdimu]

** [parm. ipar. nang] [parm.ipar. kdimu]
** ssr singular values of projection normal matrix

** ssr [parm. ipar.nang] [parm. ipar. kdimu]

** Dependencies:

** libreclbl.a

** setup
** fftgen
** liblinpack.a
** dsvdc

*/

#include <stdio.h>
#include <errno.h>
#include "error.h"

#include "math.h"

#include "linpack.h"
#include "reclbl.h"
#include "ftf.h"
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inr

fftsvd (u, sst, prj, bck, inr_fat)l

double *u;
double *ssr;

int (*prj) ();
" ,int (*bck)();

inr *inr_fat;

{
static char SccsId[] = "©(#) fftsvd.c 1.5 91/10/29 16:08:26

baker penguin UCB/LBL";

double *fft;

double *v;

double *e, *work;

double *angles;

double phantom_pwid, image_pwid;

int lfr_size, f_rows, f_cols;
inr ft_rows;

Template *template;

int phantom_pixels, image_pixels;
int ph_ntom_dim, image_dim;
inr munber_of_bins;

inr angle_index;
inr bin_index;
int offset;

inr compute_uv;

inr status;
inr one = I, zero = O;

/,

** Compute maximum storage sizes.
*/
image_dim = ptrcom.ndimu;

image_pwid = ptrcom.pwid;
image pixels = image_dim * image_dim;i

phantom_dim = image_dim * *int_fac;
phantom_pwid = image,pwid / *inr_fat;

,j phantom_pixels = phantom_dim * phantom_dim;

number_of_bins = trgcom.nang • trgcom.kdimu;

f_rows = number_of_bins;

f_cols = phantom_pixels;
frf_size = f_rows * f_rows;

/*
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** Compute projection usage template.
,/
iT ((template = (Template *) malloc(trgcom.nang * sizeof (Template))

) == NULL)
Perror("unab].e to allocate template") ;

if ((template[O] ,data = (int *) malloc(number_of_bins * sizeof(int))
) == NULL)
Perror("unable to allocate template data");

offset = O;

for (angle.index = O; angle_index < trgcom,nang; angle_index++)
{

templa,te[angle_index] ,data = template[O] .data + offset;

template [angle_index] .count = trgcom, kdimu;
Tor (bin_index = O; bin_index < trgcom,kdimu; bin_index++)

template [angle_index] .data[bin_index] = bin_index ;

offset += trgcom,kdimu;
}

/,
** Allocate dynamic memory.
*/
if ((fTr = (double *) malloc(fft_size * sizeof(double))) == NULL)

Perror("unable to allocate fft");

lT ((angles = (double *)malloc(trgcom.nang * sizeof(double))) == NULL)
PerrOr("unable to allocate angles");

/*
** Compute projection normal matrix, F , F't.
*/
parm, ipar, ndimu = phantom_dim;
parm. par. pwid = phantom_pwid ;
setup(_qoarm.ipar, _parm.par, angles);

fftgen(fft, template, pr], bck);

• pax_n,ipar.ndimu = image_dim;
paxln,par. pwid = image_pwid ;
setup(kparm.ipar, _parm.par, angles) ;

/,
** Allocate storage Tor SVD.
,/
if ((e = (double *) malloc(f_rows * sizeof(double))) == NULL)

Perror("unable to allocate e") ;
if ((work = (double *) malloc(f_rows * sizeo_(double))) == NULL)

Perror("unable Co allocate work");

/*
** Compute right singular vectors and singular values,

compute_uv = 01;
v = Tft ;
dsvdc(fft, kT_rows, kf_rows, kT_rows,

ssr, e,

v, kT_rows,
u, kT_rows,

work, kcompute_uv, kst_tus
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);

/,
** Free dynamic memory,
,/
free (template [0].data) ;
free (template) ;

' free(lfr) ;
free(e);
free (work) ;

** RetUrn SVD status,

,/
return(status) ;

}

B.3 zbcsvdc.c
/,
** Header', ©(#) zbcsvdc.c 1.2 91/11/01 17:39:16 baker penguin UCB/LBL
**

** Name : zbcsvdc

** Purpose: Compute the singular value decomposition
** of a complex square block circulant matrix,
**

** H *
** a = Fusv F ,

** where F_kl = I x exp(-i kl 2Pl/block_count)
** and I = identity(block_m),
**

** Input parameters :
**

** block_count
_* number of blocks in a column of the BC form
** block_m number of rows in a block

** block_n number of columns in a block

** a complex BC matrix described by a colurm_ of

** block_count blocks consisting of
** block_m x block_n elements,

, ** i.e, , a[block_count] [block_m] [block_n]

** compute_uv
** I O0 compute s
** if compute_uv = I 01 compute s, v

** I 10 compute s, u
** I 11 compute s, u, v

** Output parameters:

** s singular values of a
** s[block_count] [MAX (block_m, block_n) ]

** u Fourier transformed left singular vectors of a
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** u[block_count][block.mJ[block.mJ

** v Fourier transformed right singular vectors of a
** v[block.countJ[block_n][block_n]

** status number of invalid singular values

** Dependencies:
**

,4 libfft

** Zfftki initialize complex ID base-n FFT
,4 zfftkf forward complex ID base-n FFT
,4 zfftkb inverse complex ID base-n FFT
.4 libllnpack
** zsvdc complex singular value decomposition
,4 ztranc complex conjugate transpose

*/

#include <stdio,h>
#include <errno, h>
#include "error, h"

#include "math,h"
#include "fft, h"

#include "linpack,h"

int

zbcsvdc (a, block_count, block_m, block_n, s_ u, v, compute_uv, status)

COMPLEX *a;
inr *block_count;
int *block_m;
inr *block_n;
COMPLEX *s;
COMPLEX *u;

COMPLEX *v;
int *compute_uv;
int *status;

.[
static char Sccsld[] = "©(#) zbcsvdc,c 1.2 91/II/01 17:39:16

baker penguin UCB/LBL";

COMPLEX *a_pointer;

COMPLEX ,u_pointer;
COMPLEX *v_pointer;
COMPLEX ,s_pointer;

COMPLEX *e, *e_pointer;
COMPLEX ,work;
double *wsave;

int a_size, block_size;
int compute_u, compute..v, compute_vu;

inr internal_status;

inr i;
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/*
*_ Determine which singular vectors to compute,
,/

i compute_u = _compute_uv / I0;
compute_v = ,compUte_uv _ I;
compute_vu = compute_v * 10 + compute_u;

° /,

** Compute submatrix emd total sizes,
,/
block_size = ,block_m * *block_n;
a_size = ,block_count * block_slze;

/*
** Allocate the FFT working storage,
,/
wsave= (double *) malloc((4 * *block_count + 15) * sizeof(double));
if (weave == NULL)

Perror("unable to allocate FFT working storage");

/,
** Initialize FFT,

zfftki (block_count, _block_size, weave) ;

/,
** Transform a to block diagonal form,
*/
a_pointer = a;
for (i = O; i < block_slze; i++)
<

zfftkf (block_count, _block_size, a_pointer, wsave);

a_pointer++ ;
}

/,
** Allocate storage for SVD routines,
*/
if ((work = (COMPLEX *) malloc(MAX(*block_m, *block_n) * sizeof(COMPLEX))

) =- NULL)

Perror("unable to allocate SVD working storage");
if ((e = (COMPLEX *) mal],oc(MAX(*block_m_ *block_n)* sizeof(COMPLEX))

) == NULL)

Perror("unable to allocate SVD working storage'_) ;

/*
' ** Compute the SVD of each block on the diagonal,

*/
: a_pointer = a;

u_pointer = u;
,v v_pointer = v;

s_pointer = s;
_status = 0 ;
for (i = O; ± < *block_count; i++)
<

zsvdc(a_pointer, block_hl block_n, block_m,

s_pointer, e,
v_pointer, block_n,
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U.pointer, block..m,

'work, kcompute.vu, _intenlal.status);
if (compute_u == I)

ztrax,c(u.pointer, block_m, block.m, u_polnter)_
if (compute.v== i)

ztranc(v.pointer, blocK.n, block_n, v_pointer);
a_pointer += block_size;
u_polnter += block.slze;
v_pointer += block_sizel
s_pointer += MAX(_block_m, _block_n)_
*status += internal_status;

}

/,
** Free up some storage,
,/
free(wsave);
free(work);
free(e);

return(o);
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