SIMPLICIAL HOMOLOGY

 Science Mathemetics, August, 1973 , 60 pp., bibliography. 3 titlee.

The purpose of this thesis is to constnact the homology groups of a complex over an R-module. The thesis begins with hyperplames in Fuclidean n-space. Simplexes and complexes sre derined, and orientations are given to each simplex of a complex. The chains of a complex are defined, and each chain is assigned a boundaxy. The function which assigns to each chain a boundary defines tre set of r-dimensional cyoles and tive set of r-dimensional bounding cyoles. The quotient of thoee two summodules is the r-dimensional homology group.
 definez, and sume basic poperties of a hypenplare, which are useful in chapter IT, are discussed.

Simplexes, compiexes, abscract complexes, polytopes, and pseudomanifolds are defined in the sonond chapter. It is also proved in this chapter that every abstract complex nas a realization complex in sorse k^{n}. Since a point set simplex is a subeet of the hyonplane spaneo by that simblex, some theorems of Chapter I are useful in this chapter.

An orientation of a simplex is defined in Chapter If. A chain of a complex K ovon en R-modure G is deffned by the ofsin-equjvalent olass of the orjented compex k over G. It is proved that chains of a complex can aiturys be given an
orientation; thus the representat: ve cirins of the orisnted complex can be computer. This is important both in Chapm ter III and Chaptex IV. Aleo found in Chapter IIJ is the proof that the set $C_{r}(K ; S)$ is an R-module.

The boundary of each r-chain ($x>0$) of a complex K over G, the set of cycles $Z_{r}(K ; G)$, and the set of bounding cycles $B_{r}(K ; G)$ are defined in Chapter TV. The r-dimensional homology group is defined by $H_{r}(K ; G)=Z_{r}(K ; G) / B_{n}(K ; G)$. The o-dimensional homology group is defined by $H_{0}(K ; G)=$ $C_{0}(K ; G) / B_{0}(K ; G)$. For a simplicialiy connected K, the theorem that $H_{0}(K ; Z)$ is isomorphic to Z fo proved in this chapter.

Some theorems which are proved in this chesis can be found stated, though not proved, in Chapter 1 of John W. Keesee's An Introd:ction to Algebraic Topology. Additional theorems which are prover in this thesis were suggested by Y. W. Lau of the North Texas State University mathematics faculty.

There are results presented in the appendix concerning five problems for computing homology groups.

THESIS

Presented to the Graduate Council of the North Texas State University in Pantial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

ChihwChen Chang, B.S. Denton, Texas August, 1973

```
AABLE OF COMPENT
```

Chapter Page
I. THE HYPERPLANES IN R R^{n}. 1
II. SIMPLEXES AND COMPLEXES IN R^{n} 14
III. CHAIN GROUPS 32
IV. HOMOLOGY GRCUP. 38
APPENDIX 53
BIBLIOGRAPHY 60

THE EYPEREGMES IN E

The Euchidean m-space (cenoted hy Rhy associated with the opeations of addition and scalan mutipizcation, which are defiried as follows in P^{2}, is an n-dimenstonal vecton space over the field of real rumbers.

Let $R=$ Reals; let $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ and $y=\left(y^{2}, y^{2}, \ldots, y^{n}\right) \Leftrightarrow R^{n}$, where ecth x^{i} and each y^{i} is a real number. Let $\theta \in R$; define
$x+y \dot{=}\left(x^{1}+y^{1}, x^{2}+y^{2}, \ldots, x^{r}+y^{r}\right), \operatorname{and}$ $c x=\left(c x^{1}, c x^{2}, \ldots, c x^{n}\right)$.
1.1. Definition. iet $B=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ to a fimte subset of R^{n}. The hyperplane spamed by s (cienoted by
 $\lambda^{i} \in R$, and $\left.\sum_{i=0}^{k} \lambda^{i}=1\right\}$.
1.2. Eefinition. A finste vusets $S=\left\{a_{0}, a_{2}, \ldots, a_{k}\right\}$ of R^{n} is said to be geometrioally incependent if S is conm tained in $T(T)$ for no propen subset T of S.

Hotation. $V\left(a_{j}, a_{3}, \ldots, a_{k}\right)$ stands for the vector space oven R spannea by the set $\left\{a_{0}, \bar{a}_{1}, \ldots, a_{k}\right\}$.
1.3. Theoper. Let $S_{1}=\left\{a_{0}, a_{2}, \ldots, a_{k}\right\}$ and $S_{2}=\left\{_{0}: b_{i}, \ldots, b_{e}\right\}$ be finite subcets of R^{n}. Then
(a) $S_{1} \subset \pi\left(S_{2}\right)$ implies $\pi\left(B_{1}\right)<\pi\left(S_{2}\right)$, and
(b) $\pi\left(S_{1}\right)$ © $\pi\left(s_{2}\right)$ implies $V\left(a_{2}-a_{0}, \ldots, a_{1}-z_{0}\right)$ c $V\left(b_{1}-b_{0}, \ldots, b_{s}-b_{0}\right)$.

Proof: (a) Let $p=\sum_{j=0}^{k} \lambda_{0} j_{j} \leqslant \pi\left(S_{1}\right)$. Since

Since $a_{j} \in \pi\left(S_{2}\right)$, then $\sum_{i=0}^{S_{j}^{\mu}}=1$ for each j. Therefore $\sum_{i=0}^{\sum_{j}^{j}}{ }_{j}^{k} \sum_{0} \lambda^{j} \mu_{j}^{i}=\sum_{j=0}^{k} \sum_{i=0}^{i=0} \lambda_{j}^{j} \mu_{j}^{j}={ }_{j=0}^{\sum} \lambda j=1$. Hence $p \in \pi\left(S_{2}\right)$. Hence $\pi\left(S_{1}\right) \subset \pi\left(S_{2}\right)$.

Proof: (b) Let $t_{1}\left(a_{1}-a_{0}\right)+t_{2}\left(a_{2}-a_{0}\right)+\ldots+$ $t_{k}\left(a_{k}-a_{0}\right) \in V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)$, and denote ${ }_{i=1} t_{i}$ by T. Either $T \neq 0$, or $T=0$.

Case I: $T \neq 0$. Since $\pi\left(S_{1}\right) \subset \pi\left(S_{2}\right)$, then
$\sum_{i=1}^{k} t_{i} / T a_{i} \in \pi\left(S_{1}\right) \subset \pi\left(S_{2}\right)$. Hence there exist real
numbers $\mu_{0}{ }^{\circ}, \mu_{1}{ }^{\prime}, \ldots, \mu_{s}{ }^{\prime}$ such that
$\sum_{i=1}^{k} t_{i} / T a_{i}=\sum_{j=0}^{=} \mu_{j}^{\prime} b_{j} \in \pi\left(S_{2}\right)$, and
$\mu_{k}, \mu_{i}, \ldots, \mu_{s}$ such that $a_{j}=\sum_{j=0}^{s} \mu_{j} b_{j} \in \pi\left(S_{2}\right)$. Then $\sum_{i=1}^{k} t_{i}\left(a_{i}-a_{0}\right)=-\Gamma a_{0}+\sum_{i=1}^{k} t_{i} a_{i}$

$$
=-T \sum_{i=0}^{S} \mu_{i}^{b}+T_{i} \sum_{i=0}^{S} \mu_{i}^{\prime} b_{i}
$$

$=T_{i} \sum_{0}^{E}\left(\mu_{i}{ }^{\prime}-\mu_{i}\right) b_{i}$

$=T\left[\sum_{i=1}^{S}\left(\mu_{i}-\mu i '\right) b_{0}+\sum_{i=1}^{S}\left(\mu_{i}^{\prime}-\mu_{i}\right) b_{i}\right]$
$=T_{i} \sum_{i}^{S}\left(\mu_{i}^{\prime}-\mu_{i}\right)\left(b_{i}-b_{0}\right) \quad V\left(b_{1}-b_{0}, \ldots, b_{i} b_{0}\right)$.
Case 2: T $=0$. Suppose $t_{i}=0$ for $i=1,2, \ldots, k$ then
$\sum_{i=1}^{k} t_{i}\left(a_{j}-a_{0}\right)=0 \in V\left(b_{1}-b_{0}, \ldots, b_{s}-b_{0}\right)$. Assume $t_{0} \neq 0$ for
some $1 \leq \mathrm{c} \leq k$; then $t_{1}+t_{2}+\ldots+t_{0.1}+t_{C+1}+\ldots+t_{k}$ $=-t_{0} \neq 0$. Hence $t_{b}\left(a_{c}{ }^{-} a_{0}\right) \in V\left(b,-b_{0}, \ldots, v_{8}-b_{0}\right)$, and ${ }_{i}^{\sum} \sum_{1} t_{i}\left(a_{j}-a_{0}\right) \in V\left(b_{1}-b_{0}, \ldots, b_{s}-b_{0}\right)$ by the proof of
 k
$\sum_{i}{ }_{1} t_{j}\left(a_{i}-a_{0}\right) \in V\left(b_{1}-b_{0}, \ldots, b_{s}-b_{0}\right)$.
1.4. Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a finite subset of R^{n}. The following properties of S are equivalent.
(a) S is geometrically independent.
(b) If $T=\left\{b_{0}, b_{1}, \ldots, b_{t}\right\}$ and $S C \pi(T)$, then $t \geq k$.
(c) $\sum_{i=0}^{k} \lambda^{i} a_{i}=0$ and ${ }_{i=0}^{k} \lambda^{i}=0$ imply $\lambda^{i}=0$ for each $i=0,1, \ldots, k$.
(d) For each element p of $\pi(S)$, there exist unique real numbers $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{k}$ such that

$$
p=\sum_{i=0}^{k} \lambda^{i} a_{i} \text {, and } \sum_{i=0}^{k} \lambda^{i}=1 .
$$

(e) The set $\left\{a_{1}-a_{0}, \ldots a_{k}-a_{0}\right\}$ is linearly independent.

Proof: (a) implies (b). Since $S \subset \pi(T)$, then $V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right) \subset V\left(b_{1}-b_{0}, \ldots, b_{t}-b_{0}\right)$ by the theorem of 1.3. Suppose there exist real numbers $\lambda^{i_{1}} \neq 0, \lambda^{i_{2}} \neq 0, \ldots$, $\lambda^{i_{n}} \neq 0$ such that $\lambda^{i_{1}}\left(a_{i_{1}}-a_{0}\right)+\lambda^{i_{2}}\left(a_{i_{2}}-a_{0}\right)+\ldots+$ $\lambda^{i_{n}}\left(a_{i_{n}}-a_{0}\right)=0$, where $I \leq i_{1}, i_{2}, \ldots, i_{n} \leq k$. Then $\lambda^{i_{1}} a_{i_{1}}+\lambda^{i_{2}} a_{i_{2}}+\ldots+\lambda^{i_{n}} a_{i_{n}}=\left(\lambda^{i_{1}}+\lambda^{i_{2}}+\ldots+\lambda^{i_{n}}\right)_{a_{0}}$. Denote $\lambda^{i_{1}}+\lambda^{i_{2}}+\ldots+\lambda^{i_{n}}$ by λ; either $\lambda \neq 0$, or $\lambda=0$. Case $1: \lambda \neq 0$. Then $\lambda^{i_{1}} a_{i_{1}}+\lambda^{i_{2}} a_{i_{2}}+\ldots+\lambda^{i_{n} a_{i_{n}}}=$ λa_{n}, and $a_{0}=\lambda^{i_{1} / \lambda} a_{i_{1}}+\lambda^{i_{2} / \lambda} a_{j_{2}}+\ldots+\lambda^{i_{n} / \lambda} a_{i_{n}} E$ $\pi\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. Fence $S\left(\pi\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right.$, a contradiction to S being geometrically independent.

Case 2: $\lambda=0$. Then $\lambda^{i_{1}} a_{j_{1}}+\lambda^{i} a_{i_{2}}+\ldots+\lambda^{i_{n}} a_{i_{n}}=0$, and $A^{i_{1}}=-\lambda^{i_{2}}-\ldots-i^{j r}$ mene
$a_{i_{1}}=-\lambda^{i_{2} / \lambda^{i_{1}}} a_{i_{2}}-\ldots-\lambda^{i_{n} / \lambda^{i}} a_{i_{n}} \in \pi\left(s^{i} a_{i_{1}}\right)$; hence $S \subset \pi\left(S\left(a_{i_{1}}\right)\right.$, which is a contradiction to S being geometrically independent. Therefore $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ is linearly independent. Hence $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0} j\right.$ is a base of $V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)$. But $V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)<v\left(b_{1}-b_{0}, \ldots, b_{t}-b_{0}\right)$; hence $\operatorname{dimV}\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right) \leq \operatorname{dimV}\left(b_{1}-b_{0}, \ldots, b_{t}-b_{0}\right)$. This implies $k \leq t$.
(b) implies (c). Let $\sum_{i=0}^{k} \lambda^{i} a_{i}=0$, and $\sum_{i=0}^{k} \lambda^{i}=0$. Let $\left\{\lambda^{i} \in R \mid \lambda^{j} \neq 0,0 \leq i \leq k\right\}^{i=0}=\left\{\lambda^{i}, \lambda^{i 2}, \ldots, \lambda^{i=0} f\right\}$. Since $\sum_{i=0}^{k} \lambda^{i} a_{i}=0$, then $\sum_{j=1}^{k} \lambda^{i_{j} a_{j_{j}}}=0$, and $\lambda^{i_{1} a_{i_{1}}}=$
$-\lambda^{i_{2}} a_{i_{2}}-\ldots-\lambda^{i_{f}}{ }_{a_{i_{f}}}$. since $\sum_{i=0}^{k} \lambda^{i}=0$, then
$j_{j}^{f} \sum_{1} \lambda^{i_{j}}=0$, and $\lambda^{i_{1}}=-\lambda^{j_{2}}-\lambda^{i_{3}}-\ldots-\lambda^{i_{f}}$. Therefore

Therefore $S \subset \pi\left(S \backslash a_{i_{1}}\right)$. By (b), this implies $k \geq k+1$. It is impossible. Therefore $\lambda^{i}=0$ for $i=0, \ldots, k$.
(c) implies (d). Let $p=\sum_{i=0}^{k} \lambda^{i} a_{i}=\sum_{i=0}^{k} \mu^{i} a_{i} \in \pi(S)$.

Then $0=p-p=\sum_{i=0}^{k}\left(\lambda^{i}-\mu^{i}\right) a_{i}$, and $\sum_{i=0}^{k}\left(\lambda^{i}-\mu^{i}\right)=\sum_{i=0}^{k} \lambda^{i}-{ }_{i \underline{\underline{E}_{0}}}^{\mu^{i}}=1-1=0 . \mathrm{By}(c)$, $\lambda^{j}-\mu^{i}=0$, for $i=0,1, \ldots, k$. Therefore $\lambda^{i}=\mu^{i}$ for $i=0,1, \ldots, k$. Hence $\lambda^{0}, \lambda^{1}, \ldots, \lambda^{k}$ are unique.
(a) implies (e). Suppose the set $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$
is linearly dependent; then there is $a_{r} \in S a_{0}$ such that
$a_{n}-a_{0}=\sum_{\substack{i=1 \\ i \neq r}}^{k} e^{i}\left(a_{j}-a_{0}\right)$, were
$\dot{i} \in R$ for $i=1,2, \ldots, \ldots, r i, \ldots, k$. Fence
$a_{r}=\sum_{\substack{i=1 \\ i \neq r}}^{k} c^{i} a_{i}+\left(1-\sum_{\substack{i=1 \\ i \neq r}}^{k} c^{i}\right)=$ But $a_{r} \in \pi(S)$. Therefore
the last equation contradicts the uniqueness hypothesis of (d).
(e) implies (a). Suppose there exists a proper subset S^{\prime} of S such that $S C \pi\left(S^{\prime}\right)$. Let $a_{r} \in S \backslash S^{\prime}$, and let $a_{x}=\sum_{a_{i} \in S^{\prime}} \lambda^{i_{i}} \in \pi\left(S^{\prime}\right)$. Then
$0=\sum_{i \sigma} \sum, \lambda^{i} a_{i}-a_{r}=\sum_{a_{i} \in S}, \lambda^{i}\left(a_{i}-a_{r}\right)$. This implies
$\left\{a_{i}-a_{r} \mid a_{i} \in S^{\prime}\right\}$ is linearly dependent; hence
$\left\{a_{i}-a_{r} \mid a_{i} \in S \backslash\left\{a_{r}\right\}\right\}$ is linearly dependent. To complete the proof of (e) implies (a), it is necessary to show that $\left\{a_{0}-a_{r}, a_{1} \cdots a_{x}, \ldots, a_{r-1}-a_{r}, a_{r+1}-a_{r}, \ldots, a_{k}-a_{r}\right\}$ is linearly dependent implies that $\left\{a_{1}-a_{0}, \ldots, a_{k_{k}}-a_{0}\right\}$ is Iinearly dependent. Assume

$$
\begin{aligned}
& a_{\ell}-a_{r}=\alpha^{0}\left(a_{0}-a_{r}\right)+\ldots+\alpha^{\ell-1}\left(a_{\ell-1}-a_{r}\right)+\alpha^{\ell+1}\left(a_{\ell+1}-a_{r}\right)+ \\
& : \cdot+\alpha^{r-1}\left(a_{r-1}-a_{r}\right)+\alpha^{r+1}\left(a_{r+1}-a_{r}\right)+\ldots+\alpha^{k}\left(a_{k}-a_{r}\right),
\end{aligned}
$$

where $\alpha^{0}, \ldots, \alpha^{k}$ are real numbers. Then
$\left(a_{\ell}-a_{0}\right)+(-1)\left(a_{r}-a_{0}\right)+\left(\alpha^{0}+\alpha^{1}+\ldots+\alpha^{\ell-1}+\alpha^{\ell+1}+\ldots+\alpha^{r-1}+\alpha^{r+1}+\right.$ $\left.\ldots+\alpha^{k}\right)\left(a_{T}-a_{0}\right)=\alpha^{1}\left(a_{1}-a_{0}\right)+\ldots+\alpha^{2-1}\left(a_{\ell-1}-a_{0}\right)+$
$\alpha^{\ell+1}\left(a_{\ell+1}-a_{0}\right)+\ldots+\alpha^{r-1}\left(a_{r-1}-a_{0}\right)+\alpha^{r+1}\left(a_{r+1}-a_{0}\right)+\ldots+$ $\alpha^{k}\left(a_{k}-a_{0}\right)$. This equation implies $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ is linearly dependent. It is a contradiction to $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ being linearly independent.
2.5. Definition. Det $S=\left\{a_{0}, \ldots, a_{k}\right\}$ be a geometrically independent subset of R^{n}. The hyperplane $\pi(S)$ is called a k-dimensional hypemplane. For each element p of $\pi(S)$, the numbers $\lambda^{0}, \lambda^{2}, \ldots, \lambda^{k}$ given in part (d) of 1.4. Theorem are called the barycentric coordinates of the point p relative to the set S.
1.6. Theorem. The hyperplane $\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ is a translation of the vector space $V\left(a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k}-a_{0}\right)$; $a_{0}+V\left(a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k}-a_{0}\right)=\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right)$.

Proof: Let $p=\sum_{i=0}^{k} \lambda^{i_{a}} a_{i} \in \pi\left(a_{0}, \bar{a}_{1}, \ldots, a_{k}\right)$. Since $\sum_{i=1}^{k} \lambda^{i}=1$, then $\lambda^{0}-1=-\lambda^{1}-\lambda^{1}-\ldots-\lambda^{k}$. Therefore $p_{0}=\sum_{i=0}^{k} \lambda^{i} a_{i}$
$=a_{0}+\left(\lambda^{0}-1\right) a_{0}+\lambda^{2} a_{1}+\ldots+\lambda^{k} a_{k}$
$=a_{0}+\left(-\lambda^{1}-\lambda^{2}-\ldots-\lambda^{k}\right) a+\lambda^{1} a_{1}+\ldots+\lambda^{k} a_{k}$
$=a_{0}+\lambda^{1}\left(a_{1}-a_{0}\right)+\lambda^{2}\left(a_{2}-a_{0}\right)+\ldots+\lambda^{k}\left(a_{k}-a_{0}\right)$, and
${ }_{i} \sum_{1} \lambda^{i}\left(a_{i}-a_{0}\right) \in V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)$. This proves $\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right) \subset a_{0}+V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)$.

Let $q=a_{0}+\sum_{i=1}^{k} \alpha^{i}\left(a_{i}-a_{0}\right) \leq a_{0}+V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)$.
Then $q=a_{0}+\alpha^{1}\left(a_{1}-a_{0} ;+\ldots+\alpha^{k}\left(a_{k}-a_{0}\right)\right.$

$$
=\left(1-\alpha^{1}-\alpha^{2}-\ldots-\alpha^{k}\right) a_{0}+\alpha^{1} a_{1}+\ldots+\alpha^{k} a_{k}
$$

Since $1-\alpha^{1}-\alpha^{2}-\ldots-\alpha^{k}+\alpha^{1}+\ldots+\alpha^{k}=1$, then $a_{i} \in \pi\left(a_{0}, a_{1}, \ldots, a_{k}\right)$. This proves $a_{0}+V\left(a_{1}-a_{0}, \ldots a_{k}-a_{0}\right) C$ $\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right)$.
2.7. Theorem. A subset of a k-dimensional hyperplane containing $k+2$ points is geometrically dependent.

Proof: Let $\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ be a k-dimensional hyperm plane, and let $\left\{b_{0}, b_{2}, \ldots, y_{k}, b_{k+1}, b_{k}+2\right\} \leq \pi\left(a_{0}, a_{2}, \ldots, a_{k}\right)$. Then $V\left(b_{1}-b_{0}, b-b_{0}, \ldots, b_{k+2}-b_{0}\right) \subset V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right) . \quad$ This implies $\operatorname{dimV}\left(b_{1}-b_{0}, \ldots, b_{k+2}-b_{0}\right) \leq\left(i m V\left(a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right)=k_{0}\right.$ Hence $\left\{b_{2}-b_{0}, b_{2}-b_{0}, \ldots, b_{k+2}-b_{0}\right\}$ is not Iinearly independent. Hence $\left\{b_{0}, \ldots, b_{k+2}\right\}$ is not geometrically independent.
1.8. Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be a subset of R^{n}, and, for each i, let $a_{i}=\left(a_{i}^{1}, a_{i}^{2}, \ldots, a_{i}^{n}\right)$. Then the set S is geometrically independent if and only if the determinant

$$
d(S)=\left|\begin{array}{ccccc}
a_{0}^{1} & a_{0}^{2} & \cdots & a_{0}^{n} & 1 \\
a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{n} & 1 \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
a_{n}^{1} & a_{n}^{2} & \cdots & a_{n}^{n} & I
\end{array}\right| \neq 0
$$

Proof: By part (c) of 1.4, Wheorem, the set S is geometrically dependent if and only if the system of equa.. tions

$$
\begin{aligned}
& \sum_{i=0}^{n} \lambda^{i} a_{i}^{j}=0, j=1,2, \ldots, n \\
& \sum_{i=0}^{n} \lambda^{i}=0
\end{aligned}
$$

has a nortrivial solution vector ($\lambda^{0}, \lambda^{1}, \ldots, \lambda^{n}$): Therefore the set S is geometrically independent if and only if every solution of the system of equations is trivial. By Stein (2, p . 123), the set S is geometricaliy independent if and only if the $(n+1) \times(n+1)$ matrix

$$
\left(\begin{array}{cccc}
a_{0}^{1} & a_{1}^{1} & \cdots & a_{n}^{1} \\
a_{0}^{2} & a_{0}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & \cdots & \vdots \\
\vdots & \cdot & \cdots & \vdots \\
a_{0}^{n} & a_{1}^{n} & \cdots & a_{n}^{n} \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

has rank $n+1$. That is, $d(S) \neq 0$.
1.9. Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be a geometricaily independent subset of $R^{n 1}$, and for each $x=\left(x^{i}, x^{2}, \ldots, x^{n}\right)$ in R^{n}, denote by $\lambda^{i}(x)$ or λ^{i} the barycentric coordinates of x with respect to the set S so that

$$
\text { , } x=\sum_{i=0}^{n} \lambda^{i}(x) a_{i} \text { and } \sum_{i=0}^{n} \lambda^{\dot{j}}(x)=1
$$

Then $\lambda^{i}(x)=d^{i}(x) / d(s)$ where $d^{i}(x)$ is the determinant obtained by replacing the $i^{\text {th }}$ row of $d(S)$ by the vector $\left(x^{1}, x^{2}, \ldots, x^{n}, I\right)$.

Proof: The two equations $x=\sum_{i=0}^{n} \lambda^{i}(x) a_{i}$ and $\sum_{i=0}^{\sum \lambda^{i}(x)}=1$ are equivalent to the system

$$
\begin{aligned}
& \lambda^{0} a_{0}^{1}+\lambda^{1} a_{1}^{1}+\ldots+\lambda^{n} a_{n}^{1}=x^{1} \\
& \lambda^{0} a_{0}^{2}+\lambda^{1} a_{1}^{2}+\ldots+\lambda^{n} a_{n}^{2}=x^{2}
\end{aligned}
$$

$$
\begin{array}{lllll}
\cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot &
\end{array}
$$

$$
\begin{aligned}
& \lambda^{0} a^{n}+\lambda^{1} a^{n}+\ldots+\lambda^{n} a_{n}^{n}=x^{n} \\
& \lambda^{0}+\lambda^{1}+\ldots+\lambda^{n}=1 .
\end{aligned}
$$

By Cramer's Rule, we have $\lambda^{i}(x)=d^{i}(x) / d(S)$.
1.10. Theorem. Jet $\mathrm{T}=\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right\}$ be a geometrically independent subset of p^{n}. Then there exist points
$a_{k+1}=a_{k+2}, \ldots, a_{n}$ of R^{n} such that the set $S=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is eemmetricaly independent.

Proof: Let $T=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a geometrically independent subset of R^{n}, Then the set $\left\{a_{1}-a_{0}, \ldots, a_{k}-a_{0}\right\}$ is linearly independent by 2.4. Theorem, part (e). Since dim $R^{n}=n$, there exist points $b_{k+1}, b_{k+2}, \ldots, b_{n}$ such that the set $\left\{a_{1}-a_{0}, a_{2}-\bar{a}_{0}, \ldots, a_{k}-a_{0}, b_{k+1}, b_{k \div 2}, \ldots, b_{n}\right\}$ is a basis of R^{n}. That is, the set
$\left\{a_{1}-a_{0}, a_{2}-a_{0}, \ldots, a_{k}-a_{0},\left(b_{k+1}+a_{0}\right)-a_{0},\left(b_{k+2}+a_{0}\right)-a_{0}, \ldots\right.$, $\left.\left(b_{n}+a_{0}\right)-a_{0}\right\}$ is linearly independent. Let $a_{i}=b_{i}+a_{0}$ for $i=k+j, k+2, \ldots, n$. Then, again by 1.4 . Theorem, part (e), the set $S=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ is geometrically independent.
1.11. Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ be a geometrically independent subset of R^{n}. Then for $k<n$, $\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right)=\cap_{i=k+l}^{n}\left\{x \in R^{n} \mid d\left(a_{0}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)\right.$ $=0\}$.

Proof: Let $x \in \pi\left(a_{0}, \ldots, a_{k}\right)$. Then the set $\left\{a_{0}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right\}$ is geometrically dependent by 1.2. Definition, for $i=k+1, k+2, \ldots$, n. Hence $d\left(a_{0}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)=0$ for $i=k+1, k+2, \ldots, n$ by 2.8. Theoxem. Hence
$x \in \prod_{i=k+1}^{n}\left\{x \in R^{n} \mid\right.$ $\left.\left(a_{0}, \ldots, z_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)=0\right\}$.
Therefore $\pi\left(a_{0}, a_{1}, \ldots, a_{k}\right) C$
$n_{i=k+1}^{n}\left\{x \in \mathbb{R}^{n} \mid d\left(a_{0}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)=0\right\}$.
Let $x \in \bigcap_{i=k+1}^{n}\left\{x \in R^{n} \mid d\left(a_{0}, \ldots, a_{i-1}, x_{1}, a_{i+1}, \ldots, a_{n}\right)=0\right\}$.
Then the set $\left\{a_{0}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right\}$ is gemetricsily
dependent for $i=k+2, k+2, \ldots$ n by I. 8 . Theorem. Suppose
 $\lambda^{f} \neq 0$ and $x={ }_{j}^{[}{ }_{0}^{n} \lambda^{j} a_{j} \in \pi\left(a_{0}, \ldots, a_{n}\right)$. Thus
$d\left(a_{0}, \ldots, a_{k}, a_{k+1}, \ldots, a_{f_{-1}}, x, a_{f_{1}+1}, \ldots, a_{n}\right)=$
$d\left(a_{0}, \ldots, a_{k}, a_{k+1}, \ldots, a_{f-1}, \sum_{j=0}^{n} \lambda a_{j}, a_{f+1}, \ldots, a_{n}\right)=$
$d\left(a_{0}, \ldots, a_{k}, a_{k+1}, \ldots, a_{t-1}, \sum_{j=0}^{n} \lambda j a_{j}-\sum_{\substack{j=0 \\ j \neq f}}^{n} \lambda a_{j}, a_{f+1}, \ldots, a_{n}\right)=$
$d\left(a_{0}, \ldots, a_{k}, a_{k+1}, \ldots, a_{f-1}, \lambda^{f_{a_{f}}}, a_{f+1}, \ldots, a_{11}\right)=$
$\lambda^{f_{d}}\left(a_{0}, \ldots, a_{n}\right)=$
$\lambda^{f} d(S)$, But $d(S) \neq 0$, by 1.8. Theorem. Hence
$d\left(a_{0}, \ldots, a_{k}, a_{k+1}, \ldots, a_{f-1}, x, a_{f+1}, \ldots, a_{n}\right) \neq 0$, which is a contradiction to the supposition that $x \in \cap_{i=k+1}^{n}\left\{x \in R^{n} \mid d\left(a_{0}, \ldots, a_{i-1}, x, a_{i+1}, \ldots, a_{n}\right)=0\right\}$.
Therefore $x \in \pi\left(a_{n}, \ldots, a_{k}\right)$. Therefore
$\cap_{i=k+1}^{n}\left\{x \in R^{n} \mid d\left(a, \ldots, a_{i-1}, x, a_{i+1}, \ldots a_{n}\right)=0\right\} C \pi\left(a_{0}, \ldots a_{n}\right)$. This completes the proof.
1.12. Theorem. Let $S=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$ be a geometrically independent subset of R^{n}, and, for each point x of $\pi(S)$, let $\lambda^{i}(x)$ be the barycentric cocndinatcs of x with respect to the set S. Then each $\lambda^{i}(x)$ is a continuous real-valued function on $\pi(S)$.

Proof: By 1.10. Theorem, there exist a_{k+1}, ..., $a_{n} \in R^{n}$ such that the set $\left\{a_{0}, \ldots, a_{n}\right\}$ is geonetrically independent. By the definition of hyperplane, $x \in \pi\left(a_{0}, \ldots, a_{k}\right)$ implies x e $\pi\left(a_{0}, \ldots, a_{n}\right)$. By 1.9. Theorem, $\lambda^{i}(x)=d^{i}(x) / d\left(a_{0}, \ldots, a_{n}\right)$ for $i=0, \ldots, n$. By part (d) of I.4. Theorem, the barycentric
coordinates of x with respect to the set $\left\{\right.$ ao,..., $\left.a_{n}\right\}$ are unique. Hence the barycentric coondinetes $\lambda^{i}(x)$ of x with respect to the set $\left\{a_{0}, \ldots, a_{k}\right\}$ are equal to the barycentric coordinates of x with respect to the set $\left\{a_{0}, \ldots, a_{n}\right\}$ for $i=0,1, \ldots, k$, and $\lambda^{i}(x)=0$ for $i=k+1$, ..., n. since $\lambda^{j}(x)=d^{i}(x) / d\left(a_{0}, \ldots, a_{n}\right)$, we can $\operatorname{let} \lambda^{j}(x)=c_{1}^{i} x^{1}+\ldots+$ $c_{n}^{i} x^{r_{1}}+c_{n+1}^{i}$, for every $x \in \pi\left(a_{0}, \ldots, a_{k}\right)$. Also, $x^{1}, \ldots, x^{n^{2}}$ are Euclidean coordinates of x, and $c \frac{i}{1}, \ldots, c_{n}^{i}, c_{n}^{i}+1$ are real numbers.

$$
\begin{aligned}
& \text { Let } i \text { be an integer; } 1 \leq i \leq k \text {. Fon } \varepsilon>0 \text {, let } \\
& \delta_{i}=\varepsilon / n \phi_{i} \text {. Where } \phi_{i}=\max \left\{\left|c_{1}^{j}\right|, \ldots,\left|c_{n}^{i}\right|, I\right\} \text {, let } \\
& y \in \pi\left(a_{0}, \ldots, a_{k}\right) \text { and }|x-y|<\delta_{i} \text {. That is, } \\
& {\left[\left(x^{1}-y^{2}\right)^{2}+\ldots+\left(x^{n}-y^{n}\right)^{2}\right]^{1 / 2}<\delta_{i} \text {. Hence }} \\
& \left|x^{j}-y^{j}\right|<\delta_{i}
\end{aligned}=\varepsilon / n \phi_{i} \text { for } j=I, \ldots, n \text {. Hence }, ~ \begin{aligned}
\left|\lambda^{i}(x)-\lambda^{j}(y)\right| & =\left|c_{1}^{i}\left(x^{1}-y^{1}\right)+\ldots+c_{n}^{i}\left(x^{n}-y^{n}\right)\right| \\
& \leq\left|c_{1}^{i}\left(x^{1}-y^{1}\right)\right|+\ldots+\left|c_{n}^{i}\left(x^{n}-y^{n}\right)\right| \\
& <\left|c_{1}^{i} \varepsilon / n \phi_{i}\right|+\ldots+\left|c_{n}^{i} \varepsilon / n \phi_{i}\right| \\
& \leq \varepsilon / n+\ldots+\varepsilon / n \\
& =\varepsilon .
\end{aligned}
$$

This proves each $\lambda^{i}(x)$ is a continuous real-valued function on $\pi\left(a_{0}, \ldots, a_{k}\right)$.
1.13. Theorem. If S is an n-simplex in R^{n}; then $\pi(S)=R^{n}$. An n-simplex is a simplex containing $n+1$ elements.

Proof: Let $S=\left\{a_{0}, \ldots, a_{n}\right\}$ be the $n-s i m p l e x$ in R^{n}. By part (e) of 1.4. Theorem, the set $\left\{a_{1} \cdots a_{0}, \ldots, a_{n}-a_{0}\right\}$ is linearly independent. Since R^{n} is n-dimensional vector
space over the real numbers, then by Herstein (1, Lemma 4.7), $\left\{a_{1} \ldots a_{0}, \ldots, n_{n}-a_{0}\right\}$ is a basio of n^{n}. Therefore
$V\left(a_{1}-a_{0}, \ldots, a_{n}-a_{0}\right)=R^{n}$. By 1.6 . Theorem,
$\pi(S)=a_{0}+V\left(a_{1}-a_{0}, \ldots, a_{n}-a_{0}\right)=a_{0}+R^{n}=R^{n}$. Thas
completes the proof.
CHAFTER BTEITGGRAREY

1. Ferstein, I. M., Topigs in Algebra, Waltham, Mass., Ginn and Company. 1564 .
2. Stein, F. Max, Introduction to Matrices and Determinants, Belmont, Cal., Wadsworth pubisshing Company, Inc. 1967.

SIMPLEXES AND COMPLEXES IN \mathbb{R}^{n}

2.1. Definition. Let s be a finite subset of R^{n}. Then S is called a simplex if and only if S is geometrically independent.

Notation: Let $S=\left\{a_{0}, \ldots, a_{k}\right\}$. Denote the set $\left\{\operatorname{sis} f(s) s \mid t: S \rightarrow\right.$ Reals, such that $\sum_{s} S_{S} f(s)=1, f(s)>0$ for each $s \in S\}$ dy $\Delta(S)$.
2.2. Definition Let $S=\left\{a_{0}, \ldots, a_{k}\right\}$ be a simplex. The dimension of S, denoted by dim(S), is the integer k, and S is called k-sjmplex.
2.3. Definition. Let S be a simpiex, and let T be a subset of S. Then T is alled a face of S and $\Delta(T)$ is a point-set face of $\Delta(S)$.
2.4. Theorem. A hyperplane in R^{n} is a closed set in R^{n}.

Proof: Let $\pi\left(a_{0}, \ldots, a_{k}\right)$ be a k-dimensional hyperplane in R^{n}. By 1.10 . Theorem, there exist points a_{k+1},..., an such that the set $\left\{a_{0}, \ldots, a_{n}\right\}$ is geometrically independent. Let x be a limit point of $\pi\left(a_{0}, \ldots, a_{k}\right)$, and $x \notin \pi\left(a_{0}, \ldots, a_{k}\right)$, since $x \in \pi\left(a_{0}, \ldots, a_{n}\right)=R^{n}$. Let $x=\sum_{i=0}^{p} \lambda^{i} a_{i} \in \pi\left(a_{0}, \ldots, a_{n}\right)$. Then there exists $\lambda^{j}(x) \neq 0$ for some $k<j \leq n$. By
1.12. Theorem, $\lambda^{j}(x)$ is a continuous function on R^{n}. Hence for $\varepsilon=\left|\lambda^{j}(x)\right| / 2$, there exisis $\delta>0$ such that $\left|\lambda^{j}(x)-\lambda^{j}(y)\right|<\varepsilon=\left|\lambda^{j}(x)\right| / 2$, whenever y belongs to the
neighborhood $N_{0}(x)$ of x. Sinoe x is limit point of $\pi\left(a_{0}, \ldots, a_{k}\right)$, then there exists y^{\prime} : $N_{g}(x) \cap \pi\left(z_{0}, \ldots, E_{K}\right)$. But y^{\prime} e $\pi\left(a_{0}, \ldots, a_{k}\right)$ implies $\lambda^{j}(y)=0$ by the fact that $k<j$. Therefone $\left|\lambda^{j}(x)-i^{j}\left(y^{\prime}\right)\right|=\left|\lambda^{j}(x)\right|<\varepsilon=\left|\lambda^{j}(x)\right| / 2$.
 Hence $\pi\left(a_{0}, \ldots, a_{k}\right)$ is a closed set in R^{n}.
2.5. Theoren. Let S be a simplex in R^{n}, and $x \in \Delta(S)$. Then the expression of $x=\sum_{s} S^{f}(s) s$ is unique.

Proof: By the definitions of $\Delta(S)$ and $\pi(S)$,
$\Delta(S) \subset \pi(S)$. Hence $x \in \Delta(S)$ implies $x \in \pi(S)$. By part (d)
of 1.4. Theorem, the uniqueness of the expression $x=\sum_{s} f(s) s$ follows.
2.6. Theorem. If S is a simplex in R^{n}, then $\Lambda(S)$ is an open set in the relative topology of the hyperplane $\pi(S)$.

Proof: Let $x=\sum_{s \in S} f(s) s \in \Delta(S)$. Since $\Delta(S) \subset \pi(S)$, then $x \in \Delta(S)$ implies $x \in \pi(S)$. Denote $f(s)$ by $g_{S}(x)$. By 1.12. Theorem, $g_{S}(x)$ is a continuous function on $\pi(S)$ for each $s \in S$. For each $s \in S$, define $G_{S}=$ $\left\{x \in \pi(S) \mid g_{S}(x)>0\right\}$. Since $g_{S}(x)$ is a continuous function on $\pi(S)$ for each $s \in S$, then G_{S} is an open set in $\pi(S)$ for each $s \in S$. By the definition of $\Delta(S), \Delta(S)=\bigcap_{S} S G_{S}$ which is open in $\pi(S)$.
2.7. Theorem. Let S be a simplex in \mathbb{R}^{n}, and denote the closure of $\Delta(S)$ in R^{n} by $\bar{\Delta}(S)^{n}$. Then $\bar{\Delta}(S)^{n} C \pi(S)$.

Proof: If the cardinal number of S is $n+1$, then $\pi(S)=R^{n}$. This theorem is obviously true. Now, we shall assume that $\pi(S) \neq R^{n}$,

By 7. 20. Theoren, thene axists a simplex S^{\prime} in R^{n} such
 and $x \neq \pi(X)$. Then $x \in \pi\left(S^{\prime}\right) \backslash(S)$. Let $x=S_{S} S^{\prime} f(s) \operatorname{se\pi }\left(S^{\prime}\right)$. Since $x \neq \pi(S)$, then there exist $s_{0} \in S^{\prime} \backslash S$ such that $f\left(s_{0}\right) \neq 0$. Let $g_{s}(y)$ be the barycentric coordinates of y relative to the set S^{\prime}. Define $G_{S_{0}}=\left\{y \in R^{n} \mid g_{S_{0}}(y) \neq 0\right\}$. By I. I. 2 Theorem, $g_{S_{0}}(y)$ is a continuous function on R^{n}. Hence $G_{S_{0}}$ is an open set in R^{n}, and $x \in G_{S_{0}}$. By the definition of $G_{S_{0}}, G_{S_{0}} \cap \Delta(S)=\phi$. This is a contradiction to the supposition. Therefore $\overline{\Delta(S})^{R n} \subset \pi(S)$.
2.8. Theorem. Let S be a simplex in R^{n}. Denote the closure of $\Delta(S)$ in R^{n} by $\overline{\Delta(S)} R^{n}$, and denote the closure of $\Delta(S)$ in the hyperplane $\pi(S)$ by $\bar{\Delta}(S) \pi(S)$. Then $\Delta(S)^{R n}=\overline{\Delta(S)}^{\pi(S)}$.

Proof: If $x \in \Delta(S)$, then $x \in \bar{\Delta}(S)^{T}(S)$. Let x be a limit point of $\overline{\Delta(S)} R^{n}, x \notin \Delta(S), U$ an open set in R^{n}, and $x \in U$. Then $U \cap \Delta(S) \neq \phi$. Jet u^{\prime} be an open set in $\pi(S)$, and let $x \in u^{\prime}$. By the definition of nelative topology, there exists an open set v in R^{n} such that $u^{\prime}=v \cap \pi(S)$. Hence $v \cap \Delta(S)=v \cap(\pi(S) \cap \Delta(S))=(v \cap \pi(S)) \cap \Delta(S)=$ $u^{\prime} \cap \Delta(S) \neq \phi$. Since $x \neq \Delta(S)$, then $x \notin u^{\prime} \cap \Delta(S)$. Therefore $u^{\prime} \cap \Delta(S) \neq \phi$ implies that x is a limit point of $\overline{\Delta(S)^{\pi}(S)}$. Hence $\overline{\Delta(S)^{R}} \subset \overline{A(S)^{\pi}(S)}$.

Let $x \in \overline{\Delta S T}(S)$. Then $x \in \pi(S)$. For any open set u ' ir $\pi(S)$ and $x \in u$. then $u^{\prime} \cap \Delta(S) \neq d$. Let u be an open set $\operatorname{jn} \mathbb{R}^{2}$, and let $\mathrm{x} \in u$. But $\mathrm{x} \in \pi(S)$; therefore $\mathrm{x} \in \mathrm{u} \cap \pi(S)$ is an open set in $\pi(S)$. Hence $u \cap \Delta(S)=u \cap(\Delta(S) \cap \pi(S))=$ (u $\cap \pi(S)) \cap \Delta(S) \neq \phi$. This implies $x \in \bar{\Delta}(S)^{n}$. Hence $\overline{\Delta(S)^{\pi}}{ }^{(S)} \subset \overline{\Delta(S)^{R n}}$. Both of $\overline{\Delta(S)} R^{n} \subset \overline{\Delta(S)^{\pi}(S)}$ and $\overline{\Delta(S)} \pi(S)_{C} \overline{\Delta C S}^{R^{n}}$ imply $\overline{A(S)^{p n}}=\overline{\Delta(S)^{T(S)}}$. This completes the proof of this theorem.
2.9. Theorem. If S is a simplex in R^{n}, then
$\overline{A(S)}=\left\{\sum_{S} S_{S} f(s) S \mid f: S+\right.$ non-negative reals, $\left.\sum_{s \in S} f(s)=1\right\}$.
Proof: For the sake of simplicity, denote the set $\left\{\sum_{\sum_{S}} f(s) s \mid f: S \rightarrow\right.$ non-negative reals, $\left.\sum_{S \in S} f(s)=1\right\}$ by A. By 2.4: Theorem, $\overline{\Delta(S)} \subset \pi(S)$. Denote the barycentric coorm dinates of a point $x \in R^{n} r \in l a t i v e ~ t o ~ t h e ~ s e t ~ b y ~ g ~ g ~(x), ~$ where $s \in S$. Suppose there exist $y \in R^{n}$ such that $y \in \overline{\Delta(S)}$ and $y \notin A$. Then $y \in \overline{S(S)} \subset \pi(S)$ and $y \notin A$ imply $y=\operatorname{sen}_{S} g_{s}(y) s \in \pi(S)$ and $g_{S},(y)<0$ for some $s^{\prime} \in S$. Define $G_{S},=\left\{w=\sum_{S_{S}} g_{S}(w) S \in \pi(S) \mid g_{S},(w)<\left(g_{S},(y)\right) / 2\right\}$. By 1.12. Theorem, $g_{s},(w)$ is a continuous function on $\pi(S)$. Therefore G_{S}, is an open set in $\pi(S)$. By definition of $G_{S}, y \in G_{S}$, and $G_{S}, \cap \Delta(S)=\phi$. This contradicts y $\in \bar{\Delta}(S)$. Hence the supposition is false. Hence $y \in \overline{\Delta(S)}$ implies that $y \in A$. Hence $\overline{\Delta(S)} \subset A$.

If $\operatorname{dim}(S)=0$, then S contains only one point. Hence $S=\Delta(S)=\bar{\Delta}(S)=A$. Therefore assume that $\operatorname{dim}(S)=m>0$. Denote the norm of $x \in R^{n}$ by $|x|$, and the set $\left\{z \in R^{n}| | z-y \mid<\delta\right.$, where $y \in R^{n}$ and δ is a positive real number\} by $N_{\delta}(y)$. For a given $\delta>0$, let $y \in A$; then

 each $s \in S$; therefore there exists $s^{\prime} E S$ such that $0<g\left(s^{\prime}\right) \leq l$. Denote $g\left(s^{\prime}\right)$ by K and sets $^{\prime}|s|$ by M. Then $0<K \leq 1$. Since dim (S)>0, $M>0$. Define a function $\mathrm{g}^{\prime}: \mathrm{S} \rightarrow$ reals by

$$
\begin{aligned}
& g^{\prime}(s)=g(s)+t / m, \text { if } s \neq s^{\prime} ; \\
& g^{\prime}\left(s^{\prime}\right)=g\left(s^{\prime}\right)-t=k-t, \text { where } \\
& t=\min \{K / 2, \delta / M(1+m)\} .
\end{aligned}
$$

Then $\sum_{S_{G} S^{\prime}} g^{\prime}(s)=\sum_{\substack{S_{S} \\ S \neq S}}(g(s)+t / m)+g\left(s^{\prime}\right)-t=\sum_{S_{S}} g(s)=I$, and $g^{\prime}(s)>0$ for each $s \in S$. Hence $\sum_{s \in S^{\prime}} g^{\prime}(s) s \in \Delta(S)$. Denote ${ }_{s \in S} S^{\prime}(s) s$ by z. Then

$$
\leq t / m \sum_{\substack{s \in S \\ s \neq S}}|s|+t\left|s^{\prime}\right|
$$

$$
\leq(t / m) M+t M
$$

$$
=(t(1+m)) / \mathrm{m} M
$$

If $t=K / 2$, then $(t(1+m) / m M=(K(1+m) / 2 i n) M \leq$ $(\delta M(1+m))(1+m) / m M=\delta / m \leq \delta$. If $t=\delta / M(I+m)$, then $(t(1+m) / m) M=$ $(\delta / M(I+m))((1+m) / m) M=\delta / m \leq \delta$.

Hence $|z-y|<\delta$. Therefore $z \in N_{f}(y)$, and $z \in \Lambda(S)$. Hence $z \in N_{\delta}(y) \cap \Delta(S)$. Thus $y \in \overline{\Delta(S)}$; therefore $A \subset \overline{\Delta(S)}$.

Taken together, $\overline{\Delta(S)} \subset A$ and $A \subset E(S T$ impiy that $\bar{\Delta}(S)=A$, This completes the moof of this theorem.
2.10. Theorem. In $R^{r_{1}}$, if a simplex S^{\prime} is a face of a simplex S, then $\Delta\left(S^{\prime}\right)$ is contained in $\triangle(S)$. Conversely, each point in $\bar{\triangle}(S)$ is an element of a unique point-set face of $\overline{\Delta(S)}$.

Proof: Since S^{\prime} is a face of S, then $S^{\prime} C S$. Therefore, by $2.9, \Delta\left(S^{\prime}\right)=\left\{\sum_{s \in S^{\prime}} f(s) s \mid f: S^{\prime} \rightarrow\right.$ positive reals; $\left.S_{G}^{\Sigma} S^{f}(s)=1\right\}$ $C\left\{\sum_{S} \sum_{S} g(s) s \mid g: S \rightarrow\right.$ non-negative reals; $\left.s_{E} \sum_{S} g(s)=I\right\}=\overline{\Delta(S)}$.

Let $x \in \overline{\Delta(S)}$. Then $x=\sum_{S} h(s) s$ for some function $h: S \rightarrow$ non-negative reals and $s_{s} s_{s}(s)=1$. Let $S^{\prime \prime}=\{s \in S \mid h(s) \neq 0\} ;$ then $S^{\prime \prime} \subset S$, and $x \in \Delta\left(S^{\prime \prime}\right)$. But $S^{\prime \prime} \subset S$ implies $\Delta\left(S^{\prime \prime}\right) \subset \pi(S)$. Hence $x \in \pi(S)$. By part (d) of 1.4 , the set $S^{\prime \prime}$ is unique. This completes the proof of this theorem.
2.11. Definition. Let K be a finite collection of simplexes in R^{n} such that the following is true:
(1) If $x \in K$ and $\phi \notin y \subset x$, then $y \in K$.
(2) If $t, u \in K$, then $\Delta(t) \cap \Delta(u)=\phi$ 。

Then K is called a complex in R^{n}.
2.12. Definition. Let K be a complex in R^{n}; the positive integer $\sup \{\operatorname{dim}(x) \mid x \in K\}$ is called the dimersion of K. If $\sup \{\operatorname{dim}(x) \mid x \in K\}=m$, then we write $\operatorname{dim}(K)=m$ and say that k is an m-complex.
2.13. Definition. Let K be a complex in R^{n}; let the set $U\{\Delta(S) \mid S \in K\}$ be denoted by $|K|$. Then a subset P of R^{n}
is called a polytope an g^{n} if ond only if $p=|K|$ for come complex K in R^{n}. A compler $K i s c o l y d$ atrangulation of the polytope $|K|$.
2.14. Definition. If S_{1} and S_{2} are distinct faces of a simplex S in R^{n}, then by 2. $10, \Delta\left(S_{1}\right) \cap \Delta\left(S_{2}\right)=\phi$. It follows that the set $K_{1}=\left\{S^{\prime} \mid S^{\prime} C S ; S^{\prime} \neq \phi\right\}$ is a complex in R^{n}. This complex K_{1} is called the comoinatorial closure of S. The set $K_{2}=\left\{S^{\prime} \mid S T \underset{\neq}{C} S S^{\prime} \neq \phi\right\}$ is also a complex. This complex is called the combinatonial boundary of S.
2.15. Theorem. Let S be a simplex in F^{n}, and let K_{2} be the combinatorial boundary of S. Then $\left|K_{2}\right|$ is the point-set boundary of $\Delta(S)$ in $\pi(S)$.

Proof: Let B be the point-set boundary of $\Delta(S)$ in $\pi(S)$. Let $x \in\left|K_{2}\right|$; then $x \in \Delta\left(S^{\top}\right)$ for some proper face S^{\prime} of S. By $2.9, x \in \overline{\Delta(S)} \backslash \Delta(S)$. By $2.6, \Delta(S)$ is open in $\pi(S)$. Hence $x \in B$. Hence $\left|K_{2}\right| \subset B$.

Let $x \in B ;$ then $x \in \overline{\Delta(S)} \mid \Delta(S)$. Let $x=S_{\sum_{S}} g(s) s$, $s_{G}^{\sum_{S} g}(s)=1$, and $g(s) \geq 0$ for each $s \in S$. Let $M=$ $\{s \in S \mid g(s)=0\}$. Since $x \notin \Delta(S)$, then $M \neq \phi$. Hence $S \backslash M$ is a proper face of S, and $x \in \Delta(S \backslash M)$. Therefore $x \in\left|K_{2}\right|$. Hence $B C \cdot\left|K_{2}\right|$.

Together, $\left|K_{2}\right| \subset B$ and $B \subset\left|K_{2}\right|$ imply $\left|K_{2}\right|=B$.
2.16. Definition. Let $S=\left\{a_{0}, \ldots, a_{m}\right\}$ be a finite set.

Each element a_{i} of S is called an abstract vertex. Each nonempty subset of S is called an abstract simplex of S. A collection of subsets K of S is called an abstract complex
 subsets S_{1}, \ldots, S_{n} of S_{3} where $2^{S} j$ is the collection of all non-empty subsets of S_{j}. The set S is called the vertices of K.
2.17. Definition. Two complexes (or abstract complexes) K_{1} and K_{2} are said to be isomorphic provided there exists a one-to-one onto function $f: K_{1}^{0} \rightarrow K_{2}^{0}$, where K_{1}^{0} are the vertices of K_{1}, and K_{2}^{0} are the vertices of K_{2}, having the property that a subset $\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{t}}\right\}$ of K_{1}^{0} is the set of vertices of a simplex in K_{1} if and only if $\left\{f\left(a_{i_{0}}\right), f\left(a_{i_{1}}\right), \ldots, f\left(a_{i_{t}}\right)\right\}$ is the set of vertices of a simplex in K_{2}. If an abstract complex K_{1} is isomorphic to a complex K_{2}, then K_{2} is said to be a realization of K_{1}.
2.18. Theorem. If \mathbb{R}^{n} is an n-dimensjonal Euclidean space, then there exists an n-simplex in R^{n}.

Proof: Let $S=\{(1,0,0, \ldots 0),(0,1,0,0, \ldots, 0), \ldots$, $(0,0, \ldots, 0,1,0),(0,0, \ldots, 0,1)\}$. Obviously S is linearly independent. By 1.4 , the set $S^{\prime}=\{(1,0,0, \ldots, 0)$, $(2,0,0, \ldots, 0),(1,1,0, \ldots, 0),(1,0,1,0,0, \ldots, 0), \ldots$, $(1,0,0, \ldots, 0,1)\}$ is geometrically independent. Hence S^{\prime} is an n-simplex in R^{n}.
2.19. Theoren. Every abstract complex K_{1} has a realization K_{2} in some Euclidean space R^{m}.

Proof: Let $\left\{a_{0}, \ldots, a_{m}\right\}$ be the vertices of the abstract complex K_{1} and $\left\{\mathrm{b}_{0}, \ldots, \mathrm{~b}_{\mathrm{m}}\right\}$ be an m-simplex in R^{m}. By 2.18,
such an m-simplex exists. Define the function f \{ e_{0}, \ldots, a_{m} \} $\rightarrow\left\{b_{0}, \ldots, b_{m}\right\}$ by $E\left(a_{i}\right)=b_{i}$ for $i=a_{s} I, \ldots, m$. Then f is an one-to-one onto function. Let $K_{2}=\left\{f(S) \mid S \in K_{1}\right\}$; then $\left\{b_{i}\right\} \in K_{2}$ for $i=0,1, \ldots, m_{\text {, because }}\left\{a_{i}\right\} \in K_{1}$ fon $i=0,1, \ldots$, mb If $A \in K_{2}$ and B is face of A, then $f^{-l}(A) \in K_{1}$ and $f^{-1}(B) \in f^{-1}(A)$. Since K_{1} is an abstract complex, then $f^{-1}(B) \in K_{1}$. Therefore $B \in K_{2}$. By part (d) of 1.4 , if $x, y \in K_{2}$ and $x \neq y$, then $\Delta(x) \cap \Delta(y)=\phi$. Hence K_{2} is a complex in R^{m}, and f is an isomorphism. Therefore K_{2} is a realization of K_{1}.
2.20. Definition. An n-dimensional pseudomanifold is an n-complex with the following properties:
(a) Each simplex is a face of an n-simplex.
(b) Each ($n-1$)-simplex is a face of exactly two n-simplexes.
(c) For each pair t_{1}^{n} and t_{2}^{n} of distinct $n-s i m p l e z e s, ~ t h e r e$ exists a finite sequence $s_{1}^{n}, S_{1}^{n-1}, S_{2}^{n}, S_{2}^{n-1}, \ldots, s_{k-1}^{n-1}, s_{k}^{n}$ of simplexes such that $S_{1}^{n}=t_{1}^{n_{1}}=S_{k}^{n}=t_{2}^{n}$; also, for $l \leq i<k$, each S_{i}^{n-1} is a face of both s_{i}^{n} and S_{i+1}^{n}, where S_{i}^{n} is n-simplex, and where s_{i}^{n-1} is (n-I)-simpiex, for $i=1, \ldots, k$.

In order to realize the geonetric meaning of a pseudomanifold, the following are four examples in R^{3} :

Example l. Let K be constructed as follows:

$$
\begin{array}{lll}
a_{0}=(0,0,0) & a_{1}=(1,0,0) & a_{2}=(0,1,0) \\
a_{3}=(0,0,1) & \\
s_{1}^{2}=\left\{a_{0}, a_{1}, a_{2}\right\} & s_{1}^{1}=\left\{a_{0}, a_{1}\right\} & s_{1}^{0}=\left\{a_{0}\right\} \\
s_{2}^{2}=\left\{a_{0}, a_{1}, a_{3}\right\} & s_{2}^{1}=\left\{a_{0}, a_{2}\right\} & s_{2}^{0}=\left\{a_{1}\right\}
\end{array}
$$

$$
\begin{array}{lll}
S_{3}^{2}=\left\{a_{0}, a_{2}, a_{3}\right\} & S_{3}^{1}=\left\{a_{0}, a_{3}\right\} & S_{3}^{0}=\left\{a_{2}\right\} \\
S_{4}^{2}=\left\{a_{1}, a_{2}, a_{3}\right\} & S_{4}^{1}=\left\{a_{1}, a_{2}\right\} & S_{4}^{0}=\left\{a_{3}\right\} \\
& S_{5}^{1}=\left\{a_{1}, a_{3}\right\} & \\
& S_{6}^{1}=\left\{a_{2}, a_{3}\right\} & \\
K=\left\{S_{i}^{2} \mid i=1,2,3,4\right\} \cup\left\{S_{i}^{1} \mid i=1,2,3,4,5,6\right\} \cup \\
\left\{S_{i}^{0} \mid i=1,2,3,4\right\} . \text { Then } K \text { is a } 2 \text {-dinensional pseudomanifold. }
\end{array}
$$

Example 2. Let K be constructed as follows:

$$
\begin{array}{lll}
a_{0}=(0,0,0) & a_{1}=(1,0,0) & a_{2}=(0,1,0) \\
a_{3}=(0,0,1) & a_{4}=(0,2,0) & a_{5}=(0,2,1)
\end{array}
$$

$a_{6}=(1,2,0)$
$S_{1}^{2}=\left\{a_{0}, a_{1}, a_{2}\right\} \quad S_{1}^{1}=\left\{a_{0}, a_{1}\right\}$
$S_{1}^{0}=\left\{a_{0}\right\}$
$S_{z}^{2}=\left\{a_{0}, a_{1}, a_{3}\right\} \quad S_{2}^{1}=\left\{a_{0}, a_{1}\right\}$
$S_{2}^{0}=\left\{a_{1}\right\}$
$S_{3}^{2}=\left\{a_{0}, a_{2}, a_{3}\right\} \quad S_{3}^{1}=\left\{a_{0}, a_{3}\right\}$
$S_{3}^{0}=\left\{a_{2}\right\}$
$S_{4}^{2}=\left\{a_{1}, a_{2}, a_{3}\right\} \quad S_{4}^{1}=\left\{a_{1}, a_{2}\right\}$
$S_{4}^{0}=\left\{a_{3}\right\}$
$S_{5}^{2}=\left\{a_{2}, a_{4}, a_{5}\right\}$
$S_{5}^{1}=\left\{a_{1}, a_{3}\right\}$
$S_{5}^{0}=\left\{a_{4}\right\}$
$S_{6}^{2}=\left\{a_{2}, a_{4}, a_{6}\right\} \quad S_{6}^{2}=\left\{a_{2}, a_{3}\right\}$
$S_{6}^{0}=\left\{a_{5}\right\}$
$S_{7}^{2}=\left\{a_{2}, a_{5}, a_{6}\right\} \quad S_{7}^{1}=\left\{a_{2}, a_{4}\right\}$
$S_{7}^{0}=\left\{a_{6}\right\}$
$S_{8}^{2}=\left\{a_{4}, a_{5}, a_{6}\right\}$
$S_{s}^{1}=\left\{a_{2}, a_{5}\right\}$
$S_{9}^{1}=\left\{a_{2}, a_{6}\right\}$
$s_{10}^{1}=\left\{a_{4}, a_{5}\right\}$
$s_{11}^{1}=\left\{a_{4}, a_{6}\right\}$
$S_{12}^{1}=\left\{a_{5}, a_{6}\right\}$
$K=\left\{S_{i}^{2} \mid i=1, \ldots, 8\right\} \cup\left\{S_{i}^{1} \mid i=1, \ldots, 12\right\} \cup\left\{S_{i}^{0} \mid i=1, \ldots, 7\right\}$.
Then K is a two-dimensional complex satisfying the conditions (a) and (b), but not (c).

Example 3. Let $a_{0}, a_{2}, a_{2}, a_{3}$ be as in Example 1.
$S_{1}^{2}=\left\{a_{0}, a_{1}, a_{3}\right\} \quad S_{1}^{1}=\left\{a_{0}, a_{1}\right\} \quad S_{i}^{0}=\left\{a_{0}\right\}$
$S_{2}^{2}=\left\{a_{0}, a_{2}, a_{3}\right\} \quad S_{2}^{1}=\left\{a_{0}, a_{2}\right\} \quad S_{2}^{0}=\left\{a_{1}\right\}$
$S_{3}^{1}=\left\{a_{0}, a_{3}\right\} \quad S_{3}^{0}=\left\{a_{2}\right\}$
$S_{4}^{1}=\left\{a_{1}, a_{3}\right\} \quad S_{4}^{0}=\left\{a_{3}\right\}$
$S_{5}^{1}=\left\{a_{2}, a_{3}\right\}$
$K=\left\{S_{1}^{2}, S_{2}^{2}\right\} \cup\left\{S_{i}^{1} \mid i=1, \ldots, 5\right\} \cup\left\{S_{i}^{0} \mid i=1, \ldots, 4\right\}$. Then K is a 2-dimensional complex satisfying the conditions (a) and (c), but not (b).

Example 4. Let $a_{5}=(1,1,1)$, and denote the 2-dimensional pseudomanifold of Example 1 by K^{\prime}. Let $K^{\prime \prime}=K!U\left\{a_{5}\right\}$; then $K^{\prime \prime}$ is a 2-dimensional complex satisfying the conditions (b) and (c), but not (a).
2.21. Theorem. If $S=\left\{s_{0}, \ldots, s_{n}\right\}$ is a simplex in R^{m}, then $\Delta(S)$ is connected.

Proof: Suppose $\Delta(S)$ is not connected; let $\Delta(S)=A \cup B$ such that $\bar{A} \cap B=A \cap \bar{B}=\phi$ and $A \neq \phi \neq B$. Let $a=\sum_{S} S_{S} f(s) s \in A, \sum_{S \in S} f(s)=1$, and $f(s)>0$ for each $s \in S$; also let $b=\sum_{S \in S} g(s) s \in B, \sum_{G} g(s)=I$, and $g(s)>0$ for
 $+f(s){ }_{\underline{L}}^{g(s)} \underset{ }{f(s) s \in A\} \text {. Since }}$

$$
\begin{aligned}
& f(s) \sum_{\neq g(s)}(f(s)+k(g(s)-f(s)))+E(s) \stackrel{\sum}{=}(s)^{f(s)} \\
& =f(s) \neq g(s)^{\sum} f(s)+f(s)=g(s)^{\sum} f(s)+\underset{f(s) \neq g(s)}{\sum} k(g(s)-f(s)) \\
& =\sum_{G} \sum_{G} f(s)+k\left[f(s) \neq g(s) g(s)-f(s) \not \sum_{f} \sum_{g}(s) f(s)\right]
\end{aligned}
$$

$=1+k[(]-f(s) \underset{=}{\Sigma}(s) g(s))-(1-f(s) \underset{f}{E} g(s) f(s))]$
$=1+k\left[_{f(s)} \sum_{g} g(s)^{\tilde{i}(s)-f(s)} \stackrel{\tilde{L}}{=} g(s)^{g(s)]}\right.$
$=I+k[0]$
$=I$, the set D is non-empty and the point $p=$
$f(s) \neq g(s)[f(s)+L(g(s)-f(s))] s+f(s) \sum_{=g(s)} f(s) s \in \Delta(s)$,
where $L=I u b D$. Since $p \in \Delta(S)$, then either $p \in A$ or $p \in B$.

Case 1: $p \in A$. Let $\operatorname{mar}\left\{\left|s_{0}\right|, \ldots,\left|s_{n}\right|\right\}=\theta$ where $\left|s_{j}\right|$ is the norm of s_{i}. Since $L=l u b D$, then for $\varepsilon>0$ there exists a real number L^{\prime} such that $L<L^{\prime}<L(1+\varepsilon /(I+\varepsilon)(I+n) \theta)$ and the point $p^{\prime}=$ $f(s) \sum_{\neq g(s)}^{\left[f(s)+L^{\prime}(g(s)-f(s))\right] s+f(s)^{\sum} g(s)^{f(s) s \in B} .}$ Then $\left|p^{\prime}-p\right|=$ $\left.\right|_{f(s)} \sum_{\neq g(s)}\left[f(s)+L^{\prime}(g(s)-f(s))\right] s+f(s) \sum_{=g(s)} f(s) s-$
 $\left|f(s) \neq g(s)\left(L^{\prime}-L\right)(g(s)-f(s)) s\right|<$
$\varepsilon /\left.(1+\varepsilon)(1+n) \theta\right|_{f(s) \neq g(s)} \sum_{(g(s)-f(s)) s} \leq$
$\varepsilon /(1+\varepsilon)(1+n) \theta_{f(s) \neq g(s)}^{\sum}|g(s)-f(s)||s| \leq \varepsilon /(1+\varepsilon)<, \varepsilon$.
This implies p is a limit point of B. Hence $A \cap \bar{B} \neq \phi$, which is a contradiction to the supposition.

Case 2: $p \in B$. Since $L=$ Lub D, then for $\varepsilon>0$ there exists a real number L ' such that

$$
\begin{aligned}
& L(1-\varepsilon /(1+\varepsilon)(1+n) \theta)<L^{\prime}<L \text {, and the point } p^{\prime}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Then }\left|p-p^{\prime}\right|= \\
& \left.\right|_{f(s) \neq g(s)}[f(s)+L(g(s)-f(s))] s+\sum_{f(s)}^{\sum} \sum_{g(s)} f(s) s- \\
& \underset{f(s) \neq g(s)}{\left[f(s)+L^{\prime}(g(s)-f(s))\right] s-} \underset{f(s) \sum_{g}^{\sum}(s)^{f(s) s}=}{ }= \\
& \left|f(s) \not \overline{7}_{g(s)}\left(L-L^{\prime}\right)(g(s)-f(s)) s\right|< \\
& \varepsilon /\left.(l+\varepsilon)(l+n) \theta\right|_{f(s) \neq g(s)}(g(s)-f(s)) s \mid \leq \\
& \varepsilon /(1+\varepsilon)(1+n) \theta_{f(s) \neq g(s)}|g(s)-f(s)||s| \leq \varepsilon /(I+\varepsilon)<\varepsilon .
\end{aligned}
$$

This implies p is a limit point of A. Hence $\bar{A} \cap B \neq \phi$, which is a contradiction to the supposition. Hence the supposition is false. Hence $\Delta(S)$ is connected. 2.22. Theorem. If S is a simplex in R^{n}, and if $S_{1}, \ldots, S_{\text {In }}$ are subsets of S, then the set $T=$ $\Delta(S) \cup \Delta\left(S_{1}\right) \cup \ldots U \Delta\left(S_{m}\right)$ is connected.

Proof: Assume T is not connected; let $T=A \cup B$ such that $\bar{A} \cap B=A \cap \bar{B}=\phi$, and let $A \neq \phi \neq B$. By $2.21, \Delta(S)$ is connected. The sets A and B are separated. Then either $\Delta(S) \subset A$ or $\Delta(S) \subset B$. Assume $\Delta(S) C A$. Since $B \neq \phi$, then there exists a point $y \in B$. lhat is, $y \in \Delta\left(S_{k}\right)$ for some $1 \leq k \leq m$. By 2.2l, $\Delta\left(S_{k}\right)$ is connected. Therefore $y \in B$ and $y \in \Delta\left(S_{k}\right)$ imply $\Delta\left(S_{k}\right) \subset$. But S_{k} is a face of S. By $2.9, \Delta\left(S_{k}\right) \subset \overline{\Delta(S)}$. Since $\Delta(S) \subset A$, then $\overline{\Delta(S)} \subset \bar{A}$. Hence
$\Delta\left(S_{k}\right) \subset \bar{A}$. Wherefore $\Delta\left(S_{k}\right) C \bar{A} \cap B$. That $\leq \bar{A} \cap B \neq \phi$. This contradicts the supposition that A and B ane separated. Similarly, a contradiction can be found if $A(S) \subset$ A. Therefore the supposition is false, and I is connected.
2.23. Theorem. If S is an n-simplex, $n \geq 2$, and K_{2} is the combinatorial boundary of S, then $\left|K_{2}\right|$ is connected.

Proof: Let $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$. Denote the set $S \backslash\left\{s_{i}\right\}$ by s_{i} for $i=0,1, \ldots, n$; denote the combinatorial closure of S_{i} by K_{i} 'for $i=0, \ldots, n$. Then
 Since $n \geq 2$, then $s_{i} \cap S_{j} \neq \phi$ for $0 \leq i, j \leq n$. Hence $\left|K_{i}{ }^{\prime}\right| \cap\left|K_{j}{ }^{\prime}\right| \neq \phi$ for $0 \leq i, j \leq n$. since ${ }_{i=0}^{\sum_{0}}\left|K_{i}{ }^{\prime}\right|$ is connected, then $\left|K_{2}\right|$ is connected.
2.24. Theorem. If K is an n-dimensional pseudomanifold, then $|K|$ is connected.

Proof: Suppose $|K|$ is not connected; let $|K|=A \cup B$ such that $\bar{A} \cap B=A \cap \bar{B}=\phi$, and $A \neq \phi \neq B$. Since $A \neq \phi \neq B$, then there exist $a \in A$ and $b \in B$. Then $a \in \Delta\left(S_{a}\right)$, and $b \in \Delta\left(S_{b}\right)$ for some simplex S_{a} and $S_{b} \in K$. Since K is an n-dimensional pseudomanifold, then S_{a} and S_{b} are faces of some n-simplexes s_{a}^{n} and s_{b}^{n} respectively. Hence there exist a finite sequence $s_{1}^{n}, s_{1}^{n-1}, s_{2}^{n} s_{2}^{n-1}, \ldots, s_{k-1}^{n-1}, s_{k}^{n}$ of simplexes such that $S_{1}^{n}=S_{a}^{n}, S_{k}^{n}=S_{b}^{n}$, and for $l \leq i<k$, each S_{i}^{n-1} is a face of both S_{i}^{n} and S_{i+1}^{n}. Denote this sequence of simplexes by $r_{1}, r_{2}, \ldots, r_{2 k-1}$. Then
$r_{1}=s_{1}^{n_{1}}=S_{a}^{n}$, and $r_{2 k \cdots 1}=s_{k}^{n}=S_{b}^{1} \quad B_{j}$ 2.21, $\Delta\left(x_{i}\right)$ is
connected for $i=1, \ldots, k \infty$. Then either $\Delta\left(r_{i}\right) \subset A$ or $\Delta\left(r_{i}\right) \subset B$ for $i=1, \ldots, 2 k-1$. Let $1 n$ be an integer such that $\Delta\left(n_{m}\right) \subset A$ and $\Delta\left(r_{m+1}\right) \subset B$.

Case 1: For some $1 \leq t<2 k-1, r_{m}=s_{t}^{n}$. Then $\Delta\left(r_{m+1}\right)=\Delta\left(S_{t}^{n-1}\right) \subset B$. Since S_{t}^{n-1} is a face of S_{t}^{n}, then $\Delta\left(S_{t}^{n-1}\right) \subset \overline{\Delta\left(S_{t}^{n}\right)} \subset \bar{A}$. Hence $\Delta\left(S_{t}^{n-1}\right) \subset \bar{A} \cap B$. This contradicts A and B being separated.

Case 2: For some $I \leq t<2 k-1, r_{m}=S_{t}^{n-1}$. Then $\Delta\left(r_{m+1}\right)=\Delta\left(S_{t+1}^{n}\right) \subset B$. Since S_{t}^{n-1} is a face of S_{t+1}^{n}, then $\Delta\left(S_{t}^{n-1}\right) \subset \overline{\Delta\left(S_{t+1}^{n}\right)} \subset \bar{B}$. Hence $\Delta\left(S_{t}^{n-1}\right) \subset A \subset \bar{B}$. This contradicts A and B being separated. Therefore the supposi.. tion is false. Hence $|K|$ is comnected. This theorem is proved.

The condition (c) of 2.20 is stronger than the property of connectedness. The following example is a complex K satisfying conditions (a) and (b) of 2.20 only, but $|K|$ is connected.

Example: In R^{3}, let K be constructed as follows:

$$
\begin{array}{lll}
a_{0}=(0,0,0) & a_{1}=(1,0,0) & a_{2}=(0,1,0) \\
a_{3}=(0,0,1) & a_{4}=(1,0,2) & a_{5}=(0,1,2) \\
a_{6}=(0,0,2) & & S_{1}^{0}=\left\{a_{0}\right\} \\
S_{1}^{2}=\left\{a_{0}, a_{1}, a_{2}\right\} & S_{1}^{1}=\left\{a_{0}, a_{1}\right\} & S_{2}^{0}=\left\{a_{1}\right\} \\
S_{2}^{2}=\left\{a_{0}, a_{1}, a_{3}\right\} & S_{2}^{1}=\left\{a_{0}, a_{2}\right\} & S_{3}^{0}=\left\{a_{2}\right\}
\end{array}
$$

$S_{4}^{2}=\left\{a_{1}, a_{2}, a_{3}\right\} \quad S_{4}^{2}=\left\{a_{1}, \bar{a}_{2}\right\} \quad S_{4}^{0}=\left\{a_{3}\right\}$
$S_{5}^{2}=\left\{a_{3}, a_{4}, a_{5}\right\} \quad S_{5}^{1}=\left\{a_{2}, a_{3}\right\} \quad S_{5}^{0}=\left\{a_{4}\right\}$
$S_{5}^{2}=\left\{a_{3}, a_{4}, a_{6}\right\} \quad S_{6}^{1}=\left\{a_{3}, a_{1}\right\} \quad S_{5}^{0}=\left\{a_{5}\right\}$
$S_{7}^{2}=\left\{a_{3}, a_{5}, a_{6}\right\} \quad S_{7}^{1}=\left\{a_{5}, a_{3}\right\} \quad S_{7}^{0}=\left\{a_{6}\right\}$
$S_{8}^{2}=\left\{a_{4}, a_{5}, a_{6}\right\} \quad S_{8}^{1}=\left\{a_{6}, a_{4}\right\}$
$S_{9}^{1}=\left\{a_{5}, a_{5}\right\}$
$S_{16}^{1}=\left\{a_{3}, a_{4}\right\}$
$S_{11}^{1}=\left\{a_{4}, a_{5}\right\}$
$S_{12}^{1}=\left\{a_{5}, a_{3}\right\}$
$K=\left\{S_{i}^{2} \mid i=1, \ldots, 8\right\} \cup\left\{S_{i}^{1} \mid i=1, \ldots, 12\right\} \cup\left\{S_{i}^{0} \mid i=1, \ldots, 7\right\}$.
Then K is a complex satisfyjng the conditions (a) and (b)
but not (c) of 2.20 . Also $|K|$ is connected.
2.25. Definition. If K is a complex and S is a simplex
in K such that S is not a proper face of each simplex in K,
then S is called a maximal simplex in K.
2.26. Theorem. Let K be a complex, and let S be a maxi-
mal m-simplex in K where $n \geq 2$. If $|K|$ is connected, then
$|K| \backslash \Delta(S)$ is connected.

Proof: Denote the combinatorial closure of S by K_{1} and the combinatorial boundary of S by K_{2}. Suppose $|K| \ A(S)$ is not connected. Let $|K| \backslash \Delta(S)=A \cup B$ such that $\bar{A} \cap B=$ $A \cap \bar{B}=\phi$, and $A \neq \phi \neq B$. By $2.23,\left|K_{2}\right|$ is connected. Hence either $\left|K_{2}\right| \subset A$ or $\left|K_{2}\right| \subset$ B. It is no loss of generality if $\left|K_{2}\right| C A$ is assumed true. Since $|K|$ is connected and $|K| \backslash \Delta(S)$ is not connected, then either $\Delta(S) \cap \bar{B} \neq \phi$ or $\overline{\Delta(S) \cap B} \neq \phi$. Also for each simplex $S^{\prime} \in K \backslash\{S\}$, either $\Delta\left(S^{\prime}\right) \subset A$ or $\Delta\left(S^{\prime}\right) \subset B$.

Case 1: $\Delta(3) \cap \bar{B}+4$. This jnequajity means there
 $p \nmid K \mid \backslash(S)=A \cup B$. Hence $p \notin$. If p is a Iimit point of B, then p is a limit point of $\Delta\left(S_{2}\right)$ fow some simplex $S_{1} \in K$ and $\Delta\left(S_{1}\right) \subset B$. Hence $p \in \bar{\Delta}\left(S_{2}\right) \cap \Delta(S)$. But S is a maximal simplex in K, and $S \neq S_{1}$; hence $\bar{\Delta}\left(S_{1}\right) \cap \Delta(S)=\dot{\varphi}:$ Therefore the supposition of P being a linit point of B is false. Therefore $\Delta(S) \cap \bar{E} \neq \phi$ is impossible.

Case 2: $\overline{\Lambda(S)} \cap B \neq \phi$. This inequality means there exists a point $p \in B$ and $p \in \bar{\Delta}(S)$. But $p \in B$ implies $p \in \mid K \| \Delta(S)=A \cup B$. Hence $p \notin \Delta(S)$. If p is a limit point of $\Delta(S)$, then $p \in\left|K_{2}\right| \subset A$. Hence $p \in A \cap B$. This contradicts $\bar{A} \cap B=\phi$. Therefore $\overline{\Delta(S)} \cap B \neq \phi$ is impossible.

Combining Case 1 and Case 2, we know that the supposition is false. Hence $|K| \backslash \Delta(S)$ is connected.
2.27. Theorem. Let K be an n-complex and $|K|$ be connected. Then the set $T=\{x \mid x$ is a vertex in $K\} U$ $\left(U\left\{\Delta\left(S^{1}\right) \mid S^{1}\right.\right.$ is l-simplex in $\left.\left.K\right\}\right)$ is connected.

Proof: If $n=0$ or 1 , this theorem is automatically true.

Assume $n \geq 2$; then each n-simplex in K is a maximal simplex in K. If S^{n} is an nosimplex in K, then $K \backslash\left\{S^{n}\right\}$ is also a complex. By $2.26,|K| \backslash(S)$ is connected.

Assume K has just t_{i} i-simplexes denoted by $s^{\frac{i}{1}}, s_{2}^{i}, \ldots, S_{t_{i}}^{i}$ for $i=2,3, \ldots, n$. Let $\sum_{i=2}^{n} t_{i}=m$, and denote the sequence
$s_{1}^{n}, S_{2}^{n}, \ldots, S_{t_{n}}^{n}, s_{2}^{n-1}, s_{2}^{T-1}, \ldots, S_{Q_{n}-1}^{n-1}, \ldots, s_{1}^{2}, S_{2}^{2}, \ldots$,
$S_{t_{2}}^{2}$ of simplexes by n_{1}, \ldots, n_{m}. Define $K_{i}=K\left\{\left\{r_{i}\right\}\right.$, and define $K_{i}=K_{i-1} \backslash\left\{r_{i}\right\}$ for $i=2,3, \ldots, m$. Then $\left|K_{n}\right|=T$. By $2.26,\left|K_{1}\right|$ is connected. Use 2.26 m times to conclude that $\left|K_{m}\right|$ is connected. That is, the set T is connected.

ChAPTER III

CHAIN GROUFS

For a complex K and an abelian group G, the first step in constructing the chain group is to define the orientation for each simplex in K. We use the notation S^{n} to denote an n-simplex.
3.1. Definition. If S^{n} is an n-simplex where $n \geq I$, Let $F_{S^{n}}=\left\{f \mid f\right.$ is a one-to-one onto function $\left.\{0, \ldots, n\} \rightarrow S^{n}\right\}$, and define a relation \sim in F by the following: Let $\mathrm{f}, \mathrm{g} \in \mathrm{F}$; then $f \sim g$ if and only if $f=g$ or there exist an even number of transpositions $\phi_{1}, \ldots, \phi_{2_{m}}$ of the set $\{0,1, \ldots, n\}$ such that $f=g \phi_{1}, \ldots, \phi_{2 m}$. Since
[(1) By definition, $f \cdots f$ for every $f \in F$.
(2) If $f, g \in F$ and $f \sim \varepsilon$, then there exjst transposi.. tions of $\{0,1, \ldots, n\}, \phi_{1}, \ldots, \phi_{2 t}$ such that $f=g \phi_{1}, \ldots, \phi_{2 t}$. But the inverse of a transposition is also a transposition; nence $f_{2} \phi_{2}^{-1}, \ldots, \phi_{1}^{-1}=g \phi_{1}, \ldots, \phi_{2 t} \phi_{2 t}^{-1}, \ldots, \phi_{1}=g$. Therefore $g \sim f$.
(3) If $f, g, h \in E$ and $f \sim g, g \sim h$, then there exist trangpositions of $\{0, \ldots, n\}, \phi_{1} \ldots . \phi_{2}, \theta_{1}, \ldots, \phi_{2}$ t such that $f=g \phi_{1}, \ldots, \phi_{2 r}$ and $g=h \epsilon_{1}, \ldots, \theta_{2 t}$. Hence $f=g \phi_{1}, \ldots, \phi_{2 r}$ $=r_{1} \theta_{1}, \ldots, \theta_{2} t_{1}, \ldots, \phi_{2 r}$. Therffore $\left.f \sim h_{1}\right]$, then the relation \sim is en equivalent relation.

By the definition of., $F_{\text {gri }} / \sim$ contains ony two envivaIent classes.

The statement that D is an oniented $n-s i m p l e x$ means $D=\left(S^{n}, e\right)$ where $e F_{S_{n}} / \cdots$ and $F_{g^{\prime}} / \sim$ is called the orientan tion set of S^{n}, denoted by $N\left(S^{n}\right)$. Tf $e \in N\left(S^{n}\right)$, then e is called an orientation of s^{n}. If $S^{n}=\left\{a_{0}, \ldots, a_{n}\right\}$, we denote D by the notation $\left\langle a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{n}}\right\rangle$ where $i_{0}, i_{1}, \ldots, i_{n}$ is a permutation of $0,1, \ldots, n$. Let $F_{S^{n}} / \sim=\left\{e_{1}, e_{2}\right\}$, then we say $\left(S^{n}, e_{1}\right)=-\left(S^{n}, e_{2}\right)$ and $\left(S^{n}, e_{2}\right)=-\left(S^{n}, e_{1}\right)$.

For $0-s i m p l e x S^{0}$, the orjentation set of S^{0} contains
just one element. Let $S^{0}=\left\{a_{0}\right\}$; the meaning of $-\left\langle a_{0}\right\rangle$ will be defined later.
3.2. Definition. The symbol K^{α} is an oriented complex meaning K is a complex, α is a function $\alpha: K \rightarrow \bigcup_{S \in K} N(S)$ and $\alpha(S) \in N(S)$ for every $S \in K$, where $N(S)$ is the orientation set of S. The symbol α is called an orientation of K.

Notation: Let α, β be orientations of a complex K. Then the symbol $f_{\alpha \beta}$ will be used to express the function $K \rightarrow\{1,-1\}$ defined by

$$
\begin{aligned}
& f_{\alpha \beta}(S)=1 \text { if } \alpha(S)=\beta(S), \text { and } \\
& f_{\alpha \beta}(S)=-1 \text { if } \alpha(S) \neq \beta(S), \text { for each } S \in K .
\end{aligned}
$$

Let γ be ancther orientation of the complex K. Then by the definjtion of $f_{\alpha \beta}$, the following properties follow immediately:
(I) $f_{\alpha \alpha}(S)=1$,
(2) $f_{\alpha \beta}(S)=f_{\beta \alpha}(S)$, and
(3) $f_{\alpha \beta}(S) f_{\beta \gamma}(S)=E_{\alpha \gamma}(S)$.
3.3. Definition. Let k be an oriented complex, and let G be an additive abelian group. An n-dimensional chain of K^{α} over G is a function C^{α} which assigns to each oriented r-simplex of K^{α} an element of the group G. For convenience, $C \alpha\left(\left(S^{r}, \alpha\left(S^{r}\right)\right)\right.$) is denoted by $C \alpha\left(S^{r}\right)$.
3.4. Definition. The set of r-dimensional chains of an oriented complex K^{α} over a group G is indicated by the symbol $C_{r}\left(K^{\alpha} ; G\right)$. Let $c_{1}^{\alpha}, c_{2}^{\alpha} \in C_{r}(K \alpha ; G)$; define $c_{1}^{\alpha}+c_{2}^{\alpha}$ by $\left(c_{1}^{\alpha}+c_{2}^{\alpha}\right)\left(S^{n}\right)=c_{1}^{\alpha}\left(S^{N}\right)+c_{2}^{\alpha}\left(S^{n}\right)$.
3.5. Theorem. If G is a unital R-module, define $\left(\operatorname{rc}^{\alpha}\right)\left(S^{t}\right)=r\left(c^{\alpha}\left(S^{t}\right)\right)$ for every $r \in R, c^{\alpha} \in C_{t}\left(K^{\alpha} ; G\right)$, and $S^{t} \in K$: Then $C_{t}\left(K^{\alpha} ; G\right)$ is a unital R-module.

Proof: Define the function c_{0}^{α} by ${ }_{0}^{\alpha}\left(S^{t}\right)=0$ for all $S^{t} \in K$ where 0 is the zero element of G. Then $c \alpha$ is the zero element in $C_{t}\left(K^{\alpha} ; G\right)$.

Let $c^{\alpha} \in C_{t}\left(K^{\alpha} ; G\right)$; then the inverse element of c^{α} is $-c^{\alpha}$ defined by $\left(-c^{\alpha}\right)\left(s^{t}\right)=-\left(c^{\alpha}\left(s^{t}\right)\right.$) for all. $s^{t} \in K$. Since G is closed, abelian, and associative, then $C_{t}\left(K^{\alpha} ; G\right)$ is closed, abelian, and associative. Hence $C_{t}\left(K^{\alpha} ; G\right)$ is an abelian group under addjtion. Furthermore,

$$
\begin{aligned}
\left(r\left(c_{1}^{\alpha}+c_{2}^{\alpha}\right)\right)\left(s^{t}\right) & =r\left(\left(c_{1}^{\alpha}+c_{2}^{\alpha}\right)\left(s^{t}\right)\right) \\
& =r\left(c_{1}^{\alpha}\left(s^{t}\right)+c_{2}^{\alpha}\left(s^{t}\right)\right) \\
& =r\left(c_{1}^{\alpha}\left(s^{t}\right)\right)+r\left(c_{2}^{\alpha}\left(s^{t}\right)\right) \\
& =\left(r c_{1}^{\alpha}+r c_{2}^{\alpha}\right)\left(s^{t}\right) \\
\left(r\left(s c_{1}^{\alpha}\right)\right)\left(s^{t}\right) & =r\left(\left(s c_{1}^{\alpha}\right)\left(s^{t}\right)\right) \\
& =r\left(s^{\left.\left(c_{1}^{\alpha}\left(s^{t}\right)\right)\right)}\right. \\
& =(r s)\left(c_{1}^{\alpha}\left(s^{t}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left((r+s) c_{1}^{\alpha}\right)\left(S^{t}\right)=(n+s)\left(c_{1}^{\alpha}\left(S^{t}\right)\right) \\
& =2\left(o_{1}^{\alpha}\left(s^{t}\right)\right)+s\left(c_{1}^{\alpha}\left(s^{t}\right)\right) \\
& =\left(\sec _{1}^{\alpha}\right)\left(S^{t}\right)+\left(\operatorname{sc}_{1}^{\alpha}\right)\left(S^{t}\right) \text {. } \\
& \left(1 c_{1}^{\alpha}\right)\left(S^{t}\right)=I\left(c_{1}^{\alpha}\left(S^{t}\right)\right)=c_{1}^{\alpha}\left(S^{t}\right) \\
& \text { for all } c_{1}^{\alpha}, c_{2}^{\alpha} \in C_{t}\left(K^{\alpha} ; G\right) \text { and } r, s \in R \text {. Hence } C_{t}\left(K^{\alpha} ; G\right) \text { is } \\
& \text { a unital R-module. }
\end{aligned}
$$

3.6. Definition. If α, β are orientations of a complex k and $c^{\alpha} \in C_{\gamma}\left(K^{\alpha} ; G\right), c^{\beta} \in C_{r}\left(K^{\beta} ; G\right)$, then c^{α} is defined to be chain-equivalent to c^{β} provided that for each r-simplex S^{r} of K it is true that $c^{\alpha}\left(S^{r}\right)=f_{\alpha \beta}\left(S^{r}\right) c^{\beta}\left(S^{r}\right)$. From the properties of the function $f_{\alpha \beta}$, the relation so defined is an equivalent relation.
3.7. Definition. Let k^{α} be an oriented complex and c^{α} an r-dimensional chain of K^{α} over a unital R-module G. The chain-equivalent class of c^{α} is called an \underline{x}-dimensional thain of K over G. The set of r-dimensional chains of K over G is indicated by the symbol $C_{r}(K ; G)$. If c^{α} is in the chainequivalence class c, then c^{α} is called a representative of the chain c. The notation $\left[c^{\alpha}\right]$ is used to express the chainequivalence class of c^{α}.
3.8. Theorem. Let c be an r-dimensional chain of a complex K over a module G. For each orientation α of K, there exists exactly one chain $c^{\alpha} \in C_{r}\left(K^{\alpha} ; G\right)$ such that d $^{\alpha}$ is a representative of c.

Proof: Let a be an orientation of the complex k. The r-dimensional chain $\rho \in C_{\Omega}(K ; G)$ means there is an
orientation R of K, and there is an mamensional chain $c^{B} \in C_{m}\left(K^{\beta} ; G\right)$ suin that $=^{\beta}$ is in tho chain-equivalence class c. Define an raimensional chain $c^{\alpha} \in C_{r}\left(K^{\alpha} ; G\right)$ by $c^{\alpha}\left(S^{r}\right)=f_{\alpha \beta}\left(S^{n}\right) c^{\beta}\left(S^{r}\right)$ fon all posimplezes $S^{r} \in K$. But this is just the definition of chain equivalence; hence c^{α} is chain-equivalent to c^{β}. Hence both of c^{α} and c^{β} are. in the chain-equivalence class c. Therefore $c \alpha$ is a representative of c. Let $c \alpha$ be another r-dimensional chain in c; then c^{α} is chain-equivalent to c_{1}^{α}. By definition,
$c_{1}^{\alpha}\left(S^{r}\right)=f_{\alpha \alpha}\left(S^{r}\right) c^{\alpha}\left(S^{r}\right)$ fon all $S^{r} \in K^{\alpha}$. But $f_{\alpha \alpha}\left(S^{r}\right)=1$ for all $S^{r} \in K^{\alpha}$. Therefore $c_{1}^{\alpha}\left(S^{r}\right)=c^{\alpha}\left(S^{r}\right)$ for all $S^{r} \in K^{\alpha}$. This proves $c \alpha$ is unique.
3.9. Theoren. If α, β are orientations of a complex K and G is a unital R-module, let $c_{1}^{\alpha}, c_{2}^{\alpha} \in C_{r}\left(K^{\alpha} ; G\right)$, and let $c_{1}^{\beta}, c_{2}^{\beta} \in C_{r}\left(K^{\beta} ; G\right)$ with c_{1}^{α} equivalent to c_{1}^{β} and c_{2}^{α} equivalent to c_{2}^{β}. Then $c_{1}^{\alpha}+c_{2}^{\alpha}$ is equivalent to $c_{1}^{\beta}+c_{2}^{\beta}$.

Proof: For each simplex S^{17} of K, we have $\left(c_{1}^{\alpha}+c_{2}^{\alpha}\right)\left(s^{\gamma}\right)=c_{1}^{\alpha}\left(S^{\gamma}\right)+c_{2}^{\alpha}\left(S^{\rho}\right)$

$$
\begin{aligned}
& =f_{\alpha \beta}\left(S^{r}\right) c_{1}^{\beta}\left(S^{r}\right)+f_{\alpha \beta}\left(S^{r}\right) c_{1}^{\beta}\left(S^{r}\right) \\
& =f_{\alpha \beta}\left(S^{r}\right)\left(c_{1}^{\beta}\left(S^{r}\right)+c_{2}^{\beta}\left(S^{r}\right)\right) \\
& =f_{\alpha \beta}\left(S^{r}\right)\left(c_{1}^{\beta}+c_{2}^{\beta}\right)\left(S^{r}\right) .
\end{aligned}
$$

Hence, by definition, $c_{1}^{\alpha}+c_{2}^{\alpha}$ is chain-equivalent to $c_{1}^{\beta}+c_{2}^{\beta}$.

With the theorem of 3.7 and the theorem of 3.8 , the following important definition can be given.
3.13. Definition. If $C_{1}, c_{2} \in C_{n}(K ; G)$, then the sum $a_{1}+\theta_{2}$ is defined to be the quivalence class of $a_{1}^{\alpha}: c_{2}^{\alpha}$ where α is an orientation of the complex K and c_{1}^{α} and c_{2}^{α} are representatives of c_{1} and c_{2} respectively.

Theorem 3.7. states that for any orientation a of k, such representatives c_{1}^{α} and c_{2}^{α} of c_{1} and c_{2} exist. Theorem 3.8 proves that the addition of c_{1} and c_{2} defined aoove is well-defined.
3.11. Theorem. Let G be a unital R-module, and define $r c=\left[r c^{\alpha}\right]$ for every $r \in R, c \in C_{t}(K ; G)$ where α is an orientation of K, c^{α} is the representative of c, and $r_{c}{ }^{\alpha}$ is defined in 3.5. Then $C_{t}(K ; G)$ is an unital R-module. Also $C_{t}(K ; G)$ is isomorphic to $C_{t}\left(K^{\alpha} ; G\right)$.

Proof: Let α be an orientation of the complex K. By 3.5, it is known that $C_{t}\left(K^{\alpha} ; G\right)$ is a unital R-module. To show $C_{t}(K ; G)$ is a unital R-module, it must be shown that the mapping $R \times C_{t}(K ; G) \rightarrow C_{t}(K ; G)$ defined by $r c=\left[r c^{\alpha}\right]$ is well-defined. Let β be another orientation of K and $c^{\beta} \in c_{t}\left(K^{\beta} ; G\right)$ be the representative of c; then $\left(r c^{\alpha}\right)\left(S^{t}\right)=r\left(c^{\beta}\left(S^{t}\right)\right)=r\left(f_{\alpha \beta}\left(S^{t}\right) c^{\beta}\left(S^{t}\right)\right)=f_{\alpha \beta}\left(S^{t}\right)\left(r\left(c^{\beta}\left(S^{t}\right)\right)\right)$ $=f_{\alpha \beta}\left(r^{\beta}\right)\left(S^{t}\right)$. Hence $r c^{\alpha}$ is chain-equivalent to $r c^{\beta}$ for each $r \in R$. Therefore $r c=\left[r c^{\alpha}\right]$ is well-defined. Therefore the computation in the proof of $C_{t}(K ; G)$ being a unital module is just the computation in $C_{t}\left(K^{\alpha} ; G\right)$. But $C_{t}\left(K^{\alpha} ; G\right)$ is a unital R-module; hence $C_{t}(K ; G)$ is also a unital R-module.

To show $C_{t}(K ; G)$ is ibomorphit to $U_{t}\left(K^{\prime} ; G\right)$, define the function $\phi: \Gamma_{U}(K: G) \rightarrow C_{i}\left(Y^{\alpha}: G\right) b y h(0)=c^{\alpha}$ where $c \in C_{t}(K ; G)$ and c^{α} is the representative of C. Let $c_{1}, c_{2} \in$ $C_{t}(K ; G)$ with $c_{1} \neq o_{2}$ and $c_{1}^{\alpha}, c_{2}^{\alpha} \in C_{t}\left(K^{\alpha} ; G\right)$ such that $c_{1}^{\alpha}, c_{2}^{\alpha}$ are the representatives of c_{1}, c_{2} respectively. Then $\phi\left(c_{i}\right)=c_{1}^{\alpha}$ and $\phi\left(c_{2}\right)=c_{2}^{\alpha}$. Since $c_{1} \neq c_{2}$ implies $\left[c_{1}^{\alpha}\right] \neq\left[c_{2}^{\alpha}\right]$, then $c_{1}^{\alpha} \neq c_{2}^{\alpha}$. Therefore the function ϕ is one-to-one. Let $c^{\alpha} \in C_{t}\left(K^{\alpha} ; G\right)$; then $\left[e^{\alpha}\right] \in C_{t}(K ; G)$, and $\phi\left(\left[c^{\alpha}\right]\right)=c^{\alpha}$. Hence ϕ is onto. Also $\phi\left(c_{1}+c_{2}\right)=$ $\phi\left(\left[c_{1}^{\alpha}\right]+\left[c_{2}^{\alpha}\right]\right)=\phi\left(\left[c_{1}^{\alpha}+c_{2}^{\alpha}\right]\right)=c_{1}^{\alpha}+c_{2}^{\alpha}=\phi\left(c_{1}\right)+\phi\left(c_{2}\right)$. This proves ϕ is an isomorphism.

CHAFTER IV

HOMOLOGY GROUP
4.1. Definition. Let $K \alpha$ be an oriented complex, $\left(S^{r}, u\left(S^{r} j\right)=\left\langle a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{r}}\right\rangle\right.$ where $r \geq I$ is an oriented. r-simplex in K^{α}, and $S^{r-1}=S^{r} \backslash\left\{a_{i_{j}}\right\}$ is a face of S^{r}; then $\left.(-1) j<a_{i_{0}}, \ldots, a_{i_{j-1}}, a_{i_{j+1}}, \ldots, \bar{a}_{i_{r}}\right\rangle$ is called the oriented simplex S^{r-1} inherited from ($S^{r}, \alpha(S r)$). We also use the notation $(-1)^{j}\left\langle a_{i_{0}}, \ldots, \hat{a}_{i_{j}}, \ldots, a_{i_{r}}\right\rangle$ to denote $(-1)^{j}\left\langle a_{i_{0}}, \ldots, a_{i_{j-1}}, a_{i_{j+1}}, \ldots, a_{i_{r}}\right\rangle$.

Since the orientation set of a o-simplex contains only one element, the oriented 0 -simplex has not been defined in 3.1. Now, using the idea of 4.1, the following definition is derived.
4.2. Definition. Let K be a complex and $S^{0}, S^{1} \in K$ such that $S^{0} \subset S^{1}$; then x is an oriented 0 -simplex S^{0} if and only If x is an oriented simplex S^{0} inherited from ($S^{1}, \alpha\left(S^{1}\right)$) for some orientation α of K_{0}. If $S^{0}=\{a\}$, we denote the two types of oriented 0 -simplexes S^{0} by a and -a. The minus sign means the other type of this oriented simplex.

Notation: Let S be a simplex in a complex K and α an orientation of K; then denote $(S, \alpha(S))$ by $W_{\alpha}(S)$.

Let S^{r}, s^{r-1} be a stmples in K and $s^{2-1} C S$; then denote the oriented simplex sx-i inemited from ($s^{r}, a(s x)$) by $W_{I}\left(s^{n}, S^{r-1}\right) \alpha$.
4.3. Definition. Let $5^{n}, S^{r-1}$ be simplexes of a complex K and α an orientation of k; then the incidence number of S^{r} and S^{r-1} under the orientation α, denoted by $\left[S^{r}, S^{r-l}\right]^{\alpha}$, is defined as follows:

$$
\begin{aligned}
& {\left[S^{r}, S^{r-1}\right]^{\alpha} }=0 \text { if } S^{r-1} \notin S^{r} ; \\
& {\left[S^{r}, S^{r-1}\right]^{\alpha} }=1 \text { if } S^{r-1} \subset S^{r} \text { and } W_{\alpha}\left(S^{r-1}\right)=W_{I}\left(S^{r}, S^{r-1}\right) \alpha ; \\
& {\left[S^{r}, S^{r-1}\right]^{\alpha} }=-1 \text { if } S^{r-1} \subset S^{r} \text { and } W_{\alpha}\left(S^{r-1}\right) \neq W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}, \\
& \text { 4.4. Theorem. If } S^{r} \text { and } S^{r-1} \text { are simplexes of a com- }
\end{aligned}
$$ plex K, and α and β are orientations of K, then $\left[S^{r}, S^{r-1}\right]^{\alpha}=f_{\alpha \beta}\left(S^{r}\right) f_{\alpha \beta}\left(s^{r-1}\right)\left[S^{r}, S r-1\right]^{\beta}$.

Proof: If $\mathrm{Sr-l}$ is not a face of S^{r}, then both of $\left[S^{r}, S^{r-1}\right]^{\alpha}$ and $\left[S^{r}, S^{r-1}\right]^{\beta}$ are zero. Hence the theorem is true. Assume $s^{r-1} \subset S^{r}$, and discuss the following four cases:

Case 1: $f_{\alpha \beta}\left(S^{r}\right)=1$, and $f_{\alpha \beta}\left(S^{r-1}\right)=1$.
(a) If $\left[S^{r}, S^{r-1}\right] \alpha=1$, then $f_{\alpha \beta}\left(S^{r-1}\right)=1$ implies that $W_{\beta}\left(S^{r-1}\right)=W_{\alpha}\left(S^{r-1}\right) ;\left[S^{r}, S^{r-1}\right]^{\alpha}=1$ inplies that $W_{\alpha}\left(S^{r-1}\right)=W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha} ; f_{\alpha,}\left(S^{r}\right)=1$ implies that $W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}=W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. Hence $W_{B}\left(S^{r-1}\right)=$ $W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. Hence $\left[S^{n}, S^{r-1}\right]^{\beta}=1$. Therefore the theorem is true.
(b) If $\left[S^{r}, S^{r-1}\right] \alpha=-1$, then $W_{\alpha}\left(S^{r-1}\right) \neq W_{T}\left(S^{r}, S^{r-1}\right)^{\alpha}$. Using part (a), $W_{\beta}\left(S^{r-1}\right) \neq W_{X}\left(S^{r}, S^{r-1}\right)^{\beta}$. That is, $\left[S^{r}, S^{r-1}\right]^{\beta}=-1$. The theorem is also true.

Case 2: $f_{\alpha \beta}\left(S^{2}\right)=-1$, and $f_{\alpha B^{2}}\left(s^{x-1}\right)=-1$.
(a) If $\left[S^{r}, S^{r-1}\right] \alpha=$, then ${ }_{c \in}\left(S^{x-1}\right)=-1$ implies thet $W_{\beta}\left(S^{r-1}\right) \neq W_{\alpha}\left(S^{r-1}\right) ; f_{\alpha \beta}\left(S^{r}\right)=-1$ implies that $W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha} \neq W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. But $W_{\beta}\left(S^{r-1}\right) \neq W_{\alpha}\left(S^{r-1}\right)$ implies $W_{\beta}\left(S^{r-1}\right)=-W_{\alpha}\left(S^{r-1}\right)$. Hence $W_{\beta}\left(S^{r-1}\right)=-W_{\alpha}\left(S^{r-1}\right)=$ $-W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}=W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. Hence $W_{B}\left(S^{r-1}\right)=W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. That is, $\left[S^{n}, S^{r-1}\right]=1$. Hence the theorem is true.
(b) If $\left[S^{r}, S^{r-1}\right]=-1$, using the above discussion, we have $W_{\beta}\left(S^{r-1}\right)=-W_{\alpha}\left(S^{r-1}\right)=W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}=-W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. Hence $W_{\beta}\left(S^{r-l}\right)=-W_{I}\left(S^{r}, S^{r-l}\right) B$, and $\left[S^{r}, S^{r-l}\right]^{\beta}=-1$. The theorem is also true.

Case 3: $\quad f_{\alpha \beta}\left(S^{r}\right)=1$, and $F_{\alpha \beta}\left(S^{r-1}\right)=-1$.
(a) If $\left[S^{r}, S^{r-1}\right]^{\alpha}=1$, then $W_{\beta}\left(S^{r-1}\right)=-W_{\alpha}\left(S^{r-1}\right)=$ $-W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}=-W_{I}\left(S^{r}, S^{r-1}\right)^{B}$. Hence $\left[s^{r}, S^{r-l}\right]^{\beta}=-I$

The theorem is true.
(b) If $\left[S^{r}, S^{r-1}\right]^{\alpha}=-1$, then $W_{\beta}\left(S^{r-1}\right)=-W_{\alpha}\left(S^{r-1}\right)=$ $W_{I}\left(S^{r}, S^{r-1}\right) \alpha=W_{I}\left(S^{r}, S^{r-1}\right) B$. Hence $\left[S^{r}, S^{r-1}\right]^{\beta}=1$. The theorem is true.

Case 4: $\quad f_{\alpha \beta}\left(S^{r}\right)=-1$, and $f_{\alpha \beta}\left(S^{r-1}\right)=1$.
(a) If $\left[S^{r}, S^{r-1}\right]^{\alpha}=1$, then $W_{\beta}\left(S^{r-1}\right)=\mathbb{W}_{\alpha}\left(S^{r-1}\right)=$ $W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}=-W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. Hence $\left[S^{r}, S^{x \cdots 1}\right]^{\beta}=-1$. The theorem is true.
(b) If $\left[s^{r}, s^{r-1}\right]^{\alpha}=-I$, then $W_{\beta}\left(S^{r-1}\right)=W_{\alpha}\left(S^{r-1}\right)=$ $-W_{I}\left(S^{r}, S^{r-1}\right)^{\alpha}=W_{I}\left(S^{r}, S^{r-1}\right)^{\beta}$. Hence $\left[S^{r}, S^{r-1}\right]^{\beta}=I$. The theorem is true.

Combining the above cases, the theorem is proved.
4.5. Theorem. Let $S^{r}, S_{i}^{r-1}, S^{r-2}$ be simplexes of a complex K and α an orientation of K; then

$$
\left.\sum_{i}\left[S^{r}, S_{i}^{r-1}\right]_{\left[S_{i}^{r-1}\right.} S^{r-2}\right]^{\alpha}=0
$$

Proof: By the definition of incidence number,
$\left[s^{r}, s_{i}^{r-1}\right]^{\alpha}\left[s_{i}^{r-1}, s^{r-2}\right]^{\alpha} \neq 0$ if and only if
$S^{r-2} \subset S_{i}^{r-1} \subset S^{r}$. Let β be another orientation of K;
then $\sum_{i}\left[s^{r}, s_{i}^{r-1}\right]^{\alpha}\left[s_{i}^{r-1}, s^{r-2}\right]^{\alpha}=$
$\sum_{i} f_{\alpha \beta}\left(S^{r}\right) f_{\alpha \beta}\left(S_{i}^{r-1}\right)\left[s^{r}, S_{i}^{r-1}\right]^{\beta} f_{\alpha \beta}\left(S_{i}^{r-1}\right) f_{\alpha \beta}\left(s^{r-2}\right)\left[s_{i}^{r-1}, s^{r-2}\right]^{\beta}=$
$f_{\alpha \beta}\left(S^{r}\right) f_{\alpha \beta}\left(S^{r-2}\right)_{i}^{\sum_{i}}\left[S^{r}, S_{i}^{r-1}\right]^{\beta}\left[S_{i}^{r-1}, S^{r-2}\right]^{\beta}$. Therefore
$\sum_{i}\left[S^{r}, S_{i}^{r-1}\right]^{\alpha}\left[s_{i}^{r-1}, S^{r-2}\right]^{\alpha}=0$ if and only if
$\sum_{i}\left[S^{r}, S_{i}^{r-1}\right]^{\beta}\left[S_{i}^{r-1}, s^{r-2}\right]^{\beta}=0$. Hence this theorem does not depend on the particular orientation α. Let
$S^{r}=\left\{a_{0}, a_{1}, \ldots, a_{r}\right\}, S^{r-2}=\left\{a_{2}, \ldots, a_{r}\right\}$,
$s_{1}^{r-1}=\left\{a_{0}, a_{2}, \ldots, a_{r}\right\}, s_{2}^{r-1}=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. Then
for any S_{i}^{r-1} which satisfies the condition $S^{r-2} \subset s_{i}^{r-1} \subset s^{r}$, either $S_{i}^{r-1}=S_{1}^{r-1}$ or $S_{i}^{r-1}=S_{2}^{r-1}$.

Let γ be an orientation of K such that
$\left(S_{1}^{r}, \gamma\left(S^{r}\right)\right)=\left\langle a_{0}, a_{1}, \ldots, a_{r}\right\rangle$,
$\left(S_{1}^{r-1}, \gamma\left(S_{1}^{r-1}\right)\right)=\left\langle a_{0}, a_{2}, \ldots, a_{r}\right\rangle,\left(S_{2}^{r-1}, \gamma\left(S_{2}^{r-1}\right)\right)=\left\langle a_{1}, a_{2}, \ldots, a_{r}\right\rangle$,
$\left(S^{r-2}, \gamma\left(S^{r-2}\right)\right)=\left\langle a_{2}, \ldots, a_{r}\right\rangle$; then
$\sum_{i}\left[s^{r}, s_{i}^{r-1}\right]^{\gamma}\left[s_{i}^{r-1}, s^{r-2}\right]^{\gamma}=$
$\left[s^{r}, s_{1}^{r-1}\right]^{\gamma}\left[s_{1}^{r-1}, s^{r-2}\right]^{\gamma}+\left[S^{r}, S_{\frac{r}{2}}^{-1}\right]^{\gamma}\left[s \frac{r}{2}-1, s^{r-2}\right]^{\gamma}=$
$(-1)(1)+(1)(1)=0$. Since this theorem does not depend on the orientation of K, then this theorem is proved.
4.0. Definition, A chain of a complex on of an oriented complex over the additive group Z of integers is called an integral chain.
4.7. Definition. Let $K^{\text {C }}$ be an oriented complex and $S_{j}^{n} \in K$. Let $\left(\sigma_{j}^{n}\right)^{\alpha} \in C_{r}\left(K^{\alpha} ; Z\right)$ defined by

$$
\left(\sigma_{j}^{r}\right)^{\alpha}\left(s_{i}^{r}, \alpha\left(s_{i}^{r}\right)\right)=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j .
\end{array}\right.
$$

Then $\left(\sigma_{j}^{r}\right)^{\alpha}$ is called an elementary integral r-chain of K^{α}, and its equivalent class $\left[\left(\sigma_{j}^{r}\right)^{N}\right]$ is called an elementary integral r -chain of K .
4.8. Definition. Let K be a complex, G a Z-module, c an integral chain of K, g an element of G, α an orientation of k, and c^{α} the representative of c. Then define the chain $(g C)^{\alpha}$ of K^{α} over G by $(g c)^{\alpha}(S, \alpha(S))=\left(c^{\alpha}(S, \alpha(S))\right) \cdot g$ for each $s \in K$.

If β is another orientation of k, c^{β} the representative of c and c^{α} is chain-equivalent to c^{β}, then $(g c)^{\alpha}$ is equivaLent to $(g c)^{\beta}$ since $(g c)^{\alpha}(s, \alpha(s))=\left(c^{\alpha}(s, \alpha(s))\right) \cdot g=$ $f_{\alpha \beta}(S) c^{\beta}(S, \beta(S)) \cdot g=f_{\alpha \beta}(S)(g C) \beta(S, \beta(S))$ for each $S \in K$.
4.9. Theorem. Each r-chain c^{α} of $C_{r}\left(K^{\alpha} ; G\right)$ can be written uniquely in the form

$$
c^{\alpha}=\sum_{j} g_{j}^{\alpha}\left(\sigma_{j}^{r}\right)
$$

Proof: Since

$$
\begin{aligned}
c^{\alpha}\left(S_{i}^{r}, \alpha\left(S_{i}^{r}\right)\right) & =\left(\sum_{j} g_{j}^{\alpha}\left(\sigma_{j}^{r}\right)^{\alpha}\left(S_{i}^{r}, \alpha\left(S_{i}^{r}\right)\right)\right. \\
& =\sum_{j} g_{j}^{\alpha}\left(\left(\sigma_{j}^{r}\right)^{(\alpha}\left(S_{i}^{r}, \alpha\left(S_{i}^{r}\right)\right)\right)=g_{i}^{\alpha} \text { for each }
\end{aligned}
$$

oriented r-simplex $\left(S_{i}^{r}, \alpha\left(S_{i}^{r}\right)\right.$) in K^{α}, then
 Hence the expression of $c^{a}=\mathcal{F}_{j}\left(\sigma_{i}^{2}\right)$ is unique.

4.10. Definition. Fon each r-chain ($n>0$) c^{α} of K^{α}

 over G, assign an ($r-I$)-chain called its boundary (indicated by ∂c^{α}) gi.ven by$$
\partial c^{\alpha}=\sum_{k}^{\Sigma}\left({ }_{j}\left[S_{j}^{n}, s_{k}^{-1}\right]^{\alpha} g_{j}^{\alpha}\right)\left(\sigma_{k}^{n-1}\right)^{\alpha},
$$

or equivalently by

$$
\partial c^{\alpha}\left(S_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)=\sum_{j}^{[}\left[S_{j}^{r}, S_{k}^{r-1}\right]^{\alpha} g_{j}^{\alpha} \text { where }
$$

$$
c^{\alpha}=\sum_{j} g_{j}^{\alpha}\left(\sigma_{j}^{r}\right)^{\alpha} \text { is a r-chain of } K^{\alpha} \text { over } G .
$$

$$
\text { If }\left\langle a_{0}, a_{1}, \ldots, a_{r}\right\rangle \text { is an oriented } r \text {-simplex in } K^{\alpha} \text {, }
$$

and if $\left\langle a_{0}, a_{1}, \ldots, a_{r}\right\rangle$ is considered an elementary integral r -chain of k^{α} defined by

$$
\left\langle a_{0}, a_{1}, \ldots, a_{r}\right\rangle(x)=\left\{\begin{array}{l}
1 \text { if } x=\left\langle a_{0}, \ldots, a_{r}\right\rangle \\
0 \text { if } x \neq\left\langle a_{0}, \ldots, a_{r}\right\rangle
\end{array}\right.
$$

then $\partial\left\langle a_{0}, a_{1}, \ldots, a_{n}\right\rangle=\sum_{i}^{\sum}(-1)^{i}\left\langle a_{0}, \ldots, \hat{a}_{i}, \ldots, a_{n}\right\rangle$.
4.11. Theorem. If c^{α} is chain-equivalent to c^{β}, then ∂c^{α} is chain-equivalent to ∂c^{β}.

Proof: Let $c^{\alpha}=\sum_{j}^{\sum_{j}^{\alpha}}\left(\sigma_{j}^{r}\right)^{\alpha}$ and $c^{\beta}=\sum_{j} g_{j}^{\beta}\left(\sigma_{j}^{r}\right)^{\beta}$. Since c^{α} is chain-equivalent to c^{β}, then $g_{j}^{\beta}=C^{\beta}\left(S_{j}^{r}, \beta\left(S_{j}^{r}\right)\right)=f_{\alpha \beta}\left(S_{j}^{r}\right) 0^{\alpha}\left(S_{j}^{\eta}, \alpha\left(S_{j}^{r}\right)\right)=f_{\alpha \beta}\left(S_{j}^{r}\right) g_{j}^{\alpha}$.
Hence $\left(\partial c^{\beta}\right)\left(S_{k}^{r-1}, \beta\left(S_{k}^{r-1}\right)\right)=\sum_{j}\left[S_{j}^{r}, S_{k}^{r-1}\right]^{\beta} g_{j}^{\beta}=$
$\sum_{j} f_{\alpha \beta}\left(S_{j}^{r}\right) f_{\alpha \beta}\left(S_{k}^{r-1}\right)\left[S_{j}^{r}, S_{k}^{n-1}\right]^{\alpha} \tilde{F}_{\alpha \beta}\left(S_{j}^{\Gamma}\right) g_{j}^{\alpha}=$
$\sum_{j}^{f_{\alpha \beta}}\left(S_{k}^{r-1}\right)\left[S_{j}^{r}, s_{k}^{r-1}\right]^{\alpha} g_{j}^{\alpha}=f_{\alpha \beta}\left(S_{k}^{r-1}\right)\left(\partial c^{\alpha}\right)\left(S_{k}^{r-1}, \alpha\left(s \sum_{k}^{-1}\right)\right)$.
That is, ∂c^{α} is chain=equivalent to ∂c^{β}.
4.12. Definjtion. The wundum of an rohathe in $C_{r}(K ; G)(n>0)$ is definoce to the ohzin-squinnence class of ∂_{c}^{α} where c^{α} ia any representative of a. The boundary of c is indicated by the symbol dc. By 4.11, this definition is well-defined,
4.13. Theorem. The operaton 3 is a R-homomorphism $a: C_{r}(K ; G) \rightarrow C_{r \cdots 1}(K ; G)(x>0)$.

Proof: Let α be an orientation of K ana $c_{1}, c_{2} \in$ $C_{n}(K ; G)$. By 3.8 , there exist $c_{1}^{\alpha}, c_{2}^{\alpha} \in C_{X}\left(K^{\alpha} ; G\right)$ such that c_{1}^{α} and c_{2}^{α} are the representatives of c_{i} and c_{2} respectively. Let $\left(S_{k}^{r-1}, \alpha\left(S_{k}^{n-1}\right)\right)$ be an orjented (r^{-1})-simplex in K^{c}; then $\left(\partial\left(c_{1}^{\alpha}+c_{2}^{\alpha}\right)\right)\left(S_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)=\sum_{j}\left[S_{j}^{r}, \sin _{k}^{-1}\right]^{\alpha}\left(c_{1}^{\alpha}+c_{2}^{\alpha}\right)\left(\operatorname{sen}_{j}^{r}, \alpha\left(\sin _{j}\right)\right)$ $=\sum_{j}\left[S_{j}^{r}, S_{k}^{r-l}\right]_{c_{1}^{\alpha}}^{\alpha}\left(S_{j}^{r}, \alpha\left(S_{j}^{r}\right)\right)+\sum_{j}^{[}\left[S_{j}^{r}, S_{k}^{r-l}\right]_{\alpha_{2}^{\alpha}}^{\alpha}\left(S_{j}^{r}, \alpha\left(S_{j}^{r}\right)\right)$
$=\left(\partial C_{1}^{\alpha}\right)\left(S_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)+\left(\partial \sigma_{K}^{\alpha}\right)\left(S_{k}^{r-1}, \alpha_{k}\left(S_{k}^{r-1}\right)\right)$.
Remembering that G is $a \operatorname{R-module}$, let $t \in R, a \in \dot{C}_{n}(\mathbb{K} ; G)$, $\left(S_{k}^{r-1}, \alpha\left(S_{k}^{p-1}\right)\right.$) be an oriented ($n-1$) simplex in K^{α}, and c^{α} a representative of c. Then

$$
\begin{aligned}
\left(\partial\left(\operatorname{tc}^{\alpha}\right)\right)\left(s_{k}^{r-1}, \alpha\left(s_{k}^{r-1}\right)\right) & =\sum_{j}\left[s_{j}^{r}, s_{k}^{r-1}\right]^{\alpha}\left(\operatorname{ta}^{\alpha}\right)\left(s_{k}^{r-1}, \alpha\left(s_{k}^{r-1}\right)\right) \\
& \left.=\sum_{j}\left[s_{j}^{r}, s_{k}^{r-1}\right]^{\alpha} t\left(c^{\alpha}\right)\left(s_{k}^{r-1}, \alpha\left(s_{k}^{r-1}\right)\right)\right) \\
& =t_{j}^{\sum_{j}}\left[s_{j}^{r}, s_{k}^{r-1}\right]^{\alpha}\left(c^{\alpha}\right)\left(s_{k}^{r-1}, \alpha\left(s_{k}^{r-1}\right)\right) \\
& =t\left(\left(a^{\alpha}\right)\left(s_{k}^{r-1}, \alpha\left(s_{k}^{r-1}\right)\right)\right) \\
& =\left(t\left(\partial c^{\alpha}\right)\right)\left(s_{k}^{r-1}, \alpha\left(s_{k}^{r-1}\right)\right)
\end{aligned}
$$

That is, $\partial\left(t c^{\alpha}\right)=t\left(\partial_{c}^{\alpha}\right)$. Hence 3 is an R-homomorphism.
4.14. Theorem. For any r-chain $c \in C_{r}(K ; O), \operatorname{ar}(c)=0$ $(r>1)$ 。

Proof: Iet 0 be arimatation of the complex K, and let $c^{\alpha}=\sum_{j}^{\alpha}\left(g_{j}^{n}\right)$ e $C_{r}\left(K_{\alpha}^{\alpha} \beta\right)$, the representative of c. By
 $\partial \partial c^{\alpha}=\partial\left(\partial c^{\alpha}\right)=\sum_{i}^{\sum}\left(\sum_{k}\left(\sum_{j}^{\Gamma} g_{j}^{\alpha}\left[s_{j}^{r}, S_{k}^{r-1}\right]^{\alpha}\left[s_{k}^{r-1}, S_{i}^{r-2}\right]^{\alpha}\right)\left(\sigma_{i}^{\gamma-2}\right)^{\alpha}\right.$. By 4.5, $\partial \partial c^{\alpha}=0$. Hence $\partial \partial c=0$.
4.15. Definition. If c is an element of $C_{r}(\mathbb{K} ; G)(n>0)$ and $\partial c=0$, then c is called a oycle. If $c=\partial c^{\prime}$ fon some chain C^{\prime} in $C_{r+1}(K ; G)$, then by $4.14, c$ is a cycle and is called a bounding cycle of a boundary. The set of cycles in $C_{r}(K ; G)$ is the kernel of the homomonphism $a: C_{r}(K ; G) \rightarrow$ $C_{r-1}(K ; G)$ and is denoted by $Z_{r}(K ; G)$. The set of bounding cycles" is the image of the homomorphisin $a: C_{r+1}(K ; G) \rightarrow$ $C_{r}(K ; G)$ and is denoted by $B_{r}(K ; G)$.
4.16. Theorem. The sets $Z_{r}(K ; G)$ and $B_{r}(K ; G)$ are submodules of $C_{r}(K ; G)$, and $B_{r}(K ; G)$ is contained in $Z_{r}(K ; G)$.

Proof: Let α be an orientation of K, c_{1} and $c_{2} \in Z_{p}(K ; G)$, c_{1}^{α} and $c_{2}^{\alpha} \leqslant C_{r}(K ; G)$ such that c_{1}^{α} and c_{2}^{α} are representative of σ_{i} dind c_{2} respectively. Let $\left(S_{k}^{\mathrm{r}-1}, \alpha\left(S_{k}^{r^{-1}}\right)\right)$ be an oriented (r-1)-simplex in K^{α}; then by $4.13,\left(\partial\left(c_{1}^{\alpha}-c_{2}^{\alpha}\right)\right)\left(s_{k}^{K^{-1}}, \alpha\left(s_{k}^{r-1}\right)\right)=$ $\left(\partial c_{1}^{\alpha}\right)\left(S_{k}^{r-1}, \alpha\left(S_{k}^{p-1}\right)\right)+\left(\partial\left(-c_{i}^{\alpha}\right)\right)\left(S_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)$. Since $c_{1}, c_{2} \in Z_{r}(K ; G)$ and $c_{1}=\left[c_{1}^{\alpha}\right], c_{2}=\left[c_{2}^{\alpha}\right]$, then $\partial c_{1}^{\alpha}=0$ and $\partial c_{2}^{\alpha}=0$. By $3.5,-c_{2}^{\alpha}$ is the inverse element of c_{2}^{α} under addition. Hence $\left(-c_{2}^{\alpha}\right)\left(S_{k}^{r-l}, \alpha\left(s_{k}^{r \cdots-1}\right)\right)=$ $-\left(\left(c_{2}^{\alpha}\right)\left(S_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)\right)$. Hence $\left(\partial\left(-c_{2}^{\alpha}\right)\right)\left(S_{k}^{r-j}, \alpha\left(S_{k}^{r-1}\right)\right)=$
 $=-\left(\left(\partial c_{2}^{\alpha}\right)\left(s_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)\right)=0$.

Let $t \in R, c \in Z_{r}(K ; G)$, and $c \alpha$ be the representative of c. Then

Hence $\left[t c^{\alpha}\right] \in Z_{r}(K ; G)$. That is, to $E_{Z_{r}}(K: G)$. Hence $Z_{r}(K ; G)$ is a submodule of $C_{r}(K ; G)$.

Let $c_{1}, c_{2} \in B_{r}(K ; G)$ and c_{1}^{α} and c_{2}^{α} be the representatives of c_{1}, c_{2} respectively. Since $c_{1}, c_{2} \in B_{r}(K ; G)$, then there exist c_{1}^{\prime} and $c_{2}^{\prime} \in C_{C_{1}}(K ; G)$ such that $\partial c_{1}{ }^{\prime}=c_{1}$ and $\partial c_{2}^{\prime}=c_{2}$. Let $c_{1}^{\prime} \alpha$ and $c_{2}^{\prime} \alpha$ be the representatives of c_{1}^{\prime} and c_{2}^{\prime} respectively. By 4.12, $\partial c_{1}^{\prime} \alpha=c_{1}^{0}$, and $\partial c_{2}, \alpha=c_{2}^{\alpha}$. Let $\left(S_{k}^{Y}, \alpha\left(S_{k}^{r}\right)\right.$) be an oriented r-simplex in K^{α}. By 4.13 and the previous proof,
$\left(a\left(o_{1}, \alpha_{-c_{2}}, \alpha\right)\right)\left(s_{k}^{n}, \alpha\left(S_{k}^{r}\right)\right)=$

$$
\left(\partial c_{1}, \alpha\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)+\left(\partial\left(-c_{2}, \alpha\right)\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)=
$$

$$
\sum_{j}\left[s_{j}^{r+1}, s_{k}^{r}\right]^{\alpha}\left(c_{1}, \alpha\right)\left(s_{k}^{r}, \alpha\left(s_{k}^{r}\right)\right)-\sum_{j}\left[s_{j}^{S^{+}}, s_{k}^{r}\right]^{\alpha}\left(c_{2}, \alpha\right)\left(s_{k}^{r}, \alpha\left(s_{k}^{r}\right)\right)
$$

$$
=\left(\partial c_{1} ; \alpha\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)-\left(\partial c_{1}, \alpha\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)
$$

$$
=\left(c_{1}^{\alpha}\right)\left(s_{k}^{r}, \alpha\left(S_{k}^{n}\right)\right)-\left(c_{2}^{\alpha}\right)\left(s_{k}^{n}, \alpha\left(s_{k}^{n}\right)\right)
$$

$$
=\left(c_{1}^{\alpha}\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)+\left(-c_{2}^{\alpha}\right)\left(S_{k}^{r}, c\left(S_{k}^{r}\right)\right)
$$

$$
=\left(c_{1}^{\alpha}-\alpha_{2}^{\alpha}\right)\left(s_{k}^{n}, \alpha\left(s_{k}^{\alpha}\right)\right)
$$

$$
\begin{aligned}
& \left(\partial\left(\operatorname{tc}^{\alpha}\right)\right)\left(S_{k}^{r-1}, \alpha\left(S_{k}^{r-1}\right)\right)=\sum_{j}^{[}\left[s_{j}^{p}, S_{k}^{r-1}\right]^{\alpha}\left(t_{c}^{\alpha}\right)\left(S_{k}^{x-1}, \alpha\left(S_{k}^{r-1}\right)\right) \\
& =\sum_{j}\left[S_{j}^{r}, S_{k}^{r-1} j_{j}^{\alpha} t\left(\left(c^{\alpha}\right)\left(S_{k}^{r-1} l_{\alpha}\left(S_{k}^{r-1}\right)\right)\right)\right. \\
& =t_{j}^{\sum}\left[s_{j}^{r}, s_{k}^{r-1}\right]^{\alpha}\left(c^{\alpha}\right)\left(s_{k}^{r-1}, a\left(s_{k}^{r-1}\right)\right) \\
& =t\left(\partial c^{*}\right)\left(s_{k}^{r-I}, \alpha\left(s_{k}^{r-I}\right)\right)=0 .
\end{aligned}
$$

 $B_{r}(K ; G)$ is a subgroup of G_{2} (r;or.

Let $t \in R, O E B_{r}(K ; G)$, and c^{α} be the representetive of c. Since $c \in B_{n}(K ; G)$, then there exist $c_{h} \in C_{r+1}(K ; G)$ such that $\partial c_{h}=c_{0}$ Lei c_{h}^{α} be the representative of c_{h}. By 4.12, $\partial c_{h}^{\alpha}=c^{\alpha}$. Furthemore, $\left(\partial\left(t c_{h}^{\alpha}\right)\right)\left(S_{k}^{n}, \alpha\left(S_{k}^{r}\right)\right)=$
${ }_{j}^{\sum}\left[s_{j}^{n+1}, s_{k}^{r}\right]^{\alpha}\left(t c_{h}^{\alpha}\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)=$
$\left.\sum_{j}^{[}\left[S_{j}^{n+1}, S_{k}^{r}\right] \alpha_{t}\left(c_{h}^{\alpha}\right)\left(s_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)\right)=$
$t_{j}^{\sum}\left[S_{j}^{r+1}, S_{k}^{n}\right]^{\alpha}\left(c_{h}^{\alpha}\right)\left(S_{k}^{\infty} ; \alpha\left(S_{k}^{r}\right)\right)=$
$t\left(\left(\partial c_{h}^{\alpha}\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)\right)=t\left(c^{\alpha}\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)=\left(\operatorname{tc}^{\alpha}\right)\left(S_{k}^{r}, \alpha\left(S_{k}^{r}\right)\right)$.
Hence $\partial\left(\operatorname{tc}_{h}^{\alpha}\right)=t c^{\alpha}$. But $t c_{h}^{\alpha} \in C_{r+1}\left(K^{\alpha} ; G\right)$. Therefore to $c^{\alpha} \in B_{r}\left(K^{\alpha} ; G\right)$. Hence to $\in B_{r}(K ; G)$. Hence $B_{r}(K ; G)$ is a submodule of $C_{r}(K ; G)$.

By 4.14 and definitions of $Z_{r}(K ; G)$ and $B_{r}(K ; G)$, $B_{r}(K ; G)$ is contained in $Z_{r}(K ; G)$.
4.17. Definition. The factor group $Z_{r}(K ; G) / B_{r}(K ; G)=$ $H_{r}(K ; G)$ is called the r-aimensional homology group of K over G.

Two cycles Z_{1} and Z_{2} in $Z_{r}(K ; G)$ are said to be homologous if they are in the same coset of $P_{r}(K ; G)$.
4.18. Definition. Since there are no negative dimensional simplexes, then $C_{t}(K ; G)$ is defined as the zero R-module for
each negative integer t. Then the R-nonomorphism
a: $C_{n}(K ; G) \rightarrow C_{-m}(K ; G)$ is the zero ? momomoghism, and
its kernel is $C_{0}(K ; G)$. Fence $Z_{0}(K ; G)=C_{0}(K ; G)$. Then
the zero dimensional homology groups are defined by $H_{0}(K ; G)=C_{0}(K ; G) / B_{0}(K ; G)$.
4.19. Definition. A complex K is said to be simplicially
connected if, for each pair p and q of vertices of k, there exists a sequence $\left\{a_{1}^{0}, s_{1}^{1}, a_{2}^{0}, S_{2}^{2}, \ldots, a_{k}^{0}, s_{k}^{1}, a_{k+1}^{0}\right\}$ where each a_{i}^{0} is a vertex of K; each S_{i}^{1} is a l-simplex of K for each $j=1,2, \ldots, k$, a.j and $a_{j}^{0}+1$ are vertices of S_{j}^{1}; finally, $a_{1}^{0}=p$, and $a_{k+1}^{0}=q$.
4.20. Definition. If K_{1} and K_{2} ase complexes with K_{1} contained in K_{2}, then K_{1} is called a subcomplex of K_{2}. A component of a complex is a maximal connected subcomplex.
4.21. Theorem. Let v_{1}^{0} and v_{2}^{0} be vertices of a complex K. Then the integral 0 -chain $v_{2}^{0}-v_{1}^{0}$ bounds if and only if v_{1}^{0} and v_{2}^{0} belong to the same component of K.

Proof: Let K_{1} be a component of K such that $v_{1}^{0}, v_{2}^{0} \in K_{1}$. Since a component is simplicially connected, then there exists a sequence $\left\{v_{1}^{0}, S_{i}^{1}, a_{2}^{0}, S_{2}^{1}, \ldots, a_{k}^{0}, S_{K}^{1}, v_{2}^{0}\right\}$ satisfying 4.19. Let a be an orientation of K, and let the 1 - chain $c_{1}^{\alpha}=\sum_{i=1}^{k} t_{i}\left(S_{i}^{1}, \alpha\left(S_{i}^{1}\right)\right)$ where

$$
\begin{aligned}
& t_{i}=1 \text { if }\left(S_{i}^{1}, a\left(S_{1}^{1}\right)\right)=\left\langle a_{i}^{0}, a_{i}^{0}+1\right\rangle, \text { and } \\
& t_{i}=-1 \text { if }\left(S_{1}^{1}, a\left(S_{i}^{1}\right)\right)=\left\langle a_{i}^{0}+1, a_{i}^{0}\right\rangle .
\end{aligned}
$$

Then $\partial c_{i}^{0}=a_{2}^{0}-v_{i}^{0}+a_{3}^{0}-a_{2}^{0}+\ldots+a_{i}^{0}+1-a_{1}^{0}+\ldots+v_{2}^{0}-a_{k}^{0}=v_{2}^{0}-v_{1}^{0}$.

Hence $v_{2}^{0}-v_{1}^{0}$ bowns. Thas pooves v_{1}^{n} and v_{2}^{n} welong to the same component whach inplies that $v_{2}^{0}-v_{1}^{0}$ bounds.

If $v_{2}^{0}-v_{1}^{0}$ bounds, Let $\because_{2}^{0}-v_{1}^{0}=\sum_{i=1}^{K} t_{i}\left(S_{i}^{1}, \alpha\left(S_{i}^{1}\right)\right.$) where α is an orientation of K, S_{i}^{l} is a I-simplex in K, and t_{i} is an integer for each i. Let β be another orientation of K such that for each i, $f_{\alpha \beta}\left(s_{i}^{1}\right)=-1$ if t_{i} is negative and $f_{\alpha \beta}\left(S_{i}^{1}\right)=1$ if t_{i} is positive. Then $v_{2}^{0}-v_{i}^{0}=\partial_{i} \sum_{i=1}^{k} t_{i}\left(S_{i}^{1}, \alpha\left(S_{i}^{i}\right)\right)=$ $\partial_{i} \sum_{i}^{k}\left|t_{i}\right|\left(S_{i}^{1}, \beta\left(S_{i}^{1}\right)\right)$. Consider $\sum_{i=1}^{k}\left|t_{i}\right|\left(S_{i}^{1}, B\left(S_{i}^{1}\right)\right)$ as the sum of a sequence Q of oriented I.-simplexes in K^{β} with the coefficient +1 for each tem of Q. Since Q is a finite sequence, then there exist a minimal subsequence Q_{m} of Q such that $\partial\left(\Sigma Q_{m}\right)=v_{2}^{0}-v_{1}^{0}$. For simplicity, $v_{1}^{0}-v_{2}^{0}=\partial\left(\Sigma Q_{m}\right)$ is called the equation A. By equation A, the sequence Q_{m} must have one term in the form of $\left\langle x_{1}, v_{2}^{0}\right\rangle$. Rearrange the sequence Q_{m} in the following way:

$$
Q_{\mathrm{m}}=\left\langle\mathrm{x}_{1}, v_{2}^{0}\right\rangle,\left\langle\mathrm{x}_{2}, \mathrm{y}_{2}\right\rangle, \ldots,\left\langle\mathrm{x}_{\mathrm{d}}, \mathrm{y}_{\mathrm{d}}\right\rangle, \ldots,\left\langle\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right\rangle
$$

where d is the maximum positive integer such that $x_{i}=y_{i+1}$ for $i=1, \ldots, d-1$ and $x_{d} \neq y_{i+1}$ for $i=d, d+1, \ldots, n$. Since the left hand side of equation A is $v_{2}^{0}-v_{1}^{0}$, then either $x_{d}=v_{1}^{0}$ or $x_{d}=v_{2}^{0}$.

Case 1: $x_{d}=v_{1}^{0}$. Then $v_{2}^{0} \cdots v_{1}^{0}=\partial\left(\left\langle x_{1}, v_{2}^{0}\right\rangle+\ldots+\right.$ $\left.\left\langle v_{1}^{0}, y_{d}\right\rangle\right)$, and $\left\{v_{2}^{0}\right\},\left\{x_{1}, v_{2}^{n}\right\},\left\{x_{1}\right\},\left\{x_{1}, x_{2}\right\},\left\{x_{2}\right\},\left\{x_{2}, x_{3}\right\}, \ldots$, $\left\{x_{d-1}, v_{1}^{0}\right\},\left\{v_{1}^{0}\right\}$ is a sequence of simplexes satisfying 4.19 . Hence v_{1}^{0} and v_{2}^{0} belong to the same comporient of k.

Case 2: $x_{d}=v_{2}^{0}$. Then $v_{2}^{0}-v_{1}^{0}=\partial\left(\left\langle x_{1} ; v_{2}^{0}\right\rangle+\ldots+\right.$ $\left.\left\langle v_{2}^{0}, y_{d}\right\rangle+\left\langle x_{d+1}, y_{d+1}\right\rangle+\ldots+\left\langle x_{n}, y_{n}\right\rangle\right)=$
being a minimal subsequence of 0 such that
$v_{2}^{0}-v_{1}^{0}=O\left(Z_{\mathrm{M}}\right)$.
Combining Case 1. and Case 2, it must be true that $x_{d}=v_{i}^{0}$, and obviousiy $d=n$. Thexefore the theorem is proved.
4.22. Theoren. Let $v_{1}^{0}, v_{2}^{0}, \ldots, v_{n}^{0}$ be vertices of a simplicially connected complex K. Then the integral 0-main $\sum_{i=1}^{n} t_{i} v_{i}^{0}$ bounds if and only if $\sum_{i=1}^{n} t_{i}=0$.

Proof: Since

$$
\begin{aligned}
\sum_{i=1}^{n} t_{i} v_{i}^{0}= & t_{1} v_{1}^{0}+\ldots+t_{n} v_{n}^{0} \\
= & t_{1} v_{1}^{0}-t_{1} v_{2}^{0}+\left(t_{1}+t_{2}\right) v_{2}^{0}-\left(t_{1}+t_{2}\right) v_{3}^{0}+\ldots+ \\
& \left(t_{1}+\ldots+t_{n-1}\right) v_{n_{1}-1}^{0}-\left(t_{1}+\ldots+t_{n-1}\right) v_{r_{1}}^{0}+\left(t_{1}+\ldots+t_{n}\right) v_{n}^{0},
\end{aligned}
$$

then by $4.21, \sum_{i} \sum_{i} t_{i} v_{i}$ bounds if and only if $\left(t_{1}+\ldots+t_{n}\right) v_{n}^{0}$ bounds. But $\left(t_{1}+\ldots+t_{n}\right) v_{n}^{0}$ bounds if and onIy if $\sum_{i=1}^{n} t_{i}=0$. Hence $\sum_{i=1}^{n} t_{i} v_{i}^{0}$ bounds if and only if
${ }_{i \underline{\underline{E}} I_{i}}=0$.
4.23. Theorem. If K is a simplicially connected complex, then $H_{0}(K ; Z)$ is isomorphic to Z.

Proof: Let ϕ be a function, $\phi: H_{0}(K ; Z) \rightarrow Z$, defined by $\phi\left(B_{0}(K ; Z)+Z\right)=\sum_{j=1}^{k} t_{i}$ where $z=\sum_{j=1}^{k} t_{j} v_{j}^{0} \in Z o(K ; Z)$ and $v_{i}{ }_{1}^{0}, v_{i} 0_{2}^{0}, \ldots, v_{i_{k}}^{0}$ are vertices of K.

Let $z_{1}, z_{2} \in Z_{0}(K ; Z)$ and $z_{1}=\sum_{j=1}^{\ell} d_{n_{j}} v_{n_{j}}^{0}, z_{2}=\sum_{j=1}^{m} b_{n_{j}^{\prime}}^{\prime} v_{n_{j}^{\prime}}^{0}$.
Then $\phi\left(\left(B_{0}(K ; Z)+z\right)+\left(B_{0}(K ; Z)+z\right)\right)=$
$\phi\left(B_{0}(K ; Z)+z_{1}+z_{2}\right)=\sum_{j=1}^{\ell} d_{n_{j}}+\sum_{j=1}^{m} b_{n_{j}^{\prime}}=$
$\phi\left(B_{0}(K ; Z)+Z_{1}\right)+\phi\left(B_{0}(K ; \%)+Z_{2}\right)$. Eence ϕ is a homomorphiem. If $B_{0}(K ; Z)+z_{2} \neq B_{0}(K ; Z)+Z_{2}$, then $z_{1}-z_{2}$ 范 $B_{0}(K ; Z)$. By 4.22, $\sum_{j=1}^{\ell} d_{n_{j}} \neq \sum_{j=1}^{m} b_{n_{j}^{\prime}}$. Hence $\phi\left(B_{0}(K ; Z)+z_{1}\right) \neq \phi\left(B_{0}(K ; Z)+z_{2}\right)$. Therefore ϕ is a one-to-one function.

Let N be an integer. Then $\phi\left(B_{0}(K ; Z)+N v_{1}^{0}\right)=N$. Hence ϕ is onto. Therefore ϕ is an isomorphism.

EIVE PROBLEMS

The computation of homology groups is very tedious. The following are five problems computed by the author but. not included in the body of the thesis because of their length. The results of the problems are stated in the following examples.

For simplicity, we denote an oriented r-simplex by $\left(S^{r}\right)^{\alpha}$ where α is the orientation.
2.: Möbius band.

The oriunted complex K^{α} is constructed as follows:

$$
\begin{array}{lll}
\left(S_{1}^{2}\right)^{\alpha}=\langle a, c, b\rangle & \left(S_{1}^{1}\right)^{\alpha}=\langle b, a\rangle & \left(S_{1}^{0}\right)^{\alpha}=a \\
\left(S_{2}^{2}\right)^{\alpha}=\langle b, c, d\rangle & \left(S_{2}^{1}\right)^{\alpha}=\langle c, d\rangle & \left(S_{2}^{0}\right)^{\alpha}=b \\
\left(S_{3}^{2}\right)^{\alpha}=\langle d, c, e\rangle & \left(S_{3}^{1}\right)^{\alpha}=\langle e, f\rangle & \left(S_{3}^{0}\right)^{\alpha}=c \\
\left(S_{4}^{2}\right)^{\alpha}=\langle d, e, f\rangle & \left(S_{4}^{1}\right)^{\alpha}=\langle a, c\rangle & \left(S_{4}^{0}\right\rangle^{\alpha}=d \\
\left(S_{5}^{2}\right)^{\alpha}=\langle f, e, b\rangle & \left(S_{5}^{1}\right)^{a}=\langle d, b\rangle & \left(S_{5}^{0}\right)^{\alpha}=e \\
\left(S_{6}^{2}\right)^{\alpha}=\langle f, b, a\rangle & \left(S_{6}^{1}\right)^{\alpha}=\langle c, e\rangle & \left(S_{6}^{0}\right)^{\alpha}=f \\
& \left(S_{7}^{1}\right)^{\alpha}=\langle f, d\rangle &
\end{array}
$$

$$
\begin{aligned}
& \left\langle S_{0}\right)^{\alpha}=\langle 0, b\rangle \\
& \left(B_{9}\right)^{\alpha}=\langle a, E\rangle \\
& \left(S_{1}^{1}\right)^{\alpha}=\langle a, b\rangle \\
& \left(S_{1}\right)^{\alpha}=\langle e, a\rangle \\
& \left(S_{12}\right)^{\alpha}=\langle b, f\rangle
\end{aligned}
$$

Then $H_{n}\left(K^{\alpha} ; Z\right)=0$ for $n \geq 2$
$H_{n}\left(K^{\alpha} ; Z\right) \underset{\sim}{i s o} Z$ for $n=0.1$
2. Torus.

The oriented complex K^{α} is constructed as follows:

$$
\begin{array}{lll}
\left(S_{1}^{2}\right)^{\alpha}=\left\langle a_{3}, a_{0}, a_{1}\right\rangle & \left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{1}\right\rangle & \left(S_{1}^{0}\right)^{\alpha}=a_{0} \\
\left(S_{2}^{2}\right)^{\alpha}=\left\langle a_{3}, a_{1}, a_{4}\right\rangle & \left(S_{2}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{2}\right\rangle & \left(S_{2}^{0}\right)^{\alpha}=a_{1} \\
\left(S_{3}^{2}\right)^{\alpha}=\left\langle a_{4}, a_{1}, a_{2}\right\rangle & \left(S_{3}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{0}\right\rangle & \left(S_{3}^{0}\right)^{\alpha}=a_{2} \\
\left(S_{1}^{2}\right)^{\alpha}=\left\langle a_{4}, a_{2}, a_{5}\right\rangle & \left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{4}\right\rangle & \left(S_{4}^{0}\right)^{\alpha}=a_{3} \\
\left(S_{5}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{2}, a_{0}\right\rangle & \left(S_{5}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{5}\right\rangle & \left(S_{5}^{0}\right)^{\alpha}=a_{4} \\
\left(S_{6}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{0}, a_{3}\right\rangle & \left(S_{6}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{3}\right\rangle & \left(S_{6}^{0}\right)^{\alpha}=a_{5} \\
\left(S_{7}^{2}\right)^{\alpha}=\left\langle a_{6}, a_{3}, a_{4}\right\rangle \quad\left(S_{7}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{7}\right\rangle & \left(S_{7}^{0}\right)^{\alpha}=a_{6} \\
\left(S_{8}^{2}\right)^{\alpha}=\left\langle a_{6}, a_{4}, a_{7}\right\rangle & \left(S_{8}^{1}\right)^{\alpha}=\left\langle a_{7}, a_{8}\right\rangle & \left(S_{8}^{0}\right)^{\alpha}=a_{7} \\
\left(S_{9}^{2}\right\rangle^{\alpha}=\left\langle a_{7}, a_{4}, a_{5}\right\rangle & \left(S_{9}^{1}\right)^{\alpha}=\left\langle a_{8}, a_{6}\right\rangle & \left(S_{9}^{0}\right)^{\alpha}=a_{8}
\end{array}
$$

$$
\begin{aligned}
& \left(s_{10}^{2}\right)^{\alpha}=\left\langle a_{7}, a_{5}, a_{8}\right\rangle\left(s_{10}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{6}\right\rangle \\
& \left(S_{11}^{2}\right)^{\alpha}=\left\langle a_{8}, a_{5}, a_{3}\right\rangle \quad\left(b_{1}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{3}\right\rangle \\
& \left(S_{12}^{2}\right)^{\alpha}=\left\langle a_{8}, a_{3}, a_{5}\right\rangle\left\langle S_{-2}^{1} \alpha=\left\langle a_{0}, a_{8}\right\rangle\right. \\
& \left(S_{13}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{6}, a_{7}\right\rangle \quad\left(s_{13}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{1}\right\rangle \\
& \left(S_{14}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{7}, a_{1}\right\rangle \quad\left(S_{14}^{1}\right)^{a}=\left\langle a_{7}, a_{4}\right\rangle \\
& \left(S_{15}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{7}, a_{B}\right\rangle \quad\left(S_{15}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{7}\right\rangle \\
& \left(S_{16}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{8}, a_{2}\right\rangle \quad\left(S_{16}^{1}\right)^{\alpha}=\left\langle a_{5}, \bar{a}_{2}\right\rangle \\
& \left(S_{17}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{8}, a_{6}\right\rangle \quad\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{8}, a_{5}\right\rangle \\
& \left(S_{18}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{6}, a_{0}\right\rangle \quad\left(S_{18}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{8}\right\rangle \\
& \left(S_{19}^{l}\right)^{\alpha}=\left\langle a_{3}, a_{1}\right\rangle \\
& \left(s_{20}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{4}\right\rangle \\
& \left(S_{21}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{2}\right\rangle \\
& \left(S_{22}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{7}\right\rangle \\
& \left(S_{23}^{1}\right)^{\alpha}=\left\langle a_{7}, a_{5}\right\rangle \\
& \left(S_{24}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{0}\right\rangle \\
& \left(S_{25}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{8}\right\rangle \\
& \left(S_{25}^{1}\right)^{\alpha}=\left\langle a_{8}, a_{3}\right\rangle \\
& \left(S_{2}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{5}\right\rangle
\end{aligned}
$$

Then $H_{n}\left(K^{\alpha} ; z\right)=0$ for $n \geq 3$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}}\left(\mathrm{~K}^{\alpha} ; Z\right) \stackrel{\text { iso }}{\cong} \mathrm{Z} \text { for } \mathrm{n}=0,2 \\
& \mathrm{H}_{1}\left(K^{\alpha} ; Z\right) \neq 0 .
\end{aligned}
$$

3. Pinched tonus.

The oriented complex K^{α} is constructed as follows:

$$
\begin{aligned}
& \left(S_{1}^{2}\right) a=\left\langle a_{1}, a_{0}, a_{3}\right\rangle \quad\left(S_{1}^{1}\right)=\left\langle a_{1}, a_{0}\right\rangle \\
& \left(S_{1}^{0}\right)^{\alpha}=a_{0} \\
& \left(S_{2}^{2}\right) \alpha=\left\langle a_{3}, a_{0}, a_{4}\right\rangle \quad\left(S_{2}^{1}\right) \alpha=\left\langle a_{3}, a_{0}\right\rangle \\
& \left(S_{2}^{0}\right)^{\alpha}=a_{1} \\
& \left(S_{3}^{2}\right) \alpha=\left\langle a_{4}, a_{0}, a_{1}\right\rangle \quad\left(S_{3}^{\frac{1}{3}}\right) \alpha=\left\langle a_{4}, a_{0}\right\rangle \\
& \left(S_{3}^{0}\right) \alpha=a_{2} \\
& \left(S_{4}^{2}\right) x=\left\langle a_{2}, a_{1}, a_{3}\right\rangle \quad\left(S_{4}^{1}\right) a=\left\langle a_{2}, a_{1}\right\rangle \\
& \left(S_{4}^{0}\right)^{\alpha}=a_{3} \\
& \left(S_{5}^{2}\right) \alpha=\left\langle a_{2}, a_{3}, a_{5}\right\rangle \quad\left(S_{5}^{\frac{1}{5}}\right)=\left\langle a_{2}, a_{3}\right\rangle \\
& \left(S_{5}^{0}\right) \alpha=a_{4} \\
& \left\langle S_{6}^{2}\right) a=\left\langle a_{5}, a_{3}, a_{4}\right\rangle \quad\left(S_{6}^{1}\right) a=\left\langle a_{5}, a_{3}\right\rangle \\
& \left(S_{6}^{0}\right)=a_{5} \\
& \left(S_{7}^{2}\right) \alpha=\left\langle a_{5}, a_{4}, a_{6}\right\rangle \quad\left(S_{7}^{1}\right) \alpha=\left\langle a_{5}, a_{4}\right\rangle \\
& \left(S_{7}^{0}\right)=a_{6} \\
& \left(S_{8}^{2}\right) \alpha=\left\langle a_{6}, a_{4}, a_{1}\right\rangle \quad\left(S_{8}^{\left.\frac{1}{8}\right) \alpha=\left\langle a_{5}, a_{4}\right\rangle}\right. \\
& \left(S_{9}^{2}\right) \alpha=\left\langle a_{6}, a_{1}, a_{2}\right\rangle \quad\left(S_{\frac{1}{3}}^{\frac{1}{2}}\right) \alpha=\left\langle a_{6}, a_{1}\right\rangle \\
& \left(S_{10}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{5}, a_{0}\right\rangle\left(S_{10}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{2}\right\rangle \\
& \left\langle S_{11}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{6}, a_{0}\right\rangle \quad\left(S_{11}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{5}\right\rangle \\
& \left(S_{12}^{2}\right)^{\alpha}=\left\langle a_{6}, a_{2}, a_{0}\right\rangle\left(S_{12}^{1}\right) \alpha=\left\langle a_{0}, a_{6}\right\rangle \\
& \left(\mathrm{S}_{12}^{1}\right)^{\alpha}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{3}\right\rangle \\
& \left\langle S_{14}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{4}\right\rangle \\
& \left(S_{15}^{1}\right)^{x}=\left\langle a_{4} ; a_{1}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left(s_{1}^{1}\right)^{a}=\left\langle a_{2}, a_{b}\right\rangle \\
& \left(s_{1}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{0}\right\rangle^{\prime} \\
& \left(s_{18}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{2}\right\rangle
\end{aligned}
$$

Then $H_{n}(K \alpha ; Z)=0$ for $n \geq 3$
$H_{n}\left(K^{\alpha} ; Z\right) \xrightarrow{\text { iso } Z}$ for $n=0,2$
$H_{1}\left(K^{\alpha} ; Z\right) \neq 0$.
4. Klein bottle.

The oriented complex $k \alpha$ is constructed as follows:

$$
\begin{aligned}
& \left(S_{1}^{2}\right) \alpha=\left\langle a_{0}, a_{1}, a_{3}\right\rangle \quad\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{1}\right\rangle \quad\left(S_{1}^{0}\right)^{\alpha}=a_{0} \\
& \left(S_{2}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{4}, a_{3}\right\rangle \quad\left(S_{2}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{2}\right\rangle \quad\left(S_{2}^{0}\right)^{\alpha}=a_{1} \\
& \left(S_{3}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{2}, a_{4}\right\rangle \quad\left(S_{3}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{0}\right\rangle \quad\left(S_{3}^{0}\right)^{\alpha}=a_{2} \\
& \left(S_{4}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{5}, a_{4}\right\rangle \quad\left(S_{4}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{1}\right\rangle \quad\left(S_{4}^{0}\right)^{\alpha}=a_{3} \\
& \left(S_{5}^{2}\right) \alpha=\left\langle a_{2}, a_{0}, a_{5}\right\rangle \quad\left(S_{5}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{5}\right\rangle \quad\left(S_{5}^{0}\right)^{\alpha}=a_{4} \\
& \left(S_{6}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{6}, a_{5}\right\rangle \quad\left(S_{6}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{6}\right\rangle \quad\left(S_{6}^{0}\right)^{\alpha}=a_{5} \\
& \left(S_{7}^{2}\right) \alpha=\left\langle a_{3}, a_{4}, a_{6}\right\rangle \quad\left(S_{7}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{7}\right\rangle \quad\left(S_{7}^{0}\right)^{\alpha}=a_{6} \\
& \left(S_{8}^{2}\right)^{\alpha}=\left\langle a_{4}, a_{7}, a_{6}\right\rangle\left(S_{8}^{1}\right)^{\alpha}=\left\langle a_{7}, a_{8}\right\rangle \quad\left(S_{8}^{0}\right)^{\alpha}=a_{7} \\
& \left(S_{9}^{2}\right)^{\alpha}=\left\langle a_{4}, a_{5}, a_{7}\right\rangle \quad\left(S_{9}^{1}\right)^{\alpha}=\left\langle a_{8}, a_{3}\right\rangle \quad\left(S_{9}^{0}\right)^{\alpha}=a_{8} \\
& \left(S_{1}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{8}, a_{7}\right\rangle\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{3}\right\rangle \\
& \left(S_{1}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{6}, a_{B}\right\rangle\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{6}\right\rangle \\
& \left(S_{12}^{2}\right)^{\alpha}=\left\langle a_{6}, a_{3}, a_{8}\right\rangle\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{0}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left(s_{13}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{5}, a_{7}\right\rangle\left\langle\varepsilon_{13}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{4}\right\rangle \\
& \left(S_{14}^{2}\right)^{\alpha}=\left\langle a_{\left.0, a_{y} a_{1}\right\rangle}\right\rangle\left(S_{14}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{y}\right\rangle \\
& \left(S_{15}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{7}, a_{8}\right\rangle\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{7}, a_{1}\right\rangle \\
& \left(S_{15}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{a}, a_{2}\right\rangle \quad\left(S_{10}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{5}\right\rangle \\
& \left(s_{17}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{8}, a_{3}\right\rangle \quad\left(s_{17}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{8}\right\rangle \\
& \left(s_{18}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{2}, a_{3}\right\rangle\left(s_{18}^{1}\right)^{\alpha}=\left\langle a_{8}, a_{2}\right\rangle \\
& \left(S_{19}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{3}\right\rangle \\
& \left(S_{20}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{4}\right\rangle \\
& \left(S_{21}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{5}\right\rangle \\
& \left(S_{22}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{5}\right\rangle \\
& \left(S_{23}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{7}\right\rangle \\
& \left(S_{24}^{1}\right)^{\alpha}=\left\langle a_{7}, a_{0}\right\rangle \\
& \left(S_{25}^{1}\right)^{\alpha}=\left\langle a_{6}, a_{8}\right\rangle \\
& \left(S_{2 \sigma}^{1}\right)^{\alpha}=\left\langle a_{8}, a_{1}\right\rangle \\
& \left(S_{27}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{2}\right\rangle
\end{aligned}
$$

Then $H_{n}\left(K^{\alpha} ; Z\right)=0$ for $n \geq 2$
$\mathrm{H}_{1}\left(\mathrm{~K}^{x} ; \mathrm{Z}\right) \neq 0$
$\mathrm{H}_{0}\left(K^{\alpha} ; Z\right) \stackrel{\text { iso }}{\leftrightharpoons} \mathrm{Z}$.
5. Projective plane.

The oriented complex K^{α} is constructed as follows:

$$
\begin{aligned}
& \left(S_{1}^{0}\right)^{\alpha}=0.0 \\
& \left(S_{2}^{2}\right)_{\alpha}=\left\langle a_{0,} a_{3}, a_{5}\right\rangle \quad\left(S_{2}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{3}\right\rangle \\
& \left(S_{2}^{0}\right)^{\alpha}=a_{1} \\
& \left(S_{3}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{4}, a_{2}\right\rangle \quad\left(S_{3}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{3}\right\rangle \quad\left(S_{3}^{0}\right)^{\alpha}=a_{2} \\
& \left(S_{4}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{4}, a_{0}\right\rangle \quad\left(S_{4}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{4}\right\rangle \quad\left(S_{4}^{0}\right)^{\alpha}=a_{3} \\
& \left(S_{5}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{0}, a_{1}\right\rangle \quad\left(S_{5}^{1}\right)^{\alpha}=\left\langle a_{2}, \exists_{4}\right\rangle \quad\left(S_{5}^{0}\right)^{\alpha}=a_{4} \\
& \left(S_{6}^{2}\right)^{\alpha}=\left\langle a_{0}, a_{5}, a_{1}\right\rangle \quad\left(S_{6}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{0}\right\rangle \quad\left(S_{8}^{0}\right)^{\alpha}=a_{5} \\
& \left(S_{7}^{2}\right)^{\alpha}=\left\langle a_{1}, a_{5}, a_{4}\right\rangle \quad\left(S_{7}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{n}\right\rangle \\
& \left(S_{3}^{2}\right)^{\alpha}=\left\langle a_{5}, a_{2}, a_{3}\right\rangle \quad\left(S_{8}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{5}\right\rangle \\
& \left(S_{9}^{2}\right)^{\alpha}=\left\langle a_{2}, a_{1}, a_{3}\right\rangle \quad\left(S_{9}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{2}\right\rangle \\
& \left(S_{10}^{2}\right)^{\alpha}=\left\langle a_{3}, a_{1}, a_{4}\right\rangle \quad\left(S_{1}^{1}\right)^{\alpha}=\left\langle a_{3}, a_{1}\right\rangle \\
& \left(S_{11}^{1}\right)^{\alpha}=\left\langle a_{4}, a_{0}\right\rangle \\
& \left(S_{12}^{1}\right)^{\alpha}=\left\langle a_{0}, a_{5}\right\rangle \\
& \left(S_{13}^{1}\right)^{\alpha}=\left\langle a_{5}, a_{2}\right\rangle \\
& \left(S_{14}^{1}\right)^{\alpha}=\left\langle a_{2}, a_{1}\right\rangle \\
& \left(S_{15}^{1}\right)^{\alpha}=\left\langle a_{1}, a_{4}\right\rangle
\end{aligned}
$$

Then $H_{n}\left(K^{\alpha} ; z\right)=0$ for $n \geq 2$
$H_{1}\left(K^{\alpha} ; Z\right) \neq 0$
$\mathrm{Ho}\left(K^{\alpha} ; Z\right) \stackrel{\text { iso }}{\approx} \mathrm{Z}$.

Herstein, I. N., Topics in Algehra, Waitham, Mass., Ginn and Company, 1964.

Keesee, John W., An Introduction to Algebraic Topology, Bel.mont, Cal., Brooks/Cole Publishing Company, 1970.

Stein, F. Max, Introduction to Matrices and Determinants, Belmont, Cal., Wedsworth Püblishing Company, Inc., 1967.

