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The purpose of this thesis is to constract the homology 

gx-'Oups of a complex over an R-module. The thesis begins with 

hyperplanes in Euclidean n-space. Simplexes and complexes 

are defined, and orientations are given to each simplex of a 

complex. The chains of a complex are defined, and each chain 

is assigned a boundary. The function which assigns to each 

chain a boundary defines the set of r~dimensional cycles and 

the set of r—dimensional bounding cycles. The quotient of * 

those two sufcmodules is the r-diraensional homology group. 

In Chapter I, a geometrically independent set in R n is 

defined, and some basic properties of a hype.rplane, which are 

useful in Chapter II, are discussed. 

Simplexes, complexes, abstract complexes, polytopes, and 

pseudor&anifolds are defined in the second chapter. it is 

also proved in this chapter that every abstract complex has 

a realization complex in so'Xie Rn. Since a point set simplex 

is a subset of the hyperpiane spanned by that simplex, some 

theorems of Chapter I are useful in this chapter. 

An orientation of a simplex is defined in Chapter rr ±11. 

A chain of a corapl ex K over an R-module G is defined by the 

chain-equivalent class of the oriented complex K over G. It 

is proved that chains of a complex can always be given an 



orientation; thus the represeirtatve chains or the oriented, 

complex can be computed. This is "important both in Chap-

ter III and Chapter IV. Also fcund in Chapter III is the 

proof that the set Cr(KjG) is an R-niodule. 

The boundary of each r-chain (r > 0) of a complex K 

over G, the set of cycles Zr(K;G), and the set of bounding 

cycles Br(K;G) are defined in Chapter IV. The r-dimensional 

homology group is defined by H R ( K ; G ) = Z R(K;G)/B r(K;G). 

The 0-dimensional homology group is defined by HQ(K;G) = 

CQ(K;G)/BQ(K;G) . For a simpl?*cially connected K, the theorem 

that HQ(K;Z) is isomorphic to Z is proved in this chapter. 

Some theorems which are proved in this chesis can be 

found stated3 though ncx proved, in Chapter 1 of John W. 

Keesee's An Introd\ ction to Algebraic Topology. Additional 

theorems which are proved in this thesis were suggested by 

Y. W. Lau of the North Texas State University mathematics 

faculty. 

There are results presented in the appendix concerning 

five problems for computing homology groups. 
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CHAPTER I 

THE HYPERPLANE3 IN R n 

The Euclidean n-space (denoted by R n) associated with 

the operations of addition ana scalar multiplication, which 

are defined as follows in R*n, is an n-dlmensional vector1 

space over the field of real numbers. 

Let R = Reals; let x = (x1 > x2,...,xn) and 

y " (y1 ,y2 ,. . . ,yn) € Rn , where each x 1 and each y1- is a 

real number. Let e £ R; define 
* 

x + y = (x1 + y 1, y.z + y2,...,xn + y15), and 

cx = (cx 1,cx',.,c< n). 

1.1. Definition. .Lex S = {a0 ,aj ,. . . ,a^} be a finite 

subset of R". The hyperplane spanned by S (denoted by 
k 

tt(S) 5 is the set it(S) = {p € R5ll t> - ..£„A~a. where each 
^ x~Q i 

Xi 6 R, and .f A1 - 1}. 
1=0 

1.2. I'ejflnition. A finite c-ubset S = {ac ,ax ,. .. ,av} 

of R n is said to be geometrical 1 y independent if S .is con-

tained in tt(T) for no proper subset T of S. 

Notation. V(an ,a, ,. . . ̂ a^) stands for the vectoi1 space 

rev R spanned by the set {a0 ,aj ,. . . ,a, } . 

1.3. Theorem,. Let Sj = {a, :a1 s . . . , ) and 

, = {b . b b ~} be finite, subsets of Rn, Then 



(a) Si c Ti (S2 ) implies ?r(S3 ,> c tCS2), and 

(b) irCSj) C. tt(S?) Implies 7(a1~aa , . , . .â -ag"> C 

V(b j-b0 ,. .. ,bs~b0). 
k . 

Proof: (a) Let p - . E Â a.: € t (S , ). Since 
— r j = Q j 1 

S, C tt (S ) , let a- = . § yib- e tt (S 2) for each j. Then 
i 2 j i — 0 3 1 

P = jio^ aj = jn0
A3iloyjbi = ilo (jlo^ yj ) bi* 

s i 
Since a. «=. tt(S2)» then . £ „ y . = 1 for each j. 

. i-0 i J 

s k . . k s Therefore . E = . r .EnX3y3- = .£ \3 r= l. Hence 
1=0 3 = 0 1 3=0 i = 0 J j ~ 0 

p € ir(S2). Hence tt(S:) C tt(S2). 

Proof: (b) Let t,(a,-an) + t, (a,-an) + ... + 
k 

t^(a^-a0) € V(,a.1~aQ ,. . . ia^~aQ) , and denote ^I^t^ by T. 

Either T i 0, or T = 0. 

Case 1: T i 0 . Since it(S x) C rr(S2) , then 

t-/T a; e tt (S x) C- it (S 2 ) . Hence there exist real 
i = l x 

numbers y0' , yx ^ ,.., ys* such that 

•K" S 
• tt4 /Ta^ = . E .jj • ' b • g rr (S2 ) , and l-l 1 1 1=0 3 3 J s 
yB , y , , . . . ,y_ such that a0 = Z y • b • £ if (S2 ) . Then 
k 3 k 3 = 0 3 ] 

. £ t •(a•-a0) - ~Ta0 + .St.a. 
1=1 1 X 1=1 1 -L 

= -T.ly.b + T ! y-'b. 

1-0 1 i i=0 1 x 

iilo^i ? ~ 'Ji^>i 

= T[ (1 - i|1yi» ~ 1 + il-^i^o + ~ H ) h i 2 

= T[i|1(yi - ui' )b0 + ~ ] 

= Ti|1<Vi' " ^i>
(bi " bo> V(bx-b03... ,bB-fc0). 

Case 2: T = 0. Suppose t^ = 0 for i = 1,2,.,. ,k; then 

. £ t_. (a - - a 0) = 0 € VCbi-bp 5 . . . ,bo-b0 ) . Assume t0 i 0 for 
IL *- 1 1 — ^ 



some 1 _< c < k; then tj + t2 + ... + tc_1 + t c + 1 + ... + 

- ~tc i 0. Hence •- ap) 5 V(b, ~bc ,. . . ,bE-fcc) , and 
k 
,E t^(aj - a 0) € V(bx —b0 ,... ,bo-b0) by the proof of 
I?c ~ ° k 
Case 1, T i 0. Therefore tp(a_ - a.) + .E„t.(a; ~ ao) -G c 5 3=i. x -l 

IrC 
k 

^2^t^ C a ̂  ao / VCb j-b^ ̂ ^ b ™ b Q ) « 

1.4. Theorem. Let S = {a0,aj,...,a^} be a finite 

subset of Pn. The following properties of S are equivalent. 

(a) S is geometrically independent. 

(b) If T = {b0 ,bx ,. . . jb^} and S c ir(T) , then t >_ k. 
k 4 k • . • 

(c) . E A a- = 0 and „ E Ax = 0 imply )r = 0 for each 
i=0 1 i-0 ^ 

l ~ 0 j 1 ̂  • • . j . 
<* 

(d) For each element p of tt(S) , there exist unique real 

numbers A0,AX,... ,A^ such that 

p = £ A^a- , and ^ A^ = 1. 
i=0 1 i=0 

(e) The set {ax-a0 ,. . . â -aj, } is linearly independent. 

Proof: (a) implies (b). Since S C u(T), then 

V(aj-a0 , . . . , a^-aQ) c V(b1-b0 ,. . . 3b.);-b0) by the theorem of 
X 1 

1.3. Suppose there exist real numbers A 1 i 0, A 2 i 0,..., 
X * X 

A' n f 0 such that Axl(a.j^ ~ aQ) + A
 2 (a - a Q) + ... + 

Xln(a£n - a0) = 0, where 1 <_ ix ,i2 ,. . . ,in <_ k. Then 

A11 a,- + A~2 a. + ... + A^na4 = (Â "1 + A^2 + . . . + A'^n) an . 
-L i x 2 n • u 

Denote A3"1 + Alz + ... + Aln by A; either A i 0 5 or A = 0. 
Case 1: A i 0. Then A"1"1a1- + A'̂ a-j + ... + A^na^ = 

. 1 2 "n 
Aan , and ao = A11/A a-; + ",?~z f'k a,> + . . . + Aln/A a,* (S 

' . h •1-n 

•rrCai ,a2 , . . . ̂ a^) . Hence S C rrCa x ,a2 , . . . contradiction 

to S being geometrically independent. 



X | 1 X j ^ 
Case 2: X z 0 . Tne/i A 'a,; * X a • •+ « • • * A a i 

-• i -1- 2 ii 3-1 i 0 . 1 r* , r „ , * ~ ~ — «•«• A ' jp t-4 I ttj ana A - - A 

- i ^ 
* 6 * 

•1 X2 

a,- = - A 1 * / A 3 " 1 a- ~ . . . - A n/A"u a- £ 7r(S\a- >; hence xi i2 R J"i 

S c i r (S \a - ) , which i s a c o n t r a d i c t i o n t o S b e i n g g e o m e t r i c a l l y 
v 11 

i n d e p e n d e n t . T h e r e f o r e { a^ -s.^ } • • • >
a k " a j l i n e a r l y i n d e p e n -

d e n t . Hence {a - a a k - a } i s a b a s e of V(a - a , . . . 5 a k - a ). 
1 o ^ 0 1 , 0 

But V(a - a ,...,av-a ) C V(b - b , . . • , b • - b ) ; hence 
1 0 ' 0 1 0 u 0 

dimV(a - a , . . . , a v - a ) < dimV(b - b , . . . 9I> t-b ) . T h i s impl ie i 
i o * K o — 1 0 L o 

k < t . 
k k e 

(b) i m p l i e s ( c ) . Le t 2 A^a. = 0 , and E A1 = 0 . Le t 
i=0 .-y , i = 0. 

{A1 6 R| A1 i 0 , 0 <_ i £ k} = {A11 , A12 , . . . , A x f > . S i n c e 

Z A^a!- = 0 , t h e n A^^a-; . = 0 , and A'^a-; = 
i~ 9 . 3 = 1 D s ' 1 

-A 2 a - - . . . - A x f a i p . F ince -La-1" = 0 , t h e n 
x 2 r x - u 

Z A i -j - 0 , and A*1 = -A3 '1 - A i s - . . . - X l f . T h e r e f o r e 
j = l 

J A i 3 / ~ A i l = 1 , and ad ^ . ^ ^ / " A 1 1
 a i . e ^CS a i ) . 

j = 2 'i 1~£ J 

T h e r e f o r e S C 7T(S\a4 ) . By (b) , t h i s i m p l i e s k > k + 1 . 
1 

It is impossible. Therefore X1 = 0 for i = 05 . * . 5 k . 
k * * 

( c ) i m p l i e s ( d ) . Le t p = .. ? g ^ l a i ~ • ? Q ^ l a i ^ T f (S ) . 
k • * 

Then 0 = p - p = ,E (A1 - y X ) a - , and 
1 = 0 . . 

. 5 (X1 - y 1 ) = .£ A1 - .£ y 1 = 1 " 1 = 0 . By ( c ) , 
1=0 ^ i=o i-0 

X̂ - - = 0 , f o r i = 0 , 1 , . . . , k . T h e r e f o r e A"*" = y" f o r 

i = 0 , 1 , . . . , k . Hence X 0 , A 1 , . . . , A k a r e u n i q u e . 

(d) imp 1 i e s ( e ) . Suppose t h e s e t {a^-a^ , . . . } 

i s l i n e a r l y d e p e n d e n t ; t h e n t h e r e i s a p £ S\a Q such t h a t 



k . 
- a *- E c1(a.. - a ), "where 

f o i = 1 x o ' 

i^r 
c 1 € R for I - 1,2,... , t -1 ,r t-1,. . . sk, Hence 

k •? k • 
a.n = Z cxa. + (1 - I c--)a . But aV) rr(S) . Therefore 
r i=i 1 i=i r 

i?r xtr 

the last equation contradicts the uniqueness hypothesis 

of (d). 

(e) implies (a). Suppose there exists a proper subset 

S' of S such that S C tt(S ' ). Let a r € S\S' , and let 

a^ = I X1a- e tt(S'). Then 
aie S' 'x 

0 = . I o lX
1a. - a„ - ^„,A1(a1- - a^). This implies dis S i r a is S' 1 r i 

{a-L~ar J a^ s S' } is linearly dependent; hence 

{a£-ar| aj_ € S\{ar}} is linearly dependent. To complete 

the proof of (e) implies (a.), it is necessary to show that 

aQ"^p5 a j s • • • s ar_-|_-ctri, a ^ - , ^ . . . . ^ ^k"~^r^ 3- s 

linearly dependent implies that { a ^ a ^ a^-a0) is 

linearly dependent. Assume 

a£~ar = a°<a
0~

a
r>

 + ••• + 1(a^_1-ar) + a
i f l(a^ + 1~a r) + 

. . . + ar~-^(ar_]_~ar) + a
r+^(ar+-|_-ar) + . . . + a^Ca^-ap) , 

where a 0 , . . . , a r e real numbers. Then 

(a 0 - a ) + (-1) (a^-a ) + (a°+a
1 + . . .+a^ h^+ . . . +ar~^"+ar+-'-+ 

x. c J- 0 

. . . +aK) (ar~a0) = a
1 (at -a0) + ... + a

x "(a£_i~ai) + 

a5, + 1(ajl + 1~aCl) + ... + a
r""J(ar_1-a0) + a

r + 1 (ar+1-a0) + ... + 

a^Ca^-ao). This equation implies {ax-a0 , . . .,3^-80} is 

linearly dependent. It is a contradiction to 

{aj-a0j...,a^-a0} being linearly independent. 



Definition. Let S = 1 a0 ,. . . > ak } be a geometric-

ally independent subset of Rn. The hyperplane ir(S) is 

called a k-dimensional hyperplane. For each element p of 

tt(S), the numbers X0,X1 ,... , Xk given in part (d) of 

1. M-. Theorem are called the barycentric coordinates of 

the point p relative to the set S. 

1.6. Theorem. The hyperplane tt (a 0 , a i ,. . . , â )' is a 

translation of the vector space V(ax ~a , a2-aQ , a-̂ -a o) ; 

a 0 + V(aj—a^, a2- , • • • > " a
c)

 = 5̂ 1 5 * • • ja]<) • 

k 1 X 
Proof: Let p •- . S X a^ £ ti (aQ ,a} ,. . . , ) . Since 

.EnX^ = 1, then X°- 1 = -X1 - X1 - . . . - x'̂ . Therefore 
k t 

p = 2 X-'-a* 
i = Q 1 

= a. + (X°-l)a_ + Xla. + ... + X^an 0 0 1 k 

= aQ + (— X
1 - X2 - ... -X̂ ")a + X*a, + ... + X^a^ 

= a0 + X
1(a1-a0) + X

2(a2-a0) + ... + X^a^-ag), and 

i^lX"^(ai-a0) € V(a1-a() ,. . . ,a-jc-ao) . This proves 

7t(a0 ,a, ,. . . ,ak) C aQ + V(a1 -aQ ,. . . ,ak-a0) . 

k £ 

Let q = a0 + a (a^-a0 ) £ a0 + V(aj -a0 ,. . . ,ak-a0 ) . 

Then q = aQ + a
1(a^-a,,; + ... + a^(ak~a0) 

= (1 -- a1 - a2 - ,.. - a^c)a0 + a
1a1 + ... + a

Ka-k> 

Since 1 - a1 - a2 - ... - + a1 + ... + = 1, then 

q £ -rr (a 0 , a x ,. . . , ak) . This proves a0 + V (ax-a„ ,; . . ak~a0) C 

T(a„5 a j ,...jak). 

1.7. Theorem. A subset of a k--dimensional hyperplane 

containing k+2 points is geometrically dependent. 



Proof: Let if(a„ ,a. be a k-dimerisional hyper 

plane, and let {t> ,b , . 
0 " I " 

>y-bk+3 > hk+2> C ir(a ,a a k ) 

Then V(b1™bo3b -bQ ,...5bk+9-b0) C VCa^-a 

Implies dimV(b1-bQ ,. . . jb^+2-b p) < dimV(a l ~d o "-1 

,av-a„). Thi: 
7 K 0 

ja^-ag) = . 

Hence {b,-b0,b.-b ,. . 'bk+2~"b0 } is not linear'ly independent, 

Hence {b0 ,. . . 5bjc+2} is not geometrically independent. 

1.8, Theorem. Let S = {a0,aj,...,an) be a subset of 

Rn, and, for each i, let a-j_ = (a!,a?,...,a?). Then the 

set S is geometrically independent if and only if the 

determinant 

,n x 

1 
d(S) = 

al a5 

-a 1 .,2 ai A\ 

' 0 
n 

1 2 r1 P ctn an in n 

t 0 . 

Proof: By part Cc) of 1.4. Theorem, the set S is 

geometrically dependent if and only if the system of equ< 

tions 
r' A A 

1,2,.. . ,n Z A1a-? 
i = 0 1 

0, j 

iioxl = 0 

has a nontrivial solution vector (X° ,A 1 ,. . . ,Xn)'. Therefore 

the set S is geometrically independent if and only if every 

solution of the system of equations Is trivial. By Stein 

(25 p. 123), the set S is geometrically independent if and 

only if the (n+.l.) x (nf-l) matrix 



/ 1 

a2 

o 

a A 

,n 
"o 

.n 
' n 

\ 1 1 ... I f 

has rank n h 1. That Is, d(S) i 0. 

1.9. Theorem. Let S {a o 9 i » .,an} be a geometrically 

Ti 

independent subset of R , and for each x = (x1,x2,...,xn) in 

R n, denote by X:L(x) or X1 the barycentric coordinates of x 

with respect to the set S so that 
n n 

x = .E„X1(x)a- and . £ ax(x) = 1. 
1=0 1 1 = 0 _ 

Then Xx(x) = d1Cx)/d(S) where dx(x) is the determinant ob-

tained by replacing the i"^ row of d(S) by the vector 

(x1,x2,...,xn,1). 
n 

Proof: The two equations x = E X1(x)a- and 
h i = Q -L 

.S,Xi(x) ~ 1 are equivalent to the system 
1 = 0 

x0 1 
A a „ 

X°a! 

+ X a l, i 

+ X*a* 

X0 a n + X 1 a 

X° + X1 

n 

+ Ana^ = x1 

+ = x2 

+ Xnan = x n 

n 

+ X n 

By Cramer's Rule, we have X1(x) = d1(x)/d(S) . 

1 _._1Q_• Theorem. Let T ~ {a0 ,aj , . . . ,3-̂ } be a geometric-

ally independent subset of R n Then there exist points 



a^i . a-K+2 > ... ,ap of R
n such that the set S = {a0 ,al,... ,an3 

5 s gsnrretrical ly independent, 

Proof: Let T - {a 0,a j,. . . , a^} be a geometrically inde-

pendent subset of Rn, Then the set {a t-a0,... ja^-ag } is 

linearly independent by 1.4. Theorem, part (e). Since 

dim Rn = n, there exist points b ^ } 5 fc>k+2> ^n s u c^ 

that the set {aj -a0 , a2-a0 , . . . ,a^-aQ , bic+3 , b̂ .̂9 , ..., bn'} 

is a basis of Rn. That is, the set 

{a j-a 0, a 2 - a 0 , , . . , a^-a 0 , (bk + }_+a0) ~a0 , (b̂ .̂ 2+a Q ) - a 0 , • > • > 

(bn+a0)-a0} is linearly independent. Let a^ = b^ + a0 for 

i = k+1, k+2, n. Then,again by 1.4. Theorem, part (e), 

the set S = {a0 ,ax,...,an} is geometrically independent. 

1.11. Theorem. Let S - {aQ ,a ,. . . ,an) be a geometric-

ally independent subset of Rn. Then for k < n, 

it (a0 ,aj ,. . . ) 3 ) ~ ^ ^ R | d(a0,...,a^ j 8 ̂  |-| . . , cî ) 

= 0}. 

Proof: Let x £ n"(aa ,. . • jiî ) - Then the set 

{a0 ,. . . ,â _-L ,x ,aj_+2 ,. . . ,anl is geometrically dependent by 

1.2. Definition, for i = k+1, k+2, n. Hence 

d(a0 ,. . . >
ai_i >x>a^ + 1,. . . ,an) = 0 for i = k+1, k+2, n 

by 1.8. Theorem. Hence 

x €. ^{x & R j d(a0 >̂ "i+ i 5 * ' ' 5^n^ ~ ^ ̂  * 

Therefore tt (a0 , a x , . . . , a^) C 

^i=k+l(x e Rnl d(a0!...,ai_1,x)a-+p..,,an) - 0}. 

Let x €" H. n {x € Rn I d(a0 , . . • ,a • x , a . ,ar.) = 0 }. 
i~k+l x~ x n 

Then the set {a0 ,. . . ,a^_2 ,x,a^4.^,. . . ,an) is geometriesXly 



1 0 

d e p e n d e n t f o r i ~ k + 1 , k + 2 , . . . . n b y 1 . 8 . T h e o r e m . S u p p o s e 

x 4 Tr(a 0 5 . . . . a ^ ) . L e t k J - l < f < n . T h e n t h e r e e x i s t 
J2 Tft * 

X 1 i 0 a n d x = . L^X^a,. € ir ( a 0 .. . . , a ) . T h u s 
j = u ] n 

d ( a 0 ,. « c ̂ a ^ 3
 a k * f l 5 • • • 3 a f ~ i > af-f 1 ? • * * 5 a n ^ ~ 

"Q" * 
d ( a 0 ,. . . , , a ^ + ^ ,. . . , a - , , 1 A ^ a - 9 a f + ] _ ? • • * J a

n )
 = 

"u j = 0 J 

At - n \-i n •, ^ ^ 
a v a o > . . . 5 a ^ , ,. . . , a ^ j ̂  A J a j - ^ £ A J a ̂  * • s ̂  ' = 

3 " ° 

, f 
d ( a ^ ^» • • > s a]<̂ -f 3_ 5 * • * j a £ _ 2_5 ̂  a f ? a f + i ? * * * 5 a n ^ = 

X ̂ d ( a 0 5 # . * *, a n )
 :: 

A ^ d ( S ) . B u t d ( S ) i 0 , b y 1 . 8 , T h e o r e m . H e n c e 

d ( a Q , . . . , a^. , a ^ + 2 , • • . s3.£„]_ , x s a £ + 2 ,. . . , a n ) i 0 , w h i c h i s a 

c o n t r a d i c t i o n t o t h e s u p p o s i t i o n t h a t 

^ ^ ̂  ^ ^ I d ( a 0 j. . . ,a£_-^ ,x , a ^ + ] _ , . . . , a ^ ) - 0 } . 

T h e r e f o r e x e ir ( a 0 >. . . , ) . T h e r e f o r e 

^ ^ ^ I ci(a ,. . . » , x , a ^ ̂  s • * • ) — 0}" 0 T r ( a o , » * . a p )• 

T h i s c o m p l e t e s t h e p r o o f . 

1 . 1 2 . T h e o r e m . L e t S = { a 0 , 3 j . . , a ^ } b e a g e o m e t r i c a l l y 

i n d e p e n d e n t s u b s e t o f R n , a n d , f o r e a c h p o i n t x o f 'ir(S), l e t 

A M x ) b e t h e b a r y c e n t r i c c o o r d i n a t e s o f x w i t h r e s p e c t t o t h e 

s e t S . T h e n e a c h A ^ - C x ) i s a c o n t i n u o u s r e a l - v a l u e d f u n c t i o n 

o n TT ( S ) . 

P r o o f ; B y 1 . 1 0 , T h e o r e m , t h e r e e x i s t ajr+]_ j. . . , a & R n 

s u c h t h a t t h e s e t { a 0 , . . . , a n } i s g e o m e t r i c a l l y i n d e p e n d e n t . 

B y t h e d e f i n i t i o n o f h y p e r p l a r i e , x £ tt ( a 0 ,. . . , a k ) i m p l i e s 

x e T r (a 0 , . . . , a n ) . B y 1 . 9 . T h e o r e m , A M x ) = d M x ) / d ( a 0 , . . . , a n ) 

f o r x — 0 , . . . , n , B y pa.rt C d ) o f 1 . 4 . T h e o r e m , t n e b a r y c e n t r x c 
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coordinates of x with respect to the set (ao . . ,^1 are 

unique. Hence the barycentric coordinates X"L(x) of x with 

respect to the set { a 0 , . , , , a -̂ } are equal to the barycentric 

coordinates of x with respect to the set {ac ,. . .,an) for 

i = 0 ,1,. . . ,k, arid X1 (x) = 0 for x = k+1, . . . , n. Since 

X1(x) = d (x)/d(a0,. . .,an), we can let X^(x) = cjx
1 + ... + 

C^X N + c^+1, for every x € IT (A0 ,. . . ,a^) . Also, x1',. . , ,xn 

are Euclidean coordinates of x. and c},... , c , c1 ', are real 
5 1 ' 3i n+1 

numbers. 

Let i be an integer; 1 < i < k. For e > 0, let 

6 = e/n^^. Where cj>̂  = max{ j ĉ " J ,. . . , | c^ [ ,1} , let 

y £ ir(a0 ,. . . ,av) and |x~yj < 5 . . That is, 
% J-

[(xx-y1)2 + ... + (xn-yn)2 ] x/2 < 6^ . Hence 

Jx3-y3| < 5^ = e/nc^ for j = l,...,n. Hence 

| X^ (x)-X^ (y) | = jc^Cx1-^1) + ... + c^(xn-yn)| 

£ | CjCx^y1) | + ... + |c^(xn~yn)| 

< Ic.jE/n̂ jjJ + ... + | c^ e/n<f>̂  | 

< e/n + ... + e/n 

= e. 

This proves each X1(x) is a continuous real-valued function 

on rr(a0 ,. . . ,ak) . 

1.13. Theorem. If S is an n-simplex in Rn', then 

TT(S) = Rn. An n-simplex is a simplex containing n+1 elements. 

Proof: Let S = {aQ,... ,an} be the n-s implex in R
n. 

By part (e) of 1.4. Theorem, the set {at-a0,...,an~a0} is 

linearly independent. Since Rn is n~diinensional vector 
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space over the real numbers, then by Herstein (1. Lemma 4.7), 

{a1-a0,. - . a'
?-o'"aD) "is a basis of Rn, Therefore 

VCaj-ag,...,an-aQ) = R
n. By 1.6. Theorem,, 

tt(S) = a0 + V(a1~a0 , — ,an-a0) = a0 + K
n = R N. Thxs 

completes the proof. 
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CHAPTER II 

SIMPLEXES AND COMPLEXES IN Rn 

2.1. Definition• Let S be a finite subset of Rn. Then 

S is called a simplex if and only if S is geometrically in-

dependent . 

Notation: Let S = { aQ ,. . .,ak} . • Denote the set 

{_gqf(s)sl f: S -> Reals, such that £ f(s) = 1, f(s) > 0 for 
25 ̂  1 SeS 

each s 6 S} by ACS). 

2.2. Definition. Let S = {a0 be a simplex. 

The dimension of S, denoted by dim(S), is the integer k, 

and S is called k-simplex• 

2.3. Definition. Let S be a simplex, and let T be a 

subset of S. Then T is called a face of S and ACT) is a 

point-set face of ACS). 

2 . M-. Theorem. A hyperplane in Rn is a closed set in Rn. 

Proof: Let TrCap , . . . ,av) be a k-diinensional hyperplane 

in Rn. By 1.10. Theorem, there exist points ak+i > • • • >'̂ n such 

that the set {a0,...>an) is geometrically independent. Let 

x be a limit point of r, Cao ,. . . ,a ) , and x <£ ttCa0 ,. . . ,av), 
j 'C • 

since x £ uCa0 ,. . . ,a ) = R
n. Let x = 2 Â a- £ it (a0 , . . . ,aT,) . 

. i = 0 
Then there exists A 3Cx) i 0 for some k < j < n. By 
1.12. Theorem, A^Cx) is a continuous function on R11. Hence 

for e = |A^(x)j/2, there exists 6 > 0 such that * « * 

| ,V Cx)-\JCy)| < e = |Cx)j/2, whenever y belongs to the 

1 u 



15 

neighborhood N»(x) of x. Sines x is a limit point of 

ir(a0 , , . sav) , then there exists y' € N^Cx) A ir(a0 ». . . ,av). 

But y' £ Tr(a0 } „ ,ak) implies (y) - 0 by the fact that 

k < j. Therefore |A 3(x)-/J (y!)| = J A 3 C x)J < E = j x 3 ( x ) j / 2 . 

This is impossible since X3(x) i 0. Therefore x e 7r(a0 ,. . . ĵ .). 

Hence it(a0 ,. . . ,a^) is a closed set in R
n. 

2.5. Theorem. Let S be a simplex in Rn, and x € ACS), 

Then the expression of x = £0f(s)s is unique. 
S ® o 

Proof: By the definitions of A(S) and tt (S) , 

A ( S ) C T T ( S) . Hence x £ A C S ) implies x G T T ( S). By parr (d) 

of l.i+. Theorem, the uniqueness of the expression x = Ecf(s)s 
S O 

follows. 

2.6. Theorem. If S is a simplex in Rn, then A(S) is 

an open set in the relative topology of the hyperplane tt(S). 

Proof: Let x = „E0f(s)s € ACS). Since ACS) C T T C S ) , 
SCO 7 

then x 6 ACS) implies x £ it(S) . Denote fCs) by g0Cx). 
b 

By 1.12. Theorem, gsCx) is a continuous function on T T C S ) 

for each s £ S. For each s £ S , define G0 = 

{x e T T C S ) j gsCx) > 0}. Since gs(x) is a continuous function 

on T T C S ) for each s € S, then G is an open set in T T C S ) for 

each s € S. By the definition of ACS), ACS) = 0 G which 
siS s 

is open in T T C S ) . 

2.7. Theorem. Let S be a simplex in Rn, and denote the 

closure of A C S ) in Rn by Z T C s T R n . Then A C " S J " R n
 C TTCS) . 

Proof: If the cardinal number of S is n+1, then 

T T C S ) = Rn. This theorem is obviously true. Now, we shall 

assume that T T C S ) i Rn. 
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By 1.1(3. Theorem, there exists a simplex S' in Rn such 

that S C: S!, and ir(5r) = Rn. Suppose there exists x £ 17 ST̂ -
n 

and x irCX) . Then x £ irCS ! AtCS) . Let x = Z fCs) s e u(S'). 
x seS' 

Since x <£ tt(S), then there exist sQ £ S'\S such that 

f(s5) i 0, Let gs(y) be the barycentric coordinaxes of y 

relative to the set S'. Define 
G = {y e. Rnj gg^Cy) i 0}. By 1.12 Theorem, gs^ (y) is a 

continuous function on Rn. Hence Gs^ is an open set in R
n, 

and x €. G„ . By the definition of GQ , G_ 0 ACS) = <f>. This 
B 0 s 0 S 0 

is a contradiction to the supposition. Therefore 

ATSlRn C tt(S). 

2.8. Theorem. Let S be a simplex in Rn. Denote the 

closure of ACS) in Rn by ACsT^11, and denote the closure of 

ACS) in the hyperplane irCS) by ACsT71^^. Then 

ATs7Rn = ATsT* (s}. 

Proof: If x € ACS), then x £ A Cs~5ir C S) , Let x be a 

limit point of A(S)Rn, x et ACS), U an open set in Rn, and. 

x 6 U. Then U f\ ACS) / <p. Let u1 be an open set in ttCS) , 

and let x e u* . By the definition of .relative topology, 

there exists an open set v in Rn such that u' = v f\ ir(S). 

Hence v 0. ACS) = v f\ C rr C S) A ACS)) = Cv f\ ir C S)) f\ ACS) = 

u' f\ ACS) i <f>. Since x <$• ACS) , then x £ u' A ACS). There-

fore u' (\ ACS) £ <p implies that x is a limit point of 

aTsT'T<S). Hence M S T r U C aTsT^S). 
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Let x € A C S T ^ S ) . Then x e T T ( S ) . For- any open set u' 

in T T ( S ) and x G U ' , then U ' 0 A C S ' * - <fc, Let U bo. an open 

set in R", and let x € u. But x £ I T ( S ) ; t herefore x €. u fi T T ( S ) 

is an open set in -rr(S) . Hence u Pi A(S) = u H (ACS) fi T T ( S ) ) = 

(u r\ir(S)) f\ ACS) i <fi. This implies x € ATsT^n. Hence 

A T ¥ T ' F R ( B ) C AlsTRn. Both of ATsTRn
 C A T S T ^ ^ S ) and A T S T * ( S > E AlS)Rn 

imply ATsTpn = A(ST7r^). This completes the proof of this theorem, 

2.9. Theorem. If S is a simplex in Rn, then 

ATsT = {qXgfCs)sj f: S non-negative reals, g|gf(s) = 1}. 

Proof: For the sake of simplicity, denote the set 

{s£gfCs)s| f: S non-negative reals, g|gfCs) = 1} by A. 

By 2.4, Theorem, A T S T CTTCS). Denote the barycentric coor-

dinates of a point x g. R N relative to the set S by ggCx), 

where s £ S. Suppose there exist y £ Rn such that y £ ACS) 

and y & A. Then y 6 A (S)~ C T T C S ) and y £ A imply 

y = gZ0gs(y)s C T T ( S ) and gg, Cy) < 0 for some s ' S . Define 

GS ? = {w - s|ggsCw)s £ T T ( S ) | gs,Cw) < Cgg, Cy) )/2}. By 

1.12. Theorem, g ,(w) is a continuous function on T T C S ) . 
s 

Therefore G_» is an open set in irCS). By definition of 
s 

G~» , y £ G_, , and G . fi ACS) = <p. This contradicts y € ATST. 
^ s s 

Hence the supposition is false. Hence y £ A T S T implies that 

y € A. Hence ACS) C A. 

If dim(S) = 0, then S contains only one point. Hence 

S = ACS) = A T S T = A. Therefore assume that dimCS) = m > 0. 

Denote the norm of x € Rn by jx|, and the set 

{z € Rn| |z-yj < 6, where y € Rn and 6 is a positive real 

number} by Cy). for a given 6 > 0, let y £ A; then 



T O x<5 

y " gl* s ̂ s £ '/r(b,», ar.ci g(s) >_ 0 tor- each s e 3. Since 

y r slsg(s)s £ 71(8)5 t h e n slsg(s) = 1' B u t g ( s ) > 0 f o v 

each s £ Sj therefore there exists s' e S such that 

0 < g(s') < 1. Denote g(s') by X and S^lsl by M. Then 
S £ £> 1 1 J 

0 < K < 1. Since dim(S) > 0, M > 0. Define a function 

g' : S -*• reals by 

g1 ( s) -• g (s) + t/'m, if s / s'; 

g'(s') = g(s') - t = K - t, where 

t = min{K/2, 6/M(l+m)}. 

T h e n s5sg'(s) "" sls.(g(s) + t / m ) + §(s'> ~ * = S| s
g ( s ) = 1' 

s* s' 

and g'(s) > 0 for each s £ 5. Hence E g'(s)s £ ACS). 
sgS 

Denote*s|sg'(s)s by z. Then 

Iz-y! = Lslsg!<:s)s " seSg(s)sl 

sis <t/m)s - tsf| 
s.̂ s' 

£ l0?o (t/m)sj + t|s' 

< t/m E |sI + 11s ' 

" SI-

< (t/m)M + tM 

= (t(1+m))/m M, 

If t = K/2, then (t(l+m)/m)M = (KCl+m)/2m)M < 

((Ŝ MCl+m)) (1+m) /m M = <5/m <_ 5. 

If t = 6/M(l+m), then (t(l+m)/m)M = 

(6/M(l+m))((1+m)/m)M = 6/m < 6. 

Hence |z-y| < 6. Therefore z £ NjCy), and z £ A(S). 

Hence z £ N{(y) A A(S). Thus y E ATsT; therefore A C aTsT. 
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Taken together, ACS") c A and A C A(S.) imply that 

FCST = A. This completes the proof of this theorem. 

2.10. Theorem. In Rn, if a simplex S' is a face of 

a simplex Ss then A(S') is contained in ATST. Conversely, 

each point in ATs7 is an element of a unique point-set face 

of ATST. 

Proof: Since S' is a face of Ss then S' C S. Therefore, 

by 2.9, A(S') = { £0f(s)sl f: S' -> positive reals; Ec,fCs)=l} 
seS sc o 

C_ {gSggC s) s | g: S non-negative reals; s|gg(s) = 1} = ACST. 

Let x g A(S). Then x = Ech(s)s for some function 
S £ J 

h: S -> non-negative reals and ^XghCs) = 1. Let 

S" = {s € S[ h(s) t 0}; then S" C S, and x e A(S"). But 

S" C S implies A(S") C tt(S) . Hence x C tt(S) . By part (d) 

of 1.M-, the set S" is unique. This completes the proof of 

this theorem. 

2.11. Definition. Let K be a finite collection of 

simplexes in Rn such that the following is true: 

(1) If x <£ K and <J> i y C. x, then y € K. 

(2) If t,u £ K, then A(t) f\ A(u) = 4>. 

Then K is called a complex in Rn. 

2.12. Definition. Let K be a complex in Rn; the positive 

integer sup{dim(x)| x 6 K} is called the dimension of K. If 

sup{dim(x)j x £ K} = m, then we write dim(K) = m and say that 

K is an m-complex. 

2.13. Definition. Let K be a. complex in Rn; let the 

set U{A(S)j S 6 K} be denoted by j Kj . Then a subset P of R n 
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is called a poly tope in Rn if and only if P ~ j K J for some 

complex K in Rn. A complex K if? called a trdangulation of 

the polytope |K j . 

2.m. Definition. If S} and S2 are distinct faces of 

a simplex S in Rn, then by 2.10, ACS t) C\ ACS,) = 4>. It 

follows that the set Kx = IS' | S
T C S; S' i 4>} is a complex 

in Rn. This complex Kj is called the con id inatorial closure 

of S. The set K = {31 I S' c; S; S' i 4>} is also a complex. 

This complex is called, the combinatorial boundary of S. 

2.15. Theorem. Let S be a simplex in R n, and let K2 be 

the combinatorial boundary of S. Then jK2| is the point-set 

boundary of A C S ) in I R ( S ) . 

Proof: Let B be the point-set boundary of A C S ) in itCS). 

Let x € |K2|j then x € ACS') for some proper face S' of S. 

By 2.9, x € ACS)"\aCS) . By 2.6, A C S ) is open in ttCS). Hence 

x CB. Hence |K21 C B. 

Let x 6 B; then x € ACS)\aCS). Let x = gZggCs)s, 

sEggCs) = 1, and g(s) >_ 0 for each s 6 S. Let M = 

{s eSj gCs) = 0}. Since x £ ACS), then M t <f>. Hence 

S\M is a proper face of S, and x 6 ACS\M). Therefore 

x € |K?|. Hence B C |K2|. 

Together, |K2 j C B and B C i K2| imply |K2|'= B. 

2.16. Definition. Let S = { a o , . . . , a„.} be a finite set. 
Xlt 

Each element a^ of S is called an abstract vertex. Each non-

empty subset of S is called an absTract simplex of S. A 

collection of subsets K. of S is called an abstract complex 
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of S if and only if K - ( . {{a-r >>> U ( u 2^3) for some 

x~° 3 = 1 

S " 

subsets Sls...,Sr of S, where 2 3 is the collection of 

all non-empty subsets of Sj. The set S is called the 

vertices of K. 

2.17. Definition. Two complexes (or abstract complexes) 

K1 and K2 are said to be isomorphic provided there exists a 

one-to-one onto function f: K° -> K° , where K° are the 

vertices of Kx,and Kg are the vertices of K2 , having the 

property that a subset { a^ , a^ ̂,. . . ,a3* t} of K° is the set 

of vertices of a simplex in Kj if and only if 
{f (a,* ) ,f (a- ) ,. . . ,f (a- )} is the set of vertices of a sim-

o . x i 1t 

plex in K2. If an abstract complex Kj is isomorphic to a 

complex K2, then K2 is said to be a realization of Kx. 

2.18. Theorem. If Rn is an n-dimensional Euclidean 

space, then there exists an n-simplex in Rn. 

Proof: Let S = {(1,0,0 ,.. . 0) , ( 0 ,1,0 ,0 ,. .. ,0) ,. . . , 

(0,0,...,0,1,0) , (0,05...,0,1)}. Obviously S is linearly 

independent. By 1.4, the set S' = {(1,0,0,... ,0) , 

(2 ,0,0 , ... ,0) , (1,1,0 ,... ,0) , (1,0.1,0,0,. . . ,0) , 

(1,0,0,...,0,1)} is geometrically independent. Hence 3' 

is an n-simplex in Rn. 

2.19• Theorem. Every abstract complex Kj has a realisa-

tion -K2 in some Euclidean space R
m. 

Proof:- Let {a0,...,am} be the vertices of the abstract 

complex Kj and {b0 ,.. .,bm} be an m-simplex in R
m. By 2.18, 



such an m~simplex exists. Define the function f: { a 0 . , 3 } 

-*• {b3 ,. , . jbln) by f(a^) = for i = 0 ,1,. , , ,m. Then f is an 

one-to-one onto function. Let K2 = {f(S)| S £ Kt}; then 

{bi> e K2 for i = 0 ,1,. . . ,m, because {a..} € Kx for i = 0,1,...,m, 

If A £ K2 and B is a face of A, then f"
x(A) € Ki and 

f 1 (B) 6. f~1 (A) . Since Kj is an abstract complex, then 

f~1(B) € 1<j . Therefore B £ K2 . By part (d) of 1.''4, if 

x,y € K2 and x / y, then A(x) 0 A(y) = <f>. Hence K2 is a 

complex in Rm, and f is an isomorphism. Therefore K2 is a 

realization of Kx. 

2*20. Definition. An n-dimensional pseudomanifold is 

an n-complex with the following properties: 

(a) Each simplex is a face of an n-simplex. 

(b) Each (n-1)-simplex is a face of exactly two n-simplexes. 

(c) For each pair t" and tj of distinct n-simplexes, there 

exists a finite sequence S?, S?"1, S £, S'2"1,. . . jS11"1 „ 
k-1 k 

Sn of 

simplexes such that S? = t?, s£ = t£; also, for 1 < i < k, each 

S? ^ is a face of both S1? and S1? , where S1? is n-simplex, 
1 -T. i+l' 1 f t 

and where Sj-1 is (n-l)-simplex, for i = l,...,k. 

In order to realize the geometric meaning of a pseudo-

manifold, the following are four examples in R3: 

Example 1. Let K be constructed as follows: 

a0 = (0,0,0) ax = (1,0,0) a2 = (0,1,0) 

a3 = (0,0,1) 
S? = (ao >ai>a

2} SJ = {a0 3a,} S° = {a0} 

~ ^ a 0 , a j ,23^ S2 ~ £ a g , a 2 ̂  S2 = 
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°3 ~ '^2 ^ ? ~ ^ ̂  o ' ̂  3 jl ^3 = a 2 ̂  

Sj = (a i ,a2 ,
a

3 } SI ~ (a, .a2 ) Sfj = {a, } 
q 1 _ / _ „ > 

6 ~ t a i ' a
3

) 

SI - {a^,a.} 
6 2 3 

K = {3| | i = 1,2,3,4} U (S:j i = 1,2,3,4,5,6} U 

{S?j i = 1,2,3,4}. Then K is a 2-dimensional pseudomanifold. 

Example 2. Let K be constructed as fol lows: " 

ax = (1,0,0) a2 = (0,1,0) 
ao : = (0, 

O
 

o 

a3 : s (0, 0,1) 

ae : : (1, 2,0) 

s; = : ^ao ? a x 5 
a2 > 

• "f a o a
3 } 

: {a 1 o 5 ̂ 2 5 a3} 
Q2 --: {a! ?a2 ? a3 } 

S 5 = : {a2 
a5> 

Si = : {a2 5 5 a 6 } 

s* = : {a2 *a5, a6 } 

s2
 -8 

: {alf 5aS 5 ag} 

a
k = (0,2,0) a = (0,2,1) 

s 1 -
b i 

^ a Q 3 | 3" Sj : { a o ^ 

S 2 5 : { a 0 , a i } S2 : 
: Ca1} 

s i = : { a Q 5 a 3 } s | : : ( a 2 } 

S i = { a ^ j 3-2 } s° = : Ca3} 

Ss : "C a | 3 a g J s® . = { a , } 

S i = : i a 2 > a 3 3 SI --: { a s } 

= { &2 5 a ̂  } s ; --: * a 6 } 

S8 = : { a 2 5 a 5 } 

s* = : ( a
 2 J a g } 

q 1 . 
10 

; f a . ' a 5 > 

8 1 = 11 1 K ' V 

s 1 = 12 ^ a 5 5 a 6 ^ 
» 

K {Si | i = 1,. . . , 8 } IJ {S»| i = 1,. . . , 12 } u {S?| i = 1, . . . , 7}. 

Then K is a two-dimensional complex sat isfy ing the conditions 

(a) and (b) , but not (c). 



Example 3. Let ac 5 &1, , a3 be as in Example 1, 

Sf = {a0,a,,a3 } Si - {a0.a1} S\ - {a0} 

S* = {a0 ,a2 5a3} Si - {ac,a2} s£ -- {ax} 

^3 ~ ^ 0 5a 3 S3 = {a2} 

SJ = (ax,a3} S° = {a3} 

Sg - {a2,a3} 

K = {S*, S*} U {S l\ i = 1,. . . , 5 } u {S|| i = 1 , . T h e n 

K is a 2-dimensional complex satisfying the conditions (a) 

and (c), but not (b). 

Example 4. Let a5 = (1,1,1), and denote the 

2-dimensional pseudomanifold of Example 1 by K'. Let 

K" = K' U {a5}; then K" is a 2-dimensional complex satis-

fying the conditions (b) and (c), but not (a). 

2.21. Theorem. If S = {s0,...,sn} is a simplex in 

Rm, then A(S) is connected. 

Proof: Suppose A(S) is not connected; let A(S) = AtJ B 

such that A d B = A 0 B = if and A 4 <f> i B. Let 

a = E„f(s)s 6 A, E0f(s) = 1, and f(s) > 0 for each s £ S; 
S$ O S £ D 

also let b = g|gg(s)s & B, s|gg(s) - 1, and g(s) > 0 for 

each s € S. Let D = { 0 < k < l i (f(s) + k(g(s)-f(s)))s 

+ _, .f(s)s £ A}. Since 
f(s)=g(s) 

fCs)*g(s)(f(s) + k(g(s)-f(s))) + f ( s )| g ( s )
f ( s> 

= . <r/W/'N
f( S) + , + ^ k(g(s)-f(s» 

f(s)*g(s) f(s)=g(s) f(s)*g(s) 

- I0f(s) + k[ , ( %g(s) ~ j~t , ,f(s)] 
s<jb f(s)^g(s)to f(s)j*g<.s) 



, 1 • kt<l - f(s)ig{6)«<6>) - <3 - f(8)ig(8)
f(S))3 

= 1 + kCf(s)=g(s)f<s) " f<s)lg(s)
g(s)] 

= I + k[0] 

•= 1, the set D is non-empty and the point p = 

f(s)^g(s)[f(s) + L(g(s)-f(s))]s + f(s)?g(s)
f(s)s £ A(S), 

where L = lub D. Since p 6 A(S) , then either p & A or 

p £ B. 

Case 1: p e A. Let m a x { | s 0 | s n j } = 0 where 

j s-j j is the norm of s^. Since L ~ lub D, then for e > 0 

there exists a real number Lf such that * 

L < L' < L(1 + e/(l+e)(l+n)0) and the point p' = 

, / NCf(s) + L'(g(s)-f(s))]s + E . f(s)s £ B. 
f(s)*g(s) f(s)-g(s) 

Then |p' - p| = 

L r w f \ C f C s 5 + L'(g(s)-f(s))]s + er f(s)^g(s) & f(s)=g(s) s -

f(S)?g(s)
Cf<S) + MgCs)-f<8>>]s - f ( s)E g ( s )

f ( s ) s | = 

I 2 (L1 - L)(g(s)-f(s))sI < 
f(s)/g(s) 

e/(l+e)(l+n)e|f(s)2g(s)(g(s)-f(s))s| < 

e/(1+e)(1+n)0^(s)(s)|g(s)-f(s)|j s| £e/(l+e) <,e. 

This implies p is a limit point of B. Hence A f\ B i 4>» which 

is a contradiction to the supposition. 

Case 2: p £ B. Since L lub D, then for e > 0 there 

exists a real number L' such that 
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L( 1 - e/(l+f.)(l+n)0) < L' < L, and the point p' 

/ w /• x C ̂  < s) + L' (g (s) - f (s)) ] s + v Z , v f (s) s ̂  A. 
f (s} ? g (s ,• f(s;=gvs; 

Then j p - p1j = 

I-PC w t \tf(s) + L(g(s)-f(s))]s + , ,E . ,f(s)s -!f(s)^g(s) f(s;=g(s) 

/ w / + LT(g(s)-f(s))]s - Z f(s)s| = 
f(s)*g(s) f(s)=g(s) 1 

| . .§ . .CL - L')(g(s)-f(s))s| < 
f(s)?g(s) 

e/(l+e)(1+n)0| Z (g(s)-f(s))s| < 
f(s)?g(s) — 

e/(l+e)(1+n)0f(s)^jg(s)Ig(s)-f(s)j jsj < e/(1+£> < e. 

This implies p is a limit point of A. Hence A f\ B i <f>, 

which is a contradiction to the supposition. Hence the 

supposition is false. Hence A(S) is connected. 

2.22. Theorem. If S is a simplex in Rn, and if 

Sj,...,Sm are subsets of S, then the set T = 

A(S) U A(S,) U U ACS ) is connected. 
1 m 

Proof: Assume T is not connected; let T = A U B such 

that A f\ B = A f\ B = <i>, and let A i <j> i B. By 2.21, A(S) 

is connected. The sets A and B are separated. Then either 

A (S) C A or A (S) C B. Assume A (S) G A. Since B f- <j>, then 

there exists a point y e B. That is, y P. A(S ) ' for some 
K 

1 k <_ m. By 2.21, ACS^) is connected. Therefore y £ B 

and y A A (S^) imply A( Ŝ .) C B. But S^ is a face of S. 

By 2.9, A(Sk) C AXsT. Since A(S) C A, then STsT C A. Hence 
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A(S^) C A. Therefore ACS^) C A f| B. That is A H B $ 

This contradicts the supposition that A and B are separated. 

Similarly, a contradiction can be found if MS) C A. There-

fore the supposition is false, and T is connected. 

2.23. Theorem. If S is an n-simplex, n > 2 , and K?_ is 

the combinatorial boundary of S, then j K2 j is connected. 

Proof: Let S = {s0,s1....,sn}„ Denote the set 

S\{sj_} by for i - 0,1,...,n; denote the combinatorial 

closure of S^ by K^' for i = 0,...,n. Then 

i K2 | = 2.22, IK̂ 'I is connected for i = 0,1,... jn. 

Since n >_ 2, then 3 • H S- ^ <j) for 0 £ i, j £ n. Hence 

| Ki1 j Q | Kj ' j i 4> for 0 <_ i, j £ n. Since | ' | is 

connected, then jK2\ is connected. 

2 . 2*4 . Theorem. If K is an n-dimensional pseudomanifold , 

then |Kj is connected. 

Proof: Suppose |K| is not connected \ let |K[ = A [} B 

such that A O B = A O B = <F>, and A i <J> i B. Since A t <j> i B, 

then there exist a 6 A and b £ B. Then a 6 A(Sa), and 

b € A(S^) for some simplex Sa and S^ 6 K. Since K is an 

n~dimensional pseudomanifold, then Sa and are faces of 

some n-simplexes Sa and S^ respectively. Hence there exist 

a finite sequence S^, S?"1, S2 S ^ , s£l]y s£ of 

simplexes such that S^ - S^, Sĵ  = Ŝ j, and for 1 <_ i < k, 

each S1?-"1" is a face of both S1? and S1?, _ . Denote this 
i i l+l 

sequence of simplexes by :c 1 ,r2 ,. . . ,̂ 2k-~l • Then 
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r, - S3,1 - S n, and r v, „ = S:.
1 = S'\ By 2.21, M r . ) is 

1 1 d ZK-m ^ r> X 

connected for i = 1,. . . }/:k~l. The sets A and B are separated. 

Then either A(r^) C A or A(r.;) C B for i = ls...,2k-l. Let 

in be an integer such that A(r ) c A and A(rm+ j) C B. 

Case 1: For some 1 < t < 2k-l, r = S2- Then 
— m i-

A(r . n ) = ACS^
-1) C B. Since S3?"-1- is a face, of S1^. then 

m+1 t t t 

ACSG"1) C A(S^) C A. Hence A(Sj_1) C A H B. This contra-

diets A and B being separated. 

,-m - S^
-1. Then 

A(r m + 1) = A(s"+;]) C B. Since s£-1 is a face of S£+1, 

then ACS^"1) C A(S"+1) C B, Hence A(s£_1) C A C B. This 
* 

contradicts A and B being separated. Therefore the supposi-

tion is false. Hence |K| is connected. This theorem is 

proved. 

The condition Cc) of 2.2 0 is stronger than the property 

of connectedness. The following example is a complex K sat-

isfying conditions (a) and (b) of 2.20 only, but |x| is 

connected. 

Example: In R 3, let K be constructed as follows: 

a0 = (0,0,0) ai = (1,0,0) a2 = (0,1,0) 

a3 = (0,0,1) a^ = (1,0,2) a5 = (0,1,2) 

a6 - (0,0,2) 

SJ = {a0,aj,a2} S\ = {a0,a,} S° = {a0 > 

S| = {a0,ax,a3} 5\ = {a 0,a 2} S° = {ax} 

S3 ~ ^ ao , a2 s a3^ ^3 ~ ^ao'a3^ ^3 ~ 
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Si ; 
: {a l 5a 2 

Q 1 - {ai,a2} CO .. 
U If • f. a 3} 

S? s C a g, a k ,a5} S1
 r. 
£T 

{" a ̂  ̂  ^ } s ; = 
: 

Si = : {a3 3ait sa6} o 1 _ { a 3, a i } : = { a 5 } 

S2; : = {a3,a5 ,a6} sj = {a.,a3} co . 
"7 

: u e > 

Si : : {ai» ,as ,a6} s\ = {a6 ,at(} 

S9 = {as,as} 

Ŝ o = (a3,3.^} 

Si1! ̂  {ai, j3 5} 

S12 ~ {a5,a3} 

K = {S? j i = 1,. . . ,8} U {S[\ I = 1, . . . ,12} U {Sfi i = 1,. . . ,7}. 

Then K is a complex satisfying The conditions (a) and (b) 

but not (c) of 2.20. Also |Kj is connected. 

2.25. Definition. If K is a complex and S is a simplex 

in K such that S is not a proper face of each simplex in K, 

then S is called a maximal simplex in K. 

2.26. Theorem. Let K be a complex, and let S be a maxi-

mal FT-simplex in K where n •> 2, If j K[ is connected, then 

|K|\A< S) is connected. 

Proof: Denote the combinatorial closure of S by Kx 

and the combinatorial boundary of S by K2 . Suppose j K |\A(S) 

is not connected. Let j K| \A(S) = A U B such that A 0 B = 

A f\ B = $, and A i <f> t B. By 2.23, |K2[ is connected. 

Hence either [K2| C A or jK2| C B. It is no loss of gener-

ality if j K2| C A is assumed true. Since |K[ is connected 

and |K|\A(S) is not connected 5 then either A (S) fi B i- cf> or 

ACS) 0 B i <p* Also for each simplex S1 € 1<\{S} , either 

A (S ' ) C A or A(S') C B. 
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Case 1: A (3) A B i <p. This inequality means there 

exists a point p € ACS) coac p £ B. Bat o £ ACS) implies 

p 4t | KJ\aCS) = A U B. Hence p £ 8. If p is a limit point 

of B, then p is a limit point of ACS,) for some simplex 

Si 1< and ACS x) C B. Hence p £ I'CsTJ fl ACS). But S is 

a maximal simplex in K, and S i S x ; hence 7TC$ } ) C\ ACS) = (j>. 

Therefore the supposition of p being a limit point of B is 

false. Therefore ACS) 0 IS ^ <j> is impossible. 

Case 2: ACST B i <p. This inequality means there 

exists a point p £ B and p ATsT. But p <£. B implies 

p e ] K J \ A C S) = A U B. Hence p <£ ACS). If p is a limit 

point ©f ACS), then p € j K2 j Q A. Hence p £. A 0 B. This 

contradicts A f) B = <j). Therefore ACsT H B i 41 is impossible. 

Combining Case 1 and Case 2, we know that the supposi-

tion is false. Hence |K|\ACS) is connected. 

2.27. Theorem. Let K be an n-complex and j K| be con-

nected. Then the set T = {x j x is a vertex in K} (J 

CVJ{ACS 1) | S 1 is 1-simplex in K}) is connected. 

Proof: If n = 0 or 1, this theorem is automatically 

true. 

Assume n >_ 2; then each n-simplex in K is a maximal 

simplex in K. If Sn is an n-simplex in K, then K\{Sn} is 

also a complex. By 2.26, J X|\A C S) is connected. 

Assume K has just t^ i-simplexes denoted by S-i, Sj 
n 

for i = 2,3,...,n. Let . £ t^ = m, and denote the sequence 
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c-n on oil cn-1 cr:-1 cn-l 02 0z 
°1 ) °2 5 * * * 5 *-D 5 v ' 5 W* *

 5 " * " ? *-n̂ i 'J * * * * L' 1 5 u2 5 ® • ' 

S| of simplexes by Define Kx - K̂ -fr'j } , apd 

define K. = K. -,\{p* } for i - 2 ,3 ,. . . ,m. Then | K I = T. l i-i» i * 1 m1 

By 2.26, |Kj| is connected. Use 2.26 m times to conclude 

that |Km| is connected. That is, the set T is connected. 



CHAPTER III 

CHAIN GROUPS 

For a complex K and an abelian group 6, the first step 

in constructing the chain group is to define the orientation 

for each simplex in K. We use the notation Sn to denote an 

n-simplex. 

3.1. Definition. If Sn is an n-simplex where n > 1, 

let Fgn = {f J f is a one-to-one onto function { 0 ,. . . , n} -* S
n} , 

and define a relation - in F by the following: Let f,g €. F; 

then f - g if and only if f = g or there exist an even num-

ber of transpositions 4> j ,. . . ,<j>2 of the set {0,1,... ̂  such 

that f = g4>x,. . . ,<}>2m. Since 

[(1) By definition, f - f for every f & F. 

(2) If f,g e F and f ~ g, then there exist transposi-

tions of {0,1,... ,n}, cf) j ,. . . 1 such that f = g<f> t ,. . . . 

But the inverse of a transposition is also a transposition; 

hence ±<j>~A,. . . 1 = g$x ,. . . j4>2t^2^ ' • • • >$1
 = g* Therefore 

g - f. 

(3) If f,g,h £ F and f ~ g, g - h, then there exist 

transpositions of {0,...,n}s $ j s. . . ,<f>sr ,0 l ,, . . ,$s t such that 

f - gip , ) • • « and g - h6 x , . . . ,02 . Hence f — g<f> j ,. . , 

= h0 j ,. . . , 0 2 1 j • • • > ̂  2 r' Therefore f - h . ] , 

then the relation ~ is an equivalent relation,, 

By the definition of « , Fc,r./- contains on] y two equiva-

lent classes. 
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The statement that D is an oriented n-simplex means 

D s (Sn,e) where e s Fgn/~ ?nd Fgn/~ is called the orienta-

tion set of Sn, denoted by N<Sn), If e £ N(Sn), then e is 

called an orientation of Sn. If Sn = {a0,...,an}, we denote 

D by t h e notation<aio ,aii 5. .. ,ai^
>> where i„ ,ij ,... ,in is a 

permutation of 0,1,...,n. Let Fgn/~ = {e j ,e2} , tfyen we say 

(Sn,ej) = -(Sn,e2) and (S
n,e2) =-(S

n,e1). 

For 0-simplex S0, the orientation set of S0 contains 

just one element. Let S° = {a„}; the meaning of -<a0> will 

be defined later. 

3•2. Definition. The symbol Ka is an oriented complex * 

meaning K is a complex, a is a function a: K -> g^KN(S) and 

a(S) £ N(S) for every S K, where N(S) is the orientation 

set of S. The symbol a is called an orientation of K. 

Notation: Let a,3 be orientations of a complex K. Then 

the symbol f w i l l be used to express the function 

K {1,-1} defined by 

fag(S) = 1 if a(S) = BCS), and 

f ( S ) = -1 if a(S) i g(S) , for each S € K. 

Let y be another orientation of the complex K. Then by 

the definition of fag> the following properties follow imme-

diately: 

(2) fag(S) = fga(S), and 

C3) fa3(S)f6Y(S) = fayCS). 
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3.3. Definition. Let K be an oriented complex, and 

let 6 be an additive abelian group. An r-dimensional chain 

of Ka over G is a function Ca which assigns to each oriented 

r-simplex of Ka an element of the group G. For convenience, 

Ca( (Sr, cx(Sr))) is denoted by ca(Sr>. 

3.4. Definition. The set of r-dimensional chains of 

an oriented complex Ka over a group G is indicated by the 

symbol Cr(K
a;G) . Let s C (Kot;G) ; define c<J + c$ by 

(c" + c^)(Sr) = c^(Sr) + CgfS1^). 

3.5. Theorem. If G is a unital R-module, define 

(rc^CSt) = r(ca(S^")) for every r £ R, ca €. CtCK
a;G) , and 

S"t £ K. Then (Ka;G) is a unital R-module. 

Proof: Define the function c® by ĈS"*-) = 0 for all 

S"*- € K where 0 is the zero element of G. Then c$ is the 

zero element in Ct<K
a;G). 

Let ca £ C^(Ka;G); then the inverse element of c a is 

-ca defined by (-ca) (S1-) = -(ca(S^)) for all S1- £ K. Since 

G is closed, abelian, and associative, then C^(Ka;G) is 

closed, abelian, and associative. Hence Ct(K
ajG) is an 

abelian group under addition. Furthermore, 

(r(c^ + CgOJCS^) =• r((cf + CgJCS1-)) 

= r(c^CS + c?(S"t>) . 

= rCc^Cst)) + 

= (re® + rep (S^) . 

(r(sc^)) (S*) = r( (sc®) (S^)) 

= r(s(c«CSt))) 

= (rs) C c®( S )) . 
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((r + s)c<J')(St} - (r + s) (crf(S -)) 

- r(c«(3t)) + s(ca(St)) 

= (re*?) (-S L) + (sc^)(S^-). 

(lc^XS1) = Kci'CS1-)) = c^(St) 

for all c?,c£ € Ct(K
a;G) and r,s 6 R. Hence Ct(K

a;G) is 

a unital R-module. 

3•6 » Definition. If a,3 are orientations of a complex K 

and c« e Cr(K<*;G)5 cS € CrCK3;G) , then c
a is defined to be 

chain-equivalent to cB provided that for each r-simplex S r 

of K it is true that c®(.Sr) = fag(S
r)cg(Sr) . From the 

properties of the function faj3> the relation so defined is 

an equivalent relation. 

3.7. Definition. Let K a be an oriented complex and 

c a an r-dimensional chain of K a over a unital R-module G. 

The chain-equivalent class of c a is called an r-dimensional 

-jhain of K over G. The set of r-dimensional chains of K over 

G is indicated by the symbol Cr(K;G). If c a is in the chain-

equivalence class c, then c a is called a representative of 

the chain c. The notation [ca] is used to express the chain-

equivalence class of ca. 

3.8. Theorem. Let c be an r-dimensional chain of a 

complex K over a module G. For each orientation a of K, 

there exists exactly one chain c a € Cr,(K
a;G) such that c a 

is a representative of c. 

Proof; Let a be an orientation of the complex K. 

The r-dimensional chain c £ Cr(K;G) means there is an 
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orientation £ of K, and there is an v--dimensional chain 

€ C^CK^jG) suah that zfi is in the chain-equivalence 

class c. Define an r-dimensional chain c a € Cr(K
a;G) by 

ca(Sr) = fag(S
r)c?J(Sr) for all r~simplexes S r € K. But 

this is just the definition of chain equivalence; hence 

c a is chain-equivalent to c^. Hence both of c a and c^ are. 

in the chain-equivalence class c. Therefore c°t is a repre-

sentative of c. Let c b e another r-dimensional chain in c; 

then c a is chain-equivalent to c^. By definition, 

c?(Sr) = faa(S
r)ca(Sr) for all S r 6 Ka. But f a a(S

r) = 1 

for all S r € Ka. Therefore c^(Sr) = ca(Sr) for all S r eT Ka. 

This proves ca is unique. 

3.9. Theorem. If a,3 are orientations of a complex K 

and G is a un.ital R-module, let c®,c® £ Cr(K
a;G), and let 

c^»c^ € Cr(K^;G) with c® equivalent to c$ and c
a equivalent 

to cf. Then c® + c® is equivalent to c? + cf. 

Proof: For each simplex S r of K, we have 

(cj + c«)(Sr) = ca(Sr) + cf(Sr) 

= foS(sr)c®(sn + fa$<S
r)c?CSr) 

= fa3(S^)(cf(S
r) + c|(Sr)> 

••= fa3(S
r)(cf + c^)(Sr). 

Hence, by definition, c™ + c® is chain-equivalent to 

c 8 + c3 1 2 * 

With the theorem of 3.7 and the theorem of 3.8, the 

following important definition can be given. 
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L-l-2- Definition. If Cjl,c2 € Cr(K;G) , then the sum 

°J + is defined to be The equivalence class of :• cj 

where a is an orientation of the complex K and cf and cf 

are representatives of cj and c2 respectively. 

Theorem 3.7. states that for any orientation a of K, 

such representatives c^ and c® of c^ and c2 exist. Theorem 

3.8 proves that the addition of cx and c2 defined above is 

well-defined. 

3•H• theorem. Let G be a unital R-module, and define 

rc = [rca] for every r <s R, c € Ct(K;6) where a is an 

orientation of K, c is the representative of c, and rc^ is 

defined in 3.5. Then C^.(K;G) is an unital R-module. Also 

Ct(K;G) is isomorphic to Ct(K
a;G). 

Proof: Let a be an orientation of the complex K. 

By 3.5, it is known that C.j.(Xa;G) is a unital R-module. 

To show C^_(K;G) is a unital R-module, it must be shown 

that the mapping R x Ct(K;G) -+ Ct(K;G) defined by 

rc - [rca] is well-defined. Let 3 be another orientation 

of K and c^ £ Ct(K^;G) be the representative of c; then 

(rca)(St) = r(C3(s"t)) = r<fag<St)c&(S-t)) = fag(St) (r(c
B(St))) 

= f
a g ^ r c ^ • Hence rca is chain-equivalent to rc^ for 

each r € R. Therefore rc = [rca] is well-defined. There-

fore the computation in the proof of Ct(K;G) being a unital 

module is just the computation in Ct(K
a;G), But Ct(K

a;G) 

is a unital R-module; hence Ct(K;G) is also a unital 

R-module. 
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To show t-j.CK\v~) 2 8 isc.uOrpliic ro C ̂  (K'-; G) , define the 

function G) -* C-„(¥aiG) bv <Kc> - aa where 

c v_ Ct(K,G) and c is clie re pres en t at i ve of C. Let c «c £ 
1 5 2 

Ct(K'G) w i t h cj * c2 and c«,c^ € Ct(K
a;G) such that c^c« 

are the representatives of Cj ,c2 respectively. Then 

Ĉc3.) = Cj and <f>(c2) = cj. Since c. * c2 implies 

[c®] ̂  Cc^], then c® ^ c^. Therefore the function <f> is 

one-to-one. Let ca € C.t(K
a;G); then [ca] e Ct(K;G), and 

<!>([ca]) = ca. Hence <j> is onto. Also ^(Cj + c2) = 

*( Cĉ 3 + [ca]) = <j>([ca + cf]) = cf + cf = <J,(Cl) + <p(c2) . 

This proves <f> is an isomorphism. 



HOMOLOGY GROUP 

4.1. Definition. Let Kcx be an oriented complex, 

>r (S ,u(Sr)) = <a- , a,- S where r > 1 i s an oriented • 
JL Q X ^ _L # —» 

r-simplex in Ka, and Sr~l = Sr\{a-.} is a face of Sv; then 
x ±2 

(-1)3 < a, ,a-: . 53,-i \ is called the oriented 
x0 j-1 j+l t 

simplex Sr--'- inherited from (Sr, os( Sr)) . We also use the 

notation (-l)Va; ,, . . ,cL* . ,. . . ,a,- \ to denote 
* x o -*-j v 

(-l)3<ai0»*••'
aij_i,aij+2'* * *

,air^' 

Since the orientation set of a 0-simplex contains only 

one element, the oriented 0-simplex has not been defined in 

3.1. Now, using the idea of 4-.1, the following definition 

is derived. 

*4.2. Definition. Let K be a complex and S0 ,S1 £ K such 

that S° C S1; then x is an oriented 0-simplex S° if and only 

if x is an oriented simplex S° inherited from (S1,a(S1)) for 

some orientation a of K0. If S° - {a}, we denote the two 

types of oriented O-simplexes S° by a and -a. The minus 

sign means the other type of this oriented simplex. 

Notation: Let S be a simplex in a complex K and a an 

orientation of K; then denote (S,a(S)) by W (S). 
01 
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Let Sr,Sr~1 be a simplex in K and Sr"1 C S; then denote 

the oriented simplex inheritea from (Sr,a(Sr)) by 

WI(S
r,Sr-1)a. 

Def-tnition• Let ,Sr""-̂  be 8imp 1 exes of a complex 

K and a an orientation of K; then the incidence number of 

Sr and Sr"^ under the orientation a, denoted by [Sr,Sr""l]a> 

is defined as follows: 

[sr,sr-l]0t = o i f sr-l ̂  gr. 

[Sr,Sr-1]a = 1 if S ^ 1 £ Sr and 

[Sr
sS

r~1]a = -lif ST~1 C. &r and W (S^ 1) 4 WT(S
r,Sr"])a, 

t* X 

Theorem. If S and Sr ^ are simplexes of a com-

plex K, and a and 3 are orientations of K, then 

[Sr,Sr-1]°t S fag(sr)fa 3cs r-1) [sr,sr-i]e. 

Proof: S r _ 1 is not a face of Sr, then both of 

[Sr,Sr-1]a and [Sr
sS

r~1]^ are zero. Hence the theorem is 

ti ue. Assume o C S^ 5 and ciscuss the following four cases: 
Case 1: f (Sr) = 1, and f .(S^1) = 1. 

otp a3 

(a) If [S 5S
r r i5 then ^ag^S

r"^-) - 1 implies that 

WgCS11""1) = W^s*1""1); [Sr,Sr"1]a = 1 implies that 
W a ^ r ~ V s * jSr""1)a; fa6(Sr) = 1 implies that 

WI(S
r,Sr~1)a = WI(S

r,Sr~1)3. Hence W.CS^1) = 
— i 

Wj(S ,S )®• Hence [Sr,Sr "]̂  = 1. Therefore'the 

theorem is true. 

(b) If [Sr,Sr~^]a = -1, then W CSr~l) t WT(S
r>

sS
r™1)a. 

0* .L 

Using part (a), Wg(Sr-1) 4 W-c(S
r, That is, 

LS ,S1 = -1. The theorem is also true. 
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Case 2: fap(S
r) ~ -1, and fag(S

r~1) - -1. 

(a) If [S r
5S

r~ 1]^ T, then f .(S^"1) = -1 imvlies that 
at 

VJg(Sr~^-) i Wa(S
r"l); f ( S r ) = -1 implies that 

WI(S
r,Sr"1)a* WI(S

r,Sr-1)3. But WgCS'^1) i Wa(S
r-l) implies 

W$( Sr~^-) = -Wa(Sr~"'-). Hence Wg(Sr-^) = -WaCSr~^) = 

-WI(S
r,Sr"1)a = WjCS^S*1"1)0. Hence WpCS1*"1) = W-j-CS*1 g. 

That is, [Sr,Sr~"'"] = 1. Hence the theorem is true. 

(b) If [Sr,Sr~1] = -1, using the above discussion, we 

have Wg(Sr_1) = -V7a( S
3^"1) = W (S^jS1*"1)01 - ~WI(S

r,Sr'~1)0. 

Hence WgCS^ 1) = -WI(S
r,Sr~1) B, and [Sr,Sr-1]3 = -1. The 

theorem is also true. 

Case 3: fag(S
r) = 1, and = -1. 

(a) If [Sr,Sr-l]a = 1, then WgCS^ 1) = -W^S*1-1) = 

-Wj(Sr,Sr>~-'-)a ~ -Wj(Sr',S:r~-'-) ̂ . Hence [Sr,Sr™^-]^ = ~1 

The theorem is true. 

(b) If [3r
}S

r~1]a = -1, then WpCS
r-l) = -Wa(S

r-l) r 

WI(S
r,Sr~1)a = WI(S

r,Sr-1)3. Hence [Sr,Sr~1]B = l. The 

theorem is true. 

Case 4: fag(S
r) = -i, and fag(S

r-^> = 1. 

(a) If [Sr,Sr_1]a = 1, then WgCS11""1) = Wa(sr-1) = 

WI(S
r,Sr~1)a = -WI(S

r,Sr~1)e. Hence [Sr,Sr,~1]f5 = -1. The 

theorem is true. 

(b) If [Sr,Sr-1]a = -1, then Wg(S
r~1) = W a(S

r _ 1) = 

-WI(S
r,Sr'-1)a = WI(S

r,Sr"1)Pj. Hence [S^S 1^ 1] 2 = 1. The 

theorem is true. 

Combining the above cases, the theorem is proved. 
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4.5. Theorem. Let Sr, ST"1, Sr~2 be simplexes of a 

complex K and a an orientation of K; then 

?[sr, sr-1]aCs^,1sr-2]a = 0. 
X JL 

Proof: By the definition of incidence number, 

[Sr, sj " 1 ] a [ s i
r"l S r - 2] a i 0 if and only if 

Sr~2 C Ŝ ~̂ * C Sr. Let 3 be another orientation of K; 

then ?[Sr, SV-^ZSV"1
9 S^"~

2la = 
x l l 

ffoe<s')fa(1(sr
i)cs». , 

f<xBtSr')fclB<S
r'-2)]:[Sr> Sj-

1]6tsT-1, Sr-2]B. Therefore 

£[Sr, sr-^]a = 0 if and only if 

|[Sr, sr-l]S[sj-l, sr-2]8 _ g _ Hence this theorem does not 

depend on the particular orientation a. Let 

S ̂ — {a0 ,ax,. .. ,arJ, S - {a^ s • • • ja^} ; 

S?"1 = {a0 ,a2,. .. ,ar} , Sf"
1 = {ax ,a2 ,. . . jâ ,} . Then 

for any which satisfies the condition Ŝ ""̂  C. Sr, 

either S?_1 = S^-1 or S^"1 = Sj"1. 

Let y be an orientation of K such that 

( S J 5 Y ( S*> )
 = » ' • J ̂2̂ ) 5 

(S| "̂*5 Y^S^ ^ ) ) ~ ̂ a 0 5̂ 2 5 * * * 3 ^2 *^^2 ^ = | 5̂ 2 5 *M 3 ̂xv̂ 5 

CSr"2, y(Sr~2)) = <a 2..,a r>; then 

Jcs^9 sj-
1]Y[Sj-

1, s r- 2n = 

[Sr, SY-1]Y[SY_1
s Sr-2]T + [Srs sr-l]Y[sr~lj s ^ l

y
 = 

(-D(l) + (1) (1) = 0. Since this theorem does not depend 

on the orientation of K, then this theorem is proved. 
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« o • Dsf3.-tii.~ti.oix» A chain of a cojnplex op ol' an oriented, 

complex over the additive group Z of integers is called an 

integral chain, 

iLiZ. Definition. Let K be an oriented complex and 

Sj £ K. Let (aj) £ C^(Ka;Z) defined by 

C1 if i 
(aJ^sJ.aCS?)) = « 

T* Ct 

Then (a^) is called an elementary integral r-chain of Ka, 

and its equivalent class E (cr̂  ^3 is cal led an elementary 

integral r-chain of K. 

8 • Definition. Let X be a complex, 6 a Z-module, 

c an integral chain of K, g an element of G, a an orienta-

tion of K, and ca the representative of c. Then define the 

chain (gc)a of Ka over G by (gc.)a(S ,a(S)) = (ca(S ,a(S))) »g 

for each S 6 K. 

If 3 is another orientation of K, c^ the representative 

of c and ca is chain-equivalent to c®, then (gc)a is equiva-

lent to (gc)B since Cgc)a(S,a(S)) r (c
a(S,a(S)))-g = 

f a 3 ( S ) c ^ S > ' g = fag(S)(gc)B(S,e(S)) for each S & K. 

Theorem, Each r-chain c« of Cr(K
a;G> can be 

written uniquely in the form 

c« = • 

Proof: Since 

oa(Si,aCsJ)) = (?g?(o^)ct(S^,a(S^>) 
^ L 3 3 3 1 x 

= jgjC(aj) "(S^jaCS^"))) = g® for each 

oriented r-simplex (Sj,a(ST')) in Ka, then 



c a = | g ? ( o ' V ) a i f a n d o n l y i f g ? = e a ( s f , a ( s r > ) f o r e a c h j . 
3 J •' J J "j J 

H e n c e t h e e x p r e s s i o n o f ca ~ kg.-(o~i')a i s u n i q u e . 
J *' j j 1 

t . 1 0 . D e f i n i t i o n . F o r e a c h r - c h a i n (r > 0 ) c a o f K a 

o v e r G, a s s i g n a n ( r - 1 ) - c h a i n c a l l e d i t s b o u n d a r y ( i n d i c a t e d 

b y 3 c a ) g i v e n b y 

o r e q u i v a l e n t l y b y 

3 c c t ( S g - l , a ( S j - 1 ) ) = w h e r e 

c a = ? g | ( a j ) a i s a r - c h a i n o f K a o v e r 6 . 

I f <C a
0 » a j j • » • » a

r > i s a n o r i e n t e d r - s i m p l e x i n K a , 

a n d i f < f a 0 , a x , . . . , a r ^ i s c o n s i d e r e d a n e l e m e n t a r y i n t e g r a l 

r - c h a i n o f K a d e f i n e d b y 

1 i f x —* o j • • • > a r ^ * 
<^a

0 > 3. j > • • • > X ) = 

0 i f x ^ ^ a 0 , , . . , a r S 

t h e n 8<^ao , a j , . . . , a r ^> = ^ ( - D ^ a o , . . . , a ^ , . . . ^ a ^ . 

^ • 1 1 • T h e o r e m . I f c a i s c h a i n - e q u i v a l e n t t o c 3 , t h e n 

3 c a i s c h a i n - e q u i v a l e n t t o 3 c 3 . 

P r o o f : L e t c a = ? g ^ ( a ^ ) a a n d c 3 = ? g ? ( c j ? ) 3 . S i n c e 
3 J J 3 J 3 

c a i s c h a i n - e q u i v a l e n t t o c 3 , t h e n 

gS = cB(Sf,B(Sp) = ^(S^C^S^OCSV)) = fo8<S?)g?. 

H e n c e ( 3 c 3 ) ( S £ ~ l , g C S f - l ) ) - ? [ S ? , S r - l ] 3 g $ = 
K * 3 3 k j 

j f a B ( S j ) f a ( 3 ( s r 1 > t s j . S r 1 ^ f
a B ( s : ) S ? = 

C s V , S £ ~ l ] g j - f a 6 ( S > * ) C o c a ) , a C S £ - i - ) ) . 

T h a t i s , 3 c a i s c h a i n - e q u i v a l e n t t o 3 c 3 . 



M- ,12* Definition* Ihe boundary of an r-chain e in 

C (K;G) (r > 0) is defined tc be the chain-equivalence 

cx 

class of 3c where c a in any representative of c, The 

boundary of c is indicated by the symbol 3c. By H . 11, 

this definition is well-defined, 

'+.13. Theorem. The operator 3 is a R-hoinomoj. phism 

3: Cr(K;G) -> Cr„1(K;G)(r >0). 

Proof: Let a be an orientation of K and c j, g 

Cr(X;G). By 3.8, there exist cf,c® 6 Cr(K
a;G) such, that 

c" and c® are the representatives of c„ and c, respectively. 

Let ( , a( ) be an oriented (r--l) - simplex in Ka; then 
(3(c® f c^XSC-l^CSj" 1)) = |CST,Sf-l]a(ca + ca)(Srsa(SD) A 2 J V K j J k i 2 j J 

= ?[sr,s5,"1]ac?(s^a(s^)) + ?[S^,S^"1]ac5t(S^ ,a(S^3 ) 
3 3 K J 3 3 3 * * J 3 

= Oc-^CSj-i^CSg"1)) + (9cy)(sj-l,a(sj-l)). 

Remembering that G is a R-rnodule, let t £ R, c 6 C^(X;G) 

( S j £ ~ ^ , a ( ) be an oriented (r-1) simplex in Ka, and c a a 

representative of c. Then 

(3(tca))(SJ-l,a(Sr-l)} = ?TSj ssJ"
1]a(tca)CSj'"1sa(Sj"

1)) 

= -CSj ,sjj-1]«t((c«)(sj~1,a(3j"
1))) 

= t?L"sr,S^~1]ct(ca) (S^"1 ,a(S^"1)) 

-1 (( 3ca) (SF""1 ,a(S^'~1) ) ) 
k k 

= (t(3 c a))(S^" 1,a(" 1)). 

That is, 3(tc°0 = t(3ca). Hence 3 is an R-homomorphism. 

4.14. Theorem. For any r-chain c £ Cr(K;G) , 3 9(c) = 0 

(r > 1). 
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?S22l: L e t a b e ^riontation of the complex K, and 

let c« = J^(djV € Cr(K«;G), the representative of c, By 

definition, 3ea = sJ~:L]a) (a*"1)01. Then 
A -J J J A, K 

53ca = !()c«) = f(J(!:gKsr,s5'-1]t>[sJ-1JS?-2]
a5)(ol-2)«. 

A J J J X K x 1 
By 4.5, 3 3ca = 0. Hence 33c = 0. 

1*15. Definition. If c is an element of Cr(K;G) (r >-0) 

and 9c = 0, then c is called a cycle. If c = 3c' for some 

chain c? in Cr+1(K;G)5then by 4.14s c is a cycle and is 

called a bounding cycle of a boundary. The set of cycles 

i n C^CKjG) is the kernel of the homomorphism 3: Cr(K;G) -> 

Cr-1(K?G) a n d i s denoted by Zr(K;G). The set of bounding 

cycles'is the image of the homomorphi sm 3: C^+1(K;G) -»• 

Cr(K;G) and is denoted by 3r(K;G). 

^•I6• Theorem. The sets Zr(K,G) and Br(K;G) are sub-

modules of Cr(K;G), and Br(K;G) is contained in Zr(K;G). 

Proof: L e t be an orientation of K, c2 and c2 € Zr(K;G), 

Cj and c2* € Cr(K ;G) such that c® and c® are representative of 

Oi and c2 respectively. Let (s£-1,a(sg-l)) be an oriented 

(r~l)-simplex in Ka; then by 4.13, (3(c"-c™))(S^-1,a(Sg_1)) = 

Oc^)(Sg-l,a(SJ-l)) + O C - c ^ H S ^ a C S ^ - ) ) . Since 

ci»c2 £ Zr(K;G) and cl - [c^], c2 = [c®], then 

3c" = 0 and 3c^ = 0. By 3.5, -c^ is the inverse element 

of c" under addition. Hence (-c®)(S^"1^aCS^"1)) = 
C% 1 

-((c2)(s£ ,a(s£~1))). Hence (3(-c2))(,a(Sf-1)> = 

fcsj,sj-1]a<-c«)(sg-l,«(sj-l» = -(Itsf .Sg-ij'to?) 

= -((!cj)(s'_11.(sj-
1))! - 0. 
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Hence ( 3 £ orf-cp ) (Sg™1 ,a< ;'j - 0, Therefore 

0[. 

[Cf-cJ CI 2r(K;G) . That io (cx c 2) £ 2r(K:R). This 

proves Zr(K;G) is a subgroup of C„(K;3). 

Let "t € R, c £ Z r(K jG) , and c® be the representative 

of c. Then 

0(tc a))(sj" 1,a(s^" 1)) = ^[S 3,SJ" 1F(t c a)(SJ"1
}a(S g-1)) 

= | [ s?, s F" 1 ]at( (ca) (sr-^( S,r~l))) 
3 J K k k 

= tT: [ sf, s r •~1 ] a (C:31) (Sf'- •1, a (Sf -:1)) 
3 1 k k k 

= tOc a ) (sJ"1,a (sJ" 1 ) ) = 0. 

Hence [tca] € Zr<K;G). That is, tc € Zr(K;G). Hence 

Z (K;G) is a submodule of C (K; G). 
10 V 

Let Cj,c2 6 Br(K;G) and cf and c^ be the representatives 

of cl ,c2 respectively. Since c , , ^ € Br(K;G), then there 

exist Cj 1 and c 2' € Cr.a(K;G) such that 9 c / = cx and 

^G2 ' ~ c2 • Let c 1'
a and c 2 '

a be. the representatives of 

Ci' and c,' respectively. By 4,12, dcx
 , a = cf, and 

9c 2
, a = c 2. Let (Ŝ ., a( S^)) be an oriented r-simplex in K a. 

By 4.13 and the previous proof, 

( aCcj' a-c 2 '
 a)) (S^,a(Sj^)) -

( 9c j'
 a) ( 3 a(Sj^)) + (3{-c2 'a))(s£,a(Sp) = , 

?CS?+l,sr]a(Cl'
0)(sE,a(sJ)) - ? C S j + 1 , S ^ a ( C a »

a ) ( S ^ a ( S p ) 

= (9Cl
fa)(Sj,a(S^)) - OCj'a)(sj,a(sj)) 

= (c^) (s£,ot(s£)) - (cf )(Sj j a(Sp) 

= <c«)(s£,a<s£)) + C-C«)(s£,a<s£)> 

- (c?-c^)(3j,a(Sj)). 
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Hence 3 ( O j 1 U - c ^ ' B y definitien. 

[c?-cfj € BrCK;G). That is, Cc,-o,) £ B r O < j G ) . Hence 

Br,(K;G) is a subgroup of C,.(K;G). 

Let t 6 R, c ~ B^CKjG), and ca be the representative of 

c. Since c £ Rr(K;G) , then there exist cjx 6 Cr+i_(K;G) such 

that 3c^ = c. Let c£ be the representative of c^. By 4.12, 

gca = c
a. Furthermore, 

(3(tc£))(s£,a(s£)) = 

fts^sj^ctcgKs^e;-)) = 

?[Sj+1,sJjat((cg)CsJ,c<(Sp)) = 

t?[s^+1,sf]a(c")csr,a(sr)) = 
"J 3 k h k k 

tCCac^HS^aCSf))) = tCc'^CS^aCsJ)) - (tc°) (sf ,0,(8̂ )). 
n ^ k k k k k 

Hence 3(teg) = tca. But tc" e Cr+1(K
a;G). Therefore 

tca C Br(K
a;G). Hence tc € Br(KjG). Hence Br(K;G) is a 

submodule of Cr(K;G). 

By 4.14 and definitions of Zr(K;G) and Br(K;G), 

Br(K;G) is contained in Zr(K;G). 

4.17. Definition. The factor group Zr(K;G)/Br(K;G) = 

Hr(K;G) is called the r -dimensional homology group of K 

over G. 

Two cycles z, and z2 in Zr(K;G) are said to be homolo-

gous if they are in the same coset of Br(K;G). 

4.18. Definition. Since there are no negative dimensional 

simplexes, then Ct_(K;G) is defined as the zero R-module for 
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each negative integer t. Then The R-nomomorphism 

3: C0 (K;G) -*• C_1(K;G) is the zero P-ho-nomorphism, and 

its kernel is C0(K;G). Hence Z0CK;G) = C0(K;G). Then 

the zero dimensional homology groups are defined by 

H 0(K;G) = C0(K;G)/B0(K;G). 

M-. 19 . Definition - A complex K 5 s said to be simplicially 

connected if, for each pair p and q of vertices of K, there 

exists a sequence {a® ,Sj ,a° jSg , • . . »SjJ. sa£+-^} where each a| 

is a vertex of K; each is a 1-simplex of K; for each 

j = 1 , 2 , . . . ,k, a? and a^ + j_ are vertices of S}; finally, 
J J 3 

a" = P, and a£+1 = q. 

'f. 20. Definition. If and K2 are complexes with Kj 

contained in K2 , then K1 is called a subcomplex of K2. A 

component of a complex is a maximal connected subcomplex. 

4.21. Theorem. Let and v° be vertices of a complex 

X. Then the integral 0-chain v°-v° bounds if and only if 

v® and belong to the same component of K. 

Proof: Let Kj be a component of K such that 

v°, v° £ Kj. Since a component is simplicially connected, 

then there exists a sequence {v® sS,1 ,a® ,S* ,. . . ,a£,S£,v® } 

satisfying <4.19. Let a be an orientation of K, and let 

the 1--chain c°" = . £ t • (S ] , a (S } )) where 1 i=l 1 ^
 x 

t; - 1 if (S.J,a(S.!)) = <"a? 9a? + -j"̂  , and 
-1- X .1. .L -i-

tj_ = -1 if (s|,c(s|)) = <̂ a£ + ]_ >aj >. 

Then 3c1;' = a'-v® + j -a£ + . . . +v®-a^ = v°- v° . 
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Hence: v? — v ̂  buuiiLd . iiins pi'ovp.s vjf and v^ belong to "the 

same component which impxies that v|-vj bounds. 

If v2~vi sounds, let v^-v® - <)t^CS^l ,a(Sj )) where 

a is an orientation of K, S} is a 1~simplex in X, and ti is 

an integer for eacn i. Let 3 be another orientation of K 

such that for each i, fag(S?) = -1 if t± is negative and 

= 1 if ti i s positive. Then v°-vj = 3 £ -£..(S[ ,a(Si)) = 

^i-11 I(S£,3(S^)). Consider .^ |t.|CS1,3(Si)) as the sum 
.1-1 1 1 

of a sequence Q of oriented l--simp 1 exes in K® with the ' 

coefficient +1 for each term of Q. Since Q is a finite 

sequence, then there exist a minimal subsequence of Q 

such that 3(XQm) = v°-vj. For simplicity, vj-v® = 3(£Qm) 

is called the equation A. By equation A, the sequence Qm 

must have ens term in the form of <Hxi ,vS). Rearrange the 

sequence Qm in the following way: 

Qm = <'X1»v2>' <" x2 »y2>» • • • » <'xd'Vd>' • • • » <xn'yn,> 

where d is the maximum positive integer such that 

xi = yi+l f o r 1 = l»-.»d-l and xd i y i + 1 for i = d,d+l,...,n. 

Since the left hand side of equation A is v°-v°, then either 

xd = v; or xd = v° 

Case 1: xd = v?. Then vg-v? = 8«x,,v!>+ ... + 
1 2 

<^vS,yd>), and {v°}, {xt ,v»} , {xt } , { x, ,x2 } , {x2 } , {x2 ,x3 } ,. . . 

"CXfj_l 5v J } 5 { v J ) is a sequence of simplexes satisfying 4.19. 

Hence vj and v° belong to the same component of K. 

Case 2: = v£ . Then vij-v$ ~ 3(<'xliv^>+ ... + 

^ v°>y d>
 + ^*d+i>yd+i>

 + ••• + <x
n>y,>> = 
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being a minimal subsequence of 0 such that: 

vj-v; = 3(ZQm). 

Combining Case 1 and Case 2, it must be true that 

xd = v°, and obviously d = n. Therefore the theorem is 

proved. 

4.22. Theorem. Let v®,v®,..„,v^ be vertices of a 

simplicially connected complex K. Then the integral 0-chain 
n n 
E t.v: bounds if and only if 2 t. = 0. 

i=l 1 1 i=l 1 

Proof: Since 

S t.v? - t,V? + ... + t_v® 
. , x 3 1 1 n n 
x=l 

= tjVj - txv° + (t1+t2)v° - (t1+t2)v| + ... + 

(tj + . . .+tn__-L)vi
0
i__-j_ - (

ri+- • •+tn-l^vn + C"t j + . . . +tn)v£, 
n 

then by 4.21, t.;v£ hounds if and only if 

(ti+...+tn)v£ bounds. But (tj+...+tn)v^ bounds if and only 
n n 

if - 0* Hence E^t^v| bounds if and only if 

i?lti = 0. 

4. 23. Theorem. If K is a simplicially connected complex, 

then HQ(KjZ) is isomorphic to Z. 

Proof: Let cf> be a function, tj): H 0 (K; Z) Z, defined 
k k 

by <f>(B (K;Z)+z) = . E t,* . where z = . E t-i.v? £ Zo(K;Z) and 
o 3=1 3 = 1 -'-I J-j 

v-0,v.0,...,v.0 are vertices of K. 
-L x -*-2 

I m 

Let Zj ,z2 g Z0(K;Z) and z\ = . E dn.v£, , z2 - . E bn\ v£i. . 
J ~ 1 3 3 3 " 3 3 

Then <p ((B0 (KjZ) +z ) + <B0(K;Z)+z )) = 

m 
<j)(B0(KjZ)+zl + z£) - .Ed + . E bn,. •= 

3=1 a* 3-1 n3 
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$ (B 0 (KjZJ-rZj) + <J>(B0(K;%)+22). Hence <f> is a homomorphism. 

If B0(K;Z)+z, * B C C K : Z ) + Z 2 9 then z1-zz & B 0 ( K ; Z > . 

t 
By 4.22, t d * f bn. Hence <p (B (K;Z) + ZJ) * <f>(B0 (K;Z)+z0). 

3=1 J 3=1 J 

Therefore <p is a one-to-one function. 

Let N be an integer. Then <f>(B0CK;Z) + NvJ) = N. Hence 

4> is onto. Therefore <p Is an isomorphism. 



APi-'il&DiX 

FIVE PROBLEMS 

The computation of homology groups is very tedious. 

The following are five problems computed by the author but' 

not included in the body of the thesis because of their 

length. The results of the problems are stated in the fol-

lowing examples. 

For simplicity, we denote an oriented r-simplex by 

(Sr)a where a is the orientation. 

1, Mobius band. 

a c e b 

oriented complex Ka is constructed as follows: 

(Sf)a = <a,c,b> (Spa = <fb,a)> (Spa = a 

(spa = <b,c,d> (Spa = <c,d> (Spa r b 

(S23)« = <.d 3 c j e> (Spa . ̂ e,f> (Spa = c 

(Spa = <d j e,f> (spa = <a,c> (spa = d 

(Spa = <f 3 e,b> (Spa = <d,b> (Sp« = 0 

(Spa = <f ,b,a_> (Spa = <c,e> (Spa r f 

(Sp a = <f ,d> 
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t V - r! • 

b 

{ K * \ 0 L _ , 
\ u q / - ,y « . } 

(SjVa 

;" <*;, j; • ;* 

' a, f *> 

- < c , b > 

(̂ iV 01 - ,d> 

(Ŝ p01 *<b,f> 

Then Hn(K
a;Z) = 0 for n > 2 

Hn(K ;Z) _^3 2 for n - 0-1 

2. Torus. 

a. a. 

a 7 

/ 

a7 ./ a8 / 

The oriented complex Ka is constructed as follows: 

(spa = < a 3 5
 a o ? a ̂  (Spa = <"ao >ai> (Spa = a 

(Spa = <a3>
ai ,at|> (Spa . <aiJa2> (Spa = a 

(Spa = <Ta It »ai 5 a2 ̂  (Spa = <a2,a0> (Spa = a 

(Spa = ^ if s a g j a (Spa = <a 3 'a%> (Spa = a 
(Spa ~ <a5 »a2 >a0> (s ;>« = <a^as> (Spa = a 

(Spa = <a 5 >a o 5a 3> (Spa = <a5,a3> (Spa = a 
(Spa = <Tas j a 3 s a (Spa = <a6 » a 7̂  (Spa = a 
(Spa = <a6 s

a4 5a7"> (Sp« = ̂Ca 7 s a (Spa = a 
(Spa = <a

7 jâ  ,a5> (Spa = <
a
8 ,d6) (Spa = a 
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(Sfpa r \ ci j ̂  a ,~ 5 a gV (SJV® = <a3 >a0 > 

C S f t a <aa »a3> (S^a = < a 6 »a3 > 

( S f p o = 8. g ,a3 •>
 a g> f S^v a 

'v ~J- o >*6> 

c s f p a = <a0 s ag ,a7> ( S / p a ~ < a t t 

( s f t * = < a o J^y >ai> ( s 2 V a - <a 7 9 att
>> 

(sxv« = <Tax 5 tt 7 5 a 8 > ( S ^ « = <a j 9 a 

<Sfe)a = ^ cL ^ ' a 8 3 a 2 > < s i V ° = < a
s » a 2 

( S ^ a = <a2 5a0 ' a 6^ ( S j V ° = <a8 ' a 5 > 

<s ir r < a 2 , a g > a
0 > c s ^ * = < a ? ' a 8^ 

SxV a ~ ^ a 3 » a ! ^ 

S2<?a = < a 6 ' a « f > 

s i P 0 

s 2 V a 

S ^ 0 1 

S 2 V a 

S 2 V a 

s 2 v a 

S 2 V a 

<a«, ?a2> 

K a o 5 3.7̂ > 

< a 7 , a 

< a
3 > a o > 

a J , a 8*> 

< a 8 5 a
3 > 

< , a
 2 ) a 

Then H _ ( K a ; Z ) = 0 f o r n > 3 n 

H n ( K a ; Z ) J t 0 Z f o r n 0,2 

H , ( K a ; Z ) i 0 . 
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Pinched torus. 

The o riented complex K<* 

(S| P = <ax ,a0 ,a3> 

(u>2)
0t - <a3, ao ja,.y 

(sfy* = <a % >01 o »011 
ai> 

= <32 5al Ja3"> 

( S s /* - <̂ 2̂ J a 3 > a 5 ̂  

(Sf)a = <a5,a3,a^ 

CS|)« = <a55al(,a6^ 

(S|)« = <a6 . a ^ a ^ 

(S|)a = <a65a1,a2s>. 

(S1
2
0)°' = <a2 , a 5 ,a5) 

^ S f x)
a = <a5,a6,ad> 

(Sf2)
a = <3.Sja2,a0N> 

is cons 

(SlP 

(S*P 

(S*3P 

(S \P 

(s^p 

(S IP 

CS IP 

CS\p 

(SlP : 

( S ^ : 

(S '^P •• 

(S }2P : 

(S l̂ P •• 

(S iV* : 

CS IP •-

trueted as follows: 

= <'a1,a0> (SlP 

= <:a3,ac> 

~ <Caif 5aQ^ 

= < a 2 ) a i > 

- 4,3-z >a3> 

- <a5 ,a3̂ . 

= <a 5,a 4) 

= ^as ,a^ 

= < a 6 5
a l > 

~ <[a0 > a2*̂  

" <a0 »a5/> 

• <ao > as7> 

<a 1 t
 a 3*̂  

= <a3 >a^> 

= 5ax > 

CS °2P 

CS IP 

CS IP 

CS IP 

(SlP 

(Sip 

3. • 

a, 

a, 



c 1:\ a (S/e) \ cL 2 J -71 5 ^ 

^ a , a \ 
•J ' V# f 

= < a 6 ,a 2 \> 

(Qi\a 
» O f 7/ 

Then Hn(Kot; z ) = 0 f o r n > 3 

Hn(K<*;Z) j y ? Z f o r n = 0 , 2 

Hj(Ka;Z) t 0 . 

4 . K l e i n b o t t l e . 

The o r i e n t e d complex K& 

( S p a = ^ a 0 , a 1 , a 3 ' > 

(S | )<* = < a 1 , a l 4 , a 3 > 

( S | ) a = < a 1 , a 2 , a l f > 

( S ^ ) a = < C a
2 ' a

5 5 a
l t ' > 

( S 2
s ) a - < a 2 , a o J a 5

, > 

( S | ) a = < a 0 , a g , a 5 > 

(S2
7) a = ^ a 3 , a t t , a s > 

< S | ) 06 = < a 1 | , a , / , a 6 > 

(S2
q) a - < a i ' a 7> 

C S (̂p a = < a s , a 8 , a 7"> 

( S f ^ a = < a s , a g , a 0 > 

v sf 21 01 = ^»a
 e 5

a
 3 5

a
 8 7 

i s c o n s t r u c t e d a s 

( S ^ ) a = a 0 j a 

(S *) a = ^ a , , a 2 > 

( S 3 ) 0 C = < a 2 > a a > 

(S J) a = <£a 3 , a , t> 

( S p a = ( a ^ , d 5 > 

( S p a = < a s , a 6 > 

<Ca s 5 a 7*̂  

<a 7 , a a > 

( <-> g> ' g J a 3*> 

^ l10* ~~ < a 0 ' a 3 ^ 

C S ^ a = <a 

( s p a 

( S » ) ° 

3J d 6 sV 

f o l l o w s : 

(S<>)a 

( S ° ) a 

( S » ) a 

( S ° ) a 

( S ° ) a 

( S o) a 

(S») 01 

(S °) a 

. (S o) a 

a , 

a , 

= a 

^ 1 2* L ~ ^ a 6 5 a 0^ 
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CSxV0 
~ ^ 0 •* ^ 6 ^ 7 ^ / o i \ a 

" ^ 13 
/ a » a ^ > 

~ Ko (S 1 ) 0 1 

" l -f 
= / a . . 

X «*• 5 C3- y 

(S? s)« "" < 3̂.̂  jdy 5ci C o i > a 
w , ^ 

= < a 7 

( S f p a = < a p a 8 5 a 2 > ( S ^ - < a 2 » a 5 > 

( S f p a ^ ^ 5 a p 5 5. ^ ( s i V a = <^a 5 »a8^> 

<S?e>a 
~~ **\f ̂  o 5 ^ 2 5 ̂  3^ C S ,V a = < a

8 >
a?. ̂  

(S}J* ~ <f a i ,a3̂  
( S 2 V a = <Ca 2 » a ^ > 

<S»p a 
= ^a«t » a s > 

(S2
lp« = ^ a 0 > a 5 > 

( S 2 V a = <^as ' a ? ^ 

* (S 2 V a = ^ a 7 > a
0^> 

( S 2 V a = <f a
6 ' a 8 > 

(S2V« = ^ a 8 > a i > 

(S 2 V a 
• - < a 3 ' a 2 > 

H n (K« j Z) = 0 f o r n > 2 

H x ( K a ; Z ) t 0 

H . ( K a ; Z ) ISO Z. 

5 . P r o j e c t i v e p l a n e , 
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The oriented complex Ka is constructed as follows: 

(Si)<* = <a , , , d3 , a c > (S 3 a 3̂ > ( S ? ) a = a 0 

(S |) a = < a o , a 3 , a 5> (S \ )a = <a 0,a 3 > (S |)a = a i 

( S l ) a = < a 5 , a , , a 2 > ( s J ) a = < a s , a 3 > (S°3) a = a2 

(Stj) ' - <a 2 5 a 4 ,a( |^ (S J ) a = < ^ a s s a O (S ° ) a = a 3 

<S§) a = <Ta2 ,a0 , a a > (S *)« = < a 2 , a „ > ( S | ) a ^ a* 

CSg) - < a 0 9 a s ,ax> (Sg)® = <a 2 ,ao*> (S $)01 = as 

( S | ) a = < a j , a 5 , a i , ) (S\)u = <aj,a,>> 

( S l ) a = < a s , a 2 , a 3 > ( S | ) a = < a : , a 5 > 

( S | ) a = < a 2 s a 1 , a 3
v > ( S | ) a = < a 3 , a 7 > 

(Sfo)01 = < a 3 s a i , a i , > (S1
1

0)a = < a 3 , a i ^ 

( S h ) a = < a ^ , a 0 ) 

( S l £ a = < a 0 5 a s > 

(S13) a = <(a s s a 2 > 

(bjij)® = ^ a 2 5a j ^ 

^ S15) a = < â j , a 

Then H n ( K a ; Z ) - 0 f o r n > 2 

Hx(X
a;Z) f 0 

, a i s o 
H 0 (K ; Z) /y_ Z. 
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