PBFA II lithium beam characterization from inner-shell x-ray images

PDF Version Also Available for Download.

Description

The Particle Beam Fusion Accelerator (PBFA II) is not driving targets with ICF-relevant lithium ion beams. During the most recent lithium beam target series, time-integrated x-ray pinhole cameras viewed the ion-induced inner-shell x-ray fluorescence from the central gold cone target and a titanium-coated strip. Ion beam profiles at a nominal 10 mm radius and fixed azimuthal direction were obtained from images of the Ti K{sub {alpha}}, fluorescence of a Ti-coated Al diagnostic wire. The gold cone gave us beam profiles at a nominal 3 mm radius and at all azimuthal angles from the Au L{sub {alpha}} fluorescence. From these profiles, … continued below

Physical Description

13 p.

Creation Information

Moats, A. R.; Derzon, M. S.; Chandler, G. A.; Dukart, R. J. & Haill, T. A. May 1, 1994.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by the UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Sponsor

Publisher

  • Sandia National Laboratories
    Publisher Info: Sandia National Labs., Albuquerque, NM (United States)
    Place of Publication: Albuquerque, New Mexico

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

The Particle Beam Fusion Accelerator (PBFA II) is not driving targets with ICF-relevant lithium ion beams. During the most recent lithium beam target series, time-integrated x-ray pinhole cameras viewed the ion-induced inner-shell x-ray fluorescence from the central gold cone target and a titanium-coated strip. Ion beam profiles at a nominal 10 mm radius and fixed azimuthal direction were obtained from images of the Ti K{sub {alpha}}, fluorescence of a Ti-coated Al diagnostic wire. The gold cone gave us beam profiles at a nominal 3 mm radius and at all azimuthal angles from the Au L{sub {alpha}} fluorescence. From these profiles, we obtained the ion beam vertical focus position, full-width-at-half-maximum, and the degree of azimuthal uniformity for the lithium target shots. For these initial results, beam steering problems were evident. Azimuthal uniformity was measured from the ion beam footprint on the outer Au case (predominantly Au L{sub {alpha}}) of the hohlraum target and were found to be in the same range (up to 30%) as for previous proton beam target series. We then present plans for Li beam diagnostics for an upcoming target experimental series.

Physical Description

13 p.

Notes

INIS; OSTI as DE94011938; Paper copy available at OSTI: phone, 865-576-8401, or email, reports@adonis.osti.gov

Source

  • 10. topical conference on high-temperature plasma diagnostics,Rochester, NY (United States),8-12 May 1994

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Other: DE94011938
  • Report No.: SAND--94-1239C
  • Report No.: CONF-940552--6
  • Grant Number: AC04-94AL85000
  • Office of Scientific & Technical Information Report Number: 10151294
  • Archival Resource Key: ark:/67531/metadc1315684

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • May 1, 1994

Added to The UNT Digital Library

  • Nov. 3, 2018, 11:47 a.m.

Description Last Updated

  • Nov. 15, 2018, 2:41 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moats, A. R.; Derzon, M. S.; Chandler, G. A.; Dukart, R. J. & Haill, T. A. PBFA II lithium beam characterization from inner-shell x-ray images, article, May 1, 1994; Albuquerque, New Mexico. (https://digital.library.unt.edu/ark:/67531/metadc1315684/: accessed April 25, 2024), University of North Texas Libraries, UNT Digital Library, https://digital.library.unt.edu; crediting UNT Libraries Government Documents Department.

Back to Top of Screen