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The oroblem confrented in this thesis 1is that of
determining direct calculations of the fundamental group of
certain topological spaces. The first chapter contains the
development of the fundamental group, in general, of any
topological space. The theory deals only with loops,
avoiding the need for developing the fundamental groupoid.
In order to develop the group, a relation between
p-based loops 1s established, and this relation is shown %o
be an equivalence relétion. Hence, the p-Tased loops in a
space are partitioned into equivalence classes. 1In the
collection of equivalence classes of p-based loops, an
identity is discovered, an inverse for each element is dis-
covered, multiplication is defined and shown to be closed,
and the associative law is shown valld. Thus, the collecticn
of equivalence clagsses of p-based loops is shown to be a group.
In the first chapter iﬁ is established that if two spaces
are homeomorphic, thelr fundamental groups relative to a
certain basepoint are isomorphic, Tt is also shown that if
a space 1s pathwise connecfed, the fundamental grouﬁs of the
space relative to different basepoints are isﬁmorphic. The
thesis deals only with pathwise connected spaces, so flexibility
of the choice of basepoint is allowed. ' |
The topological spaces selected for direct célculétion
of fundamental groups are En, the surface of a sphere,

Ejn(0,0,0), a plane annular region,'Egu(0,0), and E3 minus the



"
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z~axis. The fundaﬁental group of ©* 1s the group consisting
of only one element, called the trivial group. The method of
proof used-ﬁo establish this fact is to show that every loop
based at the origin in EY is equlvalent to the icdentity loop
at the origin. Hence, there is only one class of origin-based
loops in En5 the identity class.

The fundamental group of the surface of a sphere 1s also

the trivial group. The method of proof used is to divide the

1 2
U R, 1s the sphere and Rl N Ry, = R. A Jloop

sphere into three pathwise connected, open sets R, R, and R

such that R U Rl
in the sphere based at a point p in R is shown to be equivalent
to the identity loop in the sphere based at p. This fact is
established by constructing a new loop, équivalent to the
original loop, such that the new loop 1s equivalent to the
identity.

The fundamental group of the space EB—(O,O,O) is shown
to be the trivial group by showing that it is isomorphic to
the fundamental group of the sphere,

)

The plane annular region, Ee—(0,0), and E” minus the z-axis
are all shown to have infinite cyclic fundamental groups. All
of these proofs rely on the fact that the fundamental group of
the circle is infinite cyclic, the proof of which may be fbund'

in Crowell and Fox’s Knot Theory.

The annulus problem is solved by directly showing.that the
fundamental group of the annulus‘is isomorphic to the funda-
mental group of the circle. A somewhat different approach
is taken in finding the fundamental group of EQ—(O,O), for

E2~(O,O) is shown to be hcmeomorphic to the open annulus.
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Finally, the space E” minus the z-axis is shown to have a funda-

. . . ; o e
mental group isomorphic to the fundamental group of E™-{0,0).
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CHAPTER I
DEVELOPMENT OF THE FUNDAMENTAL GROUP
This chapter is devoted to the definition and
theoretical development of the fundamental group of a

topological space; In all definitions and theorems, X

will denote a topological space.

Definition 1.1, For any two real numbers x and y,

[%x,vy] is the set of all real numbers t satisfying x €<t =y.

Definition 1.2. A p-based loop A in X is a continuous

mapping A: [0,t] - X, where A(O) = A(t) = p. The number t
represents the stopping time of A, and it will be denoted
il A]] . The point A(0O) is the initial point, and the point

A(|] All ) is the terminal point of the loop A.

Definition 1.3. A collection {HS}, 0 <s <1, of

p~-based loops in X is a contlnuous famlly of p-based loops
if and only if
(1) The stopping time [IHSH depends continuously on s.
(2) The function H defined by the formula H(s,t) = H_(t)
maps the closed region 0 <s <1, 0'st < [[H]],

dencted by R, continuocusly into X.

Definition 1.4. ILet p be a point in X and let A and B

be two p-based loops in X. A is equivalent to B, denoted
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A
=

A = B, if there exists a continuous family {Hg};e 0 <=8

of p-based loops in X such that A = HO and B = Hl’

Theorem 1.5. The relation = is reflexive, symmetric,

and transitive,

Proof: Reflexive: ©Let A be a p-based loop in X. Define

a collection of paths {H_ ] as Hs(t) = A(t), 0 =s <1, For

»

any s, Hs(t) = A(t), so {HS} is a collection of p-based loops,
and H = A and H) = A. Since for 0 =s =1, [[Hl = |4l .
a constant, the stopping time ]]HSH depends continucusly on s.

Let R be the closed region 0 <s <1, 0 <t < |

Choose (s,t) e R. Consider H(s,t) = H (t) = A(t). Let W
be a neighborhood about A(t). Then, since A:[0, ] All]~ X
is eqntinuous, there exists an open interval I containing t
such that for all £ eW=1n [0, Ilall 1, A(t) e N. Now
for all s’ e [0,1], A(t) € N. ILet J be any open interval about
s and let K= J n [0,1]., ILet D= K x W. Then K is an open
neighborhood about (s,t). Choose (s',t;) € D. Then H(s',t’)
= H,(t’) = A(t’). But t’ e W, so A(t’) e N. Hence
H(s’,t’) € N, so H(D) © N. Therefore, the function H maps
the closed region R continuously into X.
Symmetric: TLet A and B be p-based loops in X such that
A = B. Suppose {HS} is the continuous familyfexhibiting A = B,

Define a family {K ]} by Ks(t) = Hy . (t). Then K, = H, =B and

1

Kl = H, = A. Every element of {KS] is an element of {HS}, S0

{KS} is a collection of p-~based loops.



- N - .
Choose s, ¢ [0,1] and ¢ » 0. Coansider g}K | . Wow

i
E':.i
4

| kg [[:]IHl_Slll and since || H || ie continuous with respect
i "

to s, there exists 8 » 0, such that for all s ¢ [1—si-6, 1~si-+6],

WHgll e THEy o W=y NH I+ el=Tlk, [l =e, %, ] + el
S i RS = 51

Hence, for all s ¢ [s,-8,8,+0], [ B | = NI e

[f[KS | - e, [IKS Il + €]. Therefore, the stopping time

l B
[l k || depends continuously on s.

'

Choose a point (s;,t) from R’, where R’ is the closed

region 0 <&, €1, 0 <t = | K |l , and consider Ko (t) = Hy_o (%).
Let M be a neighborhood of Ks.(t)‘ Since {HS} is ; continuou;
family, there exists a neighb;rhood D about (lmsi,t) such that
H(D) € M. Let D' = {(l-s,t):(s,t) € D}. Then D’ is a
neighborhood of (s;,%t). Pick (s',t") e D’ K(s',t’) =
Kgo(t') = H_ (t)e M, since (1-s',t’) e D. Hence K(D') <M.
Therefore, the function K maps R’ continuously into X. Thus,
{KS} is a continuous family and so B = A. "~ Therefore, the
symmetric property holds.

Transiﬁive: Let A, B,Vand C be p;based ioops in X such
that A ? Band B =C. Let {HS} and {KS} be the continuous
families of p-based loops which provide the equivalences

A =B and B = (, respectively. Define a collection of p-based

loops {JS} by the formula

1
J(t):—_rﬂgs(t)’ 0=s =3 }
5 4 (t) 1"<s<1
Rs-1VN"/2 o 7 - ¢
Clearly JO = Ho = A and Jl == Kl = (C,
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. . e s ' it 0o 5 i . i
By definition || B.i{l and || X_|l depend continuously on s.

s 5
R . _ 1 . ) .
Then for 0 =5 < 5 |§n235| depends continuously on s and
1 , . . .
for 3 <8 <1, |!K25_1H depends continuously on s. Hence,
tor 0 ss <1, || .|| depends continuously on s.

Let (s,t) be a point in R’ , where R’ is the region

oss=1,0=st=|a]. IfO:§s<%,anO:£tS|H%g .
Let N be a neighbérhood of JS(t) = Hy (t). "Since H is a |
continuous family, there exists a neighborhood D about (2s,t)
such that H(D) ¢ N, Tet D' = {(s,t):(2s,t) ¢ D}). Then D’ is

a neighborhood of (s,t). Pick (s’,t’) € D’. Then (25’,t}) eD

and Hp, «(t') € No But Jou(t') = Hygs (t') e N, so (D) .

A similar argument can be used for K_ if % { s <1.

If s ==, there exists a neighborhood U about (s,t) such

that for each point (s’,t’) in U, s’ < %, and such that

POt

H(U) < N. Also, there exists .a neighborhood V about (s,t)

4

such that for each point (s,t’) in VvV, s’ = % and such that

K(V) € N. TLet W = {(%, t):(%, t) is in U or V but not bothl.
Let D= (U U V)\W, i.e. if (s’,t") e D, (s’,t’) ¢ U UV, but
not in W. Then D is a neighborhood of (s,t), where s = %, and
J(D) < N. |

The function J, then, maps R"continuous%y into X.
Hence, {JS} is a continuous family, and A < C, |

The proof of the above theorem demonstrates that fhe
relation X is an eguivalence relation. The set of all

p-based loops in the space X 1s therefore partitioned into

equlvalence classes. The equivalence class of an arbitrary
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p-based loop A will bhe denoted by [A]. It is upon the set
of eguivalence classes ol p-based loops in X, that a group

structure will be presented.

Definition 1.6, The product of two p-based loops A and

B in X is given by the formula

amy(e) =B T AL Ly e

Theorem 1.7. If A and B are p-based loops, then A+B

is a p-based loop.
Proof: Let A and B be p-based loops. Then

a(o) = a(ltall )

1

B(0) = B(|| Bl ) = p. By Definition 1.6,
(4 _[A é =t < [hall
BT al S, Il = < gl +lBl.
Then (A+B)(0) = A(0) = p, and (A-B)({ &-Bl) = (a-B)(]| All +]| B]|)
= (|l all +ll Bl - 1 all) = B(ll B||) = ».

Hence, the product of two p-based loops is a p-based loop.

Thecrem 1,8, If A, B, and C are p-based loops, then
A+(B+C) = (A+B)-C. '

Proof: By Definition 1.6,

A( t < || all
as(3:0)1(8) = {5272 Sy T 1) <t < [lall el cll.
Then
[A+(B+C)](t) —«{ggg)llﬂﬁl }S J‘I:l EHH<ATU< all +l BH
| Le-CI BB ) L Nall+HEl = € < IFall +l1 8l +l cll

= [(a-B)+C)(t), 0 =t < || all +[| B] +]| c].

Hence, A+(B+C) = (A+B)-C.
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Definition 1.8, A p-based loop % is called an identity

loop at p, or simply an identity, 1f it has stopping time

el = o.

Theorem 1.9. The 1ldentity locp E at p has the property

that if A is any p-based loop, then E+A = AE = A,

Proof: Assume E i1s an identity at p, and let A be any

p-based loop. By Definition 1.8, || E]] = 0, so

] CE(E) , £ =0
E-A(t) ~{§Et_03, o=t <|lal+0=a4a(t), 0=t <|a].
Hence EA = A,

Similarly, A-E(t) ={AE’G> s O )St < || all

E(t-ff A] ), t = || Al

i

={§§t§ , 0 =t =< || Al
0) , t=[|4] = A(t) , 0 =t =< |[all.
Hence AE = A, so E+A = AE = A,

Theorem 1.10, For any p-based loops A, A’, B, B’ in X,

if A zA’ and B = B, then A-B = AB', :
Proof: Let {HS} and {KS} be the ;ontinuous families of
p-based loops which exhibilt the eguivalences A = A’ and
B = B’ respectively.
Consider the family {HS*KS}. This is again a family

of p-based loops. Also HO = A, Ko = B, SO Hoi KO = A-B, and

A’-B'

v
it
=
o
li

7 -
B', 80 Hl-Kl

il

Since {H_ ) and (K ) are continuous femilies, [[H,|| and
[ Ksl[ is a continuous function of s. Then IIHS- Kl =

![HS|]+||KSH is a continuous function of s,



Let R, be the clcsed region 0 =85 <1, 0 =t = || Hs” )
let R2 be the closed region 0 <5 <1, 0 <t = || KS[E, and
let

Ry be the closed region 0 <s <1, 0 £t < B I+l x
Let (s,t) be a point in R,. Consider (H*K)(s,t) =

EN

|l =t = || 5]

(H, *K,) B (t) >

L< (t—:lfml >, |

Let N be a neléhbozhood about (H *K (t). If 0 =t< HHSII,

then since {H ] is a continuous collection, there exists a

neighborhood M, about (s,t) in R, such that H-K(M;) = H(M;) < N.

1 1
If IIHS][ <t o= HS§] + HKSHj then since {K } is a continuous
family, there exists a neighborhood M, about (s,t-|[H,|l ) in
Ry such that K(My) ¢ N. Let My = {(s,t):(s,t=[[H[| ) e M),
Then M-5 is @ neighborhood zbout (s,t) in RB' Clearly,
H°K(M3) < N, since for any (s;,t;) e M > (Hg l- Ksi)(ti) =

K. (t-]l B, || ) ¢ N, vecause (s;.t H H | ) e M
D l

S, . 2°
i i
If t = | Hsilp then there is a neighborhood D1 about
(s,t) in Ry such that H(Dl).c N. DNote that D, & Ry. Also,
there is a neighborhood D, about (s,t—[!HS” in R, such that

K(Dp) ©N. Let Dy = {(s’,t" + |[H][l ): ("t’) € D,}. Then

Dy © R, and (s,t) € D Let Dy = Dy U D5. Then Dy is a

5 3 3°
neighborhood of (s,t) in Rz and HeK(Dy) < N.

Therefore, the function H+K maps the region R, con-~

3

tinuously into X. Hence, {HS' Ké} is a continuous family

of p~based loops exhibiting AB = A’-B’,



Definition 1.11l. Denote by wlX,p), the set G of all

equivalence classes of p-based loops in X, together with the
operation ".", defined by the formula [A]+[B] = [A:B], where
A and B are p-based loops in X,

Multiplication in m(X,p) is well-defined as a result of

Theorem 1,10,

Theorem 1.12,. In w(X,p), multiplication is closed, the

associative law is valid, and there exists an identity.

Proofs Let [A] and [B] be elements of n(X,p). By
Definition 1.11, [A]+[B] = [A-B]. Since A and B are p-based
loops, A*B is a p-based loop by Theorem 1.7. Then [A+B] is
the equivalence class contalining the p-based locp A+B. Hence,
[A°B] € m(X,p), so multiplication is closed. »

Let [A],[B], and [C] be elements of n(X,p). [A]-([B]-[C])
= [A]-[B:C] = [A{B-C)] = [(A-B)+C] = [A-B]+[C] = ([A]-[B])*[C].
Hence, the associative law is wvalid. 4

Let [E] be the equivalence class of the identity loop E.
Let [A] be any element of m(X,p). Then [E]'[A] = [E-A] = [A],
by Theorem 1.9, and [A]-[E] = [AE] = [A], by Theorem 1.9.

Therefore, [E] is an identity in m(X,p).

Definition 1.15, For any p-based loop A in X, the in-

verse loop, denoted by A‘l, is given by the formula

A7) = a(ll all -t), 0 =t = ||

»

Theorem 1.1%, If E is the identity loop at p, then for

any p-based loop A in X, AA™ =E and A”t. 4 = E.
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Proof: Let E be the ildentity at p, and let A be a
p~based loop. Define a collection of paths {H_ }, 0 =s =1,
g

by the formula

Then
H = 2(0), |[d,ll =0, so 8, = E. Also,
_JA(E 0 =t =< | a4
Hlu{Ath All-t), [JAll=t <2] &l = a-a"t

|| ]l = 0 is a constant, and the stopping time 2s]| Al] is a
continuous function of s,

Let R be the closed region 0 <s <1, 0 =t =< 2s]| Al ,
and let (s,t) be a point in R. Let N be a neighborhood in X
ebout the point H(s,t) = H,(t). Assume |[[A]] > O.

case 1: 0 <=t < s|l Al In this case HS(At) = A(t). '
Since A:[0, || All ] » X is continuous, A:[0,s]|| A|]] - X is
continuous, because 0 =8 =1, Then there exists a number
5 > 0 such that for all t’ e I = (t-6, t + 5), A(t’) e N.

€

Tet € s|] Al] -t, and let £ = min {6,?'-1-}. Let y = max

l::

{(0,t-€}. Then if T’ = [y,t + g), I’ I and A(I) < N.

€
-1 - ’
Let €= TITAT] and let x = max {O,s-eg}.
Now let J = [x,s +¢,) and D= J x I, Then D is a neighbor-
€
hood of (s,t). Choose (s’,t) € D. Then t’ <t + . Also,

Al = (smep) I all =

(o= LAY (i = o - 2Bl - sILAL  fm ) 52



10

Hence, 0 =t =s’ [l &l], so H_/(t’) = A(t') € N, since

4]

£t e 17, Therefore, (D) < N.
case 2: s} All < t =2s]|| 4||. Then Ho(t) = A(2s] Al] -t)

There exists a number © > 0 such that for el to € Il =
[(2s]] &]] -t)-8, (s All -t) + 87, A(t,) € M. Let e = t-slf Al
and let £ = min{?% 8}. Let I, = [(2s]| &]l - t)~g, (2s] 4] ~t)+ E].

Now let Iy = (t "i(2

Cﬂ

Al - t) e 150, Then'I3 is a neighborhood

c
T — 1 - — . )
Let e, = AT and let x = max {O,sueg}. Let

J = [x,8 + €,], and let D= J x 15. Then D is a neighborhood

of (s,t).
Choose {s’,t’) € D. Then t’ ¢ I3, SO 2s|l al] - ¢
€ €
= (2s||all-t) + 1 and t’ =t - _1l. Also
(H.!)_g_ - ,

’ : 1 ! 1
s'hall = (s + 62)” Al + 62(” All) = sl all t o = teeg b =t

Hence, s || &]] =t =28’ || al], so Ho(t7) = A(2s’|| All - t7) e n,
since 28’ || A|] - t'¢ I,. Therefore, H(D) < W,

Case 3: t = g|| A}l . Then there exists a neighborhood
M, about (s,t), as in Case 1, such that A(M,) <. Also, there
exists a neighbdrhood M, about (s,t), as in Case 2, such that
for all (s',t’) e My, s’ All = ¢t/ <2s’|| &]], and a(2s’|| A]] -t Ve N.

Let D, = M; UM,. Let W= {(s,t): (s,t) ¢ (Ml U MQ)\\(Ml nM,)13.

1 1 2
Let Dy = Dy \W. Then D, is a neighborhood about (s,t) and
H(D,) < N.

Thus, the function H, defined by H(s,t) = Hs(t), maps the
region R continuously into X. Therefore, {HS} ig a continuous

family of p~based loops, and A-A"T = E,
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-]
One can use & similar proof to show A .« A = E,

Definiticon 1.15., The inverse of an arbitrary element

l].

From Definition 1,15, it is easy to see that for any

[AT in m(X,p) is given by the formula [A]"l = [A”

element [A] in m(X,p), there exists [A"l} in m(X,p) such

that [A]-[Afl] = [A“l]a[A} = [E], where [E] is the equivalence
class éontaining the identity loop E. Hencé, it has been .
established that m(X,p) is a group.

Definition 1.16. mn{X,p) will denote the fundamental

group of X relative to the basepoint p.

Theorem 1.17., If f:X-=Yis a homeomorphism of X onto Y,

then m(X,p) is isomorphic to n(Y,f(p))% for any bagepoint
p in X.
Proof: TLet £: X - Y be a homecmorphism of X onto Y.
Let p be a point in X, and consider w(X,p). Any p-based loop
A in X determines an f(p) - based loop f(A) in Y given by
the composition feA(t) = £(A(%)), 0 =t =< || Al]. The stopping
time of f(A) is clearly the same as that of A; |
Suppose that A and B are p-based loops in X such that
A =B, TLet {HS}, 0 =s £1, be a continuous family of p-based
loops demonstrating A = B. Consider the family |
(f(m)}, 0 =s =1, H = A and H =B, so f(H)) = £(4) and
f(H,) = £(B). The stopping time || HSH is continuous with
respect to s. Then, since || HSH = f[f(HS)II, [[f(HS)H is

continuous with respect to s.
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Let R be the closed region 0 <35 <1, 0 st < |5,
Since {HS} is a continuous family, the function H defined by
the formula H(s,t) = H_(t) maps R continuously into X.

ILet R’ be the region 0 <s =1, 0 =t < Hf(‘HS)H . DNote
that R’ = R, Let (s,t) be a point in R’. ILet N be a
neighborhood in Y about f[H(s,t)]. Then f“l(N) is a neigh-
borhood about H(s,t) in X. Also, there exists a neighborhcod
D about (s,t) in R = R’ such that H(D) < f"l(N). Then |
f[H(D)] © N. Hence, the function f° H, defined by the formula
fo H(s,t) = f(H(s,t)) maps R’ continuously into Y. Therefore,
{f(HS)}, 0 =8 <1, is a continuous family, and f(A) X £(B).

Then £ determines a mapping f, of the fundamental group
n(X,p) into the fundamental group m(Y,f{(p)) given by the
formula f,([A]) = [F(A)].

Note that f(AB) = f(A)f(B), since

raem)(e) = s(m) = EERIE) A0 LT A e 1+ s

= {(f(A)*£(B)) (t?.

Now fy {[A])-f,([B]) = [£(A)][£(B)] =

[£(2)- £(B)] = [£(A-B)] = £([AB]) = f([A]-[B]).
Hence, the mapping f, is product preserving. It is clear that
Te(m(X,p)) © n(Y,f(p)). Thus, the mapping f,: m(X,p) ~ =(¥,f(p))

is a homomorphism. Denote f, as the homomorphism induced by f.
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‘ol

The mapplings f:X — Y and £t v - X induce homomorphisms
. .‘.] N
£ytm(X,0) = w(Y,£(p)) and (£7%) 4z (Y, €(p)) » n(X,p). The

s . -1 b . }
composition functions f "¢ f and f ¢ f are identity maps.
Hence, the compositions (f~

1 1
) %
1

= f;f"* are identity maps. It folilows, then, that fy is a

o F), = £75of, and (fef”

(Y

one-~to-one, onto mapping.
Therefore, m(X,p) is isomorphic to m(Y.f(p)).

Definition 1.18, A path A in X is a continuous mapping

A:[0,£] ~ X.

Definition 1,19, X is pathwise connected if any two

points of X can be Jjoined by a path lying in X.

If X is a pathwise connected space, the fundamental groups
of X, defined for different basepoints; are all. isomorphic.
(1,p. 21). Then it is evident that the fundamental group of
a pathwise connected space ig independent of the choice of
basepoint. In the remainder of this thesis, all spaces

considered will be pathwise connected, and the fundamental

group of these spaces will be denoted m(X).



CHAPTER TIT

FUNDAMENTAL GROUPS OF SELECTED SPACES

In this chapter specific topological spaces will be:
chosen, and the fundamental group of each space will be

. . s . _n
identified. The spaces to be examined are E, the surface

of a sphere, Ej-(0,0,0), a plane annular region, Eg—(0,0),
and E3 minus the z-axis.

Theorem 2.1, Any constant p-based loop is equivalent

to the identity loop at p.
Proof: Let A:[0,] Af] T » X be 2 p-based loop defined
by the formula A(t) = p. Then A is a constant p-based loop.

Let E be the identity lcop at p. Define a collection [H_},

0 <s <1, by the formula Hs(t> = A(t), 0 =t <s - |
Since A(t) = p, 0 =t < ||A]], and 0 < s <1, (H ) is a
collection of p-based locps. Also, Ho(t) = A(t), 0 <t <0 =E
and Hy(t) = A(t), 0 =t =< | Aff

For 0 <8 <1, |[H|| = s+|| Al], which is s times a constant
term. Hence, the stopping time [!H | depends continuousl& on
s.

Now pick a point (s,t) in the region 0 <s <1, 0 =t <

H(s,t) = H (t) = H(t) = p. Let N be a neighborhood about

Hs(t) = p. Let M be any neighborhood of (s,t) in the region
0 <s =<1, 0=t <] Hsfl. Let (s’,t’) be a point in M.
Then H /(t ‘Y = p e N. Hence, H(M) < N. Therefore, the
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function H, defined by the Tormulsa H(s,t) = Hs(t) maps the
ciosed region 0<s <i, 0=t =< HSH , continuously into
X. Hence, {HS}, 0 <s €1, is a continuous family, and

E = A,

(2.2)The space ?. Tet A be a p-based loop in B,

Then A is a continuous mapping A:[0, |l All 1 - ", and A can
be written by the formula A(t) = (£,(t), fo(t), =res £,(8))s
o <t = | all, where £,,f,, +++, T, are continuous functions
of t.

Suppose, without loss of generality, that p is the
origin. This proof will show E = A, where E is the identity
loop at the origin. Define a collection {HS}, 0 =8 =1, by
the formula H_(t) = (s+ £(t), s £,(t), *vvs 80 £(6)),

0 <t < | al]l. Then {HJ] is a collection of loops based at
the origin.

H () is the origin, 0 =t < | A]l , and

I

B (6) = (£1(8), S5(8), s £(8))s 0 st = [ all.
Then HO is a constant loop at the origin and Hl = A, For
every s e [0,17, !]HSH = || &]] . Hence, the stopping time
[!HS|| is a constant function of s and thus, continuous.
Let R be the region 0 <s =1, 0 <t = || All . Tet
(so,to) be a point in R. Consider H(s_,t ) = Hso(to)
= (s8,° £(t.)s 85° £t ), =*s 8¢ fn(to)). For points
Q and W in E7, let the distance between Q and W be d(Q,W).

et Q@ = H (to), and let N be a neighborhood of Q. Then

s
o
there exists & number r » O such that the set N’ = {Wid(Q,W)<{r}c N.
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By the continuity of A, there exists a neilghborhood
1’ of t, such that for a1l t ¢ T n [0,]] Aall 7, the distance
between (fl(t), (), °* (t)) and (f, (to,, £o(E )50

. . r
fn(to)) is less than ﬁT;m-~T7. Then

(L2 (8)-F1(8) 12+IE,(6)-Tp(8,) 174 '--+[fn<t>-fn<to>12}%w<§Tg§¢i7
and , 1

H(IEy (8)=£1(5,)12% [25()=Ep(E) T+ o e (8)-1 (8,)1752% < &

The loop A, based at the origin, is a closed path in o

Then there exists a number M > O such that for 0 =1t = Il all,
the distance between A(t) = (fl(t), £,(t)s s fn(t)) and

. 1
the origin is less than M. That 1is, [fi(t) + fgg(t) + "'+fi(t)fg<M.

. T r
Let J = (SO"' I SO +2‘M—") N [O,l]. Then for all
r
s € J, |s-s] < oy
Let D= J x I. Then D is a neighborhood of (8_,t.).

Choose (s,t) e D. Consider also the point (sg>t). TLet

Q= (s,° fl(to), S, fg(to), AP fn(to)),

= (s » £q(8), 5 ¢ £5(8), vy 8 ¢ £,(8)), and
¥ o= (5,0 £1(8)s 80 To(E)s e+, s - £,(t)). Then, by the
triangle inequality, d(Q,W) = d(W, Y) + d(Y Q),
» 1
B(i0) = [(s=8)% £,2(8) + (s-8,)%+ £5° <t> b oaeni(ses )7 T ()12
= Je-s | -[£,7(8) + fg?(t) £ oeee £ 7 (1)) Z ¢ [s~s ]+ 1< 5
4(2,0) = (8,218, (8)-F1 (5 )17 + 8,2 E5(4)=E5(80) 0"
2 2 1
+ oo 4+ s TLE (8)-F, (8)1707
. : ;E
=z SO . {[fl(t)"fl(to)}g -+ [fg(t)-—fe(to)}z +- ...,1_[fn<t>_fn(to)} (..}__ <§_-
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Hence, d(Q,W) < r. Therefors, Lis, b = Hs(t)

= (s £(t), s fa(t), »rey sv roit)) e N’', so H(D) < N.

Then the function H, defined by H(s,t) = H_(t), maps

the region R continuously into X. This fect indicates that

the collection of p-based loops {Hs}, 0 s <1, is a continuous

family exhibiting HO =~ A, By Theorem 2.1, E SLHO. Therefore,
by the. trensitive property of loocps, E A,

Hence, ﬂ(En,ﬁ) is the trivial(group, where p is the
origin. Since " is pathwise connected TKED) is the trivial
group.

The proof for showing that the fundamental group of En
ig trivial will also hold for many subspaces of g?, Let Y be
a subspace of Y for which there exists a point p in Y such
that if g is any other point in Y, P and g can be connected
by a straight line in Y. Then the fundamental group of Y is
trivial, and the proof is similar to the proof for r”,  An
example of such a subspace Y is the space In, where I 18
the closed interval [0,1] crossed with.itself n times.

2 2 2

(2.3) The sphere. Let X ={(x,y,2): x +y + 2 = 1}.

Then X is the unit sphere in EB. Let

Ry = [(x,7,2) € X2z 3}, By = ((x,y,2) € Xt 2 ¢ - 2

e

{z < %}. Let p be a point in R, and

Ny

R = {(x,y,2) € X1 - 3
let A:[0,]| A]l 1] » X be a p-based loop in X. For any set M,
denote by"ﬁ-the closure of the set M,

Lemma 2.%.1, If tl,t

5 € [0, ]| All ] such that A(t]) € Ry

and A(tg) € ﬁé, then, assuming tl < t,, there exist points
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£, and by such that &, < £ < b = b, A(t]) € R

A(t]) € Ry, and if t < t < t3, then A(t) e R.

Proof: Let t

1> s be points in [0, 1] All 7 such that

A(ty) € Ry and A(t,) € Ry. Assume, without loss of generallty,
{

) , = te € ; (',- a.t R .“ i
that t; < t,. Let S 51 6 < t, and A(t) € R}, Ry is a

1
closed and compact set, and A 1s a continuous mapping of
. 1 . -1,
[0, All 7 -~ X.. Hence, A""(R{) is closed. Then A7 (Ry)N[0,t5]

is a closed set. But 8, = A"l(ﬁi)ﬂ[o,tp], so S, is closed.

1

Hence, S1 has a largest element, Denote this element t{.

_ . 7 . . = e
Let 8, = {t: t/ < t =1, and A(t) € Ry). R, 1s closed

l amon
(%

closed. Therefore, 82 is closed, and S2 has a smallest

. Y ] : ) 7
element. Denote this element t,. Then t, < &) 4 tg < t,.

’ - 7 o e ’
Also, A(t;) € R and A(t)) € R,. Let t be such that t {t < ts.

and compact, so A~ ) is closed. Then A_l(ﬁé)ﬂ[ti, t,] is

1 Then A(t) ¢ Ry and A(t) ¢ R,. Hence A(t) e R. The points
| ti and té will be called a prime pair in the domain of A.

Lemma 2,3.2. For any loop in X, there exists only a

finite number of prime pairs.

Proof. ©Suppose there exists an infinite number of prime

pairs for a given loop A. Then there exists a countable
subset of these palrs. Dernote the countable sequence of

pairs as t ti, tos té, tg té, ST A tﬁ, «ss, Consider
15 bos t5, *er, b, For 1oe (0,%), t, can

l)
the sequence t

be in at most two prime pairs. Hence, the sequence

tl’ tg, oo, tn,--- is infinite, Then this sequence has a

sequential 1limit, which will be denoted T. Since tl’ tE’ e

is an infinite sequence of real numbers, there exists a
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1

monotone subsequence b, ti « b, 4 +°° which has a limit
i tn oz
2

Rt

point T. Now t. < &) < t, , formn= 2,5+, Thus
n-1 n n+1 , '
there exists a monotone subgequence té R tk , ***s Then T is
1 2
the limit of t, , té , ***. But, for this to be true, A(T)
i 2 —

would have to be in both R, and ﬁg, which is impossible,

1
Therefore, there can exist only a finite number of prime pairs in
A,

Lemma 2.3.3. - Let r be a point in the interval [0, || &) ]

such that A(r) ¢ R. Let B':[0,t] - R be a path in R such
that B’(0) = A(r) and B’(t) = p. Let B:[0,2t] = R be defined

by the formula /(+1> N e s
’ . v (.) --‘-t St
mt)“%%'~%,tgt’52m

Then B is equivalent to the identity loop at A(r).
Proof: B(0) = B(0) = A(r), and B(2t) = B(0) = A(r).
Hence B is an A(r)-based loop in R. Define a collection

{H ), 0 =s =1, of A(r)-based loops by the formula

il

Now H_(t") = B(0) = A
loop at A(r). Hy = B
The proof that {H_ ]}, 0 <s <1, is a continuous family
ié exactiy like the proof in Theorem 1.14 that (H ] is a con-~
tinuous family, changing A to B’ and || A]] to t. Then B is

equivalent to the identity loop at A(r).

Lemma 2.3%.4., 1If A:[0,1]] A]l » X is a p-based loop,

t, ¢ [0,]l &]l 1, ana B:[0, ]| BIl ] -~ X 1s any A(t_)-based loop
equivalent to the identity at A(to), then the p-based loop A’

defined by the formula



A(t) = (A(t), 0 st = o
 4B(t- t)s to <t =t o+ Bl
A(t'-l’“l -t + il se=t + lall+ Bl

is equivalent to A.

Proof: Let {H_}, 0 =s =1, be the collection of A(t )~

O

based loops which establishes B 1s equivalent to the identity

at A(t, ). Define a collection (K.}, 0 =8 =1, by the formula

A(t), 0 <t <+t
K5 (8) =1y (t=t ), t_ < ? =t + s-f Blf
sy’ 7o/ -7 7 o :
A(t-5- st s ¢« 1Bl =t =s- 3|

The proof that {KS}, 0 =s =1, is a continuous collection of
p-based loops is similar to the proof in Theorem 1.10. The
collection (K }, 0 <s <1, establishes A = A,

With these four lemmas established, the following proof
will show that the fundamental group'of a sphere 1is the trivial

. = . . N - /
group. Let Rl = R U Rl, and let R2 = R U Rg. Note that Rl and

Ré are both homecmorphic to the interior of a circle, Then any
loop in Ri or Ré is equivalent to the identity.
As stated previously, A:[0, ] Al|1~ X is a p-based loop in

X. If A lies entirely in R, or entirely in RS, then A is

1 22
equivalent to the identitly loop at p. Suppose, then, that A

does not lie entirely in Rl or entirely in R4 Then there

2'

exist points t.,t, e [0, ] Al 7 such that A(ty) € R, and

1’ 1
A(tg) € RE‘ By Lemma 2.,3.1, there exists at least one prime

pair in [0, ]| Al 1. By Lemma 2.3.2, there exists at most a

finite number of prime pairs in [O Dencte the prime

pairs in [O, | All Jby t,,t. ,t,,t0 so-, tn,té

1271272272
Suppose, without loss of generality, that A(tl) € ﬁl'
Then A(ty) € Ry, A(ty) € Ry, A(tS e R > A(t3) e Ry, ete. Let
T

TosT15Tps *+*, T, be points in [O,”AH] such that o = 0, and

ti-l = Ti < ti+l’ i=1,2,+**, n. Then, for i = 1,2, <+*,n,
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[

For T,, 1 = 1,2,+++, n, let B{:[O,t] - R be a path in
R such that BJ(0) = A(T,) and B{(t) = p. Let B, :[0,26] -~ R
be defined by the formula

4

"(t7), 0 <%
7 — 7
B () ‘LB’ggt-%’),t <t

~IA

t
= 2¢t.

By Lemma 2.3.3, Bi is an A(Ti)-based loop in R such that Bi
is equivalent to the identity loop at A(Ti)'

Define a path A':[0, ]| A’]l ] - X as follows:

(a(t), T O St ST

1
By (t-T3), Ty <t <7, + [ Bl
B R LI
, JBg(t'[Tg +i§lllBil|]), T, IElH B Il < t< T+ 21” B, ||
AY(E) =W 5 s
a(t-5 | B4 T+ B st =1, +3 Il B, |
( pa | B. [ N B, 3 T2
(t-[myt 5 B0y, mp 8 llByll se =ty +3 |3
E i=1 EAE S > im0

[} . ©

n-l R ) n-~1 ‘ n
Bn(t“[fn+-§1 a7, =, +i§1” Bl =t =Ty 20

\a(e=2 ) mr 2 0my =6 s fall o+ |

i=1 i=1

By applying Lemma 2.3.3 n times, A’ = A.

Let S8 = T =0, 8, = T, + I B ’], and for i = 2,3,.+++,n, 8y
. gm-

o) 1 1
i-1 II B, H
=T, + 3 || B, Tet § .=
AN Let S,

Then for i = 0, 1, 2, -++, n, the path A’(t), t ¢ [Sl, 14112
is equivalent to A’(t+s.), t [0, Si%l"s']’ and A’ :[0,8, -8, I-R
1s a p-based loop in R. Since R < Rl, “:]0, S:L

p~based loop in R, and is therefore equivalent to the identity
1

1 Si] - R is a

loop at p.



For i = 0, 1, 2, «+°, n, let A.l’ = A0, S

'
®

1

i=20,1, 2, ¢*+, 1, 1s equivalent =o

Then A':[0, [} Al ] = X is eguivalent to Aév A

ét D, then.A' is equivalent to the 1ldentity at
A" Z A, so A is equivalent to the identity at p
since A was an arbitrary p-based lcop in X, and
connected, the fundamental group m(X) 1is the or

2,
(2.4) B2 - (0,0,0). The fundamental group

EB— (0,0,0) is the trivial group. This will Te
by showing that the fundamental group of E3 - {
isomorphic to the fundamental group of the sphe

In spherical coordinates let X = {(v,0,q¢):

0 =8< 2m .0 < <1}, and let

Y = {(p,e,ip}:'{F: 1, OSG<2TT, OSCPSTT}g

Define a mapping f by the formula f(p,8,¢p) = {1

(p.8,0p) € X. 'Then f: X -~ Y.

22

~ 8.7 - K.
1+1 Sl] :
Fi r
A2 An'

the identity
p. But
. Therefore,
X is pathwise
ivial group.
of the sbaee
established
0,0,0) is
re,

p> O,

,8,0), for

Let N be an open set in Y. Let P = (p,8.¢) be a point

in fwl(N). Since N is open, there exist 6., 8

>

- 1 ,
such that the set D = {1,6',@'):81 <8< 05

ey
Lt

5

@ < < cpg} contains (1,6, ¢), and D € N. g
a8 basis element for the topology on Y and thaé

Tet D,: {(Po;eo:@o): O< po< p+l’ el< eo<

P 5 and o3
d

te that D is -

(1,0, CP)" = £(p,0, ®) -

Then D’ is an open set about (p,8,p) in X. Let

II, cpII) — (

since 6 <o’ < 8, and o < 9" < g. Thereo

be an element of D’. Then £(p’’, @

8,, and cpl< cpo<q12}.
(pII’ Gl I’ cpI l) .
1, 677, QP”) € D,

re, D' ¢ f“l(N),
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=1,y . ) . .
and £ “(N}) is an open sgec. Hence ¢ i3 a continuous
mapping.

As observed in Theorem 1.17, f iaduces a homomorphism

1) = I0(A) ],

Ty )
. Tet [A] be an

fe:m(X) -» m(Y), given by the formula £ ([A
where [A] € m(X). Let p be any peint in Y
element in n(Y,p). The mapping j:¥ = X is the inclusion map-
ping, or the identity. Then jy([A]) ¢ n(X,p), where j,:n(¥)~ n(X),
and T,(Ji.([A])) = [A]. Hence, the composition f,(Jj,) is the

identity map, and f, is onto,.

Lemma 2,.4,1, TFor any point p in Y, any p-based loop

A in X is equivalent to its projection f(A) in Y.
Proof: ILet p be point in Y. ILet A:[0,|] All ] » X be
a p-based loop in X. The loop A can be described as
(p(t), 8(t), @(t), where p, 8 and ¢ are continuous functions
of t ¢ [0,]] &A|l]]. Define a collection {H ), 0 <s =<1, of p-based

loops by the formula

Bg(t) = (p(t)[s +-32251, 8(t), o(t)), for 0 =t = | |l = Al

Ho(t) = (1,8(t), o(t)), so _HO = £(A).

il

Hy(t) = (p(t), 8(t), oft)), so H = A.

For every s € [0,17, |]HSH = || Al . Then the stopping
time IlHSII is a constant function of s. Therefore, the
stopping time ||HSH is a continuous function of s,

Let R be the closed'region 0 =ss =1, 0=t < | Hsll'

Let (s,t) be a point in R. Tet N be a neighborhood in X about

. l-s  _ ¥
H(s,t) = H (). ZLet p(t)- (s +-$(€7) = p . Then there
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exist a & > 0 and Bl;equi; and @, such that the set D
*® * ’ ‘ B .
= {(p, 80,9 :p -0 p< p + 5, 8 < 8¢ 85, @ Ll v} contains
H (t) and D < N, |
Since Hl = A and A is continuous, there exigsts an
interval I’ about t such that for t.,t

1t el =

T’ n [0, ]l All 1, A(ty) and A(t,) are in the set

1)
i o) .

K= (p,8,0):p(t)-pl <pgmy 8, <0< 8y 0y <0< gyl

Then Hl(tl) and H;(t;) are in K. Now A is a closed loop

in X, based at p. Hence, there exists a number M > O such

that for t e [0, All 7, »(t) < M. ILet

J' = {s’t]s~s’| < §T%:TT]' Then J = J’ n [0,1] is a
neighborhood of s. TLet G = J x I. Then G is a neighborhood
of (s,t) in R.

Let (s’,t’) be a point in G. Then
H(s e 7)) = Hg(8) = (p(67) s+ ], 8(E), ot ),
and '

(s, ) = Hy(t) = (B(8)[s + 5F1, 8(t)s w(t))-

S;nce t and t’ e I, Hy(t) and H{(t’) are in K. Hence,
8, < 8(t") < gy 8y < o0(e) Cogs i < () <

o < olt) < wpy and [p(e) - p()] < 3

Now

Dol (s + G T - [B(E)(s + 551l

-3

< 106" (s + 5755y - [p(0) (s + 55 11

p(t)-1] < 3 +3 = s.

-

F T8 (s + 25 ] = [t (s + 5155y 1]
p(t

Yl + 1 s’ ~s

=5« [p(t]) -
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Then H(s ,t’) € D ¢ N. Therefore, H(G) < N, and H maps R
continuously into X. Hence, {Hg}, 0O £s8 =1, is a continuous
family, and f(A) = A,

Lemma 2.4.2, If A and B are p-based loops in Y such

that A =B in X, thean A ZT B in Y.

Proof: Let A and B be p-based loops in Y such that
A =B in X, Let {HS}, 0 =s =1, be the continuous family
of p-based loops in X which establish A = B. By Lemma 2.4%.1,
for all s ¢ [0,1], Hy = f(HS), and f(HS) e Y,

Consider the family {f(H_)}, 0 =s <1. Assume H = A
and Hy = B, Then f(H,) = f{A) and £(H;) = £(B). But A and B

1
are contained in Y, so f(A) = A and f(B) = B. Hence, r(H,) = A

and f(H,;) = B, For every s e [0,1], [[H_ | = | £(H,) |

) -
Hence, since {HS} is a continuous family, the stopping time
|IHSII = l[f(HS)Ii is a continuous function of s.
Let R be the closed region 0 <s <1, 0 <t < | f(HS)H =[] 5l .
Choose (s,t) e R. T[H(s,t)] = £(H,(t)). Let N be a nelghborhood
of £(H,(t)) in Y. Then there exist @,,6,,, and ¢, such that
the set D =.{(1,9,m):81 <8< 005 oy < o< ¢} contains
P(Hg(t)) and D € W, Let D, = {(p.8,0) 0 < p< =, 8,< 8< 0, < o<
Then Dy is a nelghborhood of Hs(t) in X. Hence,  there exists
a neighborhood D, of (s,t) in R such that H(D,) < D;. Then
f(H(D,)) =D ©N. Hence, f(H) maps the closed region R con-

tinuously into Y. Therefore, A Z B in Y.

Lemma 2.4,3, If A and B are p-based loops in X, then

=
i1

B if and only if f£(A) = £(B) in Y.

Proof: Let A and B be p~based loops in X such that

% B. By Lemma 2.4,1, £ (A) % A and B = £(B). Then by the

=
H



trensitive property of =, f(A) = £(B) in X. Hence, by
Lemma 2.4,2, f(A) = £(B) in Y.

Now suppose f(A) = £(B) in Y. Then, since ¥ < X,
£(A) = £(B) in X. By Lemma 2.4,1, A Z f(4) and £(B) = B,
Therefore, by the transitive property of %, A =~ B,

Lemma 2,%,%, The induced homomorphism f, maps an

equivalence class in X to an equivalence class in Y if and
only if they have an element in common.

Proof: fy:m(X,p) - m(¥,p). Let [A] be an equivalence
class in X and suppose f ([A])=[B], where [B] is an egquivalence
class in Y. By Lemmas 2.4.1 and 2.4.3, £ :[A] - [f(A)]. Hence,
[f(A)] = [B]. DNote that f(A) € Y and f(A) ¢ X, since Y < X,

By Lemma 2.4.1, A = f(A). Hence, £(A) ¢ [A]. Since f(A) ¢ [F(A)]
= [B], f(A) is common to [A] and [B].

Let[A] be an equivalence class in X and [B] be an equiva-
lence class in Y such that there exists a p-based loop C such
that C e [A] and C ¢ [B]. As seen above f_([A]) = [£f(A)] in Y.

C e [A], so £(¢) e [f(A)] Ly Lemma 2.%.3. But C e [B], so

C €Y and £(C) = C. Hence C e [f(A)]. Therefore, since C
cannot be in two different equivalent clésses in Y, [£f(A)] =[B].
Hence £ [A] = [B].

Therefore, with Lemma 2,4.4 established, .it is clear.that
feim(X,p) - ﬂ(Y,p) 1s one-to-one. Then fy is an isomorphism,
Thus, the fundamental group m(X) is isomorphic to the fundamental
group m(Y). In (2.3) it was observed that m(Y) was the trivial

group. Hence m(X) is the trivial group.
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Yheorem 2.5. The fundamental group of the circle is

et 5 b e RO

infinite cyelic. (1,pp. 24-29),

Aia:6) The annulus. 1In the following proof, the
fundamentai group of the annulus will be shown to be in-
finite cyclic by establishing that it is isomorphic to the
fundemental group of the circle.

In E2 let Gi = {x,y): x2+y2 = 1}, Gb =.{(X,y): x2+ y2 = 43,

and let G be the annular region between and including G and Gb.

Define a mapping p:G - ¢t as follows:

For
X y
(X9.V) € G: p(x,y) = ( —---——/__g_ =TT s ——-——-g_._ —
X+ yéﬂ ‘ V& + ya )

then if (Xl’yl) were on G and I were the line containing (0,0)
and(xl,y]),wthen p maps L N G to (xi,yl).

il o
Let N be an open set in G'. Then N = U Mn’ where Mn is
: n=1 -
an open arc on Gl, n=1,2,*++ ., TFor some n, let the end-

points of the arc Mn be an,bn. Let Ln,l be the line containing

(0,0) and a_ > and let Ln,2 be the line containing (0,0) and b .

’ 3 ’ xY . .
Let Ln,l and L n,?2 be that part of Ln 1 and Ln,2’ respectively,

>

which intersects G, Let Kn be that part of G which lies

e 7 ? =1
between, but does not include Ln,l and Ln,E‘ Then X = p (M) -
Tet K = U K, Then X = p"l(N). Since for each n, K, is

n=1 :
open in G, X is open in G. Hence, the inverse image of open

sets is open. Therefore, p is continuous.
The function pdetermines a mapping p, of m(G) into
ﬁ(Gl),'given by pi([A]) = [p(A)], where [A] « m(G). This

mepping py: m(G) - n(Gl) is & homomorphism, as seen in the



[ard
/

proof of Theorem 1.17. Nota thal p mwape fthe subspace Gi onto
itself.

To show p 1s onto, chcose any tasepoint p in Gio Let
[A] be an element in ﬂ(Gi,p). The mapping j:Gi ~ G is the
inclusion mapping, or the identity. Then J,([A]) ¢ m(G,p),
where j*:ﬂ(Gi) - (@), and p,(Jx([AT)) = [A]. Hence, the
composition pe(Jx) is the identity map, and py is onto.

Lemma 2.6,1, For any point p on the circle Gl, any p-

R

based loop A in G is equivalent to its projection p(A) on
the circle G .

Proof: ZLet p be a point on the circle G, Let

A:[0, || Al 1 = G be a p-based loop in G. The loop A can be
described as (f£(t), g(t)), where £ and g are continuous
functions of t ¢ [0, ][] £]] ]. Define a collection (H 1,0 =5 =1,

of p-based loops by the formula

1) = (s s 2] snfe ¢ 22 )

YR (e)+ g7 (1) . WeE(e)+ gt (t)

( fit) . g(t) ) B (A)
R e R 2y T

il

H(t)

il
F

Hl(t) = (f(t), g(t)), 0 =t = ’[A” ) '
For every s ¢ [0,1), || Hsll = || A|| . Then the stopping

time IIHSH is a constant function of s, and thus, continuous.



Let R be the closed fegion 0 <5 =1, 0 =t = [Ju_| = [[&] .
Let (s,,t,) be a point in R, Consider H(s_,t ) = HSO(tO) =
1~8 ) 1-8 : .
(e(t Yl + ° 1. et )]s, + ° 1)
\"1o/ "0 W 5 J Vol 7o N g
(e )+ g (t,) (e )+ g (t

TLet N be an open disc centered at H(so,to) with an arbitrary
radius r.

By the continuity of A, there existis a.neighborhood T’
about t such that for all t

t, e T=1"n7[0,|l &All 7, the

1°72
distance between (f(tl), g(tl)) and (£(t,), &(t,)) is less
than %. If x and y are points, denote the distance between
x and y by d(x,y). Then a[(f(t ),8(t1)), (F(t5), &(t5))] < 5
But

Hy(t) = (£(t), g(t)), 0 =t =< |l All. Hence a(H(%t,),H,(%,)) <

NN

Now for a fixed t, the relation between d[H (t),H (t)]
s
and d[H (t), H (t)} will be investigated, where s € [0,1].
Pick t € [o,H All 7, and 1let s € [0,1]. 'Note that H (t) is on

the circle G

A[H_(t), H (t)] = d| (£(t)+]s + 2 - g' ,
O £7( ) +g" <t>] |
1-5 . £(t) , g(t)
g. *| S 7 3 ( () 2 ¥ 7
ol +%%m@ﬁw VIMELTEw T P ()

RRORICE VZ - ) (= >J2+‘

(t)+g" (1) (”%2<t>+g2<t>

s 1/2
ORI ) - ()]}

£7(t)+ g°(t) YES(6)+ g7 (%)

)]



1 - |

TV (e | () e (b)

Now £(t) g(t). -
d[H (t),H (L)} dL (t), &(t)), ( Ve (t)4g” (6) 7 VES(t)+g" () /]

5 1 o 1 1/2
[0+ (2 - )+ )+ - VeR(t) + E(t))']

il

P ()48 (t)

1

VeR(e) +t(e)

il

VAN~ pad
5 (e)+ & (v) |
Hence, 4 [H (t), H_(t)] = s-{d[H (t), H_(t)]].
Consider Ho(to).‘ This point 1s on the unit circle G
Denote the point (0,0) by A. TFor any t, denote the line

segment with end points A and Hy {t) by AT, Then there exist

numbers €15 €5 > O such that the angle between T ~FE] and
AT T=€; is less than 90°, Let I, = [to~eg, t0+ el}.
Let In =1 N Il' Then to € In, and for tl, t2 € I, the

angle between uf and 0TS is less than 90°.

Let tl and t2 be points in 12. The obJjective here is to

show that for any s ¢ [0,17, d[Hs(tl), H(t,)] = afH, (t), H, (tg)]-
Choose s ¢ [0,1]. ILet Hl(tl) = Py, Hs(tl) = Pl’ Ho(tl) - Pl’

Hy(ty) = Ppy H(ty) = Pé. ‘Denote the angle at A between

P& and PQK as angle A, Construct a line C parallel to K?g

and intersecting AP at P?. Construct lines h and k parailel
’ wde

to the y-axis, such that h intersects AP} at P, and K in-

tersects AP2 at Pg. Denote the intersection of h-and C oy

4

... . 1 a .
P2,h and the intersection of £ and C by PE,k



¢

Let ¢ denote d(’kljﬁT oE ¢’ danote d(Pg Py p)s b
L.., k) -

denote d(Pi’Pl)F b’ denote d(Pig Pl), a denote d(Py,P,)
2’ denote d(Py, Pé’h).

Since C and'lPé are parailel, angle A 1s equal to the
angle at Pi between ;;E; and ;;:;5?. Since 4[H_(t), Ho(t)]
= s-[d(H,(t), Ho(t)], b’ = gb and ¢’ = sec. Hence, b’ <D
and ¢’ < c. By the Law of Cosines, 8= b £ ¢ 2pccos A
= seb2+ s2c2. 25%pe cos A = 52(b2+32~ 2be cos A) = s2a?,

. < o2 = 7 2 2 o
Since 0 =s =£1, 0 =s” =1, 80 a =a and a = a,

Let a = d(P,,P,) and a’ = d(P/,P,). Note that d(A,P;)

=1 +b, d(A,P{) =1 +Db’, d(A,P;) = 1 +c, and d(A,P]) =

Then, by the Law of Cocsines,

o f= (b'+1)2+—(c'+1)2 ~ 2(b‘+1)(c +1) cos A
= b@rop’ 41 +c@r2c’ 41 4 (~2b’c '~ 2b’-2¢ -2)cosh
= b2y !

2= a’fy 2(1-cosA) (b’ + ¢’ + 1)

Following the same steps, it is clear that a? =
2

positive, Hence,

02 a® + 2(1l-cos A)(b " + ¢’ + 1)
< aE + 2(1l-cos A){(b + c + 1)
2
= .

Then, since e < ae, o’ < a. But, o’ = dla (%),

and a= d[Hy(tq), H (t;)]1. Hence, d[H (t), H (t5)]

< d[Hy (), Hy(t5)]1.

a -+ 2(1-cosA)(b + ¢ + 1). Since angle A < 90°, 1l-cos A is

~2b’c’ cos A + 20" +2¢c’ +2 + (~2b’ -2c’-2)cosA

H, (t5) ]



Eye)
oY

‘ T
(6 B (E)T + 17}, and

let 3 =J3°n[0,1]. Let D=J x I. Then D is a neighborhood

1 (ool o -
Let J' = 18 s—sol 4 .d[d[
of (so,to) in R.

Let (s,t) be a point in D. For H(s,t) to be in N, 1t
must be true that d[H(s,t),H{sO,to)] { r. By the triangle
inequality, for the point (s,to) in D, d(Hs(t), Hy (tO)]

o

. ' 4 = r
Since ty, ty e I, d[H (t), H ()] S a[Hy(tq),H ()] < -

Now d[(HS(tO), Hy (t,)]1 = ]d[HS(tO),HO(tO)]-d[HS (tg) H (£ )71
O O
= |s+ {a[H (t]), H (t )1 - s (a[H (t,),H (t )1}

= Is—so{ . {d[Hl(to), Ho(to)]} < %-, since s € J.

r r
Hence, d[H,(t), Hso(to)] < 5+ =71, 80 H(s,t) ¢ N, and

H(D) < N. Therefore, the function H, defined by H(s,t) = H (%),
maps the region R continuously into G. Thus, {HS], 0=s =1,

is a continuous family, and p(A) = A.

Lemma 2.6.2, If A and B are p-based loops. in ot such
that A =B in G then A = B in ol.

Proof: TLet A and B be p-based loops in Gi such that
A =B in G. Let {KS}, 0O =8 =1, be the continuous family of
p-based loops in G which eﬁhibit A = B. By Lemma 1; for all
s-e [0,17, Ky -x p(K,), and p(K,) € at, |

Consider the family {p(KS)], O=s =1. Assume K = A
and K; = B. Then p(KO) = p(A) and p(Kl) = p Bj. But A and B

(
are contained in G, so p(A) = A and p(B) = B. Hence

p(K,) = & and p(Kl) = B.,
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For every s ¢ [0,319 & || = l{p(KS‘H . Hence, sihce

}
i

s
{KS} is a continucus family, the stopping time || ngl = |l p(KS)H

isz a continuous function of s.

i

Le:

<

. R be the closed region 0 <s <1, 0 <t < || p(K,) ] .
Choose (s,t) € R. plE(s,t)] = p(K (t)). Let N be a neighbor-
hood of p(K (t)) in ¢l. Then there exists an open arc I.about
p(Hy(t)) in ¢t Suéh that I © N, Tet a and b be the endnpoints
of I. ILet N, be the set in G such that p(Ny) = I. Then N, is
a neighborhood of K(s,t) = K _(t). Since (K } is a contingous
family, there exists a neighborhood D about (s,t) such that

K(D) €N Then p(K(D)) € I < N. Hence, p(K) maps the closed

7°
region R continucusly intO.Gl. Therefore, A = B in Gl.
Lemma 2.6.%, If A and B are p-based loops in G, then

A =B if and only if p(A) = p(B) in G .
Proof': The proof of thls lemma 1s the same as the proof
of Lemma 2.4.3, changing X to G, Y to G°, and £ to p.

Lemma 2.6.4%. The induced homomorphism p, maps an

equivalence class in G to an equivalence class in G if and
only if they have an element in common.

Proof: The proof of this lemma is the same as the proof

of Lemma 2.4.4, changing X to G, Y to G", f to p, and f, to p,.
Therefore, with Lemma 2.06.4 established,‘p*: m(G,p) - ﬂ(Gi,p)

is one-to-one. Hence, py is an isomorphism. Since G and GT

are both pathwise connected, the fundamental group mn(G) is
isomorphlc to the fundamental group W(Gl). By Theorem 2.5,
W(Gl) is infinite cyclic, Therefore, the fundamental group

m(G) of the annulus G is infinite cyclic.



(2.7) Eg-(0,0). The fundamentval group of the space

2 . ‘ .o ' . .
E"~-(0,0) is also infinite cyclic., However, the apptoach

used to show this fact will be different from previous proofs
in that the space Egu(0,0) will be shown to be homeomorphic

to the open annulus,

A

In polar coordinates, let G = {(p, o) :0 {Cpl = 0=l 2ml,

let Gy = {(p,p): 0< p< 1, 0 = ¢< 27, and let G, =

{(P:CP)=1< P< 2, 0 = CP< 2m}.

Lemma 2.7.1. GO is homeomorhpic to Gl.

Proof: Define a mapping g as follows: for (p,eo) in G

l’
g(p,0) = ( zﬁs—, w). Then g: Gy = G . To show g is onto, let

(p,p) be a point in GO.D Then 0 < p< = Tet (p’, ) be a
4

.

point such that p = T+¥p Then p = =7 . Now
) ’
0 < p’ < 1, so (p',0) € Gl' Since p = TR g(p';@) = (p,).

Therefore, g 1s onto.
To show g is one-to-one, let (py,p ) and (pos @) be
distinct points in Gy. Then either p, # p, or o 4 @,. Note

that g(p,ey) = (1 21
et

. ¢i> and g(pos o) = (_“ o, P ).
-1y
If p, F Py, then either Py > p, or By < Po- Sgppose,
without loss of generality, that p, > b,. Th?n 1-p; < 1-p, o

Hence P> P2

ol + P then g( Py ('P]_) + g( Pos Q02)°

Hence, g 1s one-to-one.

Therefore, g(p, o) + &( s ) - Tf

Let N be an open set in G_. Let P, = (po,qb) be a point

in g_l(N). Since N 1is open, there exist P15 Pos oy, and o such
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that the set M = {@,@):'pl < Pos @ < 0l P} C N and

g(p,) ¢ M. Tet T = (o) b, < 7 :-~5< pos 0 < p< 1, wl<'<;o< 0l

L

Then P, = (v,>%y) € J, since g(p,) € M. Also, J 1s cpen.

')
tet (p', o) be point in J. Then g o' < o and py <'T§$7 < by
since g(p’s o) = ( TR, o), g(p's0’) e M €N, Hencve:
J c g"l(N). Therefore, g"l(N) is open.
Now let @ be an open set in G;. TLet P/ = (p’,p") be a

point in g(Q). There exist pi, Py, @5 and ¢, such that the

set Ql: {(p,cp):}p1<p< Ps s cpl< cp< goz} < @ and P’ G-Q,_L..

Let Qg = {(ps0p) s _i__?,l ; < p<1j?T’ q)l< ® < Qog}'
Torl T2
Hence, 0 < Py < Po { 1 since Q ©Gq. Then g(P’) e Q.

gince P’ e Q

implies lpl <1p' <1p2 .
57 Ty Ty

Let (pg»9,) be & point in Q. Then g " (p,r@,) € @ S Q.

1

Hence, Q, © £(Q). Since Q, 1s open, £(Q) is open. Therefore,

GO i homeomorphic to Gl.

Lemma 2.7.2. Gy is homeomorphic to G,.

Proof: Define a mapping f such that for (p,p) € Gqs
£(p,@) = (p+l, ). Then £:G, = G,. To show p is onto, let

(p’, ') be a point in G Then 1 < p’< 2 and 0 < o’ < 2m,

o
Tet (p,®) be a point such that p= p’~l and p= ¢’. Then

0< p< 1 ana 0 < ¢l 2m so (p,p) € Gy. Since p +1'= p’

and w= o’ f(v,0) = (p59’). Hence, f is onto.

To show pis one-to-one, let (p;,p;) and (posp,) Pe
distingt points in G;. Then either p, + py OF @ F @, Now
f(’Pl:CPl) = (pl + 1, CPl) and f(?’g:%) = (Ppo+1 ). If py + Pos
then py + 1 F 9, + 1 and T(py50) F T(pos ).
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. o N e N
If ¢ + @, bthen (o) F L(wprep). Hence, f is one-to-one,

=

Let N be an open set in G,. Let P = (p,-@,) be a point
in f"l(N). Then £(P) = (Pt 9,) € N. Since N is open there
exist p, Py, @, 8nd g, such that the set M = {p,0) 1py < p< pg,@f<@<q§
<D, and £(P) ¢ M.
Let J = {(p-1,9):(p,) € M}. Then P e J. Choose (p’,0’) e J.
Then £(p’,’) = (p"+1l,0’) € M € N. Hence J < f"l(N). Now
I = {(p,op)spy -1 < p< by =1, g < 0< p,}. Therefore, J is open,
and so f—l(N) is open, ’
Let Q be an open set in G,, Let P’ = (p’,¢’) be a point
in £(Q). Since Q is open, there exist pi, Py q{, and @ such
that the set M’ = {(p,o): o/ < p< 9, ¢ < o< @) ©Q, and
a1 . . -7
f7(PY) e MY, Let = {{pe): p) +1< p< pg + 1, oy <ol gl

4

Then (p’,¢’) € J’, since f"l(p',w’) = (p’-1,0’) e M. Let
(v,¢) be a point in J’. Then~p£ +1< p< py + 1, f'l(p,@)
= (p-1,9), and p/ < p -1 < py. Hence f"l(p,@) e M’ cQq.
Therefore, J' < £(Q) and so £(Q) is open. Hence, G, is
homeomorphic to G,

By Lemma 2.7.1 GO is homeomorphic to Gl’ and by Lemma 2,7.2
Gl is homeomorphic to Gg. Hence, Go is homeomorphic to GE}
Then by Theorem 1,17, ﬁ(GO) is isomorphic to =1(G,). But, by
(2.6), m(G,) is infinite cyclic. Hence, m(G,) is infinite

cyclic,

(2.8) The space i’ minus the z-axis. The fundamental

3

group of E” minus the z-axis is infinite cyeclic. To show
this let X = E3m{(x,y,z): X =y=0}, and let Y = {x,y,z) :2=0).
Define a mapping f by the formula r(x,y,2) = {x,y,0), for

(x,y,2) € X. Then £ : X - Y,



Let N be zn open set in Y, f

Let (x',y’,z’) be a point in gt

( N) * Th@n .f.... (X s y s A =
(x’,y’,0) € N. Thus, there exists an open disc D with center
at (x’,y‘,0) such that D @ N. Denote the radius of D by r,

Let Ny = {(x,y,2): al(x,v,2),(x",y’,2")1 < r}. Then ¥, is an

open set about (x’,y’,z’). Let (%,,¥1521) be a point in ;.
d[(x’,y',O),(xl,yl,O)] = d[(Xl,y',Z,),(Xl,yl,Zl)] { r. Hence
1) €N, so N; © f"l(N).

N) is open. Hence, the inverse image of open sets

£(xy,¥1527) € D © N, Therefore, £(N
Then f—l(
is open, so T is a continuous mapping.

f determines a mapping f, of m(X) into m(Y) given by
fo([A]) = [f(A)], where [A] e n(X). This mapping f,im(X) - n(¥)
is a homomorphism by the proof of Theorem 1.17.

To show f is onto, chcose any basepoint p in Y. ILet [A]
be an element in mw(Y,p). The mapping j:¥Y - X is the inclusion
mapping. Then J.([A]) ¢ n(X,p), where It m(yY) - m(X), and
re(Jx([A]) = [A]. Hence, the composition fy(Jjy) 1is the identity

map, and f, is onto.

Temma 2.8.1, For any point p = (x,y,0), any p-based loop

A in X is equivalent to its projection f{A) in Y.
Proof: Let p = (x,y,0) be a point in X..- Note that p is
also a point in Y. TLet A:[0,]| A] - X be a p-baged loop in X.
Denote A as (g(t), h(t), k(t)), where g,h and k are continucus
]

functions of t e [0, A

|1. Define a collection { ), 0 =s =1,
of p-based loops by the formula H_(t) = (g(t),n(t), s-k(t)),
el = 1lall . H (t) = (&(t), h(t),0), |
a1l , so Hy = £(A). H (t) = (&(t),n(t),k(t)),

0 <t < |[All , so H; = A, TFor every s e [0,1], || H_|| = || A

IA

for O

0 =t

IA

il




co

] -

Then the stopping time 3]h?§§ 18 a constant function of s,
go that function i1s continuous,

Let R be the closed region 0 <8 <1, 0 <t < || H L = {]all,
and let (s,t) be a point in R. H(s,t) = H (t) = (g(t),h{t),s k(t)).
Let N be the interior of a sphere centered at H(s,t) with an
arbiltrary radius r., By the continulty of A, there exists a
neighborhood I’ about t, such that for ti,t, ¢ I =1'n [0,[[A] 1,
the distance betwéen (g(tq), n(ty), k(tq)) and (g(t,),k(t,)) is

T
less than = .
(8

Let J' = {é’:]s-s’l < z(gk(t)j 4“17‘} . Then J' 1s an

4

interval about s, ILet J = J° n [0,1]., Iet D= J x I. Then

LAY

D is a neighborhood of (s,t). Choose a point (s’,%’) in D,

alHg «(t"), H /()] =

hv
IA

YTe(t )=e(t) 12+ [h(t ) -n(t) 1%+ s’ 2[k(t )-k(t)]

A

s’e VTa(t)-g(t) 15+ [B(t )~n(t) ]+ [&(t)-k(t)]°

he

Ma(t)-g()1% + [n(t")= n(t)]2 + [k(t')-k(£)]2 <

Also, d[Hg .(t), H(t)] =

i

VTa(t)-g(+)]°+ [h(t)-h(t)]°+ [s ‘812 [k (t)]°

s ( (IK(LT‘ +1) ) <1k(t)'> S'g ’

dlH ("), Hy(t)] = alH ,(t"),H ()] + alH, (t),H (t)]
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Yence, & ,(t') € N, so H{(D) ¢ W. Then the function H
e
defined by the formula M{s,v) = A_(t) maps the region R
continuously into X, Therefore, {Hq}, 0 <s =1, is a
continuous family, and A = T(A).

Temna 2.8.2. If A and B are p-based loops in Y such

that A = B in X, then A = B in Y.

Proof: Let A and B be prased loops in Y such that
A ZB in X. Let {KS}, 0 <8 =1, be the continuous family
of p-based loops in G which exhibit A = B. By Lemma 2.8.1
for all s ¢ [0,1], K, = f(X ), and f(K ) € Y.

Consider the family {f(KS)}, 0 <s <1, Assume KO = A

end X, = B. Then f(K ) = f(4) and T(Xy)

il

f(B). But A and B

i

are contained in Y, so f(A) = A and £(B) = B. Hence (X)) = A

and f£(X,) = B. For every s e [0,1], | KSII = ﬂf(KS)!

Hence, since {KS} is a continuous family, the stopping time

|

il

| £(x )l is a continuous function of s.

Let R be the closed region 0 <5 <1, 0 <t < | f(KS)II.
Choose a point (s,t) in R. I[K(s,t)] = £(K (t)). Let N be
a neighborhood of f(KS(t)) in Y. Then there exists an open
disc D with center at £(K (%)) such that D < N. Denote the

radius of D by r. Let Ni be the set in X such that f(N;) = D.

1)

Then N, is a neighborhood of K(s,t) = K (t). Since {K )} is a

continuous family, there exists a neighborhood D, about (s,t)

1

such that K(D;) < N;. Then f(K(Dl)) D cN, ‘Hence, £{X)

maps the closed region R continuously into Y. Therefore,

A ZXB in Y.



N
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Lemma 2,8.3. If A and B are p~based loops in X, then
A =3B if and only if £(A) = £(B) in Y.

Proof: The proof of this lemma is the same as the préof
of Lemma 2,4,3,

Lemma 2,8,4, The induced homonmorpnism

iy

« MEps an equ}va—
lence class in X to an équivalence class in Y if and conly if
they have an element in common. |

Proof: The proof of this lemma is the same as the
proof of Lemma 2,4,L4,

Therefore, by Lemma 2.8,4, Ty :m(X,p) - n(Y,p) is
one-to-one. Hence, f, is an isomorphism. Then the Tundamental
group m(X) is isomorphic to the fundamental group m(Y). But

Y i1s homeomorphic to E2

~-(0,0), which has an infinite cyelic
fundemental group by (2.7). Therefore, by Theorem 1.17,
the fundamental group m(X) of the space E3 minus the z-axis

is infinite cyelic,
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