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The problem confronted in this thesis is that of 

determining direct calculations of the fundamental group of 

certain topological spaces. The first chapter contains the 

development of the fundamental group, in general, of any 

topological space. The theory deals only with loops, 

avoiding the need for developing the fundamental groupoid. 

In order to develop the group, a relation between 

p-based loops is established, and this relation is shown to 

be an equivalence relation. Hence, the p-based loops in a 

space are partitioned into equivalence classes. In the 

collection of equivalence classes of p-based loops, an 

identity is discovered, an inverse for each element is dis-

covered, multiplication is defined and shown to be closed, 

and the associative law is shown valid. Thus, the collection 

of equivalence classes of p-based loops is shown to be a group. 

In the first chapter it is established that if two spaces 

are homeamorphic, their fundamental groups relative to a 

certain basepoint are isomorphic. It is also shown that if 

a space Is pathwise connected, the fundamental groups of the 

space relative to different basepoints are isomorphic. The 

thesis deals only with pathwise connected spaces, so flexibility 

of the choice of basepoint is allowed. 

The topological spaces selected for direct calculation 

n 
of fundamental groups are E , the surface of a sphere, 
3 2 ~5 E -(0,0,0), a plane annular region. E -(0,0), and E minus the 



z-axis. Th 

of only one 

proof used-

based at th 

p fundamental group of E u is the group consisting 

element,"called the trivial group. The method of 

to establish this fact is to show that every loop 

n 
2 origin in E is equivalent to the identity loop 

at the origin. Hence, there is only one class of origin-based 

loops in En, the identity class. 

The fundamental group of the surface of a sphere is also 

the trivialj group. The method of proof used is to divide the 

sphere intoj three pathwise connected, open sets R, and Rg 

such that R U R ^ U R 0 is the sphere and R ^ n R g = R . A loop 

in the sphere based at a point p in R is shown to be equivalent 

to the identity loop in the sphere based at p. This fact is 
] 

i 

established by constructing a new loop, equivalent to the 

original lo<pp, such that the new loop is equivalent to the 

identity. 

The fundamental group of the space E^-(0,0,0) is shown 
to be the t] ?ivial group by showing that it is isomorphic to 

the fundamental group of the sphere. 

2 3 The pl^ne annular region, E -(0,0), and E minus the z-axis 

are all shown to have infinite cyclic fundamental groups. All 

of these proofs rely on the fact that the fundamental group of 

.s infinite cyclic, the proof of which may be found 

in Crowe11 fynd Fox's Knot Theory. 

The annulus problem is solved by directly showing.that the 

fundamental group of the annulus is isomorphic to the funda-

mental groujj) of the circle. A somewhat different approach 

the circle i 

is taken in finding the fundamental group of E -(0,0), for 

E -(0,0) is shown to be homeomorphic to the open annulus. 



"5 
Finally, the space E' minus the z-axis is shown to have a funda-

2 
mental group isomorphic to the fundamental group of E -(0,0). 
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CHAPTER I 

DEVELOPMENT OP THE FUNDAMENTAL GROUP 

This chapter is devoted to the definition and 

theoretical development of the fundamental group of a 

topological space. In all definitions and theorems, X 

will denote a topological space. 

Definition 1.1. For any two real numbers x and y, 

[x,y] is the set of all real numbers t satisfying x < t ^ y. 

Definition 1.2. A p~based loop A in X is a continuous 

mapping A: [0,t] - X, where A(0) = A(t) = p. The number t 

represents the stopping time of A, and it will be denoted 

Jj A J J . The point A(0) is the initial point, and the point 

A( || A|j ) is the terminal point of the loop A. 

Definition 1.5. A collection {Hi, 0 < s < 1, of 
, —. g 

p-based loops in X is a continuous family of p-based loops 

if and only if 

(1) The stopping time [| H || depends continuously on s. 

(2) The function H defined by the formula H(s,t) = Hg(t) 

maps the closed region 0 < s < 1, 0 '< t < 11 Hg || , 

denoted by R, continuously into X. 

Definition 1.4. Let p be a point in X and let A and B 

be two p-based loops in X. A is equivalent to B, denoted 



A ~ B, if there exists a continuous family fH 0 < s < 1,., 

of p-based loops in X such that A - H q and B = H^. 

Theorem 1.5. The relation ~ is reflexive, symmetric, 

and transitive. 

Proof: Reflexive: Let A be a p-based loop in X, Define 

a collection of paths {H } as H,(t) = A(t), 0 ^ s <1. For 
s s 

any s, H (t) = A(t), so {H } is a collection of p-based loops, s s 

and H = A and H, = A. Since for 0 S s < 1, || H, |J = Jj A |[ , 
O J- B 

a constant, the stopping time |] H i| depends continuously on s. 
s 

Let R be the closed region 0 < s < 1, 0 < t < || H jj. 

Choose (s,t) e R. Consider H(s,t) = ^s(t)
 = Let ^ 

be a neighborhood about A(t). Then, since AtfO, jj A(J ] X 

is continuous, there exists an open interval I containing t 

such that for all t' e W = I fl [0, || A]f ], A(t') e N. Now 

for all s' e [0,1], A(t) e N. Let J be any open interval about 

s and let K = J fl [0,1], Let D = K x ¥. Then K is an open 

neighborhood about (s,t). Choose (s ',t ') e D. Then H(s/,t/) 

= Hg /(t') = A( t '). But t 1 e ¥, so A(t') € N. Hence 

H(s ', t ') e N, so H(D) c N. Therefore, the function H maps 

the closed region R continuously into X. 

Symmetric: Let A and B be p-based loops in X such that 

A - B. Suppose {H } is the continuous family exhibiting A ~ B. 
s 

Define a family { K g } by K (t) =
 Hi-S(t)* Then K q = = B and 

K.. = H = A. Every element of [K } is an element of {H }, so 
1 o s s 

{K } is a collection of p-based loops. 
S _ ~ 



Choose s.. e [0,1] and € )> 0. Consider jj K j{ , Now 
1 i 

II K0 [| — j| Hn H and since jj H [j is continuous with respect 
X X o "* 

to Sj there exists 5 0, such that for all s e [l-s^-5, l~s^+5], 

II Hsl! e CllHi.gJI -e, II H 1 - S J | + e] =[|| K SJ| -€, ||KflJ| + e]. 

Hence, for all s e [s1-5,si+5], llH1-sl| = liKsil
 e 

[ II K_ || - £, [| K || + e]. Therefore, the stopping time 
i • i 

[| K_ 11 depends continuously on s. 

Choose a point (s^,t) from R w h e r e R' is the closed 

region 0 < s. < 1, 0 ^ t ^ j| K jj , and consider K (t) = EL (t), 
x J " s" J si 1-s..v ' 

Let M be a neighborhood of K0 (t). Since {H } is a continuous 
& * S X 

family, there exists a neighborhood D about (l~s^,t) such that 

H(D) c m . Let D ' = [ (1-s, t) :(s, t) eD}. Then D ' is a 

neighborhood of (si,t). Pick (s', t') € D '. K(s', t') = 

Ks/(t') = H^_s/(t')e M, since (l-s'^t') e D. Hence K(D') c m . 

Therefore, the function K maps R' continuously into X. Thus, 

{Kg} is a continuous family and so B - A. Therefore, the 

symmetric property holds. 

Transitive: Let A, B, and C be p-based loops in X such 

that A - 33 and B - C. Let (H } and {K } be the continuous 
s s 

families of p-based loops which provide the equivalences 

A - B and B - C, respectively. ' Define a collection of p-based 

loops {J } by the formula 
o 

J a ( t ) - f a s f t ) .
 0 f s S 1 } 

W ) ' s , s l -

Clearly J Q = H Q = A and = C. 
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By definition |j H„|[ and jj K |j depend continuously on s. 
S 3 

Then for 0 < s < ~, j| H 0 !j depends continuously on s and 
2.". * *-S' 

for » ^ s < 1, |S n 1| depends continuously on s. Hence, 
d — ± 

for 0 < s < 1, [| JQi| depends continuously on s. 

Let (s,t) be a point in R ", where R " is the region 

0 < s < 1, 0 < t < |i J g jj . If 0 < s < |, then 0 < t < |j H2s|| . 

Let N "be a neighborhood of Jg("t) = Hgg(t). 'Since H is a 

continuous family, there exists a neighborhood D about (2s,t) 

such that H(D) c N. Let D ' = {(s,t) :(2s,t) e D}. Then D ' is 

a neighborhood of (s,t). Pick (s '3t ') e D '. Then (2s ', t') e D 

and H 2 /(t') e N. But Js/(t') = Hg z(t') e N, so J(D') c N. 

A similar argument can be used for K_ if 1 <( s :< 1. 

1 
If s there exists a neighborhood U about (s,t) such 

2 

that for each point (s ',t ') in U, s ' < i, and such that 

H(U) c: N. Also, there exists -a neighborhood V about (s,t) 

such that for each point (s/t ') in V, s ' > 1 and such that 

K(V) c: N. Let W = {(|, t) :(~, t) is in U or V but not both}. 

Let D = (U U V) \W, i.e. if (s ',t') e D, (s ', t ') e U U V, but 

not in W. Then D is a neighborhood of (s,t), where s = and 

J(D) c N. 

The function J, then, maps R " continuously into X. 

Hence, {J ) is a continuous family, and A - C. 
s 

The proof of the above theorem demonstrates that the 

relation ~ is an equivalence relation. The set of all 

p~based loops in the space X is therefore partitioned into 

equivalence classes. The equivalence class of an arbitrary 



5 

•p-based loop A will be denoted by [A], It is upon the set 

of equivalence classes of p-based loops in X, that a group 

structure will be presented. 

Definition 1.6. The product of two p-based loops A and 

B in X is given by the foi-mula 

( A - B ) ( t ) i f A U ) ! t I||A"< t < II All +11 B[ | } . . . 

Theorem 1.7. If A and B are p-based loops, then A*B 

is a p-based loop. 

Proof: Let A and B be p-based loops. Then 

A(0) = A( |[ A|| ) = B(0) = B( jj B|I ) = p. By Definition 1.6, 

( A - B ) ( t ) = ^ [ t l | f A | | f / l U l l < t < | | A | | + | | B | | . 

Then (A»B)(0) = A(0) = p, and (A-B) ( || A *B||) = (A*B) ( |j A11 +j| BJ| ) 

= B( || A J i +H B || - | | A | | ) = B( |1 B || ) - p. 

Hence, the product of two p-based loops is a p-based loop. 

Theorem 1.8. If A, B, and C are p-based loops, then 

A-(B-C) = (A«B) *G. 

Proof; By Definition 1.6, 

[ A - ( B . C ) ] ( t ) = { ^ ) ( t - | | S A | | ) : | | A | < t < || A | | + | | B | | + |! C [ J . 

Then 
(Alt) , 0 < t < | | A | | 

C A - ( B - C ) K t ) = | B t - l | A|l K I l A i l || All + | | B | | 

L O [ t - ( || All +11 B j | ) ] , | | A | | + | | B | | < t < II A l l + | | B | | +11 o i l 

= [ ( A - B ) - C ] ( t ) , 0 S t S || A| | + | | B11 + | | C | | . 

Hence, A'(B'C) = (A-B)-C. 
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Definition 1.8. A p-based loop S is called an identity 

loop at p, or simply an identity, if it has stop-ping time 

II E|| = 0. 

Theorem 1.9. The identity loop E at p has the property 

that if A is any p-based loop, then E*A = A*E - A. 

Proof: Assume E is an identity at p, and let A be any 

p-based loop. By Definition 1.8, |j E jj = 0, so 

E*A(t) ̂ (t-0), J0 < t < || A|| + 0 = A(t), 0 < t < || A|| . 

Hence E *A = A. 

t * llAll 
t = A Similarly, A-E(t) = £-jf Â l , 

-ess); 
0 < t < || A [ | 
t = || A|| - A(t) , 0 < t < ||A|| . 

Hence A*E = A, so E *A = A*E = A. 

Theorem 1.10. For any p-based loops A, A B, B ' in X, 

if A ;A' and B - B,' then A.-B - A'-B'. 

Proof: Let {Hr,} and {K } be the continuous families of 
3 

p-based loops which exhibit the equivalences A ~ A' and 

B - B ' respectively. 

Consider the family {H »K }. This is again a family 
s s 

of p-based loops. Also H = A, K = B, so H • K = A»B, and * ^ o 5 o ^ o - o 5 

H. 1 = A', Kx = B', so Hx •K1 = A'»B'. 

Since {H } and {K } are continuous families, || H_ j j and 
S B S 

| Kg 11 is a continuous function of s. Then || Hg • Kg || = 

| H_ 11 + || K_ |[ is a continuous function of s. 
s s 
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Let 'FL be the closed region 0 < s <1, 0 < t < jj H,|| , 
X s 

let R0 be the closed region 0 < s <1, 0 < t S || K || , and. 
d. B 

let R-z "be the closed region 0 < s < 1, 0 < t < || H i| + |j K |j . 
J S o 

Let (s,t) be a point in R^. Consider (H>K)(s,t) = 

(H -Kj(t) - J V * ) . 0 S t s ||HB|| 
LKs(t- !! Hjl ), II Hg II < t < II Hs I! +11 Ks||. 

Let N be a neighborhood about (H »K (t). If 0 S t ( [JH || , 
s s s 

then since {H } is a continuous collection, there exists a 

neighborhood about (s,t) in R^ such that H*K(M^) =-H(M^) c: N. 

If |! H || <( t S j| H_ 11 + || K_ 11 , then since {K_} is a continuous 
S ' fc> B o 

family, there exists a neighborhood Mp about (s,t-||H || ) in 

Rp such that K(Mg) c N. Let M^ = {(s, t) : (s, t~ || Hg || ) e Mp}. 

Then M-̂  is a neighborhood about (s,t) in R^. Clearly, 

H-KCM-j) c N, since for any ( t ± ) e M^, (H
s. * K g . ) ^ )

 = 

Ks (t-li II ) e N, because (s.,t.-|| H || ) e Mp. 
I i 

If t = || H || , then there is a neighborhood D, about 
o _L 

(s,t) in R-̂  such that H(D1) c N. Note that c R^. Also, 

there is a neighborhood Dp about (s,t-|j H || in Rp such that 

K(Dp) c n. Let D? - {(s'jt' + 11 Hg || ): (s',t') e Dp}. Then 

c Rj and (s,t) e D^. Let D^ = D^ U D^. Then D^ is a • 

neighborhood of (s,t) in R^ and H*K(D^) c N. 

Therefore, the function H*K maps the region R^ con-

tinuously into X. Hence, {H • K '} is a continuous family 
s s 

of p-based loops exhibiting A»B - A,*B/. 
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Definition 1.11. Denote "by TT(X,P), the set G of all 

equivalence classes of p-based loops in X, together with the 

operation defined by the formula [A]*[B] = [A*B], where • 

A and B are p-based loops in X. 

Multiplication in rr(X,p) is well-defined as a result of 

Theorem 1.10. 

Theorem 1.12.- In n(X,p), multiplication is closed, the 

associative law is valid, and there exists an identity. 

Proof; Let [A] and [B] he elements of n(X,p). By 

Definition 1.11., [A] «[B] = [A»B], Since A and B are p-based 

loops, A-B is a p-based loop by Theorem 1.7. Then [A»B] is 

the equivalence class containing the p-based loop A*B. Hence, 

[A*B] e TT(X,P), so multiplication is closed. 

Let [A],[B], and [C] be elements of n(X,p). [A]•([B]•[C]) 

= [A] • [B *C ] = [A<B-C)] = [ (A *B) *C ] = [A-BJ-fC] = ( [A] *[B])*[C ]. 

Hence, the associative law is valid. 

Let [E] be the equivalence class of the identity loop E. 

Let [A] be any element of TT(X,P). Then [E] *[A] = [E «A] = [A], 

by Theorem 1.9, and [A]*[E] = [A«E] = [A], by Theorem 1.9. 

Therefore, [E] is an identity in n(X,p). 

Definition 1.13. For any p-based loop A in X, the in-

-1 
verse loop, denoted by A , is given by the formula 

A-1(t) = A( [| Aj] -t), 0 < t < |I A|| . 

Theorem 1.14. If E is the identity loop at p, then for 

any p-based loop A in X, A-A""1 - E and A""1* A - E. 



Proof: Let E be the identity at p, and let A be a 

p-based loop. Define a collection of paths (H 3, 0 < s < 1, 

by the formula 

Hs 
_/A( t), 0 < t < s |j A|| \ 
~ lA(2s || A|| -t), s H A|1 < t < 2s || A || J ' 

Then 

Hq - A(0), || HJ| - 0, so Hn = E. ' Also, 

u /A(t) , 0 < t < || A|| , 
1= |A(2 j| A11 -1) , || A|[ < t < 2 || A|| = A *A « 

|| A11 > 0 is a constant, and the stopping time 2s || A!| is a 

continuous function of s. 

Let R be the closed region 0 < s ^ 1, 0 < t < 2s|| A|| , 

and let (s,1:) be a point in R. Let'N be a neighborhood in X 

about the point H(s,t) = H (t). Assume 11A11 )> 0. 
s 

Case 1; 0 ^t<( s || A || • 'In this case H (t) = A( t). 
s „ 

Since A: [0, 11 A|| ] -• X is continuous, A: [0, s |j A||] - X is 

continuous, because 0 < s <1. Then there exists a number 

5 y 0 such that for all t' e I = (t-5, t +5), -^(t7) e N. 
e-. 

Let - s ]| A|| -t, and let 5 = min {5,-g-}. Let y max 

(0, t-?}. Then if I 7 = [y, t + ?), I ' c I and A(l) c N. 

el 
Let €2~^jpTf[ a n d x = m a x £0,s-eg}. 

Now let J = [x,s + e^) and D = J x I. Then D is a neighbor-
ei 

hood of (s,t). Choose (s',t') e D. Then t' < t +-jy-. Also, 

s '• || A|| > (s-eg) || A|| 

11 A|1 = s | 1 A|1 - + £-= t 
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Hence, 0 < t < s ' J| A||', SO Hg/(t'") = A(t') e N, since 

t ' e I Therefore, H(D) c N. 

Case 2: s |j A j i <t<2s||A||. Then Hg(t) = A(2s || A|| -t). 

There exists a number 5 )> 0 such that for all t e I, = 

o 1 

C(2s II A|| -t)-5, (2s II All -t) + 5 ], A(tQ) e N, Let e± = t-s J| A||, 

and let § = min{-~^5}. Let Ig - [(2s|[ A|| - t)-?, (2s || A|| -t) + §]. 

Now let = Ct ' :(2s || A|| - t ') e Ig}. Then' 1^ is a neighborhood 

of t. 
el 

Let €g = an<^ x = max {0,s~€g}. Let 

J = [x,s + €g], and let D = J x 1-̂ . Then D is a neighborhood 

of (s,t), 

Choose (s#, t') e D. Then t' e 1-̂ , so 2s||A|| - t' 

< (2s || A11 -t") + €1 and t' > t - Also, 
"2" ~2~ - - -

s '!! A|| < (s + e2) II Ajj + €g( II All ) = s II A|| + = t _ €l + ~T = • 

Ha nee, s '|| A || < t ' <: 2s ' || A|| , so Hg ,(t ') = A(2s '|| A|| - t ') e N, 

since 2s' || A|| - t #e l y Therefore, H(D) c N. 

Case 3: t = s || A jj . Then there exists a neighborhood 

M 1 about (s,t), as in Case 1, such that A(M]_) c N. Also, there • 

exists a neighborhood Mg about (s,t), as in Case 2, such that 

for all (s \t ') e Mg, s '|| A|| < t' < 2s '|| A|| ,, and A(2s '|| A|| -t')c N. 

Let ^ = Mx U Mg. Let ¥ = {(s,t): (s,t) € (1^ U M2)\'(M1 fl Mg)}. 

Let Dg - D 1 \ ¥ . Then Dg is a neighborhood about (s,t) and 

H(Dg) c N. 

Thus, the function H, defined by H(s,t) = Hg(t), maps the 

region R continuously into X. Therefore, {H„ } is a continuous 

family of p~based loops, and A-A"1 E. 
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-1 

One can use a similar proof to show A • A = E. 

Definition 1.15. The inverse of an arbitrary element 

[A] in TT(X,P) is given by the formula [A]-"*" = [A~^]. 

From Definition 1.15? it is easy to see that for any 

element [A] in Tr(X,p), there exists [A""'"] in TT(X,P) such 

that [A]'[A"^"] = [A'""*"] • [A] = [EJ, where [El is the equivalence 

class containing the identity loop E. Hence, it has been • 

established that n(X,p) is a group. 

Definition 1.16. rr(X,p) will denote the fundamental 

group of X relative to the basepoint p. 

Theorem 1.17. If fsX-'lis a homeomorphistn of X onto Y, 

then TT(X,P) is isomorphic to -n(Y,f(p)), for any basepoint 

p in X. 

Proof: Let f : X Y be a homeomorphism of X onto Y. 

Let p be a point in X, and consider rr(X,p). Any p-based loop 

A in X determines an f(p) - based loop f(A) in Y given by 

the composition f»A(t) = f(A(t)), 0 < t < ]| A|| . The stopping 

time of f(A) is clearly the same as that of A. 

Suppose that A and B are p~based loops in X such that 

A = B. Let {H )3 0 < s < 1, be a continuous family of p-based 

loops demonstrating A - B. Consider the family 

{f(Hg)), 0 < s < 1. H = A and H = B, so f(HQ) = f(A) and 

f(H-,) = f(B). The stopping time |j H |j is continuous with 
_L S 

respect to s. Then, since || Hg || = || f (Hg) || , [| f(H0)[| is 

continuous with respect to s. 
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Let R be the closed region 0 < 3 < 1, 0 .< t < j| H 
s 11 

Since {H„} is a continuous family, the function H defined by 
o 

the formula H{s,t) = Hc,(t) maps R continuously into X. 

Let R' be the region 0 < s < 1, 0 ^ t < || f('H ) j| . Note 
s 

that R7 = R. Let (s,t) be a point in R Let N be a 

neighborhood in Y about f[H(s,t)'j. Then .f"'i'(N") is a neigh-

borhood about H(s,t) in X. Also, there exists a neighborhood 

D about (s,t) in R = R ' such that H(D) c f~J*(K). Then 

f [11(D)] c N. Hence, the function f 0 H, defined by the formula 

f° H(s,t) = f(H(s,t)) maps R7 continuously into Y. Therefore, 

{f(H )}, 0 ^ s ^ 1, is a continuous family, and f(A) f(B). 

Then f determines a mapping of the fundamental group 

TT(X,P) into the fundamental group rr(Y,f(p)) given by the 

formula'f#([A]) = [f(A)]. 

Note that f(A*B) = f(A)»f(B), since 

f(A-B)(t) = f((A-B)(t)) = AH0))"! 
t S |1 A|| , _ 

" All < t < II All + II B| 

_Jf(A(t)) , 0 f t < || f(A) 
-lf(B(t-|| f(A) J! )), || f(A) £ t < || f (A) || + || f (B) !| , 

= (f(A).f(B)) (t). 

. Now f # {[A]) -f*([B]) = [f (A) ] *[f (B) ] - .. 

[f(A)« f (B) ] = [f (A *B) ] = f#([A-B]) = f*([A].[B]). 

Hence, the mapping f^ is product preserving. It is clear that 

f.)f( rr(X,p)) c rr(Y,f (p)). Thus, the mapping f^ : Tt(X,p) rr(Y,f(p)) 

is a homomorphism. Denote f.̂  as the homomorphism induced by f. 

3 
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• The mappings f :X Y and f.'' 'L: Y X induce homomorphlsms 

f*:n(X,p) -> rr(Y,f(p)) and (f"1")*: n(Y,f (p)) - n(X,p). The 

-1 ™"L 
composition functions f o f and f « f " are identity maps. 

Hence, the compositions (f™ « f)^ - f ° f a n d ( f o f )* 

= f£f~^ are identity'maps. It follows, then, that f # is a 

one-to-one, onto mapping. 

Therefore, rr(.X,p) is isomorphic to TT(Y,f(p)). " • 

Definition 1.18. A path A in X is a continuous mapping 

A s [ 0 , t] - X. 

Definition 1.19* X is pathwise connected if any two 

points of X can he joined by a path lying in X. 

If X is a pathwise connected space, the fundamental groups 

of X, defined for different basepoints, are all- isomorphic. 

(l,p. 21). Then it is evident that the fundamental group of 

a pathwise connected space is independent of the choice of 

basepoint. In the remainder of this thesis, all spaces , 

considered will be pathwise connected, and the fundamental 

group of these spaces will be denoted TT(X). 



CHAPTER II 

FUNDAMENTAL GROUPS OF SELECTED SPACES 

In this chapter specific topological spaces will be-

chosen, and the fundamental group of each space will be 

identified. The spaces to be examined are En, the surface 

3 2 
of a sphere, E -(0,0,0), a plane annular region, E -(0,0), 

3 
and E minus the z-axis. 

Theorem 2.1. Any constant p-based loop is equivalent 

to the identity loop at p. 

Proof: Let A:[0, |[ A|| ] -> X be a p-based loop defined 

by the formula A(t) = p. Then A Is a constant p-based loop. 

Let E be the identity loop at p. Define a collection {H }, 
s 

0 < s <1, by the formula H (t) = A( t), 0 < t < s • jj A || . 
^ ! 

Since A(t) = p, 0 < t < |j A|| , and 0 < s < 1, {jĤ } is a 
j 0 

collection of p-based loops.- Also, H (t) = A(t 

and H-^t) = A(t), 0 < t < || A]| = A. 

For 0 < s < .1, j[ II|J = s»f| A||, which is s times a constant 

term. Hence, the stopping time || H || depends continuously on s I 
S . ' ! 

Now pick a point (s,t) in the region 0 < s <1, 0 '< t < || Er 

H(s,t) = H (t) = H (t) = p. Let N be a neighborhood about 
O O 

HgCt) - P- Let M be any neighborhood of (s,t) In the region 

0 < s <1, 0 < t < || Hg || . Let (s ', t ') be a point in M. 

Then Hg/(t
/) = p e N. Hence, H(M) c: N. Therefore, the 

14 

s 

), 0 < t < 0 = E 
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function H, defined by the formula Il(s,t) = m aP s • 

closed region 0 < s < 1, 0 < t < |l Hgli , continuously into 

X. Hence, {H}, 0 < s < 1, is a continuous family, and 
s 

E - A. 
<"i n 

(2.2)The space ET_. Let A be a p-based loop in E . 

Then A is a continuous mapping A:[0, |J A|| ] -» En, and A can 

be written by the .formula A(c) = (f-^t), fn(t)), 

0 < t < || AS! * where f-^fg, '• *, f n
 a r e continuous functions 

of t. 

Suppose, without loss of generality, that p is the 

origin. This proof will show E ~ A, where E is the identity 

loop at the origin. Define a collection fHg}, 0 < s < 1, by 

the formula Hg(t) = (s* f-^(t), s* fg(t), *•*, s* fn(t)), 

0 < t < || A11 . Then {H^} is a collection of loops based at 

the origin. 

H (t) is the origin, 0 < t < |J A|| , aiid 

Hx(t) = f2(t), •••, fn(t)), 0 s t s II All . 

Then H is a constant loop at the origin and == A. For 

every s e [0,1], || Hg || = || A|| . Hence, the stopping time 

|| H || is a constant function of s and thus, continuous. 
s 
Let R be the region 0 ^ s ^1, 0 < t ^ || A|| . Let 

(So,t0) be a point in R. Consider H(so,tQ) = Hg (tQ) 

= (s0- %(t0), s0. f2(to), so. fn(tc)). For points 

Q and ¥ in En, let the distance between Q and ¥ be d(Q,W). 

Let 0 = H ft ), and let N be a neighborhood of Q. Then 
^ sQ

v
 o'

 p 

there exists a number' r )> 0 such that the set N ' = {¥ :d (Q,¥) r} c N. 



• 1 6 

By the continuity of A, there exists a neighborhood 

I ' o f t such that for all .t e I n [0, || A|| ], the distance . 
o 

between (f^t), f2(t), •••, fn(t)) and 

fn(tQ))
 i s l e s s t h a n ^Ts-^-rry* T h e n 

° 2 1 ' 

{[f1(t)-f1(t0)]
2+[f2(t)-f2(t0)]

2+ • • •+cfn(t)-fn(tO) ]
J T ?< 2rs™Fry 

and 1 

The loop A, based at the origin, is a closed path in En. 

Then there exists a number M > 0 such that for 0 < t < || Aj|, 

the distance between A(t) = (f-jjt), f2(t), **">
 a n d 1 

the origin is less than M. That is, [f2(t) + fg
2(t) + *»*+f2(t);fZ<M. 

Let J = (Bg- ̂  sQ +2^-) n [0,1]. Then for all 

S € J, 1S-S0| < • 

Let D = J x I. Then D is a neighborhood of (so3tQ). 

Choose (s,t) e D. Consider also the point (sQ,t). Let 

Q - (so*
 So " f 2 ^ o ^ So * ̂ n^o^* 

W = (s • f]_(t), s • f2(t), •••, s • fn(t)), and 

Y = (sQ- f-Jt), s0. f2(t), •••, sQ • fn(t)). Then, by the 

triangle inequality, d(Q,W) < d(W,Y) + d(Y,Q), ^ 

d(W,-0 = [(s-s0)
2- f^tt) + (s-s0)

2- f/(t) + •••+(s-s0)
2-fn

2(t)]2 

= |s-80| -[f/tt) + f2
2(t) + ••• + fn

2(t)F < I.S-SQ I . M < §. 

a(Y,Q) = (s0
2[f1(t)-f1(to)]

2 + s0
2[f2(t)-f2(to)]

2 

+ ••• + 

_1 

= s 0 • f [f1(t)-f-1(t0) ]
s + [f2(t)-f2(t0)]

2 + •••+[f n(t)-f n(t o)]
2) a<|. 
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Hence, d(Q,W) < r. Therefore, Ii('s.t) - Hg(t) 

- (s* f1(t), s«. f2(t), •*% s* ^(t)) € N'.' s o H( D) c N- • 

Then the function H, defined by H(s,t) -- Hg(t), maps 

the region R continuously into X. This fact indicates that 

the collection of p~based loops {Hg}, 0 2; s < 1, is a continuous 

family exhibiting Hq - A. By Theorem 2.1, E -H Q. Therefore, 

by the.transitive property of loops, E ~ A, 

Hence, rr(En,p) is the trivial group, where p is the 

origin. Since E n is pathwise connected n(En) is the trivial 

group. 

The proof for showing that the fundamental group of E " 

is trivial will also hold for many subspaces of E . Let Y be 

a subspace of E n for which there exists a point p in Y such 

that if q is any other point in Y, p and q can be connected 

by a straight line in Y. Then the fundamental group of Y is 

trivial, and the proof is similar to the proof for En. An 

example of such a subspace Y is the space In, where I n is 

the closed interval [0,1] crossed with.itself n times. 
p ? 2 

(2.3) The sphere. Let X = {(x,y,z) : x~ + y~+ z = 1}. 
3 

Then X is the unit sphere in E' . Let 

R1 = {(x,y, z) e X: z > |}, Rg = C(x,y,z) e X: z < - , 

and 

R = {(x,y, z) e X: - £ < z < . Let p be a point in R, and 

let A :[0, || A|| ] - X be a-p-based loop in X. For any set M, 

denote by M the closure of the set M, 

Lemma 2.5.1. If t^tg e [0, || A|| ] such that A(t1) e R1 

and A(t2) e R̂ >, then, assuming ^ < tg, there exist points 
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and tg such that < t./ < tg < fcp, A( t/) e R^, 

A(t2') €~R2, and if < t < tg, then A(t) £ R. 

Proof: Let t^,tg he points in [0, jj A(| ] such that 

A(t^) € R^ and A(tg) e Rg. Assume, without loss of generality, 

that t.̂  < tg. Let = {t: t <( t? and A(t) e }. R-̂  is a 

closed and compact set, and A is a continuous mapping of 

[0, || A[| ] -* X. . Hence, A"1(R1) is closed. Then A"1(R1)n[0,tg] 

is a closed set. But S-̂  = A (R^)fl[0, tp], so is closed. 

Hence, has a largest element. Denote this element t^. 

Let Sg = {t : t^ <( t < tg and A(t) e Rp). Rg is closed 

and compact, so A~^(Rg) is closed. Then A'^Rg) n[t^, tg] is 

closed. Therefore, Sg is closed, and Sg has a smallest 

element. Denote this element tg. Then t̂  <( t^ <( tg' < tg. 

Also, A(t^) e R and A(tg) e Rg. Let t be such that t^ <( t <( tg'. 

Then A(t) ^ R^ and A(t) | Rp. Hence A(t) e R. The points 

t-̂  and tg' will be called a prime pair in the domain of A. 

Lemma 2.3.2. For any loop in X, there exists only a 

finite number of prime pairs. 

Proof. Suppose there exists an infinite number of prime 

pairs for a given loop A. Then there exists a countable 

subset of these pairs. Denote .the countable sequence of 

pairs as t^, t^, tg, tp, t^, t^, •••, tn, t^, •••. Consider 

the sequence tg, t^, •••, tn, • • •. For i e (0,°°), t^ can 

be in at most two prime pairs. Hence, the sequence 

t̂ l' tg, •••, t , • • • is infinite. Then this sequence has a 

sequential limit, which will be denoted T. Since t^, tg, ••• 

is an infinite sequence of real numbers, there exists a 
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monotone subsequence . t, , t, . t_. , *a • which has a limit 
il x2 

point T. Now t. < t/ < t, , for n - 2,34**. Thus 
•n-1 n n+1 t ' 

there exists a monotone subsequence t^, t^, •••. Then T is 

the limit of t' , t' •••. But, for this to be true, A(T) 
1 2 _ 

would have to be in both and Rg, which is impossible. 

Therefore, there can exist only a finite number of prime pairs in 

A. 

Lemma 2.2.5. • Let r be a point in the interval [0, |j A11 ] 

such that A(r) e R. Let B':[0,t] -» R be a path in R such 

that B'(0) = A(r) and B'(t) = p. Let B:[0,2t] - R be defined 
by the formula _JB'ft '), 0 < t' < t 

B( t ) ~ IB 'Jst-t), t < t ' < 2t. 

Then B is equivalent to the identity loop at A(r). 

Proof; B(0) = B'(0) = A(r), and B(2t) = B'(0) = A(r). 

Hence B is an A(r)-based loop in R. Define a collection 

{H }, 0 ^ s < 1, of A(r)-based loops by the formula 
s 

TT /+. ' \ . TB'ft '), 0 < t' <. s . t 
Hs^L' > ~ LB/(2st-t '), st < t' < 2st. 

Now H (t') = B(0) = A(r), 0 < t < 0, so HQ is the identity 

loop at A(r), = B. 

The proof that (H ), 0 < s < 1, is a continuous family 
s 

is exactly like the proof in Theorem l.l4 that (H ] is a con-
s 

tinuous family, changing A to B-' and 11 A11 to t. Then B is 

equivalent to the identity loop at A(r). 

Lemma 2.^.4. If A: [0, j| Aj] -» X is a p-based' loop, 

t e [0, || A [j ] , and B:[0,||B|| ] - X is any A(fc)-based loop 

equivalent to the identity at A(tQ), then the p-based loop A
7 

defined by the formula 



fA(t), c 
a (t) - r 
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B(t-tc), tQ'< t < t0 + || Bj| 

[A(t-|f B|| -t0), tQ +'|j B|| < t < tQ + |j A|| + || B |l -

Is equivalent to A. 

Proof: Let {H }, 0 2 s < 1, be the collection of A(t )~ 
— 3 •' x O' 

based loops which establishes B is equivalent to the identity 

at A(t ). Define a collection {K^}, 0 ^ s < 1, by the formula 
O jb> 

(A (t) , 0 < t < t 
V". /4-\ =

 V > 3 O 

K ^ ^ o ) ' t o - t - tO + s * l l b!I 
,A( t~s • ]| B 11 ), tQ+ s • i) B !| < t < s -|| B1! +|| A1! . 

The proof that (K), 0 ^ s < 1, is a continuous collection of 
o 

p-based loops is similar to the proof in Theorem 1.10. The 

collection {K}, 0 < s < 1, establishes A - A'. 
s 

With these four lemmas established, the following proof 

will show that the fundamental group of a sphere is the trivial 

group. Let = R U R.̂ , and let Rg' = R U Rg. Note that R^ and 

Rg are both homeomorphic to the interior of a circle. Then any 

loop in R.̂  or Rg' is equivalent to the identity. 

As stated previously, A: [0, jj A11 1 — X is a p-based loop in 

X. If A lies entirely in R̂ ' or entirely in Rg', then A is 

equivalent to the identity loop .at p. Suppose, then, that A 

does not lie entirely in R^ or entirely in Rg'. Then there 

exist points t-^tg e [0, || Aj| ] such that A(t1) e R^ and 

A(tg) e Rg. By Lemma 2.3.1, there exists at le'ast one prime 

pair in [0, || A11 ] . By Lemma 2.3.2, there exists at most a 

finite number of prime pairs in [0, || Aj|J. Denote the prime 

pairs in [0, || A j| ] by t±91^, tg, tg' •••, \,t^. 

Suppose, without loss of generality, that Aft-̂ ) e R^. 

Then A(t-̂ ) £ Rg, A (t g) € Rp, A(tg £ R-̂ , A(t-̂ j £ R-̂ , etc. Let 

T 0 , T 1 , T g , **%Tn be points in [0, |Aj[] such that Tq = 0, and 

^i-1 — Ti — "̂ i+i5 n* Then, for i = 1,2, •••,n, 
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For 1\3 i = 1,2, *' *• n, let B/i[G,t] -» R be a path in 

R such that B.'(O) = A(T. ) s.nd B/(t) = p. Let B, :[0,2fc] -» R 
J- X 3. 

be defined by the formula 

B. ( f '), 0 < t ' < t 
^ " lB'(2t-t '),t < t ' < 2t. 

By Lemma 2.5.3, Bi 1s an A(Ti)-based loop in R such that Bi 

is equivalent to the identity loop at A(T^). 

Define a path A':[0, || A'jj ] -• X as follows: 

r, 

A ' (t) J 

A( t), T Q - 0 < t < T x 

Bl(t-Tl), < t < T l + || B1|| 

A(t-|| B1|| ), T1 + || B1|| < t < || B1|| + T, 

B2(t-[T2 + 1 || B || ]), T2 + I |i B || < t< Tp+ 1 || B. || 
^ 1=1 1 ^ i=l 1 2 i=i. 1 

A(t-1 || B. ||) , T_+ 1 li B || < t < T + 2 || B || 
i=l 1 d i=l i=l 1 

+ 2 || B4 ||]), T + S || B || < t < T, + I || B || 
J J i=l x ^ i=l 1 •> 1 

© 

Bnl'-IVli II BiH I), Tn +°gj| B1|| < t < T n 4-J.Jj B l 

\A(t-2 || B ||), T + § || B || < t < 
i=l n 1=1 1 

n it 
+ 2 II B, 
1=1 1 

By applying Lemma 2.3.5 n times, A ' - A. 

II B1 || Let S = T 
o • o °, S1 = Tx +

 !l Dl n , and for i = 2,5,.. -^n, S. 

1-1 "2 

B T. + 2 
1 J=1 3 

II Blll Let S n+1" A 

Then for i = 0, 1, 2, •••, n, the path A'(t), t € [ s
i ^ i + 1 ] , 

is equivalent to A^t+S^, t e[0, Si+1-S±], and A ' :[0,S1+1-Si ]-R 

is a p-based loop in R. Since R c R^, A ' s[0,SjL+1~S1 ] - R is' a 

p-based loop in R-̂ , and is therefore equivalent to the identity 

loop at p. 
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2. 

* « • • 9 

For i = 0, 1, 2, •» % n, let A/ = A':[0, ^ ] 

Then A':[0, || A[{ ] -• X is equivalent to A^ * An'• Ap 

Since A/, i = 0, 1, 2, •• 

at p, then A' is equivalent to the identity a 

R. 

A n* 

A ' so A is equivalent to the identity at p 

1 " i+1 

'• A'« A0 
o 1 2 

n, is equivalent to the identity 

p. But 

Therefore, 

since A was an arbitrary p-based loop in X, and 

connected, the fundamental group tt(X) Is the tr 

(2,4) - (030,0). The fundamental group 

E^~ (0,0,0) is the trivial group. This will ce 

.5 by showing that the fundamental group of E 

isomorphic to the fundamental group of the sphe 

In spherical coordinates let X = {( p, 0, cp) : 

0 < 0 <( 2tt, >0 < cp < rr}, and let 

X is pathwise 

ivial group, 

of the space 

established 

(0,0,0) is 

re. 

P > 0 , 

Y = f ( p , 9j cp) : p= 1, 0 0 <( 2tt, 0 < c p ^ T t } , 

Define a mapping f by the formula f ( p, 0, cp) = (1,0, cp), for 

( p, 0, cp) e X. Then f : X - Y. 

Let N be an open set in Y. Let P - ( p, 0. q>) be a point 

in f™ (N). Since N is open, there exist 0̂ . 

such that the set D -- (1,0', cp') :0-, <C 0 ' <C 0p .and 

cp̂  <C cp' < q>>3 contains (1,0, cp), and D C N. ITo 

a basis element for the topology on Y and thai: 

L e t D' = f{P0»e0»1>0) : 0 < P 0 < l> + 1 , 0], < eo < 

Then D' is an open set about ( p, 0, cp) in X. Let(p", 0 '', cp'') 

be an element of D T h e n f ( p " , 0 ' ' , cp'') = ( 1 , 0 " , cp'') e D , 

since 0̂_ 0 " <C QQ an(^ ^ ^ cp'' <C q>>. Therefore, D' e f~^(W), 

cp̂ , and cfVj 

te that D is 

(l, 0, cpj — f ( p, 0, cp). 

0g ? and cp̂  ̂  cpQ ̂  cpp } < 
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and f"1(N) is an open sec. Hence «r is a continuous 

mapping. 

As observed in Theorem 1.17, f induces a homomorphism 

f^iTr(X) - TT(Y), given by the formula f^([A]) -- [f(A)], 

where [A] e TT(X). Let p be any point in Y, Let [A] be an 

element in n(Y,p). The mapping j tY -* X is the inclusion map-

ping, or the identity. Then J*([A]) e n(X,p), where :TT(Y)-* TT(X), 

and f^(j#([A])) = [A]. Hence, the composition is the 

identity map, and is onto. 

Lemma 2.4.1. For any point p in Y, any p-based loop 

A in X is equivalent to its projection f(A) in Y. 

Proof: Let p be a point in Y. Let A:[0, ]| A[| ] -* X be 

a p-based loop in X. The loop A can be described as 

(p(t), 9(t)j cp(t), where p, 8 and cp are continuous functions 

of t € [0, || A||]. Define a collection {H }, 0 < s < 1, of p-based 
s 

loops by the formula 

Hs(t) = (p(t)[s 9( t) 3 cp(t)), for 0 < t < || HS||=||A|| 

II0(t) = (l,9(t), cp(fc)), so Hq = f (A). 

V ^ ) = s o Hi = A-

For every s e [0,1], || Hg || = || A11 . Then the stopping 

time || Hg|| is a constant function of s. Therefore, the 

stopping time || H || is a continuous function of s. 
s 

Let R be the closed region 0 ^ s < 1, 0 < t < || H || . 
s 

Let (s,t) be a point in R. Let N be a neighborhood in X about 
"J ^ 

H(s,t) = Hg(t). Let p(t)« (s + = ^ * T h e n there 



e x i s t a 5 )> 0 and 0^j6 2 ,cpp a n d cfb such that, the s e t D 
*)£ "5f * ' 

= {( p, 0, cp) : p -5 < p < p + 5, 0^ <( 9 < 02 , cp̂  < cp <' q>p} con ta in s 

H ( t ) and D c N . 
s 

Since = A and A i s con t inuous , t h e r e e x i s t s an 

i n t e r v a l l ' about t such t h a t f o r t ^ , t g e I = 

l ' fl [ 0 , | | A|j ] , A(t^) and A(tg) are i n the s e t 
o 

K — { p, 8, cp) ; j p ( t ) — p | 'x -7)— , 0-̂  *\ 9 *\ 0g5 cp1 "\ cp < cf£ } • 

Then H^( t n ) and H^( t 2 ) a re i n K. Now A i s a c losed loop 

i n X, based a t p . Hence, t h e r e e x i s t s a number M /• 0 such 

t h a t f o r t e [0, || A11 ] , p ( t ) <( M. Let 

J ' — {s ' : | s~s ' | < -g | ^ 1 | }. Then J = J ' n [ 0 , 1 ] i s a 

neighborhood of s . Let G = J x I . Then G i s a neighborhood 

of (S-, t ) i n R. 

Let ( s t ' ) be a p o i n t i n G-. Then 

H ( s ' , t ' ) = H g / ( t ' ) = ( p ( t ' ) [ s ' 0 ( t ' ) , c p ( t ' ) ) , 

and 

H ( s , t ) = H s ( t ) = ( p ( t ) [ s + e ( t ) , c p ( t ) ) . 

Since t and t ' e I , H^(t) and H-^(t') a re .in K. Hence, 

ex < 9 ( t ' ) < 02, 01 < 0( t ) < 02 , CfXj_ < cp(t') < cp2, 

cpi < cp(t) < Cf£, and | p ( t ) - p(t ') | < ^ § - . 

Now 

l r p ( t ' ) ( s ' + - c p ( t ) ( s + - ^ i f - ) ] l 

1-S \ -i r ^fj. \ /„ , 1 —S | [ p ( t ' ) ( s + ] - [ p ( t ) ( s + ] I 

| [ p ( t , ) ( s / + - [ p ( t ' ) ( s + - ^ 4 y ) ] | 

1 I / „ 
2 s • | p(t ') - p( t ) | + | s 7 - s j • | p(t ' ) - l | < £ + •§ = 5. 
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Then H(s t') e D c t\t. Therefore, H(G) c N, and H maps R 

continuously into X. Hence, {Ht„). 0 $ s < 1, is a continuous 

family, and f(A) - A. 

Lemma 2,4.2. If A and B are p-based loops in Y such 

that A - B in X, then A - B in Y. 

Proof: Let A and B be p-based loops in Y such that 

A - B in X. Let {H }, 0 < s ^ 1, be the continuous family 
s 

of p-based loops in X which establish A z B. By Lemma 2.4.1, 

for all s e [0,1], H ~ f(H ), and f(H ) € Y. 
S o S 

Consider the family ff(H )), 0 :< s <1. Assume H ' = A 

and Hx = B. Then f(H ) = f(A) and £"(%) = f(B). But A and B 

are contained in Y, so f(A) = A and f(B) = B. Hence, f(H ) = A 

and f(H1) = B. For every s e [0,1], ||'Hq || = || f(Hg) || . 

Hence, since {H } is a continuous family, the stopping time 
s 

II H l| = || f (Hg) || is a continuous function of s. 

Let R be the closed region 0 < s < 1,. 0 < t < || f(H_) || =|| H j|. . 
p 

Choose (s,t) e R. f[H(s,t)] = f(Hg(t)). Let N be a neighborhood 

of f (Hg (t)) in Y. Then there exist 0^, 0g, cp̂ , and cf̂  such that 

the set D = {(1, 9, cp) : 0̂  <( 0 <C 0gj cp̂  <( cp } contains 

f(Hg(t)> and D c N. Let Dx = {(p, 0, cp) :0 < p < °=, 01< 9 < 0g , cp]_< cp< ĉ  }. 

Then D, is a neighborhood of H0.(t) in X. Hence, there exists 
JL o 

a neighborhood Dg of (s,t) in R such that H(Dg) c D^. Then 

f(H(Dg)) c D c N. Hence, f(H) maps the closed region R con-

tinuously into Y. Therefore, A - B in Y. 

Lemma 2.4.3. If A and B are p-based loops In X, then 

A - B If and only if f(A) -• f(B) in Y. 

Proof: Let A and B be p-based loops in X such that 

A - B. By Lemma 2.4,1, f (A) - A and B = f(B). Then by the 
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transitive property of ~ , f(A) ~ "(B) in X. Hence, by 

Lemma 2.4.2, f(A) « f(B) in' Y. 

Now suppose f(A) - f(B) in Y. Then, since Y c X, 

f(A) ™ f(B) in X. By Lemma 2.4.1, A Z f(A) and f(B) « B. 

Therefore, by the transitive property of -, A - B, 

Lemma 2.4.4. The induced homomorphism f # maps an 

equivalence class in X to an equivalence class in Y if and 

only if they have an element in common. 

Proof: f^:rr(XJp) -• rr(Y,p). Let [A] be an equivalence 

class in X and suppose f^( [A]) = [B], where [B] is an equivalence 

class in Y. By Lemmas 2.4.1 and 2.4.3, f#:[A] - [f(A)j. Hence, 

Cf(A)] = [B]. Note that f(A) e Y and f(A) e X, since Y c x. 

By Lemma 2.4.1, A =f(A). Hence, f(A) € [A]. Since f(A) € [f(A)] 

= [B]', f(A) is common to [A] and [B], 

Let[A] be an equivalence class in X and [B] be an equiva-

lence class in Y such that there exists a p~based loop C such 

that C e [A] and C e [B]. As seen above f^([A]) = [f(A)] in Y. 

C € [A], so f (c) £ [f (A) ] by. Lemma 2.4.3. But C € [B], so 

C e Y and f(C) = C. Hence C e [f(A)]« Therefore, since C 

cannot be in two different equivalent classes in Y, [f(A)] ~[B], 

Hence f*[A] = [B]. 

Therefore, with Lemma 2.4.4 established,-it is clear that 

F*!TT(X,p) - TT(Y,P) is one-to-one. Then f # is an isomorphism. 

Thus, the fundamental group TT(X) is isomorphic .to the fundamental 

group TT(Y). In (2.3) it was observed that rr(Y) was the trivial 

group. Hence TT(X) is the trivial group. 
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Theorem 2.5. The fundamental group of the circle is 

infinite cyclic. (l,pp, 2^-29). 

(2.6) The annulus. in the following proof, the 

fundamental group of the annulus will be shown to be in-

iin.ite cyclic by establishing that it is isomorphic to the 

fundamental group.of the circle. 

In E2 let G1 = {x,y) : x2+y2 - 1}, Gb = {(x,y) : x2+ y 2 = 4}, 

and let G be the annular region between and including G* and Gb. 

Define a mapping p :G - G1 as follows: 

For 

(x,y) e G, p(x,y) = ( ~=ZZZZ s ~ i l J; 
Vx + y • + y 

then if y^) were on G and L were the line containing (0,0) 

andfx1,y]), 'then p maps L n G to (x1,y1). 
t "1 00 

Let N oe an open set in G . Then N = U M , where M is 
i H"-'- n n 

an open arc on G , n = 1 , 2 , . For some n, let the end-

points of the arc Mn be an,bn> Let L be the line containing 

(0,0) and an, and let be the line containing (0,0) and b . 

Let and L be that part of Ln̂ ]_ and Ln g, respectively, 

which intersects G. Let Kn be that part of G which lies 

between, but does not include L^ 1 and L^ g. Then K = p~1(M ). 
CO ^ i * 9 ^ 

Let K = U K . Then K = p (N). Since for each n, K . is 
n=l n 

open in G, K is open in G. Hence, the inverse image of open 

sets is open. Therefore, p is continuous. 

The function pdetermines a mapping p^ of rr(G) into 

n(GX), 'given by p*([A]) = 0(A)], where [A] e tt(G). This 

mapping p :̂ tt(G) -» rr(Ĝ ) is a homomorphism, as seen in the 
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proof of Theorem 1,17. Note that p maps the subspace G onto 

Itself. 

To show p Is onto, choose any basepoint p in G1. Let 

[A] be an element in rr(G" ,p). The mapping j :G ' -» G Is the 

Inclusion mapping, or the identity. Then j^([A]) e rr(G,p), 

where j ̂  : TT( G^) -• TT(G), and p*(,j*( [A])) - [A], Hence, the 

composition is the identity map, and' p^ is onto. • 

Lemma 2.6.1. For any point p on the circle G1, any p-

based loop A in G is equivalent to its projection p(A) on 

the circle Ĝ ". 

Proofs Let p be a point on the circle G1. Let 

A:[0, |t A|f ] G be a p-based loop in G. The loop A can be 

described as (f(t), g(t)), where f and g are continuous 

functions of t e [0, || A11 ]. Define a collection {Hg},0 < s ^ 1, 

of p«based loops by the formula 

H, (t) = (f(t)[s + 
1-s 

> s ( t ) S + 
l-S ;]), 

f"(t)+ gc(t) 

for 0 < t < || Hs|| = || A[|. 

H. ,(*) = ( III1 
47? 27 f (t)+ g"(t) AJZ 

Mil 
f "(t)+ g (t) 

0 = "(A). 

I%( t) = (f(t), g(t)), 0 < t < || A|| , = A. 

For every s e [0,1]., || H || = || A11 . Then the stopping 

time 11 H || is a constant function of s, and thus, continuous, 
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Let R be the closed region 0 < o < * --t 0 < t < j| H || « II All „ 

Let ( s
0?t Q) be a poinL in R. Consider H(snJfcn) ~ Hq (tn) 

( f( to'[ so + 

oJ cv 

1-s o 
1 3 s(tn) s + 

. o 
o 

vfs(t0)+ g'(t0) 'f (t 0)+ S (t 0) 

Let N be an open disc centered at H(s ,tQ) with an arbitrary 

radius r. 

By the continuity of A, there exists a neighborhood I ' 

about t such that for all t-^t^ e I = l' D [0, || A{[ ], the 

distance between (f(t^), g(t^)) and (f(tg)., g(tp)) is less 

jT 

than -g. If x and y are points> denote the distance between 

x and y by d(x,y). Then d[(f(t^),g(t±)), (f(t2), g(tg))] < 

But 

H-Jt). = (f(t), g(t))5 0 < t < || A||. Hence d(H1 (tn ) , ( t p ) ) < 
IV "2-

Now for a fixed t, the relation between d[H (t)3Ho(t)] 

and d[H1(t), Hn(t)] will be investigated,, where s e [031], 

r 

'?! 

O 

Pick t e [0,|| A|| ], and let s e [0,1], Note that H (t) is on 

the circle G1. 

d[Hs(t), H0(t)] = i[(f(t) 
1-S 

S + ro *3 
-/f'-(t)V(t) 

s( ' t ) 
1-s 

+ -j)' krf s-
f^(t)+ g (t) 

g(t) 

•s?~(t)+ g ^ t ) 

{f8(t> •[(• + ".,^77—7™) -(7- ) + 

!(t)-F0 s + 
1-s 

*£2 5" 
, ) ^ .—r 

f"(t)+ g £(t) vf^(t)+ gd(t) 

\ f ) 1 / 2 
= ; J j 
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V(t)4^(t) vfli(t)+ g^(t) 

K°W fft) g(t) 
Hr (t)»H

0(
t)]= a[(f(t)» e(t))> ( >' */f2(t)+gS(t)'J'J 

• p / 1 \2 o / 1 \ -A-/2 
f ( t ) • ( 1 - ) + g ( t ) • 1 1 - r~-rg~~* — — j I 

V > V ^(t)+ g^(t)/J 

1 
Vf^(t)+ g^(t) 4 ^ y r ? ( t ) 

Hence, d [Hg(t), HQ(t)] - s.fd^t), HQ(t)]). 

Consider HQ(t ). ' This point Is on the unit circle G . 

Denote the point (0,0) by A. For any t, denote the line 

segment with end points A and H (t) bylft. Then there exist 

numbers eg )> 0 such that the angle between Xf̂ ~"e£' and 

7TE -*~£T is less than 90°. Let I, - [t ~en, t + en], o 2 1 L o 2' o 1J 

Let I2 = I H I . Then tQ e I?, and for t̂ , tp e Ip, the 

angle between and "UtvJ is less than 90°. 

Let t̂  and tp be points In Ip. The objective here is to 

show that for any s e [0,1], dfH^t-^, hq ( ) ] < d[H-, (t )̂ ,Hn (tp) ] 

Choose s e [0,1]. Let H^t^ = P1, H^t^ = P^, H^t^ = p°, 

H1^2^ = 2̂> Hs^t2-' = 'denote the angle at A between 

P'̂ K and Pp'A as angle A. Construct a line C parallel to 7iPp 

and intersecting AP at P?. Construct lines h and k parallel 
^ ± 

to the y-axis, such that h intersects ~KF̂  at Pp and k in-

tersects APg at Pg. Denote the Intersection of h-and C by 

P, 2 ^ and the intersection of k and C by P0 
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and denote d(P.^,P^), b' denote d(P^, P-f), a denote d(P^,Pp) 

a' denote d(.P̂ , Pg' h). 

Since C and 1€P^ are parallel, angle A is equal to the 

angle at P° between P-j_P̂  and P ? ^P°. Since d[Hg(t), HQ(t)] 

= s•[d(H1(t), H (t)], b ' = s -b and c ' = s *c. Hence, b ' < b 

and c ' S c. By the Law of Cosines, a ,€t- b /2 + c /2- 2b 'c 'cos A 

2.2' 2 2 0 2. . 2,. 2, 2 ' Av 2 2 . 

= s b + s c - 2 s b c cos A = s (b +c ~ 2bc cos A) = s a . 

Since 0 < s < 1, 0 ^ s 2 < 1, so a'L ^ a1" and a' < a. 

Let a - d(P^,Pg) and a' - d(P-/,Pg). Note that d(A,P^) 

= 1 + b, d(A, P-̂ ) = 1 + b', d(A,Pg) - 1 + c, and d(A,Pg) = 

1 + c 

Then, by the Law of Cosines, 

a' 2= (b'+l)2 + (c'+l)2 ~ 2 (b '+.!) (c '+1) cos A 
= b /2+ 2b ' + 1 + c /2+ 2e ' + 1 + (-2b 'c 2b '-2c '-2)cosA 

= b /2+ c /2~2b 'c ' cos A + 2b ' + 2c ' + 2 + (~2b ' -2c '~2)cosA 

/2 = a ,2+ 2(l-cosA) (b ' + c ' + 1) 

2 

Following the same steps, it is clear that a = 

a2 + 2(l-cosA)(b + c +1). Since angle A <( 90°, 1-cos A is 

positive. Hence, 

a / 2^ a2 + 2(l-cos A) (b ' + c ' + 1) 
p 

< a + 2(l~cos A)(b + c + 1) 
2 = a . 

Then, since a'2 < a2, a' < a. But, a7 = d[H (t,), H (t0)] 
S X S dL 

and a - d[H1(t1), Hjtg)]. Hence, d[Hs(t1), Hg(t2)] 

<dfH.Jt.j_), H1(t2)]. . 

a 



i, and 

r 

2 

Let J ' - { s : | s - s 0 | < a[d[H^( t j f i y t j f + ™ } , 

let J — J ft [0,1], Let D = J x I. Then D Is a neighborhood 

° f ( ^ ^ o ) i n R* 

Let (s,t) be a point in D. For H(s,t) to be in N, it 

must be true that d[H(s,t),H(sQ,tQ)] < r. By the triangle 

inequality, for the point (s,tQ) in D, d(Hs(t), Hg (t )] 

S d [ H s ( t ) , H s ( t 0 ) ] + d [ H s ( t 0 ) , H s ( t G ) ] . • 
o 

S i n c e t x , t 2 e I , d [ H s ( t ) , H s ( t 0 ) ] < d [ H 1 ( t 1 ) , H 1 ( t a ) ] < 

Now d [ ( H 8 ( t 0 ) , H S o ( t 0 ) ] = | d [ H s ( t 0 ) , H 0 ( t 0 ) ] - d [ H B o ( t 0 ) , H 0 ( t 0 ) H 

= I s - f d [ H 1 ( t 0 ) , H 0 ( t 0 ) ] } - S 0 - ( d [ H 1 ( t 0 ) , H 0 ( t 0 ) ] ) | 

= l s _ s
0 l * H 0 ( t 0 ) ] ) ^ ^ , s i n c e s e J . 

Hence, d [ H s ( t ) , Hg ( t ) ] < | + | = r , ao H ( s , t ) c N, and 
o 

H(D) c n. Therefore3 the function H, defined by H(Sjt) = Hs(
t)> 

maps the region R continuously into G. Thus, {H }, 0 < s < 1, 
s 

is a continuous family, and p(A) = A. 

Lemma 2.6.2. If A and B are p-based loops.in such 

that A : B in G then A - B in G1. 

Proof'• Let A and B be p-based loops in G1 such that 

A - B in G, Let (Kg}, 0 < s < 1, be the continuous family of 

p-based loops in G which exhibit A ~ B. By Lemma 1, for all 

s e [0,11, Kg-~ p(Ks), and p(Ks) e G
1. 

Consider the family {p(K )}, 0 < s < 1. Assume K = A 
» o 

and = B. Then p(KQ) = p(A) and p(K^) = p(B). But A and B 

are contained in Gx, so p(A) = A and p(B) - B. Hence 

p(KQ) = A and p(K1) = B., 
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For every s e [0^1, jl K |j - |[ p(K_)|| , Hence, since 
S S ' 

CK } is a continuous family., the stopping time || K [| = |[ p ( K ) jj 

is a continuous function of s. 

Let R be the closed region 0 < s < 1, 0 < t < || p ( K ) || , 

Choose (s,t) e R. p [ K ( s , t ) ] = p ( K g ( t ) ) . Let N be a neighbor-

hood of p ( K c ( t ) ) In G
1. Then there exists an open arc I about 

p ( H (t)) In G1 such that I c N. Let a and b be the end-points 

of I. Let be the set in G such that p(N-̂ ) = I. Tljten' is 

a neighborhood of K(s,t) = K (t). Since {K } is a continuous 
S S | 

family, there exists a neighborhood D about (s5t) suctji that 

K(D) c: n Then p ( K ( D ) ) c I c N. Hence, p ( K ) maps tljie closed-

region R continuously into G1, Therefore, A - B in G1. 

Lemma ,2.6.3. If A and B are p-based loops in G, then 

A - B if and only if p(A) ~ p(B) in G1, 

Proof: The proof of this lemma is the same as the proof 

of Lemma 2.4,3, changing X to G, Y to G^, and f to p. 

Lemma 2.6.4. The induced hornomorphism p^ maps an 

equivalence class in G to an equivalence class In G1If and 

only if they have an element In common. 

Proof: The proof of this lemma is the same as the proof 

of Lemma 2.4.4, changing X to G, Y to G1, f to p, and f.̂  to p^. 

Therefore, with Lemma 2.6.4 established, p ^ : t t(G,p) rr(G^,p) 

Is one-to-one. Hence, p^ is an isomorphism. Since G and Ĝ " 

are both pathwise connected, the fundamental group tt(G) Is 

isomorphic to the fundamental group tt(G:l). By Theorem 2.5* 

rrfG1) is infinite cyclic. Therefore, the fundamental group 

tt(G) of the annulus G is infinite cyclic. 
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(2,7) E -(0j0). The fundamental group of the space 

2 
E -(0,0) is also Infinite cyclic, However, the approach 

used to show this fact will be different from previous proofs 

2 

in that the space E --(0,0) will be shown to be homeomorphic 

to the open annulus. 

In polar coordinates, let GQ = {( p, cp) 20 < p < ®. 0 < cp < 2rr}, 

let G-j_ = {(p, cp) : 0 <( p ̂  1, 0 < cp <( 2TT}, and-let Gg = 

{( p, cp) :1 <( p<( 2, 0 < cp \ 2rr}. 

Lemma 2.7.1. Gq IS homeomorhpic to G^. 

Proof; Define a mapping g as follows : for ( p, cp) in G-̂ , 

g(pjcp) = ( cp). Then g: G 1 -> Gq. To show g is onto, let 

( p, cp) be a point in G . Then 0 < p < ®. Let ( p', cp) be a 
* ^ 'P'h PTl h = P 

point such that p 1+p* " 1-p 

0 < p'< 1, so (p', cp) e G1. Since p - f g(p'jcp) = (P, cp) 

Therefore, g is onto. 

To show g is one-to-one, let (p-^cf^) and (pgjcp^) be 

distinct points in G^. Then either p1 4 P2
 o r cpj_ 4 <¥£. Note 

that g ( p-̂ , cp-ĵ) — s q>, ̂  and g( pg, cpp) — ^ ^2 , cp p 

I f h. ̂  $2* t h e n e l t h e r Pj y Pg or >j_ < pg. Suppose, 

without loss of generality, that p1 > pg. Then l-p1 < 1-pg . 

Hence 1̂ >. ^2 , . , . 
1=^1 * Tnerefore, g(p1,q>L) 4 g( P2> ^)- If 

cf̂  4 then g( p1, cp]_) 4 g( P2* q^). 

Hence, g is one-to-one. 

Let N be an open set in GQ. Let PQ = (pQ,cp0) be a point 

in g-1(N). Since N is open, there exist p1, pg, q^, and such 

Now 
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t h a t t h e s e t M = {(p, cp) p ± < p < p 2 , cf^ < c? < } c N and 

g ( P G ) e M. ' L e t J - {(p, cp) : p-^ <( <C p 2 , 0 ^ p 1* <£]_ ^ ^ f££ ^ ' 

Then P Q = (t>0»cp0) e J > s i n c e s ( P Q ) 6 M * A l s ° > J i S ° p e n * 

L e t ( p ' , cp') fre a p o i n t i n J . Then cf^ < cp' < ^ and p]_ < y ^ p < P v 

S i n c e g ( p ' , cp') = ( " T ^ p 7 " , cp ' ) , g ( p ' , c p ' ) e M c N. Hence , 

J c g _ 1 ( N ) . T h e r e f o r e , g ~ 1 ( N ) i s o p e n . 

Now l e t Q he an o p e n s e t i n G-^. L e t P ' = ( p , c p ) h e a 

p o i n t i n g ( Q ) . T h e r e e x i s t p ^ p 2 * a n d ^2 s u c h t h a t t h e 

s e t Q 1 = { ( p, cp) :p 2 < p < V2> ^ ^ V ^ ^ ^ C Q a n d P ' e ' ^ 1 * . 

L e t Qp = { ( V, cp) : P i < P < j cpi < V < ^ J ' 
1 - Px 1 - p2 

Hence , 0 < p x < p 2 < 1 s i n c e c G ^ Then g ( P ' ) € Qg, 

s i n c e P ' e Q-, i m p l i e s ^1 <( p "\ ^ • 
1 - p ' 1 - p 7 1 - po 

L e t (p , cpQ) he a p o i n t i n Qg. Then g~ ( p Q , cpQ) e ^ c Q. 

Hence , Qg cr f ( Q ) . S i n c e Qg ^-s o p e n , f ( Q ) ^-s ° P e n » T h e r e f o r e , 

G i s homeomorph i c t o G^ . 

Lemma 2 . 7 . 2 . G^ i s homeomorph i c t o Gg. 

P r o o f : D e f i n e a m a p p i n g f s u c h t h a t f o r ( p, cp) e G-^ 

' f ( p , cp) - ( p + l , cp) • Then f ^ - Gg. To show p i s o n t o , l e t 

( p ' , cp') he a p o i n t i n Gg. Then 1 <( p ' <\ 2 and 0 < cp' 2rr, 

L e t ( p, cp) he a p o i n t s u c h t h a t p = p ' - 1 and cp •= cp'. Then 

0 < p < 1 and 0 < cp< 2TT, so ( p, cp) e G ^ S i n c e p + 1 > p ' 

and cp = cp', f ( p, cp ) = ( p ' , cp ' ) . Hence , f i s o n t o . 

To show p i s o n e - t o - o n e , l e t (p^cp-^ ) and (p2 ,cfv>) h e 

d i s t i n c t p o i n t s i n G ^ Then e i t h e r ^ 4 P2
 o r cpj_ 4 N o w 

f ( p-^, cp^) = ( p-̂  + 1 , cp^) and f ( p2 j cop) = ( p 2 H-l* <P2) • P]_ 4 P2 ? 

t h e n p ± + 1 4 P.2 + 1 a n d f ( ^ 4 f ( ^2 ) ' 
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I f rp̂  4 <+>>;> t n e n f ( p 1 . , cp, ) 4 £( Pp.»q>,5» H e n c e , f i s o n e - t o - o n e . 

L e t N b s an o p e n s e t i n Gg. L e t P = ( p cpQ) b e a p o i n t 

i n f ( N ) . Then f ( P ) = ( P n +1, cpQ) € N. S i n c e N i s o p e n t h e r e 

e x i s t p.p pg, snd cpg s u c h t h a t t h e s e t M = { p, cp) : p.̂  p <( p 0 ? cpj <Ccp*\ cjk 

e D, and f ( P ) e M. 

L e t J = (( p - 1 , cp) :( p, cp) e M). Then P - e J . Choose (p7 , .cp7) e J . 

Then f ( p ' , cp7) = (p7- l - l ,cp7) € M c N. Hence J e f " 1 ( u ) . Now 

J ~ {( pj> cp) :p1™l < p<( p2 - 1 , cp̂  <( cp <C q>)}. T h e r e f o r e , J i s o p e n , 

and s o i s o p e n . 

L e t Q, b e an o p e n s e t i n G-^. L e t P ' ~ ( p 7 , cp7) b e a p o i n t 

i n f ( Q ) . S i n c e Q i s o p e n , t h e r e e x i s t p^ , pg', cp^, and ^ s u c h 

t h a t t h e s e t M 7 - {( p, cp) : < p < pg ', ^ ^ c Q, and 

f " 1 ( p / ) G M/* L e t J ' = <(P>V) : P i ' + 1 < P < Pg + 1 , cp^ < c p < c p p . 

Then ( p 7 , cp7) e J 7 , s i n c e f " 1 ( p ' J cp7) - ( p ' - l , c p ' ) e M L e t 

( p , cp) b e a p o i n t i n J ' . Then p^ + 1 < p < + \ s f ~ 1 ( p , C p ) 

= ( p - 1 , cp), and p^ < p - l < p2 ' . Hence f - 1 ( p , q 0 ) e M7 c Q. 

T h e r e f o r e , j ' c f ( Q ) and s o f ( Q ) i s o p e n . H e n c e , G i s 

horneomorphic t o 

By Lemma 2 , 7 . 1 Gq i s horneomorphic t o G.^ and by Lemma 2 . 7 . 2 -

&i i s horneomorphic t o Gg. H e n c e , G q i s horneomorph ic t o Gg. 

Then by Theorem 1 . 1 7 , t t (G 0 ) i s i s o m o r p h i c t o - r (Gg) . B u t , b y 

( 2 . 6 ) , T T ( G 2 ) i s i n f i n i t e c y c l i c . H e n c e , T T ( G o ) i s i n f i n i t e 

c y c l i c . 

s p a c e E m i n u s t h e z - a x i s . The f u n d a m e n t a l 
3 

g r o u p of E m i n u s t h e z - a x i s i s i n f i n i t e c y c l i c . To show 

t h i s l e t X = E" ( x , y , z ) : x = y « 0 } , and l e t Y = ( x , y , z ) ; z - 0 } . 

D e f i n e a m a p p i n g f b y t h e f o r m u l a f ( x , y , z ) = ( x , y , 0 ) , f o r 

( x , y , z ) e X. Then f : X - Y. 
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Let N be an open set in Y. f~"I'(N) = {x,y,z) :(x,y,0) e -Nl. 
— 1 

Let (x '̂ y ',z ') be a point in f~ (N), Then f (x ',y ',z ') -

(x',y',0) e N. Thus, there exists an open disc D with center 

at (x',y ',0) such that D c N. Denote the radius of D by r, 

Let W-ĵ  = {(x,y3z) : d[ (x,y , z), (x ',y ', z ') ] < r}. Then ^ is an 

open set about (x',y',z '), Let (Xx*y;pzi) 136 a P o l n t l n % • 

d[(x'3y
/
>0),(x15y1,0)] < d[(x ',y ',z '), (x1,y1,z1) ] < r. Hence 

f(xl'yl'zl) € D c N* Therefore, f(Nx) <= N, so Nx c:f™*
1(N). 

Then f (N) is open. Hence, the inverse image of open sets 

is open, so f is a continuous mapping. 

f determines a mapping f # of TT(X) into rr(Y) given by 

f*([A]) = [^(A)], where [A] E TT(X). This mapping f.x.:rr(X) -» TT(Y) 

is a -homomorphism by the proof of Theorem 1.17. 

To show f is onto, choose any basepoint p in Y. Let [A] 

be an element in rr(Y,p). The mapping j :Y -> X is the inclusion 

mapping. Then j^([A]) e n(X,p), where rr(Y) TT(X), and 

f*(j*([A]) = [A]. Hence, the composition f.x.(ĵ ) is the identity 

map, and f # is onto. 

Lemma 2.8,1. For any point p = (x,y,0), any p~based loop 

A in X is equivalent to its projection f(A) in Y. 

Proof: Let p = (x,y,0) be a point in X. •- Note that p is 

also a point in Y. Let A:[0, |[ A|| X be a p~based loop in X. 

Denote A as (g(t), h(t), k(t)), where g,h and k are continuous 

functions of t e [0, j j A J ] J. Define a collection {H„}, 0 < s < 1, 

of p~based loops by the formula H (t) = (g(t),h(t), s*k(t)), 

for 0 < t < || Hg|| = || A|| . HQ(t) = (g(t), h(t) ,0), 

0 < t < || A|| , so Hq = f (A) . ^(t) = (g(t),h(t),k(t)), 

0 ^ t < I| A|| , so H-, = A. For every s e [0,1], |j Ha || = || A||. 
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Then the stopping time '[ HJj is n, constant function of s, 

so that function is continuous. 

Let R be the closed region 0 < s < 1, 0 < t < j[ H , || = [ J A |]3 
s 

and let (sst) be a point in R. H(s ,t) = ^s(^) ~ (§(^) >M*0 *
3 ) * 

Let N be the interior of a sphere centered at H(s,t) with an 

arbitrary radius r. By the continuity of A, there exists a 

neighborhood I' about t3 such that for t^,t p e I = i' f) [0., || A j[ 

the distance between (g(t-j)3 h(t^), k(t^)) and (g( t g ^ ^ t g ) ) is 

less than i . 
d 

V 

Let j' = js ': | s ~ s ' | <( ̂ Jlc(~ty"| . Then J ' is an 

interval about s. Let J - J ' n [0,1], Let D = J x I. Then 

D is a neighborhood of (s_,t). Choose a point (s ',t ') in D. 

d[Hs/(t
/)J Hg/(t)] - • 

^ ( t ,)~g(t) 12+ [h(t')-h(t) ]2+ s ' 2[k(t')-k(t)]2 ^ 

s'* ^[g(t ')-g(t) ] + [h(t /)-h(t) ]^+ [k(t ')-k(t) T • ^ 

^[g(t O-gCt) ]2 + [h(t ')- h(t)]2 + [k(t')-k(t) ]2 < 

Also, d[Hs/(t), Hg(t) 1 = 

^(t)- g(t)]
2+ [h(t)-h(t)]2+ [s = 

! s '-s | • |k( t) | < ) (|x(t) I ) < | . 

Now 

a r v ( t ' ) , HB(t)] < a [ H s , ( t ' ) , H s , ( t ) ] + d[H s,(t) 5H s(t)] 

/ r , r 
V 2 + 2 - r. 
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Hencej e N", so H(D) c N. Then the function H 
s 

defined by the formula H(s,-c) = Hc(t) maps the region R 

continuously into X. Therefore, {H }, 0 < s < 1, is a 
S 

continuous family, and A ~f(A). 

Lemma 2.6.2, If A and B are p-based loops in Y such 

that A - B in X, then A - B in Y. 

Proof: Let A and B be p-based loops in Y such that 

A I B in X. Let {K„}, 0 :< s < 1, be the continuous family 

of p-based loops in G which exhibit A B. By Lemma 2 .8.1 

for all s € [0,1], Ks ~
 f(K

s)*
 a n d f( K

s)
 £ Y* 

Consider the family (f(K )}, 0 < s ^ 1. Assume K = A 
S G 

and K-j = B. Then f(K ) = 'f(A) and f(K1) = f(B). But A and B 

are contained in Y, so f(A) - A and-f(B) = B. Hence f(K ) — A 

and f(K1) -- B. For every s e [0,1], || Kg 11 = ||f (Kg) ij . 

Hence., since (K } is a continuous family, the stopping time 

II K_ {J = |( f (K_) || is a continuous function of s. 

Let R be the closed region 0 < s < 1, 0 < t < || f (K ) |J . 
s 

Choose a point (s,t) in R. f[K(s,t)] = f(K (t)). Let N be 

a neighborhood of f(K (t)) in Y. Then there exists an open 
s 

disc D with center at f(K (t)) such that D c N. Denote the 

radius of D by r. Let be the set in X such that f(Nj) - D. 

Then N-̂  is a neighborhood of K(s,t) = K (t). Since fKg} is a 

continuous family, there exists a neighborhood about (s,t) 

such that K(D]) c N-L. Then f(K(D1)) c= D c N. Hence, f(K) 

maps the closed region R continuously into Y. Therefore, 

A - B in Y. 
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Lemma 2,8.3. If A and, B are p-based loops in X, then 

A - B if and only if f(A) ~ f(B) in Y. 

Proof: The proof of this lemma is the same as the proof 

of Lemma 2,4.3. 

£ggag- 2'8.d' T h e induced homomorphism maps an equiva-

lence class in X to an equivalence class in Y if and only if 

they have an element in common. 

Z£22l".5 Tlie proof of this lemma is the same as the 

proof of Lemma 2.4.4. 

Therefore, by Lemma 2.8.4, f # :TT(X,P) - TT(Y,P) is 

one-to-one. Hence, f # is an isomorphism. Then the fundamental 

group TT(X) is isomorphic to the fundamental group TT(Y). But 

Y is .homeomorphic to E 2-(0,0), which has an infinite cyclic 

i-undamental group by (2.7). Therefore, by Theorem 1.17, 

the fundamental group TT(X) of the space E3 minus the z~axis 

is infinite cyclic. 
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