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, and T , showing that a metric space is less general 

than a topological space. 

In Chapter II, some specific set properties of metric 
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separability and the Lj.ndelof Property. The Baire Category 

Theorem is proved, thus giving a property related to completeness 
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Chapter III concerns some of the properties of 

functions in metric spaces. Attention is given mainly 

to functions from a metric space (M,d) into the set of 

real numbers R. Continuity and semi-continuity are the central 
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CHAPTER X 

BASIC PROPERTIES 

The purpose of this thesis is to study some of the 

properties of metric spaces. An effort will be made to 

show that many of the properties of a metric space are 

generalized properties of R, the set of real numbers, 

or Euclidean n-space, and are specific cases of the 

properties of a general topological space, 

In Chapter I, a metric space will be defined and some 

examples of metric spaces will be given. General theorems 

on open and closed sets in metric spaces will be proved, 

thus laying the groundwork for later study. A metric 

space is shown to be a topological space. The first five 

separation axioms, which are (Topological properties known 

as TQ , 'T\ , T^ (Hausdorf f) , T^ (regular), and T^ (normal), 

are defined. Examples of general topological spaces which 

satisfy one axiom but not the next one are presented. 

However, it is proved thJit a metric space is TQ , T^, T^, 

T0, and T^, showing that a metric space is less general 

than a topological space. 

In Chapter II some specific set properties of metric 

spaces will be considered. The central property to be 

studied is compactness, The equivalence of compact, 



sequentially compact, countably compact;, and complete 

and totally bounded sets in a metric space will be 

established. Compactness will then be studied, in its 

relationship to other properties such as separability 

and the Lindelof Property, The Baire Category Theorem 

is proved, thus giving a property related to completeness 

in a metric space. 

Chapter III concerns some of the properties of 

functions in metric spaces. Attention will be given 

mainly to functions from a metric space (M,d) into the set 

of real numbers R. Continuity and semi-continuity are 

the central properties. 

1.1. Definibion. Let M be a non-empty set. 

A metric on M is a real function d whose domain is the 

set of all ordered pairs of elements of M and which 

satisfies the following three conditions: 

i) if x,y d M, d(x,y) > 0 and d(x,y) = 0 if and only 

if x = y; 

ii) if x,y <cZ M, d (x, y) = d (y, x) (symmetry law); 

iii) if x,y,z<£ M, d(x,z) <_ d(x,y) + d(y,z) 

(triangles inequality) . 

If d is a metric on M, then the ordered pair (M,d) is 

called a mo brie space. 

The following are examples of metric spaces: 

1.2. Example. Let M be a non-empty set, and d such 



that for x, y <£ M, 

d(x,y) = 

Call this metric space N^. It is easy to verify that d 

satisfies properties i, ii, and iii. 

1.3. Example. Consider the real number line R and 

the absolute value function (xj defined on R. For 

x,yC R, let d(x,y) = |x - y |. Then (R,d) is a metric 

space. For choose x, y,z £ R. Then fx - y| > 0 and 

fx - y| = 0 if and only if x = y. Thus i) holds. Since 

|x - y| = |y - xj, ii) holds. Finally, 

|x-z| = | x - y + y - z1 < |x - yI + | y - z 1 

and iii) holds. 

,1.4. Example. Consider the complex plane C. If 

Z1 ~ ai + l̂"*" € C an<^ 7"l ~ a2 + b2'̂ " ̂  C' t h e n 

|z1 - z2i ~ *"|(
a2 ~ a i ^ + ~ b i ^ * 

Define d (z , z 2) " lz^ ~ ẑ l . The proof that (C,d) is 

a metric space is similar to that given in Example 1.3. 

1.5. Example. For any n C J, let 

x - (xL,x2,...,xn) and y = (yx,y2>••., vn) 

be ordered n~tuples of real numbers, that is, x,y <£ RU. 

Define d(x,y) - "j (x^ - y^) , For n = 2, this is 

the usual distance formula for the plane and is equivalent 

to Example 1.4. The only non-trivial part of the proof 

is the triangle inequality, and the standard Minkowski 

inequality can be employed to prove this. 



1•6 Definition. A 1inear space over the reals is a 

mathematical system (X, R, " + •», ••.») which consists of a 

set of elements X, the set of real numbers R, a function 

from X* X into X, and a function from R* X into X 

which satisfies the following conditions: 

1) x + y = y + x, for x,y €. X. 

2) (x + y) + z = x + (y + z) , for x,y,z X. 
ik ^ 

3) There is a vector 0 € X such that x + 0 = x for 

all x « X. 

4) a(x + y) = ax + ay, for x,y £ X, a C R. 

5) (a + b)x = ax +• bx, for x ̂  X, a,b e R. 

6) a(bx) = (ab)x, for x e X, a,b « R. 
* 

7) Ox = 0 , lx = x, for x e X, 0,1 e r. 

1.7. Definition. A non-negative real-valued function 

defined on a linear space X is called a norm ifs 
ic 

1) 11 xII ~ 0 if and only if x = 0 , for x e X, 

2) I! x + y'.i < s; x u + i! y \\, for x, y e x, 

3) ilaxu - ',a\ U xU, for x £ X, a « R. 

A normed linear space becomes a metric space if the metric 

is defined as the norm of the difference between two elements, 

tha t is, d (x, y ) if x - y \\. 

1*8. following is a normed linear space 

which becomes a metric space. Consider the set of all 

bounded continuous real functions defined on f0,l] . Define 

the norm as 11 fH -- sup | f (x) j . 'Then the metr ic on this 

space will be 
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d(f,g) = Hf (:0 - g(x)H. 

Property i) follows almost immediately from 1) of 1.7 

because Hffl > and llftt = 0 if and only if f = 0 . Property 

ii) is clear from 3) of 1.7 because, 

d(f ,g) = II f (x) - g(x)U = II- (g(x) - f(x))H 

= l-llUg(x) - f(x)U r- fl g (x) - f (x)ll = d(g,f). 

Hence d(f,g) = d(g,f). Since the sum of two bounded 

functions is bounded, then 

|{f + gll = supjf(x) + g(x)| < supff(x)j + sup/g(x)| 

= II f\\ + llgii. 

Therefore IIf + g j? < llftl + »g»! and hence this is a metric 

space» 

1.9. Defini tion. Let (M,d) be a metric space ana p 

a point of M. If r > 0, then the open sphere with center 

p and radius r, denoted by S(p,r), is the set of all points 

x in M cuch that d(x,p) < r. Obviously S(p,r) contains 

p. The closed sphere denoted by S[p,r], is the set of 

all points x f. M such that. d(x,y) < r. 

1.10. Definition. Let (M,d) be a metric space and £ 

be a subset of M. A l_im.it. ooi_nt or ® ° 

a point p £ M such that each open sphere S(p,r) con.tains 

at least one point q 1 E, q # p. 

1.11. Definition. Let (M,d) be a metric space, and 

let { b e a sequence of points in M. Then {x
n^n.~s 

converges to a point x,- called the ljjn_it. of the sequence 

( x , if for each open sphere S(x,r), tneie existb 
V II 



1*12. Remark. The above definition is equivalent to " 

the following. Given > 0, there exists an n Q €. J such 

that if n > n Q, then d(xn>x) < €- . 

1.13. Definition. Let (M,d) be a metric space, and 

let E be a subset of M. A point x in E is called an 

interior point of M if it is the center of some open sphere 

contained in E. The interior of E is the set of all its 

interior points. If every point of E is an interior point 

of E then E is said to be an open set. 

1.14. Some examples of open sets. An open sphere 

S(xQ,r) on the real number line is just an interval 

(xQ - r, xQ + r) with center xQ and length 2r. In the two 

dimensional plane an open sphere is just a circle. A 

3 

sphere in R is the usual three dimensional sphere. An 

open sphere about x C: with radius 1 .is the single point x. 

1.15. Theorem. In airy metric space (M,d) , each open 

sphere S(xQ,r) i_s an open set. 

Proof. Let x €L S (xQ s r) . Choose t = r - d(xQ,x). 

Now consider the open sphere S(x,t). Choose y S(x,t). 

This implies d(x,y) < t. Then 

d(xQ,y) < d(XQ,x) + d(x,y) 

< r - t + t 

<r. 

Hence d(x„,y) < r which implies y e. S (XQ ,r), Thus 

S(x,t) CI S(xQ,r). Therefore, S ( XQ , r) is an open set. 
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1,;L6* Theorem. In arn/_ metric space (M,d) both M and J2X 

are open sets. 

Proof. If x <s M, r < 0, then S (x,r) CI. M. Hence 

x is an interior point of M, Therefore M is open. 

The empty set 0 is open simply because there is no 

x € and therefore in a vacuous sense each x C J0T is 

an interior point of 0 . Therefore 0 is an open set. 

1.17. Theorem. Let (M,d) be a metric space. A 

subset G of M i_s open _i_f and only if it i_s a union of 

open spheres. 

Proof. Suppose G, a subset of M, is the union of a 

collection j£ of open spheres A = S(x,r). Then G = -<f *, 

where J ' = . 
d-gJ 

Suppose x is a point in G. Thus x is in at least one 

of the open spheres of J say S(xQ,r0), Since S(xQ,rQ) 

is an open set by Theorem 1,15, for x C S(xQ,r0) there 

exists an open sphere S(x,r ) such that 

S(x,r1) S (xQ , r Q) <Z G 

and therefore S(x,r^) G. Therefore G is open. 

Let G be an open subset of M, If x €1 G then there 

exists an open sphere S(x,r) which is contained in G. Let 

be the collection of al] such open spheres. Then 
_ f * 

G ~ '* ' Therefore G is Lhe union of a collection of 

open spheres. 
1*18. Theorein. Let (M,d) be a metric space. Then 



1) any union of open sets j n M is_ open; and 

2) any finite interr-ection of open sets in M _is open. 

Proof. 1) Let be any collection of open sets in M. 

Let - \J G. If Jj is empty then & = 0 and is 
& IS 

open by Theorem 1.16. Suppose is not empty. Then by 

Theorem 1.17, every open set in & is the union of open 

spheres. It follows by Theorem 1.17 that is open. 

2) Let a finite collection of open sets 
n 

in M. Let xe ( ~\ G. ; then x is an element of each G. . 
a=\ l l -

Since each G^ is an open set there is an open sphere of 

radius r. such that S(x,r.) d G.. Thus there is the set l l — l 

of radii /r.,r„,...,r V . Let r be the smallest of these 
L 1 2 nJ 

radii. Then the open sphere S(x,r) <11 S(x,r^), for 1 < i < n. 
n 

Therefore S(x,r) G, , for 1 < i < n and hence S (x, r) C f\G. , 
i /•= i i 

Therefore n c . is an open set. 
A " I X 

1.19. Definition. A subset F of the metric space (M,d) 

is called a closed set if it contains each of its limit points. 

1.20. Theorem. In any metr ic space (M,d), the empty 

set. 0 and the full space M are closed sets. 

Proof. Since the empty set has no elements it 

will have no limit points. Therefore 0 contains all of 

its limit points. 

The space M contains all points; therefore if it has 

any limit points, it will surely contain them. 

1.21. Tiiegxem.. Let. (M,d) he. a.. me±r±c. s.pa££L. A. a-iihaai. 

rj 
F of. M Is. closed, if. and- onls- if. iia. cimplftmen-L F ij$_ QP&TL. 
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Proof. Let F be a closed subset of M. Consider 

x €- F*; then x is not a limit point of F because F is closed. 

Therefore, for some r > 0, S (x, r) C F and thus F is open. 

Suppose F is open. Let; x be a limit point of F. If 

x € F then there is an. open sphere S(x,r) for some r > 0 

such that S(x,r) C- F. This is a contradiction. There-

fore x must be an element of F which implies F contains all 

of its limit points and is closed. 

1.22. Theorem. In any metric space (M,d), each closed 

sphere is a_ closed set. 

Proof. Let S[x,r3 be a closed sphere. Let p €. S(x,r). 

Then d (p,x) = C > r. Since for any point x' of Sfx,r1, 

d (x, x' ) < r , then d (x' , p) > & - r and x' 4 S(p,€. - r) . 

This implies S (p, C - r) «C S(x,rl. Therefore s{x,r} is 

an open set which implies S(x,rl is a closed set. 

1.23. Remark. For arbitrary unions and intersections 

the following properties hold: 

( f\ A J - U a 4 and ( IJ Kd) = 

1.24. Theorem. Let (M, d) be a. metric spa ce . Then 

1) any intersection of closed sets in M ±s_ closed, 

2) any finite intersection of closed sets In M i_s closed. 

Proof. 1) Let 4? 1" ke anY collection of closed sets 
A 

, *** 

and F = < * g_. Since each F is closed its complement F is 

F^is open by Theorem 1.18, 

By Theorem 1.21, ( \J F) is a closed set. By Remark 1.23 

( iJ F) = F. Therefore /'\F, is a closed set. 
J. *A tX 2) Let -f F . | • be a finite collection of closed sets. \ j J j - v 
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fl 
Let F = U f , by Theorem 1,21, F . is open for 1 <. j < n. 

j- • ^ <t\ ^ 
Therefore by Theorem 1.18, / 1 F, is open. By Remark 1.23, 

( r\F.) = Uf, which is closed by Theorem 1.21. 
j-\ J j»» J 

1.25. Theorem. A singlehon £"x} _in a metric space 

(M,d) ijs a_ closed set. 

Proof. Pick an arbitrary point XQ &. M. Consider the 

closed spheres S , r l , r > 0, 

Let x /'xq ] . This implies that x = Xq . Each 

of the closed spheres S fx^,rl contains XQ, so XQ e. ̂ s C x Q , d . 

Hence { xQ } O S £xq , r'j . 

To prove S [xq, r} d . £ xq} > it- is sufficient to 

prove the contrapositive, that is, if x /~Xq} > then 

x <£- /̂ \ S [xq , r} . Since x tf:. £xjy then x / x^. Let 

r ̂  = d (x(j , x) . Then x ^ S [xQ, r ̂/2], which implies 

x 4- S [xq , r] . Therefore, A S (xg ,r] d £ xQ j . Hence 

{ XQ} - f~\ S [x(̂  , r] . Each of the S [ x^, r] is a closed set 

by Theorem 1.22. By Theorem 1.24, O S £xq , r] is a closed 

set. Thus { xq} is a closed set. 

1.26. Corollary. A fini te set A of a_ metric space 

(M,d) is closed. 

Proof. Let A -- { x. ,x,., . . , ,x 1 . Then A - {J fx. 1 . 
<- I Z n > l \ L iJ 

By Theorem 1.25, each >[, xj} is a closed set. Therefore A 

is the union of a finite collection of closed sets, which 

by Theorem 1.24, is closed. 

1.27. Theorem. The surface of a, sphere j.s _a closed 

set. 
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Proof. The surface E of a sphere S(p,r) is the set 

of points q«s M such that d(p, q) = r. The closed sphere 

S [p, r j is the set of points q M such that d(p,q) <_ r 

and S(p,r) is the set of points q £ M such that d(p,q) > r. 

Therefore, E = S[p,r] S (p,r) . Each of S[p,rJ and 

S(p,r) are closed sets by Theorem 1.22 and 1.21, respectively. 

Therefore E is the intersection of two closed sets, so by 

Theorem 1.24, E is closed. 

1*28. Def i. nit ion. The derived set of E, denoted 

by E', is the set of all limit points of E. The closure 

of E, denoted by 1, is the set E' E. 

1.29. Theorem. The cl.osure of S(p,r) is_ contained 

in S[p,r] . 

Proof. Obviously, S (p, r ) S[p,.r"|. If S (p , r) S[p,r] 

then there is some limit point y of S(p,r) which is not an 

element of s[p,rj. Thus d(p,y) > r. Therefore 

d(p,y) ~ r " t for some t > 0. Hence S(y,t/2) does not 

contain a point of S(p,r). This is a contradiction to 

the fact that y is a limit point of S(p,r) and therefore 

sTpTt" cr, sfp.ri. 

It is useful to notes 

1.30. Remark. If E is any subset of a metric space 

(M,d), then E and E' are closed sots. 

A metric space is actually a generalization of a 

concept called a topolog ical space. 



12 

1.31. Def.init~ion. Fx S is n set and ij is a collection 

of subsets G of S such that 

1) 0 and S are in & , 

2) ^ is in d for any subcollection Of , 
n 

3) ^ , if <£ Sf , 

then tif is said to be a topology for S, and (S, of ) is 

said to be a topological space. 'The sets G of el are 

called open sets. A closed set is the complement of an 

open sat. 

1.32. Example. Let S be any set. Let the open 

sets be all of the subsets of S. This is called the 

discrete topology. 

1.33. Example. If S is any set, then the indiscrete 

topology has as its open sets S and 0 • 

1.34. Example. Let S be the set of real numbers 

and the open sets be the unions of collections of intervals. 

1«35. Example. Let S be the set £ a , b, c, d J 

Let the open sets be { a,b,c,d 1 . ( a,b } , /b.c.dj , 

and £bj- . Note that £cf is neither open nor closed. 

1.36. Theorem. If (M, d) i_s_ a_ metric space then the 

collection of_ open sebs is a_ topoJ.qgx fojr M. 

Proof. By Theorem 1.16, 1) of Definition 1.31 is 

true. Parts 2) and 3) of Definition 1.31 follow from 

Theorem 1.18 1) and 1.18 2) respectively. Therefore 

(M,d) is a topological space. 



13 

The following properties of a topological space are 

called separation axioms. 

1.3*7. Definition. A topological space (S,«/) is 

Tq means that if p^ and p? are two points of S, then there 

exists an open set containing one of and > but not the 

other. 

1.30. Definition. A topological space (S, c? ) is 

means that if p^ and P2 are two points of S, there 

exists an open set such that contains p^ and not • 

1.39. Definition. A topological space (S, 5J ) is 

means that if p^ and p£ are two points of S, there 

exist two open sets G^ and such that G^ contains p^, 

C»2 conta ins P2, and G^ f ~~\ G^ = £¥ . A space satisfying 

is called Hausdorff. 

1. 40, Definition. A topological space (S, ) is 

means that it is and if p is a point of S and F is 

a closed set of S not containing p, there exist two open 

sets G^ and G2 such that G1 contains p and G2 contains F 

and G1 /I g 2 = & . A space satisfying is called regular, 

1.41. Def inition. A topological space ( S , ) is 

T^ means that it is and if F^ and are disjoint 

closed sets of S, then there exists open sets G^ and G^, 

G^ Cl. F^ and G2 C*Z. F2' "]_ / * ,>3' • A space satisfying 

is called normal. 

1.42. Example. The following is an example of a 

TQ~space which is not a T^-space. 
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Let S - R and the open sets consist of jfc? , R, and the -

sets of the form (x,co) -where x C R . This is a TQ-space 

because for x^ < x^, ( (x-|_ + x2)/2,CO), contains x 2 but does 

not contain x^. However, any open set that contains x^ 

contains x^, so it is clearly not a T^-space. 

1.43. Example. This is an example of a T^-space 

which is not a T -space. 

Consider the real line R. Let S be the following 

subset of R: [ o} U [1,2}. Let of consist of unions of 

collections of subsets of S of the form; (a,b), fl,b), 

(a,23, and {of (1, b) for a,b 6 (1,2), a < b. For 

any two points x^ and x^ of this space, there is an open 

set G, which contains x and not x„ and a G„ which contains 
JL X Z A 

x 2 and;not x^. However, and G^ may not be disjoint. 

For example, let the two points be 0 and 1. An open set 

containing 0 contains a set of the form o"| XJ (l,b) and 

an open set containing 1 contains a set of the form [l,b'). 

The j.ntersection of these two sets contains (l,b) if b < b' 

and (l,b') if b' < b. Therefore this T^~space is not a 

T^-spacpe. 

1.44. Example. As an example of a T^-space which is 

not a T^-space consider the upper half of the two dimensional 

plane ^nd the x-axis. Let the open sets be the unions of 

collections of interiors of circles which are completely 

above the x-axis and interiors of semi-circles with centers 

on the x-axis plus the center which is on the x-axis, This 
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is clearly a T -space. 

However, consider the real line P minus the point p. 

Call this set F . This is a closed set because about any 
p 

point x, x not on R, there exists an open circle containing 

x and no point of R. There is also a half open circle 

about p which contains no other point of R. By Theorem 1.15, 

each of these open circles is an open set. The union of 

all such circles is, by Theorem 1.18, an open set. Thus 

F is open and therefore F ia closed. Any open set G, 
p r- p J 1 1 

containing p also contains the interior of a semi-circle 

with center at p. In order to cover the rest of the real 

line the open sets must also be the interiors of semi-circles 

plus the points on the x-ixis. Let the union of all of 

these be G0. Thus i i 0 contains p and. G 0 con ha. ins F . 
2 .1 1 2 p' 

than r\ G * 0. Hence this space is a T?~spaee but 

not a T„ --space . 

1.45. Exampl e. The following is a T^-space but not. 

a T^-space. 

Consider the upper half of the two dimensional plane 

plus the real line R. Let the open sets be unions of 

collections of interiors of circles entirely above the 

x-axis or interiors of open circles and the point of tangency 

if they are tangent to the real line. The fact that 

this space is a T^-space is fairly obvious except in the 
case where F is the real Lire R minus the point p. This p 
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is closed as in Example 1.44. There exists an open 

circle with radius one tangent to the x-axis at p. 

This set does not contain any of the points of F . For 

any x C F there is an open circle G tangent to x with 
P x 

radius less than half the distance of x to G . This circle 

does not intersect G. . Let G„ = ij G , x €. F . 
1 2 x p 

Therefore 

r\ g 2 = & , and tnus this is a T^-space. 

To show that this space is not a T -space, consider 

Fx as the set of rationals and as the set of irrationals 

in R. The sets F^ and F are closed. It can be shown 

that if an open set Ĝ ^ contains F̂  and an open set G 2 

contains F2, then G ̂  f G^ ^ $ , but the proof is omi tted. 

1.46. Theorem. 7V metric space (M,d) is a_ TQ, T , and 

T^-space. 

Proof. Let p and p2 be two points of M. Let 

r = d(p1,p2). Then S(p^,r/2) contains p^ and S(p2»r/2) 

contains p2. Suppose S (p^r/2) f\ S(p2»r/2) £ 0 . 

Thus there is some x such that x <£ S (p^, r/2) S (p2, r/2) . 

Hence d(p1>x) < r/2 and d(p2,x) < r/2. Therefore, by ii.i), 

d(p1,p2) < d(px,x) + d(x,p2) < r/2 + r/2 = r, 

a contradiction. Thus S(p ,r/2) S(p.?,r/2) - 0 a n d 

therefore M is a T2-space. The theorem follows, since 

clearly a T ^ space is a TQ-space and a T -space. 

i'47* Theorem. A metric space (M,d) jjs a T3~_space. 

Proof. Let p be a point in M and F be a closed set in M 
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and F be a closed set in M not contaLning p. The set F 

is thej complement of some open set G, Therefore p £ G 

since ;p ̂  F. Choose t > 0 such that S(p, t) CZ G. Then 

S(p,t)j3 F. Let G^ = S(p,t/2) and G? = Sfp,t/2l, which 

is open since by Theorem 1.21, S fp, t/2} is closed. Then 

P <= G, and F C S(p,t) CJ sCp,t/2}, since s[p, t/2] CZ S(p,t) 

Now G1 <0 , and hence (M,d) is a T^-space. 

1.40. Theorem. A metric space (M,d) is a T^-space. 

Proof. Let Fj and F^ be disjoint closed sets in M. 

Definej G± = {"xfdCx^^) < d(x,F2) } and 

G2 = { x j d (x, !•'2 ) < d (x,Fl ) } . 

Note tjhat GL ~D F1 and G2 ~Z> F2> Suppose G1 O G2 = JgT . 

This ijnplies that there exists an x € G G2 such that 

d(x,F1i) < d(x,F2) and d(x,F2) < d(x,F ). This implies 

that dj(x, F^) < d(x,F ) wnich is impossible. Therefore 

c1 r\ P2 = j0~. 

Spppose G^ is not open; then G is not closed. This 

impliep that there exists some limit point p of G which is 
1 ̂  

not m G^. Thus p £. G^, Also, p is not a limit point of 

F2 because F2 is closed. For otherwise it would follow 

that p <= F2 C. G2 and G^ Gr) = $£} , a contradiction. 

Therefore, there exists a positive number k such that 

d (pj F? ̂  = k. 
Case 1.. Let p F^. Then there exists an x tz. (? 

such tjiat d(x,p) < k/3. Then d(x,F ) > k/3, Thus 

d(x,F1) < k/3 which implies x £. G . This is a contra-

dict ioip to the fact that x C G^. Therefore G^ is open, 
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Case 2. Let p 4 Ft • Thus there is some j > 0 such 

that d(p,F1) = j. Since p & then d(p,F1) < d(p,F2) 

•which implies that j < k. Hence (k - j)/2 > 0. Since 

P is a limit point of G , there exists an x €. G^ such that 

d(x,p) < (k - j)/2. Thus 

d(x,F2) > k - (k -• j)/2 = (k + j)/2 and 

d(x,Fx) < j + (k - j)/2 = (k + j)/2. 

Therefore x <S . This is a contradiction to x G1. 

Therefore G^is open. 

A very similar proof follows through in proving that 

is an open set. Thus (M,d) is a T^-space. 



CHAPTER II 

SET PROPERTIES 

2.1. Definition. An open cover of E is a collection 

of open sets \ g\ , <JL <£. A, such that E C XJ G„ . 
L A •< 

2.2. Defini tion. A set E of a metric space (M,d) 

is said to be compact if every open cover M ^ o f 

E has a finite subcover iu L . where e $ . « i 
Remark. A closed and bounded interval in the 

set of real numbers R = S1 is a compact set. In general, 

in Euclidean n-space, Rn, a set which is closed and bounded 

is compact. 

The following are examples of sets which are not 

compact. 

2.4. Example. Consider the real line R and as the set, 

the open interval (0,1). Let an open cover be; 

[(1/2,1), (1/3,1), (1/4,1)(l/n,l),...] . Thus 
oo 

(0,1) LJ (l/n,l). Suppose that there is a finite sub-r>= I 
. ft I n 

cover, \J (l/n.,1). Then the interval (0,l/n, 1 is not X,~j. x K 

covered and so (0,1) is not compact. 

2.5, Example. Consider: the closed interval [0̂  

minus the point 1/2. Then, 

[0 ,lj - {1 /2 | CS (1*0,1/2 - 1 / (n+1) ) U ( V (1./2+1/(n+1) , 11) . 

In a similar manner to Example 2,4, it is seen that 

19 
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CO -:> 
( n~ j 1 / 2 ~ 1 / ( 1 1 + 1 ; } LJ ( O (1/2 + l/(n+l) ,lj) 

h a s n o finite subcover and therefore j f o , l ] - {1/2} is 

not compact. 

2 • 6. Example. Consider the discrete metric N as 
d 

given in Example 1.2. Let in this case be any infinite 

set. Let the open cover be {S(x,l/2) ] , x <£ Nd> 

Suppose that for some n <£ J, N d U S(x. ,1/2). This 
^ A X 

implies that Nd is finite, hence a contradiction. There-

fore N is not compact. 

The following theorems are fundamental theorems 

relating to compactness in a metric space, 

2 , 7' Ii2r_OEem. A compact subset E of a metric space 

(M,d) i_s closed. 

Proof. Let p £ M and p <£ E. Let q o E. Define 

rq ~ c3(p,q). Then consider the open spheres S(p,r /2) 

and S(q,rq/2). Thus S ( p , t q / 2 ) / O S(q, rq/2) = 0 , ^ Thus 

-fs (q^g/2) } , q <£. E, is an open cover of E. Hence some 

finite subcollection covers E. Call the centers of those 

spheres (qL,q?,...,qn} . For each q., 1 < i < n, there 

is an open sphere S(p,r^/2), where r^ = r . Clearly, 

P £ '»=!s'P'rj/2) ~ s p and S p is an open set by Theorem 1 . 1 5 . 

Also, O s ( q r /2> f~\ S = 0 . Therefore S C E. 
P P 

Repeating this process for each p <£ E yields a 

collection of open sets which covers E and whose union is 

a subset of E. Thus E is an open set which, by Theorem 1.21, 

implies E is a closed set. 
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2'8. Theorem. A closed subset E of _a cornpact metric 

space (M,d) jjs compact, 

Proof. Let be a collection of open sets G which 

covers E, Let v %V„ G By Theorem 1.21, E is an 

open set. Thus k}' is an open set and ' is an open cover 

of M Since M is compact, some finite subcover, say U '•, 

of Z} ' covers M. Let „&} ' ' ' = $ ' " - { E J . Thus • ' » 

also covers E. Since Z) ' ' is finite ' ' ' CZ'JOf * * is 

finite. Therefore E is compact. 

2.9. Definition. A collection { , a. <2 A. of 

closed sets is said to have the finite intersection property 

if, for every finite subset AQ of A, 

-/ . 
cK e A0 

2.10. Theorem. A me trie space (M, d) ijs compact if 

and only if, f or every col lection C^*<\ > A, of closed 

sets with the f j.ni te intersection property, 

F,;l / J2f . 
i\ 

.Proof. Let M be compact. Suppose is empty. 

Then, by Remark 1.23, . Therefore, 

yj F^ = M. By Theorem 1,21, each is an open set, so 

{ <1 A, form an infinite open cover of M, Since M 

is compact there exists a finite subset AQ of A such that 

^'f.V = M. By Remark 1.23, V.. - M = 0 . 
>v -

 h » ' c < % 

Therefore = jgT . However, this is a contradiction 

since the collection | 5*̂  J , A has the finite intersection 

property. Hence /O F is not emoty. 
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To prove the other half of the theorem the contra-

positive form will he used. Therefore suppose M is not 

compact. Then there exists an open cover ] , <*- e A, 

of M such that for all finite subsets An of A, G Zfi M. 
^ u tXc- ' 

Therefore, U g ^ = , is non-empty. Thus the collection 
^ <*£Ao 

{ G^} , oi e. A, has the f ini te intersection property. However, 

G^ = M, so by Remark 1.23, ̂ G ^ = . Therefore, if 

M is not compact, then there exists a collection of closed 

sets with the finite intersection property which has an 

empty intersection. Thus the theorem follows. 

2.11. Definition. A set E of a metric space (M,d) is 

said to be sequentially compact if every sequence in E has 

a subsequence which converges to a point in E. 

2.12. Definition. A set E of a metric space (M,d) 

is said to have the B o 1 z at ,o - We i e r s t r a s s Property if every 

infinite subset E1 of E has a limit point in E. 

2.13. Theorem. A set E rn a_ metric space (M,d) is 

sequentially compact if and only j_f E ha_s the Bolzano-

Wei ers brass Pro_pe £tx. 

Proof. Assume E C. M is sequentially compact. Let 

E denote an infinite subset of E. Let 
x i e Ei' 

2c 2 •&» C ̂ j \ 5 

X3 £ E l - [x1>x2l 

X «rr E 
n ~ - fx ..., x .1 1 <- n-/: n-1 i , 
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By the hypothesis E is sequentially compact so ^ x n ^ a = l has 

a subsequence [x which converges to a point x <E. E. 
n i 

The values of the subsequence also are distinct, that is, 

f
 0 0 

x ^ x if i ? j, This implies that the range of (x \ 
i j ni 

is infinite. Choose r > 0, Then there exists N ^ J 

ch that ( x CL S(x,r). Thus S(x,r) contains an H su 
n 
l 

infinite number of points of E , that is, x is a limit 

point of E^. 

Now assume E has the Bolzano-Weierstrass Property. 

Suppose £x
n\ is a sequence of points in E. Suppose 

also the range of f | A„, is infinite. Then it has a 

cluster point, say x, x«£ E. Choose x , x £ x. Choose 
n ii 

x , n.. > n, , 0 < d(x,x ) < d(x,x ). If x has been 
n0 2 1 n0 n, n. 
2 2 1 x 

chosen, choose x so that 0 < d(x,x ) < d(x,x ). 
ni+l ni+l ni 

It follows that lira x -- x, 
J n. 

,'r i c.o 

If the range of f x \ n i s finite, then there exists 

an x. an element of the range, such that x -- x for an 
n 

infinite number of n. Let { x n J> 1 - * *-*ie subsequence 

of {x | consisting of these points. Then lim x = x. 
n ' nj_ 

Therefore, the theorem follows. 

2.14. Theorem. A compact net E of a metric space 

(M,d) is_ .sequential i.y compact. 

Proof. By Theorem 2.13, it is sufficient to show that 

every infinite subset E, of E has a limit point in E. 

Suppose that E is an infinite subset of E which 

has no limit point in E. Therefc-s, about each point 
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x. ̂  E there is an open sphere S(x»r ), for some r > 0, 
X. JKZ 

which contains no point of E. except possibly x. The open 

spheres / S(x,r ) J , x €HE, form an infinite open cover of 

E. Since E is compact, there exists a finite subset of 

fS(x,r )} which forms an open cover of E. This implies 
^ X 

that E is finite, a contradiction. 

Definition. A set E of a metric space (M,d) 

is said to be countably compact if every countable open 

cover I has a finite sub-cover £ G« . ̂  j 

2.16. Theorem. A compact set E of a_ metric space 
(M,d) i_s countably compact. 

Proof. Let Jb be any counta.ole open cover of E. 

Since E is compact, E has a finite open sub cover tS ' . 

Therefore, E is countably compact. 

2.17. Definition. It E is a subset of a metric space 

(M,d), then the diameter of E, denoted by D(E) or D(E,d), 

is the sup d(x,y), x, y -C E, 

2.18. Definition. A subset E of a metric space 

(M,d) is said to be bounded if its diameter D(E) is finite. 

2.19= Def ini i~.ion. A set E of a metric space (M, d) 

is said to be totally bounded if given £ > 0, there exists 

, . f 1 
a finite set \ x,,x~,...,x k of elements of E such that 

* • 1 2 11' 

e c. ( O s ( x . , e)). 
A-~~i J-

2.20. Remark. If a subset E of a metric space (M,d) 

is totally bounded, then E is bounded. 

For the set of real numbers R"1", botmdedness implies 
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total boundedness. The same thing is true for Euclidean 

n-space, Rn. However, in a general metric space it is not 

true that boundedness implies total boundedness. 

2.21. Example. Consider the discrete metric where 

N_j is infinite. Since D ( ) = 1, is bounded. Consider 

any subset E of such that D(E) < 1/2. There is at most 

one point in E. A finite number of such subsets covers 

only a finite number of points of N . Therefore, N. is 
d d 

bounded but not totally bounded. 

2.22. Example. Let M - J. Let d^x.y) = Ix - yf 

for x,y C M and let d(x,y) = (d1(x,y))/(l + d (x, y)). 

(M,d) is a metric space. The diameter D(M,d) is bounded 

because D(M,d) < 1. If x and y are any two distinct 

integers then d(x,y) > i/2. Let £ = 1/4, Then any 

S(x,l/4) can contain only one integer since d(x,y) > 1/2 

for x / y. Therefore M cannot be covered by a finite 

number of spheres of radius less than 1/4 because M = J 

is infinite. Thus M is bounded but not totally bounded. 

The following examples are those of totally bounded 

metric spaces which are not compact. 

2.23. Example. Let E be the set (0,1) of the real 

line R. By Remark 2=20, boundedness in Euclidean n~space 

implies total boundedness. Thus (0,1) is totally bounded. 

However, as shown in Example 2.3, E is not compact. 

2.24. Example. Let E b& (0, l'} minus the point 1/2. 

Again by Remark 2.20, E is totally bounded. However, 
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by Example 2.5, E is not compact. 

The following theorem shows that at least one type 

of compactness implies total boundedness. 

2.25. Theorem. A set E of a sequentially corn pa cb metric 

space (M,d) i_s totally bounded. 

Proof. Let >0. Pick a point € E. If S (x , €.) 

covers E, then E is totally bounded. Suppose S(x^, €.) 

does not cover E; then pick C. E, x? ̂  S (x, €.) . If 

S(x^,£ ) LJ S (x? , a,) covers E, then E is totally bounded. 

However, if S (x^, €.) S ( } does not cover E, then 

pick x^ E, x^ 4- S (x^ €:. ) y J S (x^, €. ) . Continue the 

process by means of mathematical induction. If the 

process can be continued for only a finite number of times, 

then E is totally bounded. Otherwise, consider fs(x^,<?z )J n = > 

The centers of these spheres form an infinite sequence 

f x \ in ---1 of distinct points of E. Since E is sequentially 
j ex> 

compact, then |x has a convergent subsequence 
n 

OO 
[ x which converges to a point p CE. Now consider 

ni 

the sphere S(p, £/2) . Hence S (p, <£ /?.) contains all but 

a finite number of terms of I. x I / . This is a contra-
'ai - «o 

diction to the fact that any two terms of [ x , are 
ni 

at least a distance of C apart. Therefore E can be 

covered by a finite number of spheres wi. th radius less 

than . This implies that E is totally bounded. 



2.26. Theorem. If J j is an open cover of a_ set E with-

the Bolzano-Weierstrass property, then there exists a_ 

number <£ > 0 such that every sphere of radius <£. wi th center 

in E i_s contained in some G € M . 

Proof. Suppose that there does not exist a number 

^ > 0 such that every sphere of radius 6 with center 

in E is contained in some G €. -£f • Then there exists 

some Xl<~ E such that S(x^,l) is not contained in any G 

There will also exist an x0C. E such that S(x£,1/2) is not 

contained in any GCI 2/ . in general, for every n C J, 

there will be an x E, n €1 J, such that S(x ,l/n) is 
n n 

not contained in any G . If the range of f x . f ... 

is finite, then let x be a number such that x •= x for an 
n 

, , f 1 <X3 

jnfmite number of n € G , If the range of £ x j J ji-i 3-s 

.infinite, then it has a limit point x E because E has the 

Bolzano-Weierstrass Property, Whichever is the case, 

there is some G €, such that x ;E G. Denote the G by G . 

There exists an integer HQ c-'i J such that S (x, 2/n^) is 

contained in G^. There exists an integer n' > n^ such 

that x , belongs to S(x,l/nn). Hence 
n o 
S(xn,,1/n*) d S(x,2/n0) <£1 G^. 

This is a contradiction of the fact that S(x ,l/n) is not 
n 

contained in any G 11 . Therefore the theorem follows. 

2.27. Theorem. If a_ set E of a_ metric space (M,d) 

has the B o I z ,• s n o-Weierstr a s s Proper ty , then E is compact. 
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e:j 

Proof. Let /£? be an open cover of E. By Theorem 2.26, 

there exists an €~ > 0 such, that every sphere of radius £ 

with center in E is in at least one G €. Sf , Since by 

Theorem 2.25, E is totally bounded, then there exists a 
n 

finite number of S(x^,£E), E, such that E C_ Sr^S(x^,£L). 

Since , is a finite open cover of E, E is compact. 

2*28. Defini tion. A subset A of E is said to be 

closed in E if every limit point of A contained in E is 

a point of A. 

2*29. Lemma. A closed subset A o_f a_ countably 

compact set E of a_ metric space (M, d) _is_ countably compact. 

Proof. The proof follows exactly as the proof to 

Theorem 2.28, except on the restriction of M to E. 

2.30. Theorem. If a set E o_f a_ metric space (M,d) 

is countably compact, then E has the Bolzano-Weiers trass 

Property. 

Proof. Let E^ be an infinite subset of E. Suppose 

has no cluster points in E. Then E is closed in E 
OO 

and by Lemma 2.29, E^ is countably compact. Let £x^ | ̂ i = 
denote a countably infinite subset of . Choose n <£. J. 

Since is not a cluster point of E , there exists a number 

r > 0 such that S(x ,r ) contains no point of E, other 
n n n 11 1 

than xn« If x is a point of E^ - E^ then since x is not 

a cluster point of E , there exists an r > 0 such that 
JL X 

S (x, r ) contains no point of E other than x. Let VJ 3 (x, r. ) , 
^ J- X 

x v'.'. Ef ~ E?, be denoted by D. Then -f D? I ) f (x. . r . 1 I 
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is a countable cover of . Since no member of E2 belongs 

to D or to more than one of S(x,, r ) , this countable cover 
1 1 

has no finite subcover. Thus E is not countably compact, 

a cont. r a d i c ti on. 
. CO 

2.31. Definition. The sequence 1 is a 

Cauchy sequence in a metric space (M,d) if given > 0, 

there exists an N C J such that for m,n > N, then d(x ,x ) < 
— n m 

2.32. Definition. A set E in a metric space (M,d) is 

complete if every Cauchy sequence is convergent to a point 

in E. 

The following are examples of metric spaces which are 

not complete. 

2.33. Example. Let M be the set of rational numbers. 

Some Cauchy sequences of rational numbers converge to 

irrational numbers which are not in M; therefore M is not 

complete. 

However, the set M - R of real numbers is complete. 

2.34. Example. Consider as the entire space M. the 

open interval (0,1). Coasider the Cauchy sequence 

"C 1,1/2,1/3,1/4, , l/n, . . , 1 . Since 0 is not in M 

then £ 1,1/2,1/3,1/4,...,l/n,... } is not convergent and 

therefore (0,1) is not complete. 
V "j *20 

2.35. Lejmna . If j \ .A- | a Cauciiy sequence arid 

{x v ijs <a subsequence vhicli converges to x, then 

r K & 
| xn | n-L also converges to x. 
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2.36. Theorem. A B of a. metric space (M,d) is 

compact if and only if_ ijl i_s cornnl ehe and totally bounded. 

Proof. Suppose tha c E is complete and totally 

bounded. Since compactness is equivalent to sequential 

compactness, it is sufficient to show that every infinite 

sequence A in E has a convergent subsequence with 

respect to E, 

Since E is totally bounded E can be covered by a finite 

r l°° 

number of spheres with radius less than one. Since \ x
n5A~s 

has an infinite number of terms (not necessarily distinct), 

then one of these spheres, say S , has an infinite number 
of terms of fx } - 1 in it. Now E can also be covered by c n 1 

a finite number of spheres with radius Less than 1/2. One 

of these spheres, say S^, is such that S^ contains an 

. . r ? 

infinite number of tervr.s or £ x^ jri-i • Assume that S^, 

1 i is a sphere of radius less than l/i such that 

/Is, contains an infinite nuTiber of terms of |x Sm-i 

% 

c \ 
n ' 

Now E can be covered by a finite number of spheres of radius 

less than l/(k + l), and one of these, say is such 

j f , r l 00 
that (. \S. contains an infinite number of terms of fx \ n-i *. -v i *- n 3 

By finite mathematical induction we have defined a sequence 

\ , S, a sphere of radius less than 1/k such that for 
» 

every k, \ S. contains an infinite number of terms of 1 
ao 

(x \ * ^ 
n v 

Choose n. J such that x *£ S, . Choose n 0 J such 
JL a. z 

tha t n„ > n, and x CL S Continuing this process, 
z ± d p 1 z 



31 

r icr> 
using mathemat.ical induction, we define a sequence (x^ ^ 

*r *k 
such that for k *=• j n < ti, .. and x S. , that is, 

K iv-̂l n, »=< i ' 
/" j<w /- > io 
1X )K=, is a subsequence of i x j n^, such that, for 

" k r. n 

N e. j and k > N, x «£' O S . . 
nk i 

Choose C > 0, Then there exists an N €•• J such that 

2/N < ^ . Choose k, j <£ J, k, j > N. Then x , x <=L SNr, 
" — nk n . N 

a sphere of radius less than l/N, Hence, d(x ,x ) < 2/N < <F , 
_ n

k n . 
r 7 . K J 

and { x 5 k=i i-s a Cauchy sequence. Since E is complete 

f "» ^ 

\ x $ converges to some x E. This implies that E is 
nk 

sequentially compact and therefore E is compact. 

Now suppose E is compact. Total boundedness of E 

is implies by Theorem 2.25, Since G is compact, then E 
r i ° ° 

is sequentially compact by Theorem 2.14. Let ( x $ ~ t 

be a Cauchy sequence. Since E is sequentially compact 

then {xnifj~i has a convergent subsequence { \ ^, 
1 / ? 0 0 

which converges to x E, There Core by Lemma 2.35, £ j n -» 

is also convergent to x •£ E, Therefore E is complete. 

2.37. Corollary. Let E be a_ set of a metric space 

(M,d) . Then the following statemeni:s are equivalents 

1) E i_s compact. 

2) E is countably corrpa c t. 

3) E .is sequentially compact. 

4) E has the Bo 1 zano-W^• icrs11:ais Property, 

5) E is com pie te and to tail 1 y bounded. 

Proof. The proof follows immediately from Theorems 

2.13, 2.14, 2.16, 2,27, 2.30, and 2,36. 
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2.38. Def i.nl tion. Let E be a set of a metric space 

(M,d) and a subset of Then E is said to be dense 

(or everywhere dense) if E ~ E. 

2.39. Definition. A set E of a metric space (M,d) is 

said to be separable if it has a subset which has a 

countable number of points and which is dense in M, that 

is, E^ = E. 

2 -40 . Theorem. If E jjs _a compact set of a_ me trie 

space (M, d) , then E i_s separable. 

Proof. Let E be a compact set. By Theorem 2.25, 

E is totally bounded. Let n €l J. Then there exists a 

finite set F = /x 1?x x „ J r~~ ^ t , , 
n i. nl n2 riN J> h such that if 

n 

x €. E, there exists an i., 1 < i < N , with d(x,x .) < 1/n. 
— n nx 

aey 
Let F -- Ly F . This is a countable subset of E. 

n- i n 

Consider a point p <£ E, p F« Let G be an open 

set containing p. There exists some m €. J such that 

S(p,l/m) <d G. Choose n > rn. Then d(p,x .) < l/n 
1 ni 

for some x . F F. Thus, p is a limit point of F. 

Hence E CL F. Therefore E is separable. 

2.41, Definition. A set E of a metric space (M,d) 

is said to have the Lindelof Property if every open cover 
ay . 
^ o>: E has a countable open subcover Z'J * • 

2.42. Theorem. A. set E of a me 'trie space (M,d) has 
* # 

tr-̂ e Li ridel of Property i f and only if it_ is_ separable. 

Proof. Assume E is separable. Let <j - ( G^J 

be an open cover of E. Let D = { x. j ̂ , be a countable 

dense subset such that D E. Pick an x. D, This x. 
i l 
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is an element of at least one CK, call it G^^. There 

exists a rational r such tha;: the sphere S (x.. , r) O G ^ , 

If x^ €1 D and r is a rational number such that there exists 

a member of containing S (x ̂, r) , then let one such member 

of belong to a collection Hence is countable. 

Now pick a p ^ E . If p e D, then p is covered by 

at least one member of . Suppose p <= E, p ^ D, 

Since D is dense on E, p must then be a limit point of D. 

Consider a e l / ' such that p € , Then there is an 

open sphere S(p,r) with r rational such that S(p,r) O G^ , 

Consider S(p,r/2). Then there is an x^ £EL S(p,r/2), x^£L D. 

Thus p <5. S(x.,r/2) CI S (p, r) C_ G, . Hence S (x. , r/2) is 1 1 
I 

contained in some member of %j . Thus E is covered by 

33 , and E has the Lindelof Property, 

Assume E has the Lindelof Property, The sequence 

fs(x,l/n)j , x €. E covers E, Since E has the Lindelof 

Property, for each n s J, there exists a countable open 

subcover i S(x ,l/n)j , that is, E CI W S (x ,l/n). 
n. ;=\ n. 

f 1 
For oach n 6 J, I x j ̂  t is countab] e , Therefore, 
co - , co "X 

{ x \ c = i is a countable set. Call it D. 
n. l 
Pick a point p <£ E, p <*/. D. Consider S (p, r(̂ ) for some 

rQ > 0, There exists some n <£• J such that S(p,l/n) CI S(p,rQ) 

Since E is covered by { S (x. , l / n , then p c-_ s (x , 1 /n) 
ni ni 

for some i. Therefore d(p,x ) < 1/n, so 
X 

x
n <£ S(p,l/n) CI S(p,rQ). Thus p is a limit point of D. 
i _ 

Hence D = E and E is separable. 
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2.43. Lemma. Let E be a_ closed set of a_ complete 

metric space (M, d) . Then E is complete. 

Proof. Let {"x
n}n-, be a Cauchy sequence in E. 

r i , 

Therefore i x n 3 * • t
 1 3 a Cauchy sequence in M and converges 

to some x £ M. However, since E is closed, x e. E. There-

fore E is complete. 

2 . 44. Theorem. Let E be a_ complete se t of a_ metric 

space (M,d) and let {*Fn | be a. decreasing sequence of non-

empty closed subsets of E such that D(F ) approaches 0. 
CO 

Then F = F contains exactly one point. 
A=I n. •*"" — . 

Proof. Suppose f \ F contains two points x, and x,̂ . 
~**""* n-n n 1 Z 

Since d (x, ,x.,) = €. > 0 and lim D(F ) ~ 0, there exists 
± z n-*<x> n 

a number n* €, J such that D(F ) < <£ . But this implies 

x^ and cannot both belong to F , and hence not to 
» CO 

/^F . Hence /""N F does not contain two points. 
<i-i n n 

Let x. be a member of F, , If 6." > 0 then there exists l i 

an n' <£ J such ttuit D(F ,) < (p and hence if m.m' > F . 
n _ — n' 

and d(x
m»

x
mi) < €. • Hence is a Cauchy sequence. 

r i 00 

Since E is complete ^ x. \ , converges to a point x £ E, 

If n € J, x^ C£ F^ for i >_ n, and since F^ is complete by 

Lemma 2.43, f x. J ; ̂» has the limit x and x <£ F . Hence L i n 

2.45. Defixi.ifc.ion. A subset E of a metric space 

(M,d) is said to Le nowhere dense in M if it is dense in 

no open sphere at all, that is, if every sphere S R 
f f 

contains another sphere S such that S E = . 
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2,46. Theorem, (Balre Cafceqory Theorem). If £A ^ ̂  
CD 

n j »v-i 

is a sequence of nowhere dense sets in a complete set E of 

a_ me trie space (M,d) , then every open sphere S iri E contains 

a point which does not belong to an^ member of the sequence 

{A \Z ** n 
CO ;l 

Proof. Since is nowhere dense in E, there exists 

an open sphere S CI S with radius less than one such that 

A A \ = JOT. There exists a closed sphere contained 

in S^ with radius less than 1/2. Since the set A^ is 

nowhere dense, the interior of D contains an open sphere 

S ̂  such that A2*'"~^S2 ~ Qj' There exists a closed sphere 

contained in S0 with radius less than 1/4. Since the 

set A^ j-s nowhere dense, the interior of D^ contains an open 

sphere such that A^ = J0" . Continue this process, 

"V 1 00 

Then a descending sequence of (non-empty) closed 
r i 00 

spheres is defined as well as a sequence \ j ,,r-s of open 

spheres such that for n t: J, 13 dl.. S , the radius of S is L n n n 
r" i ® 

less than l/n and S f"\ A = . Bv Theorem 1.22, -J J) < A=» 
n n " - n J 

is a descending sequence of closed sets such that Jim D(P ) = 0, 
iW"? n 

Therefore, by Theorem 2,44, 1 "t D contains exactly one point. J ,v=i n 

Call it x. Since each of the D 's is contained in its 
cr? 

corresponding S , then x be Longs to S^. Foe n J, 

x S and S /' A A - j/i , and therefore x f/ A , that is, n n a r n 
/ 1 °° 

x does not belong to any member of the sequence 1 A s r\ = i 

The preceding statement of the Baire Category Theorem 

is equivalent to the following statement; 



36 

2.46* . Theorem. A complete set E jji _a metric space 

(M,d) cannot be represented as tha union of a countable 

number of nowhere dense sets. 

2.47. Definition. A point x in a set E of a metric 

space (M,d) is called isolated if the set fx J is open. 

2-48. Corollary. A complete set E in a_ metric space 

(M,d) without isolated points is uncountable. 

Proof. No single point is nowhere dense. Then the 

union of single points must be uncountable,, 



CHAPTER III 

FUNCTION PROPERTIES 

3.1. Definition. A function f from a. metric space 

(M^jd^) into a metric space (M̂ .cL-,) is continuous at Xg if 

given C > o, there exists a & > 0 such that if c3^(x,XQ) < & , 

then $2(f(x),f(XQ)) < C . The preceding definition can 

also be stated as followss 

For each open sphere S (f ( ) , £ ) there exists an open 

sphere S (xQ , & ) such that f (S (xq ,<>")) d S (f (xQ ) , (L) . 

The function f is continuous on M if f is continuous 

at each point of M . 

3.2. Definition. A function f from a metric space 

(M,d) into the set R is continuous if given (L.> 0, there 

exists a S > 0 such that if d(x,xg) < & then (f(x) - £'(XQ)I < 

3 • 3. Theorem. Leb f be a_ function from the metric space 

(M^,d^) into the metri.c jsparje ' Then f _is_ continuous 

_j_f and only if f (G) is_ open in -whenever G _is_ open ijn . 

Proof. Suppose f is continuous and G is an open set 

in M0. Let x €.. f"' (G) . Than f(x) 6" G. Since G is open 

in there exists an open shpere S(f(x),€E_) CL G, Since 

f is continuous at x, there exists an open sphere S(x,& ) 

such that f (S (x, S ) ) d S (f (x) €. ) . Since S (f (x) ,€. ) CL G, 

then f (S (x, & )) CI. G. Therefore S (x, i ) £Z f " 1 (G) . Thus 

f"! (G) is open. 

37 
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Now suppose f"'(G) is open in whenever G is open 

in M^. Pick an XQ€I and Let --- > 0, Then consider 

the open sphere S (f ( XQ ) , <E ) . Thus f "1 (S (f (x^) , C ) ) is 

open. Therefore there exists a 6 > 0 such that 

s (xQ , £ ) a f~' (s (f (xQ) , €-) . Therefore, f(s(xQ, & ))C1 S (f (XQ) , C ) , 

so f is continuous at Xq. Since was any point in M^, then 

f is continuous. 

3 • 4. Theorem. If f _i_s_ a_ continuous function from a_ 

compact me trie space (M, ,d1) into a roe tr i c space > d£)> 

then f (M ) i_s compact. 

Proof. Let ~ ( Cr/ \ be an open cover of f (M̂  ) . 

By Theorem 3.3, f H (G^) is open for each a. . Since M 

is compact, there exists a finite subcover of M , say 

{ f (CU, ) » f "X (Gu2) "..,i (Q, n)j . Then 

C. f ''(G^) f (% 2) VJ VJ f (G^n) , and 

f(Mx) C_ f(f (GX1) \J f- (CU2) . . . U f ((1tn)). 

Since the images of the unions is equal to the union of the 

images, then 

f(Mt) C. ... VJ f (f (c^n)) . 

This inplies, 

f < V C. rVx ^ G<„2 U (kn G l n C e j)} ^ G< 

for each i. Therefore f(M^) is compact, 

3*5. Defini hi on. Let f be a function from a metric 

space (M^dj) into a metric space (M?, d0) . The function f 

is uniformly conti nuous if for every £ > 0, there exists a 



39 

£ > 0 such that if x, and x,, are fcv/o points of M with 
1 L ' J-

d, (x,,x,J < £ , then d0 (£ (x1 ) , f (x-J ) < (z. . 1 1 2 £ J. a. 

3.6. Theorem. If_ f _is_ a_ continuous function from 

a compact metric space (M} ,d, ) into a_ metric space (M?,d2), 

then it is uniformly continuous. 

Proof. Choose £ > 0 and p M . Then since f is 

continuous at p there exists a , > 0 such that if 
P 

d,(p,x) < S then d~ (f(x),f(p)) < €/2. The collection 
-L "p ^ 

fs(p, c^/2) | , for p € forms an open cover of . Since 

M is compact, then for some n €£ J there is a finite sub-

cover {~S (p . , & /2) | , 1 < i < n. Let 
1 IP*, 

& = min f £ /2 , <T /2, . . . , i /2 { . 
" pl P2 Pn 

Suppose x,y €. and d^ (x,y) < <f . Then there exists 
a p, , 1 < k < n, such that d1 (p, ,x)< I /2. Since 

K ' i ̂  P \r 
d1(x,y) < £ < $ /2, then 

P]̂  
d^Pk.Y) < d1(pk,x) + d^'x.y) < i p / 2 ^ / /2 = / . 

K. K KL 
Since d (p ,x) < £ /2 < i then d,, (f (p ) , f (x)) < €./2, 

l - K p^ K 
and since d (pk,y) < £ then d0(f(p^),f(y)) < £/2. Thus 

P^ 

d2(f(x),f(y)) < d2(f(x);f(pR)) + d2(f(pk),f(y)) 

< <5-/2 + <'-/2 - < . 

Therefore d2 (f (x) ,f (y) ) < £-"• , which implies that f is 

uniformly continuous. 

The following functions are from a metric space (M,d) 

into R. 
3.7, Defini tion. Let EC. R, then 

u(fjE) = lub f (E) v/here f(E) = j f (x)jx C. E jj , 
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1 (f ; E) = gib f (E) where f (E) = | f (x)[.x e. E , 

s(fjE) = lub {"if (x? ) -- f (xl) | | xx , :<2 e E ], 

The s (f; E) is often called the saltus. Even if f is from 

a metric space (M^,d^) into a metric space (M.,, d£) the 

sal tus of f on E may be def ined: 

s (f ; E) = lub -{ d ( , x^) I x , x^ €1 E ̂  . 

However, u(f;E) and l(f;E) have no meaning in this case. 

3-8. Remark. If f is bounded, the functions u (f ; E), 

l(fjE), and s(f;E) are finite. 

3.9. Definition. Let 

TJ(f;x) = gib (f ; S (x, r ) ) r > 0 j , 

L(f;x) = lub { l(f;3(x,r)) r > 0 J , 

S (f ;x) = gib {s (f ; S (x» r)) r > 0 } . 

3.10. Remark. If A C. B, then D(A) < D(B). 

3.11. Lemma. If A C'l B, s (f ; A) < s (f ; B) . 

Proof. By Remark 3.10, D (A) <_ D(B) . This implies 

u(fjA) - 1(f;A) < u(fjB) - 1(f;B). 

Thus lub ( | f (a^ ) - f (a^) 1 \â  ,a^ £1 A ̂  < lub \lf (b^ ) - f (l^ )j|b̂  ,b^ & b| 

Therefore , s (f ;A) <_ s (f ; B) , 

It may be instructive to include another proof to 

3.12. Theorem. If f Ls a continuous function from 

a. compact set E of a_ me trie ;;pace (M ,d̂  ) into a_ metric 

space (M , > jthen i t is_ un_i.f orr;i].ĵ  con tlnuous . 

Proof. Choose C > 0. Then there exists an r^, x E, 

such that for S(x,r ) ~ T , s (f j I _ E) < C. . Then 
X js. 

xJ = I Ix } , x Ci. E, is an open cover for E. Since by 
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Corollary 2,37, E has the Bolzano-Weisrstrass Property, then, 

by Theorem 2.26, there exists a u > 0 such that every sphere 

of radius £ with center in E is contained in some 1. _r €, , 

Choose x^ ,x2 £ E, such tha t d^ (Xj >x2)
 < & ' Then the open 

sphere S(x^,5 ) contains and x^. Therefore, 

six,,8 ) d . Hence X 2C 

I2 (f (x2) , f (x_L) ) < s (f ;S (x1, s ) r~\ E) 

< s ( f ; I r~\ E) < E. • 

Thus d2(f (x2) ,f (x.̂ )) < •£. and f is uniformly continuous. 

3.13. Definition. A function f is said to be upper 

semi-continuous at x = c if for every €•,> 0, there exists 

a S > 0 such that f(x) < f(c) + €. whenever d(x,c) < o , 

Si mi larly, f is seiid to be lower semi -continuous at 

x ~ c if for every d > 0 there exists a S > 0 such that 

f(x) > f(c) - fc whenever d(x,c) < & , 

3.14. Theorem. If f i_s_ a_ bounded function from a 

;no i:r i.c space (M,d) into R, then U(f ;x) is art upper serai-

conti nuous function and L(f jx) i._s a_ lower semi-continuous 

function. 

Proof. Let x^CM. Choose C > 0. 'Chen, by 

the definition of U(f;x), there exists some 5" > 0 such 

that u (f ; S ( XQ , & ) ) < U(f,<x) + €. , Now choose x € S{XQ, S ), 

that is, d(x,xg) < & . Then there exists a £ 1 > 0 so 

that S (x, S ̂ S ( x q , S ) and therefore 

U(fjx) < u (f; S (x, i t)) < u(fjS(Xpf <, )) < U(f ;x0) + € . 

Hence, U(fjx) is upper semi-continuous at x - Xq. In a similar 

way , L(f ;x) is 1 ower semi - conti nuous at x " Xq . 
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3.15. Remark. If $ > 0., then 

1 (f ; S (xQ , &)) < L (f •, xQ ) < f(x0) < U(f;x0) < u(f;S(xQ, S ) ) . 

3.16. Theorem. Let f be a function from a metric space 

(M,d) into R. Then f is_ upper s em i - con t i nu ou s if and only 

if U(f;x) = f(x) and f is lower s em i-cont i nu ou s if and only 

if L(f;x) = fix). 

Proof. Suppose f is upper semi-continuous at xQ = x. 

Choose £ > 0. Then there exists a $ > 0 such that for 

x C. S (xQ, S ) , f (x) < f(xf)) •!- •£ . 

U (f ; X Q ) < u (f ; S (XQ, S ) ) <_ £ (XQ ) + €L . 

Therefore, TJ(f;XQ) < f(xQ) + €. which implies CJ(fjXQ) £ fCx^), 

By Remark 3.15, f (x^) <_ CJ (f ; XQ ) . Therefore U (f; x.Q ) = f ( XQ ) . 

Suppose U(f;xQ) = f(x^). Given €. > 0, there exists 

a S > 0 such that u(f j S(x^, & ) ) - f(x^) < E. . Hence for 

x G S(XQ, S ) , f(x) - £ (xf)) < which says that f is upper 

semi-continuous at x . Since xA was any element in the 
U u 

domain of the function, then f is upper semi-continuous. 

A similar proof can be used to show that L(£;XQ) - f(x^) 

if and only if f is a lower semi-continuous function. 

3.17. Corollary. Le t £ be a function from a_ metric 

space (M,d) into the se'r R. Then f jjs continuons if and 

only i_f U(f;x) L(f;x) - f(x). 

Proof.. A continuous function is both upper and 

lower semi-continuous. 

3,13. Lemma. If A CI R, then 

lub A - gib A = _1 ub d (x . x,̂ ) , xj_»x2 £ ^ • 
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3 ' 1 9 , £?.ro1 larY* i'.er£ f be a function from a_ metric 
space (M,d) into R. Let E CI M, then 

s(f;E) = u(f;E) - l(fjE). 

3 • 2 0 • L et f be a function from a metric space 

(M,d) into R. Then S(f;xQ) < s(f;S(x0, g)) f o r S > 0. 

3» 2 1' rrheorem. S(f;x) = U(f;x) - L(f; x) . 

- R O O F-- L E T X = XQ- Given €. > 0, there exists a 

£ > 0 such that S(f;S(xQ, S )) - S ( f | X 0 ) < £ . 

By Corollary 3.19, 

u(f;S(x0, $ )) - l(f;S(x0> £ )) - S(fjXq) < . 

u(f ;S(x0, &)) < K f ;S(x0, 5")) + S (f ; XQ ) + € . 

By Remark 3.15, 

U(f;XQ) < L(f;XQ) + S(f;xQ) + £ . Then, 

U (f ; XQ ) - L (f jXQ ) < S(f jx0) + e . Since GL j_s any 

positive number, U(fjx0) - L(fjx0) < S(f;x ). 

Choose 6 > 0. There exists ^ > 0 such that 

u(f ,o (xQ, d-^)) - U(1-;Xq) < C-./2 and there exists & ̂  > 0 

such that L(f;XQ) - X(fJS(x0,S2)) < e/2. Let S * m i n t f ^ ) 

Then u (f j S ( XQ , $ )) - U (f ; x Q) < e/2 and 

L(f;x0) - 1 (t:;S (xQ, $ ) ) < £"/2» Thus, 

U ( f , S ( X 0 ' S )} ~ UE;S(X0, S )) < U(f;x0) - L (f; X Q ) + € . 

By Corollary 3.19, s(fjS(x0, 5)) < U(f;xQ) - L(f|xQ) + € . 

Since ei is any positive number, then 

o(f , S ( X Q , B ') ) < II (t i X Q ) - L (f j X Q ) . By Remark 3,20, 

S 'F '• xo ) U (f ; XQ ) - L (f ; x0 ) . Therefore, 

S ( f ; X Q ) = CJ ( f ; X Q ) - L ( f ; xQ ) . 
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3 '22. Theorem, S(f ;x) - C if and only if f is 

continuous at x. 

Proof. Suppose f is continuous. By Theorem 3.21, 

S(f;x) = U (f ; x) - L(f;x). 

By Corollary 3.17, 

IJ (f ! x) - L (f ; x) = f (x) - f (x) = 0. 

Therefore S(f;x) = 0. 

Let x — XQ. Suppose S(fjxQ) = 0. Thus by Theorem 3.21, 

U(f ;xQ) - L(f ;XQ ) = 0. Therefore* given €1 >• 0, there exists 

a S > 0 such that, 

u (f; S ( Xq , <S )) - 1 (1; ; S ( xq , 5 )) < <£, . This implies 

that for x € S(xQ, 6 ), ff (x) - C (xQ)| < £ . Therefore f 

is continuous at Xq , which was any value of x, Therefore f 

is continuous. 

3.23. Corollary. S(f;x) > 0 iff and, only if f is 

discontinuous a_t x. 

3.24. Theorem. Lcrt f be a_ functi_on from meLric 

space (M,d) into R. If" k > 0, _tben the set; | S (f ; x) > kj 

is closed. 

Ije^ xq be a limit point of F , Consider 

S(xQ,r) for some r. Since xQ is a limit point of F , then 

S(Xq 3 r/2), must contain a y £ F^, Since y e F , then 

S(f;y) - U (f ; y) - L (f; y) >_ k. Therefore since 

5(y,r/2) C._ S(xq,r) , then by Lemma 3,11, 

^ .< s (f j S (y, r/2) ) s (f; S (x^ , r) ) . 

Since this is true for any r > 0, then 

gib |s(f iS(x0,r)]> k 
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which implies S(f;x0) > k, which implies x Q ^ F . Hence, 

F^ is closed. 

•3*25. Corollary. Let f be a_ function fcom a metric 

space (M,d) into R. If k > 0 then the set FR = ̂ x|s(f JX) < k ] 

is open, 

3•26. Definition. A set is called a G-delta, Gg, 

if it is the intersection of a countable collection of 

open sets. 

A set is called an F-sJ.arna, F^, if it is the union 

of a countable collection of closed sets. 

3.27, Remark. The complement of an F^ is a Gg. 

3*23. Theorem. rf f is a_ function from a metric 

§£§££ (M>d) into R, then set of points D of dis-

continuity .is an F . 

L e t x *= D. Then by Corollary 3.23, S(f;x) > 0. 

Thus for some n J, 3(f ;x) > l/n. Let 

F
n = fx|s(f;x) > l/n] . 

By Theorem 3.24, F^ is closed. It is also true that 
CO cyy 

x C F . Therefore x £ X^-J F which says I) C V 7 F . 

Suppose x g O F , then x £ F for some n e j. Thus 
n - \ n ri 

S (f;x) > l/n which implies that x C D. Hence O F CL D. 
n=i n 

Therefore D = O f which is an F, . 
<\ 1 11 6 

3.25. Corollary. If f is a_ function from a metric 

d) R, thon the s_e_t of jooi n._ts_ C of continuity 

is _a Gg . 



BIBLIOGRAPHY 

Books 

Copson, E. T., Metric Spaces, Cambridge, At the University 
Press, 1968. 

Greever, John, Theory and Examples of Point-Set Topology, 
Bolmont, California, Brooks/Cole Publishing Company, 
1968. 

Royden, H. L. , Rcal_ Anal ys is, London, The Ma cm ill an Company, 
1968. 

Simmons, George F., Introduction to Topology and Modern 
Analysis,New York, McGraw-Hill Book Company, 1963. 

46 


