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The problem and purpose of this paper is to develop 

Lane's Integral in two-space, and then to expand these 

concepts into three-space end n-spacc. Lane's Integral 

can be used by both mathematicians and statisticians as 

one of the tools in the calculation of certain probabilities 

and expectations. The method of presentation is straight-

forward with the basic concepts of integration theory and 

Stieltjes Integral assumed. 

The paper is divided into five main chapters and 

includes a preface and a bibliography. In this paper only 

real functions which are defined over the set of all real 

numbers are considered. The first chapter provides the 

basic groundwork for the remaining chapters, and, therefore, 

the properties relative to Lane's Integral in two-space are 

presented with the necessary definitions and theorems. The 

second chapter is devoted to the development and expansion 

of the integral into three-space with the necessary analogous 

definitions and theorems from Chapter I. 

In the third chapter natural analogues of the theorems 

and material in Chapter I and Chapter II are presented for 

n-space. Since the material extends readily to n-space, just 

a few sample definitions were presented. Chapter IY contains 

the material necessary to expand the domain of integration 

from a finite interval to an infinite interval. Therefore, 
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in the fourth chapter the definitions and theorems presented 

in the preceding chapters'"for the definite integral were 

expanded to fit the concept of the improper integral. 

The paper concludes with Chapter V which gives some 

of the advantages of the Lane Integral over the more 

commonly used Stieltjes Integral. It is, therefore, hoped 

that eventually the more encompassing Lane Integral will 

come more into vogue. 
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PREFACE 

The concepts of integration theory have "been a tool 

of both the mathematician and the statistician for many 

years. However, in statistical theory more general con-

cepts and integrals are needed in the calculation of certain 

probabilities and expectations. Today with the aid of 

integrals such as Lane's Integral these areas are more 

exacting. 

The purpose of this paper is to develop and expand 

Lane's Integral into three-space, and then to present some 

fundamental theorems. The first chapter of this paper 

will provide and investigate some pi-operties of Lane's 

Integral in two-space. The second chapter is devoted to 

the development of the integral in three-space for quasi-

continuous real functions and functions of bounded variation. 

In the third chapter natural analogues of theorems In 

Chapter I and Chapter II are presented for n-space dimensions, 

The fourth chapter presents the material necessary to expand 

the domain of Integration from a finite interval to an 

infinite interval. Therefore, in Chapter IV the definitions 

and theorems presented in the preceding chapters for the 

definite integral will be expanded to fit the concept of the 

improper integral. The final chapter gives some of the 

advantages of Lane's Integral over the more popular Stieltjes 

Integral. 
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CHAPTER I 

b 

THE INTEGRAL J f(x)dg(x) 

In this paper only real functions which are defined 

over the set of all real numbers are considered. A basic 

knowledge and understanding of the Stieltjes integral is 

assumed and consequently no rigorous derivation of it will 

be presented. In order to simplify some of the statements 

which are to be•madeT . certain preliminary definitions and 

remarks are necessary. 

Definition 1.1. The statement that f is a function 

implies that if t Is a real number then there Is Just one 

number c such that f(t) = c. 

Definition 1.2. The statement that G is the graph of 

the function y with respect to the function x in the 

interval fa^b] means that G is the set of ordered triples 

such that p,q,r is in G if and only if It is true that 

& K P K. b and q = x(p) and r = y(p). The statement that P 

is a point of G means that there Is a number t such that 

a < t < b and x(t) is the abscissa of P and y(t) is the 

ordinate of P. 



Definition 1.3. The statement that D is a subdivision 

of the Interval [a/o] means that D is a finite set of 

(one or more) intervals [t0,t, 1, [tn.t^], .... ft - , t "I 
/ I-I J L IJ> n«l5 nJ 

such that t„ = a and t = b. 

u n 

Definition 1.4. The statement that E is a refinement 

of D means that E is a subdivision of [a3b] such that, if 

[p,q] is an interval in D then there is a subset of E which 

is a subdivision of [p,q]. 

Definition 1.5. The statement that the function f is 

quasi-continuous in the interval [a,b] means that if e > 0 

then there is a subdivision D of [a,b] such that, if [p,q] 

is one of the intervals in D and s ana t are in the segment 

(p,q), then | f(s) - f(t) J < e. 

Notation. If x is a function, y is a function, and D 

is a subdivision of the interval [a,b], then S^(x,y) denotes 

the number 

n-1 

p f 0
1 / 2 [ y < V + y < V i > ] t x ( V i ) -

Theorem 1.1. For numerical work it is often convenient 

to make use of the fact that 

SD(x;y) = y(t0) • 1/2 [ x ^ ) - X(t0)] 

n-1 

+
 P f 1

y ( t p ) • 1 / 2 W W - x<tp-i)] 

+ y(tn) • 1/2 [x(tn) - x C t ^ ) ] . 
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Proof; 

SD(x,y) = V 1/2 [y(tp) + y (tp+1) ] [X( t,p+1) -x(tp)] 

" pfo1/2 ' y ( v • t x ( V i » - X ( V ] 

1 / 2 y ( v i > • [ x ( w - x ( tp ) ]-

Then 

SD(x,y) = y(t0)l/2 [ x ^ ) -x(tQ)] 

+ f
p=i

1 / 2 * y ( t p ) ' [ X ( W " X ( V ] 

n—2 
+
p f 0

i / s • y ( v i ' • w w 

+ y(tn) 1/2 [x(tn) ] 

= j ( t o ) ^ w y - x p b ) ] t ( s i / 2 y(tp)r^(tp+1)-x(t)] 
p 

+
 p f i

1 / 2 y ( V [ x ( V ^ ( V i ' j ' 

+ y(tn) 1/2 

= yCto) 2 / 2 I X ^ ) -x(t0)] 

+ p f i 1 / 2 y ( V 

+ y(tn) 1/2 [x(tn) 

This completes the proof of Theorem 1.1. 
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Deflnltlon I»6. The statement, that the function y is 

integrable with respect to the function x in the interval 

[a,b] means that if e )> 0 then there is a subdivision D of 

[a,b] such that j S^(x3y) - S^(x,y) j < e if E is a refine-

ment of D. 

Theorem 1.2. For the function y to be integrable with 

respect to the function x in the interval [a,b] it is 

necessary and sufficient that there be one and only one 

number c such that if e y 0, then there is a subdivision 

D of [a,b] such that |Sg(x,y) - c j <( e if E is a refinement 

of D. 

Proof; Assume that there exists a number L such that for 

every e > 0 there exists a subdivision D of [a,b] such that 

I s E(
x5y) - k| < 1/2 where E is any refinement of I). Now 

D is a refinement of D. Therefore,, | SD(x,y) - L | ( 1/2 e. 

Then by using the Triangle Inequality,, 

I SD(x,y) - SE(x,y) j < | SD(x,y) - L | + | SE(x,y) - L | 

< 1/2 e + 1/2 G = e. 

Then by Definition 1.6 the function y is integrable with respect 

to the function x in [a^b]. This completes the proof of the 

sufficiency. 

Now suppose y is integrable with respect to x on [a^b]. 

Then if e > 0 there exists a subdivision D of [a,b] such that 

if E is any refinement of D, then | SD(x,y) - SE(xay) | < e. 



Now we need to produce a candidate for the value of the integral. 

Let {D . ] be a sequence of subdivisions of [a,b] where ea.ch D. 
J . . 3 

is associated with e = 1/2J for j - 1,2, ..., n and D. is 
0 

the subdivision referred to in Definition 1,6. Let fD.'} be 
J 

a sequence of refinements such that D is the common refine-

went of Dj and and D ._2 and ... and Dg and. D^. It can 

be seen that each D' , is a refinement of D!. Now consider 
J 1-x J 

the sequence of sums {SD/(x,y)J. This sequence is a Cauchy 

sequence of real numbers. Therefore the sc^quence converges 

to some real number; call it L. 
Hence, given any e } 0 there exists a Dj such that 

1/2J* < e/4, then | S D /(x,y) - , (x,y) | < 1/2J < €/4. 
D "J+l 

Moreover, there exist an integer m such that 

I °D'(x.>y) " L K e/4. Pick the higher of J and m and call 
m 

it p. Then | S ,(x,y) - s , (x,y) J < e/4 and 
P P+l 

| S D / (x,y) - L | < e/4. Now, by Definition 1.6 it is true 
P 

that if E is any refinement of D p, then | S D (x,y) - SE(x,y)| 

< 1/4 e and that | S D (x,y) - S '(x,y) j < e/S. Now adding 
P p 

inequalities; 

I SE(x,y) - L ( < | S D (x,y) - S ,(x,y) | + | SD/(x,y) - L| 
P P up 

+ i SE(x,y) - S (x,y) | < 1 / 4 6 + 1 / 4 € + 1/4 €<€, 
P 

Therefore, there exists an L such that for any e )> 0 there 

exists a subdivision D of [a,b] such that, if E is any refine-

ment of D, then | S (x,y) - L | < e. 
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Now, if there exists a number c, then it is unique. 

Assume L-̂  and Lp are values of the integral on [a,b] of 

the function y with respect to the function x. Now 

|L2 - LJ 
• 2 / ari^ there exists a subdivision D of [a,b] such 

that if E is a refinement of D then j ,Sg(x,y) - L-j | <C |Lg - j , 

2 

Also, there exists a subdivision P of [a,b] such that if Q is a 

refinement of P then ]l2 ~ S^(x,y) j < | i , Let H be 
9 

a subdivision of [a,b], which is the common refinement of 

E and Q^then |SH(x,y) - L± | < l
L2 ~ L1I and | - S H (x,y)j 

<C |Lg - L^l ^ Now adding inequalities: 
2 

I SH(x,y) - L;L| + | L2 - SH(x,y)J < |Lg - ^ | . 

But this contradicts the Triangle Inequality, so the original 

assumption must be false. Thus the value of the integral 

is unique. This completes the proof. 

Definition 1.7» If (D^} i = 1,2,...3 n is a sequence 

of subdivisions of [a,b] where the lengths of the maximum 

intervals of the D^'s tend toward zero, then let 

S ( V f ; g ) = j i f ( § k) [ 6 (t k) - gtt^)] 

where tj^ < < t^. Under certain conditions, the 

sequence S(D±; f,g) has a limit called the Stieltjes 

integral. 
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Theorem .1,3. If the S-cIeltjes Integral exists in the 

interval [a,bj, then Lane's Integral also exists in [a,b], and 

they are equal. 

Proof Outline: Assume that Stieltjes integral exists 

and let its value be represented by I. Then both the left-

Stieltjes and right-Stieltjes integrals exist, and both 

equal I, If S(D^jf_,g) and S(Dp,jf,g) denote the approximating 

sums over any subdivision D of [a,b], then S(D-;f,g) + S(D jf,g), 

TT 

their mean, approximates I + I and is S-p.(g,f), Thus given the 

existence of Stieltjes Integral we are also assured the 

existence of Lane's Integra-!.-

For the purposes of this paper Lane's integral and the 

Stieltjes mean integral will be the same. 

Definition 1.8. Suppose that x is a function, y is a 

function, and [a,b] is an interval. The statement that c is 

the integral from a to b of y with respect to x, which may be 

written as 
b 

c = J y(t)dx(t), 

a 

means that c is a number and that the statement from 

Theorem 1.2 is true. 

b 

Theorem 1.4. The statement that c = J y(t)dx(t) means 

that -c 
_a a a 

y(t)dx(t). Moreover, f y(t)dx(t) = 0. 

a 
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Proof: For e )• 0 there exists a, subdivision D of [a,b] 

such that 

b 

a 

but 

y(t)dx(t) - V 1/2 [y(tp+1) + y(tp)][x(tp+1) - x(tp)]| < 

a 1 n-1 
! J y(t)to(t) i/a Cytt^.p) +y(V p)][x(t n_ 1_ p )-x(t n^) )!< e, 

It is obvious from the two representations of the sums that 

the x differences are reversed, i.e., one is the negative of 

the other. Therefore, 
b 
P a 
. y(t)dx(t) = - fy(t)dx(t). 
a b 

Io is also obvious that the integral of a function with 

respect to another function taken over a point is zero, be-

cause each approximating sum SE(x,y) is zero. 

definition 1.9* The statement that the function f is 

of bounded variation in the interval [a,b] means that there 

is a number B such that if D: {[ tQ, t± ], [t±, t2 ], ..., [ t ^ , tn]} 

is a subdivision of [a,b]; then 

;?o 1 f (Vi) - f ( y i < 

The least such number B is denoted by V^(f), and is said to 

be the variation of f in [a,b]. 

Lemma 1.1. Suppose x is a function of bounded variation 

in the interval [g,h]. If e > 0, then there exists an interval 

[g,k] which is a subset of [g,h] such that, if [g,w] is a sub-

set of [g,k], then v£(?) . v£ ( x ) < 6# . 
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Proof: Suppose € > C. Lei - h arid then for n } 1, 

let en -- g
 + Then V®n (x) exists and Vsn+l(x) < V'Sn (x) 

— 2 --- g ~ g 

Let L denote the greatest lower bound of the numbers Vsn(x). 
s 

There is a positive integer p such that V®.p+d(x) - L < 1/2 e 

if d is a non-negative integer. If [g,w] is a subset of 

[gjSp].- then there is a positive integer d such that 

<C W s , 
p+d s p and 

VSP+d(x) < V™(x) < VSP(x) 
rr O r r 

and also 

VSP+d(x) - L < 1/2 e 

Hence 

Thus 

V*(x) - L < 1 /2 s . 

vfp (x) - v"(x) < e, 
g g 

[gjS ] qualifies as [g3k]. 
ir 

Theorem 1.5. If y is a quasi-continuous function in 

the interval [a^b] and x is a function of bounded variation 

in fa5b]5 then y is integrable with respect to x in the 

interval [a,b]. 

Proof; if Vb(x) = 0, then the proof is trivial. 
^ "b 

Suppose that V (x) )> 0. There is a positive number M 
SJ 

such that | y(t)| < M., because quasi-continuity implies 

boundedness. 

For e > 0, there exists a subdivision D of [a,b] such 

that if p and q are points in the interior of an interval of 
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D5then | y(p) - y(q.) i e3 because y Is quasi-continuous. 

Let n denote the number of. intervals in D. 

Let D ' be a refinement of D obtained as follows. In 

the interior of each interval [g,h] of D select two numbers 

k and £ so that (in conformance with Lemma 1.1) it will be 

true that if g < w < k and &< u < h; then 

" Vg(X) ^ e axid 

VJl(x) - Vu(*) < e* 

See Figure 1, page 11. 

Suppose E is any refinement of D '. For each interval 

[g.h] of D there are two intervals [g,w] and [u,h] of E, 

where g w ̂  k ano. & u h. Let e.̂  denote the two-member 

set {[g,w],[u,h]}. Let e2 denote the set of all the other 

intervals of E which lie in [g,k] or [A,h] (i.e., all members 

of E which are subsets of [w,k] or [Jt3u]). 

Let e^ denote the set of all intervals of E which are 

subsets of [k,A]. Let E± denote the union of all such sets 

e1, and let E2 denote the union of all sets eOJ and let E 

denote the union of all such sets e^ (for all such intervals 

[gjh] of D). See Figure 1, page 11. 

Now the terms of S^ / (x,y) which are associated with 

any Interval [g,h] of D are 

y(gl_+jlkl[x(k) - x(g)1 + y(k) + y(o)fx(o) - x(k)] 

+ y(i) + yfh)rx(h) - x(£)]. 
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3 ^ 

The subdivision D 

l 1 1 ! 1 I I I I I. 
a. ^ A. Vu 

The subdivision D ' 

t 1 1 1 1 1 1 ! I I i l I 
a, ^ ^ V Si ^ W 

The subdivision E 

Figure 1 - Subdivisions D, D 7 and E for Theorem 1.5 
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Since g \ w k and £ \ u -\ h. we can add and subtract 

an x(w) in the first set of square brackets and we can add 

and subtract an x(u) in the third set of square bracketsy and 

then expand into the five terms 

y(g) + y(k)[x(w) - x(g)] + y (g ) + y(k)[x(k) - x(w) ] 

+ y(k) + y( a) [x( l) ~ x(k) ] + y(ft) + y(h)[x(u) - x(ft)] 

+ y(ft) + y(h)[x(h) - x(u)]. 

L e t SD '(X^") denote the set of all such first terms and all 

fifth terms (for all intervals [g,h] of D). Let S n /(x,y) 
2 

denote the set of all such second and fourth terms. Let 

SI>'(x,y} denote the set of all such third terms. Notice that p 

SD'(x,y) = S ,(x,y) + SD,(x,y) + Sj,,(x,y). 
1 2 "5 

Now 

ls
D '(x,y) - SE(Xjy)| = 

ItSjj^x.y) +SD2<(x,y) + S ,(x,y)} - {SE (x,y) + S B (x,y) + SE_ (x,y)) | 
e~ ^ 1 2 x~̂) 

< |SD_,(x,y) - SE^(x,y)| + Is^fx.y) - S (x,y) | 

+ I sn3'(
x'y) - sE3(

x>y) I • 

Let this last expression be denoted by JA| + |b| + | c | . 
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Now, for each interval [g,h] of D, the terms 

{zlgl_+JL(ll[X(W) „ X(g)i + yii.L|_yMrx(h) - x(u)]} 

_ |ylsl_+jrXwlj-x^wj _ x/gj + y(iiI_ji.y(lLlrx(h) - x(u)]j-

appear in |A[. These net out to 

y(k) ~ .y(iil[x(w) _ x(g)] + _ x(u)]. 

But this is less than 

-§~ • 0 ( 0 - x(g)] + -J- . j>(h) - x(u)]3 

"because w, k, z and u are all interior points of [gah]3 an 

interval of the subdivision D which was chosen as a response 

to e in accordance with the quasi-continuous property of y. 

Factoring out p- leaves an expression which is less than the 

variation of the function x over [g,vr] and [u,h]. Hence 

lAl K § '(variation of x over E^) 

Now in jB1 above, if y( ) +JLLA i s replaced by M, the 

result is an expression which is greater than |B|. Factoring 

out each M leaves an expression such that 

IBI < M. (variation of x over E± - variation of 

over Dg) 

K M. (variation of x over E-̂ ) 

x 
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But using Lemma 1.1 and the faeo tha'o there are n intervals 

in D, then 

| B ] <( M*2ne. 

Now for |C|• Each interval [k, £] is associated with 

only one term in Sr./(x,y) 
^3 

{namely £Lk]_+_ZL*l[x( £) - x(k) ] ]• but it may be 

associated with more than one term in S„ (x,y), because [k,A] 
5 . 

may have some endpoints of E in its interior, and these, of 

course, would not be endpoints of D If so, let these extra 

endpoints of E in [k, A]Js interior be denoted by t-^tg, • • •, t ^ 

Merely add and subtract x(t)5s in £,) - x(k)] to 

get 
y(k) + y(Jl{[x( b1) - x(k) ] + [x(t2) - x(t1)] + • • • +[x(e)-x(t1)]|< 

After distributing the y(k) + y(jt) across the series, and per-
__2 

forming this for each interval [k, £] of D^, we find that 

ST>/(x,y) has as many terms as S„ (x,y). Now in 
3 

ISp./fXj.y) - S„ fx,y) I we regroup terms according to alike x 
D3 ^34 

differences. An example term would be 

Now each abscissa is an interior point of an interval in D, 

a subdivision chosen as a response to e in accordance with the 

quasi-continuous property of y. Hence the expression in the 

braces above is less than e. After factoring out e's we have 
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Then 

Thus 

Cj < €, (variation of x over E-,) 

| A | + | B | + j c j <( e . (variation of x over E, ) 
I? 

+ M»2ne + e, (variation of x over E^) 

< e. (variation of x over E, and E-, 
1 ^ 

+ 2Mn). 

|SD/(x,y) - SE(x,y)j < e-(V^(x) + 2Mn). 

So to meet the challenge of any positive number we consider 

e as being 1 . This completes the proof of 
V°(x) + 2Mn-d 

Theorem 1.5. 

Theorem 1.6. If y is integrable with respect to x in 

the interval [a^b] and k is a numbera then 

b b 

J y(t)d[x(t)+k] = J y(t)dx(t) 

a a 

Proof: Since y is integrable with respect^to x in [a,b] 

then by Theorem 1.2 there exists a number I = J y(t)dx(t). 

8, 

Since the integral exists then for c > 0 there exists a sub-

division D of [a_,b ] such that if E is a refinement of D then 

|SE(x,y) - I| < e. But this means |SE(x+k,y) - ij < 

because SE(x,y) = Sg(x+k,y), So from Theorem 1.2 we see that 

y(t)d[x(t)+k] exists and is equal to I. Therefore 
a b b 

Jy(t)d[x(t)+k] = Jy (t) dx (t). • 
a ' a 
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b 
p 

Theorem 1.7. If \ y( t)ctx(t} exists and k is a number, ™"~" i' 

then b • b 

[ky(t)]dx(t) = k f y(t)dx(t) 

a a 

Proof! If k = 0, the argument is trivial. So suppose 

k 4 Let e ) 0 be arbitrarily chosen. Then e/[k| )> 0. 

Since y is integrable with respect to x in '[a,b] then there 

exists a subdivision D of [a,fa], such that if E is a refine-
b 

ment of D, then |Sp(x,y) - l| < e/|k| where I = | y(t)dx(t). 
*/ 

Then a 

[k [... \SE(x,y.) - l[ < e 

Therefore 

a 

|k-SE(x,y) - kl| < € 

jSE(x5ky) - klj < e . 

I 

[ky(t)]dx(t) exists and Is equal to kl. 

b v, Thus it follows that [ky(t)]dx(t) = k J y(t)dx(t) 

a 

Theorem 1.8. Suppose that each of y and y1 is 

integrable with respect to x in the interval [a3bl. Then 
b 

J [y(t) + yx(t)1 dx(t) exists and 
a 

" o b 

J [y(t) +y^(t)jdx(t) = Jy(t)dx(t) + y^(t)dx(t) 
a a a 
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b b 

Proof: Let I denote J y(t)dx(t) and let I., = [^(t)dx(t). 

a a 

Since y is integrable with respect to x in [a,b], then for 

e > 0 there exists a subdivision D of [a,b], such that, if 

E is a refinement of D. then |sE(x,y) - l| < 1/2 e. Also 

since y 1 is integrable with respect to x in [a,b], then 

there exists a subdivision of [a,b], such that, if E is 

a refinement of D 1, then jSE (x,y) - I 1 | < 1/2 e. Let D 2 

denote the subdivision of [a,b] which is constructed from 

both D and D^. Hence if Eg is any refinement of D g it is 

also a refinement of D and D,. So that js^ (x,y) - l| < 1/2 e 

and |sE (x,y) « I]L | < 1/2 e. By the triangle inequality, we 

have 

ISj^x.y) + S E 2 ( X , y 1 ) - I - I x| < |SE(x,y) -l| + i s ^ x ^ ) -

|S ( X , y + y±) - (I + I1)I < 1/2 e + 1/2 e = e. 

2 
b 

Therefore, J [y(t) + y^(t)]dx(t) exists according to Theorem 1.2, 

a 

and by Definition 1.8 

b b b 

J [y(t)+y1(t)]dx(t) = J y(t)dx(t) + J y1(t)dx(t). 

a a 

Theorem 1.9. Suppose that y is integrable with respect 

to x in the interval [a,b]. If a < c < b, then .y is 

integrable with respect to x in [a,c] and in [c,b]; moreover, 

b c b 

y(t)dx(t) = J y(t)dx(t) + J y(t)dx(t). 

a c 
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Proof: Since y is iniegrable over [a,b], then given 

e y 0, there is a subdivision D of [a^b], such that if E is 

a refinement of Djthen by Definition 1.6, 

|Sp(x,y) - SQ(x,y)| < e. 

It is easy to show that if D is modified to include c as one 

of its end points, then the resulting subdivision call it 

D ' also has this property for any of its refinements E 

Let and Dg be the two subsets of D' which lie in 

[a.,c] and [c^b] respectively. Now if E^ is any refinement 

of D-j', then E^ U Dg' is a refinement of D * and therefore 

ls
D'(

x*y) - S E, u E/(x,y)| < e/2 

l { s D '(s,y) + S D /(x3y)j- - {sE /(x,y) - SD^/(x,y)}| < e/2 

|SD/(x,y) - S /(x,y) | < e/2. 

1 ^1 

This means that y is integrable with respect to x over [a,c], 

and therefore ]°y(t)dx(t) exists. A similar argument 
establishes theaintegrability of y over [c,b]. 

c b b 

Now J y(t)dx(t) + f y(t)dx(t) = f y(t)dx(t) is shown 
a c a 

as follows. Suppose e > 0. Then e/3 > 0 and there exist 

subdivisions F,P1 and F2 of [aab], [a,c], and [c,b] 

respectively such that if G, G-̂ , and Gg are refinements of 

Fj and Fg respectively, then 
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| y(t)dx(t) - S„(x,y)j < e/3 

a 

and 
v-

lSG (x^y) - Jy(t)dx(fc)| < e/3 
a 

and 
-P 

S
G (x*y) - I y(t)dx(t)| < e/5. 

Now, let H denote the refinements of F constructed from all 

the endpolnts of F,F-^ and Fg. Let H-̂  and Hg denote the 

portions of H which lie in [a,c] and [c,b], respectively. 

Then H, H-̂ , and Hg are refinements of the subdivisions 

F, Fp and Fg respectively, and the three inequalities above 

are true for H, H-^ and Hg respectively. If these three 

inequalities are added and the triangle property of inequalities 

is applied, then the S R (x,y) and S„ (x,y) terms would net out 
1 2 

against the SH(x,y) term and would leave only 

b e c 

I J y ( t ) d x ( t ) - | y ( t ) d x ( t ) - J y ( t ) d x ( t ) | < e/3 + e/3 + e/5. 
a a b "b 

So, for any e > 0 it is true that J y ( t ) d x ( t ) differs from 
c b a 

{J y ( t ) d x ( t ) + J y ( t ) d x ( t ) } by less than e. Hence these two 
a c 

quantities cannot differ at all, because if so> e could be 

chosen such that it is less than their difference and thus reach 

a contradiction. 

b b 

Theorem 1.10. If J y(t)dx(t) exists, then J x(t)dy(t) 
a a exists and ^ 

J y(t)dx(t) = y(b)x(b) - y(a)x(a) - J x(t)dy(t). 
a • a 
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Proof: Since y Is Integrable with respect to x in ['a,to], 

then for e )> 0 there exists a subdivision D of [a,b] such 

that if E is a refinement of D, then 

|Sn(x.y) - S (x,y)| < e. Dv s* > E 

It can easily be shown algebraically that 

JDV D 

Then 

Sn(x5y) + Sn(yJx) = y(b)x(b) - y(a)x(a) 

|SD(xJy) - SE(x,y)| - |-SD(y,x)+y(b)x(b)~y(a)x(a)~[~SE(y,x) 

+y(b)x(b)-y(a)x(a)]| 

= |SD(yax) - S£(y,x)| < e. 

Therefore, by Definition 1.6, x Is integrable with respect 

to y over the interval [a,b], and J*x(t)dy(t) exists. For 

e > 0 there exists a subdivision Daof [a,b] such that, if E 

is a refinement of D, then |sE(x,y) - J ̂ y(t)dx(t)| < €. 

Since it has been shown that SE( x,y) = y(b)x(b) - y(a)x(a)-Sgfox), 

substituting and rearranging terms leaves 

b 

| {y(b)x(b)-y(a)x(a) - Jy(t)dx(t)}- SE(y3x) | < e. 

a 

Now since SE(y,x) is associated with the unique number 
b 

Jx(t)dy(t) then, according to Theorem 1.2, the expression 
a t 

In the braces must be another name for J* x(t)dy(t). Therefore, 

. b a b 

J x(t)dy(t) = y(b) x (b) - y(a) x (a) - J y(t)dx(t). 

a a 

Theorem 1.11. Suppose that y is Integrable with respect to 

x in the interval [a,b]. If x l s of bounded variation in [a,b] 
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b 

and jy(t)| < M for each number t in [a,b], then [J y(t)dx(t)j 

< MV*(x). 

Proof: Since x is of bounded variation in j"aab]^ then 
n-1 

| = 0
, x ( tp+l ) " X ^ t p ^ ~ ^a,(x) f o r a n y s u l x i i vi s i o n D of [a,b]. 

Moreover |y(t) |< M for each t in [a,b], so that 

1/2 |y(tx) + y(t2) j< M. Hence |Sp(x,y)| M*V^(x) for arty sub-

division D of [a,b], Now |y(t)dx(t) cannot exceed M*V^(x) 
st ^ ^ "b 

because, if so, then for the case where e = >ay(t)dx(t) - M*Va(x) 
n 

there would be a subdivision D of [a,b] such that |SD(x,y)| 

would differ from J y(t)dx(t) by less than e and would there-

b a 

fore exceed M*Va(x). This completes the proof. 

Theorem 1.12. If x is a function and [a^b] is an 

interval, then ^ 

J ldx(t) = x(b) - x(a). 
9/ 

Proof: Let D be a subdivision of [a,b] consisting of 

just one member; the interval [a^b]. Then if e )> 0 and E is 

any refinement of D, it is true that 

i M * ; 1 ) - [x(b)-x(a)]| < e 

because 

SE(x,
1) - g-ll+l [ x ( t p + i) . x ( t p ) , 

m-1 

= p=o [ x ( tP + l ) " x ( t P ) ] 

= x(b) - x(a). 
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Theorem 1.13. If x Is a function and [a,b] is an 

interval, then 
b 

J x(t)dx(t) = l/2[x(b)]2- l/2[x(a)]2, 

a 

Proof: Let e )> 0 and let D be any subdivision of [a,b] 

and E be any refinement of D. Then 

n-1 

Sg(x3x) - 2^1/2[x( tp+j)
 + x( tp) ] [x( tp+-^) - x(t^) ] 

n-1 p 
2 1/2 {[x( t ,, ) I r ,, s n2, 

p=o p + 1 - fx(c
p)] > 

= l/2[x(b)l
2 - l/2[x(a)]2. 

But this implies that |sE(x,x) - U/2[x(b)]
2 - l/2[x(a)]2j| < e. 

Therefore, by Theorem 1.2, x is integrable with respect to x 

in [a,b], and 

b 

J x(t)dx(t) = 1/2[x(b)]2 - l/2[x(a)]2. 
a 

Definition 1.10. The statement that the function f has 

a derivative f ' in the interval [a,b] means that if a < t < b 

then there is a number f (t) such that the following statement 

is true: 

If e y 0, then there is a segment (p,q) containing t such 

that, if s is in (p,q) and in [a,b], then 

- *'00 I < «. 
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Definition 1.11. The statement that the function f has 

a continuous derivative, f', in the interval [a,b], means 

that f has a derivative, f in [a,b], and that if e ) 0,then 

there is a. subdivision D of [a,b] which has the following 

property. If [p,q] is an interval in D and s and t are numbers 

in [p, q "|, then |f'(s) - f'(t)| < e. 

Remark 1.11. Clearly, if E is any refinement of D 

(in Definition 1.11), then E also has that property. 

Theorem 1.14. If the function f has a continuous 

derivative, f', in the interval [a,b], and e > 0, then there 

is a subdivision D of [a,b], such that, if s and t are in one 

of the intervals of D,then 

If<si i l ( t ) - f(t)i < 6. 

Proof; Since f has a continuous derivative f ' in [a,b], 

then for € > 0 there exists a subdivision D of [a5b] as per 

Definition 1.11. Since f has a derivative in [a,b], then for 

each t in [a,b] there exists a segment (pt,qf) over which the 

inequality in Definition 1.10 is true. Let G represent the 

collection of all such segments (pt,qt). Then according to 

the Heine-Borel Theorem some finite subset G ' of G covers 

[a,b]. The end points of G ' form a subdivision of [a,b]; 

call it A. Now let E be the refinement of both A and D which 

is constructed by taking the end points of both A and D. 

Therefore, for cany interval [p,q] of E, the inequality in 

Definition 1.10 applies. This completes the proof. 
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Theorem 1.15. Suppose that x has a continuous 

derivativej x i n the interval [a,b] and that there is a 

number M such that jy(t)j < M if a < t < b. If 

b b 

J y(t)dx(t) - c1 or J x'(t)y(t)dt = cg, 

a a 

then 

b b 

y(t)dx(t) - J x'(t)y(t)dt. 
a a 

Proof: The function x has a continuous derivative; 

therefore, according to Theorem 1.14, if € > 0, then 

2M(b-a) ^ Thenthere exists a subdivision D of [a3b] such 

that for each interval [t , t ,, 1 in D 
p P"* 

x(t n) - x(t ) 
I — ^ ^ — p x'(t )| < € , where e = e 

P+l P p i 1 p"M(b-aJ* 

Now consider SD(xay) and SD(t,x'y). 

|SD(x,y) - SD(t,x'y)| = I ^ V 2 [ y ( tp+1)+y (tp) ] [x(tp+1-x(tp) ] 

" PSo
1 / S [ x % + i >y < V i ) + x % >y < V K tp+1-tp ] i 

- Pfo
1 / s [ y ( tp +i ) t » ( V 1 [ l ( V i ) - I < V ' [ t p « - V 

V i - S 

- pf0
1/2[x'(Vi>y<Vi>+x'(tp)y(•tp))I[tp+1-t 11 
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n-1 

' p f o 1 7 2 - " ( y i r w - V - " ' ( V i J t W S 3 } 
t ... - t p+1 p 

+ v s - x ' ( t
p ) [ y - i ~ y } l 

t , p+1 p 

- ' A M y g f ( t p + 1 ) - x ( t p ) [ t p + 1 - t p ] - * ' ( t p + 1 ) [ t p + 1 - t p ] 
p = 0 V i - t p 

* ( % + 1 ) - * ( y r y ^ t j - x ' ( t
P ) f t

p + i - t p ] } l 

p+i p 

" M
p f 0

1 / g V i } ~ x ^ y f t p + i ' t p ] - x ' ( t p + i ) [ t
p + i - t

p ] 
p+1 p 

+ l x ( w - x ( y f V i - y - ^ ( y t v r - y i } 
p+I " P 

< M ^ V g { ( | x ( t p + 1 ) - x ( t J - x ' ( t p + 1 ) | 

V i " tp 

+ I x ( t p + 1 ) - x ( t p ) . x ' ( t p ) i ) r t p + 1 - t p ] } 
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< M Vl/2((e + c )[t -t 1) 

p—0 J- x P1-1 P 

n~l 
<C Me-, • ZX[ t -1 1 1 p=0L p+1 p 

< Me^(b-a), which is 

Hence |SD(x,y) - SD(t,xy)K •§• This result would also be true 

for any refinement E of D. 
»b 

Now suppose J x'(t)y(t)dt = c2, and for e > 0 there 

exists a subdivision D., of [a,b], such that if E, is a 
-1- 1 

refinement of D1 then |s (t.x'y) - cg | < 1/2 €. Take the 

subdivisions D and D 1 and form a new subdivision J, such 

that the endpoints of J are all those from D and . Let K 

be any refinement of J. Then |SK(x,y) - SK(tjX'y)| < 1/2 £ 

and |sK(t,x y) - c21 1/2 e. After adding inequalities 

and applying the triangle inequality, the two SK(t,x y) terms net 

out and leave 

lsK(x>y)-C2! < 1/2 e + 1/2 £ = e. 

pb 
y(t)dx(t) exists and is equal to Cp, according to Thus 

a 

Theorem 1.2 and Definition 1.8. 

If it is the case that J y(t)dx(t) = c ^ then 

a 
, S

K
( t ' x y)~cif < £ e + \ e is obtained in a similar i 

to-show that jV(t)y(t)dt exists and is equal to o 
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Theorem l.lb. Suppose that [a,b] is an interval, 

[c,d] is an interval, v,v,x,y is a function sequence, and 

that if D is a subdivision of' [a,b], and E is a subdivision 

of [c,d], then there is a refinement F of D and a refinement 

G of E such that Sp(x,y) = S^(u,v). If y is integrable with 

respect to x in [a,b], and v is integrable with respect to u 

in [c,d], then 

b d 

J y(t)dx(t) = J v(t)du(t). 

a c 

b d 

Proof: Suppose that Jy(t)dx(t) 4 Jv(t)du(t). Then 

•• • a c b 

|l - I 1| equals some positive number e, where I = J y(t)dx(t) 

and 1^ 

d a 

v(t)du(t). 

c 

Since y is integrable with respect to x in [a,b], then 

for 1/4 e there exists a subdivision D of [a,b], such that if 

F is a refinement of D, then |Sp(x,y) - ij < 1/4 e. Likewise 

there exists a subdivision E of [c,d], such that if G is a 

refinement of E, then |SG(u,v) - l ±| < 1/4 €. Let the re-

finements F of D and G of E be chosen so that SF(x,y) = SQ(u.v). 

Therefore, substituting we obtain |Sp(x,y) - ij < 1/4 e and 

|Sp(x,y) - I-L | < 1/4 e. Adding these inequalities and apply-

ing the triangle property of inequalities yields 

'I~I1f ^ ls
F(

x*y) - l| + |SF(x,y) - I.J < 1/4 6 + 1/4 e = 1/2 e, 
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But this is a contradiction since it was assumed that 

= G. Thereforej the [ y(t)dx(t) 4 J v(t)du(t) 

a c 

supposition must be false. 

Corollary l.l6a. Suppose that [a,b] is an interval., 

[c,d] is an interval, and. that y is integrable with respect 

to x in [a,ID]. If f is a continuous non-decreasing function 

such that f(c) = a and f(d) = b, then 

b d 

J y(t)dx(t) = J y[f(t)]dx[f(t)]. 

a c 

Proof: Since y is integrable with respect to x in [a,b], 

for e y 0 there exists a subdivision D of [a,b] such that, if 

E is a refinement of D.then 

b 

j J y(t)dx(t) - SE(x,y)I < e. 

a 

Let D ' be the subdivision of [c,d] which f maps onto D,and 

take any refinement E ' of D Then there corresponds a re-

finement P of D such that f(z±) = where t± belongs to 

[a,b], and is an endpoint of the subdivision F. Then 

SE,{x[f(t)],y[f(t)]} = SF(x,y). 

Therefore, 
b 

I J y(t)dx(t) - S E /{x[f(t)],y[f(t)])j < e. 

a 

Thus yff(t)] is integrable with respect to x[f(t)]. Then 



by Theorem 1.16 

b d 

J y(t)dx(t) - | y[f(t)]dx[f(t)]. 

c 

Corollary 1.16b. Suppose that [a,b] is an interval^ 

[c,d] is an Interval, and that y is integrable with respect 

to x in [a5b]. If g is a continuous non-increasing function 

such that g(c) = b and g(d) = a, then 

d 

J y(t)dx(t) = -J y[g(t)]dx[g(t)]. 
a 

The proof Is like that of Corollary l#l6a. 



CHAPTER II 

LANE'S INTEGRAL IN THREE SPACE: 

f(x,y)dg(x,y) 
[a,b;c,d] 

Definition 2.1. The statement that f is a real 

function implies that if t and r are real numbers, then 

there is just one number c such that, f(t,r) = c. 

Definition 2.2. A rectangular interval denoted by 

[a,b;c,d] Is a point set such that a <C b and c ( d and a 

point, (x,y), belongs to"fa,b;c/d] if and only if a < x < b ' 

and c <[ y <£ d. Throughout the chapter, R will be used to 

represent the rectangular interval, i.e., R = [a,b;c,d]. 

Definition 2.3. The statement that G is the graph of 

the function y with respect to the functions x and z in the 

rectangular interval [a,b;c,d], means that P is a point of G 

if and only If there exist numbers t and r such that, 

a < t < b , c < r < d and x(t,r), z(t,r) represent the first 

two coordinates of P, and y(t,r) is the ordinate of P. 

Definition 2.4. The statement that D is a subdivision 

of the rectangular interval [a,b;c,d] means that, D is a 

finite set of, (one or more), non-overlapping rectangular 

intervals [t±,t±+1;Zyz^+±] covering [a,b;c,d] such that 

^0 = a' z0 = c> tn = 10> a n d zm = d w h e r e 1 ranges from 0 to 

n-1 and j ranges from 0 to m-1. 

30 
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Definition 2.5. The statement that E is a refinement 

of D means that S is a subdivision of [a,b;c,d] such that 

if [PjQ?1*?8] a rectangular interval m D,then there is a 

subset of E which is a subdivision of [p^q^r^s]. 

Definition 2.6. The statement that the function f is 

quasi-continuous in the rectangular interval [a,b;c,d] means 

that if e ) 0, then there is a subdivision D of [a^bjc^d] 

such that if [p,q;r,w] is one of the rectangular intervals in 

D and the ordered pairs (s,t) and (g,h) belong to the segment 

(p>q;r,w) or to one of the line segments (p,q;rar), (p,qjw,w), 

(p,p$r,w), (q,qjr,w)a then 

|f(s,t) - f(g,h)| < €. 

Notation. If x is a function, v is a function, and D 

is a subdivision of the rectangular interval [a,b;c,d], 

where [p,q;r,w] represents one of the intervals in D,then 

SD(x,y) denotes the number 

Sl/4[y(p,r)+y(q,r)+y(p,w)+y(q,w)][x(p5r)-x(q,r)+x(q,w)-x(pjw)] 
All [p,q;r,w] e D. 

Notice that the expression in the second set of brackets is 

the x-second difference ([x(q,w)-x(p,w)]-[x(q,r)-x(p,r)]}. 

Theorem 2.1. For numerical work it is often convenient 

to make use of the fact that 
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SD(x,y) = l/'ty(r0,t0)-[x(r1,t:L)-x(r1,t0)-X(r0,t:L)+x(r0st0)] 

m-1 

+ Sil/1y(ri,t0)[x(r1+1,t1)-x(ri+1>t0)-x(r1_1,t;l)+x(r1_:L,t0)] 

+ |Vy(r0,t.)[x(r1;t.+1)-x(r1,tJ.1)-x(r0,tj+1)+x(I-0,t._1)] 

n-1 m-1 
+jSl

/'ly(r
J
nt

J)[x(
r
mtJ+1)-X(rmtj_i)-x(rffi_it;.+i)+

x(rm_it3_i)] 

+ 1/%(r0,tn)rx(r1,tn)-x(r1,tn_1)-x(r0,tn)+x(r0,tn.1)l 

m-1 

+iS. 1/lty(ritn)tx(ri+ltn)"x(ri+ltn..l)-x(ri-it
n)

+x(ri-ltn-l)^ 

Proof; The proof Is omitted because it Is merely 

algebraic manipulations. 

Definition^. The statement that the function y is 

integrable w i th respect to the function x in the rectangular 

interval [a,b5cad] means that if e > 0, then there is a 
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subdivision D of [a,b;c,d] such that 

lS£)(-x5y) - SE(x,y) j < r if e is a refinement of D. 

Theorem 2.2. For the function y to "be integrable with 

respect to the function x in the rectangular interval 

ra,b;c,d], it is necessary and sufficient that there be one 

and only one number I such that if e > 0, then there is a 

subdivision D of [a,b;c,d_ such that | sE(x3y) - I | < e if E 

is a refinement of D. 

F r o o f : T h e proof is omitted because it is a duplicate 

of the proof of Theorem 1.2. 

Definition 2.8. if {D.̂ }, i=l,2_, • • is a sequence 

of subdivisions of [a,b;c,d], where the areas of the maximum 

intervals of the D ^ s tend toward zero, and [p, q;r,w] 

represents one of the intervals in D, then let 

S(D1;f,g) = 2f(§3|)[g(pr).g(q,r)+g(q5»/).g(p,w)] 

A H [p,qjr,w] € Di ' 

where p < § < q and r < c|>< w. Under certain conditions, the 

sequence S(D±;f,g) has a limit called the Stieltjes integral. 

Theorem 2. 3̂_ if the Stieltjes integral exists in the 

interval [a,b;c,d], then Lane's integral also exists in 

[a,b;c,d], and they are equal. 
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Proof: The proof is analogous to the proof of Theorem 1.3 

presented in Chapter I. 

Remark 2,3. In cases where the Stieltjes integral is 

evaluated as a double integral, the same is true for LaneJs 

integral. 

Definition 2.9. Suppose that x is a function, y is a 

function, and [a,b;c,d] is a rectangular interval. The 

statement that I is the integral from a to b and c to d of 

y with respect to x, which may be written as 

* f* 
y(t,r)dx(t,r), or y(t,r)dx(t,r), 

[a,b'c,d] R 

means that I is a number and that the statement from 

Theorem 2.2 is true. 

Theorem 2.4. The statement that I = J y(t,r)dx(t,r) 

[a,b;c,d] 

means that I =--J y(t,r)dx(t,r). Moreover, 

[b,a;d,c] 

J y(t,r)dx(t,r) = 0. 
[ a, a; c, c ] 

Proof: For the case of J y(t,r)dx(t,r) each 

approximating sum SD(x,y) contains x-second-differences of 

the form ([x(ti+1rj+1)-x(t.,rJ+1)]-[x(ti+1,rj)-x(t.,r.,)]), 

but for the case of [ y(t,r)dx(t,r) each approximating 
* [b, a;d,c ] 
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sum SD(xj)y} contains x-second-differences of the form 

Their algebraic signs are opposite, thus guaranteeing that 

f y(t,r)dx(t,r) and f y(t,r)dx(t,r) are of 
"[a,b;c,d] "[b,a.;d,c] 

opposite sign. 
A 

The equation ^ 1y(t,r)dx(t,r) = 0 is true 

because since the rectangle [a,a;c3c] has zero area, each 

x-second-difference in S^(x,y) is zero. 

Definition 2.10. The statement that the function f is 

of bounded variation in the interval [a,b;c,d] means that 

there is a number B such that if D is a subdivision of 

[a,b;c,d] then 

The least such number B is denoted by V ^ ^ f ) , and the above 

n m 
s s 
i=l J=1 

31 such number B is denoted bv V , 
aJ c 

sum will be denoted by SD[f,l|. This is arrived at by 

considering the variation in the x-direction and then the 

variation in the y-direction (i.e., by summing the second 

differences). 

Lemma 2.1. Suppose x is a function of bounded variation 

in the interval [g,h;u,v]. If e > 0, then there exists an 

interval [g,k;u,r], which is a subset of [g,h;u3v] such that 

[g,w;u,t] is a subset of [g,k;u,r], then 
v g ; ; » -



J>6 

Proof: Suppose £ > Oj Let s1 = h and z± = v and then 

for n > 1, let - s + Sn~l and s = U + Zn~1. Then 
n — — — — — a i ** "" " 

Sn>Zn V (x) exists and 
g , u v > 

S , , Z , s , z . „ 

V n + 1 n+1(x) < v n (x). 
g,u v ' - g,u v ' 

1̂1 J? ~ 

Let L denote the greatest lower bound of the numbers V \ ' (x). 

There are positive integers p and q such that 
S -j ̂  !Z j -J 

V P" ^' (x) - L <C 1/2 e if d is a non-negative integer. 
gju 

If [g,w;u_,t] is a subset of [g,s :u3z 1, then there is a 
Jr M. 

positive Integer d such that s . , <( w <( s and z . , / , / 
p+a p q+a \ u \ z 

HL 

z 

and 

s ,..z ,, w , t s,z 
vgPu

d 9+d(*) < \ , U W < n(x) 

and also 

vVd'
Z q-Hl ( x) _ L < 1 / 2 e. 

Hence 
w, t 

Vg,u<x> - L < V s £'-

Thus 
s , z w , t 

VS?u 9<*> - v g , u W < 

and 

rg»sp;u,z ] qualifies as [g,k;u,r]. 

Theorem 2.5. If y is a quasi-continuous function in 

the rectangular interval [a,b;c,d] and x is a function of 
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bounded variation in [a,b;c,d], then y is integrable with 

respect to x in the interval [a,bjc,d]. 

Proof: If V^^fx) - 0, then the proof is trivial. a,cv y 3 

Suppose that V^'c(x) )> 0. There is a positive number M such 

that |y(t,r)j <( M, if t, r belong to [a/o;c,d]. 

For e y 0, there exists a subdivision D of [a,bjc3d] such 

that if the ordered pairs (s,t) and (g^h) meet the require-

ments of Definition 2.6, then |y(Sjt) - y(gsh) | <( e, 

because y is quasi-continuous. Let n denote the number of 

intervals in D. 

Let D ' be a refinementof D obtained as follows. In 

the interior of each interval [g,h;u,v] of D select four 

numbers k and i , and r and s so that g <( k <(jt <C h and 

u <( r <( s <( v and (in conformance with Lemma 2.1) it will 

be true that if g < w < k and u < t < r and £ < p < h and 

s < z < v then 

- vg';^(x) < e a n a 

- V p ; u W < e - ^ ( x ) < c and 

V ^ €* See Figure 2, Page 38. 

Suppose S is any refinement of D'. For each interval 

[gjh;u,v] of D there are four intervals 
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The subdivision D 

~1 J 7 ' 7 r~7—~r 
-f i ; f- / * -f — J- • 
/ / / ' / / / 1 

/ 7 / t rr 
- -4 / / T / 7~r- -/ 
i i i / / i f i 
t i i / j , / ' 

_ / / / 
. / / / / LL.-L 
' ' ' J ' ' ' 

/ / / ' / / / / 

/ 
C « i 

j: _ 2 
_i <L_i L 

4 / / rf- - / - / {-+-

3 V. 5L K, 

The subdivision D ' 

Figure 2 - Subdivisions D and d' for Theorem 2.5 
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[gjivjUjt], [gjWjz,?], [p,h;u,t] and [p,h;z,v] of E, where 

g < w k3 £ <( p <( h, u <( t < r and s < z <( v. Let denote 

the four-member set 

f[g5w;u3t]3 [g3w;z,¥], [p?hjua t]3 [p,h$z,v]J. 

Let eg denote the set of all the other Intervals of E which 

lie in [g,k;u,r]3 [A,h;u,r]. [g,,k;s,v] or [£,hjs,v]. Let e^ 

denote the set of all intervals of E which lie in 

[k,ft:u,r]j [k^jSjV]^ [g,k;r,,s]3 or [5.,h;r,s], Let e^ denote 

the set of all intervals of E which are subsets of [kj^ijS], 

Let E1 denote the union of all such sets and let Ep denote 

the union of all such sets e2, and let E^ denote the union of 

all such sets e-̂  and let E^ denote the union of all such sets 

e4(for all such intervals [g,h;u3v] of D). See Figure 3, Page ifo. 

Now the terms of S D / (x,y) which are associated with 

any interval [g,h$u,v] of D are 

y(S?n)+E(X,u)+,Y(K.r)+yf1.,r)[x(kjr)_x(ejr)+x(6aU)_x(k;r)] 

+ y(t,u)+y(h,-a)+y(t,r)+yfh,r)[x(hjr) _x(lljr)+x(* ; U ) _ x ( h ; U ) j 

+ y(k 'u)+ y( t 'u)+y(k ' r)+y('1'r)|:x(lt,r)-x(kjr)+x(itju)-x( t,u)] 

+ y( S,r) +y(k,rl^f g, s) + y f k, 3, [ x ( k ) S )_ x ( g j S ) + x ( e ; r )_ x (^ r ) ] 

+ y(p.r) +y( h,r) rf,.sH y f h. s J, [ x ( h j S )_ x U j E ) + x U j r )_ x ( h > r ) ] 
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The Subdivision E 

e» / W e3 / £2-/ £l 

eTJe^j e3 /e3V e 

^—b-+ 
3 w U 

i*—t—h 
X ? V, 

The Subinterval [g,h;u,v] 

Figure 3 - Subdivision E and Subinterval [g,hju,v] for Theorem 2.5 
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+ y(BJs)4y(k,S)+y(g,J^yJl,,_v1[x(kjV)_x(g)V)+;f(e>s)_x(^s)] 

+ y(t js)+y(h»s)+y(t,v)-ry(h,v) [•x(iljv)-x(C ,v)+x( I, s)-x(h,s) ] 

+ ^ l M M ) + y ( k , v ) + y L ^ v ) , w , ) V ) . x t e v ) + x ( k ; S ) . x U j S ) ] . 

Since g < w < k and u < t < r a n d £ < p < h a n d s < z<v j > 

add and subtract an x(w,t), x(wau) and x(g,t) in the first 

set of square brackets and add and subtract an 

x(p>u)j x(P^t) and x(h51) in the second set of square 

brackets. Also add and subtract an x(g,z)} x(w,z) and x(wjJv) 

in the seventh set of square brackets and add and subtract 

an x(p,z}3 x(haz) and x(p3v) in the eighth set of square 

brackets. Then expand this into the twenty-one terms, 

y(g>u)+Y(kJu)+y(g,r)+yfk,r)r , |X 
\ ^ 7t>(w,t)-x(g,t)+x(g,u)-.x(w,u)] 

. y(gJu)+yfk,u)+yCg,r)+y(k,r) r „ , x , 
+ r ; ^ /[^(kJt)-x(w,t)+x(wJu)-x(kJu)] 

+ y(g»u)+yfk,uHy(g,r)+yfk,r) p „ , 
^ 4x(k,r)-x(tf,r)+x(w, t)-x(k,t) ] 

+ y(gj
u)+y(k,u)+y(g,r)+yfk,r)r , v , , 

+ ^ / -M -i-[x(Wjr)-x(g3r)4x(g3t)-x(^t)] 

+y( &,u)+y(h,u)+yfo, ,r)+y(h,r)r , x , 
[x(hJt)-xiip,t)+x(pJu)-x(h,u) ] 
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u ) ] 

4 

4-

- y ( ̂ u ) +y (h, u) +y ( l , r ) +y (h, r ) 

y(£ , u H y M + y ( j i , r ) T y ( h j ) 
q- \ > —^-[x(h,r ) - x (p , r )+x (p 3 t ) - x ( h j t ) ] 

+y(k,u)+y(£ , u ) + y ( k , r ) + y f i .iO r , r , . 

+ y ( g 3 r ) + y ( k , r )+y(g ,s )+y(k } s) r W l N t s , N 
+ ( k j s) - x (g , s) +x(g3 r ) - x ( k , r ) ] 

+ y (k , r )+y (« . , r )+y (k ,s )+y ( t , s ) r , . , ,, , . 
^ / — ^ - i - i . [ x ( A , s ) - x ( k 3 s ) + x ( k , r ) - x ( £ , r ) ] 

+ y(A ,r)+y(h,r)+y(s.,s)+y(h<s) P „ , 
+ L_i i_ i_2[ ;x(h a S )_x( j i , s ) + x ( t , r ) - x ( h , r ) ] 

+ y ( g ^ s ) + y ( k > s ) + y f g ? v ) + y f k , v ) r , X , . . . 
4 * L f x ( w ^ v ) - x ( g 5 v ) + x ( g , z ) - x ( w j , z ) ] 

+ y l .g> s ) + y(k ,s )+y(g j v)+y f k , v ) r „ . 
ij: [ x (k J v) -x (w 5 v)+x(w 3 z ) - x ( k j z) ] 

4- yLSj_s)+y (k, s) +,y fg, v) +v f k. v 'l r , 
Hx(w, z ) - x (g , z )+x (g , s ) - x (w ,s ) ] 

y lg ;>s)+y(k,s)+yfg,v)+y( f ic < v ' ) p 

_L_ JJ. rx(k,z ) -x (w,z)+x(w,s) -x (k ,s ) ] 

+ y (^^s )+y (h , s )+y f v) +.yfh.v'I r . . . 
4 L X ( h } v )~x (h 3 p )+x (p 5 z ) - x (h j z ) ] 

+ y(&
Js)+,y(h?s)+y( f ^v)+,y(h,v') T , 

4 t x ( P * v ) - x ( A , v ) + x ( £ 5 z ) - x ( p , z ) ] 

+ y ( ?̂ s ) +y (h3 s) +.y(A , v H y f h . v > r , , 
4^ EX(P j z ) -x ( %s z )'hx(z , s ) -x (p 3 s) ] 
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+ [x(h,z)-x(p,z)+x(p,s)~x(h.s)] 

+ y.(,k >sl ±y (IX?.,) +ylk *v) +y LaizI. [X(^ , V) -X(k, V) +x(k, S ) -X(£ 3S)] 

Let Sn/(x^y) denote the set of all such first, fifth, 
U1 

thirteenth and seventeenth terras (for all intervals 

[g,h;u3v] of D). Let / denote the set of all such second, 
v2 

third, fourth, sixth, seventh, eighth, fourteenth, fifteenth, 

sixteenth, eighteenth, nineteenth and twentieth terms. 

Let Sn / (x,y) denote the set of all such ninth, tenth, twelfth 

and twenty-first terms. Let S~ / (x,y) denote the set of all 
1 

such eleventh terms. Notice that 

SD/(x,y) = SD,(x,y) + S /(x,y) + S p/(x,y) + Sn,(x,y). 
1 2 5 uk 

ls
D '(*,y) - SE(x,y) | = 

1 )+SD^X5y^+SD^Xil^^ }- S
E(

x^) + SE (x-*y)+^E^X^+% (x ŷ)? 

<|S >(x,y)-S (x,y)|+|S ,(x,y)-S (x,y) |+|s ,(x,y)-S (x,y) | 
1 1 2 2 5 3 

+ |SDi/(x,y) - SE^(x,y)|. 

Let this last expression he denoted by |A| + JB| + |c| + |F| 

Now, for each interval [g,h;u,v] of D, the terms 

rfy(gJu)+y(k,u)+y(g,r)+y(k,r)r__/ , x , 
I I Lq i Hx(w, t)-x(g, t)+x(g,u)-x(w,u) ] 

+ y(g, ,u) + yfh,u)+y(g,,r)+y(h.,r) r . 
Hx(h, u)-x(p, t)+x(p,u)-x(h,u) ] 
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-I- y(S^]2Zaili_±i^J^JlJ^yiiSx}ll[x(w5v)«.x(g5v)+x(g,z)--x(w j ,2) ] 

+ Xlj^±liyilL2^il^y.(. h/.)JxQ1>-K1 [x(h3v)-x(h jp)+p ? z)-x(h, ,z) ]) 

~ [X( t ) - x ( g j t )+x (g ,u ) -x (wju ) ] 

+ ^ ! M l k l i l [ x ( h ; t ) - x ( p , t ) - f x ( p , u ) - x ( h , u ) ] 

+ y(W^V) ( g ' v).^y.(,S,:.g)jty ( w ' ,z) [x( Wj v)-x(g Jv)+x(g ; , z)-x(w, z) ] 

appear i n | A | . These ne t out and regroup to the twelve terms 

t ) - x ( g , t )+x(g ,u ) -x (w,u ) ] 

+ y(,g> r)~y(gj t ) [ x ( w , t ) - x ( g , t )+x(g , u ) - .x(w,u) ] 

+ y ( i i ^ ) -y(w> t).[x(w, t ) - x ( g , t )+x(g ,u ) -x (w,u ) ] 

+ y( ^ u ) - y ( p , u ) - [ x ( h ? t ) - x ( p j t ) + x ( p , u ) - x ( h , u ) ] 

+ j l ^ r ) ^ y ( p - t ) r x ( h j t ) - x ( p j t ) + x ( p , u ) - x ( h ? u ) ] 

+ y i ^ k £ l ^ y 0 l 2 l l [ x ( h 5 t ) - x ( p , t ) + x ( p , u ) - x ( h , u ) ] 
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y l£i£l[x ( w. V ) -X ( g , V ) -T-X ( g, Z ) -X ( W, Z ) ] 

+ yI^i£l^yIss^l[X(WaVj.x(gavj+x(g^z)-x^w^z)j 

+ yii^)-y(w^z),[X(WjV)_X(gjV)4.x(g?z)_x(^Z) j 

+ y i A i l l ^ y i i i 2 £ l [ x ( h , v ) - x(h , p ) + x ( p , z ) - x(h . z ) ] 

+ y( h^ s)-yLPjj_l[ X( h j V)_ X( h j P) + x^ p^ z^ x^ h j Z^ 

+ ? V) ]̂ y ( h ? z )•• [X(h, v) -x(hj> p) +x(p j z) -x(hj z) ] 

But this is less than or equal to 

|rx(w,t)-x(gJt)+x(gJu)-x(w,u)]+ |[x(w,t)-x(g,t)+x(g,u)-x(wJu)] 

+ ^[x(w,t)-x(g,t)+x(g,u)-x(w,u)]+ §[x(w,v)-x(g,v)+x(g3z)-x(w,z)] 

+ f[x(w,v)-x(gJv)+x(gJz)-x(w,z)]+ |[x(w3v)-x(g,v)+x(g,z)-x(w,z)] 

+ p-[x(hJv)-x(h,p)+x(p,z)-x(h3z) ]+ ̂ [x(h,v)-x(h,p)+x(p,z)-.x(h,z) ] 

+ ^[X(h , v ) -X(h ,p )+X(p,z ) -X(h , z ) ]+ T5-[x(h, t)-x:(pJ> t)+x(pJu)-x(h,u) ] 

+ |rx ( h , t ) - x ( p,t ) + x ( p , u ) - x(h , u ) ] + |rx ( h , t ) - x ( p,t ) + j c ( p , u ) - x(h , u ) ] , 
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because the points associated with the function y are all 

interior points of [g,h;u,v], an interval of the subdivision 

D which was chosen as a response to e in accordance with the 

quasi-continuous property for y. Factoring out | leaves an 

expression which is less than the variation of the function x 

over [g,w;z,v], [g,w;s,z], Kkjz,v], [w,k;s,z], [l,p$z,v], 

[£,p;s,z], [p3h$ZjV], [pjhjs^v], [g^wju^t], [gjWjtjr], 

[w,k;u,t], [wak;t,r], [A,p;u,t]3 [A^p-t^r], [p,hju,t] and 

[p,h;t,r]. 

Hence 

|A| < I*. (variation of x over E-, ). 

Now in |B i above, if each y( ) + y( ) + y( ) + y( ) 

is replaced by the result is an expression which is greater 

than or equal to [ b | . Factoring out each M gives jB| < M • 

(variation of x over E^-variation of x over D^), 

IB| M • (variation of x over E^) 

IB | < M • 4ne. 

This result is obtained by using Lemma 2.1 and the fact that 

there are n intervals in D. 

Now in |C|. Each interval [k, [k, H jr,s], 

[g,k;r,s] and P,hjr,s] is associated with only one term in 

s
Dj'(

x.y) but it may be associated with more than one term in 

SEj(x,y), because each interval of D' may have some endpoints 

of E^in its interior, and these, of course, would not be endpoints 

of D ' . MOW consider one interval, [k, l;u,r] of D}. if [k,Jt;u,r] 

has some endpoints of E in its interior, let these extra end 

points of E in [k, J.;u,r]'s interior be denoted bv 
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(t2,r2) • • •, (t. ,rj ), Merely add and subtract x(t,r)*s 

inside the square "brackets of 

ZJLjli.u), +y(^ [X(£,r)«x(kJr)+x(k.,,u)~x(S<5u) ] the 

appropriate number of times and then distribute 

y (k, £) 4-y (ft,u) +y (k, r) +y (I, r) across the series. If this is 

performed for each interval of 1)4, then S D '(x,y) has as many 
3 

terms as S ™ (x,y). Now in | s n , (x,y)-S„ (x,y)| regroup terms 
3 JJ5 ^ 

according to alike x-second differences. Now each abscissa 

is an interior point of an interval in D, a subdivision 

chosen as a response to € in accordance with the quasi-continuous 

property of y. Hence each grouping of y ordinates which is 

associated with like x-second differences is less than e. 

After factoring out e's 

) C | e • (variation of x over E^). 

Now in |F|, a similar argument for each interval [k3£;r?s] 

in as presented in the above argument for {C[ will hold 

true. Therefore, 

|F| <C e • (variation over E^) 

Then [ A | + |B| + j C J + |p| • (variation of x over E^) + 4Mne 

+ € • (variation of x over E^) 

+ e • (variation of x over E^) 

< e • (variation of x over E-^Eg and E^ + 4Mn) 

|SD /(x3y)-SE(x,y) | < € • fV°^(x) +4Mn}. 
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So to meet the challenge of any positive number e-, we 

C1 

+ 4 M n 
consider e as being —,—3 . This completes the 

a , - -

S« C 

proof of Theorem 2.5, 

Theorem 2.6. If y is integrable with respect to x 

in [a,b;c,d], and k is a number, then 

\ y(t,r)d[x(t,r)+k] = f y(t,r)dx(t,r). 
[a,b;c,d] 1[a,b; c, d ] 

Proof: The proof is analogous to the proof of 

Theorem 1.6 already presented. 

Theorem 2.7. If y is integrable with respect to x in 

[a,b;c,d], and k is a number, then 

J [ky(t,r)dx(t,r) = kF y(t,r)dx(t,r). 
[a,b; c, d ] "[a,b,'c,d] 

Proof: The proof is analogous to the proof of Theorem 1.7, 

Theorem 2.8. Suppose that each of y and y 1 is integrable 

with respect to x in the rectangular interval [a,b;c,d]. 

Then J [y(t,r)4-y (t,r)]dx(t,r) exists and 
[a,b;c,d] -1-

J r v ry(t,r)+y 1(t,r)]dx(t,r) = J y(t, r)dx(t,r) 
[a,b;c,d] -1- J[a,b;c,d] 

+ f yn(t,r)dx(t,r). 
"[a,b;c,dl 1 

Proof: The proof is omitted, because It is a duplicate 

of the proof of Theorem 1.8, 
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Theorem 2,9. Suppose that y is integrable with 

respect to x in [a,b;c3d], and if S-ĵ  and Sg are rectangular 

intervals such that S-L U S & - [a,b;c3d], and S ± D Sg = (j), then 

y is integrable with respect to x in S 1 and in S2; moreover 

J r . . y(t,r)dx(t,r) = j y(t,r)dx(t,r) + J y(t,r)dx(t,r). 
[ a, b; c, d | 

bl 2 

Proof: The proof is omitted because it parallels the 

proof of Theorem 1.9. 

Theorem 2.10. if J y(t,r)dx(t,r) exists, then 
[a5b;c,d] 

J x(t>r)dy(tJ:r) exists and 
[ »b; c, d ] 

J r
 x(t,r)dy(tj,r) = j y(t,r)dx(tar) 
[a_,b;c,d] J[a,b;c5d] ^ ; 

+ y(b3d)x(b,d) - y(b3c)x(b,c) 

+ y(a,c)x(a,c) - y(aJd)x(aj,d) 

d 

- J y(b,r)dx(b,r) 

d 

+ J y(a,r)dx(a,r) 
c 

b 

- J y(t,d)dx(tjd) 

b 

+ J y(t,c)dx(t,c). 
a 
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Proof: For £ )> 0, then y 0 and there exists a sub-

division of [a^bjCjd] such that if is a refinement of 

D, then |Sp (x,y) - [ y(t,r)dx(t,r)| < e . Similarly there 
1 * ~6 

exists subdivisions Dg and of [c,d] and and D^ of [a,b] 

and their respective refinements E ^ E ^ E ^ and E,_ such that 

d 

| S (x(b,r),y(b,r))- J y(b,r)dx(b,r)| < |, 
2 o 

c 

d 

|SE (x(a,r),y(a,r))- J y(a,r)dx(a,r)[ < ^ 

c 

b 

iSE».(x(t'd)>y(t-'»d))~ J yCt^djdxft^d) | < 1 and 
4 y 6 

a 

b 

|SE (x(t,c),y(t,c))- f y(t,o)dx(t,c) I < S-. 
5 a 6 

Let D be the composite subdivision formed by taking 

all the endpoints of all the subdivisions Dn , D0 ,D, ,D,., and 
L' d* p-5 4̂  

~Dy Then if E is a refinement of then the above five 

inequalities are each true for E and D. Let yft r ^ = v 
M i' «J/ ij* 

Now consider Sg(x,y)-Sg(y,x)_, which by definition is 

m-1 n-1 

i=0 J--0 1//i+ ̂  v y i -̂-1 J +1+y i j ̂ + ̂ y i H-i j + y i j +1 ) 1 f (xi +1 j +1 +xi j) ~ (xi +1 j +xi j +i) -1 

m-1 n-1 

" E o ?=01/"tC(Xl+1J+1+XiJ)+(Xi+lJ'l'XiJ+l)1[(yi+lj+l+yij'-(yi+lJ+yij+l)]-
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After multiplying out, simplifying and regrouping,, the above 

becomes 

n-1 m-1 m-l n-1 m—1 m-1 

£ o y i + 1 " i + 1 ^ l } + 1 / 2 E o C j =o y iJ+ l X ir?gi+U+ 1^+y 

m-ln-1 n-1 m-1 n-1 n-1 
+ 1 / 2fJfji+i3 xirf = 0

yi+io +i
xij>i , + 1 /f = 0

f-^ 0
yM xi+io +?gij +i

xi +y +i) 

Perform the following algebra for each set of braces: in the 

first sigma sign segregate out the lowest-subscripted term (so 
m-lcr n-1 

that only the Z) terms remain together) and in the second 
i or J=1 

sigma sign segregate out the highest-subscripted term (so that 
m~2 or n-2 

only the S terms remain together); then change subscripts 
i or j=0 

and limits of summation so that each is being summed over the 

range from i(or j) = 1 to i (or j) = m-1(or n-1). Now all 

summations inside the braces cancel and leave 

1 / 2 jxoj +l+^mjxmj +1 ̂  + V s ^oj+l
xoj-ymj+l

x
m3

 1 

m-1 m-1 

f 1/2 ^i+ioxio~^i-Hnxin^ + ^~^ioxi+lo V ̂ inxi+ln^* 

Applying the segregation technique once again, gives 

n-1 n-2 
[l/2(-y x ,-Sy x . r lWl/2(Ey x .+y x x, L v - oo ol . ioj oj -fl' ' v. ioj+1 oj Jon om-1)] J X j o 

n-1 n-2 
+ [l/2(y x , +Z) y . x . ,n)-l/2(S y ..,x .+y x , )1 L uirio ml . /ay mj+1-' 7 v . J mj+1 mj Jmn mn-1' ' 

J " -x- - J O 



52 

m~l tti-2 

+[l/2(yon
xln+ f ,yln x i « n ) - V 5 ( S yi,.ln

xn+>mnxm-ln)l-
1=jL x"0 

In each set of brackets do the following: change subscripts 

so that both sigma's are summing over the range 1 to 

m-l(or n-1). This yields: 

-t^( xol- xoo> +|,i ^ ( xoJ+l- xoj-l) + T r ( x o n - xon-l)J 

tJ 

y _ m-1 y. y 
+ - ^ ( x

l + 1 o -
 xi-lo) +-TCS.0 - xm-lo)l 

+ r ¥ ( x m - xo„) + £ ¥ ( x
1 + l n " x i - l n ) + ¥ ( x

m n " x
m - l „ » 

oo , yon ymc ^mn v
 yoo 

Xoo + S~ on T S~ mo ran x- OO 

+ y m° "Y" + y° n V Y m n
 v 

f -7T Xmo + ~2~ on " "T* V i ' 

And by Theorem 1.1, the above equals 

- rsE(x(t0,r),y(t0,r)] + [SE(x ( tm,r)] - [sE(x(t,rQ),y(t,rQ))] 

[SE(
x(t,r

m) (t, rm) ] - [ f
ymnxmn~ynioxrao^"fyonxon~yooxoo^ ̂  * 
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B u t yoo = y(a^c)^ a n d x
mn ~

 x(b>d) a n d s o forth, thus 

~ ~ x (bjd) + y(b,c)x(b,c)~y(a,c)x(a,c) 

+ y(a,d)x(a,d) - [SE(x(a,r),y(a,r)] + [SE(x(b,r),y(b,r))] 

- [Sg(x(t,c),y(t,c))] + [Sg(x(t,d).y(t,d))]. Eventually 

this equation will be used to accomplish a substitution for 

Sg(y,x) in a later expression. 

Adding the original five inequalities together with 

| [y(b,d)x(b,d) .+_..y_(bJc)x(bJc)-y(a,c)x(a,c)+y(aJd)x(a,d) ] 

-fy(ib»d)x(b,d)+y(b,c)x(b,c)-y(a,c)x(a,c)+y(aJd)x(a,d) ] < -
6 

and then making use of the triangle inequality to remove 

absolute value bars, and then rearranging terms yields 
a b 

I {Jy(t,r)dx(t,r)-J y(b,r)dx(b,r) + J y(t,d)dx(t,d) 

R c a 

b 
+ J y(t,c)dx(t,c) + y(b,d)x(b,d)[y(b,c)x(b,c)+y(aac)x(a,c)~y(a,d)x(a,d)i 
3/ 

-{y(bJd)x(b,d)-y(bJJc)x(b,c)+y(a,c)x(a, c)-y(£i,,d)x(a,d) 

-[SE(x(a,r),y(a3r)l + [SE(x(b,r),y(b,r))] - [SE(x(t,c),y(tJc))] 

+ [SE(x(t,d),y(t,d))] - SE(x,y)}| < e. 
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But the expression in zhc secpnd set of braces can be 

replaced by - Sg(y,x). Hence there exists a number I (the 

contents of the first set of braces) such that if e ) 0 then 

there exists a subdivision D of [a,b;c,d] .such that for any 

refinement E of D, |l~Sg(y,x)| <( e. Thus, according to 

Theorem 2.2, x is integrable with respect to y on [a^bje^d] 
•» 

and x(t,r)dv(t,r) is the number I. 

[a,b;cfld] 

Theorem 2.11. Suppose that y is integrable with respect 

to x in the interval [a,b;e,d]. If x is of bounded variation 

in [a,b;c,d], and |y(t,r)| \ M for each number t^r in 

[a,b; c, d], then -. _. . . . 

'•'[a,b;o,ci]y(t'r)dx(t'r)l < 

Proof: The proof is omitted since it parallels the 

proof of Theorem 1.11. 

Theorem 2.12. If x is a function and [a,b;c,d] is a 

rectangular interval, then 

a, b; c,, d ]ldx(^Jr) = x(a;c) - x K d ) + x(b,d) - x(b,c) 

Proof: The proof Is analogous to that for Theorem 1.12. 

Definition 2.11. The statement that the function f has 

a second alternate partial derivative^ f fi^ in the interval 

[a^bjCjd] means that If a t b and c r ̂  d̂  then there is 

a number f (t^r) such that the following statement is true: 
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If e y 0, then there is a segment (p,q;g*h) containing 

(t,r) such that, if (e,k) is another ordered number pair in 

and in [a,b;c,d] then 

f(e,k)~f(t,k) f(e,r)-f(t,r) 
T^-tJ ~ - f ' (e,k) 

[k~r] 

< e, 

Remark 2.11. The above notation simplifies to 

f(e,k)-f(t,k)+ f(t,r)-f(e,r) / / 

[e-t]*[k-r] 
(e,k) < e. 

Definition 2.12. The statement that the function f has 

a continuous second alternate partial derivative, f / / 

in 

the interval [a,b;c,d] means that, f has a second alternate 

partial derivative, f ' i n [a,b;c,d], and if e > 0, then 

there is a subdivision D of [a,b;c,d] which has the following 

property. If [p,q;u,v] is an interval in D and (t,r) and 

(t^,^) are points in [p,q;u,v], then |f "(t,r)-f ''(t1,r1) | < e 

Remark 2.12. Clearly, if E is any refinement of D (in 

Definition 2.12), then E also has that property. 

Theorem 2.13. If the function f has a continuous second 

alternate partial derivative, f'', in the interval [a,b;c,d], 

and if e > 0, then there is a subdivision D of [a,b;c,d], such 

that if an<^ ^2,T2^ a r e o n e intervals of D 

then 

f(t^)+f(t2,r2)-f(t1,r2)-f(t2,r1) 

ft; - tp ] [r. '1 ~ °2JLil " r2 T < € • 
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Proofj The proof is omitted since it is analogous to 

the proof of Theorem 1.14-. 

Theorem 2.1b, Suppose x has a continuous second alter-

nate partial derivative, x 7 i n the interval [aab;c,d]s 

and that there is a number M, such that [y(t,r)| M if 

a < t < b and c < r < d. If 

Jy(t,r)dx(t,r) = CjL or J y(t,r)x "(t,r)d [a-p](t,r) 
R R 

C2 

where a is the x-identity plane and g is the y~identity plane5 

then 

J y(t,r)dx(t,r) = J y(t,r)x ' '(t^rjdfa* |3] (t,r). 

R R 

Proof; Since x has a continuous second alternate partial 

derivative, then by Theorem 2.13 for € > 0, there exists a 

subdivision D of [a,b;c,d], such that if [g/h;u,v] is an 

interval of Djthen 

x(g,u)-x(h,u)+x'(h,v)-x(K,v) 
[K - gj[v - u] 

/ // \ 

~ * (giU) < €1 

w h e r e ei - • 

Now 

s
D(

x>y) = 

fg^h[u 5
(f]Jr) + y ( h , u ) + y ( h , v ) + y ( S j V ) ] [ x ( g 5 U )~ x ( h j U)" f x^ h^ v)- x(g^ v)] 
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and 

/ / SD(tr,x y) = 

2 l/4[x' (g,u)y(g,u)+x (h,u)y(h,u)+x (h,v)y(h,v)+x (g,v)y(g,v)] 
[gjh;u,v] eD 

•{[h - g][v - u]} 

Consider 

ls
D(

x*y) ~ SD(tr,x "y) I • 

It can be shown with techniques similar to those used in 

the proof of Theorem 1.15 that 

- |SD(x,y) - SD(tr,x
//y)l < M*s1 '(b-a) (d-c) = 1/2 e. 

The remaining portion of the proof is omitted because 

it parallels the proof of Theorem 1.15. 

Remark 2.14. Theorem 2.l4 enables one to diow how 

Theorem 2.10 is suggested when one integrates across the 

formula for the second alternate partial of the product of 

two functions. That is, if the functions x and y meet certain 

conditions, then 

^[x-y] = ^x-y + x-^jy 

2 
3
1 2^

x* y] = 9
2f

Bi x* y + x > 3iy ] 

2 p 
= S12x*y + ^ x ^ y + d g X ^ y + x*3j2

y 

J = J 3 1 2 x ' y + J a
1
x * a 2 y + 9 2 x ' 5 l y + J x * S 1 2 y 

H R H R 
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x(t,r)*y(t,r) 
R R 

J y4* + L W + a2x'ai5' + 4 x d y 

dp - R 

= f ydx •< f ( ( V ' V + x'S21y) " X'a21y 

"R 'R 

+ - * - 4 y J + i x d y 

= f yax + I f a1(x-say)
+as(x'3lj0 " S x - a2l y 

£ 

•J xdy -J ydx + [ f ( X - V U + t { X - S l y i o ) ] 

Jr. c a a 

-2 f xdy + f xdy = J ydx 
jr JR R 

+ f {x(b,r) •9oy(l0j,r^~X^ajr^ *S2y 
Jc 

+ J {x( t,d) •51"y(t.d)»x( t,c) •91y('tJc) } I R
X y 

Therefore 

x(t,r) *y(t,r) j = J yd* - + J ^ . r ) ^ . ' ) 
R °R 

a k 

c 

b t) 
- fx(a,r)dy(a,r) + J x(t,d)dy(t,d)-J x(t,c)dy(t,c) 

n B. 

Theorem 2,15. Suppose that [a,b;c,d] is an interval, 

[e,f;g,h] is an interval, u,v,x,y is a function sequence, 

and that if D is a subdivision of [a,b;c,d], and E is a 

subdivision of [e,f;g,h], then there is a refinement F of D 

and a refinement G of E such that Sp(x,y) = SG(u,v). If y 

is integrable with respect to x in [a,b; c ..d] 3 and v is 

integrable with respect to u in [e,f,g,h]?the 
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b d f h 

| y(t-,r)dx{t,r) = j ) v(t,r)du(t,r). 
a "c e°g 

Proof: The proof Is analogous to the proof of 

Theorem 1.3 6, 

Definition 2.13. A function f(tar) is non-decreasing 

on a set ks If and only if whenever (u,v) and u^v^) are 

points in A and u <( u^ and v <( v^, then f(u,v) <C f(u^,v^). 

Definition 2.14. A function f(t,r) is non-increasing 

on a set A, if and only if whenever (u^v) and (u^v^) are 

points in A and u <( u^ and v v ^ then f(u,v) < f( 

ul*vl^ * 

Corollary 2.15a. Suppose that [a5b;c,d] is an interval, 

[e,f;k,l] is an interval,, and that F is integrable with 

respect to the continuous function P in [a/b;c3d]. Suppose 

the equation t = g(u,v) and r = h(u^v); where g and h are 

continuous non-decreasing functions; defines a one-to-one 

transformation of the region [e,fjk,l] into the region 

[a,t>*c,d]. Then 

J F(t.r)dP(t,r) = J F[g(u,v),h(u3v)]dP[g(u,v),h(u,v)]. 

[a,b;c,d] [e,f;k,l] 

Proof; Since F is integrable with respect to P in 

[a,b;c,d] then for e y 0, there exists a subdivision of 

[a,b;c,d] such that if is a refinement of then 

| J F(t3r)dP(t,r) - Sg (P?F)[ < €. 

[a,b;c,d] 1 
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But since t = g(u,v) and r ~ h(u,v) forms a one-to-one 

transformation mapping [a,b;c,d] onto [e,f,k3 ], there 

corresponds a subdivision of [e,f;k,l],, call it Dg, such 

that Sd^(P,F) = SD^{P[g(u,v), h(u3v)],F[g(u,v)3h(uav)]}. 

And since this relationship is also valid for any refinement 

E 1 o f D 1 a n d E2 o f D2> t h e n 

| f F(t,r)dP(t,r) - S„ (P[g(u,v),h(u,v)]?P[g(u,v),h(u,v)]3| < e 

[a,b;c,d] 

This implies that F[g(u,v),h(u,v)] is integrable with respect 

to P[g(u,v),h(u}v)]. Then by Theorem 2.l4 

J F(t,r)dP(t,r) = j F[g(u,v),h(u,v)]dP[g(u,v),h(uav)]. 

[a,b;c, d] [e,f;k,l] 

Coroilary 2,15b. This corollary is identical to 

Corollary 2.15a except the word non-decreasing has been re-

placed by non-increasing,, and a minus sign has been imposed 

on one side of the.equation. 

Remark 2.15. The two corollaries presented above enable 

mathematicians to perform integration by substitution. 



CHAPTER III 

LANE'S INTEGRAL IN N-SPACE: 
f(t,r, •••)dg(t,r, •••) 

[a, ,"bn t • • • sa n ,b , ] 
L Is l5 5 n-1' n-lJ 

The definitions and theorems presented In Chapter II 

extend readily to an n-space function x and an n-space 

function y and to an n-space interval [a., ,b., : • • • % a ,b ,1. 
L 1' 1- ' n-l? n-IJ 

The proofs of the theorems will be analogous to those presented 

In Chapter II. A few sample definitions and theorems will in-

dicate the necessary procedure for the extension. 

Definition 3.1. The statement that f Is a real n-space 

function implies that if t±.t2, • • t are real numbers then 

there is just one number c such that f(t, ,t0, ••• t -.1 = c. 
v 1' 5 n-1' 

Definition 3.2. An n-space interval denoted by 

[&-]_,b-jJ a2,b2; ' * *
an-l,'bn-l-' l s a P o i n t s e t such that each 

aj_ < b±. A number sequence (t pt 2, •••3tn_1) belongs to 

ral,bi;a2,b2; •••;an_i,bn_i] if and only if â^ < 

2 ^ t2 ̂  b25 a n d s o f o r t h u p t o an 1 ̂  ^n 1 ̂  bn 1* 

Definition 3.3. The statement that D is a subdivision 

of the n-space interval [a-pb^j • • •;an_]_5^n-H -J
 m e a n s that D 

is a finite set of (one or more) nonoverlapping n-space inter-

vals covering [a^b^-.j . 

61 

a. 
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Definition 3.~>. The statement that the function f is 

quasi-continuous in the n-space interval 

^al' bl;a2jD2> * * "3 an-l,l3n-l^ 

means that if e ) 0, then there exists a subdivision D of 

^•al^bl' a2,b2' * * an~l,l3n-l'' sucil ^^at if P is one of the 

n-space intervals in D and the points (t^, t^, • • •. tn 

(rl'r2' **',rn-l^ b e l o n S t o the interior of P or to one of 

its faces, then 

Notation. If x is a function, y is a function and D is 

a subdivision of the n-space interval [a,,b *a0,b0: •• •:a ,b , 1 
L I3 l3 d' 2' 5 n-1* n~lJ-

and if the p ^ s below represent all the apexes of the interval 

P in D, then S^(x,y) denotes the number 

2 (l/2n"1)[y(p1)+y(p2)+..•+y(p2n-l)]•[A
n"1x(pi)] 

where A x(p±) represents the n-1 finite differencing of 

the apexes of P. 

Definition 3.5. Suppose that x is a function, y is a 

function and [a^b^; a2,bgj • • •• ̂ .i^^n-l^ l s ^ n~ sP a c e 

interval. The statement that c is the integral over the n-space 

interval of y respect to x, may be written as 

bl b2 b
n-i 

= J J J y(t,r,•••)dx(t,r •••). 
a Q 9"! 9-Q Si 

1 2 n-
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Definition ~$.6. The statement that the n-space 

function f is of bounded variation over the n-space 

interval [a, ,'b • a0,b0: * * •; a -.,"6 1 means that there 
JL JL. d ' d.~ n-i. H — J. J 

exists a number B such that if D is a subdivision of D,then 

D | [ ^ " ^ ( p . ) ] | < B. 
D 1 



CHAPTER IV 

IMPROPER INTEGRALS 

The Lane^s Integral defined previously had meaning 

only if the interval over which integration was performed 

was finite. The following chapter will extend the defini-

tion so that under certain circumstances the Lane^s 

Integral will "be meaningful when the interval of inte-

gration is infinite. The proofs for the theorems presented 

will be omitted because of the similarities between them 

and ones already presented. 

Two Space 

The definition presented in Chapter I for a subdivision 

and refinement will be used here without alteration. 

Definition 4.1. The statement that the function f is 

quasi-continuous in the interval [a5«) means that if e > 0a 

then it is true that no matter what interval [aab] is picked, 

there exists a subdivision D of [a,b] such that If [p,q] is 

one of the intervals of D, and s and t are in the segment 

(p,q), then |f(s) - f(t)| < e. 

Definition 4.2. The statement that the function y is 

integrable with respect to the function x in the interval 

[a,03) means that if e y 0, then there exists an interval 

64 
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b B 
«» f* 

[a,b], such that if b < E, then j y(t)dx(t)~ y (r,)d.x( t) [ < e. 
va a 

This implies that y is integrable with respect to x on [a,b] 

and [ a, B ]. 

Theorem 4.1. For the function y to be integrable with 

respect to the function x in the interval [a,")- it is 

necessary and sufficient that there be a number c such that 

if e y Ojthen there exists an interval [a,b] such that if 

b ̂  B^then 
B 

I f y(t)dx(t) - c | < e. 

a 

Definition 4.3. Suppose that x is a function and y is 

a function. The statement that c is the integral from a to 00 

of y with respect to x, which may be written as 
CO 

c = J y(t)dx(t), 
8, 

means that c is a number and that the statement from Theorem 4.1 

is true. 

Definition 4.4. The statement that the function f is of 

bounded variation in the infinite interval [a,,03) means there 

exists a number T such that if [a5b] is a subinterval of [a,®), 

t) 

then V (f) T. The least such number T is called the total 

variation over [a,00) and will be represented by V^(f). 
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Theorem 4.2, If the function y is quasi-continuous and 

bounded in the interval [a, ®) and x is of "bounded variation 

in [a,m), then y is integrable with respect to x in the 

interval [a,00). 

Theorem 4.3. If y is integrable with respect to x 

in the Interval [a,03), and k is a number, then 

\ y(t)d[x(t)+k] - J y(t)dx(t), 
""a a 

Theorem 4.4. If y Is integrable with respect to x in the 

interval [a,ro), and k is a number, then 
CO 00 

J [ky(t)]dx(t) = kj y(t)dx(t). 
a a 

Theorem 4.5. Suppose that each of y and y^ is .inte-

grable with respect to x in the interval [a,00). Then 

CD 

J [y(t)+y1(t)]dx(t) exists and 
a 

00 CD 00 

J [y(t)+y1(t)]dx(t) = J y(t)dx(t) + J y1(t)dx(t). 
a a a 

Theorem 4.6. Suppose that y is integrable with respect 

to x in the interval [a,00), and if a ( c ( » then y Is 

integrable with respect to x in [a,c], and in the interval 

[c,00) ;moreover 

U oo 

J y(t)dx(t) = J y(t)dx(t) + J y(t)dx(t). 



Theorem 4,7. If y is integrate with respect to x in 

[a,03), and x and y are functions such that lira y(t)*x(t) 
f" —»CO 

exists, then 

J x(t)dy(t) exists and 
ct 

p60 r00 
J y(t)dx(t) = y(®)x(«) - y(a)x(a) - | x(t)dy(t). 

a va 

Theorem 4.8. Suppose that y is integrable with respect 

to x in the interval [a,®). If x is of "bounded variation 

in [a,03) and|y(t)| <( M for each t in [a.,̂ )., then 

| J y (t)dx(t) | < M»V*(x). 
Si 

Theorem 4.9. If x is a function such that the lim x(t) 

exists and [a3») is an infinite interval, then 

CO 

J ldx(t) = x(«) - x(a). 
a 

Definition 4.5. The statement that the function f has 

a derivative, f in the interval [a3«>), means that if 

a < t < ® then there is a number f'(t), such that the 

following statement is true: 

If e > 0, then there is a segment (p,q) containing t 

such that if s is another number in (p,q) and in [a,®), then 

-
 T ' ( t ) < € . 
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Definition^. 6^ The statement that the function f has 

a continuous derivative, f in the interval [a, «) means 

that f has a derivative, f i n [a, <»), and that if e > 0 

and [ a,b ] is an intervals then there is a subdivision 

D of [a,b] such that if [p,q] is an interval in D and s and t 

are numbers in [p,q] then |f'(s) - f'(t)| <( e. 

Theorem 4.10. If the function f has a continuous 

derivative, f i n the interval [a,®), and e )> 0 and [a,b] 

is an interval, then there is a subdivision D of [a,b] such 

that if s and t are in one of the intervals of D* then 

^(s) _ f'(t) < 

Theorem 4.11. Suppose that x has a continuous derivative 

x ' in the interval [a,00), and that there is a number M such 

that | y (t) j ( M if a ( t ro. If 

CO CO 

J y(t)dx(t) = c^ or J x'(t)y(t)dt = c^ /, then 
a a -

CD a, 

J y(t)dx(t) = f x /(t)y(t)dt. 

a a 

Theorem 4.12. Suppose that [a,«) is an infinite interval, 

[c,°) is an infinite interval, u,v,x,y is a function sequence, 

and that if D is a subdivision of [a,b], and E is a subdivision 

of [c,d], then there is a refinement F of D, and a refinement 

G of E, such that Sp(x,y) = SQ(u,v). If y is integrable with 
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respect to x in [a,00) end v is integrable with respect to u 

in [c,ro), then 

CO 

J y(t)dx(t) = J v(t)du(t). 
a c. 

Corollary 4.12a. Suppose that [a,®) is an infinite 

interval, [c,°°) is an infinite interval, and y is integrable 

with respect to x in [a, °°). If f is a continuous non-

decreasing function such that f(c) = a and lira f(t) = then 
t~>C0 

CO 00 

J y(t)dx(t) = J y[f(t)]ta[f(t)]. 

a c 

Corollary 4.12b. Suppose that [a, °°) is an interval, 

[c,<=°) is an infinite interval, and y is integrable with 

respect to x in [a,00). If g is a continuous non-increasing 

function such that g(c) = ® and lira g(t) = a, or if g(c) = « 

and g(d) = a, where d is the point at which the function g 

crosses the x-axis, then 

CD 00 

J y(t)dx(t) = -J y[g(t)dx[g(t)]. 
a "a 

Three Space 

The definitions and theorems which were presented in 

first section of this chapter will extend readily to three-

space functions and a rectangular infinite interval [a,«jc,®), 

Therefore, the actual formal presentation of the material and 

proofs wilx be omitted and simply a definition of what is 
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meant by an Improper Integral in three-space will, be given. 

Definition 4.7. Suppose x is a three-space function, y 

is a three-space function and a and c are numbers. Then by 

J y(t,r)dx(t,r) is meant a number I such that if g ) 0, 
[a, «;c,«) 

then there exists a rectangular interval [a3b;c,d], such that 

If b <( B and d D,then 

\ J y(t,r)dx(t,r) - I | < e. 
[a,B;c,D] 

N-Space 

As before, the definition, theorems and proofs extend 

readily to n-space functions and n-space infinite intervals 

[a1,»;a2Jo0. and thus any formal presentation is 

omitted. 

Definition 4.8. Suppose x Is an n-space function, y 

is an n-space function and a^,ag, ***Jan_2 is a number 

sequence. Then fey J y( t£, • •t n_ 1)a x( t£, • • t ^ ) 

1&2, °?a2, ®] 

is meant a number I such that if e > o, then there exists 

E n n" sP a c e interval [ a p b ^ a ^ ^ ; . . . j a ^ b ^ ] such that 

l f bl < Bi a n d b2 ^ B2 a n d * * * and b ^ < Bn_1, then 

I J y ( t i ; t 2 , • • • , t m _ 1 ) a x ( t 1 , t 2 , - I I < e. 
Ca1,B1;a2,B2;•••san_1)Bn_1] 



CHAPTER V 

SOME ADVANTAGES OF THE LANE INTEGRAL 

Lane's Integral and Stieltjes5 Integral are very 

similar in many respects, but in some instances the Lane 

Integral is superior. It was shown on Page 7 that if the 

Stieltjes Integral exists^ then the Lane Integral exists 

and they are equal. However, in certain instances when 

Stieltjes Integral does not exist, the Lane Integral will 

exist and yield the desired result for the value of the 

integral. Here is an example. Suppose that two probability 

graphs are presented, each containing n discrete points^' 

and that one graph is plotted with respect to the other; 

then the result again would be a graph of n discrete points. 

It might then be desired to fit a polynomial P to these 

points such that the area under P equals the area of 

trapezoids formed by the n discrete points and the x-axis. 

The Lane Integral would give this area but the Stieltjes 

Integral would not exist. Furthermore, the existence theorem 

for Lane's Integral is more expansive. 
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