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Hill, Willdiam J., TTL., On Lane’s Integral, Master

of Science, Mathematics, Auguslb, 1971, 72 pages, 3
illustrations, bivliography, 5 titles.

The problem and purpose of this paper is to develop
Lane’s Integral in two-space, and then to expand these
concepts into three-space and n~spacc. Lane’s Integral
can be used by both mathematiciane and statisticians as
one of the tools in the calculation of certain probablilities
and expectations. The method of presentation is straight-
forward with the basic concepts of integration theory and
Stieltjes Integral assumed.

The paper is divided into five main chapfters and
includes a preface and a bibliography. In this paper only
real functions which are defined over the set of all real
numbers are considered, The first chepter provides the
basic groundwork for the remaining cnapters, and, therefore,
the properties relative to Lane’s Integral in two-space arsz
presented with the necessary definitions and theorems. The
second chepter is devoted to the development and expansion
of the integral into three-space with the necessary analogous
definitions and thecrems from Chapter I.

In the third chapter natural analogues of the theorems
and material in Chapter I and Chapter II are presented fof
n-space. Since the materlial extends readily to n-space, just

a few sample definition
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the material necessary to expand the domain of integration

from a finite interval to an infinite interwval. Therefore,



in the fourth chapter ﬁhe ¢definitions and theorems presented
in the preceding chapters for the definite integral were
expanded to fit the concept of the improper integral,

The paper concludes with Chapter V which gives some
of the advantages of the Lane Integral over the more
commonly used Stieltjes Integral. It is, therefore, hoped
that eventually the more encompassing Lane Integral will

come more Into vogue.
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PREFACE

The concepts of integration theory have been a tool
of both the mathematician and the statistician for many
years. However, in statistical theory more general cori-
cepts and integrals are needed in the calculation of certain
probabilities and expectaticns, Today with the aid of
integrals such as Lane’s Integral these areas are more
exacting.

The purpose of this paper is to develcp and expand
Lane’s Integral into three-space, and then to present some
fundamental theorems., The first chapter of this paper
will provide and investigate some properties of Lane’s
Integral in two-space. The second chapter 1s devoted to
the development of the integral in three-space for quasi-
continuous real functions and functions of bounded variation.

In the third chepter natural analogues of ftheorems in
Chapter I and Chapter II are presented for n-space dimensions.
The fourth chapter presents the material nécessary to expand
the domain of integration from a finite interval to an
infinite interval., Therefore, in Chapter IV the definitions
and theorems presented in the preceding chapters for the
definite integral will be expanded to fit the concept of the
improper integral, The final chapter gives some of the
advantages of Lane’s Integral over the more popular Stieltjes

Integral.
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CHAPTER T

In this paper only real functions which are defined
over the set of all real numbers are considered. A basic
knowledge and understanding of the Stieltjes integral is
assumed and consequently no rigorous derivation of it will
be presented. In order to simplify some of the statements
which are to be made, certain preliminary definitions and
remarks are necessary.

Definition 1.1. The statement that f is a function

implies that if t is a real number then there is Just one

o~

number c¢ such that £(t) = c.

Definition 1.2, The statement that G is the graph of

the function y with resgpect to the function x in the
interval [a,b] means that G is the set of ordered triples
such that p,q,r is in G if and only if it is true that
a{p<band q=x(p) and r = v(p). The statement that P
is a point of G means that there is a number t such that
a< t< b and x(t) is the abscissa of P and v(t) is the

ordinate of P.



Definition 1.5, The asbsbtement that D is a subdivision

£ the interval [a,b] means that D is a finite set of

(one or more) intervals [tys

tl]a [tl:tg}a A [tnul’tn]

such that tO = g and En = Db,

Definition 1.4, The statement that E is a refinement

of D means that E is a subdivision of [a,b] such that, if
[P,q] is an interval in D then there is a subset of E which

is a subdivision of [p,q].

Definition 1.5, The statement that the function f is

quasi-~continuous in the interval [a,b] means that if ¢ > 0O
then there is a subdivision D of [a,b] such that, if [p,q]
is one of the intervals in D and s and t are in the segment

(p>q), then | £(s) - £(t) | < e.

Notation., If x is a function, y is a function, and D

is a subdivision of the interval [a,b], then SD(x,y) denotes
the number

n-1

sz 1/2 [Y(tp) + y(tp-l—l)J [X(tp_,.l) - X(tp)]-

Theorem 1.1, For numerical work it 1s often convenient

to make use of the fact that

Sp(x,y) = y(ty) « 1/2 [x(tl) - x(ty)]

n-1

p—_z-ly(tp) P2 (b)) -ty )]

-+

+ y(tn) - 1/2 [X(tn) -x(tn_l)}.



W

Proof:

Sp(x,y) = nzz 12 Ty(ty) + v(tp ) Mx(tp,,) ~x(t,)]
n-1
= pEO 1/2 - y(tp) . [X(tp+l) —x(tp)]
n-ll '
+ piO 1/2 y{tpaa) =[xty ) —x(8) 1

Then
SD(X,y) = y(to)1/2 [X(tl) —X(to)]

n-1

(2072 - y(ty) - (i) - x(8,)]
n-2

+y(ty) /2 [x(t,) -x(t, ;)]

n-1
= y(to):l/E[X(tl)—-X(to)]prll/? y(tp)[X(tp+l)-X(tp)]

n-1
+ = 1/2 t ~x{t T
JZ 12 () () (e )]

-+

y(ty) 1/2 [x(t )-x(t_ )]

i

y(ty) 1/2 [x(t;) -x(t,) ]

n-1

+ :éfl /2 y (tp) [X(tp.{.l)'"x(tp__l)]}
+y(ty) 1/2 [x(t) -x(t__)].

This completes the proof of Theoren 1.1.



Definition 1.0 The statemeni that the function y is

= .«

integrable with zezpect to iLhe function x in the interval

[a,b] means that if ¢ » O then there is a subdivision D of
. g' . . ] . . - ) .

[a,P] such that | Sy(x,¥) - Sp(x,¥) | { ¢ if E is a refine-

ment of D.

Theorem 1.2, TIor the function v to be integrable with
2

respect to the function x in the interval [a,b] it is
necessary and sufficient that there be one and only one
number ¢ such that i ¢ > O, then there is a subdivision
D of [2,b] such that ]SE(x,y) - c¢c | < e if E is a refinement
of D. o

Proof: Assume that there exists a number L such that for
every € » O there exists a subdivision D of [a,b] such that

l Sp(%,¥) - L] < 1/2 e, where E is any refinement of D. Now

{ 1/2 e,

D is a refinement of D. Therefore, | SD(x,y) - L

Then by using the Triangle Ineguality,
I SD(x,y) - SE(X:y) l {_ l SD(Xsy) - L , + I SE(X:y) - L I

1/2 ¢ +1/2 ¢ = e.
Then by Definition 1.6 the function y is integrable with respect
to the function x in [a,b]. This completes the proof of the
sufficiency.
Now suppose y is integrable with respect %o % on [a,b].
Then if e > O there exists a subdivision D of f{a,b] such that

if E is any refinement of D, then | SD(x,y) - SE(X’y) | < e.



Now we need to produce a candidate for the value of the integral,
Let {D.} be a sequence of subdivisions of [a,b] where each Dj
is associated with e = 1/23 for j = 1,2, ..., n and Dj is

L¥
the subdivision referred to in Definition 1.6. TLet {D{} be

<,
a sequence of refinements such that Dj is the common refine-
ment of Dj and Dj-l and Dj-2 and ««. and D2 and Dl' It can

-~

be seen that each D! . is a refinement of Dg, Now consider

J+1
the sequence of sums {SD3<X’y)}' This sequence is a Cauchy
sequence of real numbers, Therefore the seguence converges
to some real number; call it L.

Hence, given any ¢ > O there exists a Dj such that
1/29 ¢ /4, then | Sp(%¥) = Sy0 (x,y) | < 1729 < eyn.
Moreover, there existJan integerJ;lsuch that

l SpHx,y) - L | < /4. Pick the higher of J and m and call
m
it p. Then | sy(x,y) - Sn+ (x,y) | < &/4 ana
P p+1
| 857 (x,y) =1L | < ¢/%. Now, by Definition 1.6 it is true
b
that if E is any refinement of Dp, then | Sy (x,y) - SE(x,y)l
< 1/% ¢ and that | Sp (%,¥) - SD'(x,y)l < e/ﬂ, Now adding
b P )
inequalities:

! SE(Xsy) - L ' {_ l SD (X:Y) - SD’(X:Y)’ + l SD'<X:y) - L'
b D P

+ | Sp(x,y) - Sy (x%y) | < /% e +1/% ¢ + /b e e,
p
Therefore, there exists an I, such that for any € > 0 there
exigts a subdivision D of [a,b] such that, if E is any refine-

ment of D, then | S,(x,y) - L | < e,
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Now, 1f there exists » nuwber ¢, then it is uanique,
Assume Ly and L, are vaiues of the integral on [a,b] of

the function y with respect to the funclion x. Now

Ty -~ 1] . ,

—-~?m—m-> 0, and there exists a subdivision D of [a,b] such

that if E is a refinement of D then | Sp(x,y) - I; | < |I; - I ]
gy

Also, there exists a subdivisicon P of [a,b] such that if Q is a
refinement of P then |I, - SQ(x,y) | <z, - Lyl . Let Hbe
: e
a subdivision of [a,b],which is the common TFefinement of
. Lr - L - [" - T
E and Qjthen [Sy(x,y) - L, | < Iz, 1! ana | I, - Sy {x,y)]

< Ity - 9]l | Now adding inequalities:
=L

I SH(X:Y) - L:]_l + ' Lg - SH(X>Y)I < IL2 - Lll'

But this contradicts the Triangle Inequality, so the original
assumption must be false. Thus the value of the integral

is unique. This completes the proof,

Definition 1.7. If {Di} i=1,2,¢¢s, n is a seguence

of subdivisions of [a,b] where the lengths of the maximum

intervals of the Di’s tend toward zero, then let

n
S(D;3f,g) = kflf(gk)[%(tk) - g(t,_q)]
where t, ; < g < t, . Under certain conditions, the

sequence S(Di; f,g) has a limit called the Stieltjes

integral,



Theorem 1.3, 1f the Stieltjes irtegral exists in the

interval la,b], then Lan=’s integral also exists in [a,b], and
they are equal.

Proof Outline: Assume that Stieltjes integral exists

and let its value be represented by I. Then both the left-
Stieltjes and right-Stieltjes integrals exist, and both
equal I, If S(DL;f,g) and S(DR;f,g) dencte the approximating

sums over any subdivision D of [a,b], then S(DL;f,g) + S(DR;f,g),

2

their mean, approximates E_%;l and 1s S,(g,f). Thus given the

existence of Stieltjes integral we are also assured the

existence of Lane’s ‘integral. y
For the purposes of this paper Lane’s integral and the

Stieltjes mean integral will be the sane.

Definition 1.8. Suppose that x is a function, y is a

function, and [a,b] is an interval. The statement that c is
the integral from a to b of y with respect to x, which may be

written as
b -

¢ = J‘y(t)dx(t),
a
means that c¢ is a number and that the statement from
Theorem 1.2 is true.
b
Theorem 1.%4. The statement that c¢ = j‘y(t)dx(t) means

a a a

that -c = j‘y(t)dx(t). Moreover, [‘y(t)dx(t) = 0,

L2

b a
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Proof: TFor ¢ » O there exiebs a subdivision D of [a,D]

such that

b .

n-1 )
[T vax(e) - 2072 [y(ey ) + w(e) 1ix(ty ) - x(6)] < e,
a p=0
but
a

n-1

: p=

It is obvious from the two representations of the sums that
the x differences are reversed, i.e., one is the negative of

the other. Therefore,
b a

J‘y(t)dx(t) = - J‘y(t)dx(t).
a
b
It is also obvious that the integral of a function with

respect to another function taken over g point is zero, be-

cause each approximating sum SE(x,y) 1s zero,

Definition 1.9. 'The statement that the function f is

of bounded variation in the interval [a,b] means that there
is a number B such that if D:{[to,tl],[tl,tgj, ...,[tn_l,tn]}

is a subdivision of [a,b];then

n:l )
piO | i.(tp+l) - f(tp) | < B.

The least such number B is denoted by Vz(f), and 1s said to

be the variation of f in [a,b].

Lemma 1.1. Suppose x is a function of bounded variation

in the interval [g,h]. If ¢ > 0, then there exists an interval
[g,k] which is a subset of [g,h] such that, if [g,w] is a sub-
set of [g,k],then Vz(x) - Vg(x) { €.



9

Proof: Suppose ¢ » C. Let g = h and then for n » 1,

.8 et . S - Sy
let s = g " s, ;. Then V.n (x) exists and VL (x) < ven (%)

n = "n-l
2
Let L denote the greatest lower bound of the numbers Vzn(x).
There is a positive integer p such that V2p+d(x) -1<1/2 ¢
if d is a ﬁon~negative integer, If [g,w] is a subset of

[g,sp], then there is a positive integer d such that

Sp+d < W < Sp and

vePH(x) < vi(x) < VR (x)

& B g
and also
vopHd(x) - L < 1/2 e,
g
Hence
Vg(x) - L< 1/2 e,
Thus

S W

VP (x) - v (x) < €

g() g() s
and [g,sp] qualifies as [g,k].

Theorem 1.5. If y is a quasi-continuous function in

the interval [a,b] and x is a function of bounded variation
in [a,b], then y is integrable with respect to x in the

interval [a,b],.

Proof: If VZ(X) = 0, then the proof is trivial.

Suppose that Vz(x) > 0. There is a positive number M
such that | y(t)| < M, because quasi-continuity implies
boundedness,

For ¢ » 0, there exists a subdivision D of [2,0] such

that 1f p and g are points in the interior of an interval of



D,then | y(p) - y(a) | < ¢, because y is guasi-continuocus.
Let n denote the number of intervals in D.
! “inement btained as follows. In
Let D be a refinement of D obtained a 1 .
the interlor of each interval [g.h] of D select two numbers
k and £ so that (in conformance with Lemma 1.1) it will be

true that if g < w < k and ¢< u < hy then

V?(x) - Vﬁ(x) { e.

See Figure 1, page 11.

Suppose'ﬁ-ié”;ﬁ§»fé%inement of D’. For each interval
[g.h] of D there are two intervals [g,w] and [u,h] of E,
where g { w< k and 2< u < h. Let e, denote the two-member
set {[g,w],[u,h}}{ Let e, denote the set of all the other
intervals of E which lie in [g,k] or [%,h] (i.e., all members
of E which are subsets of [w,k] or [%,u]).

Let e denote the set of all intervals of E which are
subsets of [k,%]. Let El denote the union of all such sets

e and let E2 denote the union of all sets e and let E

22 3
denote the union of all such sets € (for all such intervals
[g,h] of D). See Figure 1, pagell.

Now the terms of Sp+ (%,¥) which are associated with

any interval [g,h] of D are

y(e) FACODK) - x(&)] ¢ yle) 1 y()[x(s) - x(x))

+ y(g) g y(h)[x(h) - x(8)].



The subdivision D

The subdivision D’

[T R U S | 1L L 1 t S S S | i
\’,J\._V——J\-_-_.__v._o—-._/\v_/v
e, e SN G 0§

The subdivision E

Figure 1 - Subdivisions D, D’ and E for Theorem 1.5



since g { w{ k and 2< v < h, we can add snd subtract
an x{w) in the first set of square brackets and we can add
and subtract an x(u) in the third set of square brackets, and

then expand into the five terms

y(g) ; y(R)[x{w) - x(g)] + y(a) 2** y(k)[=(k) - x(w)]

+HM;¥MHM@"XWH+yH)gﬂMHW)-M@]

+ y(2) + y(h)[x(h) - x(u)].
Let S, /(x,y) denote the set of all such first terms and all
1
fifth terms (for all intervals [g,h] of D). Let SDé(X,y)
denote the set of all such second and fourth terms., Let

SDz(X,y) denote the set cf all such third terms. Notice that
b

Spe(x,y) = Spe(x,y) + Sy (x,y) + Sp(%,5) .
1 2 5
Now

ISy (x.y) - sp(x,y)] =

| {8, +(x,y) + 8 X,¥) + S (x,y)) - {8 , + 8 , + 8 L)}
py(9) * Spg(xsy) 4 Sp(09)) - (8 (1) + 8y (x,9) + 8 ()

2
g'ISDi(XJY) - SEl(X9Y)’ + lSDé<X’y) - SEE(X’y)I

+ l S '(X:y) - S (X:y '-
D3 E5 )

Let this last expression be denoted by Al + |B] + |c




-

Now, for each interval lg.h] or D, the terms

{?(%) g y(k)[x(w) ~ x(g)1 + V(?) s y(h/!x(h) - x(u\]j

- e E vy - ox(e) + y(e) £ y(M)ry(n) - x(u)]}

appear in |A|., These net out to

y(k) - J(w)[x (w) - x(g)] + £ Al*?-wl—){ «(h) - x(u)l.

But this is less than

[X(V‘) - x(g)] +5— + [x(h) - x(u)],

because W, k gand u ;re-éil 1nterlor points of [g,h], an
interval of the subdivision D which was chosen as a response
to € in accordance with the gquasi-continuous property of y.
Factoring out % lgaves an expression which is less than the

varlation of the function x over [g,w] and [u,h]. Hence

€ o
[A] < 5 +(variation of x over E;)

7/ - -
Now in |B| above, ir ¥(_) > y( ) 5g replaced by M, the
result is an expression which is greater than |B]. Factoring

out each M leaves an expression such that

IB| < M. (variation of x over E, - variation of x

over D)

{ M. (variation of x over Eq)



1k

But using Lemma 1,1 and the fact that there are n intervals
in D, then
|R] < M<2ne.
Now for lCI. Fach interval [k, 2] is associated with

only one term in SD:(x,y)
5
{namely y(k) +y gl[x(z) - X(k)]}-but it may be

associated with more than one term in S, (x,y), because [k,2]
may have some endpoints of E in its interior, and these, of

course, would not be endpoints of D’, If so, let these extra
endpoints of E in [k, £])°s interior be denoted by tl,tg,--e, e

3
2

Merely add and subtract x(t)’s in y (k) ; y(g)[x(g) - x(k)] to

get

() 2 3(0 (o)) - x(k)] + [x(tp) = x(ty)] + == +Ix(=x(t;)]],

After distributing the y(k) + y(g) acrcss the series, and per-
P
forming this for each interval [k, %] of Dé, we find that

SD:(X,y) has as many terms as Sp (x,y). Now in

|SD£(X’Y) - SEB(X,y)Iwe regroup terms according to alike x

differences. An example term would be

\ : t
i py(a) o y(Cp) *yCond) fa(e o) - x(8,)].

Now each abscissa is an interior point of an interval in D,
a subdivision chosen as a respcnse to € in accordance with the
quasi-continuous property of y. Hence the expression in the

braces above is less than €. After factoring out ¢’s we have
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lc| < e. (variation of x over EB)

Then
Al + |B|] + |c] < % . (variation of x over E)
+ M+2ne + e, (variation of x over Ej)
{ €. (variation of x over E, and Esy
+ 2Mn).
Thus

|8p «(%55) = Sg(x,y) | < e+ (Vo(x) + 2a).

So to meet the challenge of any positive number €1, we consider

€
€ as being __ 1 . This completes the proof of
Vg(x) + 2Mn -

Theorem 1.5,

Theorem 1.6. If y is integrable with regpect to x in

the interval [a,b] and k is a number, then

b b
[vo)arx(e) sy = [ y(e)ax(e)
a a,

Proof: Since y is integrable with respectbto x in [a,b]

then by Theorem 1.2 there exists a number I = J‘y(t)dx(t).
a
Since the integral exists then for ¢ » O there exists a sub-

division D of[a,b] such that if E is a refinement of D then
|sg(x,y) - I] < e. But this means |sp(x+k,y) - 1] < e,
because Sp(x,y) = Sgp(x+k,y). So from Theorem 1.2 we see that

y(t)d[x(t)+k] exists and is equal to I. Therefore
a b b

Iytyarx(e)xg = fy(t)ax(s)..
& ’

&
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e
Theorem 1,7, If gtg(t)dx(t) exists and k is a number,
then b | -
| ey (e)1ax(e) = & [ y(e)ax(e)
a a

Proof: If k = O, the argument is trivial. So suppose

k 4 0. Let ¢ > O be arbitrarily chosen. Then ¢/|k| > O.
Since y is integrable with respect to x in [a,b] then there
exists a subdivision D of [a,b], such that if E iﬁ a refine-

ment of D, then ISE(x,y) - 1| < ¢/|k| where T = f‘y(t)dx(t).

Then a
ijklf[SE(x,y)‘f 1] < e )
|k Sy (x,y) - kI| < ¢
iSE(X,ky) - x1[ < €.
b .
Therefore f [ky(t)]dx(t) exists and is equal to kI.
a
b b
Thus it follows that J [ky(t)]ldx(t) = k J'y(t)dx(t).
a a

Theorem 1.8. Suppcse that each of y and ¥y is

integrable with respect to x in the interval [a,D]. Then
b

f [v(t) + yl(t)] dx(t) exists and

a
b b b

[ 19(e) + yp(e)1an(e) = [y(e)ax(e) + [y (t)ax(s).
a, a gh
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b b
Proof: Let I denocte | y(t)dx(t) and let I, = fyi(t)dx(t),

s s i "

a a
Since y is integrable with respect to x in [a,b], then for
€ > O there exists a subdivisioa D of [a,b], such that, if
E is a refinement of D, then ISE(x,y) -1l < 1/2 e. Also
since yq is integrable with respect to x in [a,b], then
there exists a subdivision Dl of [a,b], such that, if El is
a refinement of Dy, then [SEl(x,y) -I; | < 1/2 e, Let D,

denote the subdivision of [&,b] which is constructed from

both D and D,. Hence if E2 is any refinement of D2 it is

1
also a refinement of D and D;. So that ISEQ(X’y) - I < 1/2 ¢
and ISEﬁ(x,y) - Ill < 1/2 e, By the triangle inequality, we
2
have
ISEQ(X’*V) + SEQ(X"Y]_) - 1- Il! g ,SE(X)y) "I[ +iSE<X;yl)"Il!
Is.. (x,y + yy) - (I + Il)[ <1/2 e +1/2 € = e,
Eo
b
Therefore, J‘[y(t) + y,(t)]dx(t) exists according to Theorem 1.2,
a
and by Definition 1.8
b b b
[ ty(e)ery(0)1ax(e) = [y(e)ax(t) + [y, (s)ax(t).
a a a

Theorem 1,9. Suppose that y is integrable with respect

to x in the interval [a,b]. If a < c < b, then y is
integrable with respect to x in [a,c] and in [c,b]; moreover,
b c b

f y(t)dx(t) = j,y(t)dx(t) + j‘y(t)dx(t).
a a c
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Proof'; Since y is integrable cver [a,b], then given

€ > 0, there is a subdivision D of [a,b], such that if B is

a refinement of D,then by Definition 1.6,

|8p00,¥) - 8g(xy) ] < e
It is easy to show that if D is modified to include c as one
of its end points, then the resulting subdivision--call it
D’~--also has this property for any of its refinements E’,
Iet Di and Dé be the two subsets of D’ which lie in
y

[a,c] and [c,b] respectively. Now if E “1 is any refinement

then E. U D is a refinement of D’ and therefore

of D. 1 5

1°
ISD ’(X;y) - SE:[ U Eg’(xjy)l < €/2

I{SDl’(S:‘V) + SDE’(X:.V)} - {SElI(X’y) - SD,\'(X"V)}'I < e/2
2

|8, /(x,y) = S (x,y)]| < e/2.
Dl( ) El( /‘

This means that y is integrable with respect to x over [a,c],
and therefore ch( )dx(t) exists. A similar argument

establishes the 1ntegrabi1ity of y over [ec,b].

c b b
Now f y(t)ax(t) + j v(t)dx(t) = {'y(t)dx(t) is shown
a c a

as follows. Suppose ¢ > 0. Then ¢/3 > 0O and there exist

subdivisions F,Fl and F, of [a,b], [a,c], and [c,b]

respectively such that if G, Gl, and G2 are refinements of

F, Fl and F2 respectively, then
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b
[ y()ax(t) - s,0x,0)] < e/3
and o
I8y (y) = [w(v)ax(e)] < e/3
1 a
and *%2(?{53/) - Jy(e)ax(e)] < e/3.
c

Now, let H denote the refinements of F constructed from all
the endpoints of F,Fl, and Fg. Let Hl and H2 denote the
portions of H which lie in [a,c] and [c,b], respectively.

Then H, H and H2 are refinements of the subdivisions

12
F, Fl,and Fg'rggpgpp;yg}yawgpd”the three 1negqualities above )
are true for H, Hl’ and H2 respectively. If these three
inequalities are added and the triangle property of inequalities
is applied, then the SHl(x,y)'and SHQ(x,y) terms would net out

against the SH(x,y) term and would leave only

b c c
| Jr(e)ax(s) - [y(e)ax(e) - [vyax(e)| < e/3 + /3 + /3.
a a b b
So, for any € » O it is true that I y(t)dx(t) differs from
c b &

{J y(t)dx(t) + j y(t)dx(t)} by less than €. Hence these two
a c

quantities cannct differ at all, because if sose could be

chosen such that it is less than their difference and thus reach

a contradiction.
b b

Theorem 1.10, If J y(t)dx(t) exists, then j x(t)dy(t)

exists and a a

j‘y(t)dx(t) = y(b)x(b) - y(a)x(a) - jbx(t)dy(t).

a a



o
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Proof: Since y is integrable with respect te x in [a,b],

then for € » O there exists a subdivision D of [a,b] such
that 1f E is a refinement of D, then

ISD(X,:Y) - SE(X,Y)I < €
It can easily be shown algebraically that

Sp(x,¥) + 8p(y,x) = y(b)x(b) - y(a)x(a).

Then
[Sp(x,5) = 8p(x,¥) | =[-8, (y,x)+y(b)x(2)~y(a)x(a)-[~S;(v,x)

+y(0)x(b)-y(a)x(a)]]

ISD(y’X) - SE(}",X), < S

Therefore, by Definition 1.6, x is integrable with respect

to y over the interval [a,b], and be(t)dy(t) exists., For

€ > O there exists a subdivision DZof [a,b] such that, if E

is a refinement of D, then [Sg(x,y) - I‘Zy(t)dx(t)l < e.

Since 1t has been shown that 8,( x,y) = y(b)x(b) - y(a)x(a)-:%ﬁmx),

substituting and rearranging terms leaves
b
Hyo)x(o)-v(ayx(a)y - [y(e)an(e)} - sy(v.%)1 < e.
a

Now since SE(y,x) is associated with the unique number

b

j x(t)dy(t) then, according to Theorem 1.2, the expression
a b

in the braces must be another name for I x(t)dy(t). Therefore,

b a b
[ x(t)ay(t) = y(v) x (0) = y(a) x (a) - [yeyax(ey.
a a

Theorem 1.11. Suppose that y is integrable with respect to

x in the interval [a,b]. If x is of bounded variation in [a,b]
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b
end |y(t)] < M for each rumber t in [a,b], then !f y(t)dx(t)]
o 2
< MV, (x)
Proof: Since x 1s «f bounded variation in [a,b], then
n-1 = ; :
(O A PP S S :
g=olx(tp+l) - x(tp)l { Vv {x) for any subdivision D of [a,Db].

Moreover |y(t)|{ M for each t in [a,b], so that
1/2!y(tl) + y(tg)lg M. Hen%e [SD(X,y)I < M-Vg(x) for any sub-
division D of [a,b]. Now j'y(t)dx(t) cannot exceed MnVZ(x)
8 y(t)ax(t) - M-v2(x)
a
T
there would be a sugdivisicn D of [a,b] such that [SD(x,y)l

because, if so, then for the case where ¢ =

would differ from J y(t)dx(t) by less than ¢ and would there-
a

fore exceed M-Vg(x). This compietes the proof.

Theorem 1.12. If x is a function and [a,b] is an

interval, then 1y
[ 1ax(t) = z(0) - x(a).
a

Proof: TLet D be a subdivision of [a,b] consisting of

Just one member: the interval [a,bD]. Then if ¢ > O and E is

any refinement of D, it is true that

|8g(x,1) - [x(b)-x(a)]] <

because

m-1341
S == x(t - x(t

i

Sp(x,1)
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Theorem 1.13., If x is a2 function and [a,b] is an

interval, then
b

[ x(tyax(t) = 1/2[x(0)1%- 1/2[x(a) 12,

a
Proof: I©et € » C and let D be any subdivision of [a,b]
and E be any refinement of D, Then
n-1

Slmx) = 2 1/20x(tp,) + x(5)1[x(0p,) - x(%)]

n-1
2 1/2{[x(t
p=0

Il

2
;
p+1)d - x5 )17
b
R 5
= 1/2[x(b)1” - 1/2[x(a)]".
But this implies that [Sy(x,x) - (1/2[x(b)]° - 1/2[x(2)1°}] < e.
Therefore, by Theorem 1.2, x is integrable with respect to x

in [a,b], and
b £
[ x(tyax(e) = 1/2[x(0)1° - 1/2[x(a)12.

a

Definition 1.10. The statement that the function £ has

a derivative £’ in the interval [a,b] means that if a g t g b
then there is a number f ‘(t) such that the following statement
is true:

If e > O, then there is a segnment (p,q) containing t such

that, if s is in (p,q) and in [a,b], then

(HEL= L) L r ) < e
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Definition 1.11. The statement that the function f has

a continuous derivative, £’, in the interval [a,b], means

that f has a derivative, £, in [a,b], and that if ¢ > 0,then
there is a subdivision D of [a,b] whichhas the following
property. If [p,q] is an interval in D and s and t are numbers
in [p,ql,then [f’(s) - £/(t)] < e.

Remark 1.11, Clearly, if E is any refinement of D

(in Definition 1.11), then E alsc has that property.

~

Theorem 1,14, If the function £ has a continuous

derivative, f’, in the interval [a,b], and € ) O, then there
is a subdivision D of [a,b], such that,if s and t are in one

of the intervals of D, then

(el = £8) _ rogey < e

Proof: Since f has a continuous derivative £’ in [a,b],
then for e » O there exists a subdivision D of [a,b] as per
Definition 1,11, Since f has a derivative in [a,b], then for
each t in [a,b] there exists a segment (pt,qt) over which the
inequality in Definition 1.10 is true. ILet G represent the
collection of all such segments (pt,qt). Then according to
the Heine-Borel Theorem some finite subset G’ of G covers
[a,]. The end points of G’ form a subdivision of [a,b];
call it A. Now let E be the refinement of both A and D which
is'constructed by taking the end points of both A and D.
Therefore, for any interval [p,q] of E, the inequality in

Definition 1.10 applies. This completes the proof,
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Theorem 1.15. Suopeee that x has a continuous

derivative, x’, in the interval [a,p] and that there is a

number M such that |y(t)| < M if a < t< b. If

nb b
Jy(®)ax(t) = ¢ or [ x’(t)y(t)at = cp,
a a
then
b b
Jv(eyax(t) = [ x'(t)y(t)at.
a a

Proof: The function x has a ccntinuous derivatives

therefore, according to Theorem 1.1%, if ¢ > 0, then
EWR{%EQ—->CL Then there exists a subdivision D of [a,b] such

that for each interval [tp, tp+1] in D

x(t - t.)
| (tp+l) — z( P x(t )] < €1, where e, = €
o1 - 5 » b aT
Now consider Sy(x,y) and Sp(t,x‘y).
, n-1
Sp(0:9) = Sp(esx V)| = 172 3/205 (5 405, 10ty () 1)
n_l 7 4
- pfol/E[x (tp+l)y(tp+l)+x (tp)y(t ][tp+l p]l
n-1
o ZVRIY () () () (5, 108 -t
fpaar *p
n-1

AR L G e N O RS [T |



n-1
5 1/2 y(t {1x - x(b ) -t ] - x’ ‘
|p~O y( p+1 ) [ ( p{1> tX( p)][tp+l t'pJ * <tp+l)[tp+l”tp}}

Yo " by

+1/2 y(tp){[x<t e DAL TERL N B R CO IR

- U

tp+l p

-1
<|n M 1/24x(t ~-x(t t -t 1 = x '/
p+l ~ o)

+ X(tp-!-l) -X(tp)[tpﬂ"tp] B xl(tp)[tp-'rl—tp]}l

tp +1

n 1
i 1/2{[}( p+l)-x(tp)[tp+l-tp] - X ,(tp.{_l)[tp_*_l—tp}’

O -
p= bp+1 ~ b

R U N I N ORI 1)

-—

tp +1

{ M S l/a{(]x(t a)-x(E) = x (¢

p=
tp+1 B tp

p+1) |

Fx(t40) x(t) - x (¢ DDty - p]}



n-1
{M = 1/2{(eq+ cq) Mt

¢ i,
om0 1

p+l" " p

< Me,(b-2a), which is %'

€ . .
Hence [Sp(x.y) - Sp(t,xy)I< 5. This result would aiso be true
for any refinement E of D.
Now suppose be'(t)y(t)dt = C,, and for e » O there
1 is a

refinement of D, then ISE (t.x’y) - 02[ < 1/2 ¢. Take the
1

subdivisicns D and Dl and form a new subdivision J, such

exists a subdivisi8n D, of [a,b], such that if E

that the endpoints of J are all those from D and Dl’ Iet K

be any refinement of J. Then ,SK(x,y) - SK(t,x'y)l { 1/2 ¢

and ISK(t,X'y) - ¢ < 1/2 €. After adding inegualities

and applying the triangle inequality, the two SK(t,X'y) terms net

out and leave

]SK(x,y)-021 <1/2 € +1/2 ¢ = ¢,

Thus jby(t)dx(t) exists and is equal to C,, according to

&,
Theorem 1.2 and Definition 1.8.
b
If it is the case that | y(t)dx(t) = c,, then
a.

ISK(t,x'y)-cl[ < % € +-% € is obtained in a similar manner

to- show that jbx’(t)y(t)dt exists and is equal to c .
1
a
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Thecrem 1.16. Suppose that {a,b] is an interval,

[c,d] is an interval, u,v,x,y is a function sequence, and

that if D is a subdivision of [a,b], and E is & subdivision
of [c,d], then there is a refinement F of D and a refinement
G of E such that SF(x,y) = SG(u,v), If y is integrable with
respect to x in [a,b], and v is integrable with respect to u

in [c.d], tnen

b d ‘
f y(t)dx(t) = j‘v(t)du(t).
a c
b d
Proof: Suppose that J y(t)ax(t) + j v(t)du(t). Then
: R - A , c b -
T - Ill equals some positive number e, where I = f y(t)dx(t)
d a
and I, = J v(t)du(t).
c

Since y is integrable with respect to x in [a,b], then
for 1/4 € there exists a subdivision D of [a,b], such that if
F is a refinement of D, then ISF(x,y) - I < 1/% ¢, TLikewise
there exists a subdivision E of [c,d], such that if G is a
refinement of E, then [S,(u,v) - I,| < /% e. Let the re-
finements F of D and G of E be chosen so that Sp(x,y) = Sg(u,v).
Therefore, substituting we obtain ISF(x,y) -1l < 1/% ¢ ana
ISF(X,y) - Il[ < 1/4 €. Adding these inequalities and apply-

ing the triangle property of inequalities yields

;II-Ill CIsploy) = 1l Isp(ay) - 131 < 1/% €+ 1/% ¢ = 172
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But this is a contradistion since it was assumed that
h d

|1-1,1 = ¢. Therefore, the J v{t)dx(t) j v(t)du(t)
a c

supposition must be false.

Corollary 1,16a. Suppose that [a,b] 1s an interval,

[c,d] is an interval, and thal y is integrable with respect
to x in [a,b]. If f is a continuous non-decreasing function

such that f(c¢) = a and £(d) = b, then

b d
[v(eyax(ey = [yre(e)taxie(s) .
a c

Proof: Since y is integrable with respect to x in [a,b],
for € ) O there exists a subdivision D of [a2,b] such that, if

E is a refinement of D.then
b

| [ y(e)ax(t) - sp(x3)] < e

a
Let D’ be the subdivision of [c,d] which f maps onto D,and
take any refinement E’ of D’. Then there corresponds a re-

finement F of D such that f(zi) = t;, where t, belongs to

[a,b], and is an endpoint of the subdivision F. Then

S (x[£(6) 1,y[£(8) 1] = S,(%,¥).

Therefore,
b
| [ s(e)ax(e) - syaixre(e) 1yle(e)71] < e.
&

Thus y[f(t)] is integrable with respect to x[f(t)]. Then
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by Theorem 1,16
b d
[ y(tyax(e) = [yre(e)ax[e(6) 1.
: .

Corollary 1.16b., Suppose that [a,b] 1s an interval,

[c,d] is an interval, and that y is integrable with respect
to x in [a,b]. If g is a continuous non-~increasing function
such that g(c) = b and g(d) = a, then

b d

[5(e)ax(e) = - yre(t)jaxia(s) .
a c

1l

The proof is like that of Corollary 1.16a.



CHAPTER I
LANE?S INTEGRAL IN THREE SPACE:
| £(x,y)ds(x,y)

[a,bsc,d]

Definition 2.1. The statement that f 1is a real

function implies that if t and r are real numbers, then

there is just one number ¢ such that, f(t,r) = c.

Definition 2.2, A rectangular interval denoted by

([a,b;c,d] is a point set such that 2 <{ b and ¢ < d and a
point, (x,y), belongs to [a,bjc,d] if and oniy if a{ x< b’
and ¢ { y € d. Throughout the chapter, R will be used to

represent the rectangular interval, i.c¢., R = [a,bjec,d].

Definition 2.3. The statement that G is the graph of

the function y with respect to the functions x and z in the
rectangular interval [a,bj;c,d], means that P is a point of G
if and oﬁly 1f there exist numbers t and r such that,

a t<b, c{r<dand x(t,r), z(t,r) represent the first

two coordinates of P, and y(t,r) i1s the ordinate of P.

Definition 2.4, The statement that D is a subdivision

of the rectangular interval [a,bj;c,d] means that, D is a
finite set of, (one or more), non-overlapping rectangular
inﬁervals [ti,ti+1;zj,zj+l] covering [a,bjc,d] such that

to =4a, z5 = C, tn = b, and z, = d where i ranges from O to
n-1 and j ranges from O to m-1.

250
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Definition 2.5. The spatement that B is a refinement

of D means that ® is a subdivislon or la,b;c,d] such that
if [p,q3r,s] 1s a rectangular interval in D, then there is a

subset of E which is a subdivision of [p,q;r,s].

Definition 2.6. The statement that the function f is

quasi-continuous in the rectangular interval [a,bjc,d] means
that if ¢ » O, then there is a subdivision D of [a,bjc,d]
such that if [p,aqs;r,w] is one of the rectangular intervals in
D and the ordered pairs (s,t) and (g,h) belong to the segment

(p,asr,w) or to one of the line segments (P,q3r,r), (P,aswW,w),

(p,p3r,w), (q,q3r,w), then

|£(s,t) - £(g,h)| < e.

Notation. If x 1s a function, y 1s a function, and D
is a subdivision of the rectangular interval [a,bjc,d],
where [p,q;r,w] represents one of the intervals in D, then

Sp(x,y) denotes the number

1/4[y(p,r)+y(q,r)+y(p,w)+y(a,w) 1 [x(p,r)-x(q,r)+x(q,w)~x(p,w) ]
A11 [p,qsr,w] € D.

Notice that the expression in the second set of brackets 1s

the x-second difference {[x(q,w)-x(p,w)]-[x(q,r)-x(p,7)]}.

Theorem 2.1. For numerical work it is often convenient

to make use of the fact that



Sp(x,y) = 1/4y(ro,to)'[X(rl,t1)~x(rl,to)—x(ro,tl)+x(ro,to)]

m-1 - £
F 2 (o) ey g0 by ) - (ry g0 tg) = (ry gy )a(ry_jutg))

+ 1/4y(rr o) [x(r bt )-x rm,to}—x(x _1a by 5.t5)]

n-1 . ‘
P §lll/uy(r0’tj)[X(rl’tj+l)—x(rl’tj—l)—X(TO’tj+l)+x(r03tj~l)}
r-1 m-1
+j§1 %le/4y(ri,tj)[x(ri+ltj+1)~x(ri+ltj_l, ~x(r; 4 J+J)+f(rl 15 2]
n-1

" Z}l/“y(r t . )[x(r +1) (rmtj—l)-X(rm—ltj+l)+x(rm-ltjml)]
J.—

+ l/4y(ro,tn)[X(rl,tn)—X(Tl,tn_l)“X(rO:tn)+x(ro:tn_l)]

m-1
+ 2 l/4y(r b [x(r; 1t
i=1

-x(r

n> ’i+1tnnl)"xk i-1 n) X(rl 1 n-l)

+ 1/4y(rm,t )[X(r b= ~x(r ,t - l)—x(rm_l,tn)+x(rm_l,tn_l)].

Proof: The proof is omitted because it is merely

algebraic manipulations.

Definition 2.7. The statement that the function y is

: infegrable with respect to the function X in the rectangular

interval [a,b5¢,d] means that if e > O, then there is o
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subdivision D of [a,bjec,d] such thab

[sp(x,y) - Sp(¥,y)1 < € if E is a refinement of D,

Theorem 2.2, For the function y to be integrable with

respect to the function x in the rectangular interval
[a,bjc,d], it is necessary and sufficient that there be one
and only one number I such that if ¢ > O, then there is a
subdivision D of [a,bjc,d  such that [SE(x,y) - I |1< e ifr B

is a refinement of D.

Proof: The proof is omitted because it is a duplicate

of the proof of Theorem 1.2,

Definition 2.8, If {Di}, i=1,2,+++,n, is & sequence

of subdivisions of [2,b3c,d], where the areas of the maximum
intervals of the Di’s tend toward zero, and [p,q;r,w]

represents one of the intervals in D, then let

S(D,3f,g) = = (&, ,r)-g(q,r Jw)-g(p,
(D;3f,8) All(iép?%;[%’(g]rg %iq )te(a,v)-g(p,w)]

where p { £< q and r < ¢ < w. Under certain conditions, the

sequence S(Di;f,g) has a limit called the Stieltjes integral.

Theorem 2.3, If the Stieltjes integral exists in the

interval [2,b5¢c,d], then Lane’s integral also exists in

[a,b5c,d], and they are equal,
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Proof: The prooi is analogous to the proof of Theorem 1.5

presented in Chapter I.

Remark 2.3%. In cases where the Stieltjes integral 1is

evaluated ag a double integral, the same 1s true for Lane’s

integral.

Definition 2.9. Suppose that x is a function, y is a

function, and [a,bsc,d] is a rectangular interval. The
statement that I is the integral from a to b and ¢ to d of

y with respect to x, which may be written as

1= | y(t,r)ax(t,r), or [ y(t,r)dx(t,r),
[a,b5c,d] R

means that I is a number and that the statement from

Theorem 2.2 is true. .
Theorem 2.4, The statement that I = J y(t.r)dx(t,r)
[a,P5c,d]
means that I =«I y(t,r)dx{t,r). Moreover,
[b,a3d,c]
J vy(t,r)dx(t,r) = 0.
[a,a3c,c]
Proof: For the case of J y(t,r)dx(t,r) each
[a,bjc,d]

approximating sum SD(x,y) contains x-second-differences of

/ 5 .
thé form {[x(ti+lrj+l)—x\ti,rj+1)]—[x(ti+l,rj)-x(ti,rj)]},

but for the case of j_ y(t,r)dx(t,r) each approximating
[b,a3d,c]
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sum Sp(x,y) contains x-second-differences of the form

([X(tjisrj_ﬂ_) - X(tj.-rl’rj-f-l)]"[K(ti’rj) ~X(ti+l,rj)]}.

Their algebraic signs are opposite, thus guaranteeing that

j 1y(t,r)dx(t,r) and I v(t,r)dx(t,r) are of
[a,bjc,d] [b,az:d,c]
opposite sign.

The equation f (t,r)dx(t,r) = 0 is true

[a,a5c,c1Y
because since the rectangle [a,a:i:c,c] has zero area, each

x-second-difference in SD(x,y) is zero.

Definition 2,10, The statement that the funcition £ 1is

of bounded variation in the interval [la,bjc,d] means that
there is a number B such that if D i1s a subdivision of

[a,bsc,d] then

n m
?:1 ?=1lf(ti+1’rj+l> L0y 5Ty )# (LT ) - (8,75 0) | < OB
b

The least such number B is denoted by Va,g(f), and the above

gum will be denoted by SD[f,l . This is arrived at by
considering the variation in the X-directién and then the
variation in the y-direction (i.e., by summing the second

differences).

Lemma 2.1. Suppose x is a function of bounded variation

in the interval [g,hiu,v]. If € » 0, then there exists an
interval [g,ks;u,r], which is a subset of [g.h3u,v] such that

if [g,ws;u.t] is a subset of [g,kiu,r], then

Vk’r(x) _ Vw’t(x) < c.

g1



+ z
for n > 1, let s _ = & * 841 and Ty = E__ n-1, Then
nooTmm T : 2
Sp2?n
% (x) exists and
g,u
S z S _,Z
n+l’ "n4l, | n’“n,
v x) <V x).
g, (x) & Vg (%)
8%
Let L denote the greatest lower bound of the numbers Vg u (%),

There are positive integers p and g such that

Sp-+d’ Fq+d
v 2 U %%y - .< 1/2 € if 4 is a non-negative integer.
3

If [g,wiu,t] is a subset of [g,sp;u,zo], then there is a

positive integer d such that Sh+d <wl 5o and Zara < t < z

q
and
8 b4 w,t S _,Z
, p+d’ T g+d - n’ n,_
Ve, u (x) € Vg u(¥) € Vg u (%)
and also
s z
+d° “g+d /
Vg?u ! (x) - L 1/2 €.
Hence
w,t
Vg,u(x) - L< 1/2 €,
Thus
5,2 w,t
S g
Vg (¥) = Vg u(x) e,
and
[g,sp;u,zq] quelifies as [g,kju,r].

Theorem 2.5, If y is a quasi-continuocus function in

the rectangular interval [a,b;c,d] and x is a function of
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bounded variation in [a,bj;c,d], then y is integrable with

respect to x in the interval [a,bj;c,d].
a . b,d
Proof: If V.20

Suppose that Vng(x) > 0. There is a positive number M such

(x) = 0, then the proof is trivial,

that |y(t.r)] élM, if t, r belong to [a,b’c,d].

For € » 0, there exists a subdivision D of [a,bjc,d] such
that if the ordered pairs (s,t) and (g,h) meet the require-
ments of Definition 2.6, then |y(s,t) - y(g,h) | < e,
because y 1s quasi-continuous., Let n denote the number of
intervals in D.

Let D’ be a»refinementcf D obtained as follows. 1In
the interior of each interval [g,hju,v] of D select four
numbers k andg , and r and s so that g { k {g < h and
udr<s< v and (in conformance with Lemma 2,1) it will
be true that if g<{ w< k and u< t<{ r and2< p { h and
s  z < v then

h,r _ yh,t - k,v W,V -
Vl,u(x) V5 (%) < e and ngs(x) - Vg:z(x) <{ ¢ and

3 p)z

Suppose E is any refinement of D’. For each interval

[g,hsu,v] of D there are four intervals
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[g,wyu,t], [g,ws3z,v], [p,hsu,t] and [p,h;z,v] of E, where
g w<{Kk,t<{p<h ut<rads<{z{v. ILet ey denote
the four-member set
{lg,wsu,t], [g,wsz,v], [p,hsu,t], [p,hsz,v]].

Let €y denote the set of all the other intervals of E which
lie in [g,ksu,r], [%,hsu,r]. [g,k3s,v] or [&hys,v]. Let e
denote the set of all intervals of E which lie in
[k,%:u,r], [k,23s,v], [g,kir,s], or [%,hir,s]. Let e, denote
the set of all intervals of E which are subsets of [k,%3r,s].
Let El denote the union of all such sets €15 and let E, denote
the union of all such sets €n, and let E3 denote the union of
all such sets €3 and let Eq denote the union of all such sets
ey(for all such intervals [g,hsu,v] of D). See Figure 3, Page i0.

Now the terms of S, (x,y) which are associated with

D
any interval [g,hju,v] of D are

v(e.u)te(eu)y (8. 2)H (Ko ) [k, v) x(g, v)43(@r0) ~x (k, ) ]

+ WL () (7Y (02D 1o (1, 2) (2, v ) 4% (8 ,u)-x(hyu) ]

4 y(k,u)+y(z,u)zy(k,r)w(l,r)[}c(g > 1) =x(k,v)+x(k,u)-x(y ,u) ]

+ L824y () 1 (82 8) 4 (935) [ (1 5) x (g, 8) 4, 7) = (K, 7)

+ Y(par)+y(h9r)zy(£BS)+y(hﬁs)[X(h,S)—X(Q,S>+X(Q,T)—X(h,f)]
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+_Y(kor)+y(£sr)1Y(KrS)+y(l’Sl[x(i,s)nx(h,s)+x(k,r)~x(z,r)}

T+ Y(g’S)+y(k’8)zy(g’v)+y(ﬁ’v)[x(k,v)nx(gsv)+x(g,5)"X(K:S)]

+ yﬁx;S)+yﬁh98)1y(z,V)+y(h,V)[X(h,v)~x(g,v)+x(g,s)ux(h,s)]

+.Xikas)+y(Q:S)IY(KaV)+y(Q’V)[x(z,v) ~ x(k,v)+x(k,s)-x(p,8)].

g

since g w{ kand u< t < r and £ < p < h and s < z < v,

add and subtract an x(w,t), x(w,u) and x(g,t) in the Ffirst
set of square brackets and add and subtract an

x(p,u), x(p,t) and x(h,t) in the second set of square
brackets. Also add and subtract an x(g,z), x(w,z) and x(w,Vv)
in the seventh set of square brackets and add and subtract

an x(p,z), x(h,z) and x(p,v) in the eighth set of square

brackets. Then expand this into the twenty-one terms,

y_(g,u)ﬂ((k,u):y(é,I‘)+y(k,r) [x(w,t)—X(g,t)+X(g,U)—X(W_sU)]

+-Xigiu)+y(k’ﬁ)+y(g’r)+y(k’r)[x(k,t)-x(W,t)+x(w,u)—x(k,u)]

+—Y(gsu)+y(K:ﬁ)+y(g’r)+y(k’rl[x(k,r)—x(w,f)+x(w,t)-x(k,t)J

+~ng,u)+y(k,ﬁ)+y(g,r)+y(k,T)[X(W,r)-x(g,r)+x(g,t)—X(W,t)]

+y(£3u)+Y(h;u)+Y(2 ,I‘)+y(h,r)

[x(h,t)-x(p,t)+x(p,u)-x(h,u)]
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" (L. Y4y (T
N y(z,u)+y(h,u)£y(2,r/+J‘d:f?[x<p,t)-x(z,t)+x(z,u)~X(p,u)]

1/9'1.-7' -\ r 4 1 ‘
4 ¥{ ,L)FA(D,M)Z}(Q,I)TY(Y;T)[X{p’r)"x(zjr)+x<Q,t)mx(p,t)]

. y(i,u)+y(hau)zy(ﬂar)+Y(hfr>[X<h,r)—x(p,r)+x(p,t)—X(h,t)]

+y(k:u)+y(£eu)fg(K:T)+y(Q’TZ[X(i,r)~X(k,r)+X(k:u)“X(R:u)}

N y(g,r)+y(k,r)zy(%;S)+Y<Kas)[X<kyS)_X(g,s)+x(g,r)—x(k,r)]

+ Y(ksr)+Y(2:r31y(k’S)+y(z’s)[X(Q;S)“X(k:S)+X(k>r>"x(2>r)]

4 y(z,r)+y(h,r)1y(1,s)+Y(haS)[X<h,s)_x(g,s)+x(£,r)-x(h,r)]

4 y(g,S)+y(k,8)1y(g,V)+y(ksV)[x(w,v)_x(g,v)+x(g,z)-x(w,z)]

+_XL€38)+Y(K,S)ZY(83V)+y(k’v)[x(k,v)-x(w,v)+x(w,z)—x(k,z)]

+ V(gss)+y(k:S)Zygg’v)+y(k’v>[x(w,z)-x(8,2)+X(g,S)"X(W;S)]

+ y(gjs)+y(k3S)Iy(gnv)+y(k3Vl[X(k,z)-X(W,Z)+X(W,S)—X(K,S)]

+_gjn,s)+y(h,s)1y(z,V)+y(h,V)[X(h,v)_x(h,p)+x(p,z)~x(h,z)]

+ XLQ,S)+y(h,S)Iy(Q,V)+Y(h,V)

[X(p,V)—X(R,V)+X(g,Z)-X(p,z)]

Y(2,8)+y(h,s)+y @ ,v)+y(h.v). .
+ 2 2 )4 & v)+y(h, '[X(p,z)~x(1,z)+x(£,s)—x(p,s)]



+ y(ﬁ,s)+y(h,8)j¥(2,V)+y\hﬂfl{x(h’z)nx(p’Z)+X(p,s)~x(h;s}}

+ 208 )ty (e Sy (Ko VIR (2o VD e g, v) e (e, v) 4t (1, 8) =g, 8)

Let SD,(x,y) denote the s=t of all such first, fifth,
1

thirteenth and seventeenth terms (for all intervals

[g,h3u,v] of D). Let SDé denote the set of all such second,
third, fourth, sixth, seventh, eighth, fourteenth, fifteenth,
sixteenth, eighteenth, nineteenth and twentieth terms.

Let SDé (x,y) denote the set of all suéh ninth, tenth, twelfth

and twenty-first terms., Let SDi (x,y) denote the set of all

such eleventh terms. Notice that
SD’(Xay) = SDi(X’y> + SDé(X,Y) + SDg(X’y) + SDi(X:Y)'

ISy (x,5) = Sp(x,y)] =

N

| (81, #(%,5 )45 (X, ¥ )48 #(X,7) 45 +(x,y) )-8 (x,y)+8 .7 )+S +&, (x,5)3 ]
Dj( ) DE( ) D3( ) Du( V) E§X_Y) EE(xy) Eéxﬂ)iﬁ(xb,h

é'SDi(X:y)'SEl(X:y)’+ISDé(XaY)“SE2(X:y)I+ISD£(X:y)‘SE3(X9y)!

+ ‘SD)_:(X’y) - SEI{.(X,Y)

Let this last expression be denoted by [A]| + |B| + |¢| + |F].
Now, for each interval [g,hju,v] of D, the terms

[{zig,u)+y(k,u)1y(g,r)

+yﬁkar)[X<w,t)_x(g,t)+x(g,u)—X(W,u)]

+ Ylp,u) + Y(hsg)+Y(2’r)fY(h’r)[x(h,t)—x(p,t)+X(P>u)—X(h:u)]



upl

< - /,' (‘1\# ~ YL ¥ 7
T )liy(g"') 2AESE )[Yi{w;V)"’X(S,VHX(&Z)-X(W,z)]

¢ (2 8)y (B8 by VI (R V) 1y (1 ) () 4p, 2) -x (1, 2) 1)

{yﬁg,u)+yKW:u%+Y(W:E)+¥(gﬂt)[x(w,t)-x(g,t)+X(g,U)"X(W,U)]

4 y(h.t)+Y(p»t)Zy(P,ulﬁXthu)[X(h,t)_x(p,t)+x(p,u)~x(h,u)]

¢ 20 V) (V) (8. 2) WO 2) e (1, v) (g, 7) (5, 2) (1w, 2) ]

4_Xﬁh~v)+y(h:p)zy(P:Z)‘y(hﬁz)[x(h,v)nx(hjp)+x(p,Z)mX(h,Z)]}]

appear in ]A]. These net out and regroup to the twelve terms

() oy (W) o, £) (g, £) 4 (2, w) =% (, 1) ]

+ X&) -8 ) 1y, b)-x(e, b) 4x (2, 0) ~x (w,10) ]

N y(ka‘);fV(‘“”t>[x(w,t)-X(g,‘C)ﬂf(g:u)-X(W:u)gI

+ y(z.u)ZY(p,ulfx(h,t)_x(p,t)+x(p,u)-x(h,u)J

R,,I‘- »t
+-Zi~_ NARS [x{h,t)—x(p,t)+x(p,u)~x(h,u)]

+ LTy (02 ) e n, 6) wx(p, &) 45(p5 ) =x (0, ) ]




je

-

V(8 8oy (2 2) 1y (e v) (i, v) (s 2 ) =x (30, 2) ]

+ y(kss)ay(gﬂz)[x(w,V)~X(g,V)+X<g;Z)"X(w5Z)}

n Y(kav)zy(wsz)[X(W’V)~X(g5v)4x(g,z)_x(w,z)]

+ XLR,S)QY(hap)[X(h,v)—x(h,p)+X(p,Z)‘X(hzz)]

N y(h,S);Y(pnZl[x(h,v)ux(h,p)+X(p,Z)"X(h;z)]

+ Y(L:V)%y(haz)[x(h,v)—X(h,p)+X(p:Z)”X(haz)]

But this is less than or equal to
gfx(w,t)_x(g,t)+x<g,u)~x(w,u)]+-g[x(w,t)-x(g,t)+x(g,u)~x(w,u)]
+.g[x(W,t)_x<g,t)+x(g,u)_x(w,u)]+—gfx(w,v)-x(g,v)+X(g,Z)—X(w,Z)]
+-%[x(w,v)-x(g,V)+X(%:Z)“X(W:Z)]*‘%[X(W:V)'X(gav)+x(%,Z)'X(W:Z)]
+.%[x(h,v)_x(h,p)+x(p,Z)-X(h,z)]+—%[X(h,v)-x(hgp)+x(PaZ)‘X(haz)]
+-g[x(h,v)-x(h,p)+x(p,z)-x(h,z)]+—g[x(h,t)-x(p,t)+x(p,u)~x<h,u)]

+-g[x(h,t)—x(p,t)+x(p,u)—x(h,u)]+~§[x(h,t)—x(p,t)+x(p,u)—x(h,u)],



because the points associeted with the function vy are all
interior points of [g,hju,v], an interval of the subdivision
D which was chosen as a response to ¢ in accordance with the
quasi-continuous property for y. Factoring out % leaves an
expression which is less than the variation of the function x
over [g,w;z,v], [g,w;s,z], [w,k;z,v], [w,k;s,z], [%p3z,v],
[2.p355,2], [p,hiz,v], [p,hss,v], [g,wsu,t], [e,wit,r],
[W}k;ujt]) [W,:K;t,r], [2’)p}'u'3t]) [23p;t3r]3 [p:h;uﬁt] and
[p,hst,r],

Hence

|A] < 5. (variation of x over E).

Now in |B| above, if each y( ) +y( ) +y( ) +y( )
4

is replaced by M, the result is an expression which is greater
than or equal to |B|. Factoring out each M gives [B] { M -

(variation of x over Es-variation of x over Dé),
IBl < M + (variation of x over E

[B] < M + kne.

o)

This result is obtained by using Lemma 2.1 and the fact that

there are n intervals in D,

Now in [C|. Each interval [k, 2,s5,2], [k, sr,s],

[g,k;r,s] and [£,h3r,s] is associated with only one term in
SDé(X,y) but it may be associated with more than one term in
SEB(x,y), because each interval of D may have some endpoints

of E in its interior, and these, of course, would not be endpoints
of D', Now consider one interval, [k, Lu,r] of DB' If [k,2%;u,r]
has some endpoints of E in its interior, let these extra end

points of E in [k, 2;u,r]’s interior be denoted bv
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(tl,rl), (tz,re)--',(t..rz). Merely add and subtract x(t,r)’'s

172

inside the square brackets of

y(k,u)+y(2,u)1 y(k’r)+y(z’rl{x(z,r)mx(k,r)4x(K,u)-x(Q,u)] the

appropriate number of times and then distribute

vk, )4y (L, u)+y(k,r)+y (R, r) across the series. If this is
il
performed for each interval of Dé, then SD'(x,y) has as many

terms as SE {x,y). DNow in ]SDé (X’y)—SE5(X’y)l regroup terms

according to alike x-second differences. Now each abscissa

is an interior point of an interval in D, a subdivision

chosen as a response to ¢ in accordance with the guasi-continuous
property of y. Hence each grouping of y ordinates which is
assoclated with like x-second differences is less than €.

After factoring out €’s

lc] < e + (variation of x over ).
Now in |F|, a similar argument for each interval [k,%;r,s]
in D) as presented in the above argument for |C| will hold

true, Therefore,

|F} < € + (variation over EH)

Then |A| + |B] + |c| + |F| < % « (variation of x over Ey) + Uyne

+ € ¢+ (variation of x over E

%)

+ ¢ ¢ (variation of x over E4)

{ e + (variation of x over E,,E, and E) + 4Mn)

b,d

I8p(x9) -85 (x3) | < e o (22 3(x) + M),



So to meet the challenes of any positive number €y we

€

consider € as being . This completes the

V;’g(x) + UMn
2

proof of Theorem 2.5,

Theorem 2.6, If y is integrable with respect to x

in [a,b:c,d], and k is a number, then

I v(t,r)d[x(t,r)+k] = f y(t,r)ax(t,r).
[a,bjc,d] “la,bsc,d]

Proof: The proof is analogous to the proof of

Theorem 1.6 already presented,

Theorem 2.7, If y is integrable with respect to x in

[a,bs;c,d], and k is a number, then

[ [ky(t,r)dx(t,r) = k[‘ y(t,rYdx(t,r).
[a,bjc,d] “fa,b3c,d]

Proof: The proof is analogous to the proof of Theorem 1.7.

Theorem 2.8, Suppose that each of y and 74 is integrable

with respect to x in the rectangular interval [a,b5c,d].
Then f [y(t,r)+y1(t,r)]dx(t,r) exists and
[a,b5c,d]

t, t,r)lax(t,r) = Y (b, r)ax (b,
j[%bicad][ﬂ T)Hy (E,7)]ax(t, x) f[a,b;c,d}y(t r)dx(t,r)

+ r yq(t,r)dx(t,r).
u[aib;c)d]

Proof: The proof is omitted, because it is a duplicate

of the proof of Theorem 1.8.
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Theorem 2,9. Suppose that y is integrable with

respect to x in [a,bjc,d]l, and if Sl and 82 are rectangular

intervals such that Sl U 82 = [a,bjc,d], and Sl N 82 = ¢, then

y is integrable with respect to x in Sl and in 82; moreover

I y(t.r)ax(t,r) = [ y(t,m)ax(t,r) + [ y(t,r)ax(s,r).
[a,b5c,d] S, S,

Proof: The proof is omitted because it parallels the

proof of Theorem 1.9,

Theorem 2,10, I7F j y(t,r)dx(t,r) exists, then
) [e,Dic,d]

- x(t,r)dy(t,r) existe and
[a,b3c,d]

f x(t,r)dy(t,r) = j

y(t,r)dx(t,r)
[a,bsc,d]

[a,bjc,d]

+ y(b,d)x(b,d) - y(b,c)x(b,c)

+ y(a,c)x(a,c) - v(a,d)x(a,d)
d
Jy(b,mdx(b,r)

d

J‘y(a,r)dx(a,r)
c

b

- [ y(t,a)ax(t,a)
a

+

b

+ J'y(t,c)dx(t,c).
a
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Proof: For ¢ » O, then é-) 0 and there exists a sub-
division D1 of [a,bjc,d] such that if El is a refinement of

D, then |S. (x,y) - fy(t,r)dx(t,r)l { ¢ . Similarly there
1 El‘ o 5

R
exists subdivisions D, and D3 of [c,d] and Dy and D5 of [a,b]

and their respective refinements EQ,EB,E4 and E5 such that

d
| Sg, (x(0.x),5(0,7))- [ y(0,m)ax(s,r)] < &,
- C
d
!SEB(X(a,r),y(a,r))- g‘y(a,r)dx(a,r)l < %,
b
]SEA(X(t,d),y(t,d))- [yt ayax(e,a)) < % and
a
b
ISES(x(t,c),y(t,c))- [vttieyax(e,eyl < <.
' a

Let D be the composite subdivision formed by taking
all the endpoints of all the subdivisions DlﬂDE,DB,DM, and

D5. Then if E is a refinement of D, then the above five

inequalities are each true for E and D. TLet y(t.,r.) = y...
i3 By

Now consider SE(X,y)—SE(y,x), which by definition is

m-1 n-1
22X 1/4f (v, R v, _ )
120 50 / [\;\’1+1 J+1 yij) ! (yl_4_ij+yij+1) ][(Xi"i"ljﬁ-l—*_xij) (Xi+lj
g:l n-1
— . 2 L . a- T« - ¥
o oo/ T g ) 50 50D T 4005 )= (954 445 )0

i=0 j=0

X

154!
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After multiplying out, simplifying and regrouping, the above

becomes
n-1 -1 Z‘l %33 g}l Z)l
1/27 {Z Vs + y 1+1/2 {2z, vy, y
=0 i=0 ij +J+1 i41] l+lJ+l §=0 1=0 lJ+l 1 {= 1&&3%?&%@
Z]ln-l gfl §>l n-1 %{1
+ 1/22 {20y, VigqaaqXea,q 1HL/220 220 YKy 5t Y. o K, o
1=03= ot +13 i] =0 I+H1i4+1713+1 1=0 3=0 igri+lg j=OlJ+1 15413,

Perform the following algebra for each set of braces: in the

first sigma sign segregate out the lowest-subscripted term (so
m-larn-1
that only the 2 terms remain together) and in the second
i orj=1
sigma sign segregate out the highest-subscripted term (so that
m-2 or n-2 .
only the 2J terms remain together); then change subscripts
i or j=0
and limits of summation so that each is being summed over the

range from i(or j) =1 to i {or j) = m-1(or n-1), Now all

summations inside the braces cancel and leave

n-1 -1
1/2 §i0{~yojxoj+l+ymjxmj+l} +1/2 jjo{yoj+lxoj-ymj+lxmj}
m~1 m-1
PR 2 Vino¥ioVian ia) T2 2 V%0t YinXiaan)-

Applying the segregation technique once again, gives

n-1 n-2

[1/2(-y Yoo®o1 Z)iOJXOj+l)+l/2(§\§OJ+1 oJ 5’onxom--l)]
n-1 n-2

. , 21/ i N

F [l/g(vmo m]*§31%mixmj+l) 1/2(23dymj+lxmj+ymnxmn—l)]



m~1 M2
SN - 'Y o ’5.‘7 SO PR = . e X7 X - .
+H172(5 gy ?LTyin x 3401 ‘\%r T in™n Vi m—in)]

In each set of brackets do the following: change subscripts
so that both sigma’s are sumning over the range 1 to

m-1(or n-1). This yields:

00 oh /. ) on
I (Xolmxoo)+§il'_§—(koj+luxoj«l) + —5(x on Xon-l)]
n-1
N ma mn
+[_§— *m1”™ Fmo/ %;1 2 ( m i+l " m] l) t ( mn—l)]
m-l Yo mo
(%94~ ) +4§i1 57\*4 410 kl—lo) T (Xmo mulo)]
g:i&in~ ‘mn -
(Xln - xon) + I;l 2\ 4in Ki-ln) T (an X 1n)]
Yoo X Yon cdmo 0 Ymn L Yoo
> 7z z 2 “mn - T2 ‘oo
Ymo Yon Yin

P X T X - X
And by Theorem 1.1, the above equals

[SE(x(to,r),y( or )] + [bE(x(tm,r)] - [SE(x(t,ro),y(t,ro))]

+ [SE(x(t,rm),y(t,rm) [(ymn mn ymoXmo)—wonXon-yooXoo)]‘



55

But Voo = v(ia,c), and Xon = x(b,d) and so forth, thus

Lk -

SE(X,y) - SE(y,x) = ~y(b,d) x‘(b,d) + y(b,c)x(b,c)-y(a,c)x(a,c)
+ y(a,d)x(a,d) - [SE(x(a,r),y(a,r)] + [SE(x(b,r),y(b,r))]

= [Sp(x(t,c).y(t,e))] + [Sp{x(t,d),y(t,d))]. Eventually
this equation will be used to acccmplish a substitution for
Sg(y,x) in a later expression,

Adding the original five inequalities together with
I[y(b,d)X(b,,d),;#.y.(jp,.C)chb,c_)—y(a,C)X(a,e)w(a,d)X(a,d)] .
—[y(b,d)x(b,d)+y(b,c)x(b,c)—y(a,c)x(a,c)+y(a,d)x(a,d)] < %
and then making use of the tr;angle inequality to remove
absolute value bars, and then rearranging terms yields

- d b

l {fy(t,r)dx(t,r)-j y(b,r)ax(o,r) + [ y(t,d)ax(t,d)
R c a

b

+ J.y(t,c)dx(t,c) + y(b,d)x(b,d)[y(b,c)x(b,c)+y(a,c)x(a,c)uy@¢ﬂxG%d)
a

~{y(b,d)x(b,d)—y(b,c)x(b,c)+y(a,c)x(a,c)~y(a,d)x(a,d)
-[SE(x(a,r),y(a,r)] + [SE(x(b,r),y(b,r))] - [SE(X(tac):y(t:C))]

+ tSE(x(t,d),y(t,d))] - SE(x,y)}] < e.



\n
4z

But the expressicn in the sacornd seu of braces can be
replaced by - SE(y,x). Hence there exists a number I (the
contents of the first sct of braces) such that if e >0 then
there exists a subdivision D of [a,bj;c,d] such that for any

refinement E of D, II~SE(y,X)| { ¢. Thus, according to

Theorem 2.2, x is integrable with respect to y on [a,bjc,d]

and | x(t,r)dy(t,r

J is the number T.
[a,bsc,d]

Theorem 2,11, Suppose that y is integrable with respect

to x in the interval [a,bjc,d]. If x is of bounded variation
in [a,bs3c,d], and |y(t,r)| { M for each number t,r in
[2,b;¢c,d], then . .. .. ... . . .

. b,d
|J[a,b;cjd]y(t,r)dx(t,r)] < M'Vajc(x)’

Proof: The proof 1s omitted since it parallels the

proof of Theorem 1.11.

Theorem 2.12. If x is a function and [a,bjc,d] is a

rectangular intervai, then
j[a,b;c,djldx(t’r) = x(a,¢) - x(a,d) + x(b,d) - x(b,c).

Proof; The proof is analogous to that for Theorem 1.12.

Definition 2.11. The statement that the function f has

a second alternate partial derivative, f ‘’, in the interval

[a,bjc,d] means that if a { t < b and ¢ { r < d, then there is

a number f "(t,r) such that the following statement is true:



If € > 0, then there is a segment (p,q;g,h) containing
(t,r) such that, if (e,k) is another ordered number pair in

(p,asg,h) and in [a,bj;c,d] then

f(e,k)-f(t.k) f(e,r)-f(t,r)
[e-t] [e-T] _ f,,(e’k)’ < el
[k-r]

Remark 2,11, The above notation simplifies to

lfje,k)-f(t,k)+<f(ﬁ,rl-f(e,r) - £ 77(e,k) l el
[e-t] -[k-r]

Definition 2.12, The statement that the function f has
a continuous second alternate partial derivative, £ ’’, in
the interval [a,bjc,d] means that, f has a second alternate

*‘, in [a,bjc,d], and if € » O, then

partial derivativé, f
there is a subdivision D of [a,bj;c,d] which has the following
property. If [p,qju,v] is an interval in D and (t,r) and

(ty,ry) are points in [p,qju,v], then lf"(t,r)-f"(tl,rl)l < e

Remark 2.12. Clearly, if E is any refinement of D (in

Definition 2.12), then E also has that property.

Theorem 2,15, If the function f has a continuous second

alternate partial derivative, £’’, in the interval [a,b3c,d],
and if e > O, then there is a subdivision D of [a,bjc,d], such
that if (tl,rl) and (t,,r,) are in one of the intervals of D
then

f(tl’rl)+f(t2’r2)—f(tl’r2)_f<t2’rl) oy
ftl - t2][rl - r2T - ( l’rl) < €.
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Proof: The procofl is omitted cince it is analogous to
the proof of Theorem 1.1%,

Theorem 2.14%, Suppose x has a continuous second alterf

- . T s N N . . ~
nate partial derivative, x‘’, in the interval la,b3c,d],

and that there is a number M, such that |y(t,r)| { M if

a{ t{band c rd. Ir

j y(t,r)ax(t,r) = c, or J y(t,r)x““(t,r)d [a+B](t,r) = c5
R R

where a is the x-identity plane and B 1s the y-identity plane,

then

[ ytem)an(e,e) = [y(tm)x (e,)alarg(5,m).
R R

Proof: Since x has a continuous second alternate partial
derivative, then by Theorem 2.13% for ¢ > O, there exists g
subdivision D of [a,b;c,d], such that if [g,h;u,v] is an

interval of D,then

x(g,u)-x(h,u)+£(h,v)—x(g,v)

[h="gT[v = u] - x"(g,u)]| < €1
where e, = 2M(b—a§(d—cf‘" .
Now
SD(x,y) =

%é{ﬁnggigg+y(h,u)+y(hjv)+y(g,v)][x(g,u)—x(h,u)+x(h,v}—x(g,v)]



and

'
SD(tr,x' y) =

S 1/4x M (g,w)y(g.u)+x M (h,n)y(h,u)+x N (h,v)y (h,v)+x (g, v)vig,v) ],
[g,hsu,v]eD

{[h -~ g][v - ul}

Consider

ISD(X,y) - SD(tr,x"y) .
It can be shown with techniques similar to those used in
the proof of Theorem 1.15 that

|sp(x,y) - SD(tr,x"y)I { Meeq +(b-a)(d-c) = 1/2e.

The remaining portion of the proof is omitted because

it parallels the proof of Theorem 1.15.

Remark 2,14, Theorem 2.14 enables one to show how

Theorem 2.10 is suggested when one integrates across the
formula for the second alternate partial of the product of
two functions. That is, if the functions x and y meet certain

conditions, then

al[x-y] = le-y + x-aly

i

2
612[x~y] ag[alx-y + X°aly]

= 232 4. . -
= 612x vy + alx 32y + ng-aly + A-Bley

2 ~ 2 2
J 512[x vyl = I 01Xy + f O X3y + agx-aly + f x'algy
R R R R



ro ro L w wun v o+ | oxay
x(t,r) y(t,T) R% |yax j 3 X 3¥ F 3,3y [ xdy

2 2 .
+ (B2x-aly+x-512y) - X-32ly} + ijdy

d b
~j rdx + ) [ 2 (x+08,y) +d(%x"9 y) - 2x-ag y
ERURAUE PR 2\ X 21
A b d
4| xdy =| yax + [ (x3,5] ) +-]b(x-a vi )]
J\"R JR Jc e \a “a 1 ‘c
-2 xdy + xdy = j ydx
j‘R jR R )

g v

+ j {x(b,r)-agy(b,r)~x(a,r)-azy(a,r)}

c
b
+ Ia{x(t,d)-aly(t,d)nx(t,c)-aly(t,c)} - ijdy
Therefore
a
x(t,r)-y(t,r) = I ydx - { xdy + I x(b,r)dy(b,r)
R R “R c
a b b
- J x(a,r)dy(a,r) *+ J x(t,d)dy(t,d)~J x(t,c)ay(t,c).
c a a

Theorem 2.15, Suppose that la,bjc,d] is an interval,

[e,f3;g,nh] 18 an interval, u,v,x,y 1s & function sequence,
and that if D is a subdivision of [a,bjc,d], and E is a
subdivision of [e,f3;g,h], then there is a refinement F of D
and & refinement G of E such that SF(x,y) = SG(u,v). If vy
is integrable with reapect to x in [a,b3c,d], and V is

integrable with respect to u in [e,f3g,h], then



b d £oh
[T vttryax(e,r) - - J v(t,r)au(t,r).

v

a ‘¢
Proof: The proof is analogous to the proof of

Theorem 1.16,

Definition 2,13, A function f(t,r) is non-decreasing

on a set A, if and only if whenever (u,v) and u are

1;Vl)

points in A and u < u;, and v < vy, then f(u,v) < fluy,vy).

Definition 2.14. A function f(t,r) is non-increasing

on a set A, if and only if whenever (u,v) and (ul,vl) are

and v <

points in A and u < Uy vy

then f(u,v) < £(uy,vy).

Corollary 2.15a. Suppose that [a,bjc,d] is an interval,

[e,f3k,1] is an interval, and that F is integrable with
respect to the continuous function P in [a,bjc,d]. Suppose
the equation t = g(u,v) and r = h(u,v); where g and h are
continuous non-decreasing functions; defines a one-~to-one
transformation of the region [e,f3;k,1] into the region

[a,bjc,d]. Then

J F(t,r)dP(t,r) = I F[g(u,v),h(u,v)]dP[g(u,v),h(u,v)];
[a,b5c,d] [e,f3k,1]

Proof: Since F is integrable with respect to P in

[a,b;c,d] then for ¢ > O, there exists a subdivision D, of

1

[a,b;c,d] such that if El is a refinement of D then

13

| [ F(t,r)ap(t,r) - SEl(P,F)I < e.

v

[2,b5c,d]
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But since t = g(u,v) and r = h(u,v) forms a one-to-one
transformation mapping la,b3c,d] onto [e,f,k, ], there
corresponds a subdivision of [e,f:k,1], call it D2, such
that SDJ(P’F) = SDQ{P[g(u,V), n(u,v)],Flg(u,v),h(u,v)]l.

And since this relationship is alsc valid for any refinement

E. of D, and E2 of Dy, then

1 1

o

| [ P(t,r)ap(t,r) - sy (Ple(u,v),h(u,v)],Fle(u,v),h(u,v) ]| { ..
[a,b5c,d] §

This implies that F[g(u,v),h(u,v)] is integrable with respect

to P[g(u,v),h(u,v)]. Then by Theorem 2,14

J F(t,r)dP(t,r) = j Flg(u,v),h(u,v)1dPlg(u,v),h(u,v)].
[a,bs5c,d] [e,f3k,1]

Corollary £.15b. This corollary is identical to

Corcllary 2.15a except the word non-decreasing has been re-
placed by non-increasing, and a minus sign has been imposed

on one side of the equation.

Remark 2.15. The two corollaries presented above enable

mathematicians to perform integration by substitution.



CHAPTER IIT

i 7 Y T — ST e
LANE’S INTEGRAL IN N-SPACE: f (6,7, 0 )dg(t,r, )

[a'lzbli ¢ .5an_19bn_1]

The definitions and theorems presented in Chapter IT
extend readily to an n-space function x and an n-space
function y and to an n-space interval [al,bl;--';an_l,bn_l].
The proofs of the theorems will be analogous to those presented
in Chapter II. A few sample definitions and theorems will in-

dicate the necessary procedure for the extension.

Definition 3.1. The statement that f is a real n-space

function implies that if tlﬁtQ"°°’tn~1 are real numbers then

there is just one number ¢ such that f(tl,tg,-'-,tn_l) = c,

Definition 3.2. An n-space interval denoted by

[al,b1;a2,b2; '.'an-l’bn-l] ig a point set such that each

a; < b;. A number sequence (tystp, e, t,_ ;) belongs to

. * o000 1 1 P d
[a),b;525,b,3 s, 150,11 if and only if 8y < t; < by,

ay < t, < by, and so forth up to a5 < L < b, 1

Definition 3.3. The statement that D is a subdivision

of the n-space interval [al’bl;".san-l’bn—]] means that D
1s a finite set of (one or more) nonoverlapping n-space inter-

vals covering [al,bl;"g %p&?bn—l]‘

61
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Definition 3., The statement that the function f is

quasi~continuous in the n-space interval

o v o

[al’blgaE’bQS 5an—l’bn~1]

means that if e > O, then there exists a subdivision D of
[al,bl;ag,b2;-'-;an"l,b el ] sucn that if P is one of the
n-space intervals in D and the points Kfl’“”"'.’tnal) and
(rl,rz,' .’rn—l) belong to the interior of P or to one of
its faces, then

if(tl,tg,'-~,tn_1) - f(rl’rE""’rn~1)'< €.
Notation. If x is a function, y is a function and D is
a subdivision of the n-space interval [al, 1,ag,bg,- 5an-l’bp-l]’

and if the Py ’s below represent all the apexes of the interval

P in D, then SD(x,y) denotes the number

n--1

g (1/2"1) [y(py )ty (pp)+ee+y(ppn-1}1+[8"""x(p,)]

where An"lx(pi) represents the n-1 finite differencing of

the apexes of P.

Definition 5.5. Suppose that x is a function, y is =&

function and [al, 1580 bg,--°;an_l,bn_l] is an n-space
interval. The statement that ¢ is the integral over the n-space
interval of y respect to x, may be written as

n-1

fal fae”‘ fa y(t,r, ee)dx(t,reee).

n-21



Definition 3.6. The statement that the n-space

function  1s of bounded variation over the n-space
o e b 1 means that there
n-1*"n-1+"

exists a number B such that if D is a subdivision of D,then

interval [al,bl;ag,bz;-'-;a

T |18 x(p) 11 < B.
D



CHAPTER IV
IMPROPER INTEGRALS

The Lane’s Integral defined previously had meaning
only i¥ the interval over which integration was performed
was finite. The following chapter will extend the defini-
tion so that under certain circumstances the Lane’s
Integral will be meaningful when the interval of inte-
gration is infinite. The proofs for the theorems presented
will be omitted because of the similarities between them

and ones already presented.
Two Space

The definition presented in Chapter I for a subdivision

and refinement will be used here without alteration.

Definition 4.1. The statement that the function f is

quasi~continuous in the interval [a,«) means that if ¢ ) 0,
then it is true that no matter what interval [a,b] is picked,
there exists a subdivision D of [a,b] such that if [p,q] is
one of the intervals of D, and s and t are in the segment

(p.q), then [f(s) - £(t)] < e.

Definition 4.2, The statement that the function y is

integrable with respect to the function x in the interval

[a,*) means that if e > O, then there exists an interval

64
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b B

[a,b], such that if b <{ B, then | i y(t)dx(-t,)-.f y(oydx(t)| C e.
Ya a

This implies that y is integrable with respect to x on [a,b]

and [a,B].

Theorem 4,1, For the function y to be integrable with

respect to the function x in the interval [a,«) it is
necessary and sufficient that there be a number c such that
if € > O,then there exists an interval [a,b] such that if

b < B,then
B

| [ y(t)ax(t) - ¢ | < «.

\’a

Definition 4.,3. Suppose that x is a function and y is

a function. The statement that ¢ is the integral from a to «

of y with respect to x, which may be written as

[==]
¢ = [ y(t)ax(s),
a
means that c¢ is a number and that the statement from Theorem 4,1

is true.

nginition 4,4, The statement that the function f is of

bounded variation in the infinite interval [a, ) means there
exists a number T such that if [a,b] is a subinterval of [a,=),
then Vz(f) g T. The least such number T is called the total

variation over [a,~) and will be represented by V:(f).



66

Theorem 4.2, If the funciion y is quasi-continuous and

bounded in the interval [s,*) and x is of bounded varlation

in [a,®), then y 1is integrable with respect to x in the

interval [a, ).

Theorem 4,3, If y is integrable with respect to x

in the interval [a,«), and k 1s a number, then

<O

[y(eyars(e)m) = J y(e)ax(e).

a a

Theorem 4,4, If y is integrable with respect to x in the

interval [a,®), and k is a number, then

j [ky (t)]ax(t) = kj (t)dx(t

Theorem 4.5. Suppose that each of y and y, is inte-

grable with respect to x in the interval [a,«). Then

s}

f [y(t)+yl(t)]dx(t) exists and
a

<« @

ja[y(t)+y1(t)]dx(t) = j;y(t)dx(t) + [y (e)ax(e).
a

Theorem 4.6. Suppose that y is integrable with respect

to x in the interval [a,«), and if a < ¢ { = then y is
integrable with respect to x in [a,c], and in the interval

[c, =) ;moreover

[~ 2]

C ©
[ v(eyax(e) = j;y<t>dx<t> + [ y(t)ax(e).
(]

a.



Theorem 4,7. If y is integravble with respect to x in

[a,«), and x and y are functions such that 1im y(t)-x(t)

e
exists, then ©
J x(t)dy(t) exists and
[v(8)ax(e) = y(=)x(=) - y(a)x(a) - [ x(e)ay(e).
a

Theorem 4.8, Suppose that y is integrable with respect

to x in the interval [a,=). If x is of bounded variation

in [a,*) andly(t)] M for each t in [a,=), then

| [y(®ax(e) ] < wevi.

Theorem %.9. If x is a function such that the lim x(t)

tow

exists and [a,«) is an infinite interval, then

jmldx(t) = x(=) - x(a).
a

Definition 4.5. The statement that the function f has

a derivative, f',‘in the interval [a,«), means that if
a { t < = then there is a number f’(t), such that the
following statement is true:

If € > 0, then there is a segment (p,q) containing t

such that if s is another number in (p,q) and in [a,«),then

L DIReY



Definition #.6. The statement that the function f has

a continuous derivative, t ', in the interval [a,=) means

that £ has a derivative, £7’, in [a,®), and that if ¢ >0

and [a,b] is an intervalsthen there is a subdivision

D of [a,b] such that if [p,q] is an interval in D and s and t

are numbers in [p,q] then |[f'(s) - £'(t)] < e.

Theorem L.,10. If the function f has a continuous

derivative, £’, in the interval [a,«), and ¢ > 0 and [a,b]
is an interval, then there is a subdivision D of [a,b] such

that if s and t are in one of the intervals of D, then

f(SS) .':'.__fc_ﬁ.*i)_ - £(t) | < e

Theorem44.l%; Suppose that x has a continuous derivative

x’ in the interval [a,*), and that there is a number M such

that |y(t)] < Mif a{ t { o, If

(=<} = 2]

f y(t)dx(t) = ¢, or f x‘(t)y(t)dt = c s, then
a a -

o o

jay(t)dx(t) - fax'(t)y(t)dt.

Theorem 4,12, Suppose that [a,®) is an infinite interval,

[c,®) is an infinite interval, u,v,x,y is a function sequence,
and that if D is a subdivision of [a,b], and E is a subdivision
of [e¢,d], then there is a refinement F of D, and a refinement

G of E, such that SF(x,y) = SG(u,v). If y is integrable with
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respect to x in [a,=) and v is integrable with respect to u

in [ec, =), then
[+ «

[ yeeyax(ey = jcv(t)au(t).

a

Corollary 4.12a1 Suppose that [a,«) is an infinite

interval, [c,«) is an infinite interval, and y is integrable
with respect to x in [a,«). If f is a continuous non-

decreasing function such that f(c) = a and lim f(t) = «, then

t—o
o @

[ v(vyax(e) = [yre(e)gaxre(e)y.

Al

a c

Corollary 4,12b, Suppose that [a,~) is an interval,

[c,®) is an infinite interveal, and y is integrable with
respect to x in [a,=), If g is a continuous non~increasing

function such that g(c) = = and 1im g(t) = a, or if g(c) = =

t—c

and g(d) = a, where d is the point at which the function g
crosses the x-axis, then

o (-}

[ v(e)yax(e)y = - [ yre(s)axle(t) 1.
a a

Three Space

The definitions and theorems which were presented in
first section of this chapter will extend readily to three-
space functions and a rectangular infinite interval [a,=5¢c, =),
Therefore, the actual formal presentation of the material and

proofs will be omitted and simply a definition of what is
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meant by an Improper Integral in three-space will be given,

Definition 4.7. Suppose x is a three-space function, y

is a three-space function and a and ¢ are numbers. Then by

f y(t,r)dx(t,r) is meant a number T such that if e > 0,
[a. <5, %)

then there exists a rectangular interval [a,b5¢c,d], such that

if b < B and 4 < D,then

’

[ y(eryax(er) - 1 ] < e
[a,B;c,D]

N-Space

As before, the definition, theorems and proofs extend

readlly to n-space functlons and n—space infinite intervals
[al,w;ag,m;---;an_l,w) and thus any formal presentation is
omitted.

Definition 4.8. Suppose x is an n-space function, y

is an n-space function and &y, st tan 4

sequence. Then by J'y(tl, bos ooyt 1)dx(t

[al3 5a2’m....3a 1303]

is a number

2’ ) .)tn_l)

is meant a number I such that if € > o, theh there exists
an n-space interval [al, l’a2’b25'..5an-l’bn-1] such that
if by < B; and b, < B, and -+ and b, 4 < B,_q» then

] Y(bystps e n sty 1)ax(ty, by, 0oyt ) - T [ < e,
[a,B 1332’323‘ n-l’Bn-l]



CHAPTER V
SOME ADVANTAGES CF THE LANE INTEGRAL

Lane’s Integral and Stieltjes’ Integral are very
similar in many respects, but in some instances the Lane
Integral is superior. It was shown on Page 7 that if the
Stieltjes Integral exists, then the Lane Integral exists
and they are equal. However, in certain instances when
Stieltjes Integral does not exist, the Lane Integral will
exist and yield the desired result for the value of the
integral. Here is an example., Suppose that two probavility
graphs are presented, each containing n discrete points)
and that one graph is plotted with respect to the other;
then the result again would be a graph of n discrete points.,
It might then be desired to fit a polynomial P to these
points such that the area under P equals the area of
trapezoids formed by the n discrete points and the x-axis,
The Lane Integral would give this area but the Stieltjes
Integral would not exist, Furthermore, the existence thecrem

for Lane’s Integral is more expansive,
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