COMPARISON OF GROUP AND INDIVIDUAL METHODS OF PRESENTING
BALDWIN'S SOCIAL EXPECTATIONS SCALE

APPROVED:

[Signatures]
Major Professor
Minor Professor
Chairman of the Department of Psychology
Dean of the Graduate School
Pitts, Emily C., *Comparison of Group and Individual Methods of Presenting Baldwin's Social Expectations Scale*. Master of Arts (Experimental Psychology), May, 1971, 39 pp., 4 tables, 1 illustration, bibliography, 5 titles.

Forty Ss from introductory psychology classes participated in a study to determine whether or not the investigator's group Social Expectations Scale (SES) was a useful research instrument and to determine whether or not intelligence was a factor determining the fit of a particular cognitive model, the BSE, to the social expectations of Ss as measured by the SES. The BSE model assumes that a S's judgment of another's act is determined by the S's perception of the other as benevolent (B), self-interested (S), and/or desirous for equal outcomes (E). Results indicated that individual presentation of the SES produced better fits of the BSE model to the S's social expectations than did group presentation, but this difference in favor of individual presentation of the SES was significant only for the second administration of the SES. Both individual and group presentation versions of the SES appear to be useful as research instruments. The results of the study gave no evidence that intelligence is a factor determining the fit of the BSE model to social judgments, at least in samples of college students.
COMPARISON OF GROUP AND INDIVIDUAL METHODS OF PRESENTING
BALDWIN'S SOCIAL EXPECTATIONS SCALE

THESIS

Presented to the Graduate Council of the
North Texas State University in Partial
Fulfillment of the Requirements

For the Degree of

MASTER OF ARTS

By

Emily C. Pitts, B. A.
Denton, Texas
May, 1971
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Social Expectation Scale as Presented to Subjects</td>
<td>4</td>
</tr>
<tr>
<td>II. Summary of Analysis of Variance</td>
<td>13</td>
</tr>
<tr>
<td>III. Means and Standard Deviations Based on Individual Scores</td>
<td>15</td>
</tr>
<tr>
<td>IV. Correlations and Variances Based on Means of Each Situation in Each Group</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Format of SES Situation</td>
<td>10</td>
</tr>
</tbody>
</table>
COMPARISON OF GROUP AND INDIVIDUAL METHODS OF PRESENTING BALDWIN'S SOCIAL EXPECTATIONS SCALE

Even before psychology was a formal discipline, the subject of common sense was in debate. Seemingly, there was disagreement over the feasibility of common sense judgments. Many people held that common sense was a mere guess—a bad hypothesis—about human behavior. Thus, until Heider (1958) revived psychological interest in common sense as a type of folk wisdom, this concept was held in rather doubtful repute.

Heider (1958) described what he termed a "naive theory" of human behavior; in this theory, he attempted to find the elements entering into one's behavior by examining the meaning attached to behavior under various circumstances. Examples of such judgments can be found in many situations of everyday life. One who has stolen an automobile to transport his dying child to a physician would probably not be judged as dishonest while one who stole an automobile just to sell it to make extra money would. The context of the situation of the theft, though the same crime has been committed in both instances, has indeed influenced the interpretation given to the person's behavior. Thus, Heider (1958) believes that all people carry an implicit naive theory in their heads that causes them to analyze the actions of others in order to assign meaning to these actions and in order to describe the intent of the actor.
If these motives for the acts were judged accurately, then one would be able to predict human behavior, given the situational context.

It was pointed out by Heider (1958) that simply because people possess a naive, or common sense, theory of psychology is no indication that their reactions and judgments adhere to objective reality. People are very capable of erroneous analyses of intents and motives for human behavior. If the judge has only partial information concerning the context in which the act occurs or if he permits his own needs and desires to influence his perceptions, then his judgment of motives may very well be incorrect.

While Heider (1958) has given a comprehensive analysis to naive psychology, Baldwin, Baldwin, Hilton, and Lambert (1969) have concerned themselves with the analysis and measurement of the naive psychology of harming and helping. These investigators have formulated some specific rules of naive psychology. Actually, these rules are hypotheses concerning the manner in which one person will judge the behavior of another individual. A naive theory, according to Baldwin et al. (1969), then, is a theory held by a subject which causes him to assign motives to choices other people make in various situations.

In addition, Baldwin et al. assert that three motivations are assessed by a judge in evaluating reasons for the choices made in these situations involving harming and helping. The first possible motivation is benevolence (B), the desire to help someone rather than to harm him. The second motivation is self-interest (S), which is the desire to help oneself rather than harm oneself. Thirdly, equality of outcome (E) is
involved, and this motivation can be described as the desire to either help both people or to harm both people in a choice situation.

Baldwin et al. (1969) further stated that naive psychology is a cognitive structure underlying the interpretation of overt acts and that this cognitive structure is believed to be culturally imposed. When judging the motives of action, an individual begins with the act and moves backward to the personality trait that motivated the act. At this point, the judge hypothesizes a motive for the actor's overt behavior based largely on the context of the situation. For example, an act that helps another person may or may not be considered an act of kindness by the observer. Whether or not the act will be judged as kind depends on several other factors as well—the observer's knowledge of the acting individual's habitual behavior, the situational context, the culturally imposed rules for inferring motives (i.e., the "naive" theory), and the personal characteristics of the observing individual. Thus, the same act can be interpreted differently by different judges. In fact, it has been suggested by Baldwin (1967) that naive psychology, or common sense, be studied in much the same way that one studies language. Just as the linguist observes samples of speech being used and endeavors to formulate the rules governing that speech, the psychologist investigates naive psychology by observing what people actually do and then seeks to formulate the rules governing that behavior.

The 16 situations pictured in Table 1 were formulated by Baldwin et al. (1969) in order to provide stimulus situations for assessing choice behavior. Subjects (P) were asked to judge the probability of the other person's (OP) choosing one alternative rather than a second alternative.
In each situation, P was told whether the consequences helped or harmed himself and the OP. As a visual aid to the verbal description, a plus sign was used to denote helping an individual and a minus sign, harming a person. In Table 1 the alternative chosen by OP in each of the 16 situations is to the left of the slash mark, and the alternative rejected is on the right.

TABLE 1
SOCIAL EXPECTATION SCALE AS PRESENTED TO SUBJECTS

<table>
<thead>
<tr>
<th>Situation</th>
<th>Theoretical Label</th>
<th>Situation</th>
<th>Theoretical Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1... P+OP-/P-OP-</td>
<td>B - E</td>
<td>9... P-OP-/P+OP-</td>
<td>-B + E</td>
</tr>
<tr>
<td>2... P-OP+/P-OP-</td>
<td>S - E</td>
<td>10... P-OP+/P-OP-</td>
<td>NC(+)</td>
</tr>
<tr>
<td>3... P-OP+/P+OP-</td>
<td>-B + S</td>
<td>11... P-OP-/P-OP-</td>
<td>B - S</td>
</tr>
<tr>
<td>4... P+OP-/P+OP-</td>
<td>NC(+-)</td>
<td>12... P-OP+/P+OP-</td>
<td>-B - E</td>
</tr>
<tr>
<td>5... P+OP-/P+OP+</td>
<td>-S - E</td>
<td>13... P-OP-/P-OP-</td>
<td>NC(--)</td>
</tr>
<tr>
<td>6... P-OP-/P-OP+</td>
<td>-S + E</td>
<td>14... P+OP+/P+OP+</td>
<td>NC(++)</td>
</tr>
<tr>
<td>7... P-OP+/P+OP+</td>
<td>-B - S</td>
<td>15... P+OP+/P-OP-</td>
<td>B + S</td>
</tr>
<tr>
<td>8... P+OP+/P-OP+</td>
<td>B + E</td>
<td>16... P+OP+/P+OP-</td>
<td>S + E</td>
</tr>
</tbody>
</table>

The theoretical labels are also presented: +B for benevolence means that P is benefited on the side chosen but would have been harmed had the alternative cell been chosen; -B, in turn, means that P is harmed on the side chosen and helped if the alternative situation is chosen; +S for
self-interest denotes that OP is benefited on the side selected but would have been hurt by the selection of the other situation; -S is the opposite of $+S$; $+E$ for equality of outcome means that on the side chosen P and OP receive the same consequences, but had the other alternative been chosen, they would have received different outcomes; $-E$ indicates that in the chosen alternative, P's and OP's consequences were unequal. The NC means that no choice was extant in the situations; i.e., the consequences of both alternatives were equivalent. B, S, and E are algebraically summed for a particular situation to predict P's judgments of O's choice behavior.

Baldwin et al. (1969) developed a Social Expectations Scale (SES) which measured people's expectations concerning others' decisions in situations involving harming and helping. The BSE model discussed above was then used to predict what these expectations would be. In fact, if the BSE model fits the data satisfactorily, then the SES can be very useful for measuring P's expectations of other individuals' B, S, and E.

Baldwin et al. (1969) cited research using the SES on various college populations and on a children's sample. The BSE model was found to account for 96% of the variance for an undergraduate sample at New York University. For measuring group differences, the instrument was found to be reliable as well as valid. In addition, the model was found to depict individual differences among subjects. Baldwin et al. also varied the conditions under which judgments had to be made to see if the BSE model would continue to predict people's responses.

Again, a college-age sample was used, and each subject was asked to mark the line three times representing three different situations: one
where OP's choice is public or private, one in which OP is designated as a male or female, and one where OP is defined as an adult or child. In the public-private situations, the BSE model accounted for 95% of the variance in every analysis. The most striking result was that S was expected by the subjects to be a much more dominant motive in private than in public. Results also indicated that boys judged B to be more likely in a public situation and S to be much more likely in private. In the experiment varying the sex of OP and P, there was a significant interaction between Sex of OP and Sex of P. Girls expected other girls to have less B and more S than boys, whereas boys showed no significantly different social expectations with regard to the two sexes.

The effect of age on P's expectations was also studied by Baldwin et al. Two samples were used, one being undergraduates from Cornell University and the second, a sixth-grade sample from Ithaca, New York. Results of the study indicated that children were believed by both groups to have less B and more S than adults.

In studying the development of a child's concept of choice, Baldwin et al. (1969) found that a young child has a different concept than an older child or an adult. In a sample of second-grade children, it was noted that the children did not consider the choice that OP had to make between the two specific alternatives, but they merely considered the degree of attractiveness of the choice OP had made. The BSE model, then, did not fit the data well. The failure of children to pay attention to the alternatives OP is confronted with is most evident in the NC situations in which the probability judged by most adults is .50, but the probability judged by children in a positive outcome NC situation,
was close to 100% and in a negative outcome NC situation,
\(\frac{P^+_{\text{OP}^+}}{P^+_{\text{OP}^+}} \), approximated 0%. A "chosen alternative" (C) model, one which predicts judgments solely on the basis of the effects of the alternative chosen by OP, has been shown to fit the data of a young children's sample better than the BSE model. In a kindergarten sample, the C model accounted for 84% of the variance whereas the BSE model accounted for 61% of the variance. However, only 72% of the variance was accounted for by the C model compared to 86% accounted for by the BSE model in an eighth grade sample. Thus, studies indicate that the BSE model fits the data better for older children and adults than for young children, which, in turn, shows that young children have a different conception of choice than older children and adults.

Using a modification of Baldwin et al.'s (1969) basic technique for a group presentation of the Social Expectations Scale in a pilot study, the investigator found that the BSE model accounted for only 40.5% of the variance. The Ss in the pilot study were a group of sociology graduate students from a psychology class at North Texas State University, the majority of whom were 30 years of age or older and were pursuing a degree to prepare them to become administrators of homes for the aged. Baldwin et al. found, however, that upon administering their individual version of the Social Expectations Scale (SES) to a sample of undergraduate college students, the BSE model accounted for 96% of the variance. There is a question, then, as to the reason for the model's failure to account for as great a proportion of the variance in the present investigator's pilot study as in Baldwin's study. It is possible that the form
of the modified SES used in this pilot study was unreliable or that the Ss were in some fashion notably different than those in Baldwin's study.

One question at issue, then, is whether there is only one naive theory possessed by everyone or whether there are many different theories? Judging by the results of Baldwin et al.'s (1969) study of a child's concept of choice, it appears that intelligence might be important in producing a good BSE fit to people's expectations, or judgments. In observing that the BSE model fits older children's and adults' judgments better than the data of young children, one might suspect that the greater the intellectual maturity of the sample, the better the BSE model fits the data. People with childlike intelligence levels and/or who possess a great deal of immaturity will probably judge others' behavior much as did the children in Baldwin et al.'s study—without considering the alternative. The instrument used to measure social expectations requires the ability to reason and to analyze each situation carefully. Thus, intelligence could possibly be a factor in one's responding to the various situations. Inadequate analytical ability, defined by a person's degree of intelligence, could very well affect his judgmental capacity. Taft (1955) indicated that there is a certain amount of ability involved in understanding others and in predicting their behavior. Intelligence, then, might be determining whether or not the BSE model actually fits the judgment behavior of the Ss responding to these abstractly presented social situations.

Because of the previously discussed observations by the investigator the following research hypotheses were considered in the present study:
1. The high intelligence group will demonstrate a better fit between their social judgments, as measured by the SES, and the BSE model than will the low intelligence group.

2. The individual version of the SES will be superior to the group version of the SES in accounting for the variance in the sample.

Method

Design and Subjects. The present study dealt with the effects of three variables (intelligence X sex X type of SES) on the fit of the BSE model to the social judgment responses measured by the SES. Two levels of each variable were utilized, high vs. low intelligence, male vs. female, and group vs. individual SES. All Ss responded to both the group and the individual versions of the SES. Half of the Ss received the individual version first, and half received the group version first. Each of these groups, individual version first (Ind) and group version first (Gr), was composed of 20 Ss, 10 males and 10 females. Within each sex, the assignment to the two groups (Ind and Gr) was determined by a table of random numbers. The four groups so formed, Ind female, Ind male, Gr female, and Gr male, were then each split at the median on the basis of the Ss' college entrance examination (SAT or ACT) test scores. A high-intelligence (Hi) and a low-intelligence (Lo) subgroup within each of the four groups were thereby produced. Since the Ss' responses to the second presentation of the SES might benefit from the effects of the first presentation, an additional variable (order of presentation) was considered...
in the analysis. The basic design of the study was, thus, a 2 X 2 X 2 analysis of variance design with repeated measurements on one variable, i.e., group vs. individual SES version.

The Ss of the present study were volunteers from an introductory psychology class at North Texas State University.

Instrument. The instrument used was the E's group version of the SES patterned closely after Baldwin et al.'s (1969) SES. The first page of the SES was used to explain the meaning of the plus and minus signs as denoting helping and harming events, respectively. The second page explained the format of the SES's choice situations: two situations are present with the top boxes representing what will happen to the judge and the bottom boxes, what will happen to the OP. The judge is asked to indicate on the scale to the right how many other people would make the same choice that OP made (the encircled situation). It is emphasized that the judge (P) should not indicate what he would do, but what he thinks others would do. After presentation of practice situations, the remaining pages contain the 16 situations shown in Table 1, with the encircled situation being the choice made by OP. Figure 1 illustrates a sample format of a situation on the SES.

![Figure 1. Format of SES situation](image)
The E's scale was devised for use as a group presentation instrument. The instructions for taking the scale were given step by step with illustrative examples included. The 16 situations about which judgments were to be made were replications of Baldwin's 16 situations used in his scale. A copy of the E's scale can be found in the Appendix of this paper.

Procedure. One-half of the Ss (Gr) received the group SES before being exposed to the individual version. The other half of the Ss (Ind) consisted of those individuals who had the individual version administered before the group SES.

The Ind Ss were first given the individual version of the SES during a 15-minute session with the experimenter. These sessions took about two weeks to complete. The group administration of the SES was presented to these Ss and to the Gr Ss who had not previously been given the individual version of the SES. The Gr Ss were then presented with the individual version of the SES in 15-minute sessions with the experimenter. The completion of these sessions took approximately two weeks time.

Since there were equal numbers of males and females in each of these groups and since each subgroup of males and females were divided at the median into high and low intelligence groups, eight cells resulted.

For each individual in the experiment, the percentage of the line marked off in each of the 16 situations for both SES versions was obtained and converted to a z-score. This z-score, which was the observed score, was used in the BSE model in order to obtain the values of the parameters B, S*, and E, which were, in turn, used to find the predicted score.

A Pearson Product-Moment correlation coefficient was calculated between each situation's expected and observed score for each S. These
values were used as dependent measures in a 2 X 2 X 2 X 2 analysis of variance with repeated measurements on one variable (group vs. individual presentation). The independent variables for the analysis of variance were manner of presentation (group vs. individual), order of presentation, sex, and intelligence level.

Results and Discussion

The analysis of variance (see Table 2) for this measure indicates that the individual presentation of the SES produces a significantly better fit of the BSE model than does the group presentation, $F(1,32) = 4.47, p<.05$. There is a significant interaction between the type of presentation (D) and the order of presentation (C), $F(1,32) = 4.45, p<.05$. An analysis of the simple effects indicated that there was a significantly better fit produced by the individual SES the second time it was presented to Ss than the first time it was presented, $F(1,32) = 15.16, p<.001$. In addition, the group SES produced a significantly better fit of the BSE model the first time it was presented as opposed to the second time, $F(1,32) = 3.68, p<.05$.

The research hypotheses, then, are not fully supported by the results of this study. High-intelligence groups did not have a significantly better fit than the low-intelligence groups. The individual version had a significantly better fit than the group version. Intelligence, it appears, is not of importance in one's acceptance of the naive theory of behavior. The SES, as a result, can be used on heterogeneous groups of individuals within a college population.
TABLE 2
SUMMARY OF ANALYSIS OF VARIANCE

<table>
<thead>
<tr>
<th>Source of Variance</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td>1.3489</td>
<td>39</td>
<td>.0334</td>
<td></td>
</tr>
<tr>
<td>A (Intelligence)</td>
<td>.1164</td>
<td>1</td>
<td>.1164</td>
<td>3.4850</td>
</tr>
<tr>
<td>B (Sex)</td>
<td>.0631</td>
<td>1</td>
<td>.0631</td>
<td>1.8892</td>
</tr>
<tr>
<td>C (Order)</td>
<td>.0014</td>
<td>1</td>
<td>.0014</td>
<td>0.0419</td>
</tr>
<tr>
<td>A X B</td>
<td>.0889</td>
<td>1</td>
<td>.0889</td>
<td>2.6617</td>
</tr>
<tr>
<td>A X C</td>
<td>.0029</td>
<td>1</td>
<td>.0029</td>
<td>0.0868</td>
</tr>
<tr>
<td>B X C</td>
<td>.0065</td>
<td>1</td>
<td>.0065</td>
<td>0.1946</td>
</tr>
<tr>
<td>A X B X C</td>
<td>.0000</td>
<td>1</td>
<td>.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Ss within Groups (Error: Between)</td>
<td>1.0697</td>
<td>32</td>
<td>.0334</td>
<td></td>
</tr>
<tr>
<td>Within Subjects</td>
<td>.1829</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (Type)</td>
<td>.0170</td>
<td>1</td>
<td>.0170</td>
<td>4.4737*</td>
</tr>
<tr>
<td>A X D</td>
<td>.0020</td>
<td>1</td>
<td>.0020</td>
<td>0.5263</td>
</tr>
<tr>
<td>B X D</td>
<td>.0062</td>
<td>1</td>
<td>.0062</td>
<td>1.6316</td>
</tr>
<tr>
<td>C X D</td>
<td>.0169</td>
<td>1</td>
<td>.0169</td>
<td>4.4474*</td>
</tr>
<tr>
<td>A X B X D</td>
<td>.0058</td>
<td>1</td>
<td>.0058</td>
<td>1.5263</td>
</tr>
<tr>
<td>A X C X D</td>
<td>.0001</td>
<td>1</td>
<td>.0001</td>
<td>0.0263</td>
</tr>
<tr>
<td>B X C X D</td>
<td>.0096</td>
<td>1</td>
<td>.0096</td>
<td>2.5263</td>
</tr>
<tr>
<td>A X B X C X D</td>
<td>.0047</td>
<td>1</td>
<td>.0047</td>
<td>1.2368</td>
</tr>
<tr>
<td>Ss within Groups (Error: Within)</td>
<td>.1224</td>
<td>32</td>
<td>.0038</td>
<td></td>
</tr>
</tbody>
</table>

*p<.05
Results indicate that the experimenter's group presentation of the SES produced a fit of the BSE model similar to the individual presentation of the SES. For all individuals receiving the individual scale first, the correlation between the expected and observed scores was .9587, and the variance accounted for by the model was 91.91%. For all those individuals who received the E's group scale first, the correlation between expected and observed scores was .9551 with the model accounting for 91.22% of the variance. Thus, the difference in the over-all variance accounted for by the two different presentation methods is only slight and can be compared with Baldwin et al.'s (1969) results indicating an accountable 96% variance based on group scores and the BSE model could account for 80 to 90% of the variance of individuals' responses to the SES for 31% of the Ss in Baldwin's sample. The group method, then, can obtain dependable results just as can the individual scale.

Table 3 contains the means and standard deviations of the individual responses for each group. The range of correlations of expected and observed scores is .6793 to .8793.

From still another point of view, Table 4 depicts the correlations between expected and predicted scores and the corresponding variances for each of the 16 groups based on the group means for each situation. The variances accounted for using group means are similar to the variances accounted for by using individual scores. In addition, the groups having the group SES first have a better fit of the model than the groups having the individual presentation first.
<table>
<thead>
<tr>
<th>Group</th>
<th>First Presentation</th>
<th>Second Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean S.D.</td>
<td>Mean S.D.</td>
</tr>
<tr>
<td>Ind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males Hi</td>
<td>.8425</td>
<td>.7605</td>
</tr>
<tr>
<td>Males Lo</td>
<td>.7935</td>
<td>.7142</td>
</tr>
<tr>
<td>Females Hi</td>
<td>.8793</td>
<td>.8712</td>
</tr>
<tr>
<td>Females Lo</td>
<td>.7602</td>
<td>.7023</td>
</tr>
<tr>
<td>Gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males Hi</td>
<td>.8547</td>
<td>.8705</td>
</tr>
<tr>
<td>Males Lo</td>
<td>.8610</td>
<td>.7739</td>
</tr>
<tr>
<td>Females Hi</td>
<td>.8757</td>
<td>.7925</td>
</tr>
<tr>
<td>Females Lo</td>
<td>.6841</td>
<td>.6410</td>
</tr>
</tbody>
</table>
TABLE 4

CORRELATIONS AND VARIANCES BASED ON MEANS OF EACH SITUATION IN EACH GROUP

<table>
<thead>
<tr>
<th>Group</th>
<th>First Presentation</th>
<th>Second Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>r²</td>
</tr>
<tr>
<td>Ind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males Hi</td>
<td>.9417</td>
<td>88.67</td>
</tr>
<tr>
<td>Males Lo</td>
<td>.6358</td>
<td>40.42</td>
</tr>
<tr>
<td>Females Hi</td>
<td>.8124</td>
<td>65.99</td>
</tr>
<tr>
<td>Females Lo</td>
<td>.9046</td>
<td>81.83</td>
</tr>
<tr>
<td>Gr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males Hi</td>
<td>.9274</td>
<td>86.00</td>
</tr>
<tr>
<td>Males Lo</td>
<td>.9571</td>
<td>91.60</td>
</tr>
<tr>
<td>Females Hi</td>
<td>.9737</td>
<td>94.80</td>
</tr>
<tr>
<td>Females Lo</td>
<td>.9025</td>
<td>81.45</td>
</tr>
</tbody>
</table>
Another aspect of this study also deserves discussion—the group SES. Since in this group scale, the BSE model accounts for above 90% of the variance, the group version of the SES would appear a satisfactory instrument for experimental purposes. There are numerous uses for this scale.

First, the group SES could have industrial significance. Employer-employee relations could possibly be enhanced by pretesting each potential member of the organization and assessing the fit of the model to him individually. If the fit is adequate, then the manner in which one judges the behavior of others can be used as a technique in helping to determine the manner in which one will interact with others in real situations. For example, one with an over-abundance of S on the scale might be questionable in a managerial position in that if he judges people's primary motive as self-interest, he could possibly create a cold, indifferent atmosphere toward the employee's individual well-being.

In addition, the SES could be used to assess the type of personality of the employee in order to place him in a position to which he would be best suited. For instance, if the individual were high on self-interest, he might have difficulty working in a position in which he would have the responsibility of interacting with others. Perhaps another person might score highly on E. This individual would possibly be hostile toward others in some situations. All in all, then, the SES would be an effective instrument to use in an industrial setting.

A second area in which the SES would be of interest is in the field of religion. In order to assess ministerial students, the SES could be
used to measure B, S, and E. A minister who judges others' motives as being largely self-interested might have difficulty in being an effective minister and in serving people. One who has a high B score would be better suited for this type of religious service.

Another interesting use for the SES in religion is for basic research. A topic to investigate would be the differences in responses to the SES among members of various congregations. There has been some speculation concerning reasons for some individuals' loyalty to the church. One reason might be that individuals are motivated to be loyal to the church and to believe in its doctrine because of true concern for that for which the church stands—for love of God and fellowman. Others could serve the church simply because they are motivated by selfishness, by interest in themselves; and their rigid adherence to church dogma is their way of seeking a secure future—their way of preparing for the "promise of Eternity." By securing measurements on the SES, one could assess how individuals judge others' behavior. A high S score as opposed to a high B score would reveal different social expectations. Perhaps these categories of responses would contribute some insight into the judge's motives for his own church loyalty.

Modifications could also be made to the SES in order to change the conditions in each situation. For example, one might ask how one would judge another person's behavior in public versus private situations; or perhaps the situations could be constructed such that the other individual whose behavior is to be judged would be of another faith, creed, or denomination. Indeed, the SES could be used to detect changes in responses as the situations are modified.
A third field of investigation is that of social factors. By obtaining scores on the SES from different races, people of different social classes, and individuals from different cultures, much could be revealed about differences in social expectations among people of diversified social backgrounds. If one's society influences the types of judgments that he makes, then observable differences should be apparent on the scores of B, S, and E and perhaps in the fit of the BSE model.

A fourth area for use of the SES is in placement services. An analysis could be made of how people who are judged as successful and happy in various professions respond to the SES. Similar responses on the part of a particular subject could indicate a personality suited to a particular type of job. The SES, then, could be an added tool to help in placing people in suitable positions.

Finally, the SES would be of use as a tool of research, much as it was used in this experiment. For instance, typical responses of a particular sample of individuals could be investigated and recorded in an effort to discover a response pattern among various groups of people.

In conclusion, the SES has much potential for research purposes in the field of psychology. Through experience with the scale and careful categorization of responses, the SES has possibilities for use in such applied fields of psychology as religion, industry, and placement services. The group scale has proven to be an effective tool for recording responses of many people at any given time and will be an appropriate technique for use in the previously discussed applications in order to enable an investigator to gather much data in a relatively short length.
of time. The individual version of the SES, however, does seem to be better in that it gets a better fit of the BSE model.

Summary

Forty Ss from introductory psychology classes participated in a study to determine whether or not the investigator's group Social Expectations Scale (SES) was a useful research instrument and to determine whether or not intelligence was a factor determining the fit of a particular cognitive model, the BSE, to the social expectations of Ss as measured by the SES. The BSE model assumes that a S's judgment of another's act is determined by the S's perception of the other as benevolent (B), self-interested (S), and/or desirous for equal outcomes (E). Results indicated that individual presentation of the SES produced better fits of the BSE model to the S's social expectations than did group presentation, but this difference in favor of individual presentation of the SES was significant only for the second administration of the SES. Both individual and group presentation versions of the SES appear to be useful as research instruments. The results of the study gave no evidence that intelligence is a factor determining the fit of the BSE model to social judgments, at least in samples of college students.
A SCALE FOR THE MEASUREMENT OF SOCIAL EXPECTATIONS
In the following exercises, we are going to consider good things and bad things that happen to people. A plus sign (+) will represent good things, those things that you would like to happen to you. A minus sign (-) will indicate bad things, those things that you would not like to happen to you. Remember:

+ Good
- Bad
On this page are two boxes. Pretend that each box is a separate social situation. Suppose there is some other person, someone just like you see everyday, but you know nothing about this individual and he knows nothing about you. He has a choice to make and can choose either the box on the right or the box on the left. As of now, each situation is identical. Each box is divided into two parts, the top part being shaded and the bottom being plain white.

Figure 1--Situation Boxes

Do not make any marks, but imagine that a plus (+) were to appear in the top of the box. That would mean that something good would happen to you. If the plus were in the bottom, then something good would happen to the other person. If a minus (-) were on top, something bad would happen to you; if a minus were on bottom, something bad would befall the other individual.
EXAMPLE 1

A situation as in Figure 2 means that if the other person chooses the box on the left, something good happens to him; if he chooses the box on the right, then something bad happens to him. Because the situation is circled, this means that he chose the situation on the left.

Now, we want you to indicate, by marking the line on the answer sheet like the one on the right corresponding to Example 1, how many people you think would make the same choice; i.e., would choose the encircled situation. There are no right or wrong answers. This entails merely what you think that other people would do if the encircled situation as well as the other situation were to confront them.

If you think that nobody else would choose that box, mark the line at the very bottom. If you think that almost everybody else would choose that box, and just a few would not, then you can put your mark up close to the top but not at the very top. If you think more would not choose it than would choose it, put your mark somewhere between the bottom and
the half mark. Finally, if you think that about as many would choose
the box as would not choose the box, then mark Half. You can mark the
line any place from the top to the bottom. The closer to the top your
mark is, the more people you think would choose this box, and the closer
to the bottom your mark is, the fewer people you think would choose this
box. Now put your mark where you want to, and then continue reading
this page.

Remember: this is not what you yourself would do in the particular
situation but how many other people you think would choose the encircled
situation in lieu of the one not circled.

Perhaps you felt that almost everyone else would choose the encircled
situation. If that was the case, the line might have looked like
Figure 3. If you felt that less than half but more than a fourth of the
other people would have chosen the encircled situation, your mark on your
answer sheet may resemble Figure 4.

```
Everybody  Everybody
         |
Half        Half
         |          |   |
Nobody      Nobody
          |   |
Figure 3  Figure 4
Example Answer (a) Example Answer (b)
```
EXAMPLE 2

As a second example, consider the following figure:

![Diagram showing two situations: one with a plus sign and another with a minus sign. The plus sign is circled, indicating the chosen situation.]

Figure 5--Example 2

In the situation on the right, something bad happens to the other person; on the left, something good happens to him. However, the one doing the choosing chose the encircled situation. How many other people do you think would choose the encircled situation rather than the one on the left? Follow the directions for Example 1 and mark your estimate on the answer sheet. Remember: the other person has chosen the encircled situation. How many other people do you think would make the same choice?

If you still do not understand what we are doing, ask the investigator for help.
Situation 1

Getting a little more complicated, suppose we have signs in the top and in the bottom of each box as in Figure 6.

![Figure 6 -- Situation 1](image)

If the other person chooses the encircled box, two things will happen and the other person knows that these two things will occur. Something good happens to you, and something bad happens to him. If he chooses this box on the right, something bad happens to you and something bad also happens to him. If he chooses the right-hand box, something bad happens to both of you, then; but if he chooses the left-hand box, something good happens to you while something bad is happening to him. As you can see, the left box is circled, meaning that the other person chose that particular situation out of the two pictured alternatives.

How many other people do you think would make the same choice as the one who chose the encircled box when both alternatives were open? Mark the line on your answer sheet showing how many people you think would choose the encircled box.
In the following fifteen (15) situations, please indicate on your answer sheet as you have done previously how many other people you think would make the same choice as the individual did in the encircled situations when both alternatives were available to him.

Situation 2

Figure 7--Situation 2

Situation 3

Figure 8--Situation 3
Situation 4

Figure 9--Situation 4

Situation 5

Figure 10--Situation 6
Situation 6

![Diagram for Situation 6](image)

Figure 11—Situation 6

Situation 7

![Diagram for Situation 7](image)

Figure 12—Situation 7
Situation 8

![Diagram for Situation 8]

Figure 13--Situation 8

Situation 9

![Diagram for Situation 9]

Figure 14--Situation 9
Situation 10

Figure 15--Situation 10

Situation 11

Figure 16--Situation 11
Situation 12

![Diagram of Situation 12: You (Y) and Other Person (OTHER PERSON) with symbols + and - representingEverybody, Half, and Nobody.]

Figure 17—Situation 12

Situation 13

![Diagram of Situation 13: You (Y) and Other Person (OTHER PERSON) with symbols + and - representing Everybody, Half, and Nobody.]

Figure 18—Situation 13
Situation 14

Figure 19--Situation 14

Situation 15

Figure 20--Situation 15
Situation 16

Figure 21--Situation 16
SOCIAL EXPECTATIONS ANSWER SHEET

Name
Classification
Sex
Score

Group: G1 I1
G2 I2

UP L

EXAMPLE 1

Everybody

Half

Nobody

EXAMPLE 2

Everybody

Half

Nobody

Situation 1

Everybody

Half

Nobody

Situation 2

Everybody

Half

Nobody

Situation 3

Everybody

Half

Nobody
Situation 13
Everybody

Half

Nobody

Situation 14
Everybody

Half

Nobody

Situation 15
Everybody

Half

Nobody

Situation 16
Everybody

Half

Nobody
References

