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Using the parallel disk method of activation analysis, 

141 
the (n,2n) reaction cross section in Pr was measured as 

a function of neutron energy in the range 15.4 to 18.4 MeV. 

3 4 

The bombarding neutrons were produced from the T(d,n) He" 

reaction, where the deuterons were accelerated by t.he 3-MV " 

Van de Graff generator of the North Texas Regional Physics 

Laboratory in Denton, Texas. The measurements were made-

63 62 

relative to the well known cross section for the Cu(n,2n) Cu 

reaction. 

The requirement implicit in the flux monitor technique 

is that the neutron flux experienced by each sample is the 

same. This enables complicated calculations of the neutron 

flux to be eliminated. The induced activities were, therefore, 

measured and related by appropiate equations to the cross 

section. The activity of each sample was followed by a 

1*2 by 1X2 inch Nal(Tl) detector in conjunction with a 400 

channel analyser. 

The neutron energies were determined by geometrical 

means. A frequency was assigned to each possible energy that 

intercepted the samples. These frequencies were then used 

to calculate the mean neutron energy striking the samples 

within one standard deviation. 



The experimental cross section was determined from 

standard activation analysis equations. Because the cross 

section equation possesses several independent variables, 

each of which is subject to randomness, care was taken to 

account for any errors which might have occured in their 

determination. This would include any errors inherent in 

the experimental procedure. 

A condensed version of the statistical model of the 

compound nucleus is given in addition to a unique approach 

to the characteristics of the nuclear temperature. The 

results of the calculations using this nuclear temperature 

give a far more acceptable shape to the excitation curve. 

The results of the parallel disk data are in close agreement 

with the theoretical predictions and the results of two 

other laboratories. 
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CHAPTER I 
" * - - - - ~ *"*•. ^ j ~ -*"• 13,3 

INTRODUCTION . . - - . _ -_ . . • .. 

Detailed information concerning the nature of fast 

neutron reactions is frequently used in reactor studies 

dealing with threshold detectors. The accuracy of the 

excitation curve of the corresponding reactions is desired 

to be on the order of ±5 percent. It will, therefore, be 
141 140 

the purpose of this paper to examine the Pr(n,2n) Pr 

reaction cross section as a function of neutron bombarding 

energy. 

The importance in obtaining a consistent set of values 
141 140 

for the Pr(n,2n) Pr cross section is twofold: (i) the 
1 140 140 

gamma spectrum of Pr is extremely clean; and, (ii) Pr 
2 

has a short half-life. Thus, these measurements are needed 
141 140 

to extend the range over which the Pr(n,2n) Pr reaction 

may be used to provide a useful flux monitor for measuring 

cross sections of short half-life samples. Moreover, if an 

adequate representation of the cross section is to be obtained, 

it must be measured as a function of neutron bombarding energy. 
3-7 

Although several experiments have reported the cross 
141 140 

section for the Pr(n,2n) Pr reaction near 14Mev, only a 

few have given results as a function of neutron bombarding 
8 

energy. Ferguson and Thompson first measured the 
141 140 

Pr(n,2n) Pr reaction cross section at neutron energies 
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ranging from 12.5 to 18 Mev. Bormann , et al. have also 

reported the cross section in the neutron energy range 12.6 to 

19.6 Mev. The experimental results from both of these 

laboratories exhibit close agreement with the theoretical 

predictions set forth by the statistical model of the 

compound nucleus. 
10 

Weisskopf and Ewing have proposed a theoretical 

approximation for (n,2n) cross sections as a function of 

neutron bombarding energy for nuclides with mass number 

greater than fifty. Their equation, however, possesses two 

parameters which are in general not known: The cross 

section for the emission of one neutron from the compound 

nucleus; and, the nuclear temperature. The cross section 

for the emission of at least one neutron from the compound 

nucleus would, ideally, be the sum of the cross sections for 

all the reactions which would involve the emission of one 

neutron. It is impossible, however, to know all of the 

cross sections, and especially as a function of neutron 

bombarding energy. On the other hand, this cross section 
can be approximated with the results being quite acceptable. 

3 4 
The T(d,n) He reaction was utilized to produce 

neutrons to measure the (n,2n) reaction cross section in 
3 4 

praseodymium. The deuterons in the T(d,n) He reaction 

were accelerated by the 2MV Van de Graff accelerator of the 

North Texas Regional Nuclear physics Laboratory, which 

produced neutrons from the reaction in the energy range 15.4 
o 

to 18.4 Mev at 0 in the laboratory system. 
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An examination of the Q-values , Table 1.1, for neutron 

induced reactions in praseodymium indicate that several 

reactions are possible. However, at the neutron energies 

mentioned, the (n,2n) process is highly dominant and may be 

regarded as a measure of the total cross section. To 

determine the praseodymium cross section, the flux monitor 

technique of cross section analysis was employed; where, 

copper was used as a flux monitor. Copper was chosen because 
62 2 

the Cu isotope has a half-life which is comparable to that 
140 63 62 

of Pr and the Cu(n,2n) Cu cross section is well known. 



TABLE 1.1 

Q-VALUES FOR NEUTRON INDUCED REACTIONS IN 1 4 1Pr 

Reaction Q-Value (KeV) 

141Pr.(n,Y)142Pr 5836 

1 4 1Pr (n,p) 1 4 1Ce .202 

141Pr(n,d)140Ce -3102 

141Pr(n,t)139Ce -5910 

141Pr(n,3He)139La -5620 

141Pr(n,a)138La 6180 

-41Pr(n,2n)140Pr -9368 

1 4 1Pr (n,np)140Ce -5326 

141Pr(n,2p)140La -8317 



CHAPTER II 

EXPERIMENTAL METHOD - • ..- - - -

Fast neutrons for this experiment were produced by the 3 4 

T(d,n) He reaction, where the deuterons were accelerated 

by the 2MV Van de Graff accelerator of the North Texas 

Regional Physics Laboratory. The tritium target, obtained 

from Texas Nuclear consisted of a 1-inch copper foil onto 
2 

which had been evaporated a lmg/cm layer of titanium which 

was later converted to titanium tritide, with the tritium 

content being approximately from three to five curies. 

A bending magnet was used for momentum analysis and 
energy control of the beam. After being bent through an 

o 

angle of 25 the deuteron beam passed through a slit assembly 

which monitored any fluctuations in beam spread. When the 

beam would fall on one slit more than the other, the potential 

difference produced would initiate a signal to be sent via a 

d.c. amplifier to the corona points. The corona load would 

then be either increased or decreased, thus maintaining a 

constant beam energy spread. The accelerating system was 
- 6 

maintained at 10 mm of Hg throughout the experiment. 

A Hall probe located at the center of the magnet measured 

the field strength of the magnet. When the magnet power 

supply current was changed, hence changing the field strength 

of the magnet, a potential difference would be produced in 



the Hall probe. This Hall probe voltage was calibrated to 

deuteron bombarding energy by the well known (p,y) and (p,n) 

resonance reactions on a lithium fluoride target. The 

deuteron beam energy was therefore known with a deviation of 

±5 KeV at the tritium target. Figure 2.1 shows the energy of 

deuterons as a function of the Hall probe voltage. 

The experimental procedure adopted for irradiating 

samples and measuring the induced activities of the samples 
12,13 

has been described in detail in earlier papers. The 

requirement implicit in the flux monitor technique is that 

the neutron flux experienced by each sample is the same. 

This enables complicated calculations of the neutron flux to 

be eliminated. 

For the parallel disk method, copper disks were obtained 

from Alpha Inorganic with chemical purity of 99.99 per cent. 

Praseodymium disks were cut from a 5 mil foil, to the same 

geometrical size as the copper disks. The chemical purity 

of the praseodymium was"cited by Alpha Inorganic to be 99.99 

per cent. The disks were 3/8 inch in diameter and 5 mil in 

thickness. 

Praseodymium disks were stored in oil when not in use 

and were coated with grease during activation analysis, due 

to the high oxidizing properties of the metal. Samples of 

grease and oil were irradiated and displayed no activation. 

For a typical activation analysis, the praseodymium and 

copper disks were placed in a nylon holder approximately 

3/8 inch from the tritium target. Exposure time to neutron 



2 0_ 

Hall Probe Voltage 

Figure 2.1 
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bombardment was six minutes for each run. The activated 

samples were prepared for counting within one minute from the 

end of activation. The samples were then counted separately 

with a 1 inch by 1 1/2 inch Nal(Tl) detector. Because both 
140 62 + L 

Pr and Cu are £> emitters , each sample was counted for 

annihilation radiation with counting intervals usually-

lasting seven minutes. . . : 



CHAPTER III 

DETERMINATION OF NEUTRON ENERGIES 

The kinematics of the two-body nuclear reaction predict 

the Kinetic energy of the emitted neutron will be given in 

the laboratory coordinate system by 

=- ( W a ' 1/2oose 
V n = ~ 

m„ + in (x n 

t /m am nE acs
2e + tma-ma)Ea4-mgoy/

2
 (3 ^ 

(ma + n n)
2 m,, + nn 

where, 

E n = Kinetic energy of the neutron 

Ed = Kinetic energy of the deutron 

m^ = Rest mass of the deutron 

= Rest mass of the neutron 

ma = Rest mass of the alpha particle 

0 = Angle between the incident deuteron and the emraitted 

neutron 

Q — Q value for the reaction 

Equation (3.1) can be written as 

V"i^ = A ± VA 2 + B (3.2) 

where 
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^ltldmn'^d^/'^cos® a * ma® /-a r>\ 
^ - u " u and B « (3.3; 

ma + % raa + mn 

Since the Q value for the ^T(d,n)^He reaction is positive and 

since ma is greater than m^, 

V A 2 + B > A (3.4) 

Thus, for neutron energies of physical significance 

= A + V A 2 + B (3.5) 

This equation when squared gives the energy of the emitted 

neutron as a function of deuteron bombarding energy and 

angular distribution in the laboratory system. 

It is important to note that the positioning of the 

sample relative to the tritium target reflects directly upon 

the activity produced. Examination of equation (3.1) infers 

that at large separation distances of the sample from the 

target, only those neutrons of energy characterized by small 0 

will intercept the sample. In other words, the target will 

appear as being a point source. This situation is ideal for an 

approach to monoenergetic neutrons intercepting the sample; 

however, the resultant activity produced is small. On the 

otherhand, small separation distances will produce high activity, 

but the neutron energy spread experienced by the sample is quite 

large due to the large number of possible values for 0. If 

the separation distance is chosen such that a suitable amount 

of activity is produced in the sample and the neutron energy 

spread is small in comparison to En, the following derivation 
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is valuable for determining the mean neutron energy experienced 

by the sample. 

The effective size of the tritium target will be assumed 

to be circular and characterized by the size of the deuteron 

beam spot. The target T (Figure 3.1) is considered to be a 

collection of point sources, each of which will emit a 

homogeneous neutron flux? that is, each value of 0 is equally 

likely as another. 

For a point source P located a distance h from the center 

of the target, neutrons of energy given by 8 and will 

describe a circle of radius d tan0. This circle, when inter-

secting the sample S, will give the effective contribution of 

the solid angle defined by 0. The angle <J> in the (x,y) plane 

locates the arbitrary area element dA given by 

dA == r 'dtan0cos0d<J>d0 (3.6) 

where 

r* = d(l+tan20) V 2 (3.7) 

is the distance from P to dA and d is the separation distance 

of the sample from the target. Because the solid angle 0 

encompasses every angle from 0 to 0, it is desirable to know 

the area A of the ring between 0 and 0+d0: 

0+d0 <|>, 
A = C J r'dtan0cos0d$d0 (3.8) 

9 ~^max 

The maximum value for <f> will be at the intersection of the 



12 

cHand 

Figure 3,1 

Target - Sample Geometry 
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circle 

x2+y2 _ g2 (3.9) 

and the circle 

x2+(y-h)2 - d2tan20 (3.10) 

or 

- arctan (. Tmax I y, -h/ 
(3.11) 

where y and x are determined from equations (3.9) and (3.10) 

to be 

s2+h2-d2tan20 
2h (3.12) 

and 

= Vd2tan20-(y-h)2 (3.13) 

Thus, equation (3.8) becomes for a particular h 

A = f 2d (1+tan 8) ' tan0cos0 
*0 

x arctan 
Vd2tan20- |(s2-h2-d2tan20)/2h] 

(s2-h2-d2tan20)/2h 
d0 (3.14) 

The maximum value of 0 will be the largest possible solid 

angle intersecting S; or, 

emax = a r c tan 



14 

Further conditions on equation (3.14) are 

2irrh+dtan0<s 

V a x = (3.16) 
O,s+dtan0<h 

Because <f> is a function of 0 and h, equation (3.13) can 

be calculated numerically. The effective contribution of any 

can be summed over all possible values of h^y or 

Aij = Z?f (0i)<j>(&i,hj) (3.17) 

where the quantity A^j represents the area of the ring 

intercepted by S for a particular 0^ and h^. If the sum over 

j is first executed, the area A ^ represents the frequency by 

which neutrons of energy E^ will intercept the sample S. Thus, 

the mean energy E m e a n for allpossible values of is 

®mean ~ £^ih^i^/p^ih (3.18) 

Hence, the standard deviation may be written as 

S.D. - ^ ( A ^ E ? ) - ^ ^ ) 2 /JAih (3.19) 

The assumptions upon which the preceeding derivations are 

based do not account for any variations which are inherrent 
*5 A 

in the T(d,n) He reaction. In actuality, the incident 

deuteron energy will have a spread of ±1 per cent due to 

fluctuations in the accelerating voltage and marginal error 

in the Hall probe calibration. Other variations such as self 

shadowing of the sample, finite size of the beam spot, deuteron 
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energy loss in the tritium target, distribution of the tritium 

in the target are analysed in detail in a previous paper.^ 

A combination of all the variations contributes ±1 per cent 

to the neutron energy. . : ; 

With these considerations, equations (3.13), (3.17), 

and (3.18) were calculated by virtue of the computer program 

MARSHEN which is reproduced in Appendix B. 



CHAPTER IV -- -

EXPERItffiNTAL CROSS SECTION 

Due to the grecit difficulty in obtaining direct measure-

ments from neutron induced reactions, the cross section must 

be inferred from the radioactive nuclei produced from the 

reaction. It is, therefore, imparitive to develope an 

expression for the cross section which is dependent upon 

the experimental capabilities mentioned heretofore. The 

following derivation is well known in reaction analysis for 

12 

constructing the experimental cross section. 

The rate of formation of a radioisotope under an 

irradiation is directly proportional to the number of target 

nuclei, the incident neutron flux, and the cross section of 

the target nuclei. If Ng target nuclei of cross section a 

are subjected to a neutron flux the rate of formation of 

Na product nuclei is given by 

= cr<j)N0 (4.1) 

Since at the beginning of the irradiation there are no, or few, 

radioactive nuclei present, the rate of decay of the product 

nuclei is insignificant to the rate of formation and the activity 

will grow linearly with time. However, as the population of 

radioactive nuclei increases, the decay rate becomes greater 

16 
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and the net production decreases. As always, this rate of 

decay is proportional to the number of radioactive nuclei ~ 

present ' - - " - - • • • - •' ' - - - - : -

dN 

W T = " X Na <4-2> 

where, X is the decay constant. Thus, the final net 

production rate is given by the rate of formation of the ̂  "• " 

product nuclei plus the rate of decay of the product nuclei 

dN_ 
_ a = a^ 0-iH a (4.3) 

Separation of variables and direct integration gives 

-iln(ff<f>N0-XNa) =' t+c (4.4) 

From the initial conditions at t=0, Na=0, the integration 

constant C is determined to be 

C « -Jln(a*N0) (4.5) 

Thus, equation (4.4) can be written as 

= Z122. (l-e"xti) (4.6) 
X 

where t± represents the total exposure time to the irradiation. 

The total number of transitions during the counting 

interval can now be related to the total number of active 
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nuclei produced at the end of the irradiation. If tx_. 

represents the time lapse from the end of activation to the 

start of the counting, the number of active nuclei present 

is given by 

N. = N e~ X t l • (4.7) 
X a 

If tj represents the time lapse from the end of activation to 

the end of the counting, the number of active nuclei present 

is given by 

N2 = Nae"
Xt2 (4.8) 

Thus the total number of transitions during the counting 

interval t^ to t i s 

N = N (e""
Xtl-e~xt2) (4.9) 

SL 

Substitution of equation (4.6) into equation (4.9) yields 

N i (l-e"
xti) (e~Xtl-e""^t2) (4.10) 

X 

For multiple decay of an excited nucleus to any 

particular level of the residual nucleus, the number of 

transitions observed, Ng, is related to the total number of 

transitions, N, by the branching ratio B to that particular 

level. The relation may be written as 

N b = BN (4.11) 
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Suppose that the excited nucleus decays in this manner to 

a level of the residual nucleus which in turn decays by 

gamma emission to another level. . For nuclei of large mass 

number and dense electron clouds, there is "a definite 

probability that the gamma will impart its energy to an 

electron; thus, not being detected. If N represents the 
c 

number of internally converted electrons and the number 

of gammas, then 

NB - Ne+Ny (4.12) 

The internal conversion coefficient is defined as 

<* = Ne/Ny (4.13) 

then 

Nb = (1+a)Ny (4.14) 

Of the gamma transitions Ny only a fraction G will be 

intercepted by the detector (due to geometry factors between 

the source and the detector); moreover, only a fraction f will 

undergo photoelectric interaction with the crystal. Thus, the 

total number of counts Np under a photopeak is given by 

Np = fGNy (4.15) 

Thus, equation (4.10) is given by 

P X(1+a) 
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Expressing this equation in terras of the cross section results 

in . • ;* 

- X (l+a)N • : " " 
a ... I,..' (4.17.) 

BfG N0(l-e~
xti)(e x-e A t 2) 

Since the decay constant is given by 

X = .693/T - (4.18) 

where T equals half-life, and the original number of target 

nuclei is given by 

N 
N = mP (4.19) 
u A 

where, - — 

N a = Avogadro's number 

m = mass of sample 

• A = atomic number of the isotope 

P = percentage abundance of the isotope 

the cross section may be written as 

(l+a)N A 
a = {-o (4.20) 

TBf4>mPNA(l-e
 A t l) (e A V 2) 

Based on the assumption that the flux experienced by the 

praseodymium disk is the same as that for the copper monitor, 

the cross section for the praseodymium may be expressed in 

terms of the cross section for copper: 
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1+a (Pr) Nq (Pr) 141T(Cu)B(Cu)f (Cu)G(Cu)m(Cu)P(Cu) 
a (Pr) = * i 

1+a(Cu) N (Cu) 63T(Pr)B(Pr)f(Pr)G(Pr)m(Pr)P(Pr) 
r 

€""* (
Cu)fcl(Cu)-e"^

 t 2 

a ( C u ) X i.g-X (Pr)ti e-X (Pr) ti (pr) _e~X (Pr) t2 (Pr)" ' 2 ( 4* 2 1 ) 

The cross section for praseodymium is seen to be a 

function of several independent variables, .each of which is 

subject to randomness. The cross section may be written as 

a = a(x1,x2,x3,..^,xn) ^ (4.22) 

where the independent variable x3,x~,x ,...,x correspond to 

the quantities N (Pr),N (Cu),...g(Cu) in equation (4.21). For 
Jr * 

small variations in x^fx2,x^...xn from their mean values, 

denoted by Ax^,Ax2,...,Axn, the resulting variation of a 

from its mean can be written as 

3cr 9a 3a 
Act = — Ax.,4 Ax,+...+-— Ax (4.23) 

3x1 3X2 3xn 

ignoring differentials of higher order. Squaring equation 

(4.23) results in 

(A a ) 2 = ^ _ _ ^ ( A X 1 ) 2 + . . . + ^ ^ ( A 3 f n ) 2 (4.24) 

where cross terms have been neglected. The standard deviation 

of a may be taken as being the square root of the mean-square 

variance given by equation (4.24): 
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S.D. = 
3cr \ 0 /3ff 
— (Ax,) +...+( 

.3 xr/
 x \3x. 

<AV 
n' 

1/2 
(4.25) 

The standard deviation for equation (4.21) can, hence, be 

written as 

1/2 

S.D. ff(Pr) = a(Pr) 
'ANp (Pr)\ /LA(CM) 

Np (Pr) / " " \ a (Cu) 
(4.26) 

The important qualifications of equation (4.26) are that each 

variable be independent of the other. The variance of any 

particular variable from its mean is given by the probable 

its determination. If this variance is not known, 

it will be taken to be the square root of the mean value. 

As mentioned previously, the activities of the praseo-

dymium and copper produced from irradiation were measured by 

counting the annihilation radiation of each. Because the 

annihilation gammas originate outside the atom, there are 

no internally converted electrons; consequently, the internal 

conversion coefficient is taken to be zero for both copper 

and praseodymium. It is also found that the ratio of the 

efficiency factors f(Cu)/f(Pr) is unity. This is due to the 

fact that the energy of the gammas counted is the same for 

each sample. 

The quantities Np,m,t^,t^, and t2 were determined from 

the experiment. All other quantities were accepted from the 

literature. Several values for the 63Cu(n,2n)62Cu reaction 
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cross section have been reported and are summarized in 

Table I of Appendix A. The other parameters in equations 

(4.21) and (4.25) and is reproduced in Table II of 

Appendix A. - ;~ 



CHAPTER V 

STATISTICAL MODEL OF THE COMPOUND NUCLEUS - -

The statistical theory gives an account of (n,2n) 

reactions with mass number greater than fifty, in terms of a 

rather simple model. If the variation of cross section with 

energy for this type of reaction is known, deductions about 

the effective energy level densities in the nuclei concerned 

can be made. The following t h e o r y i s oriented toward the 

basic purpose of the paper; that is, to investigate the 

(n,2n) cross section of praseodymium as a function of neutron 

bombarding energy and even more in particular to relate the 

resultant data to the statistical model of the compound nucleus. 

In 1936, Niels Bohr"'*® made the assumption that a nuclear 

reaction may be divided into two stages: (i) the formation 

of an intermediate semi-stable system composed of the original 

nucleus X and the incident particle a; and, (ii) the 

subsequent decay of this compound system C into the products 

of the reaction, Y and b. 

X+a-K>Y+b (5.1) 

When the compound system C is formed there is a time in 

which the incident particle spends in complicated motion in 

the nucleus sharing its energy with all constituents. 

Finally, there is enough energy distributed to one or more 

24 
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elementary or complex particles such that the compound system 

breaks up into a residual nucleus Y and outgoing particle b. 

Thus, the mode of decay of the compound system is regarded 

as being completely independent from the first stage of the 

collision process. 

The Bohr assumption is based on a nucleus of strong 

interactions and short range forces. When the incident 

particle comes within the range of the nuclear force, its 

energy will be shared quickly with the other nucleons of the 

target nucleus. In other words, the mean free path A of a 

nucleon entering nuclear matter is very much smaller than the 

nuclear radius. This is true if the incident energy is not 

too high. An approximation of the mean free path A is given 

by15 

AVL.8 xlO"15(E+E0)cm (5.2) 

where E is the energy of the incident particle and EQ is the 

average kinetic energy of the nucleons within the nucleus. 

The compound nucleus acquires an excitation energy 

E' = E+Sa where, Sa is the separation energy of the particle 

a from the compound nucleus. A large variety of nuclear 

reactions is possible here, depending upon those particles 

which require less than this excitation energy for emission 

from the compound nucleus. Clearly, if the excitation energy 

per nucleon is very much smaller than the average separation 

energy S of a particle from the compound system, it will take 
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a great many energy exchanges, and, hence, a long time before 

enough energy is distributed to one particle for its emission 

from the compound system. 

Thus, the criteria for the validity of the Bohr assumption 

are that the mean free path A of the entering nucleon be very 

much smaller than the nuclear radius R, and the average separ-

ation energy of a nucleon, or 

A«R E<< (A-l) S (5.3) 

These conditions necessitate the independence of the two 

stages (i) and (ii) of the collision process. Upon entering 

the nucleus, the incident particle quickly shares its energy 

with all constituents and thus has lost all identity as to 

its origin. The thorough mixing of the energy of the nucleons' 

implies that the mode of decay of the compound system depends 

only on its energy, angular momentum, and parity, but not on 

the specific manner in which it was formed. 

Although the above conditions are necessary but not 

sufficient, they will be regarded as correct in so far as 

this paper is concerned. The conditions are found to be 

fulfilled for nuclei with A>50 and incident energies 

E<30MeV; which are well within the realm of this paper. 

The cross section for a nuclear reaction X(a,b)Y can 

be inferred directly from the Bohr assumptions 

c r ( a , b ) = a (a)Ge(b) (5.4) 
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where, <?_(a) is the cross section for the formation of the 

compound system by a particle a incident upon the nucleus X. 

Gc(b) is the probability that the compound system C, once 

15 

formed, will decay by the emission of the particle b. 

An approximate description of crc (a) can be obtained if 

the following assumptions regarding the structure of the 
15 

nucleus are made: 
( i ) The nucleus has a well defined surface 

which is a sphere of radius R. The 
nuclear forces do not act between a and 
the center of the nucleus if the distance 
between a and the center of the nucleus is 
larger than R. 

(ii ) If the particle a penetrates the nuclear 
surface, it moves with an average kinetic 
energy T^n, which is much higher than its 
energy Ea outside. 

(iii) Particle a is subject to very strong 
interactions inside the nucleus, so that 
it interchanges its energy rapidly with 
the other nucleons. 

(iv ) The number of open channels is very large. 

Classically, the assumption is that all particles 

hitting the surface of the nucleus will form a compound 

system. Under this consideration, the cross section crc(a) 

can be given by the classical target area 

ac( a) = irR
2 (5.5) 

A wave mechanical discription alters the classical 

expression by allowing for the position of the particle a 

to be undefined within a wavelength X. Also, due to the 

sudden change in potential when the particle crosses the 

nuclear surface, there is a possibility of reflection. If 
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ip (r) is the wave function corresponding to the relative 

motion of the particle a and the nucleus X, it can be 

written as a sum of partial waves of given angular 

momentum Z: 

u» (r) 
Tp(r) = ij>(r,e) = I Y^#o(0) (5.6) 

I r 

where, u^(r) is the radial wave function and Y^g(0) are the 

spherical harmonics. 

The cross section crc(a) can be subdivided into partial 

cross sections: 

°o(a' - t5-7> 

where, CTc ^(a) is the cross section for the formation of the 

compound nucleus initiated by the particles with an angular 

momentum A. It is, also, approximately correct to assume 

that particles with angular momentum I move in the Jlth zone 

with an uncertainty in position of X. If T^, the trans-

mission coefficient of the Jtth partial wave, is the 

probability that a compound nucleus will be formed by particles 

of angular momemtum I, the cross section CT_(a) may be written 

as: 

cxc(a) = itXZZ(2Z+1)T!L (5.8) 
Jv 

It is more convenient to write equation (5.8) as: 

0c,Jt(a) ~ ttX2 (2A+1) (1-Ji.n̂ f.2) (5.9) 
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where, is the fraction of particles reflected or the 

relative amplitude of the outgoing wave with angular momentum 

St. 

The radial wave function ut (r) can be separated into 

incoming and outgoing waves: -

u^(r) = Au|~^ (r)+Bu|+^ (r) (5.10) 

where, A and B are constants. But, since is the fraction 

of particles reflected 

u^(r) = A uJ["
) (r)-nju|+^ (r) (5.11) 

The logarithmic derivative f^, evaluated at the nuclear 

surface, is defined as 

fA E R' 

1 du^ (r) 

^u$(r) dr /r=R 

The logarithmic derivative is utilized in order to gain 

information about the wave functions describing the nucleon-

nucleus interaction. The wave functions are solutions to the 

wave equation into which is inserted the nuclear potential. 

Thus, the logarithmic derivative depends upon the nuclear 

potential which describes the interaction. 

e 2 x 5 = u|-) (R)./u^+) (R) (5.13) 

and the penetration factor17 and the shift factor sA are 

defined as 
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R 
TTf lu;'' (r) 

du|+)(r) 

dr rr=R 
= A^+is^ (5.14) 

an equation for n jj, may be derived as 

n 
fCsi+iLn 

fCsCiht 

(5.15) 

From these definitions the cross section c r _ „ (a) is found to 
w X, 

be 

ac#Jt(a) = (2£+l) TTX' 
-4sAIin(f j,) {5.16) 

Re(f£)-A;!j
24|rm(fJl)-sJj

2 

where, 

Im(f %) 

Re(fJ 

Si 

F,(r) 

imaginary part of the logarithmic derivative 

real part of the logarithmic derivative 

po (dGe/dr)+Fa(dF^/dr) 

f - F r + < v r=R 

R 
"G^(dG^/dr)-F^(dF^/dr)' 

F o +G« r=R 

Gt(r) = 

Jp(z) 

Vz> 

/trKr̂ /2 

AT") J*+1/2(Kr> 

( - V Nc 

.(for neutrons) 

(Kr) 
\ 2 / M / 2 

spherical Bessel function of order p 

spherical Neumann function of order p 

(2ME)x/^/h 

(for neutrons) 
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M = reduced mass of a and x 

E = incident energy of a 

Since the penetration factor and the shift factor 

S£ only relate information dealing with extranuclear 

interactions, the logarithmic derivative is the only 

quantity which specifies information to the cross section 

ac ^(a) about intranuclear interactions. The logarithmic 

derivative can thus be specified by a nuclear model. One 

such model is the continuum model or strong interaction 

model or black nucleus model. Under the conditions set forth 

previously for the structure of the nucleus, assumption' (iv) 

is particularly pecular to the continuum model. This condition 

is met if the incident energy E is much higher than the first 

few excitation energies of the target nucleus. 

Under these conditions the incident particle a, once 

it has penetrated the nuclear surface, is very unlikely to 

reappear in the entrance channel. It may well be reflected; 

however, if it penetrates the nucleus, by assumption (iv), 

it is very unlikely that the particle will leave by the 

entrance channel if many other channels are available. 

In the continuum model, the entering particle moves 

within the nucleus with a high kinetic energy and immediately 

forms a compound nucleus sharing its energy with all other 

nucleons. Since the incident particle is assumed to form 

a compound nucleus and does not return, the wave function 

can be assumed to be that of an ingoing wave; that is, 
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u^CrJ've"1^ r<R *5.17) 

where, K is the wave number of the interior region. 

[2M(E+V-0)1
 1 / 2 

K = 1 JLi (5.18) 

Because the logarithmic derivative is continuous at the 

surface, the fundamental assumption of the continuum theory 

of nuclear reactions is 

clua(r) 

lu^(r) dr /r=R 
f^=R( — - — ) =-iKR (5.19) 

Thus, the equation (5.16) for cross section ^ for the 

continuum model results in 

4SnKR 
a c 9 (a) - (2&+1)ttX — — — — . (5.20) 

&1+(KR+Sj)2 

such that 

4s KR 
o c (a) = ir*

2S (2JJ.+1)—5 - r- (5.21) 
1 4^+(KR+Sj , ) 2 

This equation for the cross section for the formation of the 

compound nucleus will be elaborated upon later in the chapter 

to show its significance and limitation. 

Attention is now focussed to the decay of the compound 

nucleus. Gc(b) is the dimensionless probability that the 

compound nucleus, once formed, will decay by the emission 
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of the particle b to the probability for the emission of all 

other particles: 

G (b) = P k/
s f^ (5.22) 

c a d 

where, is the probability for the emission of particle d. 

The probability that the system will decay by one specific 

channel. G (3) , where 3 denotes this channel, is the ratio of 
c 

the energy widths 

gc(b) = rg/ir ± (5.23) 

where is the partial width for emission of particle b into 

17 
the specific channel 3, and i denotes any possible exit channel. 

18 
Weisskopf has shown that equation (5.23) may be written as 

G ($) = ii = kg"C'8' ' <5-24> 
c zr. Zk.CTc(i) 

i 1 i 3. C 

where Jc=l/X. 

This "branching ratio", as it is sometimes named, is 

sound to be dependent upon the level density of the residual 

nucleus and the maximum energy available for the emission of 

17 

particle b. Moore determines an integral equation for 

Gc(b) to be 
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Gc(b) = 
c(b)py(Ei-Eb)dEb ( 5 > 2 5 ) 

SjfEikoao(a)py(Ei"E«,aE<» : 

where E£ denotes the maximum energy with which particle b 

may be emitted, and p̂ , denotes the nuclear level density of 

the residual nucleus Y at excitation E*-E„. For a nuclear 
U VA 

reaction, the maximum energy E£ of the emitted particle b 

is Ea+QaJ;), where Ea is the incident particle energy, and 

Qak is the Q value for the (a,b) reaction. 

If the residual nucleus is considered as being a 

collection of nucleons, each of which is independent of the 

other, it can be assumed that each of them has a set of 

equally spaced single-particle energy levels. As the 

excitation energy increases, the single-particle level 

spacings decrease due to the greater number of ways of 

dividing the energy among the particles. The nuclear level ~ 

density p^, therefore, rises rapidly with increasing 

excitation energy and atomic number. Because the levels will 

now possibly overlap, they cannot be treated individually and 

a statistical weight is assigned to the single-particle 

levels which will be a measure of the level density in the 

same energy region. 

The approach for determining the level density is a 

statistical one and is expected to only give results that 

greatly oversimplify the actual situation with the orders 

of magnitude to be expected. The nucleus is likened to a 
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liquid drop. The excitation energy E is considered as heat 

which raises the nuclear temperature and consequently a 

particle is boiled off. From the Bohr assumptions, the 

process of evaporation of the particle is independent from 

the mode of formation of the compound nucleus, and depends 

only on its energy. The nuclear entropy S(E) is introduced 

as 

s(te) = lnp(E) (5.26) 

When the particle is emitted from the compound nucleus, it 

will leave the residual nucleus at a temperature T defined as 

T = T 3S (E)', 
^ (5.27) 

3E. 

The energy distribution of the evaporated particles is 

described by the classical Maxwellian distribution determined 

by the nuclear temperature T. The assumption can be made, 

therefore, that 

E = aT2 (5.28) 

The level density is therefore found to be 

P<E) = ce 2i a E ) V 2 - Ce2E/T (5.29) 

where C and a are constants. 

For neutron induced reactions, the above analogy can be 

extended to derive the cross sections a(n,2n), cx(n,p), c r ( n , a ) . 
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By appropriately modifying equations (5.25) and (5.29) the 

18 
results may be written as 

a (n,2n) = ac(
n) i - / i + f £ V

E c / T 

T 
(5.30) 

and 

ff(n,p) = a (n)eEP/T* (5.31) 

and 

a(n,a) = 2a (n)eEa/T 

c 
(5.32) 

where 

a (n) = cross section for the formation of the compound 

T 

Ec 

E n 

nucleus induced by neutrons 

= temperature of the residual nucleus 

= En + °n,2n 

= energy of the incident neutron 

Qn^2n
 = Q value for the (n,2n) reaction 

E* 
P 

E* 
a 

" Qn,p + {R " ST " V p 

= ^n1 + ~ " Kcrva 

6^ = paring energy for the residual nucleus 

= paring energy for the target nucleus 

KV = Coulomb interaction term 

Of particular interest here is the (n,2n) cross section 

of praseodymium. The text by Blatt and Weisskop'f recommend 

that for incident energies on the order of 15MeV that in the 
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case for praseodymium, the nuclear temperature is 

T * 1.1 to 1.5MeV (5.33) 

A more elaborate representation of the nuclear temperature 

19 
is given by Cameron 

tP"G 
3 (9 2ir Gu\ ^ — +/ — + 

2 \4 3 
(5.34) 

where 

U = excitation energy of the target nucleus 

G = Gz + G n 

Gz = density of proton orbits at the Fermi level 

GN = density of neutron orbits at the Fermi level_ 

Cameron uses the following equation to approximate Gz and GN: . 

an (k) +a-. (k) T+a0 (k) T^+a. (k) T
3+a4 (k) 

Gv (T) = J i 2 • 3 1 (5.35) 
1+T+T2+T3+T4 

where k refers to Z or N and the constants ag(k)...a^(k) are 

given in Cameron's paper. The values used for equations 

(5.30), (5.34), and (5.35) are cited in Table III of 

Appendix A. The determination of a (a) can be accomplished 
c 

o 1 

by numerical methods. The computer program COMPNUC was 

written to calculate a(n,2n) for nuclei with mass number 

greater than fifty, using Cameron's nuclear temperature. 



CHAPTER VI 

RESULTS AND CONCLUSIONS 

The cross section for the ^-^Pr (nf 2n) ̂ ®Pr reaction 

as measured by previous works is summarized in Table 6.1. 

Of particular interest here are the measurements of 
0 Q 

Ferguson and Thompson , and Bormann , et al. The method by 

which the excitation curve for these works is found is 
rather well known and widely used. As is usually the case 

for this method, lMeV and 3MeV deuterons are used to 

establish separate sections of the excitation function. 

The angular variation of neutron flux is calculated from 

the differential relative cross section calculations from 

22 9 papers such as Bame and Perry , and Paulsen and Liskien. J 

The two sets of data are then normalized to each other in 

the overlapping energy region, usually near 16.2 to 16.8MeV 

neutron energy. This relative excitation function is then 

normalized again to a well known absolute cross section 

measurement in the 14.0 to 14.5MeV region. This method is 

reported to have reproducibility on the order of ±.7 per 

cent.^ 

The calculations of the neutron energies, cross 

section, and corresponding errors were executed by the 

computer program MARSHEN and the appropriate equations 

mentioned heretofore. The results are given in Table 6.2. 

38 
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TABLE 6.1 

(n, 2n) *^°Pr Cross Section 

Neutron Energy Cross Section Reference 
(MeV) (mb) 

14.4 1801+135 3 
14.5 2060*700 4 
14.0 2002*225 5 
14.8 1378*206 6 
14.8 2100*300 7 
12.41+.12 1231*111 
13.77*.20 1386*125 
14.74*.27 1591*143 8 

15.78*.32 1737*156 
16.96*.34 1606*145 
17.9 8*.24 1667*150 
12.78*.11 1496*144 
13.44*.13 1485*143 
14.11*.15 1614*159 
14.87*.17 1700*164 
15.52*.17 1787*172 9 
16.18*.18 1801*174 
16.85*.18 1872*180 
17.78*.17 1905*183 
18.56*.15 1853*178 
19.42*.12 1804*174 
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Error analysis for cross section calculations included any 

variations in irradiation timing, counting intervals, mass 

determinations, geomentry, efficiency, and literature values. 

Compounded quadratically, the error in cross section 

determination is of the order of ±8 per cent. The largest 

contribution to the error stems from the quoted errors in 

the (n,2n) cross section for the copper monitor. If only 

the experimental variations of this work are considered, 

the excitation curve would be accurate to about ±6.6 per 

cent. Evidence of this fact is the measurement at 17MeV 

where the reproducibility is seen to be quite strong. 

The results of this work and the results of previous 

publications are displayed in Figure 6.1 with the solid curve 

representing the results from COMPNUC21 for the compound 

nucleus theory. The data tend to be in close agreement with 

Ferguson and Thompson, and Bormann, et al. As a whole, the 

experimental excitation function contends to be lower than 

theory predicts, especially at energies greater than 14MeV. 

It is important to note that competing reactions have not 

been accounted for in the experimental calculations. It 

would not be unreasonable to assume that near the vicinity 

of the (n,2n) reaction, competing reactions would contribute 

enough to account for the difference between the theoretical 

and the experimental values. 
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TABLE 6.2 

141Pr(n,2n)140Pr CROSS SECTION 
BY PARALLEL DISK METHOD 

Neutron Energy Cross Section 
(MeV) (mb) 

15.65±.14 JL965H61 
15.83±.16 2169+174 
16.00±.17 2028+162 
16.17±.19 20371163 
16.33±.20 1958±155 
16.481.21 1892+149 
16.631.22 21501167 
16.781.23 19681152 
16.931.25 20121155 
17.061.26 19941154 
17.061.26 19221148 
17.201.27 1916+146 
17.331.28 18901144 
17.591.30 1959+149 
17.851.32 2129+162 
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Tw6 other experiments were attempted as a checkon the 

validity of the parallel disk data; however, insufficient 

data and target difficulties prevented any conclusions 

to be made. These experiments, on the other hand, did bring 

the realization of the importance in a new flux monitor 

technique. 
25 

The powder method incorporates the technique by 

which powdered samples of unknown cross section are mixed 

with a powdered flux monitor. This eliminated any geometry 

variations which might be present. The mixture is irradiated 

and then the resultant activity is followed for several half 

lives. The absolute activity of each sample at the end of 

the irradiation period is then determined by least squares 

analysis, provided the half lives of the samples are well 

known. 

It would have been more desireable to have had a 

larger range of neutron energies. This can be accomplished 

by arranging samples behind the tritium target on a circle 

with center at the end of the target. An apparatus such as 

a scattering chamber would be useful here, since it would 

give precise angular readings. Using an experimental method 

such as this and coupled with the powder method of data 

reduction, a precise and reliable shape could be given to 

the excitation function. This is important at a time when 

fast neutron activation analysis has become useful in tracfe 

studies such as air and water pollution. 



Appendix A 

TABLE I 

63Cu(n,2n)64Cu CROSS SECTIONS 
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Neutron Energy Cross Section Reference 
(MeV) (mb) 

12.60±.ll 227±14 
12.76±*14 264±17 
12.98±.17 315±21 
13.10+.18 340±22 
13.54±.22 450±30 
13.70±.23 479+32 . -
14.05±.25 554±38 - — — 

14.24±.26 575±39 
14.42±.26 598±41 
14.80±.27 619±42 
14.99±.27 660±44 . .... . 23 
15.18±.26 715±48 
15.55+.24 738±49 
15.71±.23 762±50 
16.03±.21 808±53 
16.31±.19 811±51 
16.52±.19 819±51 
16.75±.20 834±49 
16.93+.47 850±57 
17.27±.46 849±56 
17.59±.44 853±56 
17.90±.42 868±56 
18.19±.39 881±57 
18.47±.36 916±59 
18.71±.33 931±59 
18.94±.29 939±59 
19.29±.20 941±58 
19.58±.19 966±57 
13.1 350 
13.3 470 
14.0 445 
14.1 480 
14.5 475 24 
15.0 550 
15.2 470 
15.5 530 
15.9 585 
16.1 630 
16.9 540 
17.5 625 
13.2 275 
14.8 640 25 
16.8 810 
19.5 950 
12.41±.12 186+19 
12.81±.15 233±21 
13.77+.20 378+34 8 
14.74±.27 507±45 

8 

15.78±.32 649±58 
16.96±.34 758±68 
77-98+.T4 QIZ+IK 
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PARAMETERS IN THE EQUATIONS 
FOR THE EXPERIMENTAL CROSS SECTION 

Parameter Value Error Reference 

T(Pr) 3.38 min .01 min 2 

T (Cu) 9.9 min .01 min 2 

B (Pr) > .47 .01 1 

B (Cu) .97 .01 1 

f(Cu)/f(Pr) 1.0 

O
 • 

o
 12. 

G(Cu)/G(Pr) 1.0 

o
 • 
o
 12 

P (Pr) 1.0 

o
 • 

o
 1 

P (Cu) .69 0.0 1 



TABLE III 

CAMERON'S* PARAMETERS USED IN THE EQUATIONS 
FOR THE THEORETICAL CROSS SECTION 
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Parameter Value 
(MeV-1) 

a0 z) 3.54270 

al z) 2.91280 

a2 Z) 2.95300 

a3 z) 2.68350 

a4 Z) 2.05714 

ao N) .79360 

al 
N) 2.24950 

a2 N) -3.12110 

a3 N) 5.85450 

a4 N) 3.67937 

•Reference 19 
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Appendix B 

MARSHEN 

THIS PROGRAM CALCULATES THE MEAN NEUTRON BOMBARDING ENERGY 
OF NEUTRONS STRIKING A SAMPLE, PRODUCED FROM THE 3T(D,N)4HE 
REACTION, AND ALSO THE REACTION CROSS SECTION FOR A SAMPLE 
RELATIVE TO A WELL KNOWN MONITOR CROSS SECTION. 

DEFINITIONS 

ITYPE=METHOD OF CALCULATION,PARALLEL DISK=l,POWDER=2 
XNPS=ACTIVITY OF SAMPLE 
XNPM=ACTIVITY OF MONITOR 
AS=ATOMIC NUMBER OF SAMPLE 
AM=ATOMIC NUMBER OF MONITOR 

ALPHS=INTERNAL CONVERSION COEFFICIENT FOR SAMPLE 
ALPHM=INTERNAL CONVERSION COEFFICIENT FOR MONITOR 

TS=HALF LIFE OF SAMPLE 
TM=HALF LIFE OF MONITOR ~ 

BS=BRANCHING RATIO TO THAT PARTICULAR ENERGY LEVEL FOR SAMPLE 
BM=BRANCHING RATIO TO THAT PARTICULAR ENERGY LEVEL FOR MONITOR 

FS=EFFICIENCY OF DETECTOR AT THAT PARTICULAR ENERGY FOR SAMPLE 
FM=EFFICIENCY OF DETECTOR AT THAT PARTICULAR ENERGY FOR MONITOR 

GS=FRACTION OF GAMMAS INTERCEPTED BY DETECTOR FOR SAMPLE 
GM=FRACTION OF GAMMAS INTERCEPTED BY DETECTOR FOR MONITOR 

XMS=MASS OF THE SAMPLE 
XMM=MASS OF THE MONITOR 

TI=IRRADIATION TIME 

TS1=TIME FROM BEAM OFF TO START OF COUNTING FOR SAMPLE 
TS2=TIME FROM BEAM OFF TO STOP OF COUNTING FOR SAMPLE 
TMl=TIME FROM BEAM OFF TO START OF COUNTING FOR MONITOR 
TM2=TIME FROM BEAM OFF TO STOP OF COUNTING FOR MONITOR 

PS=PERCENTAGE ABUNDANCE OF THAT PARTICULAR ISOTOPE FOR SAMPLE 
PM=PERCENTAGE ABUNDANCE OF THAT PARTICULAR ISOTOPE FOR MONITOR 

SIGMAM=MONITOR CROSS SECTION AT THAT NEUTRON ENERGY 
SIGMAS=CALCULATED CROSS SECTION FOR SAMPLE AT THAT PARTICULAR 

NEUTRON BOMBARDING ENERGY 



48 

DT=UNCERTAINTY IN THE TIMES TS1,TS2,TM1,TM2(ALL PRESUMED EQUAL) 
DTI=UNCERTAINTY IN THE BOMBARDING TIME, TI 
DX=UNCERTAINTY IN THAT QUANTITY X,WHEREX=ALPHS,ALPHM,FS,FM,GS, 

GM,XMS,XMM,PS,PM,TS,TM,OR SIGMAM 

RT=RADIUS OF TRITIUM TARGET 
DR=INCREMENT OF TARGET RADIUS 
S55RADIUS OF SAMPLE 
D=D I STANCE BETWEEN TARGET AND SAMPLE 
DTT=INCREMENT OF ANGLE 
XMA=REST MASS ENERGY OF ALPHA PARTICLE 
XMD=REST MASS ENERGY OF DEUTRON 
XMN=REST MASS ENERGY OF NEUTRON 
Q=Q-VALUE FOR THE 3T(D,N)4HE REACTION 
ED=KINETIC ENERGY OF DEUTERON IN LAB SYSTEM (MEV) 
EN=KINETIC ENERGY OF NEUTRON IN LAB SYSTEM (MEV) 

IMPLICIT REAL *8(A-H,0-Z) 
DIMENSION THETA(180),XR(300) 
DATA XMA,XMN, XMD,Q/3726.98DO,939.505DO,1875.49DO, 
* 17.577DO/ 
SIN(U)=DSIN(U) 
COS(G)=DCOS(G) 
TAN (U) =DTAN (U) '• 
ATAN(P)=DATAN(P) 
SORT(U)=DSQRT(U) 
ABS(X)=DABS(X) 
EXP(X)=DEXP(X) 

WRITE(6,2) 
WRITE(6,3) 

1 FORMAT(16X,F7.4,3H+/-,F6.4,10X,F7.2,3H+/-,F6.2) 
2 FORMAT(16X,7HNEUTRON,3X,5HERROR,1IX,5HCROSS,5X, 
* 5HERROR) 

3 FORMAT(16X,6HENERGY,2OX,7HSECTION,/) 
4 FORMAT(11) 
5 FORMAT(5E10.4) 
6 FORMAT(6E10.4) 
7 FORMAT(7E10.4) 

READ (5, 4) I TYPE 
READ(5,5)RT,DR,S,D,DTT 
READ(5,7)AS,ALPHS,TS,BS,FS,GS,PS 
READ(5,7)AM,ALPHM,TM,BM,FM,GM,PM 
READ(5,7)DALPHS,DTS,DBS,DES,DGS,DPS,DT 
READ(5,6)DALPHM,DTM,DBM,DEM,DGM,DPM 

14 READ(5,7,END=69)ED,SIGMAM,DSIGM,XMS,DXMS,XMM,DXMM 
READ(5,7)XNPS,XNPM,Tl,TS1,TS2,TM1,TM2 
XLS=.69315/TS 
XLM=.69 315/TM 
EXS=EXP(-XLS*TI) 
EX14=EXP (-XLM*TI) 
1=(ITYPE-1)99,99,100 
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CALCULATION OF CROSS SECTION FOR PARALLEL DISK METHOD 

99 EXS1=EXP(-XLS*TS1) 
EXS2=EXP(-XLS*TS2) 
EXMl=EXP(-XLM*TM1) - -
EXM2=EXP(-XLM*TM2) - -
GOD=(1.+ALPHS)*XNPS*AS*TM/((l.+ALPHM)*XNPM*AM*TS) 
DAMN=BM*FM*GM*XMM*PM*SIGMAM/(BS*FS*GS*XMS*PS) 
THE=(l.-EXM)*(EXM1-EXM2) 
WAR=l./((l.-EXS)*(EXS1-EXS2)) 
SIGMAS=GOD*DAMN*THE*WAR 
VAR=1./XNPS+1./XNPM+(DBS/BS)**2+(DBM/BM)**2 
VAR=VAR+(DFS/FS)**2+(DFM/FM)**2+(DGS/GS)**2 
VAR=VAR+(DGM/GM)**2+(DXMS/XMS)**2+(DXMM/XMM)**2 
VAR=VAR+(DALPHS/(1.-ALPHS))**2+(DALPHM/(1.-ALPHM))**2 
VAR=VAR+(DPS/PS)**2+(DPM/PM)**2 
VAR=VAR+((XLS*EXS1*DT)/(EXS1-EXS2))**2 
VAR=VAR+((XLS*EXS2*DT)/(EXS1-EXS2))**2 
VAR=VAR+((XLM*EXM1*DT)/(EXM1-EXM2))**2 
VAR=VAR+((XLM*EXM2*DT)/(EXM1-EXM2))**2 
VAR=VAR+(((XLM*EXM)/(1.-EXM) 
* -(XLS*EXS)/(l.-EXS))*DT/TI)**2 
VAR=VAR+((1.+XLM*(TMl*EXMl-TM2*EXM2 
* -TI*EXM))*DTM/TM)**2 
VARA=(TS1*EXS1-TS2*EXS2)/(EXS1-EXS2) 
VAR=VAR+((l.+XLS*(VARA-TI*EXS/(l.-EXS)))*DTS/TS)**2 
VAR=SQRT((VAR+(DSIGM/SIGMAM)**2)*SIGMAS*SIGMAS) 
GO TO 101 

CROSS SECTION BY POWDER METHOD 

100 GOD=(l.+ALPHS)*XNPS*AS/((l.+ALPHM)*XNPM*AM) 
BLESS=BM*FM*GM*XMM*PM*SIGMAM/(BS*FS*GS*XMS*PS) 
PEACE=(1.-EXM)/(1.-EXS) 
SIGMAS=GOD*BLESS*PEACE 
VAR=1./XNPS+1./XNPM+(DBS/BS)**2+(DBM/BM)**2 
VAR=VAR+(DFS/FS)**2+(DFM/FM)**2+(DGS/GS)**2 
VAR=VAR+(DGM/GM)**2+(DXMS/XMS)**2+(DXMM/XMM)**2 
VAR=VAR+(DALPHS/(1.-ALPHS))**2+(DALPHM/(1.-ALPHM))**2 
VAR=VAR+(DPS/PS)**2+(DPM/PM)**2 
VAR=VAR+((TI*EXS/(l.-EXS))*DTS/TS)**2 
VAR=VAR+((TI*EXM/(1.-EXM))*DTM/TM)**2 
VAR=SQRT((VAR+(DSIGM/SIGMAM)**2)*SIGMAS*SIGMAS) 
GO TO 101 

CALCULATION OF NEUTRON BOMBARDING ENERGY 

101 K=RT/DR 
STUD=0.0 
SUMA=0.0 
SUMEA=0.0 
ED=ED/1000. 



50 

B ( (XMA-XMD) *ED+XMA*Q) / (XMA+XMN) 
IMAX=ATAN((RT+S)/D)*180./(3.14159*DTT) 
DO 25 1=1,IMAX 
XX=0.0 
THETA(I)=3.14159*DTT*I/180. 
A=SQRT(XMN*XMD*ED)*COS(THETA(I))/(XMA+XMN) 
ROOT=A+SQRT(A*A+B) 
EN= ROOT * ROOT 
RPRIME=D*SQRT(l.+TAN(THETA(I))*TAN(THETA(I))) 
V=D*TAN(THETA(I)) 
W=V*COS(THETA(I)) 
DO 24 J=1,K 
XR(J)=DR*J 
Y=(S*S+XR(J)*XR(J)—V*V)/(2,*XR(J)) 
X=SQRT(ABS(V*V-(Y-XR(J))**2 )) 
IF(V-S)15,15,17 

15 IF(XR(J)+V-S)18,18,16 
16 IF(XR(J)-Y) 19,19,20 
17 IF(XP(J)+S-V)21,21,20 
18 PHIMAX=2.*3.14159 

GO TO 22 
19 PHIMAX=3.14159/2.+ATAN(ABS(X/(Y-XR(J)))) 

GO TO 22 
20 PHIMAX=ATAN(ABS(X/(Y-XR(J)))} 

GO TO 22 
21 DA=0.0 

GO TO 23 
22 DA=2.*RPRIME*W*PHIMAX 
23 AREA=DA*DTT/3.14159 

XX=XX+AREA/100. 
24 CONTINUE 

S UMEA=EN * XX+S UMEA 
SUMA=XX*SUMA 
EMEAN=SUMEA/SUMA 
S TUD=XX*EN*EN+STUD 
STDEV=SQRT(ABS(SUMA*STUD-SUMEA*SUMEA))/SUMA 
ANGLE=THETA(I)*180./3.14159 

25 CONTINUE 
WRITE(6,1)EMEAN,STDEV,SIGMAS,VAR 
GO TO 14 

69 CALL EXIT 
END 
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