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The problem of interest in this investigation was to 

determine the cross sections of five nuclear reactions which 

occur when irradiating natural palladium with neutrons which 

have energy values of 15*1» 15»9> and 16.3 MeV. The 

cross sections were measured relative to a copper monitor 

which was "sandwltched" in with the palladium target. The 

palladium and copper samples were counted to determine the gamma 

ray activity and the energy of each gamma ray present. These 

gamma ray spectra were analyzed with the computer program 

SAMPO. An explanatory exposition about SAKPO for the beginning 

and average user is included as an appencix. 

A development of the statistical model of nuclear reactions 

is Included along with a discussion of the model in which its 

strengths and weaknesses are pointed out. The computer program 

COMPNUC was written to carry out the computations involved in 

calculating cross sections by the use of the statistical model. 

The form assumed for the nuclear temperature was that of A . G. 

W. Cameron. COMPNUC is listed in an appendix. Graphical 

comparisons of the cross sections predicted by this model and 

the cross sections experimentally determined by this and other 

authors are given. 



The cross sections at the neutron energies listed above 

were found to be; (1) 102Pd(n#2n)
101Pd—1.35**126, 1.54±.12b, 

1.80±.12b and 1.66±.12b. (2) 108Pd(n,2n)107mPd—1.85±.26b, 

1.63±.26b, 1.96±.26b and 2.24±.26b. (3) 110Pd(n,2n)109mPd~ 

3.004,33b, 3.80±.33b, 33b and 4.90*.33b. 

(4) ̂ °^Pd(n,p)10^"mBh— 117±30mb, l6l±30mb, l85±30mb and 

183±3Omb. (5) lo8Pd(n,p)lo8mRh—7.0±1.Omb, ?.6±1.0mb, 

9.6±1.0mn and 11.0±1.Omb. 
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CHAPTER I 

INTRODUCTION 

It was the intent of this investigation to bring together 

the procedures and methods involved in the analysis of complex 

gamma ray spectra and their relationship to the measurement 

of (n,2n) and (n,p) reaction excitation functions. In deter-

mining the relationship between a particular photopeak in the 

gamma spectra and a reaction cross section, certain intrinsic 

properties of the material under study, such as beta-branching 

ratios and half-lives, must either be accepted from the liter-

ature or ascertained experimentally. If the variation of the 

cross section with energy for (n,2n) and (n,p) reactions are 

known, then the reactions may be employed as fast neutron 

detectors and monitors. 

Natural palladium was chosen as the sample upon which 

to conduct studies for three major reasons: (1) Natural 

palladium is composed of six naturally occuring isotopes 

of which five are more than ten percent abundant. (2) Very 

little excitation function work has been done in this mass 

range. (3) Neutron reactions on palladium lead to a wide 

range of reaction products, many with half-lives in a 

realm suitable to obtain good counting statistics within 

twenty to thirty minutes. Of interest in this paper are the 

108Pd(n,2n)107mPd, 110Pd(n,2n)109niPd, 10^Pd(n,p)10^®Rh, 



pd(n,2n)^'''pd, and ^^^Pd(n,p)^^^Rh reactions between 

15.1 MeV and 16.3 MeV. All previous cross section measurements 

made on palladium isotopes have been done using neutron 

energies between 14.0 MeV and 1*1.7 MeV. The most Intensively 

studied reaction on a palladium isotope is the ^^Pdtn^nJ^^Pd 

reaction. For the 110pd(n,2n)10^lnpd reaction Mangal and Gill1 

report 971±12mb at 14.0 MeV, Lu, RanaKumar and Fink2 report 

510±35mb at 14.4 MeV, and Hinetti and Pasquarelli"^ report 

510±30mb at 14.7 MeV. For the 110pd(n,2n)109m+gpd reaction 

2 
Lu, RanaKumar and Fink report 1926±l85mb at 14.4 MeV, and at 

14.7 MeV Minetti and Pasquarelli"^ report 1590±l40mb, Bonazzola, 
k 

Brovetto, Chlavassa, Spinoglio and Pasquarelli report 

2570±l60mb, and Paul and Clarke^ report 1948±1060mb. For the 
X 08 3.07m ^ 

Pd(n,2n) Pd reaction Minetti and Pasquarelli report 

517£80mb at 14.7 MeV. Finally, at 14.4 MeV Lu, RanaKumar and 

Fink2'6 report 637+45 for the 102pd(n,2n)101pd reaction and 

8.3±1.5mb for the 10®Pd(n,p)'!"0®Rh reaction. 

In order to compare experimental measurements with 

theoretical predictions, a computer program has been written 

to do theoretical calculations based on the statistical 

model. The statistical theory gives an account of (n,2n) 

and (n,p) reactions for nuclei with a mass number greater 

than approximately 50, in terms of a rather simple model. 

Computation of theoretical cross section values by use of 

this model requires knowledge of two parameters, the nuclear 

temperature and the cross section for the emission of the 



first neutron from the compound nucleus, which are generally 

not known. 



CHAPTER II 

EXPERIKENTAL METHOD _ 

Introduction 

In order to obtain activation cross sections, the parallel 

disc method was used. This method embodies the juxtaposition 

of a disc of the sample material and a disc of the monitor 

material. The criterion for the selection of the neutron flux 

monitor is that it must have an accurately measured excitation 

function over the energy range of interest and that its reaction 

products should have half-lives comparable to the half-lives of 

the reaction products to be studied. One of the principal 

advantages of this method is that natural elements, generally, 

can be used as samples instead of enriched or separated isotopes, 

since with high resolution Ge(Li) detectors all of the gamma rays 

can be identified and their half-lives followed simultaneously. 

Sample Preparation and Activation 

Copper was chosen for the monitor material, since the 

(n,2n) excitation functions of its two naturally occurring 

isotopes, ̂ Cu and ^Cu, have been extensively studied''"^. 

Also, the half-lives of the two reaction products, Cu 

(T1/2 = 9*9*^in.) and ^ C u( Tl/2 = 13»59 hr.), allow cross 

section measurements to be made for sample reaction products 

with half-lives ranging from a few seconds to many hours. 



Copper monitors were obtained, from Reactor Experiments, 

Incorporated in the form of discs having a radius of .375 in., 

a thickness of .010 in., and a chemical purity of 99.99 per 

cent. The palladium sample was obtained from Alpha Inorganic, 

Incorporated in the form of a foil having a thickness of .025 

in. and a chemical purity of 99*99 per cent. Activation 

samples were prepared by cutting discs of .375 in. radius from 

this foil. 

The neutron fluxes used in this work were produced on 

the Regional Nuclear Physics Laboratory*s"^ 2KV Van de Graff 
o k 

accelerator, utilizing the -^T(D,n) He reaction. 

3Ti + 2Dt ^He2 +
 1nQ + 17.6 MeV (1) 

The deuteron bombarding energy was varied from 300 KeV to 

1000 KeV. At these bombarding energies, the neutron energies 

at 0°, range from 15.38 MeV to 15.77 MeV. The activation 

sample was placed at a distance cm. from the neutron 

source during irradiation and therefore subtended an angle 

from 0® to 67^. Since the neutron energy is dependent upon 

1 it 

the angle of emission, program MARSHEN was used to calculate 

the neutron energies entering the sample, the weighted average 

neutron energy, and the standard deviation of the energies 

entering the sample. 

Due to„ the tenuity of the activation samples, the attenu-

ation of the neutron flux upon passage through either the 

copper or palladium discs was negligible. This was verified 



by constructing a sample which was composed of a palladium 

disc "sandwiched" between two copper discs, irradiating the 

sample, and then counting the positron annihilation activity 

in the two copper discs separately. This measurement showed 

the same amount of gamma activity in each disc, within the 

statistical error of the experiment. 

Gamma Spectra 

After an Irradiation period of approximately forty 

minutes the activation samples were taken from the neutron 

beam and counted separately for gamma activity. The palladium 

sample was counted first, since it has many short-lived 

product nuclei. The apparatus used in counting the samples 

was a Canberra true coaxial Ge(Li) detector which has a 

resolution of 2.4 KeV and an efficiency of 3*5 per cent, 

relative to a 3x3 inch Nal(Tl) detector at 25 cm., for the 

1.33 radiation from ^®Co, an Ortec 440A Selectable Active 

Filter Amplifier and a 1024 channel Nuclear Data-150 Analyzer 

which is interfaced to an IBM-24 keypunch for direct readout 

onto punched cards. A relative photopeak efficiency curve 

for gamma rays in the geometries used was constructed by 

normalizing several curves to a curve constructed from the 

known intensities of the -^^Ba decay. 

All gamma ray spectra taken in conjunction with this 

work were analyzed with SAMPO*^. SAMPO is a general-purpose 

semiconductor spectral analysis code. The program itself is 



capable of determining the necessary peak shape parameters, 

provided the user can supply strong, "clean", singlet photo 

peaks in the region of interest so that the empirical peak 

shapes may be reduced to functional form. The general 

formalism presumed to describe photopeaks consists of a central 

gaussian, with smoothly joined high and low energy exponential 

tails. The peak shapes are normally found to vary continuously 

as a function of energy; therefore, the exact- shape parameters 

at each point in a spectrum can in principle be obtained by 

interpolation between points for which standard peakshapes 

have been determined. Given accurate peak shape parameters, 

the program is easily capable of resolving very close-lying 

multiplets that could be visually detected only with great 

difficulty. Appendix B contains the instructions for the use 

of SAMPO on the IBM 3^0/50 computer. 

Of particular interest in this work are the photopeaks 

at 97.1, 188.0, 212.0, 581.0, and 590.3 KeV,which come from 

the reactions ^®^Pd(n,p)*^mBh, ^®Pd(n,2n)^®9mPd, 

108Pd(n,2n)107mPd, 108Pd(n,p)108mBh, and 102Pd(n,2n)101Pd 

respectively. There are many other photopeaks in the spectrum 

which can be readily identified, but either their areas were 

too small for an accurate measurement or they were multiplets 

which were so closely spaced that accurate intensity determin-

ations were impossible. In the latter case the use of 

separated isotopes would provide much more reliable results. 
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Equations for Data Analysis 

The rate at which a radioactive substance decays is 

proportional to the remaining number of radioactive atoms, 

dN/dt = -XN, ~ ' (2) 

in which 

X = ln(2)/T£, (3) 

where X is the decay constant for the radioactive substance, 

and is the half-life. Integrating, and substituting 

initial conditions yields 

N = N0exp(-xt), (*0 

where NQ is the number of radioactive nuclei at time t = 0. 

If all the decays in a certain time interval from ts to tO 

are counted, we obtain 

N = N0{exp(-xts) - exp(-xtO)}. (5) 

Since Ge(Li) detectors are not 100 per cent efficient, 

and since the detector does not subtend ^ffssteradians, an 

efficiency factor, f, and a geometry factor, G, must be 

entered into the equation to account for these physical 

limitations, 

N 0 = fGN = fGNQ{exp(-Ats) - exp(-XtO)}, (6) 

where f and G must be less than 1 for a real detector. If 



more than one nuclear state Is populated in the decay of the 

product nucleus and if the nuclear state depopulates by 

more than one mode, factors, B and D, must be included to 

account for these multiple branchings. Thus the number of 

gamma rays counted, is 

N o l = BNc/d = BfGN0{exp(-Xts) - e(-Xto)}/D, (7) 

where B and D must be less than or equal to 1. 

In many nuclei during gamma-decay, an interaction takes 

place between the emitted gamma and an inner shell electron. 

This process, known as internal conversion, causes the electron 

to be ejected from the atom after absorbing the gamma ray's 

energy. Thus the true intensity of a particular gamma ray 

is actually a sum of its observed intensity and the number 

of electrons emitted, and therefore, a correction factor is 

needed. These correction factors may be found in the litera-

ture for many nuclei. The true number of gamma emissions is 

related to the number of gammas counted, N c p, by 

(1 + a)N c p = BfGN0{exp(-Xts) - exp(-Xto)}/D, (8) 

where a is the ratio of the number of conversion electrons 

emitted to the number of gamma rays emitted. Solving Eq. (8) 

for NQ gives 

Ncv(l+a)D 
N° = BfG{exp(-Xts} - eip(-Xto)} ^ 
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Using activation analysis theory which says, 

I = N& $ a(1 - exp(-Ati)}, (10) 

where I is the intensity of radioactive decay at the end of 

the irradiation period; Na is the number of target nuclei; cf 

is the cross section for the reaction; is the neutron flux 

during irradiation, assumed constant; X is the decay constant 

of the product nucleus; and tl is the time of irradiation. 

As shorn previously in Eq. (2), the intensity at the instant 

neutron irradiation stops is 

(dN/dt) | t = Q = (11) 

Therefore, 

-XN0 = Na<j>c{1 - exp(-Xti) }. (12) 

Taking the ratio of equations of the above type, the unknown 

cross section may be measured relative to the monitor reaction, 

whose cross section is well known. Letting the subscript 1 

denote the sample material and 2 denote the monitor material, 

it is found that 

-A1N01 _ "alVl' 1 - ( 1 3 ) 

-X2M02 Na2t>2aZil ~ exp(-Ag^i) ̂  

or, rearranging 

"1 XlK01Wa2*2(1 - M , . 
" " V V a l V 1 " " P t - V 1 " ' 

°2 

As mentioned in a previous section, ^ is approximately equal 
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to $2, and also 

^ ln(2)/T£4l T 2 

*2 ~ ln(2)/<rj^ ~"T^ , ^5) 

where is the half-life for the sample, and Tg is the half-

life for the monitor, so, 

al !^01Na2{1 - exp(-X2ti)} 
TlN02Nal(1 "* exP("A1tl)> . * ' °2 

The number of nuclei in the sample can be found directly 

from the mass by the equation 

N a = - f ~ - N A , (1?) 

where NA Is Avogadro's number; A is the atomic number; and 

m is the mass. If the sample is a homogeneous mixture of 

many Isotopes, 

Na = NAm ^(Pi/Ai), (18) 

where the Pj, are the percentage abundances of the several 

isotopes in the sample and the A^ are their respective 

atomic numbers, since a study can be made of only one 

isotope at a time, let 

Na = N^m/A! (19) 

so that 

TZ " — i V l 2 <20> 
a2 2 1 1 
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Since the (n,2n) reactions in the copper monitor leave 

residual nuclei which "both give off 511 KeV annihilation 

gamma radiation, a correction must be made to NCp2 to enable 

one to extract only that portion of the radiation which comes 

from the Cu. This was done using the activation analysis 

described previously,which yielded the following equations; 

X = o2($N2){1 - exp(-*2tl)Hexp(~A2ts) - exp(-*2to)> (21) 

Y = o^(^N^){l - exp(-X^ti))(exp(-^^ts) - exp(-A^to)} (22) 

X*NCT>2 
nCP2»

 = x + r — . (23) 

Substituting Eqns. (9,20,23) into Eq. (16), the equation for 

the relative cross section becomes 

Ncpl(1*al)AlB2f2G2'r2P2m2D2{ 1 " exP("X2tl^} 

°1 ~ °2 N
Cp2*

( 1+a2^A2BlflGlTlPlmlDl{ 1 " expt-^ti)} 

(exp(-x2ts2) - exp(-x2to2)J 

x {'expt-A^ts^) - exp(-X ̂ to^)} ^ (2*0 

All of the cross sectional values reported in this paper 

were computed using Eq* (24). 

Experimental Errors 

The error limits shown in Pigs. 1-5 for the measured 

cross sections are root-mean-square errors and are composed 

of the following: 

(i) Error in the relative photopeak efficiency of the detector. 

This represents a large contribution to the error, as it Is 
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not possible to get a photopeak efficiency curve better than 

about 3 per cent accuracy, since the detector must be calibrated 

with sources calibrated to an accuracy of 1-2 per cent. Also, 

in the low energy region the curve becomes very steep and even 

a slight error in efficiency calibration can contribute large 

errors. In general this error was less than 6 per cent, 

(ii) Statistical error. This error in counting statistics 

was generally less than 3 per cent for all peaks except the 

peak at 97 »H Ke? which was about 10-15 per cent. The reason 

for this large error is that this peak was relatively small 

and was sitting on a very steep Compton edge. 

(ill) Error due to self-absorption. In the case of low energy 

gamma rays, the error amounted to 1-2 per cent at most, but is 

considerably lower than this for the higher energy gamma rays, 

(iv) Errors in timing. For long irradiation and counting 

times, the timing errors are negligible, except for short 

half-life activities where an error of 2 per cent was assigned. 

Spectra were taken with approximately 20 per cent dead time in 

the analyzer. In this manner the dead times should average 

out over the two counting intervals. 

The errors in the monitor cross sections, the internal 

conversion coefficients, the branching and depopulation ratios, 

and the half-lives of the sample or monitor activities are 

not included in the reported error, because any revision in 

decay schemes and conversion coefficient values permits easy 

recalculation of the cross sections in the future. 



CHAPTER III 

STATISTICAL THEORY OF NUCLEAR REACTIONS 

Introduction and Background 

In a nuclear reaction, the nuclear processes do not begin 

until the incoming particle, b, and the nucleus, X, have come 

within the range of the nuclear forces. The processes have 

ended when the product particle, d, and the residual nucleus, 

Y, have separated by more than the range of the nuclear force. 

One model proposes that during the period between the entrance 

of particle b and the exit of particle d, a compound nucleus 

Is formed whose properties decide the make up of d and Y. 

It was HIels Bohr*^'*^ who pointed out that it is useful 

to divide the nuclear reaction into two parts: first the 

formation of a compound nucleus, C, made up of b and X; and 

the subsequent disintegration of C into the reaction products 

d and Y. These two stages can be treated as independent 

processes, in the sense that the mode of disintegration of 

C depends only upon its energy, angular momentum, and parity, 

but not on the manner in which it has been produced. Thus, 

the two processes can be considered as completely separate 

processes. This is commonly called the Bohr assumption. It 

is based upon the supposition that the energy introduced by 

the arrival of the incident particle is statistically shared 

among all components of the compound:nucleus until one or 

1 /l 
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more of its constituent particles acquire sufficient energy 

to escape. 

Once the energy carried into X by b is shared with the 

other nucleons, it takes a great many energy exchanges, and 

thus, a considerable amount of time, before any one or more 

particles gain enough energy to be emitted. The large number 

of exchanges is the main reason for the validity, or approxi-

mate validity, of the Bohr assumption in many cases. A 

thorough mixing of the energy of the incident particle is 

expected so that the state of C, before emission, shows no 

traces depending on the special way in which the excitation 

energy was delivered. 

There are two conditions which must be met for the 

validity of the Bohr assumption to hold. First, the mean 

free path, M, of an entering nucleon must be much smaller 

than the range of the nuclear forces, 

M = 1.8 x 10"15 x (E-En) << R, (25) 

where E is the bombarding energy in the center of mass system, 

Ec is the average kinetic energy of the nucleons within the 

nucleus—which is on the order of 20 MeV—and E is the nuclear 

radius. Second, the incident energy must be much less than 

the atomic mass of the target minus one multiplied by the 

separation"energy of particle d, 

E << (A-l) x Sd. (26) 
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Both conditions are fulfilled for nuclei with an atomic 

number A greater than 10 as long as E is less than 50 MeV. 

It should also be noted that the above conditions are neces-

sary, but not sufficient, since there may-be mechanisms 

within the compound system which prevent the even distribution 

of the incident nucleon energy. Nevertheless, for the purpose 

of this investigation, the Bohr assumption will be considered 

totally valid. 

Theory 

According to the Bohr assumption, the cross section of 

the nuclear reaction X(b,d)X may be vrritten in the form 

°(b,d) = oc(b) Gc(d), (2?) 

where °c(b) is the cross section for the formation of a com-

pound nucleus formed by particle B and nucleus X, and Gc(d) 

is the probability that the compound nucleus, once formed, 

will decay by emitting particle d, leaving a residual nucleus 

Y. This formulation applies to all but elastic scattering, 

which is treated separately. 

To write an expression for a (b), some assumptions need 
o 

to be made which define the structure of the nucleus for the 

present consideration. (1) The nucleus has a well defined 

surface which is a sphere of radius H, and the nuclear forces 

do not act between b and X if the distance between b and the 

center of the nucleus Is larger than R. (2) If particle b 

penetrates the nuclear surface, it moves with an average 
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kinetic energy which is much higher than its energy, E, 

outside the nucleus. (3) Particle b is subject to strong 

interactions inside the nucleus so that it interchanges its 

energy rapidly with the other nucleons. (A) The number of 

open decay channels is very large. The fourth assumption, 

unlike the previous three, is peculiar to the continum 

theory of highly excited nuclei and is fulfilled when the 

incident energy, E, is much higher than the excitation 

energies of the first few excited states of the target nucleus. 

The cross section for formation of the compound nucleus 

through entrance channel b may be broken down into a sum of 

terms, 

ac&) = i20
ooti0>>- <28> 

In order to simplify the present considerations, the dependence 

of the compound system on parity and on the total angular 

momentum will be ignored. These terms introduce only small 

variations in the formation cross section and are, therefore, 

not essential in view of the very qualitative nature of the 

present considerations. Since the derivation of the expression 

for a
c>ji(h) is lengthy and is not of importance to the discus-

sion, it will be omitted. It may be found in several texts 

on nuclear physics*®"^. The expression for compound nucleus 

formations-for a given & is 

-4s£Im(ft) 
= ( 2 4 + 1)** + { I m(f }_s w ,(29) 
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where: 

Sz = (30) 

V£ = (P2(R) + G|(R)}-I (31) 

Pjj, (R) = kR3£(kR) (32) 

G^R) = -kRn£(kR) (33) 

^(kR) = spherical Bessel function of order & (3*0 

nA(kR) = spherical Neumann function of order £ (35) 

k = 1A = (2MbE)
l/2/fi (36) 

K^ = reduced mass of particle b (37) 

R = r0A
l/3 (38) 

rQ = nuclear radius constant
 a 1,4 x 10 13cm. (39) 

A£ = VAR{GA(dGA/dr) + F£(dF£/dr) >r=H (40) 

f. = R((dUp/dr)/U?} p = logarithmic deriva-
tive of the radial 
wave function, U£(r), 
at the nuclear bound-
ary . (41) 

If assumption 4 is fulfilled, it is unlikely that the 

compound system will decay back into the entrance channel. 

It is thus assumed that the wave function, in the entrance 

channel, will have the form of an ingoing wave, since it 

does not return. Therefore, the ingoing wave function has 

the form, 

U£(r) - exp(-iKr) for r<R, (42) 

where K is the wave number of the particle inside the nuclear 

surface. Therefore, a comparison of U| with the expression 
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for f£ and the fact that f^ must be continuous at the nuclear 

boundary give the fundamental assumption of the continuum 

theory: 

f£ = -1KB. (43) 

18 
According to Blatt and Weiskopf , K can be written as 

K = (K2 + k2)1'2, (44) 

where 

K0 = (9V8r3)
2/3. (45) 

Combining Eqns. (28-45), the expression for the creation of a 

compound nucleus is 

„ . 4s jKR 
o (b) SB 7T E (2̂ -fl) —-77- — i\f\ 
Cv ' £ = ' A £ + (KR+S^)* . (46) 

The value of K is the only information about the interior of 

the nucleus that is needed for the calculations of 0 (b). 
O 

According to Sq. (27), the above expression coupled 

with an expression for Gc(d) will yield the desired formula 

for cr(b,d). The derivation of G„(d) has been given by 
*1R pii-

Blatt and Weisskopf and Cuzzocrea, Notarrigo, and Perillo 

for the types of reactions studied in this work. Of particular 

interest here are the expressions for o(n,p) and cr(n,2n): 

a(n,p) = ac(n)exp{E*/T} (47) 

a(n,2n) = a (n)(l - (1 - Ec/T)exp(Er/T) }, (48) 
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where: 

2* = Qn,p + 6R - 6T - KpVp (k9) 

Qn^p - tiie Q~value for the (n,p) reaction (50) 

= pairing energies for the residual nucleus (51) 

= pairing energies for the target nucleus (52) 

Vp = Coulomb potential for protons (53) 

Kp = approximation to the penetrability'of Vp (5^) 

Ec = S + Qn,2n
 = ® (55) 

Sn = separation energy of a neutron (56) 

T = the nuclear temperature. (57) 

If particle b enters the nucleus and quickly shares its 

energy with all other nucleons, the excited compound nucleus 

will be in a state where the energy levels are very closely 

spaced. Owing to experimental uncertainty in the beam energy 

and in the finite resolution of detectors, it is Impossible 

to determine exactly which energy level is populated. It is 

thus more reasonable to speak of the density, D, of the nuclear 

energy levels at the approximate excitation energy. Assumption 

(3) argues that shortly after the entranee of particle b, all 

nucleons have the same energy; and therefore, the number of 

particles emitted is a measure of the statistical probability 

that a nucleon, or nucleons, will gain enough energy, through 

collisions ,with its neighbors, to escape the nuclear potential. 

This process is similar to that of evaporation from a liquid 

drop and is known, therefore, as the evaporation model. It 
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should be noted that the temperature determining the energy-

distribution of the emitted particles is not the temperature 

of the compound nucleus before emission, but the temperature 

of the residual nucleus after emission. In the thermodynamics 

of the liquid drop, the temperature before and after evapora-

tion is assumed to remain constant, but evaporation of one 

particle from the compound nucleus constitutes a relatively-

large loss of energy which reduces the temperature considerably. 

Using this thermodynamic analogy, if S(E) is defined as the 

entropy of the system, 

S(E) = log D(E), (58) 

then the nuclear temperature may be stated as 

T = (ds/dsT1, (59) 

where the Boltzmann constant k has been omitted which leads 

to a temperature which is k times the conventional one. 

Consequently, the temperature has dimensions of an energy. 

With these definitions, it is found that the density of states 

may be expressed as 

D(E) = constant x exp( 2E/T). (60) 

Using a more rigorous approach, Cameron^ has derived an 

expression for the density of states that has been found to 

compare well with the experimental data available. Prom Eqns. 

(^7,48), it is seen that what is needed from D(E) is the 
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expression for the nuclear temperature. Cameron gives this 

as 

,2 \ l/2 
1 —f-Q- 4 . + ( 4 - + )" (61) 

where 

U = E + P(Z) + P(N) (62) 

P(N) = Pairing energy for neutrons (63) 

P(Z) = Pairing energy for protons (64) 

G = G|j + Gg (65) 

Gm = density of neutron orbits at the Fermi 
level (66) 

G„ = density of proton orbits at the Fermi 
* level (67) 

He has also given a formula by which G may be calculated, 

A . (V_ + V )Tm 
G « —5^2 23 (68) 

mio 

which includes constants, Vgj.j* that are tabulated in his 

paper. Since the expression for T involves G and vice versa, 

an iterative procedure is used to obtain the final values 

for these parameters. 

The computer program.CQMPNUC w a s written to carry out 

the above procedures and to calculate a(n,p) or o(n,2n) 

within a given energy range. This program is listed in 

Appendix A. 

It should be remembered that the assumptions made in 

this theory greatly oversimplify the actual situation. Any 
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individual properties of the nuclei concerned are not taken 

into account. Accordingly, the results must be considered 

useful only as a first orientation regarding the orders of 

magnitude to be expected and the shape of the excitation 

function. 



CHAPTER IV 

DISSCUSION 

Experimental and Theoretical Results 

All theoretical calculations were carried out with the 

computer program COMPNUC (described in Chapter 3)* The values 

used for the Coulomb potential, Vp, and the penetrability of the 

Coulomb potential barrier, Kp, were taken from Dostrovsky and 

Fraenkel , the Q-values from Mattauch and Thiele , and the 
25 

pairing energies from Cameron . These values were used with r0 

-13 

equal to 1.5 x 10 cm. For the three (n,2n) reactions, the 

semi-empirical predictions of Pearlstein2® will also be given. 

Table I summarizes the values used in the experimental 

cross section determination. All beta-ray branching ratios 

TABLE I 

VALUES USED TO CALCULATE RELATIVE CROSS SECTIONS 

62Cu lOlpd 107mpa. 109ai2a lO^Bh 108mHh 

half-life 9.9® 3.4h 225 4.7m kAlm 6m 

conversion coeff. 0 0 .3 .52 .k 0 

8-branching ratio 100$ 39$ 100$ 100$ 3.8$ 80$ 

Y-branching "ratio 100$ 62$ 100$ 100$ 100$ 63.9$ 

Y-energy (KeV) 511 590.3 212 188 97.99 581.1 

9k 
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and gamma ray energies and branching ratios were taken from 

Lederer, Hollander, and Perlman*'^with the exception of the 
i A Q m 

values for Rh, which were taken from Pinston, Schussler, 
*5 A "i A Am 

and Moussa-5 . Rh is a recent discovery and has not yet 

been incorporated into any of the isotope data tables. All 

energy error bars represent one standard deviation of the neu-

tron energies entering the sample. 

The theoretical and experimental curves are in good 

agreement with the ^®Pd(n,2n)*^mPd, ^^Pd(n,2n)^"^Pd, and 

^"°®Pd(n,p)^°^raRh reactions. The latter two reactions lack 

information about Internal conversion coefficients for the 

590.3 KeV and 581.1 KeV gamma rays, respectively, but they 

should be very small. Both the *^Pd(n,p)*^mRh reaction 

and the 110pd(n,2n)10^mpd reaction excitation functions are 
1Ok t1Okm 

well above the predicted values. The pd(n,p) Rh 

excitation function has never been reported in the literature ; 

thus no comparison can be made which would show the validity 

of these values. The 110pd(n,2n)10^mpd has, however, been 

done by several experimenters between 14 KeV and 15 MeV, and 

their results seem to indicate that the experimental results 

reported here are too large by approximately a factor of 

three. This could be due to two thingss (1) an unknown 

gamma ray of approximately the same energy could have made the 

188 KeV gamma ray's intensity seem much larger than its true 

value, or (2) during the accumulation period, this gamma 

ray was too large for the memory capacity of the analyzer 
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and the overlap had to be unfolded by hand, which may have 

been done incorrectly,giving rise to a large peak error. 

In general the slopes of the experimentally determined 

excitation functions seem to be steeper than those of the 

theoretical curve. This may be due to some unknown flaw in 

the experimental procedure, or else this is truly the shape 

in this region. This shape would coincide with the theoretical 

predictions if the peaks of the theoretical cross sections 

were shifted to a slightly higher energy or if the magnitude 

of the peaks in the theoretical cross sections were too small. 

Since four of the reaction products are metastable states 

only, the theoretical predictions, which are total cross, 

sections, will give only a theoretical maximum limit on the 

metastable state cross sections. 

Conclusions 

This work was undertaken to gain insight and experience 

into the techniques and problems associated with the experi-

mental data reduction and analysis of complex systems while 

at the same time gaining experimental and theoretical knowledge 

of nuclear reaction systematics. The results presented here 

are meant only to be a first orientation to the cross-

sectional values. The gamma spectra are quite complex, 

containing many multiplets and extremely small photopeaks. 

This and many other problems mentioned previously point up 

the need for much work to be done in this area, using 

separated isotope techniques before definite assignments 
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should be made to the cross-sectional values. Once this work 

has been done on several of the isotopes in this mass region, 

the procedure followed in this work could be reversed, and 

complex systems made up of more than one element could be 

analyzed quickly, yielding very accurate determinations of the 

percentage abundance of all isotopes in the sample. This 

type of determination has an unlimited number of uses. If this 

type of analysis were done with charged particles, not only 

could isotope abundances be found, but also their locations 

in the sample could be pinpointed. This technique would be 

very useful to semiconductor manufacturers in that they could 

find precisely what impurities were in their products and 

where in the sample they were located. A study directed 

along these lines is already in progress. 

It was found that a very useful aid in this type of 

work would have been a table of gamma rays by energy. If 

such a table were made, listing only a few of the most intense 

photopeaks from each element, the first stage of the analysis, 

identification of the elemental composition, could be sped 

up tremendously. 



APPENDIX A 

C * * * * * * * * * * * * * * * * * * * PROGRAM COMPNUC v o v * * * * * * * * * * * * * * - ; , - * ^ - ^ 
c * * 
C * T H I S PROGRAM CALCULATES THE S T A T I S T I C A L MODEL ( N . P ) . * 
C * ( N , A ) , AND ( N , 2 N ) " C R O S S SECTIONS AS A FUNCTION OF * 
C * BOMBARDING ENERGY. THE FORM ASSUMED FOR THE NUCLEAR * 
C * TEMPERA IURE IS THAT OF CAMERON WHICH WAS USED IN H I S * 
C * FORMULATION OF THE DENSITY OF NUCLEON ORBITS AT THE * 
C * FERMI L E V E L . T H I S FORMULATION INCLUDES TERMS WHICH * 
C * TAKE INTO ACCOUNT THE P A I R I N G OF NUCLEONS IN EVEN- * 
C * EVEN, EVEN-ODD, AND ODD-EVEN N U C L E I . * 
C ~k~k 
C *"< wOC/wwv" v c * * * * * v * * * * * * * * * * * * * * * * * * * * * * * * * * -,'c * * * * * * * * * * * * 
C * * * * 
C * L I S T OF D E F I N I T I O N S * 
C A vc " * "V" * ** * * * Vc * "* * * 
C * * 
C * A = THE ATOMIC MASS NUMBER OF THE TARGET NUCLEUS * 
C * Z = THE NUMBER OF PROTONS IN THE TARGET NUCLEUS * 
C * MTARG = THE MASS OF THE TARGET NUCLEUS IN ATOMIC MASS* 
C * UNITS (AMU) * 
C * Q = THE Q-VALUE OF THE REACTION * 
C * ELAB = THE I N I T I A L BOMBARDING ENERGY IN THE LAB * 
C * SYSTEM * 
C * EMAX = THE F I N A L BOMBARDING ENERGY IN THE LAB SYSTEM * 
C * STEP = THE INCREMENTAL STEP IN THE BOMBARD ING ENERGY * 
C * KTYPE = THE TYPE OF REACTION TO BE CALCULATED * 
C * = 1 — ( N , P ) , = 2 — ( N , A ) , = 3 — ( N , 2 N ) ' * 
C * SPORA =THE B I N D I N G ENERGY OF THE PROTON OR ALPHA * 
C * PARTICLE TO THE TARGET ( ( N , P ) AMD ( N , A ) O N L Y ) * 
C * R1 = THE VALUE OF RO USED 1N THE EQUATION R = R O * A * * 1 / 3 * 
C * ( I N I T I A L I Z E D AT 1 . 5 * 1 0 * * - 1 3 C M . ) * 
C * I AGAIN = 0 READ A NEW SET OF DATA , I N I T I A L I Z E RO * 
C * = 1 REDO THE CALCULATION USING A NEW RO * 
C * GRAPH =THE TYPE OF GRAPH DESIRED(SEE SUBROUTINE P L O T ) * 
C * • 
C * * * * * * * * 
c * * 
C * THE FOLLOWING VALUES MAY BE OBTAINED FROM CAMERON S * 
C * PAPER IN THE CANADIAN JOURNAL OF PHYSICS 3 6 , P . 1 0 ^ 0 * 
C 
C * A N ( I ) AND A Z ( I ) = CONSTANTS USED IN THE CALCULATION * 
C * OF THE NUCLEAR TEMPERATURE * 
C * DELT = SUM OF THE P A I R I N G ENERGIES FOR THE TARGET * 
C * DELR = SUM OF THE P A I R I N G ENERGIES FOR THE RESIDUAL * 
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>wwC >V "?V /V "k ~k /V Vc "V Vc >V >V Vc v'c >V >V Vc >V >V Vc ><" Vc >V Vc ic vV vV >V >V >V >V >V >V #V ~k >V /V /V 7V "k >V Vc >V "vV ic it *?V /V /V ~k >V >V Vc 

IMPLICIT REAL*8(A-H,0-Z) 
REAL"8 K,KR,MNEUT,MTARG 
SQRT(X)=DSQRT(X) 
EXP(X)=DEXP(X) 
IFIX(X)=IDINT(X) 
ABS(X)=DABS(X) 
FLOAT(I)=DFLOAT(I) 
DIMENSION NAT(100),E(1000),COMPD(1000),Y(5),AN(5), 

* AZ(5),REACT(3),PK(10),PA(10) 
COMMON FJ(150),FN(150) 
COMMON/CONTRL/ INPUT,I PR I NT 
COMMON/PR INTO/NAT,REACT,MN,MX,MNN,MY,KTYPE 
DATA PA/.68,.82,.91,.94,.97,.975,.98,.98,.98,.98/ 
DATA PK/.42, .58, .68, .725, .77, .785, .80, .80, .80, .80/ 
DATA PI,HBAR,MNEUT,C,EMNEUT,ESU/3.1^15927,6.5817E-22, 

*1.008665,2.99793E+10,939.505,4.80286E-10/ 
EQUI VALENCE(SN,SP0RA) 

999 READ(INPUT,3»END=69)IAGAIN,R1 
3 FORMAT( 12,E 10.if) 

IF(IAGAIN.EQ.1)GO TO 14 
RO=1".5E-13 
READ(INPUT,2)A,Z,MTARG,Q,ELAB,EMAX,STEP,KTYPE 
READ(INPUT,2)DELT,DELR 
READ(!NPUT,2)(AN(I),1=1,5) 
READ(INPUT,2)(AZ(I),1=1,5),SPORA,GRAPH 

2 FORMAT(7E10.4,110) 
LTOP=IF IX(1.+(EMAX-ELAB)/STEP) 
ELAB1=ELAB 
DO 40 M=1,5 

40 Y(M)=AN(M)+AZ(M) 
MX=IFIX(Z) 
MN=IFIX(A) 
IF (KTYPE #EQ.'3) GO TO 11 
NU=IFIX(Z/10.) 
FURD=Z-FL0AT(NU)*10. 
GO T0(12,13,11),KTYPE 

12 MNN=MN 
MY=MX-1 
PM(PK(NU+1)-PK(NU))*FURD/10.)+PK(NU) 
GOTO 14 

13 MNN=MN-3 
MY=MX-2 
PM(PA(NU+1)-PA(NU))*FURD/10.)+PA(NU) 
GO TO 14 

11 MNN=MN~1 
MY=MX 
SN=-Q 
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I k I F ( I A G A I N . E Q . 1 ) ELAB-ELAB1 
i F ( R 1 . N E , 0 . ) RO=Rl 
R=RO*A* * * 5 5 5 5 5 5 5 5 
I F ( K T Y P E „ N E , 3 ) X V = ( Z * F L O A T ( K T Y P E ) * E S U * E S U ) / ( R + 

* F L O A T ( K T Y P E - l ) * 1 . 2 E - l 3 ) * b . 2 * n 8 l E - f 5 
WRi T E ( I PR 1 N T , 3 0 ) M N , N A T ( M X ) , R E A C T ( K T Y P E ) , M N N , N A T ( M Y ) , 

* ELAB,EMAX 
W R ! T E ( ( P R I N T , 3 7 ) R O , R 
W R I T E ( I PR I NT,bO)REACT(KTYPE) 
E LAB~ELAB*MTARG/(MTARG+MNEUT) 
DO 5, J = 1 , LTOP 

C 
c * * * * * * * CALCULATION OF THE NUCLEAR TEMPERATURE * * * * * * * 
C 

U=ELAB*DELT' 
I F ( K T Y P E . N E 0 3 ) U=ELAB+Q+SPORA+DELR 
S I G = 1 . E - 1 0 
FACTOR=0.0 
C 0 M P D ( J ) = O . 0 
I F ( ( E L A B + U ) . L E . 0 , 0 ) GO TO 9 
G = A N ( b ) + A Z ( b ) 
T = ( 3 , / P I / P I / G ) * ( 3 e / 2 e + S Q R T ( 9 . A . + 2 „ * P l * P I * G * U / 3 . ) ) 

7 T1=T 
G2=U.0 
T 2 = 0 . 0 
DOb M = 1 , 5 
G 2 = » G 2 + Y ( M ) * T * * ( M - 1 ) 

b T 2 = T 2 + T * * ( M - 1 ) 
G=G2/T2 
T = ( 3 . / P I / P I / G ) * ( ; j . / 2 . + S U R T ( i # . A . + 2 . * P I * P I * G * U / 3 . ) ) 
I F ( A B S ( 2 . * ( T 1 ~ T ) / ( T l + T ) ) . G T . . 0 1 ) G 0 T 0 / 

C 
C ****** CALCULATION OF THE CROSS SECTIONFOR THE * * * * * * 
C ********** FORMATION OF A COMPOUNDNUCLEUS * * * * * * * * * * * 
C 

K=SyRT(2 , *EMNEUT*ELAB) /C /HBAR 
C A P K = S Q R T ( ( y . * P I / 8 . ) * * . b b b b b b / / R O / R O + K * K ) 
KR=K*R 
CALL B E S L ( 3 2 , K R ) 
DO » M = 1 , 3 0 
FPRI ME=K*FLOAT(M)*F J ( M ) - K * K * R * F J ( M + 1 ) 
G PR IME=-K*FLO A T ( M ) * F N ( M ) + K * K * R * F N ( M + 1 ) 
V L = 1 . / ( ( F N ( M ) * F N ( M ) + F J ( M ) * F J ( M ) ) * K * K * R * R ) 
SL=K*R*VL 
D E L T A L = ( - F N ( M ) * G P RIM E+F J ( M ) * F P RIM E ) * R * R * K * V L 
P I G = ( 2 , * F L 0 A T ( M ) ~ 1 « ) * * * , *CAP K * R * S L / (D E L T A L * * 2 + (CAP K*R+ 

* S L ) * * 2 ) 
I F ( A B S ( P I G / S I G ) 8 L T . . 0 1 ) GO TO 10 

t5 SI G=S I G-t-P I G 
10 S I G = ( S I G + P I G ) * P I * l . E + 2 / / K / K 

GO TO ( l a , l b , 1 / ) , K T Y P E 
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17 B=(ELAB~SN)/T 
FACTOR= 1.-(1.+B)*EXP(-B) 
GO TO 1y 

18 FACT0R=EXP((Q+DELR-DELT-P1*XV)/T) 
IF(KTYPE.EO.2)FACT0R=2.*FACTOR 

1y COMPD(J)=SIG*FACTOR 
y E (J) =ELAB 1+STEP'-'FLOAT(J-1) 

E CM=E(J) *MTARG/(HTARG+MNEUT) 
ESTAR=E( J)-s-SN 
WRITE(IPRINT,60)E(J),ECM,ESTAR,T,SIG,FACTOR,COMPD(J) 

5 ELAB=(E(J)+STEP)*MTARG/ (MTARG+MNEUT) 
C 
c * * * * * * * plot GRAPH OF CROSS SECTION VS. ENERGY ******* 
C 

CALL PLOT(E,COMPD,1,LTOP,IFIX(GRAPH),I PR I NT) 
CALL OVFLO(O) 
WRITE(I PR 1 NT,70) 
GO TO yyy 

by CALL EXIT 
30 FORMAT(15X,3yHTHE STATISTICAL MODEL CROSS-SECT ION FOR, 

*I4,1 H~,A2,Ab, I , 1H-,A3 ,4HFR0M,F6.2,*+H TO ,Fb.2,4H MEV, 
* /,1i>X,41HUSlNG CAMERONS LEVEL DENSITY FORMULATION , 
* ///•) 

37 FORMAT{27X,J+HRO =,E12.5,^H CM.,27X,3HR =,E12.5,'+H CM., * /) 

bO F0RMAT(6X,5HE-LAB,8X,6HE-C.M.,6X,«HE-EXCIT.,UX, 
* 10HNUC. TEMP.,6X,6HS1G(N),10X,bHFACT0R,yX,3HSIG,Ab,/, 
* bX,5H(MEV),yX,5H(MEV),»X,5H(MEV),8X,5H(MEV),yX, 
* 5H(MB.),27X,5H(MB.),///) 

bO F0RMAT(it(5X,F8.2) ,5X,1PE 11.5,5X,E 11.5,5X,El 1.5) 
70 FORMAT(1H1) 

END 
BLOCK DATA 
IMPLICIT REAL*B(A-H,0-Z) 
DIMENSION NAT(100),REACT(3) 
COMMON/CONTRL/INPUT,I PR I NT 
COMMON/PR INTO/NAT,REACT,MN,MX,MNN,MY,KTYPE 
DATA INPUT,I PR I NT/5,b/ 
DATA NAT/2H H,2HHE,2HLI,2HBE,2H B,2H C,2H N,2H 0,2H F, 
1 2HNE,2HNA,2HMG,2HAL,2HSI,2H P,2H S,2HCL,2HAR, 
2 2H K,2HCA,2HSC,2HTI,2H V,2HCR,2HMN,2HFE,2HC0, 
3 2HNI,2HCU,2HZN,2HGA,2HGE,2HAS,2HSE,2HBR,2HKR, 
4 2HRB,2HSR,2H Y,2HZR,2HNB,2HM0,2HTC,2HRU,2HRH, 
5 2HPD,2HAG,2HCD,2HIN,2HSN,2HSB,2HTE,2H l,2HXE, 
6 2HCS,2HBA,2HLA,2HCE,2HPR,2HND,2HPM,2HSM,2HEU, 
7 2HGD,2HTB,2HDY,2HH0,2HER,2HTM,2HYB,2HLU,2HHF, 
« 2HTA,2H W,2HRE,2H0S,2HIR,2HPT,2HAU,2HHG,2HTL, 
y * 2HPB,2HBI,2HP0,2HAT,2HRN,2HFR,2HRA,2HAC,2HTH, 
A 2HPA,2H U,2HNP,2HPU,2HAM,2HCM,2HBK,2HCF,2HES, 
B 2HFM/ 
DATA REACT/bH (N,P),6H (N,A),6H(N,2N)/ 
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END 
SUBROUTINE BESL(L,XX) 

C 
C kVc/VVc*>V/V/VVc/VVcvVVr*.V>'cVcVckkVc«V>V>V~V"?VvVVck"kkvVVc*iVvV>V>VVcVck'k>VVc/VVcVc>V">V~V-k "k>V"A* 
C * * 
C * THIS SUBROUTINE CALCULATES SPHERICAL BESSEL FUNCTIONS* 
C * OF THE FIRST AND SECOND KINDS. BESSEL FUNCTIONS OF * 
C * THE SECOND KIND ARE COMMONLY CALLED NEUMANN FUNCTIONS* 
C * * 
c * * * * * * * * * * * * 
c * * 
c * F J ( I ) IS THE BESSEL FUNCTION OF ORDER 1 -1 * 
C * FN(1) IS THE NEUMANN FUNCTION OF ORDER 1 - 1 * 
C * * 
c >V -k -k -k k yV ic ~k >V Vc Vc Vr k ic X Vc /V it ic Vc Vr >V /V >V Vc >V -k * Vc >V -k >V >V Vc >V k ic ic >V i' k ,V ic >V >V >V ic k >V * k >V * Vc 
c 

IMPLICIT R E A L * S ( A - H , 0 - Z ) 
COS(X)=DCOS(X) 
S IN (X )=DSIN(X ) 
FLOAT( I )=DFLOAT( I ) 
DIMENSION F J ( 1 5 0 ) , F N ( 1 5 0 ) 
COMMON F J , FN 

3101 CALL OVFLOC-1) 
X=XX 
F N ( 1 ) = ~ C 0 S ( X ) / X 
F N ( 2 ) = ( F N ( 1 ) - S I N ( X ) ) / X 
IF(X—.01) 3 1 0 2 , 3 1 0 2 , 3 1 0 4 

3102 F J 0 = 1 . 0 - X * * 2 / 6 . 
I F ( L - I ) 3 1 0 3 , 3 1 0 3 , 3 1 0 5 

3103 FJ (1 )=FJO 
F J ( 2 ) = X * ( 0 . 3 3 3 3 3 3 3 3 ~ X * * 2 / 3 0 . ) 
GO TO 3110 

3104 FJO=SIN(X ) /X 
3105 L2=L+5 

F J ( L 2 + 1 ) = 1»E—10 
F J ( L 2 ) = 1 , 0 E - 1 0 * ( 2 . 0 * F L 0 A T ( L 2 ) + 1 . 0 ) / X 
L3=L2 -1 
DO 3106 LL=1 ,L3 
L1=L2 -LL 
FL1=L1 
F J ( L 1 ) = ( 2 . * F L 1 + 1 . ) * F J ( L 1 + 1 ) / X - F J ( L 1 + 2 ) 
I F ( F J ( L 1 ) ~ 1 . E + 3 0 ) 3 1 0 6 , 3 1 0 6 , 3 1 1 1 

3106 CONTINUE 
ZZ=FJO/FJ (1 ) 
DO 3107 L 1 = 1 , 2 

3107 F J ( L 1 ) = Z Z * F J ( L 1 ) 
I F ( L - 1 ) 3 1 1 0 , 3 1 1 0 , 3 1 0 b 

310b L2=L2 -4 
DO 3 W L 1 = 3 , L 2 
F J ( L 1 ) = Z Z * F J ( L 1 ) 

3109 F N ( L l M 2 . * F L 0 A T ( L 1 ) - 3 . ) * F N ( L 1 - 1 ) / X - F N ( L 1 - 2 ) 
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3 1 1 0 C A L L O V F L O ( I ) 
RETURN 

3 1 1 1 DO 3 1 1 2 U * = L 1 , L 2 
3 1 1 2 F J ( L l t ) = 1 . E - 1 0 * F J ( U ) 

GO TO 3 1 0 6 
END 
SUBROUTINE OVFLO(N) 

C 
• V A /V /V /V A / 

c * * 
C * SUBROUTINE FOR CHECKING THE OVERFLOW AND UNDERFLOW * 
C * INDICATORS * 
C Ju 

CJ . •*.'«* tvlri* **$<0 «. ̂  *• *.!•» vJU *»,?,*• %»t** *.1̂1 *,'4* «v!̂  *JL* *«?<** <JL»> «JL* *JL« fcu^ ^ 
A /V /V A /\ A /V /\ /V A /V /X /V A /V /* /V / \ /V A A /V /V / \ /V A A /S /V A /\ /V «r\ /\ S\ /\ /V /V A A A A /V A A A / v /V A A A 

c 
COMMON/CONTRL/ I N P U T , I PR I NT 

5 1 0 0 CALL OVERFL(KOOOFX) 
GO TO ( 5 1 0 1 , 5 1 0 6 , 5 1 1 0 ) , K O O O F X 

5 1 0 1 N1 = IAB S ( N ) 
W R I T E ( I PR I N T , 5 1 0 7 ) 

5 1 2 0 I F ( N ) 5 1 0 2 . 5 1 0 3 , 5 1 0 3 
5 1 1 0 N 1 = l A B S ( N ) 

WRITE ( I PR I N T , 5 1 1 1 ) 
GO TO 5 1 2 0 

5 1 0 2 W R I T E ( I P R I N T , 5 1 0 8 ) N 1 
GO TO 5 1 0 6 

5 1 0 3 W R I T E ( I PR I N T , 5 1 0 9 ) N 1 
5 1 0 6 RETURN 
5 1 0 7 F 0 R H A T ( 9 7 X , 2 1 H 0 V E R F L 0 W INDICATOR ON) 
5 1 1 1 FORMAT(96X,22HUNDERFL0W INDICATORON) 
5 1 0 8 F O R M A T ( 1 0 3 X , 1^-HBEFOREROUT I N E , 13) 
5 1 0 9 F O R M A T ( 1 0 3 X , 1*fHDURING ROUTINE, 13) 

END 
SUBROUTINE P L O T ( X P O I N T , Y P O I NT,KRDBGN,KRDEND,KONTRL, 

* I TAPE) 
C 
c - v -k - V * > ' c * * * * * -k -k k * * * * * - , V * p [ _ ( ) T S U B R O U T 1 N E * * * * * k * * * k k ~ k * k ' k * k - k ~ k - k - k 

C * * 
C * FORTRAN IV SINGLE PAGE PRINTER PLOT PROGRAM * 
CO- «»*?*•• «•.!,«» •JU- «JL» *, ̂  ijt^r %='.• *,1*. *»-V* *JL» -»-£*• *»,?.# )Jt* 

#\ / \ A / f A A /V /V /V y\ /V A /V /V /v A /V A A /V f \ /S /V A A /V /% /V /V /% *C /V A /V A A )v A •V Uv / f /V X A ** 'V /V A A 

C * * 
C * SUBROUTINE PLOT ARGUEMENT L I ST OF D E F I N I T I O N S * 
C * XPOINT IS THE X-ARRAY OF COORDINATES TO BE PLOTTED * 
C * YPOINT IS THE Y-ARRAY OF COORDINATES TO BE PLOTTED * 
C * XPOINT AND YPOINT MAY HAVE MAX IMUMDI MENS IONS OF 1 0 0 0 * 
C * * 
Q /V ^ -A- /V .V /V >V Vw'c /V >V >V >V Vc Vc Vc Vc Vc *>V *?V >V 

C >V 
C * KRDBGN IS THE SUBSCRIPT OF F I R S T POINT TO BE PLOTTED * 
C "KRDEND I S THE SUBSCRIPT OF F I N A L P O I N T TOBE PLOTTED * 
C * * -k -k 
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£ FV RV̂VVC'/VVC AT VC *>V A X ̂VCVC'SFE 

c * * 
L * K O W T K U L IS A N UPT ION TO SELECT THE TYPE OFPLOT * 
C * KONTRL = 1 CONNECTS CONSECUTIVE POINTS WITH A L INE * 
C * KONTROL = 0 PLOTTED COORD INATESAS I N D I V I D U A L POINTS * 
Q ic ic it /V 

«JL« *•.!,+ %J*X %y * >»A*» %JL» 
A /V /V /V /V /V A r\ *\ /V /\ /\ A A A A /\ A A 

C >V * 

C * I T A P E IS T H E D A T A S E T REFERENCENUMBER * 
C * * 
C.»- *•.'.« *J*» mj** *»'«* *X» %.fw» #Jt,* +S-j* *-{.*» ul.'«• »> v* *JL» «.L* At?** *-'«* *JLi vU ».*«#• »Xi« *Aw %«t *> 4̂.* wC %&w *»'•* »-̂  «hT—• *J#* -»v̂  *Jt*# 

/V A A /* /\ /V A /v A /V ** /V /\ /\ /V /V /\ /V A /A A /H /V /V /V /V /V A /V A /V A f\ /V ?\ /* /\ /WV /\ A A A /\ /\ /\ /V A 
C 
c 

I M P L I C I T R E A L * 8 ( A - H , 0 - Z ) 
I F I X ( X ) = I D I N T ( X ) 
A B S ( X ) = D A B S ( X ) 

A L 0 G 1 0 ( X ) = D L 0 G 1 0 ( X ) 
DIMENSION N A T ( 1 0 0 ) . R E A C T ( 3 ) 
DI MENS I ON N A M E ( 1 1 3 ) , M A T R I X ( 6 , 5 1 ) , L I S T ( 3 1 ) , X P Q I N T ( 1 0 0 0 ) 

* , YPOI N T ( 1 0 0 0 ) 
D I M E N S I O N S ( 2 0 ) , M 2 ( 8 ) , N 1 ( 1 6 ) , N 2 ( 4 ) , N 3 ( 2 ) , N 4 ( 1 6 ) , N 5 ( 4 ) 

* , N 6 ( 1 4 ) 
COMMON/PR I N T O / N A T , R E A C T , M N , M X , M N N , M Y , K T Y P E 

C 
«• «X» 

A A /V A /V A / \ /V A •* 

C 
DATA M L / I , 2 , 4 , 8 , 1 6 , 3 2 . 6 4 , 1 2 8 , 2 5 6 , 5 1 2 , 1 0 2 4 , 2 0 4 8 , 4 0 9 6 8 

* 8 1 9 2 , 1 6 3 8 4 , 3 2 7 6 8 , 6 5 5 3 6 , 1 3 1 0 7 2 , 2 6 2 1 4 4 , 5 2 4 2 8 8 ? 
C •* 
C * VR -A- V- -k -k -k -k -k ~k 

C 
DATA M 2 / 1 , 1 0 , 1 0 0 , 1 0 0 0 . 1 0 0 0 0 , 1 0 0 0 0 0 , 1 0 0 0 0 0 0 , 1 0 0 C 0 0 0 0 / 
D A T A N 1 / 4 H , 4 H * , 4 H * , 4 H * * , 4 H * , 4 H * * , 

* 4H * * , 4 H * * * , 4 H * , 4 H * * , 4 H * * , 4 H * * * , 
LY ]"]^ , --F H ^ /i [ J k-k-k y 4 ["I j 

C 
CJU +Jf* wJ* <*$*• *k'#« «JL> 

f\ A fV fS /V /V A A 

C 
DATA N 2 / 4 H 1 , 4 H 1 * , 4 H * , 4 H * * / 

C 
C ~k 'V ~k ~k V'C •>'<• -k •!< -k i< 
c 

DATAN3/4H1 , 4 H * / 
C 
C >V >V VV -JV -/V >V "k -k "k 

c 
DATA N 4 / 4 H , 4 H * , 4 H - - * - , 4 H — * * , 4 H - * — , 4 H - * - * , 

* 4 H 4 H - , 4 H - , 4 H * — * , 4 H , 4 H * - * * , 
•K 4 H ' ' ' — > ^ H —~'C, 4 H " ' ' 4 H / 

C 
C i^kic-kixicickick 
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DATA N 5 A H 1 - , 4 H 1 * , 4 H * - , k H * * / 
DATA N 6 A H 0 ,4H1 ,4i~!2 ,kH3 ,Vr fo ,kH5 

* 4H6 ,kH7 ,4hl8 ,bHS , 4 H . , 4 H + 
* kH- ,kH / 

C 
c * * * * * * * S E A R C H F 0 R MINIMUM AND MAXIMUM COORDINATES-
C 

CALL 0 V F L 0 ( - 2 ) 
XFIRST = XPOINT(KRDBGN) 

XF INAL= XPOINT(KRDBGN) 
YFIRST = YPOINT(KRDBGN) 
YF INAL= YPOI NT(KRDBGN) 
KRD = KRDBGN 

1 KRD= KRD + 1 
I F ( XPOI NT(KRD) - XFIRST ) 2 , 3 , 3 

2 XFIRST = XPOI NT(KRD) 
3 IF ( XPO I NT (KRD) - X F I N A L ) 5 , 5 , * + 
k XFINAL = XPOI NT(KRD) 
5 I F ( YPOI NT(KRD) - YFIRST ) 6 , 7 , 7 

6 YFIRST = YPOI NT(KRD) 
7 I F ( Y P O I N T ( K R D ) - YF INAL ) 9 , 9 , 8 
3 YF INAL= YPOI NT(KRD) 
9 I F ( KRD - KRDEND) 1 , 1 0 , 1 0 

10 V/RITE ( I TAPE, 11 ) 
11 FORMAT(1H1) 

V/R I TE( I TAPE, 100 ) MN ,NAT ( M X ) , REACT (KTYPE) ,MNN,NAT(MY) 
100 F O R M A T ( 5 3 X , \ k , 1 H - , A 2 , A 6 , I 4 , 1 H - . A 2 , / , 

* 46X ,33HCR0SS-SECTI ON(MB j V S . E N E R G Y ( M E V ) , / / ) 
I F ( ( XFINAL - XFIRST J / 1 0 0 . 0 ) 1 5 , 1 5 , 1 2 

12 I F ( XFIRST + XFINAL ) \ 3 , \ k , \ k 
13 I F ( ( X F I R S T / ( X F I R S T - X F I N A L ) ) - 1 0 0 0 0 0 . 0 ) 1 3 , 1 8 , 1 5 

14 I F ( ( X F I N A L / ( X F I N A L - X F I R S T ) ) - 1 0 0 0 0 0 , 0 ) 1 8 , 1 8 , 1 5 
15 W R I T E ( I T A P E , 1 6 ) 

16 FORMAT( PLOT ERROR,ZERO XPOI NT HORIZ 
* , ONTAL COORDINATE RANGE ) 
XFIRST = XFIRST - A B S ( 0 . 0 0 5 - X F I R S T ) 

XF INAL = XFINAL + ABS( 0 . 0 0 5 * XF INAL ) 
I F ( ( XF INAL - X F I R S T ) / 1 0 0 . 0 ) 1 7 , 1 7 , 1 8 

17 XFIRST= - 0 . 5 
XFINAL = 0 . 5 

18 I F ( ( YF INAL - Y F I R S T ) / 1 0 0 . 0 ) 2 2 , 2 2 , 1 9 
19 I F ( YFIRST + YF INAL ) 2 0 , 2 1 , 2 1 
20 I F ( ( Y F I R S T / ( Y F I R S T - Y F I N A L ) ) - 1 0 0 0 0 0 . 0 ) 2 5 , 2 5 , 2 2 

21 I F ( ( Y F I N A L / ( Y F I N A L - Y F I R S T ) ) - 1 0 0 0 0 0 . 0 ) 2 5 , 2 5 , 2 2 
22 W R I T E ( I T A P E , 2 3 ) 

23 FORMAT( PLOT ERROR,ZERO YPOI NT VERTIC 
* , AL RANGE ) 

YFIRST = YFIRST - A B S ( 0 . 0 0 5 * YF IRST ) 



4i 

YFINAL = YFINAL+ ABS( 0.005'*YFINAL ) 
IF(( YFINAL - YF IRST)/100.0 ) 2k,2k,25 

24 YFIRST = -0.5 
YFINAL = 0.5 

25 XSCALE = 100,0/(XFINAL -XFIRST ) 
YSCALE = 50.0/( YFINAL- YFIRST) 
DO 26 KOLUMN = 1,6 
DO 26 LINE - 1,51 

26 MATRIX(KOLUMN,LINE) = 0 
IF(KONTRL) 27,27,30 

C 
c ************|<oMTROL= 0, GENERATE PO INTPLOT************ 
C 

27 DO 29 KRD= KRDBGN,KRDEND 
LASTX = 1.5 + (XSCALE * (XPOINT(KRD) - XFIRST )) 
LINE = 51.5 - ( YSCALE * (YPOINT(KRD) -YFIRST )) 
KOLUMN = ( LASTX + 19 )/20 
LOCATN = (20 * KOLUMN ) - LASTX + 1 
KOMPAR = MATRIX( KOLUMN,LINE )/ M1( LOCATN ) 
IF( KOMPAR - ( 2 *( KOMPAR/2))) 28,28,29 

28 MATRIX(KOLUMN,LINE) = MATRI X(KOLUMN,LINE) + M1(LOCATN) 
29 CONTINUE 

GO TO 42 
C 
c ************KONTROL = 1, GENERATE LINE PLOT************* 
C 

30 LASTX = 1.5 + ( XSCALE * ( XPOI NT(KRD3GN) - XFIRST )) 
LINE = 51.5 - (YSCALE *( YPOINT(KRDBGN)- YFIRST )) 
KOLUMN = (LASTX + 19)/ 20 
LOCATN = ( 20 * KOLUMN ) - LASTX + 1 
MATRIX(KOLUMN,LINE) = Ml(LOCATN) 
DO 41 KRD = KRDBGN,KRDEND 
MOVEX = IFIX( 1.5 + ( XSCALE* (XPOINT(KRD) -XFIRST) 

*)) -LASTX 
MOVEY = IFIX( 51.'5 - ( YSCALE * (YPOINT(KRD) - YFIRST 

*))) - LINE 
JUMPX = 1ABS( MOVEX ) 
JUMPY = IABS( MOVEY ) 
IF(JUMPX ) 31,31,33 

31 IF( JUMPY ) 41,41,32 
32 LAGX = 0 

LAGY = 0 
MULT= JUMPY 
GO TO 38 

33 IF(JUMPY ) 34,34,35 
34 LAGX = 0 

LAGY „= 0 
MULT = JUMPX 
GO TO 38 

35 LAGX = (MOVEX * JUMPY)/( 2 * JUMPX ) 
LAGY = (JUMPX * MOVEY)/( 2 *JUMPY ) 
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I F ( JUMPX -JUHPY ) 3 & , 3 7 , 3 7 
3 6 MULT = JUMPY 

GOTO 3 » 
37 HULT = JUMPX 
38 DO f+O J = 1 ,MULT 

NEWX - LASTX + ( ( ( J * MOVEX)+ LAGX)/MULT ) 
NEWY = L INE + ( ( ( J * MOVEY ) + LAGY ) / M U L T ) 
KOLUMN = ( NEWX + 1 9 ) / 20 
LOCATN = ( 20 * KOLUMN ) - NEWX +1 
KOMPAR = MATRIX( KOLUMN,NEWY)/Ml( LOCATN ) 
I F ( KOMPAR - ( 2 " ( K O M P A R / 2 ) ) ) 3 9 , 3 9 , 4 0 

39 MATRIX( KOLUMN,NEWY) = MATRIX( KOLUMN,NEWY) + 
* M l ( LOCATN ) 

4 0 CONTINUE 
LASTX = NEWX 

L INE = NEWY 
4 1 CONTINUE 

C 
c | \ \ j THE PLOT STORAGE A R R A Y * * * * * * * * * * * * * * 
C 

4 2 LOCK = 0 
F IRST = YFIRST 
F I N A L = YF INAL 
GO TO 53 

43 DO 50 L INE = 1 , 5 1 
I F ( LOCK) 4 7 , 4 7 , 4 4 

4 4 LOCK = LOCK - 1 
DO 4 5 KOLUMN = 1 , 5 
I NDEX5 =MATRI X ( K O L U M N , L I N E ) / 1 b 
INDEX4 = I N D E X 5 / 1 6 
INDEX3 = INDEX4 /4 
INDEX2 = I N D E X 3 / 1 6 
INDEX1 = I N D E X 2 / 1 6 

INDEX6 = MATRIX(KOLUMN,L INE) - 1 6 * INDEX5 
INDEX5 = INDEX5 - 16 * INDEX4 
INDEX4 = INDEX4 - 4 * INDEX3 

INDEX3 = INDEX3 - 16 * INDEX2 
INDEX2 = INDEX2 - 16 * INDEX1 

L I ST( 6 * KOLUMN ) = N1( INDEX6 + 1 ) 
L1 ST( 6 * KOLUMN - 1 ) = N1( INDEX5 + 1 ) 
L I ST( 6 * KOLUMN - 2 ) = N2( INDEX4 + 1 ) 
L I ST( 6 * KOLUMN ~3 ) = N1( INDEX3 + 1 ) 

L I ST( 6 * KOLUMN - 4 ) = N1( INDEX2 + 1 ) 
45 L I S T ( 6 * KOLUMN - 5 ) = N2( INDEX1 + 1 ) 

INDEX! = 1+ ( M A T R I X ( 6 . L I N E ) / 5 2 4 2 8 8 ) 
L I ST ( 3 1 ) = N 3 0 N D E X 1 ) 
WR IT-E ( I TAPE , 4 6 ) ( L I ST( I ) , 1 = 1 , 3 1 ) 

4 6 F O R M A T ( 1 6 X , 1 0 ( A 2 , 2 A 4 ) , A 1 ) 
GOTO 50 

47 LOCK= 4 
DO 48 KOLUMN = 1 , 5 
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INDEX5 = MATRIX(KOLUMN,LINE)/16 
INDEXif = INDEX5/16 
INDEX3 = INDEX'fA 
INDEX2 =IHDEX3/16 
INDEX1 = INDEX2/16 
INDEX6 = MATR1X(KOLUMN,LINE) -16 *INDEX5 
INDEX5 = INDEX5 - 16 * INDEXlf 
INDEX** = INDEX4 - h * 1NDEX3 

INDEX3 = INDEX3 - 16 * INDEX2 
INDEX2 =INDEX2 - 16 * IMDEX1 
LI ST( 6* KOLUMN) = N4(INDEX6 + 1 ) 
LI ST( 6 * KOLUMN ~ 1 ) = Uk( INDEX5 + 1 ) 

LI ST( & * KOLUMN - 2 ) = N5( INUEX4 + 1 ) 
LI ST( 6 * KOLUMN - 3 ) = N M INDEX3 + 1 ) 

LI ST( 6 * KOLUMN ~b ) = N4( INDEX2 + 1 ) 
kb LI ST( 6 * KOLUMN - 5 ) = N5( i NDEX1 + 1 ) 

INDEX1 « 1 +( MATRIX(6.LINE)/52if2B8) 
L1 ST(31) = N3( INDEX1 ) 
INDEX1 = 101 - ( 2 * (LINE-1)) 
INDEX2 = INDEX1 + 9 

WRITE( I TAPE,1+9) (NAME(I),U1NDEX1, INDEX2), 
* (NAME(!J,1 = 111,113).(LI ST(!),1 = 1,31) 

kS FORMAT(1X,10A1,1HE,3A1,1X,10(A2,2A^),A1 ) 
50 CONTINUE 

FIRST = XFIRST 
FINAL = XFINAL 
GO TO 53 

51 WRiTE(I TAPE,52) (NAME(I),I=1,110),((NAME( I) , I =1 11,113) 
* ,J=1,11) 

52 FORMAT(1 HO,11X.110A1/9X,11(6X,1 HE,3A1)) 
CALL OVFLO( 2) 
RETURN 

C 
C *********ALPHANUMERIC CODE SCALENUMBER ARRAYS*****-
C 

53 STEP= ( FINAL -FIRST)/10.0 
KOUNT = AL0G10(1.01 * STEP ) -2.0 
IF(( 1.01 * STEP ) - 100.0 ) 5^,55,55 

5k- KOUNT= KOUNT - 1 
55 ROUND = 5.0 * ( 10.0 ** KOUNT ) 

IF( FIRST + FINAL ) 56,57,57 
56 FINAL = - FIRST 
57 FINAL = FINAL* ROUND 

KOEFF = AL0G10(FINAL) 
IF( FINAL -1.0 ) 5B,59,59 

5b KOEFF = KOEFF - 1 
NAME(111) = H 6(13) 
INDEX1 = - KOEFF/10 
1NDEX2 = - KOEFF -10 * INDEX1 
GOTO 60 

59 NAME(111) = N6(12) 
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INDEX1 = KOEFF/IO 
INDEX2 = KOEFF - 1 0 * INDEX1 

60 N A M E ( 1 1 2 ) - N 6 ( INDEX1 + 1 ) 
N A M E ( 1 1 3 ) = N 6 ( INDEX2 + 1 ) 
DO 61 I = 1 , 1 1 0 

61 NAME ( I ) = M 6 ( 1 i f ) 
KOUNT = KOEFF - KOUNT 
I F ( KOUNT - 8 ) 6 3 , 6 3 , 6 2 

62 KOUNT = 8 
63 KOEFF =~KOUNT - KOEFF- 1 

ADD = 0 . 0 
DO 71 I = 1 , 1 1 t v 

LEFT = ( 1 * 1 0 ) - 9 + ( ( 9 - K O U N T ) / 2 ) 
I F ( F I R S T +ADD ) 6 ' + s 6 5 y 6 5 

bk NAME(LEFT - 1 ) = N 6 ( 1 3 ) 
VALUE= ( ROUND -ADD ) - F I R S T 

GO TO 6 6 
6 5 VALUE = ( ROUND + A D D " ) + F I R S T 
6 6 INTEGR = VALUE * ( 1 0 . 0 * * K O E F F ) 
67 INDEX1 = 1 + ( I N T E G R / M 2 ( K 0 U N T ) ) 

I F ( INDEX1 - 11 ) 6 9 , 6 8 , 7 2 
68 INTEGR = INTEGR - 1 

GO TO 67 
69 NAME(LEFT) = N 6 ( ! N D E X 1 ) 

NAME( LEFT + 1 ) = N 6 ( 1 1 ) 
LEFT = LEFT + 2 

DO 70 J = 2 ,KOUNT 
INDEX1 = KOUNT - J + 1 

INDEX1 = 1 + ( I N T E G R / M 2 ( I N D E X 1 ) ) - ( 1 0 * ( I N T E G R / 
* M 2 ( I N D E X ! + 1 ) ) ) 

NAME( LEFT ) = N 6 ( I N D E X ! ) 
7 0 LEFT = LEFT + 1 
7 1 ADD = ADD + STEP 
7 2 I F ( L 0 C K ) ^ 3 , ^ 3 , 5 1 

END 



APPENDIX B 

SAMPO 

Usage 

program SAMPO is self contained. The user needs only to 

supply data and indicate which options and calculations are 

desired. All parameters used are initialized; they can be 

reset at any time, and they will remain at the new values 

until further changed. The usage of the code is controlled 

by program control cards the order of which should follow 

the desired operation to be performed. For uniformity all 

program control cards have the same format. This implies 

that numbers that would ordinarily be integers must be put 

in decimal form; they will be converted into integers by 

the program. 

The program control cards are written in FORMAT (A10, 

6E10.0,A*O . The first word, which identifies the function 

of the control card, is always started in card column 1 and 

is known as the codeword (CODEW). Up to six parameters 

(WHAT(I), 1 = 1 , 6) follow. The meaning of these parameters 

is determined by CODEW. These parameters are placed in card 

columns 11-20, 21-30» 51-60, and 61-70, respec-

tively, and must contain a decimal point. If nothing is placed 

in a parameter field the computer assigns a value of 0.0 for 

the respective WHAT(I). The last alphanumeric word, NAME 
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(i.e. the format), must appear in card columns ?l-7^. It 

may be used to identify the particular set of experimental 

data with which it is associated. It is not used by the 

program except for output purposes. The codewords, their 

functions and associated parameters are listed in the following 

section entitled Codewords. 

Data can be read from cards in any desired format, and 

eventually a magnetic tape reading subroutine will be inserted. 

For rapid, essentially automatic analysis of relatively simple 

spectra, a peak-search algorithm scans the raw data to locate 

statistically significant events (peaks). The program then 

performs peak-shape, energy, and intensity calibrations, fits 

the peaks found in the spectrum (FITDO), and provides complete 

statistical and calibration error estimates in summarizing 

the results. 

The automatic peak-fitting routine (FITDO) will select 

intervals such that up to five peaks may be fitted simultane-

ously. The user controlled fitting routine (FITS) will accept 

multiplets containing up to six components in a single fitting 

interval. 

The qualitative limitations of the code arise, as might 

be expected, from the form and statistical quality of the data. 

The user quickly becomes familiar with the situations the 

program will and will not handle. 
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Typical Analysis 

At this point it is desirable to illustrate how a user 

might proceed in carrying out the analysis of a typical 

spectrum using the SAMPO code. 

First Run 

The objective of the first run is to determine peak shape 

parameters and locations of the peaks that will be sensed by 

the automatic peak-finding routine. The fitting intervals that 

will later be selected by the program will be obtained so that 

the user can avert possible problems that may arise when the 

actual fitting is performed in the second run. The program 

data cards appropriate to this run are as given in Figure 6. 

_ _ Coi. Col. Col. Col. Col. Col. 
1 11 21 31 41 51 61 
CODEWORD WBAT(l) WHAT(2) WKAT(3) WHAT(4) WHAT(5) WHAT(6) 

OPTIONS 2. 

DATAIN 2. 

(12x,6(F8.0)) 

5/69 RUN TITLE (Col. 7-6*0 NUMBER OF CHANNELS(Col. 76) 102*4-. 

SHAPEDO 110. 90. 120. 1. 

SHAPEDO 722. 708. 741. 

PEAKFIND 

FITTEST 

CALDATA 2. 

STOP 

Fig. 6—Data cards for the first run 
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The user has now obtained standard peak shapes for the 

spectrum, as well as an Indication of how the program will 

try to analyze the data. With this information the user can 

decide exactly how he believes the data should be analyzed 

in the second run. 

Second Run 

The second, run consists, basically, of the automatic 

fitting of the photopeaks found in the spectrum by the peak-

search algorithm. For the present considerations it will be 

assumed that the user has obtained energy calibration data 

(from SHAPEDO or previously done PITDO centroids), as well 

as efficiency calibration data. This being the case, the 

analysis would proceed as in Figure 7» 

After the analysis the data are now fitted, and may be 

inspected for regions where the analysis is not satisfactory. 

The punched card output allows the user to carry out any 

further manipulations with regard to energy or efficiency 

calibration at a later time, without having to repeat the 

time consiming fitting process. This is a rather valuable 

safeguard against possible calibration errors. 

Third Run 

The user may now wish to "clean-up" one or more of the 

unsatisfactory fits. Also, the user may want to change the 

energy calibration, examine a polynomial fit to the energy 

or efficiency calibration, normalize the relative intensities 
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Col. Col• Col• Col. Col. Col• Col* 
1 11 21 31 4i 51 6l 
CODEWORD WHAT(1) WHAT(2) WHAT(3) WHAT(4) VJHAT( 5) WHAT(6) 

OPTIONS 2. 2. 2. 

DATAIN 2. 

(12x,6(p8.0)) 

5/69 RUN TITLE(Col. 7-64) NUMBER OF CHANNELS(Col. 76) 1024. 

SHAPEIN 100. 3.5 ^.7 1.8 1. 

SHAPEIN 500. 3.8 4.9 2.1 

SHAPEIN 650. 3.9 **.9 5 2.2 

SHAPEIN 800. 4.0 5.0 2.3 

SHAPEIN 1000. 4.2 5.1 2.4 

EN IN 109.952 88.35 0.05 1. 

ENIN 352.37^ 175.^2 0.10 

EN IN 512.402 242.67 0.15 

EPIN 100. .0324 5. 1. 

SPIN 500. .0116 5. 

EPIN 1000. .0032 5. 

PEAKFIND 

PEAKA DD 84. 233. 524. 528. 

PEAKDROP 526. 

PEAKLIST 

FITDO 

CALDATA 2. 2. 2. 

RESULT 1. 

STOP 

Fig. 7—Data cards for the second 
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to a specific gamma ray, or use any one of the other special 

options provided in the code. 

Col. Col. Col. Col. Col. Col. Col. 
1 11 21 31 41 51- 61 

CODEWORD WHAT(l) ¥HAT(2) ¥HA'f(3) WHAT (4) WHAT(5) WHAT(6) 

OPTIONS 2. 2. 2. 

DATAIN 2. 

(12X,6(F8.0)) 

5/69 HUN TITLE(Col. 7-64) NUMBER OF CHANNELS(Col. 76) 1024, 

1. 
SHAPEIN 100. 3.5 ^.7 1.8 

SHAPEIN 500. 3.8 4.9 2.1 

SHAPEIN 650. 3.9 ^.95 2.2 

SHAPEIN 800. 4.0 5.0 2.4 

SHAPEIN 1000. 4.2 5.1 2.5 

EN IN 109.952 88.35 0.05 

EN IN 352.37^ 175.^2 0.10 

EN IN 512.402 242.67 0.15 

EFIN 100. .0324 5. 

EFIN 500. .0116 5. 

EFIN 100. .0032 5. 

FITS 2. 1. 

1. 

1. 

3 507 519 525 529 

6 802 865 820 828 837 844 847 854 

CALDATA 2 V 2. 2. 

RESULT 1. 

STOP , 

Fig. 8—Data cards for the third run 
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The data cards used in the "clean-up" rim might appear 

as those in Figure 8. At the completion of the third run, 

the analysis should be complete. 

Note that the analysis proceeds in a completely logical 

fashion. Although the program will recognize any legal data 

input card, it obviously cannot perform a SHAPSDO function 

until the spectral data has been read in. Similarly, the 

FITDO function must be preceded by the PEAKFIND function so 

that the program knows the approximate locations of the peaks 

it is being asked to fit. In general, the program will ignore 

any unreasonable request, and it will proceed to the next 

codeword data card. 

Options 

Most codewords have associated with them a series of 

options (i.e. WHAT(I), I = 1, 6). It is up to the user to 

select the particular option which is applicable to the type 

of analysis he is doing. The correct option is transmitted 

to the computer by assigning a given value and card position 

to each. 

Codewords 

There are twenty-seven codewords within the SAMPO program, 

Their function, as has been shown in Figures 6-8, is to allow 

the user to* specify exactly which procedure is to be carried 

out on the data. Below is a list of codewords with their 

associated options. 
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CALDATA.—This codeword prints the data used for shape, 

energy, and efficiency calibration. Its options are: 

WHAT(l) Specifies shape calibration requested. 

= 0. Print no data 

=1. print arrays stored 

= 2. Print arrays read in or generated 

WHAT(2) Specifies energy calibration requested. 

= 0. Print no data 

=1. Print arrays stored for linear interpolation 

= 2. Print arrays read in or generated for linear 

interpolation 

= 3• Print coefficients stored for polynomial 

curve 

= Print coefficients read in or generated 

WHAT(3) Specifies efficiency calibration requested. 

= 0. Print no data 

= 1 . Print arrays stored for linear interpolation 

- 2. Print arrays read in or generated for linear 

interpolation 

=3. Print parameters of the functional fit stored 

= Print parameters read in or generated for 

functional fit 

COMMENTS.--This codeword reads comments that are on the 

following data card. These comments are printed out with the 

fitting results and tables. The COMMENT storage area is 

initialized with blank spaces. 
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DATA GRAPH.—This codeword makes a printer graph of any-

port ion of the spectral data. Its options are: 

WHAT(l) Type of graph desired. 

= 0. Semilogarithmic scale 

^ 0. Linear scale 

WI1AT(2) Which channels to plot. 

= 0. Plot every channel 

^ 0. Plot every WHAT(2) channel 

WHAT(3) Starting channel for the plot. 

= 0 . The first channel 

^ 0. Start with channel number WHAT(3) 

WHAT(^) Stopping channel for the plot. 

= 0. The last channel 

0. Stop with channel number WHAT(4) 

WHAT(5) Channels in each subdivision. 

= 0. Every 100 channels 

^ 0. Every WHAT(5) number of channels 

DATAIN.—This codeword reads in the indicative and 

spectral data. The card that follows the DATAIN card must 

have a run number in columns 1-6, alphanumeric Indicative data 

in columns 7-66, numeric indicative data in columns 67-70 and 

71-75, and the number of channels of data in columns 76-80. 

The options for this codeword are: 

WHAT(l) Type of input. 

= 0 . Search and read in the spectrum name from 

an input tape (not implemented at present) 
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= 1. Card, input, spectral data in FORKAT( 10P7.0) 

= 2. Card input, spectral data In FORMAT 

specified on the next data card 

WHAT(2) Disposition of old spectrum 

= 0 . Erase previous spectrum 

7* 0. Add previous spectrum multiplied by WHAT(2) 

to the nexf spectrum 

WHAT(3) Manipulation of new spectrum 

= 0. Nothing 

^ 0. Multiply new spectrum by WKAT(3) and add it 

to the previous spectrum 

EFDO."-This codeword assigns efficiency calibration values 

for linear interpolation to a peak fitted using FITD0 or FITS. 

This codewords options are: 

WHAT(l) Approximate energy of the point; accuracy 

tolerance of 3 KeV 

WHAT(2) Number of disintegrations corresponding to 

the WHAT(l) energy peak 

WHAT(3) Calibration error in per cent 

WHAT(^) Change accuracy tolerance to WHAT(*0 

WHAT(5) Disposition of old calibration table 

= 0. Add values to the existing efficiency 

calibration table 

= 1 . Start a new efficiency calibration table 

with the value on this data card 
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EFFITADJ.—This codeword adjusts the coefficient in 

the functional form of the fit to the efficiency data (fit 

generated in codeword BFFITDQ). The parameters of this 

codeword are; 

WHAT(l) Energy of adjustment point. 

WHAT(2) Efficiency at the WHAT(l) energy point. 

WHAT(3) Nothing. 

WHAT(*0 Parameters to be adjusted. 

= 1. Adjust parameters stored 

= 2. Adjust parameters generated 

EFFITDO.—This codeword performs a functional fit to the 

points read in under BFDO or EFIN. The resulting curve may 

be used for subsequent energy determination if specified on 

the OPTIONS card. Calibration error will be the same as in 

linear interpolation. The functional form used is 

Efficiency = C^*(E^2 + a) , 

where C^, Cg, C^, and are parameters to be determined and 

E is the energy in KeV. The one option for this codeword is: 

WHAT(l) Initial guess for parameter C^. 

EFFITIN.—This codeword reads in parameters from a previous 

functional fit to the efficiency data. Its options are: 

WHAT(l) Energy value for calibration error point in 

KeV. 

WRAT(2) Value of the parameter. 
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WHAT(3) 

WHAT (4) 

WHAT(5) 

0. 

1. 

Calibration error in per cent 

The index of the parameter (i.e. 1, 2, 3» 

or 4) 

Disposition of the old table 

Add calibration error pair to existing table 

Start a new calibration error table with 

these values 

EFIN.—This codeword reads in the efficiency calibration 

points to be used through linear interpolation. The options 

here are: 

WHAT(l) Energy of the calibration point. 

WHAT(2) Efficiency of the calibration point. 

WHAT(3) ' Calibration error in per cent 

WHAT(4) Nothing. 

WHAT(5) Disposition of the old table. 

= 0 . Add these values to the existing table 

= 1. start a new table with these values 

ENDO.-—This codeword assigns an energy calibration value 

for linear interpolation to a peak fitted under FITDO or FITS. 

The options for ENDO are: 

WHAT(l) Approximate channel location, accuracy 

tolerance of 3 channels or as specified 

by WHAT(^). 

WHAT(2) Energy in KeV. 

WHAT(3) Calibration error in KeV. 
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WHAT(*0 Assignment of accuracy tolerance. 

=0. Use the previous accuracy tolerance, 

initialized, at 3. 

4 0. Change the accuracy tolerance to WHAT(4). 

WHAT(5) Disposition of the old table. 

= 0. Add these values to existing energy 

calibration table. 

= 1. Start a net*/ table with these values. 

ENFITDO.—This codeword performs a polynomial fit to the 

points read in under ENDO or SNIN. The resulting curve may 

be used for subsequent energy determinations if it was 

specified on the OPTIONS card. Calibration error will be 

the same as in linear interpolation. The option for this 

codeword isj 

WHAT(l) The number of terms in the polynomial fit 

(i.e. 1 + degree of the polynomial). 

ENFITIN.—This codeword reads in polynomial coefficients 

and calibration error points. Its options are: 

WHAT(l) Value of the polynomial coefficient. 

WHAT(2) Energy value for the calibration error 

point. 

WHAT(3) Calibration error in KeV. 

WHAT(4) Disposition of the old coefficient table. 

=1. Start a new coefficient table. 

5̂  1. The number of the coefficient (i.e. 1 + 
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degree) to be added to this table. 

WHAT(5) Disposition of the old energy table. 

= 0. Add energy calibration error point to the 

existing list. 

= 1. Start a new energy calibration error list. 

EMIN.—-This codeword reads in energy calibration points 

to be used through linear interpolation (see OPTIONS). The 

options for EMIN are: 

WHAT(1) Exact channel location. 

WHAT(2) Energy of channel WHAT(l) in KeV. 

WHAT(3) Calibration error in KeV. 

WHAT(^) Nothing. 

WHAT(5) Disposition of the old table. 

= 0 . Add values to existing energy calibration 

table. 

s= 1. Start new table with these values. 

FIT DO.—This codeword performs complete nonlinear fits 

of peaks found by the peak search algorithm. Selection of 

the fitting intervals and the peaks included In each fit is 

done automatically as in FITTEST. The results include the 

exact channel locations, peak areas, energies, intensities, 

and statistical and calibration errors for each peak. The 

energy and efficiency calibration is performed as specified 

on the OPTIONS card which must come somewhere before this 

codeword. 
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FITIN.—This codeword reads in fitting results from 

punched cards. The FORMAT is the same as that used in 

punching results. The PITIN card is followed by WHAT(l) 

number of cards, which have the energy values in columns 1-8, 

the exact channel locations in columns 15-23, the energy 

errors in columns 30-35» the peak areas in columns 36-46, 

the peak Intensities in columns 53-63» the intensity errors 

in columns 69-74, and the run number in columns 75-80. The 

options for FITIN are: 

WHAT(l) Number of peaks to be read in. 

WHAT(2) Nothing. 

WHAT(3) Nothing. 

WHAT(^) Nothing. 

WHAT(5) Disposition of the old table. 

= 0. Add the results to the existing list of 

fitted peaks. 

=1. Start a new list of fitted peaks. 

FITREPBAT.—This codeword repeats the cases specified by 

the last FITS card. Only channel numbers read in under 

FOBMAT (1615) were stored, not the special weighting or 

initial guesses. WHAT(2), WHAT(3), and WHAT(5) have the same 

meaning as under FITS. 

FITS.—This codeword perforins complete nonlinear fits of 

peaks specified on the cards following. The computation is 

the same as performed under FITDO, only complete control 
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over the selection of intervals and peaks is possible. 

Special weighting and/or initial guesses for peak amplitudes 

may "be used. If special weightings (i.e. WHAT(2) = 2.) or 

initial guesses (i.e. WHAT(3) = 1.) are specified, they must 

follow each case in FORMAT (8S10.0). Up to 200 numbers may 

be specified in FORMAT (I6l5) and stored to be reused under 

FITREPEAT. The FITS card is followed by cards specifying 

WHAT(l) number of cases in FORMAT (l6l5). The number of 

peaks in the fit is in columns 1-5» the channel defining the 

lower limit of fitting interval is in columns 6-10, and the 

channel defining the higher limit of fitting interval is in 

columns 11-15* The centroid of the parabolic correction in 

the background polynomial is in columns 16-20. If columns 

16-20 are blank, the centroid is assigned to the peak channel 

for single peaks and the centroid of the fitting Interval for 

multiplets. The channel in the first peak in the fit is in 

columns 21-25» and the other peaks in the fit are in columns 

26-80. The options for FITS are: 

WHAT(l) Number of special cases specified by the 

following WHAT(1) cards. 

WHAT(2) Weighting factor. 

= 0. Normal weighting, that is 1/YBATA. 

= 1. Special weighting, 1/YDATA2. 

- = 2. Special weighting as read in for each data 

point as specified in FORMAT (8E10.0). 

WHAT(3) Initial guess. 
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= 0. .Autoiaatlc Initial guess. 

=1. Initial guess read in for each peak amplitude 

in FORMAT (3E10.0) after the card specifying 

the channels. 

WHAT(*0 Nothing. 

WHAT(5) Disposition of the old table. 

= 0. Add the results to existing list of fitted 

peaks. 

=1. Start a new list of fitted peaks with these 

results. 

FITTEST.—This codeword determines and prints the channels 

limiting the fitting intervals and the peaks included for each 

fit. The fitting is not performed under this codeword. 

OPTIONS.—This codeword specifies Internal calibrations 

and options. The options here are: 

WHAT(l) Specifies shape calibration, initialized 

at 2. 

=1. Use arrays stored in. 

= 2. Use arrays generated or read in. 

VIHAT(2) Specifies energy calibration, initialized 

at 0. 

= 0 . No energy calibration. 

= 1 . Use arrays stored for linear Interpolation. 

=2. Use arrays generated or read in for linear 

interpolation. 
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= 3» Use polynomial stored. 

- 4 . Use polynomial generated or read in, 

WHAT(3) Specifies efficiency calibration, initialized 

at 0. 

=0. No efficiency calibration. 

= 1. Use arrays stored for linear interpolation. 

= 2. Use arrays generated or read in for linear 

Interpolation. 

= 3. Use function stored. 

= Use function generated or read in. 

WHAT(^) Specifies when linear background instead 

of parabolic is used. Whenever the fitting 

interval measured in units of the CW para-

meter remains smaller than a specified 

parameter, initialized at 15** only a 

linear background is used. ; 

= 0. Use existing value for this parameter. 

^ 0. Change the parameter to WHAT(^). 

PBAKADP.—This codeword adds peaks to the list of peaks 

found. This option is used to correct the list of peaks 

found during the second run. The search routine (PEAKFIND) 

should be done before this codeword. The options for PEAKADD 

are: 

WHAT(I), 1=1,6 The channel numbers of the peaks to be 

added, in any order. 
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PEAKDROP.—This codeword drops peaks from the list of 

peaks found. See comments regarding FEAKADD. The options 

for PEAKDROP. are: 

WHAT(I), 1=1,6 The channel numbers of the peaks to be 

dropped in any order. 

PEAKPIND.—This codeword searches and lists statistically 

significant peaks. The options for this codeword are: 

WHAT(l) Starting channel. 

= 0. Starts with channel number $0, 

^ 0. Start with channel number WHAT(l). 

WHAT(2) Stopping channel. 

= 0. Stop with the last channel in the spectrum. 

0. Stop with channel number WHAT(2). 

WHAT(3) Significance limit for listing peaks. 

= 0. Use existing value (initialized at 2). 

0. Change the significance limit to WHAT(3)» 

WHAT(^) Significance limit for fitting peaks. 

= 0. Use existing value (initialized at k). 

5̂  0. Change the significance limit to WHAT(i4-). 

WHAT(5) CW parameter (FWHM = 2.355CW). 

= 0. Use existing value obtained in the shape 

calibration. 

£ 0. Change the CW parameter to WHAT(5)« 

PEAKL1ST.—This codeword prints the corrected list of 

peaks found. 
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RESET.—This codeword resets the arrays from peak search 

and peak fitting to zero. Its options are: 

WHAT(l) Peak search array, 

= 0. Nothing. 

= 1. Reset the peak search array from PEAKFIND. 

WHAT(2) Result array. 

= 0. Nothing. 

= 1 . Reset the result array from peak fitting. 

RESULT.—This codeword tabulates the fitting results 

accumulated and computes relative intensities in the analysis 

of the spectrum. The options for RESULT are: 

WHAT(l) Approximate channel of the reference peak 

for relative intensity calculations. 

= 0. Use the largest peak as reference. 

5̂  0. Use the peak in channel WHAT(l) as reference 

for relative intensity calculations. 

WHAT(2) Energy determination. 

= 0 . No new energy determination. 

^ 0. New energy determination using OPTION as 

specified by WHAT(2) (see OPTIONS). 

WHAT(3) Intensity determination. 

= 0 . No new intensity determination. 

0. New intensity determination using OPTION, 

as specified by WHAT(3) (see OPTION). 

WEA T(4) Punched output. 

= 0 . No punched output requested. 
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= 1. Place results on punched cards. 

WHAT(5) Counting time for the spectrum (used for 

absolute intensity measurements). 

SHAPEDO.—This codeword performs shape calibration fits. 

This should be done using strong single lines in the spectrum 

under analysis or in a spectrum measured under identical 

conditions. The resulting shape parameters will be stored 

and interpolated to fit all peaks in the spectrum. These 

parameters need to be computed only once for each experimental 

set-up; the values will remain unchanged till specified, and 

can be read in rather than recomputed for later runs. In 

specifying fitting interval include enough channels to cover 

both tails, but do not over extend or include fluctuations 

due to other peaks. The options for SHAPEDO are: 

V/HAT (1) Center channel of the calibration peak. 

WHAT(2) Lower limit of fitting interval. 

WHAT(3) Higher limit of fitting interval. 

WHAT(^) Additional calibrations. 

= 0. Nothing. 

= 1. Use this peak for energy calibration by 

adding SNDO card with energy and calibration 

error after SRAPEDO card. 

= 2. Use this peak: for efficiency calibration 

by adding EFDO card with the peak area 

and the calibration error. 

=3* Energy and efficiency calibration as above. 
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WHAT(5) Disposition of the old table. 

=0. Add resulting shape parameters to the 

present table of parameters. 

= 1. Start new shape parameter table with the 

resulting parameters. 

WHAT(6) Initial guess for the CW parameter. 

= 0. Set the CW parameter to 1.8. 

0. Set the GW parameter to WHAT(6). 

SHAPEIN.—This codeword reads in and stores shape para-

meters which were computed in a previous run. The options 

for this codeword are: 

WHAT(l) Channel of the peak center. 

WHAT(2) CL parameter, specifies the channel number 

where the lower tail stops (CL = the number 

of channels from the peak centroid where 

the exponential tail is Joined to the 

gausslan on the low energy side). 

WHAT(3) CH parameter, specifies the channel number 

where the higher tail stops ( CH = the 

number of channels from the peak centroid 

where the exponential tail is joined to the 

gaussian on the high energy side). 

WHAT(^) CW parameter, specifies the peak width. 

WHAT(5) Disposition of the old table. 

=0. Add these values to the present table. 

= 1. Start a new table with these values. 



67 

STOP.—This codeword terminates computations and exits 

the program from the machine. 

Comments 

The following is a list of observations, which are helpful 

to the beginning user of progi-am SAMPO: 

1. The number of calibration fits required depends upon 

the total energy range of the spectrum. If enough strong, 

single lines are available one should generally use one for 

about each interval of 100 to 200 KeV in the spectrum. 

2. The shape parameters need to be calculated only once 

for each experimental set-up. 

3. It should be noted that whenever the tailing parameter 

becomes large compared with the width parameter, its effect 

becomes negligible and its value need not be accurate. 

For each fit a region in the spectrum must be specified. 

This can be done either by the user (FITS) or by an automatic 

algorithm (FITDO). The procedures used in the fitting are 

identical in both cases. 

5. The standard deviation of the peak height, expressed 

in per cent of the peak height, is taken to be the uncertainty 

in the peak area. 

6. In selection of fitting intervals, found "automatically" 

(FITDO), represented by less than a given separation parameter, 

generally six times the full width half maximum, are fitted 

together. 
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7. Because the quality of the fit is tested using a chi-

square convergence criterion, it is found that very weak lines 

in the vicinity of much stronger photopeaks are often over-

looked by the fitting algorithm, and even if the user explicitly 

specifies the locations and intensities of the lines in question 

(FITS), a satisfactory fit to the data is sometimes obtained 

only after repeated "juggling" of the fitting parameters, if 

indeed it is obtained at all. 

8. The parameter CW, used throughout the program, is 

simply an easier computational form of the full width half 

maximum. 

9. In checking the fits output by the code if it is 

noticed that the computed background seems to be partially 

"sucked up" into the peak, generally this means that there is 

a small peak overlapped on the larger peak which was not 

found during the PEAKFIND routine. 

10. Using measured spectral information, the authors 

generated test cases for analyzing single peaks of varying 

intensities on a Compton plateau and Compton edge of average 

2000 counts per channel. The results are summarized in the 

following table. For the peak on the Compton plateau errors 

found are less than two per cent down to a peak-height -to-

con tlnuum greater than 1.0. The error estimates indicated 

in the table reflect the deviations of the calculated intensity 

from the known value for the photopeak on the Compton continuum. 
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Peak height SAMPO intensity Peak height SAMPO intensity 
Compton plateau True intensity Compton edge True intensity 

0.035 
0.0 7 
0.14 
0.35 
0.? 
1.4 
3.5 
7.0 
14.0 
35.0 

1.246 ± 0.267 0.03 2.256 
1.084 ± 0.139 0.06 1.588 
1.068 ± 0.072 0.12 1.329 
1.009 ± 0.031 0.3 1.120 
1.014 ± 0.016 0.0 1.078 
1.001 ± 0.009 1.2 1.038 
1.000 ± 0.006 3.0 1.023 
0.999 ± 0.005 6.0 1.015 
1.007 ± 0.004 12.0 1.021 
O.998 ± 0.005 30.0 1.011 

* 0.037 
± 0.157 

0.079 
0.033 
0.017 
0.009 
0.005 
0.005 

± 0.005 
± 0.005 

11. Check your results table closely. If the same peak 

was fitted twice (i.e., under FITDO and later under FITS) it 

is quite possible that both values calculated for this peak 

will be in the result table. 
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