NUCLEAR MEDICINE PROGRAM PROGRESS
REPORT FOR QUARTER ENDING
March 31, 1994

F. F. Knapp, Jr.

K. R. Ambrose
A. L. Beets
C. R. Lambert

D. W. McPherson
S. Mirzadeh
H. Luo
This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401; FTS 626-8401.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Contract No. DE-AC05-84OR21400

Health Sciences Research Division

NUCLEAR MEDICINE PROGRAM PROGRESS REPORT
FOR QUARTER ENDING MARCH 31, 1994

F. F. Knapp, Jr.

K. R. Ambrose D. W. McPherson
A. L. Beets S. Mirzadeh
C. R. Lambert H. Luo

Work sponsored by
DOE Office of Health and
Environmental Research

Date Published - May 1, 1994

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
Previous reports in this series:

ORNL/TM-5809 ORNL/TM-11014
ORNL/TM-5936 ORNL/TM-11043
ORNL/TM-6044 ORNL/TM-11145
ORNL/TM-6181 ORNL/TM-11224
ORNL/TM-6371 ORNL/TM-11304
ORNL/TM-6410 ORNL/TM-11377
ORNL/TM-6638 ORNL/TM-11427
ORNL/TM-6639 ORNL/TM-11550
ORNL/TM-6771 ORNL/TM-11570
ORNL/TM-6916 ORNL/TM-11721
ORNL/TM-6958 ORNL/TM-11755
ORNL/TM-7072 ORNL/TM-11830
ORNL/TM-7223 ORNL/TM-11881
ORNL/TM-7411 ORNL/TM-11992
ORNL/TM-7482 ORNL/TM-12054
ORNL/TM-7605 ORNL/TM-12110
ORNL/TM-7685 ORNL/TM-12159
ORNL/TM-7775 ORNL/TM-12222
ORNL/TM-7918 ORNL/TM-12312
ORNL/TM-8123 ORNL/TM-12343
ORNL/TM-8186 ORNL/TM-12411
ORNL/TM-8363 ORNL/TM-12485
ORNL/TM-8428 ORNL/TM-12661
ORNL/TM-8533
ORNL/TM-8619
ORNL/TM-8746
ORNL/TM-8827
ORNL/TM-8966
ORNL/TM-9037
ORNL/TM-9124
ORNL/TM-9343
ORNL/TM-9394
ORNL/TM-9480
ORNL/TM-9609
ORNL/TM-9707
ORNL/TM-9784
ORNL/TM-9937
ORNL/TM-10082
ORNL/TM-10238
ORNL/TM-10294
ORNL/TM-10377
ORNL/TM-10441
ORNL/TM-10618
ORNL/TM-10711
ORNL/TM-10839
CONTENTS

Summary ... 5

Synthesis and Evaluation of the Brominated Analogue of IQNP for PET 6

Collaborative Programs Evaluating Therapeutic Applications of Rhenium-188 from the ORNL Tungsten-188/Rhenium-188 Generator System .. 8

Agents for Medical Cooperatives .. 10

Other Nuclear Medicine Group Activities .. 11
Summary

Our new radioiodinated "IQNP" agent, an analogue of "4-IQNB", has a high affinity for the muscarinic-cholinergic receptor (m-AChR). Iodine is stabilized in "IQNP" by attachment as a vinyl iodide. Various isomers of IQNP show high affinity for m-AChR subtypes and are good candidates for cerebral single photon emission computed tomography (SPECT). To evaluate the potential usefulness of a [Br-76]-labeled analogue as a candidate for positron emission tomography (PET), we have synthesized the trans-3-bromopropenyl analogue (BrQNP) and evaluated its ability in vivo to block uptake of [I-125]-Z-(R,R)-IQNP (high affinity for M₁ and M₂). Reaction of bromine with the trans-tributylstannyl substrate prepared from ethyl -α-hydroxy -α-phenyl-α-(1-propyn-3-yl)acetate, followed by column purification and transesterification with (R,S)-3-quinuclidinol gave BrQNP, which was characterized by ⁱH and ¹³C nuclear magnetic resonance spectroscopy (NMR) and high performance liquid chromatography (HPLC). Female rats (n=5) were pre-treated with the oxalate salt of BrQNP (3 mg/kg) one hour prior to I.V. injection of [I-125]-IQNP (1.2 μCi). A control group received only [I-125]-IQNP. Rats were sacrificed after 3 hours and tissues analyzed. While the brain and heart uptake in BrQNP pre-treated animals was significantly decreased (brain = 0.31±0.07; heart = 0.30±0.08), the control animals showed the expected high uptake of IQNP in these tissues (brain = 1.07±0.09; heart = 2.25±0.30). These results demonstrate the receptor uptake of IQNP is significantly blocked by BrQNP in both the heart and brain, regions of high m-AChR. Studies are in progress to study the affinity and selectivity of BrQNP for m-AChR. The ease of preparation and ability to block m-AChR suggest that [Br-76]-labeled BrQNP is a potential candidate for PET studies.

In this report, we also summarize our current on-going collaborative studies assessing the usefulness of various rhenium-188-labeled therapeutic agents. Collaborative studies in conjunction with clinical colleagues are currently assessing the feasibility of treatment of colorectal cancer with antibodies labeled with carrier-free rhenium-188 from the ORNL generator. In addition, collaborative programs have been established to evaluate rhenium-188-labeled particles for treatment of arthritis (synovectomy), treatment of bone pain resulting from cancer metastases with rhenium-188-phosphonates (palliation), and other applications.
Development of a Brominated Analogue for IQNP

We have shown in earlier studies that IQNP, an analogue of 3-quinuclidinyl benzilate (3), demonstrates high affinity for the muscarinic receptor. In addition to high affinity, IQNP is selective and specific for the muscarinic receptor. More recent studies have shown that the stereoisomers of IQNP demonstrate a moderate selectivity for the various muscarinic receptor subtypes (ORNL/TM-12661). Bromine-75 and bromine-76 are two cyclotron-produced positron-emitting radioisotopes of interest for positron emission tomography (PET). Bromine-75 ($t_{1/2}=1.62$ h) is produced by the 75As(3He,3n)75Br reaction and bromine-76 ($t_{1/2}=16.0$ h) is produced via the 76Se(p,n)76Br route. These radioisotopes are of interest for the in vivo detection of neurotransmission by PET. A major advantage of PET is the higher resolution and shorter acquisition times as compared to single photon emission computer tomography (SPECT). Bromine chemistry is similar to iodine and the same radiolabeling reactions can be performed.

In addition, the bromine-carbon bond (67.5 kcal/mol) is stronger than the iodine-carbon bond (50.5 kcal/mol), and would be expected to result in lower in vivo dehalogenation. For these reasons, we have investigated an analogue of IQNP (1) in which the iodine atom is replaced with bromine (BrQNP, 2).

We have prepared racemic BrQNP in an analogous manner developed for IQNP as shown in Scheme 1. This project is being pursued in conjunction with Dr. H. Luo, a Alexander Holleander post doctoral fellow. Dr. Luo joined the ORNL Nuclear Medicine Program after she completed her Ph.D. in Chemistry at the University of Tennessee in October 1993. The synthetic route involves bromination of the tributylstannyl derivative 4 using bromine in chloroform to afford the vinyl bromo compound 5. Compound 5 was then transesterified with the sodium salt of 3-quinuclidinol to afford BrQNP (2). Since
the labeling chemistry will be analogous to IQNP, the various IQNP stereoisomers which were prepared earlier to evaluate the effects of structure on receptor affinity (ORNL/TM-12661) will also be employed for preparation of the various radiobrominated BrQNP analogues.

\[\text{Scheme 1. Preparation of BrQNP} \]

An initial in vivo competitive study was performed in which unlabeled BrQNP was preinjected into female rats followed by the injection of iodine-125-labeled Z-(R,R)-IQNP one hour later. The rats were then sacrificed after three hours, and the accumulation of activity in whole brain, heart, and blood were compared to data from a control set of rats (n=5) in which iodine-125 labeled Z-(R,R)-IQNP was injected followed by sacrifice after three hours. The results of this study are shown in Figure 1, and demonstrate that BrQNP blocks the uptake of Z-(R,R)-IQNP by greater than 60% in the brain and heart, tissues with high muscarinic receptor density, while there was no effect on blood levels of activity. These results demonstrate that BrQNP exhibits affinity for the muscarinic receptor and is a promising candidate for further studies. In vitro binding assays are currently in progress with collaborators at the George Washington University (B. Zeeberg, Ph.D., and colleagues) and the University of Chicago (R. Reba, M.D.) to determine the affinity of BrQNP for the muscarinic subtypes. Future studies will involve radiolabeling of BrQNP stereoisomers with readily available reactor-produced bromine-82 for more detailed in vivo evaluation to determine the cerebral uptake distribution, selectivity and selectivity of this new ligand.
Status of Collaborative Programs Evaluating Therapeutic Applications of Rhenium-188 from the ORNL Tungsten-188/Rhenium-188 Generator

An important aspect of the development of the tungsten-188/rhenium-188 generator system is collaboration with external programs with special expertise which complement our program capabilities. We are currently collaborating with several programs to assess the effectiveness of attaching rhenium-188 to antibodies and peptides by "direct labeling" technology, in order to evaluate the targeting of rhenium-188-labeled antibodies toward colorectal cancer, and to develop radiolabeling technology to explore the potential use of rhenium-188 for treatment of arthritis (radionuclide synovectomy), treatment of bone pain from cancer (palliation) and potential bone marrow ablation with rhenium-188-labeled antibodies.

In continuing studies in conjunction with David Goldenberg, M.D., R. Sharkey, Ph.D., and their colleagues at the Center for Molecular Medicine and Immunology (CMMI) in Newark, New Jersey, clinical studies are in progress to assess the targeting of tumor-specific antibodies for gastrointestinal cancer. Studies are assessing the potential usefulness of Re-188 anti-CEA antibody (MN-14 IgG) for treatment of gastrointestinal cancer. "Direct" antibody labeling readily provides the labeled antibody in good yields (80-90%). Escalating doses of up to 80 mCi/m² have been administered in 3 patients within one week on an outpatient basis. Adsorbed doses to normal organs were similar to those obtained for [I-131]-MN-14 with exception of the liver, which was about 3 times higher with [Re-188]-MN-14.
3 or 4 myelotoxicity was observed in 3 patients receiving 46, 67 and 70 mCi/m², respectively, however one patient received a total dose of 161 mCi without any toxicity. Human antimouse antibody response (HAMA) developed in 9 of 11 patients, but only 2-3 weeks after the initial injection, thus allowing completion of the full treatment cycle. In 3 patients for whom adsorbed doses were calculated (4 tumors), tumor doses ranging from 7.0-53cGy/mCi were found, and tumor/red marrow ratios ranged from 1.2-9.1. These preliminary data compare favorably with data obtained for [I-131]-MN-14, where tumor/red marrow dose values ranged from 1.2-10.5. Rhenium-188-labeled MN-14 may thus be useful for treatment of certain tumors with favorable dosimetry on a completely outpatient basis and with controllable toxicity. We are also working with RhoMed, Inc., an antibody technology company based in Albuquerque, New Mexico, to pursue "direct labeling" technology to attach rhenium-188 to peptides by "direct labeling" technology. We are in the process of applying for a Small Business Research and Development Contract (CRADA) to support this work.

We are also collaborating with Prof. S. N. Reske, M.D., and his colleagues in the Nuclear Medicine Department at the University of Ulm, Germany, to assess potential use of rhenium-188-labeled phosphonates for palliative treatment of bone pain from cancer. Gamma camera measurement of radioisotope distribution permits dose estimation. The advantages of using rhenium-188 include its similarity to technetium for "direct" antibody labeling and its availability in carrier-free form from the tungsten-188/rhenium-188 generator on a daily basis. The 69-day half-life of tungsten-188 minimizes the logistic problems of radionuclide availability. Since the chemical properties of the rhenium-188 perrenate are similar to those of technetium-99m-perenate, radiolabeling of various bone-seeking phosphonate complexes with rhenium-188 is possible.

AGENTS FOR MEDICAL COOPERATIVES

During this period a large-scale tungsten-188/rhenium-188 generator loaded with 751 mCi of tungsten-188 was supplied to the Center for Molecular Medicine and Immunology (CMMI) for continuing escalating targeted patient dose studies with rhenium-188-labeled antibodies for colorectal cancer (D.M. Goldenberg, M.D., R. Sharkey, Ph.D., and colleagues). As part of an international collaborative project, tungsten-188 sodium tungstate was supplied to the Institute for Nuclear Energy Research (INER), in Lung-Tan, Taiwan, for fabrication of generators for collaborative research studies in Taiwan (B.-T. Haieh, Ph.D. and G. Ting, Ph.D).
OTHER NUCLEAR MEDICINE GROUP ACTIVITIES

Recent Publications

The "Proceedings" of the Third International Symposium on Radioiodinated Free Fatty Acids, held in Kyoto, Japan, in February, 1993, were recently published in the Annals of Nuclear Medicine. The symposium focused on the development and use of the iodine-123 "BMIPP" or similar imaging agent developed in the ORNL Nuclear Medicine Program. The lead article in this special "Supplement" described the key role ORNL researchers had in the design and development of BMIPP, and four other articles describing collaborative studies between ORNL and institutions in the U.S. Europe and Asia, were co-authored by ORNL researchers.

Meetings

D. W. McPherson presented an "Invited Lecture" entitled, "Development of Radiohalogenated Muscarinic Ligands for the In Vivo Imaging of M-AchR by Nuclear Medicine Techniques," at the Symposium on Applied Nuclear Chemistry, held in conjunction with the Bi-Annual Meeting of the American Chemical Society in San Diego, California, on March 14-18, 1994.

Patents

A second patent describing the medical use of carrier-free perrhenic acid from the tungsten-188/rhenium-188 generator developed in the ORNL Nuclear Medicine Program was recently issued.

Appointments

F. F. (Russ) Knapp, Jr. has accepted an initial four year appointment to the Editorial Board of the International Journal of Applied Radiation and Isotopes, which is published by Pergamon Press, Ltd.

Saed Mirzadeh has been appointed to the "Publications Committee" of the American Chemical Society (ACS) Division of Nuclear Chemistry and Technology. The three-year appointment will involve coordination of annual reviews which will be published in the Journal of Radioanalytical and Nuclear Chemistry.
INTERNAL DISTRIBUTION

1. C. W. Alexander
2. K. R. Ambrose
3. A. L. Beets
4. B. A. Berven
5. A. P. Callahan (Consultant)
6. E. D. Collins
7. K. F. Eckerman
8-12. F. F. Knapp, Jr.
13. C. R. Lambert
14. E. C. Lisic (Consultant)
15. H. Luo
16. D. W. McPherson
17. S. Mirzadeh
18. J. T. Parks
19. B. Patton
20. G. Prosser
21. D. E. Reichle
22. P. S. Rohwer
23. S. Stafford
24. R. E. Swaja
25. S. J. Wolfe
26-27. Central Research Library
28. Document Record Section
29-30. Laboratory Records Dept.
31. Lab Records, ORNL - RC
32. ORNL Patent Section

EXTERNAL DISTRIBUTION

33. H. L. Atkins, M.D., Radiology Dept., State Univ. of New York, Stony Brook, NY 11794-8460
34. H. J. Biersack, M.D., Director, Klinik fuer Nuklear Medizin, Der Universitat Bonn, Sigmund Freud Strasse 25, 53127, Bonn 1, Germany
35. A. Bockisch, Ph.D., M.D., Klinik und Poliklinik fuer Nuklearmedizin, Postfach 39 60, Langenbeckstrasse 1, 55101 Mainz, Germany
36. C. Brihaeye, Centre de Recherches du Cyclotron, Universite de Liege, Belgium
37. A. B. Brill, M.D., Ph.D., Dept. of Nuclear Medicine, Univ. of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655
38. T. F. Budinger, M.D., MS 55/121, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720
39. A. P. Callahan, Route 1, Box 305, Harriman, TN 37748
40. D. Cole, Medical Applications and Biophysical Research Division, ER-73, Department of Energy, GTN, Washington, D.C. 20585
41. J. G. Davis, M.D., Medical and Health Sciences Division, ORAU, Oak Ridge, TN 37831
42. R. F. Dannals, Division of Nuclear Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205-2179
43. R. Dudczak, M.D., Dept. Nuclear Medicine, I. Medizinische Universitatsklinik, A-1090 Wien, Lazarettgasse 14, Vienna, Austria
44. G. Ehrhardt, Missouri University Research Reactor, University of Missouri, Research Park, Columbia, MO 65211
45. D. R. Elmaleh, Physics Research Dept., Massachusetts General Hospital, Boston, MA 02114
46. L. Feinendegen, Medical Department, Brookhaven National Laboratory, Upton, NY 11973
47. A. Fritzberg, NeoRx Corporation, 410 West Harrison, Seattle, WA 98119
48. D. M. Goldenberg, M.D., Center of Molecular Medicine and Immunology, 1 Bruce Street, Newark, NJ 07103
49. G. Goldstein, DOE-OHER, Washington, DC 20585
50. G. Griffiths, Immunomedics, Inc., 300 American Rd, Morris Plains, NJ 07950
51. M. Guillaume, Centre de Recherches du Cyclotron, Universite de Liege, Belgium
52. D. R. Hamilton, Office of Health Physics, CDRH/FDA (HFZ-60), 12720 Twinbrook Parkway, Rockville, MD 20857
53. J. Hiltunen, Managing Director, MAP Medical Technologies, Inc., Elementitiete 27, SF-41160 Tikkakoski, Finland
54. Bor-Tsung Hsieh, Ph.D., Institute of Nuclear Energy Research, (INER) Lung-Tan, Taiwan, Republic of China
55. K. Hubner, M.D., Department of Radiology, UT Memorial Hospital, Knoxville, TN 37920
56. A. Jones, HMS Radiology Dept., Shields Warren Radiation Laboratory, 50 Binney Street, Boston, MA 02115
57. G. W. Kabalka, Chemistry Department, University of Tennessee, Knoxville, TN 37996-1600
58. G. Kirsch, Department of Chemistry, Universite de Metz, Metz, France
59. J. Kropp, M.D., Klinik fur Nuklearmedizin, der Medizinischen Akademie, Fetscher - Str. 74, 01307 Dresden, Germany
60. D. E. Kuhl, M.D., Division of Nuclear Medicine, University of Michigan Hospitals, University Hospital Big 412/0028, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0028
61. R. M. Lambrecht, Biomedicine & Health Program, Australian Nuclear Sci. & Tech. Org., Lucas Heights Research Laboratories, Private Mail Bag 1, Menai NSW 2234, Australia
62. S. Larson, M.D., Sloan-Kettering Inst. for Cancer Research, New York, NY 10021
63. G. Limouris, Nuclear Medicine Department, Areteion University Hospital, Athens Medical School, Athens, Greece
64. D. J. Maddalena, FRACI, Department of Pharmacology, Sydney University, NSW 2006, Sydney, Australia
65. John Maddox, 4608 Flower Valley Drive, Rockville, MD 20853-1733.
66. H.-J. Machulla, Eberhard-Karls-Universität Tübingen, RadiologischeUniversitätsklinik, Pet-Zentrum, Röntgenweg 11, 7400 Tübingen, Germany
67. M. Meyer, M.D., Nuclear Medicine Section, Department of Radiology, University of Tennessee Medical Center, 1924 Alcoa Highway, Knoxville, TN 37920-6999
68. Office of Assistant Manager for Energy Research and Development DOE-ORO, Oak Ridge, TN 37831
69. G. Notohamiprodjo, M.D., Ph.D., Institute of Nuclear Medicine, Heart Center North Rhine-Westphalia, Bad Oeynhausen, D-4970, Germany
70. C. L. Partain, M.D., Professor and Vice Chairman, Dept. Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232
71. R. C. Reba, M.D., Department of Radiology, 5841 S. Maryland Ave., MC 2026, Chicago, IL 60637
72. S. N. Reske, M.D., Klinik für Nuklearmedizin, Ärztlicher Direktor der Nuklearmedizin, Klinikum der Universität Ulm Oberer Eselsberg, D-7900, Ulm, Germany
73. M. P. Sandler, M.D., Chief, Nuclear Medicine Section, Vanderbilt University Medical Center, Nashville, TN 37232
74. R. E. Schenter, HO-37, Westington Hanford Co., P.O. Box 1970, Richland, WA 99352
75. A. Serafini, Nuclear Medicine Division (D-57), University of Miami School of Medicine, P. O. Box 016960, Miami, FL 33101
76. S. K. Shukla, Prof., Servizio Di Medicina Nucleare, Ospedale S. Eugenio, Pizzale Umanesimo, 10, Rome, Italy
77. A. Solomon, M.D., UT MRCH, 1924 Alcoa Highway, Knoxville, TN 37920-6999
78. P. Som, DVM, Medical Department, BNL, Upton, NY 11973
79. J. Smith, Ph.D., Senior Director, Research & Development, DuPont Merck Pharmaceutical Company, 331 Treble Cove Rd., North Billerica, MA 01862
80. P. C. Srivastava, DOE-OHER, Washington, DC 20585
81. S. C. Srivastava, Bldg. 801, Medical Dept., BNL, Upton, NY 11973
82. H. W. Strauss, M.D., Vice President, Diagnostics, Pharmaceutical Research Institute, Bristol Meyers Squibb, Rt. 202 Provinceline Rd., PO Box 4000, Princeton, NJ 08543-4000
83-84. Office of Scientific and Technical Information, DOE, Oak Ridge, TN 37831
85. F. C. Visser, M.D., Cardiology Dept., Free University Hospital, De Boelelaan 117, Amsterdam, The Netherlands
86. H. N. Wagner, Jr., M.D., Div. of Nuclear Medicine, Johns Hopkins Medical Institutions, 615 N. Wolfe Street, Baltimore, MD 21205-2179
87. A. P. Wolf, Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973
88. R. Wolfang, Mallinckrodt, Inc., 675 McDonnell Blvd., P.O. Box 5840, St. Louis, MO 63134
89. R. W. Wood, Jr., DOE-OHER, Washington, DC 20585
90. S. Wynchank, Research Institute for Medical Biophysics (RIMB), Republic of South Africa
91. Y. Yonekura, M.D., Kyoto University Faculty of Medicine, Shogoin, Sakyokuy, Kyoto, 606-01, Japan