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Abstract
The mechanism that causes the output nodes of feedforward
multilayer networks mapped with sigmoid functions to prematurely
saturate during backpropagation training are described. The
necessary conditions for the occurrence of this undesirable
phenomenon are also presented. Simulation results demonstrate the
adequacy of the presented necessary conditions.

Introduction
The occurrence of the undesirable phenomenon of premature saturation of the output nodes

of feedforward multilayer networks mapped with sigmoid functions has been identified 1-5as one
of the causes for decreasing the rate of convergence of the backpropagation (BP) training
algorithm. However, the literature related to this phenomenon, which is also known as the flat
spot problem, describes only the consequences but not the mechanism that causes premature
saturation. The purpose of this paper is to describe the mechanism that causes this undesirable
phenomenon and present the necessary conditions for its occurrence.

Backpropagation And Premature Saturation
The BP algorithm trains a feedforward multilayer network by iteratively searching for a set

of weights w in weight-space that minimize the total training error E over all JLnodes of the L-th or
output layer of the network

JL JL 1 P n(L)_2 (1)
E = _Ej= _ "_ _(tpj- _pj,.

j=l j=l p=l

Here, the training error Ej for output node j= 1,2,...,JL is defined as the squared difference between
the desired output tpj and the network predicted output o(L)over all patterns p=l,2,...,P of the
training set. At each iteration k, the weights w are updated_lrough the weight-update rule6

JL

AWk = - TIVE(Wk) + OtAWk.1= - TI_ VEj(Wk) + ot AWk.1, (2)
j=l

where 1] and a are positive constants smaller than 1.0 known as the learning and momentum
parameters, respectively. The component of the gradient VEj corresponding to weight w_ )
connecting the i-th node in the (l-1)-th layer with the n-th node of the t-th layer is given by the
delta rule
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_Ej P
_w(/) = - ZS(t2 o(_-1), (3)v ni p=l

and similar to the BP algorithm, if the nodes are mapped with a sigmoid function, then

i(tpj! - o(L)_pj,o(L)pj(1 -Opj(L)a',, for g = L, n = j,

5(:) = 0; for g = L, n _ j, (4)

o(t) o(t)_ _-_t# t+l) W(mt+l); for 1 < g < L.pn(1- pn- z_.,-pm
m=l

In the literature, the phenomenon of premature saturation of the network output nodes is
characterized when the network predicted output o(L..)of one or more output nodes approaches
values close to either 0 or 1 for all atterns _1,2, ,P When that ha ens, the term. P P .... pp

o(n_) (1- o(n_/)in Eq. (4) co rre,s_onding to the slope of the sigmoid function approaches zero
w_ich, in _rn, causes _gEi/_kw_])in Eq. (3) to also approach zero. As a consequence, the weights
directly connected to the s-_ituratedoutput node j are negligibly updated at each subsequent iteration
(until the eventual recovery from saturation) causing them to become trapped at their current
values. The trapping of the weights may preclude any significant changes in Ej causing an
unnecessary decrease in the rate of convergence of the algorithm. The trapping of the weights is
generally characterized by regions of flat plateaus in the training curve.

The Mechanism that Causes Premature Saturation
Our analysis shows that premature saturation is likely to occur at the early stages of training

when the randomly selected weights place the starting point of the BP algorithm in a region of
weight-space that has a skewed error-surface. The skewness of the error-surface may then cause a
change in signs at two consecutive iterations in the components of VEj(Wk) directly connected to
output node j. This may cause the projection of o_AWkdin Eq. (2) along the direction of VEj not
to point in the desired negative gradient direction -VEj. If in addition, the magnitude of the
projection of 0tAWk.1along VEj is larger than the corresponding magnitude of-1]VE(Wk), the
effect, to first order, of the new weight update AWkwill be an increase in Ej.

At the early stages of the training process, the components of Awk may be of the same
order of magnitude as the components of the weight wk. There fQre, the updated weight wk+l =

Wk + AWk may suddenly cause the network predicted output otpj_of one or more of the output
nodes to approach either 0 or 1, for all patterns p=l,2,...,P, _n the following iteration. The
combination of the effects of this scenario, for output node j, with the effects of a skewed error-
surface would cause an increase in Ej(Wk+l), a decrease in the magnitude of VEj(wk+l), and a
reduction in the contribution of VEj(Wk+l) to the total gradient VE(wk+l). If the updated learning
term -riVE(wk+l) cannot offset the tendency of the momentum term tXAWkto update the weights
in the direction in which Ej increases, the magnitude of VEj will be further reduced in the
following iteration. As this undesirable mechanism persists for consecutive iterations, the
components of VEj approach zero strongly affecting the weights directly connected to output node
j. As VEj approaches zero and the contribution of the momentum term for these weights decrease
at consecutive iterations (since ot is smaller than 1.0), the weights directly connected to node j
become trapped at their current values until the eventual recovery from saturation.



In general, premature saturation is not manifested in all output nodes of the network. The
occurrence of this phenomenon as well as the number of saturated nodes are strongly dependent on
the starting point in weight-space, the values of 1"1and tz, the topology of the network, and the size
and type of the training patterns. These dependencies together with the strong nonlinearity of
sigmoid-mapped nodes offer tremendous difficulties in obtaining both the necessary and sufficient
conditions for the occurrence of premature saturation. In the following, we present only a set of
necessary conditions that need to be satisfied if an output node is to saturate prematurely.

Necessary Conditions for Premature Saturation
To first order, each iteration of the BP algorithm yields smaller values for Ej if the weight-

update Awk satisfies the inequality AWk'VEj(Wk) < 0 for output node j. Based on the fact that /l
this inequality is not satisfied at the onset of premature saturation, i.e., Ej increases, we may
introduce the following four necessary conditions that must be satisfied at several consecutive
iterations at the early stages of training if premature saturation is to occur:

(c 1) l"lVE(Wk)"VEj(Wk) - t_AWk.l•VEj(Wk) < 0,

(c2) Awk_l"VEj(Wk) > 0,

(c3) tx IAWk-l'VEj(Wk)l >> 1] IVE(Wk)'VEj(wk)l, and

(c4) IVEj(Wk+l)l < IVEj(wk)l.

These four conditions basically summarize the mechanism that causes premature saturation.
Condition c l is obtained by substituting AWk of Eq. (2) in the inequality AWk.VEj(Wk)<0 and
expresses the fact that Ej should increase at the onset of premature saturation. Condition c2 implies
that the projection of Awk.1 along the direction of VEj(Wk) should point in the incorrect or gradient
direction, as opposed to the correct or negative gradient direction. Condition c3 is satisfied if the
magnitude of the projection of the momentum term is larger than the projection of learning term
along VEj(wk). This is necessary if the momentum term tZAwk.1is to govern the motion of the
weights across the error-surface. Finally, condition c4 expresses the fact that the magnitude of the
gradient of node j should decrease at consecutive iterations reflecting the fact that node j is
becoming saturated. The magnitude of the gradient VEj can then be used as a measure of the
degree of saturation of node j.

Although necessary, these conditions are not sufficient for premature saturation to occur.
Even if these conditions are satisfied for a given output node during consecutive iterations, the
node may only show a slight tendency to saturate. That is due to the fact that the occurrence of
premature saturation is an overall property of the network with the output nodes that remain
unsaturated playing important roles. For example, in some training sessions the contribution of the
unsaturated nodes to the weight update AWkmay prevent the saturated nodes from reaching large
degrees of saturation at early stages of the saturation process. In this case, the saturated nodes will
recover quickly. On the other hand, in other training sessions the contribution of the unsaturated
nodes may inhibit a faster recovery of the saturated nodes at later stages of the saturation process.

Simulation Results
To illustrate the above discussions, we present the results of a BP training session for the

classification of three component failures in a nuclear power plant 5 in which the network output



nodes saturate prematurely. The network consisted of three layers with 20-20-3 nodes per layer,
respectively, and the desired output values tpj for the three output nodes were set to either 0.1 or
0.9 depending on the training pattern. The value of the learning parameter r I was fixed at 0.1
throughout the training session and the value of the momentum parameter _ was set to 0.0 for the
first two training cycles and after that it was set to 0.9. A training cycle or an iteration in the BP
algorithm consisted of the presentation of the entire set of 108 training patterns, with 36 patterns
for each one of the three component failures, after which, the weights were adjusted.

Figures 1 and 2 show the training results for the case in which a set of randomly selected
weights caused two nodes, 1 and 3, out of the three output nodes to saturate prematurely. The
occurrence of saturation for these two nodes is characterized in Fig. 1 by the two overlapping
plateaus in the training curves for nodes 1 and 3. The formation of the two plateaus is the
consequence of the trapping of the weights associated with the two nodes. The plateaus remain
until the eventual recovery of the nodes at around 350 and 28,000 training cycles, respectively, for
nodes 3 and 1.

Premature saturation starts at the third training cycle and is represented in Fig. 1 by a slight
increase in the values of the training errors E 1 and E3 which satisfies necessary condition c 1. The
increase in the values of the training errors is caused by incorrect updates of the weights directly
connected to these two nodes due to the satisfaction of necessary conditions c2 and c3. The
momentum term _Awk.1 governs the incorrect motion of the weights across the error-surface.
Figure 2 illustrates that starting at the third training cycle the magnitude of the gradients VE] and
VE3 decrease at consecutive iterations (until the nodes become completely saturated around 20
cycles) satisfying necessary condition c4. In this training session, each one of the four necessary
conditions was satisfied for nodes 1 and 3 between iterations 3 and 14, after which, the nodes
remained saturated for a number of iterations until the eventual recovery from saturation.

Figure 2 also illustrates the degree of saturation and the recovery of the two nodes from
saturation. The values of IVEll and IVE31express the degree of saturation of output nodes 1 and 3,
respectively, which play an important role in their recovery from saturation. The smaller the
magnitude of the gradient VEj is at the last cycle for which the four necessary conditions are
satisfied, the longer is the recovery process from saturation. The value of IVE31is larger than the
value of IVEll at iteration 14 allowing for a faster recover of node 3. The values of IVEjlincrease
during the recovery process allowing the weights directly connected to output node j to come out of
their trapped state. Thereafter, Ej decreases significantly as the algorithm resumes its motion
towards the optimum solution.

Summary and Conclusions
Additional experiments were performed in order to confirm the description of the

underlying mechanism and necessary conditions for the occurrence of premature saturation of
network output nodes during BP training. The experiments included changing the values of the
learning and momentum parameters as well as running the same problem with different sets of
initial weights. All our experiments confirmed the results presented here.
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