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Introduction

It is now generally believed that quarks (and antiquarks) are the fundamental

building blocks of all nuclear matter. Unlike electrons and other fundamental parti-

cles, however, quarks have never been detected in isolation. Only composite particles

called hadrons, which are bound state combinations of quarks and antiquarks, have

been observed experimentally. The reason for this apparent confinement of quarks

into hadrons is a mystery which must ultimately be solved by any theory purporting

to describe the strong nuclear force. Currently, the best candidate for this theory,

quantum chromodynamics (QCD), attributes a "color" to each quark and antiquark

in such a way that each hadron corresponds to a "colorless" combination held to-

gether by particles called gluons. Although this idea is useful in explaining some of

the symmetries seen in the various species of hadronic particles, it is still not known

why only colorless combinations have been observed experimentally. Many believe

that the answer to this puzzle may lie somewhere in the depths of QCD, but the

theory is so complex that no one has yet been able to discover it.

To obtain a better understanding of QCD, it is therefore necessary to simplify

the theory by making reasonable approximations. Since gluonic interactions become

weaker at higher energies, the simplest approximation for high energy processes can

be obtained by treating quarks and gluons as free non-interacting particles. Better

approximations can then be arrived at by calculating perturbative corrections which

take into account more and more complicated interactions. Perturbative QCD for-

mulated in this way has been remarkably successful in describing the results of high

energy experiments like electron-positron annihilation and jet production[LLew]. An-

other commonly used approximation is to treat spacetime as a four dimensional lattice

of separated points (rather than a continuous volume) and to perform calculations

only at these points. Presumably, calculating on a lattice with an infinite number of

points infinitely close together would be the same as performing a continuous calcu-

lation and so would provide exact 0_nswers to QCD. Due to the limitations of presentI
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day computers, however, months are required to obtain results from a lattice of only

164 points[Christi. Nevertheless, making lattice calculations is currently the only way

that QCD can be tested against observed low energy phenomena like the rest masses

of hadrons. For example, the ratio of the proton mass to the p meson mass is mea-
i

sured to be 1.2, whereas lattice QCD obtains a value of 1.5 [Fuku]. On the basis of

this and other comparisons, many people argue that lattice QCD calculations should

be accurate to within 20-30%.

One of the most intriguing predictions of lattice QCD is that there should be

a phase transition into a new form of matter when the temperature is increased to

approximately 150-200 MeV. In this new phase, commonly called the quark-gluon

plasma (QGP), highly energetic quarks and gluons would no longer be bound inside

of colorless hadrons, so it would seem that perturbative techniques should be ap-

plicable. High temperature perturbation theories have been developed[Kap79] and

refined[Bra90], but subtle problems in the theories lead to a complete breakdown of

the perturbation expansion when sufficiently complex interactions are considered[Lin80].

These problems could be a clue that non-perturbative objects like color magnetic

monopoles must be considered in order to obtain an accurate picture of QCD at

high temperature. It is also conceivable that the lessons learned in calculating the

properties of hot QCD systems could shed light on the tantalizing question of quark

confinement in hadrons at low energies.

For these reasons, it is of interest to see whether a quark-gluon plasma can be

created in the laboratory. Consequently, there are a number of relativistic heavy

ion experiments currently being run or planned whose main aim is to create and

observe the properties of a QGP. For example at Brookhaven 's Alternating Gradient

Synchrotron (AGS), silicon projectile nuclei have been accelerated to momenta of 14.6

GeV/c per nucleon (0.998 times the speed of light) before colliding with gold targets

at rest[E802]. The hope is that when a silicon nucleus and a gold nucleus collide head

on at these energies, they will stick together in a highly compressed state for a short

time, rather than immediately pass through one another. If such nuclear stopping

does in fact occur, then it is possible that a super-dense lump of hot nuclear matter

I
,i 2



(5-8 times normal nuclear density) can be created in these reactions. Furthermore,

if the matter is hot and dense enough, then the phase transition could occur from

hadronic matter to a quark-gluon plasma. This plasma would subsequently expand

and cool until finally "freezing" back into hadrons which could then be detected by

the experiment (fig. A). By examining in detail the final hadron distributions, it is

• hoped that one would be able to discern whether or not a QGP had been formed in

the collision, and possibly even be able to determine some of its properties.

Before searching for signs of a QGP, however, it is important to determine whether

or not the colliding nuclei were able to stop one another in the first place. The first

chapter of my thesis is comprised of three published papers and a summary of recent

QGP

Tc

Po Pc P
Figure A. The phase diagram for QCD. Temperature is plotted on the vertical axis,
and nuclear matter density is plotted on the horizontal axis with normal nuclear

density denoted by po. The solid arc is a schematic representation of the phase
transition from hadronic matter to a quark-gluon plasma. The critical temperature

Tc is thought to be about 150-200 MeV, while the critical density pc is thought to

be about 5-8 times po. Time evolution of the nuclear matter in a heavy ion collision

is shown by the dotted curve. This matter compresses and heats up until a QGP is
formed, then it expands, cools, and eventually "freezes" back into hadrons.

:ii 3
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developments which are devoted to exploring this issue. In the first paper, I showed

that none of the standard event generators could reproduce the silicon on gold data

reported by the E802 collaboration at the AGS[E802]. Furthermore, I showed that if

these data are correct, then the nuclei involved exhibit an unusually high degree of

transparency to each other. This was a very unpopular and surprising result, since

I had shown that the amount of stopping implied by the data was even less than

that observed for proton-proton collisions at similar energies, making the possibility

of QGP formation at the AGS appear to be impossibly remote. In the second pa-

per, I pointed out discrepancies between various data sets from different experimental

groups at the AGS, explored alternative scenarios in which I assumed that the nor-

malization cf E802 data was off by more than 30%, and made predictions for the

results of upcoming gold on gold collision experiments. The last paper is the pub-

lished version of a talk given at the Quark Matter '91 conference in which I showed

that if key points of the E802 data were off by 40-70%, then scenarios could be found

in which the expected amount of nuclear stopping was achieved and agreement could

be obtained between E802, E810 and E814 data sets. Although no new data has yet

been officially published by the E802 (E866) collaboration, a recent Ph.D. thesis from

an E802 collaborator reports that new measurements and newly found systematic er-

rors have had the effect of increasing the normalizat._on of the E802 data by 10-20%

for some points and as much as 50-100% for others[Pars]. In my summary of recent

developments, I show that the reported increases are helpful, but that more correc-

tions are needed for some of the data points in order to establish overall agreement

with the other experiments and theoretical expectations. In addition, I compare my

gold on gold predictions with new preliminary data by E866[E866] and show that the

amount of stopping occurring in these reactions is still inconclusive. Consequently,

many more measurements will have to be made before it will be possible to pro-e (or

disprove) that the amount of nuclear stopping required for QGP formation is actually

being realized in these reactions.
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The second chapter of my thesis deals with some of the more formal mathematical

aspects of QCD and similar theories at high temperatures. Since there are funda-

mental problems with the normal perturbative expansions of these theories[Lin80],

non-perturbative techniques must be explored. For example, rather than treat the

QCD vacuum as a state without any background fields, nontrivial background field

• configurations can be used to model the vacuum. In perturbative calculations, the

quarks and gluons of the QGP arise from considering quantum fluctuations of the

fields around the trivial vacuum. In non-perturbative semi-classical calculations, on

the other hand, quantum fluctuations around complicated background fields must be

considered. These calculations are far more complex than their perturbative counter-

parts, and exact solutions are only known for some very special cases[trio76]. In order

to consider other more general cases, I have developed an approximation technique

in which the quantum solutions are expressed in terms of a covariant derivative ex-

pansion. Similar expansions have been made for theories at zero temperature[Che87],

but this is the first such calculation for QCD and SU(N) theories at finite temper-

ature. As a first application of this technique, I show that certain color magnetic

monopole background configurations are unstable to quantum fluctuations and that

a background gas of dyons and antidyons would only be able to stabilize if the gas

was so dense that the dyons were overlapping. These results cast doubt on previous

speculations that a simple monopole plasma could regulate the infrared magnetic sin-

gularities which plague hot QCD. While we rule out two types of magnetically charged

configurations, the development in this thesis of the covariant derivative expansion

should prove useful in future studies of other possible background configurations, not

only in hot QCD, but more generally in hot gauge theories.

The goal in this thesis is thus twofold: The first is to investigate the feasibility of

using heavy ion collisions to create conditions in the laboratory which are ripe for the

formation of a quark-gluon plasma. The second is to develop a technique for studying

some of the many non-perturbative features of this novel phase of matter.
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1.1 Nuclear Transparency in
15 AGeV Si+Au Reactions?

by Scott Chapman and Miklos Gyulassy
(Published in Physical Review Letters 67 (1991) p. 1210)

o

Abstract
,t

Recent data on central Si+Au collisions at 15 AGeV are shown to imply an unex-

pected high degree of nuclear transparency. The paucity of observed midrapidity
protons and pions suggests that up to one half of the projectile nucleons may lose less
than one unit of rapidity after traversing 5-10 fm of nuclear matter.

The first detailed spectra of p, lr±, and K :_ from central Si + Au reactions 14.6

AGeV/c have been reported recently by the E802 col|aboration[E802] at the AGS.

These data are of interest in connection with estimating the nuclear stopping power

and assessing whether high baryon density matter can be produced in nuclear colli-

sions. Previous indirect data on transverse energy spectra and leading baryon spectra

have been interpreted[ES14, Stach] as evidence for a large amount of nuclear stop-

ping in such reactions. However, in Ref.[Gyu90] we noted that the paucity of pions

and the shape of the proton rapidity distribution measured by E802[E802] were more

indicative of nuclear transparency at least for light ion induced reactions. Our aim in

this letter is to analyze the new data in detail and to estimate the nuclear stopping

power in this reaction using a multicomponent firestreak model.

The data that we focus on are shown in Figs. 1.1.1-1.1.3. The p, lr-, K ± rapidity

densities in central Si+ Au collisions are shown in the upper panels. The lower panels

• show the transverse momentum slope parameter, T(y), obtained by fitting the invari-

ant distributions at each rapidity with exp(-m±/T(y)). The curves and histograms

show the results based on the models discussed below. Also shown are extrapolations

of the E814 leading neutron data[E814] from a 0.8 degree cone assuming the above

| m± distribution with T varied between 0.1 to 0.2 GeV for their ET > 13 GeV trigger.
,|
|

i
I

|
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Figure 1.1.1" The proton and _r- rapidity distributions and transverse mass

slope parameters in central Si + Au reactions[ES02] (solid dots). Short dashed
curves and histograms show results from the firestreak[Gosset, Myers] and Lund
models[Gyug?], resp.. The long dashed curves show results form the Landau hydro-
dynamic model[Stach]. The extrapolated leading neutron data[E814] are indicated
by the crosses together with estimated extrapolation uncertainties.

Based on p + A --, p + X data at energies Et,b > 100 GeV[pA], it was expected

that in central Si + Au reactions the average rapidity of projectile baryons would

be shifted downward by Ay ,,, 2.5 while the rapidity of participant target baryons

should be shifted upward by Ay >_1. Therefore a substantial amount of equilibration

between projectile and target baryons was expected to occur at 15 AGeV where the

total rapidity gap is only 3.5. We ti_erefore compare the data first with the firestreak

model[Gosset, Myers]. The short dashed curves in Figs. 1.1.1 and 1.1.3 show the

i results obtained with a cut on impact parameters b < 2.9 fm. The severe discrepancy

i s
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be_,_een the data and the calculated results is obvious. No reasonable variation of

b_::'freeze-out density was found to improve this situation. Also shown by the long

dashed curves in fig. 1.1.1, are the results using the Landau hydrodynamic fireball of

Ref.[Stach]. While the proton distribution is in agreement with the extrapolated E814o

data, it fails to account for the ramp form of E802 proton data, the difference between

" the pion and p_'oton slope parameters, and the absolute pion yield. In Ref.[Brown,

BrownEr] a hydrochemical version of the fireball model was able to reproduce the pion

and kaon spectra, but that model also failed to account for the form and magnitude

of the observed proton distribution. It follows that if the E802 data are correct all

such equilibrium models assuming complete nuclear stopping are ruled out by the

absence of a peak of dNp/dy near y ~ 1.2, the small value of dNp/dy _-,7 at y _ 2,

and the small number of _r- observed at mid rapidity.

We therefore consider next non-equilibrium dynamical models such as the multi-

string Lund Fritiof Model[Lund]. In that model multiple interactions are assumed

i to excite baryon strings which fragment independently and without final state in-

teractions. Such phenomenological string models have been successful in accounting

for many of the features of multiparticle production in p + A and B + A collisions

at higher energies Ela_ > 60 AGeV[QM88]. The histograms in fig. 1.1.1 show the

results from the ATTILA version[Gyu87] of the Fritiof model for this reaction for the

same range of impact parameters. While the ramp form of the proton distribution is

i much better reproduced, the proton slopes are much smaller than observed. In ad-dition, the r- rapidity density is overpredicted by 70%. We note that RQMD string

• . model[RQMD91, RQMDpi] also overpredicts the pion rapidity density by 70%.
• •

i Having seen that the above simple equilibrium and nonequilibrium models for

nuclear collision dynamics fail to reproduce the new data, we consider next a model

independent fit in order to isolate possible causes for the discrepancies. In particular,

this fit allows us to take into account all of the observed energy in longitudinal and

transverse motion, pion production and kaon production. The measured transverse

9
.!
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momentum distributions were fit with a form

dNi/dyd_p± = p,(y) exp(-m,±/Ti(y)) . (1.1.1)

where the slope parameters, Tj(y), were parameterized by sums of Gaussians in ra-

pidity. The data reported in [E802] together with unpublished data from [Bloo] were

used to fix these slopes. The pion and kaon rapidity distributions were parameterized

in terms of independent Gaussians. For the unobserved neutral mesons we assumed

7r° = (_r+ + r-)/2, K ° = K +, and R ° = K-. The nucleon rapidity distribution was

taken to be parabolic in the region 0 < y < 3.0 with a linearly dropping tail from

3.0 < y < 3.5 and Gaussian tail y < 0. In the high rapidity region we allowed for an

extra Gaussian distribution of baryons to test for nuclear transparency. For neutrons

we assumed that p,(y) = 13293pp(y) to be on the safe side (i.e., allowing for larger

unobserved neutral baryon energy than expected in the projectile fragmentation re-

gion). Total baryon conservation was enforced.

We found that without an extra, high rapidity, baryon contribution the total lon-

gitudinal momentum carried by nucleons and mesons integrated over all of phase

space was 165 GeV/c less than the total initial momentum (Po = 409 GeV/c). To

take into account possible systematic errors introduced by extrapolations to unmea-

sured low p± regions and depletion of the proton yield due to composite fragment

formation[E802], we tried a fit to data enhanced by a factor 1.3 However, even with

that enhancement the fit failed to account for 93 GeV/c of the incident longitudinal

momentum!

Only by introducing an extra, high rapidity baryon contribution centered at y =

2.75 with an rms width Ay = 0.25 and containing approximately 11 of the 28 incident

baryons were we finally able to account for all the incident momentum (and energy) to q

an accuracy of better than 1 GeV. This final fit is shown by the dot-dashed curves in

figs. 1.1.2 and 1.1.3. We have checked that neither the Er nor the forward calorimeter

I data are sensitive to this unexpected baryon contribution in the region 2 < y < 3.

We emphasize that the energy contained in the observed transverse flow of baryons

,| i0
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as well as in enhanced kaon production is taken into account by this fit. In addition

our fit is conservative since we assumed that all the E802 rapidity densities must

be multiplied by 1.3 due to systematic errors. From this analysis we conclude that

the E802 spectrometer data are consistent with longitudinal momentum and baryonb

conservation only if a significant fraction of the projectile nucleons suffer less than

one unit of rapidity shift after traversing 5- 10 fm of nuclear matter.

50[_-lt,'i/ i i I I I i

40 __'\ _.. protons__ _r- _
30 - -

20

0 ' I I ['_
m, m i

,_ 0.2- _ --

0.I- x. -- ""• -

l %% l_ l

0.0 , l i'- , , ,
1 2 3 1 2 3

Y Y
Figure 1.1.2: As in fig. 1.1.1 but compared to a constrained fit (dot-dashed) to

- data enhanced by a factor 1.3. The solid curves show results of our multicomponent
model with L, = L'o= 26 fm.

Of course, it is possible that the "central" multiplicity-triggered data actually

suffered some contamination from peripheral events. Large numbers of projectile

spectators from these events would then be able to account for the missing longitudi-
!

i
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nal momentum. However, unpublished data correlating the multiplicity trigger with

the zero degree calorimeter (ZDC)[Bloo] suggest that the published central events

had negligible numbers of projectile spectators. Furthermore, unpublished central

ZDC-triggered data[Bloo] agree to within 10% with the multiplicity-triggered data
G

considered here.
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Figure 1.1.3 K i data[E802] compared to firestreak (dashed), constrained fit (dot-

dashed), and multicomponent model (solid) calculations.

4

_ To estimate more quantitatively the nuclear sl_opping power implied by these data

and to enable us to calculate the A and impact parameter dependences of the spectra,

we developed a multicomponent firestreak model with enough flexibility to deal with

many complex nonequilibrium features exhibited by the p, _r, and K data. Instead

of forming one fireball(streak) in each collision between rows of nucleons as in the

12
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conventional firestreak model, we allow each row-row collision to form up to four

fireballs with different rapidities depending on the nuclear thicknesses involved. We

found that four fireballs was the minimum necessary to reproduce ali the features of

the present data. While differing in detail, this model is similar to previous multi-

component fireball and hydrodynamic models[Dan, Clare]) which were introduced to

" take into account nuclear transparency.

In our model we assume that in a collision of two tubes of nuclear matter of

transverse area ain = 30 mb containing Np and Art nucleons, the total center of mass

momentum P* of both tubes is reduced by an amount proportional to the number of

binary collisions, NpNt:

Z_P" = ,SpzNpN, . (1.1.2)

Here _pz is the average longitudinal momentum loss per inelastic collision. Defining

the effective nuclear thickness, zi, via Ni = ai,_poZi, the :momentum shift per baryon of

the projectile (target) is thus assumed to increase linearly with the target (projectile)

thickness. A measure of the nuclear stopping power is given by the stopping length

Lo = rngsinh((yp- yt)/2)/(a_,.,po_pz) , (1.1.3)

where yp(yt) is the rapidity of the projectile (target) tube. For symmetric collisions

with zp = zt = z, the fractional momentum loss, AP*/P* = z/Ls, increases linearly

and reaches unity when z = Ls.

We found, however, that the above two fireball model of stopping could not re-

produce the apparent peaking of Tp(y) near y _. 1.5 as indicated by preliminary E802

. data[Bloo]. We therefore allowed a fraction, fs, of the baryons from both the projec-

tile and target nucleon in each tube to stop completely in the tube-tube cm frame.
4

This fraction was also assumed to increase with nuclear thickness as

/, = (z_z,)'/_/L: . (1.1.4)

ii incomplete nuclear stopping is thus modelled by three separate baryonic fireballs (for13
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each row-row collision) with rapidity and baryon number controlled by two stopping

lengths, L, and L',.

The baryon transverse momentum distribution is controlled by the excitation en-

ergy per baryon, M', in each of these fireballs. In order to fit the preliminary Tp(y)
!

data[Bloo], we enforce the constraints M" < Mi' = 1.4 GeV for the noncentral fireballs

and M_ _<M_ = 1.85 GeV for the central ones. Any excess energy is assumed to be

taken up by a fourth central fireball with zero baryon content (the "meson" fireball).

The baryon fireball freeze-out densities are all chosen to be Pf = po = 0.15 fm -3,

while the meson fireball freeze-out temperature is chosen to be 160 MeV. In addition,

to account for incomplete chemical equilibration of strange hadrons seen from fig.

1.1.3, we reduced the thermal contributions of all strange hadrons by a factor 1/4.

These hybrid aspects of the model essentially mimic effects in the hydrochemical

model[Brown, BrownEr] without the constraint of full nuclear stopping.

The solid lines in Figs. 1.1.2, 1.1.3 show the results of this multicomponent model

for L_ = L_ = 26 fm (6p_ = 0.22 GeV/c). With these parameters we recover essen-

tially the results of the (dash-dot) fit discussed earlier. In particular, this model also

leads to a high rapidity projectile contribution centered around y _ 2.5 as required

by energy-momentum and baryon conservation. The rather large values of these stop-

ping lengths are surprising in view previous expectations based on p + A at higher

energies [pA, Mish]. Also with L, = 26 fm, the fraction of projectile baryons in the

central fireball is only fs -,_1/3 for Si + Au. This value is much less than deduced in

[E814, Stach] based on transverse energy and leading neutron data and unpublished

high multiplicity selected E802 dN_h/d_? data.
4

We comment finally on the difference between collective longitudinal hydrody-

namic flow and nuclear transparency. In Ref.[Stach] it was suggested that Landau

hydrodynamics could account for the nonisotropic angular distributions in the cm

frame. However, the comparison between that model and the data in fig. 1.1.1

shows that no single expanding source can account for the different maxima and
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shapes of those distributions. On the other hand, detailed one fluid hydrodynamic

calculations[Stau89, Stau90] predict a nonsymmetric baryon distribution with a shoul-

der between 2 <_y _<3. In fact so much longitudinal collective baryon flow was pre-

dicted that the calculated pion yield falls significantly below the E802 data. It would

be interesting to check if variations of the equation of state and the freeze-out condi-

tion could improve the agreement with data for this reaction. In principle only the A

dependence of the particle spectra can differentiate between such novel nuclear shock

effects from transparency. For example, one fluid hydrodynamics predicts[Strot] a

sharp peak at mid rapidity for the proton distribution in central Si + Al, whereas our

model predicts a minimum in that case.

We conclude that none of the present models which assume complete nuclear stop-

ping and none of the nonequilibrium string models are consistent with the new E802

data. If the normalization error of the new E802 data does not exceed 30%, then

energy-momentum and baryon conservation alone require there to be an unexpected

shoulder in the baryon spectrum in the region 2 < y < 3. Our fits to the data

in terms of a multicomponent firestreak model suggest surprisingly long stopping

lengths, L, _ 26 fm. Because these results deviate so much from previous expec-

tations and analyses of more indirect data, systematic measurements of the A and

multiplicity dependence of dNp/dy over the full rapidity region should be undertaken

to cross check these data and establish if indeed nuclei are as transparent as the

present data seem to indicate.



1.2 Nuclear Stopping Power

at 15 GeV/nucleon

by Scott Chapman and Miklos Gyulassy
(Published in Physical Review C 45 (1992) p. 2952)

Abstract

Fireball, firestreak and hadronic string models are shown to overpredict recent central
15 AGeV Si+Au E802 spectrometer data. Claims in the literature about full nuclear
stopping in Si+Au reactions are therefore not supported by these data. In fact, fits
to the spectrometer data indicate that up to half of the projectile nucleons may lose
less than one unit of rapidity after traversing 5-10 fm of nuclear matter, implying an
unexpected long stopping length of _20 fm. On the other hand, E810, E814, and
preliminary E802 dNcha,.g_d/&7data are more consistent with the expected degree of
stopping.

1.2.1 Introduction

It has been claimed that "full stopping is realized[PANIC], showing a behavior close

to the Landau model[Stach] and to relativistic fluid dynamics[Stau89], and the energy

density can reach values comparable to the critical values for QGP formation" lAme91].

However, as we pointed out in ref. [Chap91], the published E802 spectrometer data

[E802] cast doubt on this belief, since in fact none of the present models is consistent

with the full array of data. Moreover, if the spectrometer dN/dy are normalized

correctly, then these data are more indicative of a surprising degree of nuclear trans-

parency. On the other hand, dNcharg_/d_[HIPAGS] and high rapidity E810[E810]

and E814[E814] are well reproduced by models incorporating a high degree of nuclear

stopping. As a result of this apparent inconsistency, no firm conclusion can yet be

drawn on the important topic of the amount of nuclear stopping at the AGS.

In our letter[Chap91] we discussed a model independent fit to the spectrometer

data which showed that if systematic errors do not cause more than a 30% suppression

of proton and pion yields, then 4-momentum and baryon conservation laws imply

that at least 11 out of 28 projectile nucleons suffer less than one unit of rapidity loss

16

li



during a central Si+Au collision. In this paper, we give the precise functional form

of the fit used in the letter, as well as introducing three other fits which allow for the

possibility of systematic errors in excess of 30%. In addition to E802 spectrometer

data[E802], we compare these four fits to E802 dNcha,.g_d/d_ data[HIPAGS] as well as
P

data from the E810[E810] and E814[E814] collaborations. In our letter, we developed

" a multicomponent model (mcm) in order to quantify the amount of nuclear stopping

implied by the E802 spectrometer data. In this paper, in addition to explaining the

mcm in more detail in the Appendix, we show that a simpler double firestreak model

leads to similar conclusions about the amount of stopping. These types of models

are only able to reproduce the spectrometer data with stopping lengths of _20 fm.

In addition to central Si+Au data, we discuss the agreement of these models with

unpublished preliminary central Si+Al and Si+Cu E802 spectrometer data[Bloo],

and make predictions for central Au+Au proton and pion distributions at these same

energies. The long stopping lengths implied by the E802 spectrometer data provide

a sharp contrast to the results of p+p and p+A experiments at these same energies

which imply stopping lengths of more on the order of 8-10 fm[pAl. Thus, either

something new and unexplained is occurring in central Si+Au collisions at the AGS,

or else systematic errors in the spectrometer dN/dy data must be significantly larger

than previously estimated. In any case, the published E802 spectrometer data do not

support claims of full nuclear stopping which are prevalent in the literature[PANIC,

Stach, Ame91, RQMD91, RQMDpi, Brown, BrownEr].

1.2.2 The Hadronic Fireball
o

In the generic hadronic fireball model[Gosset], the projectile nucleus is assumed to

be completely stopped by the target nucleus in the participant center-of-mass frame,

whereupon thermal and chemical equilibrium are established. By treating both nuclei

as hard spheres of constant baryon density (po = .145fm-3), geometry determines

the number of interacting nucleons for any given impact parameter. For example, in

I
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a b=0 Si+Au collision, all 28 (= Np) silicon nucleons interact with a central tube

of about 75 (= N,) gold nucleons, thus making the baryon number of the resulting

fireball 103 (= NI). The remaining 122 gold nucleons of this example are merely

Sl:....;tators which are ignored in this model. Once Np and ?Ctare known, the rapidity

of the fireball rest frame and the total fireball energy in that frame are fixed by

kinematics. For the Si+Au example with yp0 = 3.4 and yto= O, yl = 1.3 and E.t =

250GEV.

After its creation, the fireball expands and cools until freezeout, when the mean

free path of the fireball hadrons becomes approximately the same size as the radius of

the fireball. The temperature and chemical potentials at freezeout define the particle

distributions according to

fi = dNi = 7igiVf,.E (1.2.1)
dyd2p.t exp{(Z- Bi# - Sil_,)/T} - (-1) B'

where Bi, Si and gi are the baryon number, strangeness, and spin-isospin multiplicity

for each species of hadron, Vfr is the freezeout volume, and "yi is a parameter intro-

duced to allow for incomplete the chemical equilibration. We assume that 7i = %

for all strange hadrons and 7i = 1 for all other hadrons. Since E l and N f are

fixed by kinematics, T,/z and/zo can be found by choosing values for % and VI,. (or

Pf," = NI/VI,') and then solving the following integral equations:

E f = __, [ d2p.t.dyEfi (1.2.2)
imh_drorm

,,J

N! = __, Bi ] a_p±dyfi (1.2.3)
/=baryons

0 = _ Si f d2pa.dyyi (1.2.4)
/=strange

We treat explicitly only the following hadronic resonances: N, A, A, E, rr, r/, p, w, r/',

K, K" and their antiparticles. For example, for b = 0, % = .5 and Pl," = 5p0, we find

that T = 200 MeV, _u= 418 MeV and #, = 92 MeV for AGS energy.
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Once T,/_ and #8 have been found for a given set of input parameters, fi(y,pa.)

determine the invariant distributions for each species of hadron in the fireball. How-

ever, before reaching the detector, the heavy baryon and meson resonances decay as

. follows: A _ N+_r, A --, p+Tr-(64% of the time), E + _ p+r ° (52%), E+ --, n+r +

(48%), E° --_ p + _r- (64%), E- --, n + _r-, 77--, 3r(30%), p --, 2r, w --, 3r(90%),

" r/' --, 2r, and K* --, K + lr, where the balance of the A, E°, q and ,_ decays are

into undetected neutrals. For the 31r decays, it is assumed for simplicity that each

daughter particle carries away 1/3 of the parent energy. By convoluting the above

decays with parent distribution functions as in ref. [Das], the resonance contributions

to the nucleon and pion distributions are found.

The net charge/baryon of the fireball is given by

(Z/A)I = (Zp/Ap)Np + (Zt/At)Nt
N! ' (1.2.5)

where Zp (Zt) and Ap (A,) are the charge and atomic number of the projectile (tar-

ge_) nucleus. Charge conservation is enforced as follows: All final state mesons not

coming from strange baryon decays are assumed to be distributed isosymmetrically,

and therefore the net charge carried by these mesons is determined solely by the kaon

abundances:

Cre,, = Nn+ - NK- (1.2.6)

From isosymmetry (NK0 = Nn+, etc.) and conservation of strangeness before strange

baryon decays, we have the relation Cm_, = .bY, where Y is the number of strange

baryons in the fireball. It is assumed that all of the strange baryons have the same

. mass (1.17 GeV) so that their relative abundances before decay do not depend on

the temperature or chemical potentials. These abundances are taken to be 1/4,
J

1/2(Z/A)I , 1/4, and 1/2(1- (Z/A)1) for A, E +, E°, and E- respectively. In this

way, the net charge/baryon of ali strange hadrons is always identical to the incoming ]

charge/baryon ratio of (Z/A)1. If, on the other hand, we had chosen A's and E's to

have different masses, we would either need to introduce another chemical potential or

I
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some more complicated prescription for choosing strange baryon abundances in order

to enforce charge conservation for arbitrary T, # and #,. Finally, by demanding

that (Z/A)I of the final nucleons not coming from strange baryon decays be protons,

overall charge conservation can be enforced.

In the E802 experiment[E802], central Si+Au events were identified by a high

multiplicity trigger whose cross section (=acc,t) represented 7% of the total Si+Au

inelastic cross section (=3822mb[Bloo]). In our model, we chose a maximum impact

,; parameter (b,.,_z = 2.9fm) such that _rb,n_,=2= ac_,_tand then integrated our fireball

results over b from 0 to b,,,_.

In the experiment, measurements were made using a spectrometer arm with a

range of 5° < 0 < 55° which could detect and identify charged particles with total

, momentum between 0.5 and 3 GeV/c[E802, E802a]. The resulting raw particle dis-

tributions were binned both in y and m±. For each rapidity bin, the distributions

appear to be well fit by pure exponentials in m±[ES02]"

dNi/dyd2m± = p,(y)exp(-(mi± - ml)/Ti(y)) (1.2.7)

The rapidity distributions were then estimated by integrating these fits over m±:

dNi/dy = 2_rpi(y)Ti(y)(Ti(y) + mi). (1.2.8)

In the fireball model, dN_/dy can be calculated in two ways: by numerically integrat-

ing f_ over all d2m_ or by using the exponential fitting procedure outlined above after

imposing the experimental phase space constraints. For ali of our calculations, the

difference between the results of these two methods was less than 20% for dN_/dy
Q

and completely negligible for dNp/dy.

In fig. 1.2.1 we compare three fireball models to the data. The solid dots are

data from the E802 spectrometer[E802], while the diamonds and x's are data from

i E810[E810] and E814[E814] respectively. It should be noted that the E814 data are

actually for Si + Pb collisions rather than Si + Au and that the three experiments
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m=-m m=-m
Figure 1.2.1" The solid dots in the upper panels show the proton and r- rapidity
distributions measured by the E802 spectrometer in 14.6 AGeV/c central Si + Au
reactions, while the bottom panels show the m_ distributions for y = 1.3 in those
same reactions[E802]. The diamonds show E810 '+' - '-' and negatively charged
particle distributions for Si+Au using a trig_ger with twice the cross section of the
E802 central trigger[E810]. The solid squares are E814 proton data for central Si+Pb
reactions[E814]. Solid curves show results of the generic fireball model, while dashed

• and dot-dashed curves denote Landau hydrodynamic fireball[Stach] and hydrochem-
ical fireball[Brown, BrownEr] results respectively. The norms of the hydrochemical
results have b_n adjusted in accordance with the published erratum[BrownEr]. Thea

dot-dot-dashed curves in the lower panels show m± distributions of protons and _r-'s
coming only from heavy baryon decays in the generic fireball model. The dot-dot-
dashed curve in the upper right panel shows the generic fireball prediction for the

-_ pion rapidity distribution given the restricted phase space of the experiment.
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use different centrality triggers (the E810 trigger has twice the cross section of the

E802 trigger, while the E814 trigger has less than half the cross section of E802).

Nevertheless, comparing these data sets to one another is done quite often[Nag] and

is useful for making qualitative cross checks. The solid line in fig. 1.2.1 shows the
tf

results of the generic fireball model outlined above with Pf, = 5p0 and 7o = .5.

This fireball model produces more than a factor of 2 too many protons, pions, and

kaons (not shown) at mid-rapidity. Using a higher freezeout baryon density results

in more heavy baryon resonances and slightly fewer pions, but the increased temper-

ature makes the distributions become too broad in m±. Increasing (decreasing) 7,

increases (decreases) the number of kaons and strange baryons but does not have a

significant effect on the total number of mid-rapidity protons and pions. In fact, no

reasonable variation of PIt"and/or 7, significantly improves agreement with the data.

In addition to the generic fireball, fig. 1.2.1 also shows results from the Landau hydro-

dynamic longitudinally expanding fireball[Stach] (dashed line) and the hydrochemical

spherically expanding fireball[Brown, BrownEr] (dot-dashed line). The longitudinal

expansion of the Landau fireball reduces the midrapidity proton and pion peaks but

still overpredicts the E802 proton data by at least 70% in the range 1.5 < y < 2. On

the other hand, it should be noted that this model does a very good job of reproduc-

ing high rapidity ES10 and E814 data. Even though the spherical expansion of the

hydrochemical model provides a possible explanation for the difference in proton and

pion slopes, this model also fails to reproduce the measured norms of these distribu-

tions. In fact, ali of the fireball models considered here overpredict the E802 proton

and/or pion rapidity distributions by at least 70% in some rapidity range.
Q

It has been suggested[Brown, BrownEr] that at least some of the discrepancy in

dN,_/dy could be due to an unmeasured excess of low pA pions coming from baryon

resonance decays. The dot-dot-dashed curves in the bottom two panels of figure 1.2.1

show the distributions of protons and pions coming only from baryon resonance decays

in the generic fireball model. At least for the generic fireball, any low PAenhancement
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due to these resonances is entirely negligible for protons and less than 20% for pions, as

can be seen by comparing the restricted, exponentially fitted dN,_/dy (dot-dot-dashed

line in fig. 1.2.1) with the directly calculated dN,/dy (solid line). Furthermore, even

if one makes the assumption of the hydrochemical model[Brown, BrownEr] that none

of the pions coming from baryon resonance decays are detected, fireball models still

" predict 70% more mid-rapidity pions than are seen in the data (dashed line in fig.

1.2.1). Since none of the fireball models discussed here can simultaneously reproduce

all of the data, we turn to other models.

1.2.3 The Firestreak and String Models

The firestreak[Gosset, Myers] model was designed to take into account the diffuse

edges of colliding nuclei by creating many smaller scale regions of local equilibrium

rather than a single large fireball. In this model, the projectile and target nuclei

are divided into longitudinal tubes with transverse area a.t(_ l fm2). Each set of

two opposing tubes forms a completely stopped miniature fireball (or firestreak) in

its local center of mass frame. In this way a large number of independent firestreaks

forms, each with its own local values of N f, Yf, T, _uand _u,. As a result of this locality,

Wood-Saxon density distributions rather than sharp spheres can be used to determine

how many nucleons are in each tube. Often, some very asymmetric cases will result.

For example, a tube containing 3 nucleons from the center of a gold nucleus could

interact with a tube containing .1 nucleon from the diffuse edge of a projectile silicon

nucleus to create a streak with N I = 3.1 and y! = 0.4. These asymmetries provide

• a natural way to generate low-rapidity "spectator" contributions, even though there

are no true spectators in this model.
iJ

Hadronic string models[Lund] also feature locality, though they do not impose

the requirement of complete nuclear stopping. In fig. 1.2.2, we compare the fire-

| o_,.o_t, t,_oh.-_ _,,a two ot,';-g mo,_,_l_ t Att._l_rc'.vu87! t,_oli,_ a._l QGSM[Am_,91]

;] (histogram)) with the data. For the Firestreak and Attila, we have calculated Tj(y)
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Firestreak and String Models
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Figure1.2.2:The toppanelsareasinfig.1.2.1,whilethebottompanelsaretheinverse
slopeparametersofeqn.(1.2.7)[ES02].Thesedat_arecomparedtofirestreak[Myers]

(dashed), Attila[Gyu87] (solid), and QGSM[Ame91] (histogram) calculations. The
dot-dot-dashed curve in the upper right panel shows the firestreak prediction with
experimental phase space restrictions.

via the exponential fitting procedure of eqn. (1.2.7) in order to compare our curves to

the published Ti(y) values. Though the firestreak improves on the fireball by showing

"spectator" contributions, it still has the problem of predicting far too many mid-

rapidity protons and pions, even after the experimental acceptance has been folded .

in (dot-dot-dashed line in dN,_/dy). The string models do a better job of reproducing

the overall ramp shape of dNp/dy, though they still overpredict by at least 70% the

n""_'_" ^¢ pi by _ono T, _..1_ _._ noted "_'"' ..1,_..... t. ^,,:1u,,,,,_, ,,, ons seen ,_,,,,.. ,,_o,,,.,,.,,,.,,.,_ _,,,,, ,,,_,,,us,, n_,,a vv_,v, edicts
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by about 50% the high rapidity protons seen by E802, it reproduces those seen by

E810 and E814 very well.

RQMD
• 40 , , , , , ,7'

30- _ p -- "rr- -
p

_- 20 • __

10
o

0 I I 't_--=I
1 2 3 1 2 3

Y Y
Figure 1.2.3: The data of the top of fig. 1.2.1 are compared to RQMD calculations
by H. Sorge et al. (histogram[RQMD92] and solid[RQMDpi]) and to RQMD calcula-
tions which have explicitly incorporated the experimental acceptances and cuts (open
circles)[RQMD802].

Recently, there have been claims[RQMD802] that the RQMD model[RQMD91] is

consistent to within 23% with the E802 spectrometer data. In fig. 1.2.3, we compare

various RQMD runs with proton and pion rapidity data. Since H. Sorge et. al. have

not yet published proton and lr- rapidity distributions in the same paper, we show the

proton distribution from ref.[RQMD92] (histogram) and the _r- distribution from ref.

[RQMDpi] (solid curve). These curves consistently overpredict the E802 data, even

by as much as 70% for midrapidity pions. The open circles in fig. 1.2.3 represent the
O

results of an RQMD run which was subjected to the E802 experimental acceptances

• and cuts[RQMD802]. It is interesting that this RQMD run still overpredicts the E802

pion and proton yields by _ 50% and -_ 70% respectively in the region 1.5 < y < 2.

None of these discrepancies can be due to undetected low p± components since the

I] same exponential fitting procedure was used for this RQMD run as for the E802 data.
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On the other hand, RQMD does a very good job of reproducing the high rapidity

E810 and E814 data.

1.2.4 Model Independent Fits R

Having seen that none of the above equilibrium and nonequilibrium models for nuclear

collision dynamics are able to simultaneously reproduce ali of the published data,

we consider next a model independent fitting procedure in order to isolate possible

causes for the discrepancies. We begin by fitting the experimental T_(y)[Bloo] and

(dN/dy)_(y)[E802] data with simple functions which have reasonable extrapolations

to phase space regions outside of the experimental acceptance. Equations (7) and (8)

are then used to determine the invariant distributions, fi = dNi/dy_m±, from which

information about momentum and energy conservation can be extracted.

For the meson (dN/dy)_(y) we usef,

(dN/dy)i = aC_exp(-(y- y,)2/,5i) - 1 _<y _<4 (1.2.9)

where (Ci, Vi, 6i) are fit with (16, 1.4, 1), (16, 1.35, 1.3), (3.5, 0.95, 1) and (0.67, 1.3,

1) for 7r+, _r-, K + and K- respectively. The reported data are fit with a = 1, but

later we set a = 1.3 to account for experimental systematic errors. The meson and

proton temperatures are given by:

T,+ = T,_- = 0.06 + .1 exp(-(y - 1.3)2/1.2) + 0.03exp(-y 2) (1.2.10)

TK+ = TK- = 0.19 exp(--(y -- 1.3)2/2.) (1.2.11)

0.23 exp(- (y - 1.55)2) . .1 exp(-y 2) y < 2.2
Tp = (1.2.12)

0.15 y > 2.2 -

We fit the proton rapidity spectrum with a falling quadratic ramp and include ad-

j,,_t_hl,_ undetected spectator _-_ proj,_,'t;! ,_ gaussians in order to _,,-_,'_,,_ _,_,,,,,,
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number and to test for transparency"

C, pece(-y2/_'p*c) -1 < y < 0

" Max P 0 < y < 3
(dN/dy)p = a 6y _ -- 35y -t- 52 . Cproe (-(y-yp'°)2/6pr°)

" 7 - 2y + Cproe(-(y-ypr°)2/6pr°) 3 < y < 3.5

0 otherwise

(1.2.13)

Fitsto E802 Spectrometer
100 , , ,

•, p

'I

O010- .-..
%

I-

i

1 2 3

Y
Figure 1.2.4: The same proton data as in fig. 1.2.1 plotted on a log scale. In addition
to a datafit (dashed) which does not conserve 4-momentum, we show fit1 (solid), fit2
(dot-dashed),fit3(dot-dashed),and fit4 (dot-dot-dashed).
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Fitsto E802 Spectrometer
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Figure1.2.5:Data asinfig.1.2.2withE802 dN_+/dy[E802]insteadofprotons.Also

intheupperpanelswe showfit1(solid),fit2(solid),fit3(solid_r+ and dot-dashed_r-)
and fit4(dot-dot-dashed7r+ and dot-dashed_-). The lowerpanelsshow theT(y)
whichwereusedforallofthefits.

where 6vro = 0.2. For the unobserved neutral mesons it is assumed that 7r° = (_r+ +
t

lr-)/2, K ° = K +, and ii "° = K-. Charge conservation is enforced by demanding that

the total number of final protons be Np = 14 + 79- N_+ - Ns-+ + N,_- + NK- (= 91.9

for the above fit). We employ ES10 and E814 data to guide our dNp/dy extrapolation

to high rapidities by using (yp,.o, Cpr°, Csp_c, 6sp_c)= datafit = (2.5, 3.8, 80.9, 0.17),

where the last two parameters were chosen to get the right value for Np. With Np
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Figure1.2.6:The upperpanelsshow theE802 K ± rapiditydistributionsincentral
Si + Au reactions (solid dots), while the bottom panels show mi distributions for
y = 1.3 in these same reactions[ES02]. Simple fits to the data are shown by dashed
curves in the upper panels and solid lines in the lower panels. The solid curves in
the upper panels show the 30% enhancement used in fitl - fit4. The dashed line in
the lower right panel shows a low mx component which would give rise to a 30%
systematic error in dN,_/dy.

fixed, the total number of undetected neutrons is given by baryon number conser-

vation, Nn = 28 + 197 - Np = 133.1. The correct value for Nn can be achieved by

assuming an n/p ratio of 1.3 for y > 2 (based on E814 findings[Stach]) and n/p= 1.46

for y < 2. This fit to the three experiments at the AGS allows us to take into account
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all of the observed energy in longitudinal and transverse motion as well as pion and

kaon production. Data fit is shown by the dashed lines in figs. 1.2.4, 1.2.5 and 1.2.6

(solid lines for the temperatures).

The total outgoing longitudinal momentum Pz implied by this fit is easily calcu-

lated by integrating m± sinh(y)fi over d2m± and y"
,/2 + 2Timi + 2

p, = __, / dy2.,i mi (dg/dy)isinh(y) . (1.2.14)/=hadrons Ti + mi

E is simply found by replacing sinh(y) by cosh(y). For datafit, the integration over

y gives P, = 289 GeV/c and E = 495 GeV, whereas the total incoming energy and

momentum are known to be P, = 409 GeV/c (= 28 x 14.6) and E = 595 GeV

(= 197 × .939 + 28 × 14.63). 120 GeV/c of the incoming momentum and 100 GeV of

the energy are unaccounted for in this fit to the data! If we assume that neither leptons

nor photons carry a significant fraction of the 4-momentum, then there must be some

undetected hadrons somewhere which do carry it. The E802 collaboration noted that

an undetected excess of low p± particles could result in a 25% enhancement of dN/dy

over the exponentially fitted data[E802]. To take this into account as well as other

possible systematic errors in the data, we multiply each of our (dN/dy)i functions by

a = 1.3 and adjust Cp,.oto 2.3 in order to preserve high rapidity agreement with E810

and E814 (C,p,_ = 43.9 for charge conservation). Even with this 30% enhancement

over all of the E802 data, we find that 50 GeV/c of momentum and 45 GeV of energy

are still missing.

It seems that either the true dNi/dy exceed the published E802 data by more than

30% in some rapidity regions, or else the "missing" 4-momentum must be carried by

more high rapidity hadrons than we use in the above extrapolations. If we assume that

the latter is true, then the least transparent solution which does not overpredict any i

of the spectrometer data by more than 30% has fitl = (2.75, 3.4, 40.9, 0.17), where

now a constant n/p ratio of 1.46 is assumed throughout and (a, 5p_o) = (1.3, .25)

for the rest of the fits considered in this paper. This 4-momentum conserving fit

(solid lines in figs. 1.2.4-1.2.6) overpredicts high rapidity E810 and E814 proton data
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by a factor of 2. By allowing a 50% disagreement with the last proton data point, a

slightly less transparent solution can be found: fit2 = (2.5, 4.29, 32.28, .25) which only

overpredicts E810 and E814 by 50% (dot-dashed curve in fig. 1.2.4). These solutions

have 10.8 and 10.1 nucleons respectively in the projectile region (2.44 < y < 3.5). In
t

the lower half of fig. 1.2.6 we show how an undetected low-m_ component for pions

" could give rise to a 30% normalization error in dN,_/dy. However, since a high-mi

hadron with rapidity y carries more 4-momentum than a low-m.t hadron with the

same rapidity, it is more conservative to use a uniform 30% enhancement everywhere

as we did in our calculations.

If we allow a 40% disagreement with the last two E802 _- data points, the width

of the dN,,-/dy Gaussian can be increased to 6_- = 1.85 to provide agreement with

E810 negatives at high rapidities (dot-dashed dN,,/dy in fig. 1.2.5). By using fit3

= (2.5, 4.58, 72.7, 0.07) to define the proton distribution, 4-momentum can be con-

served with 9.7 nucleons in the projectile region. The y > 0 protons in this fit are

distributed almost identically to the protons in fit2, though from charge conservation

the enhanced number of r-'s causes a smaller n/p ratio (=1.33). Finally, from the

fact that silicon is isosymmetric, one could argue that high-rapidity pions should be

isosymmetric and therefore that the _r+'s should also be distributed like the E810 neg-

atives at high rapidities. This can be achieved by taking _,,+ = 1.75 and fit4 = (2.5,

1.92, 49.3, 0.09), which has only 6.6 nucleons in the projectile region and is shown by

the dot-dot-dashed dNp/dy and dN,/dy cur,yes in figs. 1.2.4 and 1.2.5. Though this

fit conserves 4-momentum and agrees well with high rapidity E810 and E814 proton

data, it disagrees with the last two E802 _r+ data points by 70-100% and it features
f

an n/p ratio of 1.56 even in the projectile region.

- It is instructive to compare the four fits discussed above to other preliminary data

from E802 as well as to leading neutron data from E814. In addition to the spec-

trometer arm, E802 has a target multiplicity array (TMA) detector which measures

dN/dr] of charged particles and a beam calorimeter (ZCAL) which measures the resid-
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Figure 1.2.7: Preliminary dNch,,,.g,d/drl data[HIPAGS] are compared to results of
RQMD [RQMD91] (histogram), fit1 (solid), fit2 (dashed), fit3 (dot-dashed), and fit4
(dot-dot-dashed).

ual beam energy after a collision. Due to the geometry of the ZCAL detector, there is

some uncertainty as to whether it measures the energy of final particles with 0 < 0.8°

or with 0 < 2.2°[Bloo]. For 0,,,=_ = 0.8° the four fits discussed above give ZCAL

energies (in GeV) of (5.3, 3.8, 4.4, 4.1), while for 0,_=_= 2.2° these same fits give (37.0,

27.4, 30.6, 27.6). If Om=_is indeed 0.8°, then none of the above fits are inconsistent

with correlations between the TMA (which defines the central trigger) and ZCAL

measurements[Bloo]. In fig. 1.2.7 we compare dN/dTi distributions from the four fits
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and RQMD[RQMD91] with preliminary TMA data[HIPAGS], lt is interesting that

the four fits, each of which exceed the spectrometer multiplicities by at least 30%,

still underestimate the TMA multiplicity. RQMD, on the other hand, can reproduce

dN/dr I quite well even though it overpredicts spectrometer yields by 50-70% in some

rapidity regions. Since no reasonable fit or model can simultaneously reproduce both

the spectrometer and TMA charged particle multiplicit!es, there appears to be some

inconsistency between these two data sets. We note here that preliminary E814 dN/dr I

data are in very good agreement with the E802 TMA data[E814a].

814 Leading Neutrons
0.4 , , ,

o3 mm ii

"_ II _I"I

0.2 - _._mm, -. m"-ltll"l

"'
1/IX

0.1- , -

!

" 0.0 I I " I
0 2 4

Y
Figure 1.2.8: The histogram shows the rapidity distribution for neutrons emerg-
ing with a beam angle of less than 0.8° in central (E±s14 > 13GEV) Si+Pb colli-
sions[E814]. Fitl (solid), fit2 (dashed), fit3 (dot-dashed), and fit4 (dot-dot-dashed)
for central Si+Au are compared to these data.
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Figure 1.2.9: Angular energy distributions (kinetic energy for baryons) are shown
for Attila[Gyu87] (histogram), fitl (solid), fit2 (dashed), fit3 (dot-dashed), and fit4
(dot-dot-dashed).

In the E814 experiment, neutrons emerging from Si+Pb collisions with a beam

angle of 0 < 0.8° are measured using a forward spectrometer[E814]. Their rapidity is

determined by the amount of energy that they deposit in the spectrometer, and so a

dNo/dy plot of neutrons having 0 < 0.8° is generated. In fig. 1.2.8 we compare dNo/dy

from our four fits with leading neutron data for central (a _ 40mb) Si+Pb collisions

[E814]. The agreement is best for fit4, but due to the statistical uncertainty of the data

as well as the different target (Pb) and trigger used by E814, none of the fits can be
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ruled out. In addition to leading neutrons, E814 also measures dE/dO[Fox]. Though

these data are not yet published, we have plotted dE/dO predictions for our four fits

and Attila in fig. 1.2.9. It will be very interesting to see how the E814 data compare

to these predictions, since for 5° < 0 < 15° dE/dO is sensitive to the differences in4

the !_'ojectile region between the Attila model and our model independent fits.

' It should be emphasized that the four fits are conservative in that each assumes

that all of the E802 spectrometer data are systematically low by at least 30%. There

are, of course, other less transparent solutions which are consistent both with the

spectrometer data and with conservatinn !xws. For example, abhor-really large num-

bers of Ir°'s, photons, or high-energy electrons could be produced in these collisions

without being detected by the spectrometer. These solutions, however, imply bizarre

and uriprecedented physics. The four fits disc_ssed above are thus the least unusual

solutions which are more or less consistent with the reported E802 .Ipectrometer data.

One might argue that simplest solution of all to the problem of "missing" momentum

is that the E802 spectrometer data are systematically low by 20-40% at low rapidities

and by 40-70% at high rapidities. If that were the case, a number of conventional

models would be able to reproduce both the spectrometer dN/dy and the TMA dN/dr/

data reasonably well. If the spectrometer data do in fact have such large systematic

errors for central Si+Au collisions, then one might expect similar errors to be present

in central Si+Al data, where the extrapolation to projectile rapidities is more accu-

rately known from the approximate symmetry of the projectile and target. However,

in his Ph.D. thesis, Matt Bloomer performed an analysis using symmetric functions

in which he found that energy conservation together with ZCAL data imnlied that

the total systematic errors of the spectrometer data were less than 20% for central

" Si+Al collisions[Bloo]. We are led to conclude either that new systematic errors are

present in central Si+Au collisions or that some new and unexpected physics occurs
/" 1 1 1

Ll.e" . 1 ,"anomalousJy ' ............. _.....targe neuiral '" 'parLlt:le ttJa&t ptLt _tCt_Spruuuc_,lon, or Ktr_t: nutttu_r_ Of _- _ ---': _

| in the projectile region).
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For the remainder of this paper, we take the normalization of the E802 spectrom-

eter data at face value, ignoring the E810 and E814 data. None of the models which

we have considered in this paper are consistent with the normalization of the spec-

trometer data; therefore, those models cannot be used to assess the stopping power

impl; .d by these data. For that purpose we now construct hybrid models that can

reproduce the reported E802 data. It should be emphasized that these models will

not be able to simultaneously reproduce high rapidity E810 and E814 data for reasons

of momentum conservation as demonstrated above.

1.2.5 Hybrid Models

The most straight-forward way to generalize the firestreak model to incorporate trans-

parency is to assume that each tube-tube interaction produces two firestreaks (pro-

jectile and target) rather than one. We must then determine the rapidity (yi) and

rert ene_'gy per baryon (M,) for each of these streaks. In order to treat projectile and

target consistently, we must either pick yp and yt or M_ and Mt', since the remain-

ing two can be solved for by energy and momentum conservation. A simple linear

parametrization of the projectile and target streak rapidities is given by

N,
ai,,) and Np . . ai,,

yt- (_00)(_--_) , (1.2.15)

where No is the number of nucleons in a tube of size a± = ai. -- 30mb necessary

to cause a one unit rapidity shift of the opposing tube. The last factor in each

of the above equations was included to insure that the stopping power would be

independent of the lattice size (a±) chosen. Unfortunately, the above prescription

leads to a number of cases where M* of one of the fireballs is forced by 4-momentum
r

conservation to be less than the mass of the nucleon, fig. 1.2.10 shows the regions

of (Np, Nt) space for which this problem arises. Similar problems were encountered

with other parametrizations in which yp and yt were chosen independently.
i These problem regimes could in principle be handled specially by demanding com-
i
i

l
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plete transparency or the formation of a single fireball, but we chose instead to utilize

a different algorithm which avoids special cases. First, in the center-of-mass frame of

two colliding tubes containing N v and Nt nucleons, the incoming momentum, P', is

" Phase Space Restrictions
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Figure 1.2.10: The available phase space for the stopping prescription of eqn. (15)
is shown by the unshaded region. In the shaded region, one or both of the receding
fireballs must have a mass/baryon < .939 GeV in order to conserve 4-momentum.

. found. Next, the momentum of each tube is reduced by an amount proportional to

the number of binary collisions, NpNt:
m

". /xp" = 6p_N_,N,(a_") (1.2.16)

i Finally, the energy/baryon is required to be the same for both of the outgoing fire-
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streaks (M_ = Mt" = M*). M" and the CM firestreak rapidities y_ and Yt can then

be found from the following equations:

M'Npsinh(y;) = M'Ntsinh(yt) = P" - AP* (1.2.17)

M'Npcosh(y;) + M'Ntcosh(yt) = Mem(Np + Nt) , (1.2.18)

where the CM energy/baryon of the tube-tube system, M_,,, is determined by kine-

matics. Due to the symmetries of this method, M" monatonically increases from mN

to M_,,, as /Xp" is increased from 0 to P'. When the prescription of (16) gives a

Ap" >_ p', a single firestreak with M" = Mm and y_ = y_' = 0 is assumed to be

formed. Defining the effective nuclear thickness, zi, via Ni = a.tpoZi, the momentum

shift per baryon of the projectile (target) is thus assumed to increase linearly with

the effective target (projectile) thickness. The nuclear stopping power of this model

is controlled by a single parameter-the momentum loss per binary collision 6pz, or

equivalently, the nuclear stopping length

Ls = mN sinh(ypo/2)/(ainpo,hpz) . (1.2.19)

The meaning of this stopping length can be most easily seen in symmetric collisions

(zt, = zt = z), where the fractional momentum loss (AP*/P" = z/Lo) increases

linearly and reaches unity when z = Ls. Thus a stopping length of 10 fm implies that

two colliding tubes of length 10 fm will just be able to stop each other.

In fig. 1.2.11 we compare models with various values of Lo to the data (Pf," = 2po

and % = 0.7 have been chosen to provide the best agreement with kaon data and

pion temperatures). Compared to the data, Lo = 10 fm is evidently too small and

Lo = 26 fm is too large. Though Lo = 17 fm provides good agreement to all but the

last point of the dNp/dy data, its pion peak is shifted to low rapidities, and its proton

temperature is too low with a dip at midrapidity which is not seen in preliminary,

unpublished Tp(y) data[Bloo]. It should be noted that folding the E802 spectrometer

i acceptance[ES02a] into the double firestreak leads to less than a 10% suppression
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Double Firestreaks
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Figure 1.2.11" Double firestreaks with Lo =10 fm (dot-dashed), 17 fm (solid), and 26
fm (dashed) are compared the data of fig. 1.2.2.

of the pion yield and no discernable change in the proton rapidity spectrum. This

double firestreak description provides far better agreement with the data than any

of the other models discussed so far, but in order to quantitatively reproduce all the

features of the E802 data, further refinements are needed.

One of the key observations of E802 is that the transverse momentum slopes

• of protons and pions differ significantly. Therefore the amount of energy locked into

transverse motion differs from that expected in simple thermal models with one freeze-

out temperature. Collective flow[Brown] provides one natural mechanism for different

ii slopes. Different freezeout criteria due to different cross sections provides another. To
]
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test the effect of this difference on the conclusion of the stopping power, we developed

a more complex multicomponent model (mcm). The details of this model are given

in the Appendix. We emphasize that the mcm is not meant to be a realistic model of

the physics, but a convenient numerical tool to help sort the implications of various

features of the data.

In figs. 1.2.12 and 1.2.13 we show two mcm solutions. The solid line is the best fit

to the data (mcml), with Lo = L', = 26fm, M i' = 1.4 GeV, M_ = 1.85 GeV, Pl," = Po,

Tree, = 160 MeV, and % = 0.25. This is the fit that was used by us in ref.[Chap91].

Multicomponent Model Fits
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Figure 1.2.12: Multicomponent model fits mcml (solid) and mcm2 (dashed) are com-
pared to the data of fig. 1.2.2. The dot-dashed curve for the pions shows the result
of mcml with the experimental acceptance taken into account[E802a].
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Multicomponent Model Fits
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Figure 1.2.13: Multicomponent model fits mcml (solid) and mcm2 (dashed)_recom-
pared to the data of fig. 1.2.6.

The dashed curve is another fit to the data (mcm2) with Lo = 20fm, L'o = 50fm,

Mi _ = 1.55 GeV, M_ = 2 GeV, Pf," = po, Tmeo = 165 MeV, and % = 0.25. The

" dot-dashed curve for the pions shows mcml with the spectrometer acceptance[E802a]

. folded in. Due to the many adjustable parameters of this model, both mcml and

mcm2 are able to quantitatively reproduce almost all of the E802 spectrometer data.

The most notable discrepancy is the 25% overprediction of low rapidity pions by these

models after the experimental acceptance has been taken into account. Unlike the

I
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models discussed previously which also overpredict pions, the disagreement of tile

mcm fits is much smaller and only seen at low rapidity. Both of the mcm fits as

well as the Ls = 17 double firestreak exhibit the high degree of nuclear transparency

necessary to be able to reproduce the E802 spectrometer data.

The Lo = 17 double firestreak as well as mcml and mcm2 discussed above have
L

M1had their parameters tuned to best fit the E802 central Si+Au spectrometer data.

The quality of these fits is therefore not very surprising, especially in the case of the

mcm where there are so many free parameters. An interesting test of these models

is to see how well they can reproduce unpublished E802 central Si+Al and Si+Cu

data[Bloo]. For these reactions, there is very little difference between the results

of mcml and mcm2; both of them are able to reproduce dN,_/dy and mid-rapidity

dNp/dy of both collisions to within 20%. Both parameter sets predict too many

target protons, but this could be due to large fragment formation in these reactions.

The L0 = 17 double firestreak obtains results similar to mcml and mcm2 for Si+Cu,

but it exhibits a factor of 2 too few mid-rapidity protons and pions in central Si+Al

collisions. Even though the double firestreak uses a smaller value for Lo than the

mcm fits, it exhibits less stopping when applied to lighter nuclei. This is because

there is no center-of-mass firestreak in the double firestreak model, so a lot of energy

is carried away by receding mesons. This effect becomes much more pronounced

with less stopping (lighter nuclei). It should be noted that we were not able to

find a model which could simultaneously fit E802 p+A data and central A+B data.

However, to the extent that central Au+Au reactions bear more similarity to central

Si+A than to p+A reactions, the predictions for Au+Au by our mcm fits are better
t

supported by the E802 spectrometer data than those of the models discussed in the

first parts of this paper. In figure 1.2.14 we show Au+Au predictions by the Lo = 10

fm (dot-dot-dashed) and Lo = 17 fm (dot-dashed) double firestreaks as we!_ as by

the mcm fits (mcml=solid, mcm2=short-dashed). For such large nucle:i, the L_ = 10

fm double firestreak forms essentially a fully-stopped firestreak which consequently
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features a much narrower and higher peak in dNp/dy than the other models. This

is due to the fact that full stopping has not been achieved in these models, as can

be easily seen by looking at the long dashed line which represents the projectile

0 proton rapidity distribution of mcml. Since Au+Au is symmetric, the projectile and

target contributions combine to form a symmetric, gaussian-like dNp/dy which would

be difficult to differentiate from the result that one would get from a fully-stopped

fireball undergoing longitudinal expansion. For asymmetric collisions like Si+Au, on

the other hand, these two cases can be clearly distinguished. For this reason it is

important to study and understand asymmetric as well as symmetric collisions.

Au+Au
I I i I I i

150- ' : " T " "
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Figure1.2.14:Predictionsforcentral(0< b< 3 fm) Au+Au collisionsby multicom-
ponent model fits mcml (solid), mcm2 (dashed), and double firestreaks with L_ =10
fm (dot-dot-dashed) and L, =17 fm (dot-dashed). Projectile protons for mcml are

ii shown by the iong-dashed curve in the upper left panel.
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1.2.6 Conclusion

We showed that none of the present models which assume complete nuclear stop-

ping and none of the present nonequilibrium string models are consistent with the
L

published E802 spectrometer data[ES02] for central Si+Au reactions. For example,

even the RQMD model is not consistent with these data, as they note that "the

problem of the 'missing' energy-momentum could be resolved if the normalization of

the E802 spectrometer data were too small."[RQMD92] If corrections to the normal-

ization nowhere exceed 30%, then energy-momentum and baryon conservation alone

require the existence of at least 10-11 nucleons in the projectile region (y > 2.44)

which, however, would be inconsistent with E810[E810] and E814[E814] results. The

fact that the high rapidity E810 and E814 proton data are in excellent agr_ment,

even though the E810 trigger is less central and the E814 trigger is more central than

E802, makes it unlikely that the discrepancies of those data with fits to the E802

spectrometer are due to triggering effects alone. A double firestreak and a multicom-

ponent model have been developed to quantify the degree of transparency needed

to reproduce the spectrometer data, and nuclear stopping lengths of 17-26 fm were

found. These lengths are much larger than the lengths of 8-10 fm which were ex-

pected based on other experiments at these and higher energies[pAl. On the other

hand, the high rapidity data from E810 and E814 as well as preliminary dN/&7 data

from E802[HIPAGS] and E814[E814a] are consistent with models incorporating the

expected degree of nuclear stopping. Until the discrepancies between all data sets are

resolved, conclusions about full nuclear stopping remain premature.
w

i 44

|
wl



1.2.7 Appendix

In the multicomponent model, we decompose a single fireball into two with two differ-

ent freezeout times (one baryonic and one mesonic). Baryonic fireballs are assumed to

• consist of baryons (no antibaryons), K+'s and K°'s balanced such that they have zero

net strangeness. Since the baryon resonances are allowed to decay as usual, there are

some pions which are produced by baryonic fireballs. Mesonic fireballs are comprised

of ali hadronic resonances (including baryons), but have zero baryon number and

strangeness. We suppose that each tube-tube collision gives rise to one fully stopped,

double-freezeout firestreak at the local center of mass as well as to receding projectile

and target baryonic firestreaks. A number of new parameters must be introduced

into this model to determine the energy and baryon number of each of the firestreaks

involved.

First, as in the double firestreak, a value of L, is specified in order to determine

M °, y_, and y_' for the receding firestreaks. Second, another stopping length, L',, is

chosen in order to determine the fraction of baryons from each tube which get fully

stopped:

f, = (zvzt)'/2/L: . (1.2.20)

Next, if the initial CM energy/baryon, M_,,, of the tube-tube system is greater than

an excitation mass parameter M_, then the energy/baryon of the baryonic part of

the central fireball is limited to M_ = M_, and the energy/baryon available to the

receding streaks becomes

M*_ M*'-- 1-fs(M_/M_)M* (1.2.21)
• l-f,

in order to conserve energy. If, on the other hand, Mm < M_, then M_ = M_,_ and

M °' = M*. If M*' turns out to be smaller than another parameter Mi' , then there

is no mesonic firestreak at all, and the tube-tube interaction is modeled by three

purely baryonic streaks. However, if M*' > M{' then the receding streaks have their

energy/baryon limited to M{' (M_ = Mt* = Mi'), and a mesonic streak overlapping
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the CM baryonic streak is created with energy

E_,_ = (M"- M_')(1 - f_)(Npcosh(y;) + Ntcosh(y;)) . (1.2.22)

For the mesonic streaks, a freezeout temperature Tm_ is specified and VI_ is solved for

trivially, since # = tto --- 0 for streaks with zero baryon number and strangeness. Note

that if (zpzt) _/2 > L'o or Ap* >_p'((zvzt)l/2 _ L_) for any two incoming tubes, then

this model reduces to a fully-stopped firestreak with separate baryonic and mesonic

freezeout criteria.

The many parameters of this model have interrelated effects but can be approxi-

mately explained as follows. The amount of baryon stopping is controlled by L, and

L'o. The central (1.1 < y < 1.7) values of Tp(y) are controlled by L'0, M_, and Pf,,

while the wings (y < 1.1, y > 1.7) of Tv(y ) are controlled by M_' and pj_. It should be

noted that for baryonic firestreaks with M, fixed, decreasing! nS_cools the baryons by

forcing them into higher mass resonances. T,_(y) is mainly controlled by T,_o, though

PI_, M[ and M_ also have effects by adjusting the number of cool pions coming from

baryon resonances. The height of dN_/dy is affected by ali of the parameters; in-

creasing the value of any one of them leads to a decrease in the number of pions. The

overall number of kaons is adjusted by 7°, while the K+/K - ratio is determined by

the number of strange baryons, which is again a function of PS,', M_ and M_.
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1.3 Talk from Quark Matter '91

by Scott Chapman
(Published in Nuclear Physics A544 (1992) p. 429)

• Abstract

Fireball, firestreak and hadronic string models are shown to overpredict recent central
' 15 AGeV Si+Au E802 spectrometer data by _t least 70%. Claims in the literature

about full nuclear stopping in Si+Au reactions are therefore premature. In fact, fits
to the spectrometer data indicate that up to half of the projectile nucleons may lose
less than one unit of rapidity after traversing 5-10 fm of nuclear matter, implying
possibly a surprisingly long stopping length of _20 fm. Comparison of these same
fits with E810, E814, and preliminary E802 dNch.rged/dr I data suggests, however, that
there may be some inconsistencies among the various data sets, and therefore that
additional data will be needed to establish the degree of nuclear stopping at AGS
energies.

1.3.1 Introduction

It is popularly believed that at the AGS "full stopping is realized[PANIC], showing a

behavior close to the Landau model[Stach] and to relativistic fluid dynamics[StauS9],

and the energy density can reach values comparable to the critical values for QGP

formation'[Ame91]. However, as we pointed out in refs. [Chap91, Chap92], the

published E802 spectrometer data[E802] cast doubt on this belief, since in fact none

of the present models is consistent with the full array of data. Moreover, unless

the systematic errors of the spectrometer data are very large, these data are more

indicative of a surprising degree of nuclear transparency. As we show below, however,

no firm conclusion can be made on this important topic, since not ali of the data sets

. are completely consistent. In this paper our aim is to clarify what are the problems

at present in drawing conclusions about nuclear stopping power in these reactions.
I

In our letter[Chap91] we discussed a model independent fit to the spectrometer

data which implied that if systematic errors do not cause more than a 30% sup-

pression of proton and pion yields, then 4-momentum and baryon conservation laws

imply that at least 11 out of 28 projectile nucleons suffer less than one unit of rapid-
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ity loss during the collision. In our subsequent paper[Chap92], we gave the precise

functional form of the fit used in the letter, and introduced three other fits which

featured unexpectedly large n/p ratios in the projectile region. Here we introduce

a fifth 4-momentum-conserving fit which features a more realistic n/p ratio and can D

successfully reproduce the E810[E810] data and extrapolations of E814[E814] lead-

ing neutron data (errors are estimated by assuming .1GeV<T<.2GeV), but which °

overpredicts the currently published E802 spectrometer data by 40%-70%, while

still underpredicting preliminary E802 dNcha,.g,d/drl data[HIPAGS]. We conclude

that unlike ES10, E814 and E802 dNch,,,.g,d/dy data, the E802 spectrometer data

do not support the claims of full nuclear stopping which are so prevalent in the

literature[PANIC, Stach, Amegl, RQMD91, RQMDpi, Brown, BrownEr].

1.3.2 Comparison of Models to the Data

The solid line in fig. 1.3.1 shows the results of the generic fireball model outlined in ref.

[Chap92] with p/r = 5p0 and % = .5. This fireball model produces more than a factor

of 2 too many protons, pions, and kaons (not shown) at mid-rapidity. No reasonable

variation of pfr and/or % significantly improves agreement with the data. In addition

to the generic fireball, fig. 1.3.1 also shows results from the Landau hydrodynamic lon-

gitudinally expanding fireball[Stach] (dashed line) and the hydrochemical spherically

expanding fireball[Brown, BrownEr] (dot-dashed line). The longitudinal expansion

of the Landau fireball results in reduced proton and pion peaks at midrapidity. This

expansion, however, only shifts the problem to higher rapidities, where again the

model produces a factor of 2 more protons than are seen in the data. Even though

the spherical expansion of the hydrochemical model provides a possible explanation
i.

for the difference in proton and pion slopes, the model again fails to reproduce the

measured norms of these distributions. In fact, all of the fireball models considered

here overpredict the measured proton and/or pion rapidity distributions by about a

factor of 2.
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Figure 1.3.1. Landau hydrodynamic[Stach], hydrochemical[Brown, BrownEr], and
generic[Chap92] fireballs are compared to E802 proton and pion spectrometer data
from 14.6 AGeV/c central Si+Au reactions[E802]. The bottom panels are for y = 1.3.

In fig. 1.3.2, we compare the firestreak[Chap91, Chap92] and two string models

. (Attila[Gyu87] and RQMD[RQMD91, RQMDpi]) with the data. For the Firestreak

and Attila, we have calculated Ti(y) by fitting the invariant distributions with exp_

nentials

dNi/dyd2m± = pi(y) exp(-(mi± - mi)/Ti(y)) (1.3.1)
:l

in order to compare our curves to the published T/(y) values. Though the firestreakI

i improves on the fireball by showing "spectator" contributions, it still predicts a factor
!
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of 2 too many mid-rapidity protons and pions. The string models do a better job of

reproducing the overall ramp shape of dNp/dy, though they overpredict the number

of high rapidity protons by 50%. As for the pions, the string models again do better

than the firestreak, though they still overpredict by 70% the dN,_/dy values reported p

by E802. Comparing Attila to RQMD shows that rescattering does not significantly

improve the string model fits to the rapidity data. It should also be noted that the

quark-gluon string model recently proposed in ref.[Ame91] similarly overpredicts the

number of mid-rapidity pions by at least 70%.

Firestreak and String Models
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Figure 1.3.2. Firestreak[Chap91, Chap92] (dashed), Attila[Gyu87] (solid), and RQMD
[RQMD91, RQMDpi] (histogram) calculations are compared to the same data as in
fig. 1.3.1. The bottom panels are the inverse slope parameters of eqn. (1.3.1)[E802].

:i
l

i
i

_I 50!

i
I

|
M'



1.3.3 Model Independent Fits

Having seen that none of the above equilibrium and nonequilibrium models for nuclear

collision dynamics are able to reproduce the published spectrometer data, we consider

' next a model independent fitting procedure in order to isolate possible causes for the

discrepancies. As in ref. [Chap92], we begin by fitting the experimental Ti(y)[Bloo]
Q

and (dN/dy)i(y)[E802] data with sii, ple functions which have reasonable extrapola-

't tions to phase space regions outside of the experimental acceptance (dot-dashed line

, of fig. 1.3.3). The invariant distributions, fi = dNi/dya_ma., are then completely
t
! determined if the exponential form of eqn. (1) is assumed, since
t

I! dNi/dy = 21rpi(y)Ti(y)(Ti(y) + mi). (1.3.2)
i,

The exact functional forms of the fits that we used (for kaons as well) are given in ref.

[Chap92]. For the unobserved neutral mesons it is assumed that _r° = (_r+ + r-)/2,

K ° = K +, and R ° = K-. Charge conservation is enforced by demanding that

the total number of final protons be Np = 14 + 79 - N,_+ - NK+ + N,_- + NK-.

With Np fixed, the total number of undetected neutrons is given by baryon number

conservation, N, = 28 + 197 - Np. These fits allow us to take into account ali of

the observed energy in longitudinal and transverse motion as well as pion and kaon

production.

The total outgoing longitudinal momentum Pz implied by these fits is easily cal-

culated by integrating mx sinh(y)fi over d2m± and y:

q,2 + 2Timi + 2

Pz = _., / dy 2"i mi (dg/dy)isinh(y) . (1.3.3)Tj+mi" i-hadrons

ii E is simply found by replacing sinh(y) by cosh(y). For the fit to the data shown by

the dot-dashed lines in fig. 1.3.3, the integration over y gives P= = 241 GeV/c and

_i E = 455 C_:.V,whereas the total incoming energy and momentum are known to be

I ""_ 595 GeV (= !97y ,9394-28x 14.63)Morei P= = 409 GeV/c (= 28 × t_.u) and E = . ..

'1 than a third of the incoming momentum and a fourth of the energy are unaccounted
!

i
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for in this fit to the data! If we assume that neither leptons nor photons carry a

significant fraction of the 4-momentum, then there must be some undetected hadrons

somewhere which do carry it. The E802 collaboration has acknowledged that an

undetected excess of low p± particles could result in a 25% normalization error of the

dN/dy data[E802]. To take into account these and/or other possible systematic errors

in the data, we proceed by multiplying each of our (dN/dy)i functions by a = 1.3 and

find P, = 322 GeV/c and E = 519 GeV. However, more than 85 GeV/c of momentum

and 75 GeV of energy are still missing!

Model Independent Fits
5O _ I I I I I I

'\,, - _ + - eo

e0 _-_e0
8, ) ,

10 - _o._._ rr _ 10
6O I I

t>,40 _' Ii

"-.30-

-/,,v 20 "\. -

0 1 I I _-__ n I I _'m
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Y Y
Figure 1.3.3. A fit to the data (dot-dashed), fitl (dashed) and fit5 (solid) are com-
pared to E802[E802] data (dots), E810[ES10] negatives and (+) - (-) (diamonds),
and extrapolated E814[ES14] protons (circles for T=.15GeV).

i Either the systematic errors of the dNi/dy data are significantly larger than 30%,
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or else the "missing" 4-momentum must be carried by an unexpectedly large number

of undetected high-rapidity hadrons. The least transparent solution which does not

overpredict any of the data by more than 30% is given by fitl of ref. [Chap92] and

is shown by the dashed lines in fig. 1.3.3. Less transparent solutions can of course

be found by allowing more than a 30% discrepancy with the spectrometer data. An

° example of a fit of this kind is fit5 (solid lines in fig. 1.3.3), with fit parameters (see ref.

[Chap92]) given by (yp_o, Cp_o, Cop_, 6op_, 6_+, 6,_-, a_o, ap, 6p_o(_<2.2s), 6r_o(_>_.2s))

= (2.25, 3.3, 93.39, 0.025, 1.75, 1.85, 1.4, 1.2, 0.5, 0.25). Fit5 has an n/p ratio of 1.3

Charged Particles

1001 ' ' ' ' I

80
I

Figure 1.3.4. Fitl (dashed), fit5 (solid), Attila[Cyu87] (dot-dashed) and RQMD

IRn_n01 RQ_np;] /h;_,_rn) _.o compared ta nrplirn;n_rv ER02 d.Ncha_-_e,_/d.,,t _'_'_ .... _'J ....... k ...... C).......... Z" ............ ,a -

data[HIPAGS]. 53

'!



for y > 1.5 and 1.62 for y < 1.5. From the bottom panels of fig. 1.3.3, it is evident

that fit5 is only able to reproduce high rapidity ES10[ES10] and ES14[ES14] data and

simultaneously account for all of the initial momentum by overpredicting the E802

spectrometer data by 40%-70%.

lt was pointed out long ago[Stach] that the E802 spectrometer and dNch,,,.g_a/drl

data seem to be inconsistent with one another. In fact as can be seen in fig. 1.3.4,

our fits significantly underpredict dNcha,.g_d/drleven though they significantly over-

predict the spectrometer data. Only models like RQMD[RQMD91, RQMDpi] which

overpredict the spectrometer pions everywhere by at least 70% are able to accurately

reproduce dN_ha,.9,_/ drl.

1.3.4 Conclusion

We conclude that none of the present models which assume complete nuclear stopping

and none of the nonequilibrium string models are consistent with the published E802

spectrometer data for central Si+Au collisions. If the normalization error of these

data does not exceed 30%, then energy-momentum and baryon conservation alone

require there to be an unexpected shoulder in the baryon spectrum in the region

2 < y < 3 implying a high degree of nuclear transparency. On the other hand, results

from E810[E810] and ES14[E814] as well as preliminary dNcharged/d_? data from E802

imply a high degree of nuclear stopping in these reactions. These data seem to

be inconsistent with one another, since no model or fit has been found which can

reproduce all of the data while preserving 4-momentum conservation. Consequently,

until these apparent inconsistencies are resolved, no firm conclusion can be drawn

about the amount of nuclear stopping in central Si+Au collisions at the AGS.



1.4 Recent Developments

Since the most recent publication of central Si+Au dn/dy data by the E802 collab-

oration in 1991[E802], a number of new systematic errors have been found and new
lt

low-p± measurements have been made which affect these data. The dn/dy yields pre-

, sented by E802 at various conferences in the past year and a half have been increasing

with time and gradually approaching the values predicted by standard event gener-

ators. Although no new dn/dy data reflecting these changes have yet been officially

sanctioned and published by the E802 collaboration, Chuck Parsons has presented

some new data in his May, 1992 PhD thesis[Pars]. In figs. 1.4.1 and 1.4.2, we com-

pare data from Parsons' thesis[Pars] (open circles) with the published 1991 data[ES02]

(solid dots).

i i i i

I00 D

, 10 "

I

1 .25 .5 .75 .25 .5 .75

m±--m p_

Figure 1.4.1. Solid dots are published invariant cross sections for _r-[E802] at y = 1.3
in central Si+Au collisions, while open circles are recent data presented in the thesis
of C. Parsons[Pars]. These data are plotted both as functions of ma. - m (left) and

• of pi (right). The dashed lines show the exponential mx fit used to determine dn/dy
in [E802], while the solid lines show the exponential pi fit used in [Pars].

P

The most striking feature of the new data is the remarkable increase in midrapidity

pion yields. In fig. 1.4.1 we show how the new low-p± measurements have motivated

fitting the pion invariant cross-sections with exp(--p.t/T) (solid lines), rather than
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with the previously used exp(-ma./T) (dashed lines). This effect combined with an

overall increase in the invariant cross section normalizations is what has lead to the

40-50% increase in pion dn/dy seen in the upper right panel of fig. 1.4.2. For protons,

the 30-40% increase in dn/dy seen at high rapidities (upper left panel of fig. 1.4.2)
P

is wholly due to normalization corrections, since the invariant cross sections are still

best fit by exponentials in m±. The slope parameters (T) and Kaon yields have not "

changed significantly in the new data.

New vs Old Data for Si+Au
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Figure 1.4.2. Solid dots are published dn/dy and temperature data for central Si+Au
collisions[E802], while open circles are from Parsons' thesis[Pars]. Solid squares in the
upper left panel are E814 data[E814], while those in the upper right panel are E810

negatives[E810]. These data are compared to Lund calculations[Gyu87] (histogram),
as well as to fits by Parsons[Pars] (dashed), Videbaek[Vide] (dot-dashed) and myself
(solid).
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The dashed lines in fig. 1.4.2 show fits which Parsons has made to the new data.

In his thesis, he performs an analysis in which he claims that 397 out of the initial

409 GeV/c of longitudinal momentum are accounted for by these fits. However, there
Q

are a couple of small problems with his analysis which I will outline here. To find the

" momentum carried by pions, he used the formula:

J[ dy(dN/dy)sinh(y)2T 2 + 2Tm + m 2P, (1.4.1)T+m

where T(y) and (dN/dy)(y) are his fits to the data. Unfortunately, the above formula

is only applicable for invariant cross-sections which are fit by exponentials in mx.

The correct formula for cross-sections fit to exponentials in pi is the following:

I

PII= / dy(dN/dy)sinh(y)(1/T2) / dp±p.L_/p_ + m2exp(--p.L/T) . (1.4.2)

Using this formula, I find that the pions from his fit carry 117 rather than 126 GeV/c

of longitudinal momentum. The correct treatment features enhanced numbers of

low-p_ pions which do not carry as much longitudinal momentum as their high-p±

counterparts.

Neutrons are not measured directly by E802, so some ansatz must be made as to

their distribution relative to that of the protons. Since the nip ratios for gold and

silicon are 1.5 and 1 respectively, Parsons chose the following ansatz:

/L,/p = 1.5 y < 0.5

P_/p=l. y > 3.5
o

P_/p = [(y -0.5) - 1.5(y - 3.5)l/3 0.5 < y < 3.5 (1.4.3)

I,

Using his proton fit along with the above ansatz, Parsons could account for 164 of the

original 225 nucleons. He therefore treated the remaining 61 nucleons as spectators

located at target rapidity. The n/p ratio of these spectators was never stated, but it

can be calculated by integrating the dn/dy fits to find the net charge carried by ali

JJ



participant hadrons and then comparing this to the initial charge of 93. The difference

in charge must be carried by spectator protons. In this way the spectator n/p ratio

can be determined to be 1.28, which implies an unphysical discontinuity: nip = 1.28

for y = 0 while n/p = 1.5 for y > 0. A better ansatz would be the following:

P_/p = 1.423 y < 0.5

Rn/p=l. y > 3.5

P_/p= [(y-0.5)- 1.423(y-3.5)]/30.5 < y < 3.5 (1.4.4)

which allows the spectators to have a continuous n/p ratio of 1.423 at y = 0. The

neutrons in this scenario carry 126 GeV/c of PHrather than the 130.4 GeV/c quoted

by Parsons.

The net result of these corrections to Parsons' analysis is that his fits can account

for 384 of the initial 409 GeV/c of PII" Among other ways, the remaining 25 GeV/c

of longitudinal momentum could be accounted for if the overall normalization of ali

of the new data was low by 6.5%. At any rate, it seems clear that if the high rapidity

E810 and E814 proton data are correct, then the absolute normalization of at least

some of the published E802 dn/dy data must be low by at least 50%. As a comparison,
t

I show two curves which account for all of the longitudinal momentum as well as Lund

model results[Gyu87]. The solid curves in fig. 1.4.2 are from a fit which I presented

at Quark Matter 91 (previous section of this thesis), while the dot-dashed curves

are derived from a fit made by Flemming Videbaek of the E802 collaboration[Vide].

Videbaek originally fit the published data (solid dots) but then postulated that the

true dn/dy for pions would be 25% higher than these data due to undetected low-

p.t pions. The fits thus derived could then account for 336 out of 409 GeV/c of
q

/_1" To display the absolute normalizations of dn/dy needed to enforce momentum

conservation, I have multiplied Videbaek's pion curves by 1.25 and then multiplied

both of his curves by an additional 1.22 before plotting them. It is apparent that the

increases in normalization of the dn/dy data over recent months has gone a long way
I



toward solving the problem of momentum conservation, and if they continue at this

rate, then it will not be long before we will be justified in concluding that the amount

of stopping in these reactions is roughly the same as that in the Lund model.

" Au+Au
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Figure 1.4.3. Solid dots are preliminary data from 11.6 AGeV Au+Au reactions, while
open circles are reflections of these data in rapidity due to the symmetry of projec-
tile and target[E866]. These data are compared to Lund model[GyuST] (histogram),
mcml (solid) and firstreak (dot-dashed) calculations. The dashed curve shows the

. projectile protons only from the Lund calculation.

Recently, some very preliminary Au+Au data at 11.6 GeV/c per nucleon has

been presented by the E866 collaboration[ES66]. The solid dots in fig. 1.4.3 are the

measured data, while the open circles are reflected pseudodata (due to the symmetry

of the projectile and target). Both the Lund model[Gyu87] (histogram) and mcml
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(section 2 of'this thesis, solid lines) are able to reproduce the gaussian shape of the

proton dn/dy remarkably weil, even though they are comprised of projectile and

target contributions which are still separated by a full unit in rapidity (dashed curve

in fig. 1.4.3). Although the fully-stopped firestreak is much too strongly peaked

at midrapidity (dot-dashed lines), it will undoubtedly soon be pointed out that a

longitudinally expanding fireball (or firestreak) will also be able to reproduce the '

data. The dilemma, as I stated in my Phys. Rev. C paper (section 2 of this thesis), is

that for symmetric collisions, a fully stopped longitudinally expanding fireball cannot

be distinguished from two partially stopped fireballs simply on the basis of dn/dy

data. Certainly, more information is necessary in order to determine the amount of

stopping in these reactions.

Another very interesting aspect of the new data is the extremely high apparent

temperatures of the protons (~ 240 MEV). Any statistical model purporting to de-

scribe these reactions must necessarily be able to reproduce these temperatures. As

can be seen from fig. 1.4.3, a firestreak (or fireball) in which the protons and pions

are in equilibrium and freeze out together will feature proton temperatures which

are much too low. In order to create high enough temperatures, the protons must

freeze out well before the pions as is simulated by mcml, or else there must be an

enormous amount of transverse collective flow[Brown]. Without these features, no

longitudinally expanding fireball will be able to fit the proton temperatures, even if

it can fit the proton dn/dy weil.

Finally, E866 has measured K+/_r + and K-/K + ratios of 0.25 and 0.16, as com-

pared to 0.19 and 0.28 for Si+Au[ES66]. The larger proportion of K+'s as compared
a

to K-'s seems to point to strongly enhanced production of A's and other strange

baryons in these reactions. However, from experience with Si+Au data, we can see

that it is wise not to be too quick in jumping to conclusions based on K/_r ratios alone.

If low-p± components and other effects cause a 50_0 increase in the pion normaliza-

tions without a similar increase for kaons (as seems to have happened for Si+Au),

!
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then the true K+/rr + ratio may be as low as 0.16 in Au+Au collisions. It will be very

interesting to see the actual pion and kaon yields which are found so that they can

each be directly compared to various models.
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Chapter 2
I

Effective Action for SU(N) at
Finite Temperature
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2.1 Introduction

It has long been predicted that QCD features a phase transition from hadronic matter

to a quark-gluon plasma at sufficiently high temperatures or densities[Mor79]. Creat-

• ing such a plasma is in fact the aim of many of the heavy ion experimental programs

at the AGS, SPS and RHIC. Since the quarks and gluons in such a hot plasma would
lt

be very energetic, they would also be weakly interacting due to asymptotic freedom.

Consequently, extensive work has been done in developing perturbative techniques

for finite temperature QCD[Kap79, Brag0]. One of the most interesting results of

this perturbation theory is a resummation of infrared divergent diagrams which gives

rise to an Ao Debye mass of order gT that screens static color electric fields[Kap79].

Unfortunately, no soch resummation has yet been found for the magnetic sector. Con-

sequently, for diagrams above a certain order, infrared divergences become intractable

and perturbation theory breaks down[Lin80]. These divergences are a result of loops

involving massless (n=0) Matsubara modes, so they do not occur in in QED since the

photon only couples to fermions which always have Matsubara frequencies of order

xZ.

A constant Ao field cannot in general be gauged away at finite temperature the

way that it can at zero temperature; consequently quantum effects give rise to an

effective potential for the Ao field whe:,_T > 0[Wei81]. One way that QCD could

generate a magnetic screening mass would be if the Ao effective potential were to

feature an absolute minimum which was not simply a gauge transformation of Ao = 0.

The Ao field could then possess a nonzero vacuum expectation value (vev), thus

behaving like a Higgs field and giving a magnetic mass to the A,*.fields through the

• gauge-gauge coupling terms. Unfortunately, no such minimum exists at the one loop

level[Wei81, Gro81]. At the two loop level, on the other hand, the presence of a

negative linear term in the effective potential does produce a vev at Ao '_ O(gT),

thus giving rise to a magnetic mass of order g2T[Ani84]. This vev and magnetic mass

i is spurious, however, since the linear term is exactly cancelled by a term arising from
,! the summation of the ring diagrams[Bcl91]. Beyond the order of the ring diagrams,

!
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perturbation theory breaks down due to the magnetic infrared divergences mentioned

earlier. There is therefore no way that perturbation theory alone can generate a

nontrivial absolute minimum in the Ao effective potential. One of the results of this

paper is to show in addition that no gauge invariant resummation or non-perturbative
F

technique can give rise to a linear term in the effective potential, since such a term

would not be gauge invariant.

In a more general context, it is well known that perturbation theory is limited in

its application and by its very nature is not able to shed light on a number of very

important unsolved physical problems. For this reason, non-perturbative techniques

have been increasingly sought after and explored in recent years. Perhaps the most

successful and well-developed of these techniques is the semiclassical method of ex-

panding around classical solutions. In the language of the path integral formalism,

the idea behind this method is that by integrating over field configurations which

are small fluctuations around nontrivial classical solutions, as well as over ones which

are close to the perturbative vacuum, one can better approximate the full functional

integral, which should in principle be performed over all possible field configurations.

In field theory for example, integrating around instanton solutions allows one to gain

insight into quantum tunneling processes which can never be described by any finite

order of perturbation theory[Raj82, Co177, trio76].

Similarly, for finite temperature QCD, it has been pointed out that integrating

around a plasma of magnetic monopoles could possibly provide magnetic screening

as T ---, oo [Gro81, Dah85, Polo91]. Is there any evidence for the presence of such

monopoles? At zero temperature, Mandelstam showed that if the ground state of

QCD is a coherent superpositien of monopoles, then confinement could be understood
e

as the dual analog of superconductivity[Man76]. In other words, just as a condensate

of electrically charged Cooper pairs will adjust to confine magnetic fields inside a

superconductor, a condensate of color magnetic charges would adjust to confine color

electric fields in the QCD vacuum. It has never been proven that such a condensate

actually forms the ground state of QCD, however Savvidy has shown that a constant!

i| color magnetic field H has negative energy compared to the perturbative vacuum at

,|
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T = 0[Sav77]. Although Savvidy's configuration violates Lorentz invariance, his result

suggests that the ground state of QCD does have some nontrivial magnetic structure.

Based on this idea, Oleson has advocated a picture in which random distributions

of magnetic vortices form a Lorentz invariant ground state featuring < H >= 0 but
I

< H 2 >_ 0[OleS1]. This picture is not contradictory with one involving a monopole

, condensate since magnetic vorices of finite length must begin and end at monopoles,

and both pictures feature strongly enhanced low frequency fluctuations[Man76]. At

high temperatures, even though the Savvidy effect disappears[Mu185], the presence

of low frequency (infrared) magnetic instabilities could be indicating the presence of

monopoles or other magnetically charged objects. In this paper, we consider only

high temperature monopoles and dyons and do not specifically address condensate

formation or other issues relating to confinement at T = 0.

In SU(N) at zero temperature the A_ field can always be gauged away, so if

there are monopole solutions, one must be able to create them from the A_' fields

alone. Infinite energy monopole solutions and finite energy monopole configurations

which are not solutions have been found[Wu68, ColS1], but no finite energy monopole

solutions are known for T = 0. In order to find a solution which sufficiently smoothes

out the 1/r singularities in the Ai fields at the origin, one usually introduces a scalar

field in the adjoint representation, as is done for the 't Hooft-Polyakov[tHo74, Poly75]

or Prasad-Sommerfield[Pra75] monopoles. At finite temperature, however, the A3

field cannot in general be gauged away, and it is therefore able to play the role

of the Higgs field in a monopole configuration. Making this substitution, Prasad-

Sommerfield monopoles become dyon solutions in pure gauge theories, possessing

electric as well as magnetic charge. Although the dual charge of dyons makes them
m

necessarily more complicated than monopoles, they are at present the only available

magnetically charged classical solutions with finite energy at the tree level, so they

are a logical object of study. In addition to knowing the classical mass of these dyons,

it is obviously important to know how dense of a gas or plasma they might form at

I any given temperature.
Finding the density of a soliton plasma can be a highly nontrivial task. In order to
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derive an expression for the density, I will present a brief outline of the semiclassical

method for a field theory at finite temperature. The first step is to find a nontrivial

field configuration with energy E1 < _ which is a local minimum of the classical

action 1. Since the solution has finite energy, it must be localized, approaching the
P

perturbative vacuum solution (or one of them if there is more than one) as r _ ct.

For the sake of simplicity, we will assume that the solution is a time independent

soliton. It is plausible that a configuration with two solitons which are separated by

a distance much larger than their size would be a close approximation to another

solution. One therefore proceeds by either proving or assuming that configurations

with N well-separated identical solitons are also local minima of the action[Raj82,

Poly77, WarS1, Cor81]. Often it is shown or assumed in addition that the solitons

are weakly interacting. If this is the case, then the relative positions of solitons in

an N soliton configuration are arbitrary and must be integrated over as well, giving a

factor of volume V for each soliton. Putting together these ideas, one can write down

a rough approximation to the partition function of a plasma of these solitons[Poly77]:

= 1 + "TTaVexp(-E1/T) + l['rTay exp(-E1/T)] 2 + ... (2.1.1)Z

where the first term corresponds to no solitons, the second to one soliton, the third

to two, etc. Since the position of each identical soliton is being integrated over, a

symmetry factor of _., must be included for N soliton configurations. In addition,

there is a dimensionless "prefactor" 3' included for each soliton which can in general

be some complicated function of the coupling constant g.

The density of a plasma of solitons is determined by noting that for Z = _ x"/n!,

the average n is given by < n >= x. Thus, the density is simply:
i,

< n >/Y ,,. ",IT3exp(-E_/T). (2.1.2)

To determine "yin the one loop approximation, one must calculate functional deter-

minants around a soliton background. This is a very formidable task since no general

=ii "it is not enough to find a classical solution which maximizes the action in some functionaidirection, because integrating over ali small fluctuations around such a configuration would give an
infinite result. This is the problemof negative eigenmodeswhichwe address later in the paper.
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method is known for calculating these determinants exactly. For this reason, the

value of 7 is often simply estimated by heuristic arguments.

The main thrust of this paper is to develop new approximation techniques for

determining prefactors 7 around a large class of background configurations at finite
ct

temperature. As examples of their utility, these techniques are applied to dyon and

, monopole configurations in pure gauge SU(2). It is found that if plasmas of such

configurations do exist, then either they are unstable, infinitely massive, or else their

density is so high that they are strongly overlapping. For these types of configurations,

semiclassical techniques are therefore not applicable. However, it is not ruled out

that other soliton solutions may be found in the future which are not plagued by the

above problems. In that event, the density of plasmas of those solitons could then

be found by using the techniques developed here. For example, magnetically charged

meron-antimeron solutions are known to exist at finite temperature[Jon81], though

no explicit solutions are available. Alternatively for pure gauge theories, Coleman

has found topologically stable monopole solutions which have a singularity at the

origin[ColS1]. It is possible that singularity-free monopole configurations could be

found which would approach the above solutions as r _ c_ and would also minimize

the one loop effective action.

I begin this paper by presenting the basic notation and formulas for finding th, ,

regularized one loop effective action for a pure gauge non-Abelian theory. Next, i

generalize the methods of ref. [Dya84] to finite temperature and derive a covariant

derivative expansion for the effective action. The increasing dimension of successive

terms of this expansion i.qbalanced by an infrared cutoff mass which is self consistently

determined so as to optimize the expansion. This infrared scale is shown to uniquely

• determine the semiclassical prefactor 7. Comparison of the results of the expansion to

• the known effective potential for a constant A_ field in SU(2) suggests that the lowest

order form of this expansion should be reliable for slowly varying configurations in

which ]A_] < O(T/g) when g -. 0 (T _ oo). After showing that dyons meeting the

above qualifications must necessarily be overlapping: I extend the covariant derivative

I expansion by performing a resummation in order to find an expression which is valid67
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for static background configurations with [A_)[= O(T/g). Since the effective potential

of the AS field can have periodic minima at 4nrT/Ng for pure gauge SU(N) (see

Appendix B), I also examine dyon solutions and monopole configurations in which the

magnitude of the A_)field approaches one of these minima as r --. c¢. I show that these

monopoles are unstable and that depending on the temperature, the corresponding

dyons are either infinitely massive or else overlapping. I complete the discussion of

monopoles and dyons by showing that introducing fermions into the theory does not

improve the'situation.

2.2 Preliminaries

We consider a pure gauge, Euclidean, non-Abelian theory with the Lagrangian:

£ = -¼ (F_) 2 , (2.2.1)

where

F_,_ O_A_ _b b (2.2.2)" = -- D,_ A u

and

D_b .=. (_g6ab _ gJ-rabcAc2ttt. (2.2.3)

Since we are interested in finite temperature, the fields have periodic temporal bound-

ary conditions A_(r) = A_(r + _), where _ = 1/T[KapTO]. The equations of motion

for this Lagrangian are
ab b

Dt, F_,, = O. (2.2.4)

Let fi,_, be solutions to the above equations which transform as normal Yang-Mills

gauge fields, and let B_, be quantum fluctuations around those solutions which trans-

form in the adjoint representation. To consider one loop effects, we make the substi-

tution[deW671 (A_ = A_ + B_,)in the Lagrangian and expand the action up to terms

quadratic in B_:

I /d4x a ab bS(A+B) = - B_W;,,B,, (2.2.5)

,|
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where S = S(fi,). Note that there are no terms linear in B since A is a classical

solution and hence a saddle point. We choose to work in the background gauge,

- ab b
D r B r = 0 , (2.2.6)

where D_b ,_ _ab _tabcXc-- ..r_ -yj rtr, since it is manifestly covariant and because Pauli-Villars

, regularization takes a particularly simple form in this gauge[Sla80]. By adding a gauge

1 (hfBr)2 to the Lagrangian, we get"fixing term of

- _b_ (2.2.7)w;?b= + ,

where 0rfi,_ r"= _ bbAb
The functional integral needed to calculate the one loop effective potential is given

by:

Z[,41 = e_/[:DB_] exp{- ] d4z[½ B_,w.;bB b - Sa(--b2)_b_b]}. (2.2.8)

Pauli-Villars regularization can be performed by introducing auxiliary fields B' and

_' which transform like B_ and _, but have mass A which will later be allowed to

become infinite. Because all of the field fluctuations are in the adjoint representation,

the mass terms A2B '_ and _'A_ ' are gauge invariant. Application of this procedure

produces the following regulated partition function[SlaB0]"

Z[A]]r,g - Z[fiil/Z'[fi,,A2], (2.2.9)

where Z' has the same form as eqn. (2.2.8), except that mass terms are included.

Note that for convenience we have used the same Pauli-Villars mass A for both the

B' and _' fields.

2.2.1 Zero Modes

We assume that the classical solutions depend on p parameters Vi but that the total

gauge-fixed action is independent of these parameters. There are then p remaining

zero modes of the Lagrangian given by 0/,_/0_/i where i runs from 0 to p. Actually,

I



any gauge transformation of one of these modes will also be a zero mode, so a more

general expression for these zero modes is[Poly77]:

_/ -_ _bb (2.2.10)X_(1)= OA_,/O"/i + D_, 0i ,

where the second term is pure gauge and 0ib are gauge functions. By fixing the gauge,

we have already removed ali of the modes which do :_#, satisfy (2.2.6), so in order to
,t

determine the remaining zero modes, we need to find specific functions $b such that

/)a_v_{i) = 0. For the cases that we are studying, these zero modes can be made to/_ A.D

be orthonormal, so we will demand:

/ d4xxa(i)xa(j) _. _ij. (2.2.11)

As a concrete example, consider a soliton solution which is centered around some point
"* --O,

in space denoted by the vector R. The solution then has the form A_ = A_,(r,g-/_).
-,t

Since the Lagrangian has no preferred points, a change in R will not change the action

and therefore represents a zero mode. In this case _/i = R/, and due to the functional

form of the solution 0_,_/0R_ = -0iAn. We then choose 0_ = A_ so that

vf_ix_ (i) = -F;_, (2.2.12)

and the background gauge requirement (2.2.6) is trivially satisfied by the equations

of motion (2.2.4). The normalization for this mode is then given by:

Ni f= F;i ) , (2.2.13)

where i is a label which is not summed over. If the soliton is a self-dual solution,

then[Act79]

" 'eijkFfk =--S'}. (2.2.14)= =

If, in addition, the soliton is spherically symmetric, then the normalization takes the

remarkably simple form of Ni = -S.

There are infinities due to the functional integration over non-gauge zero modes

which can be isolated by the collective coordinate method[Raj82, Poly77]. First, we

expand an arbitrary field configuration as follows:

A(x) = fi(x,'n) + _. _,,b,(z) , (2.2.15)

| 7o
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where b, are orthonormal eigenfunctions of W with positive eigenvalues, and we have

explicitly included the 7i dependence of A in order to allow for zero mode fluctuations.

To perform the functional integration, we must find the Jacobian associated with

expressing the metric in terms of the eigenfunctions. For finite matrices, the Jacobian

for a transformation from a vector X in one basis to a vector Y in another basis is

found by calculating det J, where _X = J6Y. If both bases under consideration

are orthogonal, then J can always be diagonalized by a unitary transformation J' =

UJU -1 so that the determinant is given by det J = I-IkJ_k. Calculating the length

element then defines the determinant by isolating the diagonal elements of J':

(,5_)2 = (6X)2= (J'U_Y)2= __, J_2k(6Y)2 . (2.2.16)
k

Generalizing this technique to field theory and applying it to our problem, we have:

p

(6e) = f - + , (2.2.17)i--1 n

so that after Gaussian integrations[Poly77],

p

Z[A] = (II _/d'Y,) eedet(-D2)[ det '(W/27r)]-_/' , (2.2.18)i-1

where det'(W/2_r) means to take the determinant with respect to the nonzero modes

of W/2_r only.

Since we are using Pauli-Villars regulators, we will also encounter the operators

W + A2, which do not have any zero modes. When taking determinants of these,

however, it is still convenient to split the results into two factors:

det[(W + A_)/2_r] -_/2 = (2---r)p/2det '[(W + A2)/2r] -1/2 (2.2.19)A_t

The full regulated expression, therefore becomes:

v / A2Z[A][reg---(H v _/ dT')(_-_r)V/2eS(_i)det(-/)2)l_s[ det '(W)] I-1/2,reg, (2.2.20)i=1

where we use the following notation for some operator K:

det(g)

det(g)]reg = det(K + A:)" (2.2.21)
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Note that we have left out the factors of 27r in the regulated determinants of eqn.

(2.2.20), since this expression only involves ratios of determinants, and multiplicative

constants drop out. For the remainder of this paper we will drop the bars on ft,,/)

and _' except where they are needed for clarity, keeping in mind that we are always

referring to functions of the background field and not of the full field with quantum

fluctuations included.

2.3 Covariant Derivative Expansion

Now comes the difficult problem of evaluating the functional determinants. For a

few select cases, the determinants can be evaluated exactly, but in order to find a

general expression, some approximation procedure must be used. The most com-

mon method is to make a covariant derivative expansion. There have been many

Dapers written suggesting a variety of ways to make such an expansion at zero

temperature[Dya84, Che87, Chan86, Gai89], but the literature on finite temperature

expan_i_ons is much more limited[Min86]. Each of the zero temperature methods that

deals with a massless theory is forced to introduce some form of infrared cutoff mass

in order to balance the dimension of new derivative terms. In most schemes, this cut-

off mass remains unspecified with the argument that in a complete calculation of an

observable it will drop out anyway. Alternatively, D'yakonov et al.[Dya84] proposed a

scheme in which the infrared cutoff is actually chosen in such a way that it optimizes

the accuracy of any desired order of derivative expansion. To check their method,

they calculated the one loop quantum correction to the action of the SU(2) instan-

ton and obtained a result which was within 3% of the exact value calculated by 't

Hooft[tHo76]. It is this method that we have chosen to extend to finite temperatures.

In order to determine the free energy _2of some nontrivial background configura-

tion A, we need to calculate the ratio of the partition function of that configuration

to the trivial A = 0 configuration:

exp(-f//T) = Z(A)
Z(0) ]reg. (2.3.1)
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From eqn. (2.2.20), we can see that the calculation will entail finding ratios of deter-

minants of various operators. These ratios can be evaluated by using the following

expression for the difference of two logarithms:

detK fo_°_• det K0 Ireg= exp{-- R(t)Tr(e -rh" - e-tK°)} (2.3.2)

, where Tr is a functional trace over all indices and coordinates and

R(t) = 1 - e-tA'. (2.3.3)

Note that t is formally of dimension M -2. As long as both of the operators that

we are interested in (-D 2, W) are positive definite, they will have continuous spec-

tra of eigenvalues beginning with zero, as do their vacuum operator counterparts

(-02 , -02). One expects, therefore, that for sufficiently smooth and rapidly falling

background fields, the integrand of (2.3.2) will be a rapidly decaying function of

t[Dya84]. This suggests the possibility of an approximation whereby the infinite up-

per limit of the t integration is replaced by an infrared cutoff 6. In addition to this

approximation, we will make an expansion of the exponential operators in powers

of covariant derivatives. After integrating with respect to t, the optimum _ for any

given number of terms in this expansion can be determined by finding the extremum

in the resulting expression.

The functional trace in eqn. (2.3.2) can be taken relative to any complete set of

states, so we are free to use plane waves exp(ip,_x,_). These have the effect of shifting

the derivatives:

Tre-tK= tr f d4zT f d3P_-_ exp[-g(0, --, vn, + ipp)tj 1, (2.3.4)

where tr is a simple trace over spacetime and color indices. Due to the periodic

• temporal boundary conditions, we have replaced the normal zero temperature po

integral for a sum over the modes po = 2nrT. Also the x0 integral in d4x is from 0

to _ = 1lT. A 1 has been included at the end of the equation to emphasize the fact

that the shifted exp(-Kt) operates on unity; so that, for example, any term in the

expansion of the exponent with a 0_ all the way to the right will vanish.
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2.3.1 Ghosts

We now present the covariant derivative expansion of the ghost determinant. Accord-

ing to eqn. (2.3.4), we have

1ah = Tr exp(DZt) = tr f d4x T _ f d3p e-p2t exp[(D 2 + 2ip_D_)t]l (2.3.5)
4

The expansion amounts to expressing

Iah = _ Ianh ,

where I_ h is comprised of terms involving n covariant derivatives. Igh is simply given

by the zeroth order term in the t expansion of eqn. (2.3.5), but is exactly cancelled in

our calculation by the vacuum contribution seen in eqn. (2.3.2). Moreover, any term

in the expansion with an odd number of D_'s will vanish upon p integration.

Thus the first nonzero term in the covariant derivative expansion, is given by:

,_h = tr/d4zT_/_rP)3e-,_,tD2,+_p.p_D_D#2]l

= t (tr f d4xD2o)T_,(1 - 2p2ot)exp(-p_t) (2.3.6)(4rr) z/2 _ '

where we have performed the momentum integral by using equations (A.1) and (A.2)

in Appendix A. We would like to separate the T = 0 and T # 0 parts of the above

expression. This can be done by using equations (A.4) and (A.5) which have been

derived from the Poisson summation formula (A.7):

H1 n 2 n 2

/_h = _ _ 4-_ exp(-4-_) ' (2.3.7) -

wl_ere

H, = tr f d4xD2o= -g2N f d4xA2o. (2.3.8)

Each term in eqn. (2.3.7) vanishes in the T _ 0 limit. This is reassuring since H1

can be gauged away in the T = 0 limit.
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Using similar techniques, the next term in the expansion is given by:

1 n2 n2 n2= _ _ exp(-4T2----_)[¼F2 + (_)(G2 - 92) + 2(4--_)2H2], (2.3.9)n

with the functionals F2, Ds, G, and H, defined in Appendix A. Here the only term

surviving when T --* 0 is the Fs term s with n = 0, in agreement with the result of

* d'Yakonov et al. [Dya84]. This expansion can of course be continued, but for our

purposes we will only need the first two terms.

To find the determinant, we must integrate over t as in eqn. (2.3.2). In all of our

expressions, the zero temperature (n = 0) terms are the only ones with ultraviolet

divergences. For the rest however, we can immediately let A _ oo so that R(t) = 1
i¢

and perform the remaining elementary integrals by using the variable u = 1/t. For

the case of I_ h we get:

= 4%-zE  xp( + ]Jot .=, 4TS6 ns

T
! TSH, H, (2.3.10)

- e 4Vr_

where the second equality is found after using the approximate expressions in Ap-

pendix A which become exact as 4TS/f _ oo. In this paper, we will only consider

infrared cutoffs TS6 ._ O(1/g _) with c_ > 0. For c_ > 0, the approximations used

are obviously very good at high temperatures, but surprisingly enough, even when

4TS/f = 1, they are accurate to within a few percent. On the other hand, these approx-

imations are not valid for T = 0, and consequently many of the following equations

will not reduce correctly to their zero temperature counterparts in the limit as T _ 0.

. After using eqns. (A.16-A.19) to perform the t integration and high temperature ap-

proximations on I_ h, we arrive at the following expression for the regulated ghost

determinant:

_Note that after using the Poissonsummation formula, the sum over n is no longer a sum over
Matsubara frequencies; in fact, n = 0 terms correspond to T = 0, while the n # 0 terms provide the
temperature corrections
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ln[det(-D2) T 2 T )H_ Tx/_ [F2 . 2(G2 - D2) + 6H2]
det(_0_) ]l_g _- ( 6 4_ 48xffi

1 A2

- 48_r---'-_{¼['YE- 3.1 -{-ln(_--_)]F2 -G2 + 02- 2H2} (2.3.11)

2.3.2 Gauge Fields

For the gauge fields, we must only take the trace over the nonzero modes of exp(-Wt).

If, however, we take the trace over all eigenfunctions of W, p of them will just give

us a 1. This contribution can be subtracted out by hand, so that we get:

det'W f0°°__aet W0 I_g = exp{- R(t)[Tr(e -'W - e-tW°) - pi} 1 (2.3.12)

Since the trace is now over all modes, we can just take it with respect to the functions

b_," exp(ip,_xo), where b_,bv"b = 6_. The calculations for gauge fields are similar to the

ones for ghosts and one finds:

_ det(W) , _det(-D 2)

= 4mt_ + + lh(A26)]

1 A2

+ _-/_2['ys - 3.1 + ln(4-_--_)+ 4Tv/"_]F2. (2.3.13)

Note that if F2 = p = 0 (as for a constant field), then W_, = -D 26#. and the log of

the gauge determinant is simply 4 times that of the ghosts, since the former involves

a trace over spacetime indices.

From eqn. (2.2.20), we can see that the quantity that we will be interested in will

be

det(-D 2)({et( -02 ) _det(W) ]In[ ½
Using the expressions in (2.3.11) and (2.3.13), we can optimize the derivative ex-

pansion by differentiating (2.3.14) with respect to 6 and finding an extremum, The

resulting 6 must obey the equation:

12/-/1 + [-llF_ + 2(a2 - D2) + 6H2l6 - 48px/_/T = O . (2.3.15)
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Plugging in this 6, we get:

'v ,f___Z= (II d-y,) exp(S._-)
Zo i=1 '2r5' '

where

T 2 T1 1 1

u

1 _ .52+ 48¢2 {---bE - 3.1 + ln(_)]F2 - G2 + D2 - 2//2}. (2.3.17)

2.3.3 Renormalization

It is worth noticing that the last term on the first line of (2.3.13) cancelled the Pauli-

Villars ultraviolet regulator (A2) in the prefactor of eqn. (2.2.20) and replaced it

by an infrared cutoff mass (1/6) in eqn. (2.3.16). One might at first suspect this

as being an anomalous artifact of our derivative expansion, but it is worth noting

that in 't Hooft's exact one loop instanton calculation, his ultraviolet regulator in

the prefactor was also replaced by an infrared scale- the size of the instanton (p).

Moreover, renormalization can always be performed by using counterterms in the

original Lagrangian which have the same symmetry as that of the background field

at zero temperature. Although the gauge of the background field has been fixed,

it has not been specified; consequently, the counterterms must take the form C F_,,,

where C is some constant depending on A2. It is therefore reassuring that the only A2

dependence comes in the coefficient of a term multiplying F2, so that all ultraviolet

divergences can be removed by normal counterterms.

Because the counterterms in the background gauge have the same form as them

original Lagrangian, one can create a renormalized Lagrangian simply by multiplying

• the original bare Lagrangian by the factor:

Q2
Z3 = 1 llgg2 ln( A_-), (2.3.18)_-- AQ.2

_i "J[ vt.J ¢t

a where g now represents the running coupling. At very high temperature, it is most
|

J convenient to choose the renormalization scale to be Q2 _ 4T _e_p(3.1 - "yE)"_ 50T 2
'1
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in order to absorb all of the one loop coefficients of F2 into the definition of the

renormalized (running) coupling. This running coupling constant is then defined in

terms of the bare coupling by:

4T 2 1 (2.3.19) ,
111 llg2N[3.1-"YEq"In(--_-)]= g--_gS 48_r2

Just as at zero temperature, the running coupling can be defined in terms of an

experimentally determined mass scale[Fie89]. We will denote this scale by AQCDeven

for theories other than QCD. The running coupling can then be expressed

g2 12_r

4-"_= llN ln(T2/A_cD) ' (2.3.20)

and the renormalized effective action takes the form:

1 T 2 T 1 {O2 - G2 - 2/-/2} (2.3.21)
Se_ = 4Ng.-------_ Fs + ½p(2 - _E) + _ ( 3 V_ )Hz + _

If a different renormalization scale Qs is chosen, the coefficient of #'2 in (2.3.21) will

be altered by an O(1) term, and hqCD in (2.3.20) will be multiplied by a calculable

factor.

2.3.4 Constant Background Ao Field

To test the accuracy of this covariant derivative expansion, we can plug in a constant

SU(2) background field of A3 = 7, with ali other field components vanishing. There

are no non-gauge zero modes in this configuration, so p = 0. It can also be shown

that Ds = Fs - G, = 0 and that

Hs = -(g_? )2H1 = 2(grl)4V/T, (2.3.22)

where V = f d3x is an infinite spatial volume. The infrared cutoffs and effective

action from eqns. (2.3.15) and (2.3.21) take the simple forms:

2
6 =

i V .T s s T 3 1

_] S_. = --_[-_-(gT/) 2V_3'(gr/) + l'i'-_r2(gr/)']. (2.3.23)78
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SU(2) Effective Potential
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Figure 2.3.1 The one loop SU(2) Ao effective potential with no fermions (solid), 1
massless fermion (dashed), and 2 fermions (dot-dashed). The dot-dot-dashed curve
shows the lowest order covariant derivative expansion result of eqn. (2.3.23).

The exact answer is well-known to be (see Appendix B):

VV. V T 2
S,f[=-_ ,,fr(r/)= T[--_-(gr/)_ T 1 4---- -- _-_(glT) 3 "{"_-"_2 (gr]) ]mod2_'T • (2.3.24)

i where mod 2_rT applies to each factor of gr/in Serf. P_ is plotted in figure 2.3.i. it
i is apparent that no finite number of terms in the derivative expansion outlined above



will be able to produce a periodic effective potential for the Ao field. Nevertheless,

if one is interested in field configurations for which Ao ~ O(g"T) with c_ > -1 in

the T _ oo limit, then only the quadratic term in the effective potential will be

important. Since the derivative expansion correctly reproduces this term (fig. 2.:3.1),

it is reasonable to use the expansion to describe the above class of configurations.

lt is important to note on the other hand that the derivative expansion is a bad

approximation for configurations with a = -1 even when T _ oo, because in this

case the cubic term and periodic nature of V,_ become important. For example, one

should not use this expansion to study configurations in which the Ao field approaches

one of the minima at 2nrT/g.

2.4 Application to Dyons

It has been suggested[Polo91 ] that a plasma of magnetically charged solitons featuring

Ao _ O(gT) as r _ oo could possibly self-stabilize in the T ---, oo limit of SU(2),

even though there is no O(gT) minimum in the Ao effective potential. The derivative

expansion can be used to study this idea more carefully. We make the following

ansatz for spherically symmetric soliton configurations:

" -_ " tj (2.4.1)AO= rI f(x) A, = rle,.Jrh(X ) ,

where r/ is the expectation value of [Ao[ at infinity and z = grit. With this ansatz,

the equations of motion (2.2.4) take the dimensionless form[Bia76]:

x2f " + 2xf'- 2f(1 + xh) 2 - 0

x2h " + 2zh'- (1 + zh)(2h + xh 2 + zf 2) = O, (2.4.2)

where the primes denote derivatives with respect to z. Since f, h and z = grit are

dimensionless, any solution of the above equations will have a characteristic length

_1 scale of O(1/grl).

so
|
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Note that in ansatz (2.4.1), the magnitude of th_ Ao field approaches a nonzero

cqnstant value as r ---, c¢. Rather than compare such configurations to the pertur-
v

bative Ao = 0 vacuum, it is more useful to compare them to a background with a,i

constant lA0] = r/ field. From the form of V,fr in eqn. (2.3.24), it is apparent that

such a background has infinitely more free energy (by a volume factor) than the per-

" turbative vacuum, but it is possible that the infinite increase of entropy gained by

introducing a plasma of solitons will offset the infinite background energy and allow

such a plasma to self-stabilize. In other words, we would like to determine whether

the free energy of a plasma of dyons in a constant background field is lower than that

of the perturbative Ao = 0 vacuum. To do this, we must calculate Z/Z,_, where Z

is the partition function for a background dyon configuration and Z, is that for a

constant ]A0] = 71background field. All of our previous calculations have been for

Z/Zo where Z0 refers to the perturbative vacuum, so some of our expressions must be

modified. Fortunately, F2 = D2 = G, = 0 for both a constant field and the perturba-

tive vacuum, so only the H, are different. In fact ali of the necessary modifications

can be made by simply subtracting from each H, the value of H,_ for a constant field:

H, -.-, II, - 2(-g2rl2)"V/T . (2.4.3)

Much of our discussion will center around the Prasad-Sommerfield-Julia-Zee (PSJZ)

dyon, which is a magnetic and electrically charged self-dual solution of the classical

Euclidean SU(2) Lagrangian for any value of 77. It is defined by:

f(x) = ±(coth(x)- llx) h(x) = ±(cschCz)- llx), (2.4.4)

where the 4- reflects the fact that both dyons and antidyons are solutions to the

equations of motion, each having a tree level action given by S = -47rrl/gT [Act79].

In addition to three translational zero modes which were treated previously as an

example, these dyons each have a global gauge zero mode which is not eliminated

by the background gauge requirement[Mot78]. To find the prefactor associated with

i;I this zero mode, it is best to consider the monopole in the string gauge. In this gauge,__



Ag = 6a3rlf, and the A_' field has a Dirac string singularity along the -k axis. The

string gauge form of the solution can be obtained from the spherically symmetric

form by making a gauge transformation with the following gauge function[Col81]:

U(O, ¢) = exp(io'3¢/2)exp(ia20/2)exp(-iaa¢/2), (2.4.5) "

where a. are the Pauli matrices.

Consider the following global gauge transformation:

' (2.4.6)Au _ Au = GAuG -x ,

where A, = a.A_u and G is given by:

G = exp(ia3wg_?/2). (2.4.7)

Treating w as an infinitessimal collective coordinate, we find:

Ow = -_ igy[Au, a31 = a.D_,b(6bzr/) (2.4.8)

By making a careful choice of the gauge function 0. from eqn. (2.2.10), we get the

following zero mode:

OA"'

Xu=" Ow-"---e_+ D_b[r/6_a(f_ 1)1 = F;_0, (2.4.9)

which satisfies the background gauge requirement (2.2.6) through the equations of

motion (2.2.4). Like the translational modes, the normalization of this mode is No =

-,_, and the partition function involves an integral over the collective coordinate w.

However, unlike the translational modes, w has a finite range of 0 < w < 4_r/gT1,as

can be easily seen by examining the form ,ff G in eqn. (2.4.7). The entire prefactor

for the dyon can now be expressed in terms of the infrared cutoff 6:

Z 16rr/V exp(S,m-) (2.4.10)
= _ = g3T262

where V is the volume of space and Sefr is defined by eqn. (2.3.24) with the replacement

-:1 (2.4.3).
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As we mentioned in the Introduction, if we assume that identical dyons are nonin-

teracting, then we can approximate the one loop functional integral around two well

separated dyons by _2/2. The factor of 1/2 is included in order to avoid double count-

ing when the positions of the identical dyons are switched. Similarly, for a solutiond

with N identical dyons, there will be a symmetry factor of l/N!. A full one loop cal-

" culation of the partition function should incorporate quadratic fluctuations around

every single saddle point of the original Lagrangian which has the same boundary

conditions at infinity. If we demand that A0a _ r/as r --, cx_, then the saddle points

include any number of dyons and antidyons, as well as a constant background field

with no dyons:

Z/Zo = Zn/Zoexp(2_) = exp(-V_ft(_?)V/T + 2_), (2.4.11)

where the factor of 2 reflects the sum over both dyon and antidyon saddle points, and

Zo is the partition function of the perturbative vacuum. Using V_ft(r/) from (2.3.24)

and dropping ali but the quadratic term, we get the follov_i_a expression for the free

energy density of a dyon plasma compared to that of the p¢_:_:_::rbativevacuum:

1 32rr/ _

12= -(T/V) In Z = 5 (griT) 2 g371,62exp(,_,e_). (2.4.12)

The trick of self-stabilization as T _ o¢ is to see if a minimum of fl can be found for

some nonzero value of r/.

For the moment, let us assume that as :r ......,._:,(.a -_ 0) one loop corrections

are parametrically smaller than the tree level a_zt_o_(i.e. we assume that infrared

divergences do not destroy this property). We can therefore replace S,_ in (2.4.12)

' by _' = -4r_?/gT. Because of the exponential dependence of the second term, we

. can see that the only hope of fillding a nontrivial minimum would be for r/_ O(g°'T)

with a _> 1. Furthermore, the prefactor of the second term could be of no higher

order in g than g_+2, since that would be the order of the first term. From the

discussion in the Introduction, we can see that the density of the plasma would be

, ~ O(g2+2'_T3), while from the discussion after eqn. (2.4.2), we know that the size of a
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dyon is -_ O(1/gl+'_T). In other words, for a > 1 the dyons would have to be strongly

overlapping. Furthermore, since the difference in length scales is a parametric one,

the overlapping would get infinitely worse as g _ 0.

Is this really a problem? If the plasma was comprised only of identical dyons with

no antidyons, then overlapping might not be a problem since topologically stable,

overlapping dyon solutions which are classically noninteracting have already been

found[CorS1]. On the other hand, a dyon and an antidyon can annihilate, so the

approximation that we have been using that they are noninteracting would be a very

bad one for a strongly overlapping plasma of dyons and antidyons. If an overlap-

ping neutral plasma did in fact exist, it would have to be strongly interacting and

consequently very difficult to describe using semi-classical methods. Furthermore,

as Gross et al.[Gro81] pointed out when making a similar argument about a plasma

of Wu-Yang monopoles, such a plasma, with typical field strengths on the order of

gT, would be difficult to distinguish from normal fluctuations around the perturba-

tive vacuum. Perhaps the only clue to its existence might be the enhancement of

low frequency fluctuations[Man76]. In order to avoid the problem of annihilation,

it has been suggested that some mechanism could be found which would stabilize

large domains of dyons and antidyons[Polo92]. Even with such a mechanism, the fact

that each dyon has zero field strength at the origin would still make a parametrically

overlapping plasma domain locally very difficult to distinguish from the perturbative

vacuum.

It is interesting to see what value of _ would be necessary to make a plasma

of dyons nonoverlapping in the g --, 0 limit. Suppose that infrared divergences
I

in one loop terms miraculously caused them to be of the same order as tree level

terms and were able to render Se_ _,, O(1), even when 77 ,-_ O(T). The prefactor

i of the second term in eqn. (2.4.12) would then have to be at most O(g 2) in order

to create a nontrivial minimum. In such a scenario, the typical separation would

be _ 1/g2/3T while the size of a dyon would be ,,_ 1/gr['. Again, the plasma would
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be parametrically overlapping in the g _ 0 limit. Using similar reasoning, it can

be shown that the only hope of cre, ting a self-stabilized, nonoverlapping plasma of

dyons would be for a _<-1, which is exactly the range of a for which the covariant

derivative expansion becomes unreliable. We can therefore conclude that no weakly

interacting, nonoverlapping plasma of Prasad-Sommerfield dyons with a > -1 will

" be able to self-stabilize in the g ---,0 limit.

I would like to make a couple of remarks before continuing. It has been suggested

that by using a Coleman-Weinberg type mechanism[Col73] to minimize the effective

action rather than the classical action, one may be able to to find monopole solutions

with Ao ---* O(gT)[Polo91]. The idea would be that after combining the one loop

effective potential with the tree Lagrangian, solutions could be found for which Ai

drops off like 1/x at large distances, but A0 only approaches r/like exp(-Cx). Such

a solution would not have a long range electric field and would consequently be a

magnetic monopole rather than a dyon. As we shall show later however, in order to

find such a monopole, it is necessary that the Ao field approaches a local minimum

of the effective potential as r --, c_ (see section 7). Unfortunately, no evidence has

been found for such a minimum[Bel91], except for the periodic minima at 2nlrT/g

mentioned earlier, lt is still possible that a plasma of Wu-Yang-type monopoles as

suggested in [Gro81] or a strongly interacting plasma of dyons could provide a mag-

netic screening mass of ,,- O(g_T) as g ---,O, but if so, it is not clear that semiclassical

methods would be useful in describing these effects. On the other hand, it would be

interesting to see whether the situation changes at ali for dyons with 17", O(T/g). To

do so, we must perform some infinite resummations which will improve our covariant
g

derivative expansion.



2.5 Improved Expansion

The periodicity of V_frin eqn. (2.3.24) is simply a consequence of invariance under

temporal gauge transformations. To see this, we first note that due to unitarity

and the temporal boundary conditions at finite temperature, the most general gauge

transformation for pure gauge SU(2) (see appendix C) is given by:

U(r, £.) = exp{/a,[0"(r, _) + n, rTr]}, (2.5.1)

where 0_ is periodic in r, n_ are integers, and a_ are the Pauli matrices. Since the

gauge of the background field is never specified in the background field formalism, any

effective potential for the Ao field must be gauge independent. The most general gauge

invariant expressions involving Ao but not Ai are integral powers of the Polyakov line

tr exp[igna_ fo _ A_dr] .

Thus the most general possible gauge invariant expression for the pure gauge SU(2)

Ao effective potential is:

oo

V_fr(Ao) = Y_ an cos(gna,_ lo ;_m_d'r) . (2.5.2)

P

_-'0

Because the above effective potential is a general expression which should hold for

any field configuration, our knowledge of the exact answer for a constant Ao field

uniquely determines the coefficients an in the one loop approximation. For SU(2), we

have:
2_r2T4 4T 4

ao = _ an>o = --- , (2.5.3)45 r2n 4

which leads to the correct expression (2.3.24) for A_ = 77.

Since the form of eqn. (2.5.2) is only a result of gauge invariance, V_fr for all

consistent higher order calculations must also take that form, though the coefficients

will of course be modified. As a consequence, V_fr can never feature a linear term

at the origin (i.e. Ao = 0 must always be an extremum of the potential). This

is significant, since if one makes a two loop calculation of the effective potential, a



linear term does appear which seems to create a minimum of O(gT) in the effective

potential[Anl84, Dah85]. From the above arguments, however, we know that such

a linear term is spurious and must vanish in a consistent O(g '_) calculation (which

does not always coincide with a loop expansion), lt is therefore not surprising that,m

summing the infrared divergent Debye ring diagrams (with more than two loops) in

SU(2) gives rise to a linear term which exactly cancels the one found at the two loop

order[Bcl91].

Where is Vetr hidden in our covariant derivative expansion? The main problem

with our expansion is that we are expanding a gauge invariant effective action in

terms of functionals like H, and Gn which are gauge dependent. Nevertheless, if we

had had the patience and fortitude to calculate all terms in the expansion out to

infinite order, making no approximations and letting 6 --, c_, we would have arrived

at an exact and gauge invariant expression for the effective action. In particular for

SU(2), all of the terms H, would have summed up to form the effective potential

of eqns. (2.5.2) and (2.5.3). We can therefore improve our approximation of Se_ by

including the known form of V_tr and dropping all H,, terms. By construction, our

effective action will then exactly reproduce Verr(r/) from eqn.(2.3.24).

After having resummed the H, terms, the only remaining gauge dependent terms

are Gn. The main problem with these terms is that they do not reflect the equivalence

between configurations with Ao near the different minima at 2nzrT/g. We can solve

this problem by introducing new functionals G" which do reflect that equivalence:

G' -2T_tr [ d4x[D_,-',,+1 = J [Di, cos(nDo/T)]] (2.5.4)

In particular, for static SU(2) fields with glAol << T, we get:

a2 = G_ = 2g2 / d3xi)_A2o (2.5.5)T

Thus to the order that we are working, if we replace G_ by G_, we not only reproduce

the correct behavior for static fields with small magnitudes, we also introduce the

periodicity necessary to describe configurations with [Ao[ near each of the minima at
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2nlrT. If we wanted to take the derivative expansion to the next order, we would get

some terms involving G3. We could then replace G2 and G3 by their primed coun-

terparts, choosing coefficients such that the behavior of static fields with glAol << T

was not altered. In addition, new gauge dependent terms involving more derivatives
m,

of Do2 could be replaced by terms having the same small [Ao[ behavior, but which

reflect the equivalence of the Ao minima. In this way, a modified covariant derivative

expansion for static SU(2) fields can be continued to higher orders with the gauge

equivalence of the Ao minima manifest at each step.

Looking back at eqn. (2.3.15), we can see that after resumming the H,_ terms, the

new 8 is given by:

v7= 4SCp
T(-llF2 + 2G'2- 2D2) (2.5.6)

Notice that 8 = 0 for configurations without zero modes. This just means that for

these configurations, we would need to keep more terms in the derivative expansion

to get a reliable value for 8. However, since we are primarily interested in calculating

prefactors for configurations with zero modes, the above definition of 8 is suffÉcient

provided that it turns out that 8 > 0. Assuming this, we can write down a partially

resummed, renormalized effective action for pure gauge SU(2):

= 1 1 1 (02 - G'2) - 1 f d3xV_(Ao) ' (2.5.7)4gg 2 F2- _ P(TE- 2) + _

where V_ is given by eqns. (2.5.2)and (2.5.3). Equations (2.5.6) and (2.5.7) along

with eqn. (2.3.16) are the main results of this paper.

2.6 More Dyons

We would now like to apply our improved formalism to the case of a PSJZ dyon

for which ]Ao] ---*_ = 27rT/g as r ---, c¢. Since Ao approaches one of the absolute

minima of the effective potential at infinity, a plasma of these dyons would not have

to "self-stabilize" its entropy against an infinite background energy, as was the case
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of the dyons considered previously. Since the PSJZ dyon is self dual,

F2 - 4D2 = 8925'= -647r2 (2.6.1)

The integral for G_ is convergent and can be found to be:4'

w G_ = -16_r 2 . (2.6.2)

Since the dyon has four zero modes, the infrared cutoff can be found from (2.5.6) to
be:

1 3 2
= _(1-_) • (2.6.3)

Note that $ _ 0(1/(9,-i) 2) just as it was for a constant Ao field. Keeping more terms

in the derivative expansion will not affect the order of 6, though it will affect the size

of the O(1) coefficient. Looking at eqn. (2.4.10), we can see that the entire plasma

prefactor is determined, and we only need to evaluate S_tr in order to determine the

density of the plasma.

Here is where we run into problems. We might at first think that we can simply

replace S_fr by S in the exponent of (2.4.10) because the one loop corrections S_ ) are

down by O(g2). However, the fact is that for an isolated dyon, S_r ) diverges like a

distance at infinity _,ince A0 only approaches the minimum at 2_rT/g like 1/x. We

can see this by cutting off the integral over V_a at some large radius R:

4r fo R"_- r2drVctt(A0) -_ 8_r2(27rTR) • (2.6.4)

For a neutral plasma, we could argue that the highest electric multipole moment at

• infinity would be a dipole and so this divergence would not really occur. Let us assume

that this is the case and try to find some sensible procedure for estimating R in the

g --* 0 limit. The simplest guess would be that 2_rTR _, O(g-"). For any positive tr,

R would be parametrically larger than the typical size of a dyon ,,_ O(1/(2rT)). On

the other hand, as long as, < 2, S will dominate SCtr and the density of the plasma

can be found from (2.4.10) to be C,(g -4 exp(.-87r2/g2)T3). In the g --, 0 limit, one
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would expect R to be of the same order in g as the typical separation between dyons,

but we can see that due to the exponential dependence of the density on 1/g 2, this

cannot be achieved in the g --_ 0 limit. In fact, trying to find an equivalence between

R and the typical dyon separation will drive R _ c¢ in the g _ 0 limit. Thus, due t

to one loop effects, PSJZ dyons with r = 21rT/g will become infinitely heavy and

decouple from the theory as T _ ¢x_.

On the other hand, we should not dismiss these dyons so easily for finite temper-

atures, in particular when T ---, AQCD. For a neutral plasma at finite T, it might be

that a scale could be found for R which would be in qualitative agreement with the

typical dyon separation which we will hereafter call Ra. In other words, we would like

to find an R for which:

1 1 3 Z -1/3 (2.6.5)
R_- _ R_= _ (4_.V Z,7) ,

where Ra depends on R through Se_ and Z/Z,_ is given by eqns. (2.4.10) and (2.4.9).

It turns out that this equation only starts having solutions for g > 4. Obviously at

this point, we have left the regime of weak coupling, so the one loop approximation

becomes dubious at best. In addition, it can be shown that the R's which solve (2.6.5)

are typically between 1/(4_rT) and 1/(2_rT) which is the same scale as the size of the

dyon, so dyons and antidyons would again begin to overlap.

2.7 Monopoles

One way that we could dispose of the troublesome divergence of f d3xV_r would be

if we could find a way to make Ao approach 2rT/g faster than 1/x. In the 't Hooft-

Polyakov monopole, the Higgs field approaches its vacuum expectation value like

exp(-Mx), which is just a consequence of it going to a quadratic minimum. If we

use the Coleman-Weinberg mechanism[Col73] to find configurations which minimize

Se_ rather than classical solutions which minimize S, we should be able to achieve the

desired behavior for Ao _ 27rT/g as r _ _ since there is a quadratic minimum in the



effective potential there. To really use the Coleman-Weinberg mechanism with a clear

conscience, we should include all orders of the derivative expansion in our expression

for S, tt before we minimize, and we should verify that the configurations that we are

interested in have no negative eigenmodes associated with them. Nevertheless, we

shall proceed in the most naive manner, keeping only the effective potential and not

' worrying about negative eigenmodes for the time being.

For r _ co, the extrema of S, tt can be found by solving the following equations:

_ 0V,_

D_bF_,, - ¢_o-ff_'_ = 0. (2.7.1)

These equations are greatly simplified by using the ansatz (2.4.1) along with the

definition:

f(z) = 1 + f(z__.._) h(x) = g(z)- 1 . (2.7.2)
x ;T

Equations (2.7.1)then become[Act79]"

z2H " = H(H _ - 1 + (z + F) 2) (2.7.3)

1 _z)(F+x) (2.7.4)z2F '' = 2(x + f)H 2 + -_-ir2F(f + _

where the primes denote derivatives with respect to the variable z = gtr, and we have

assumed that r/= 2rT/g. For a monopole configuration, the Ai fields should drop off

like -1/z far from the origin. From the definitions of (2.7.2), then, we expect H and

F to be small as z _ co. In this limit, the equations of motion become H" = H and

F" = F/67r 2, so that:

X

H _ C_ exp(-x) F ---,C2 exp(z_';) ' (2.7.5)
VO_"

If we try to find a monopole for which Ao asymptotically approaches a value which! -

, is not a minimum, then we find an equation like F" = Cz, which does not feature

solutions which vanish as x --, co. We can conclude that only monopole configurations

in which the Ao _;eld approaches a minimum of the effective potential have any chance

of minimizing the effective action.
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2.7'.1 Negative Modes

Unfortunately, in deriving See"for the monopole, we have implicitly integrated over

negative eigenmodes. To see this, let us look a little more closely at what it means

to integrate around a configuration which minimizes the effective action rather than

the classical action. Suppose we have a monopole configuration ,4_, defined by eqns.

(2.4.1), (2.7.2) and (2.7.5). Since ,4_ is not a classical solution, when we make the

replacement A_, = ,4_,+ B_ there will be terms linear in B_,. Nevertheless, by adding

an appropriate current term J_A_, to the original Lagrangian, the linear terms can be

exactly cancelled and the monopole coafiguration becomes a solution to the modified

equations of motion:

DabFb a_,-_,,, = g; . (2.7.6)

It is now possible to perform gaussian functional integrals over the terms which are

quadratic in B_ as long as none of the operators involved have negative eigenmodes

(i.e. the configuration is stable). If, on the other hand, there are negative eigenmodes,

then some of our "gaussian" functional integrals would actually be integrals of the

type f exp(+az2)dx which diverge and render the one loop approximation useless. In

the absense of negative modes, the current J is set equal to zero at the one loop level if

the original configuration turns out to be an extremum of the effective action[Col73].

In a sense, we have gone about things a bit backwards by first finding a configuration

which sets J = 0. We must now go back and check whether or not the configuration

was classically stable to begin with.

Far from the center of the monopole, exponentially falling functions are unim-

portant, so we can approximate the configuration by using (2.4.1) and (2.7.2) with

H = F = 0. We can then find an explicit expression for the operator inside the ghost

determinant:

02 2 0 1

- 9 2 = [-iOo- 2rT(I. _)]2 0r 2 r Or F _'_[J_ - (I. .)2], (2.7.7)

where I, L and J are isospin, orbital, and total angular momentum operators given
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by:

(I_)=b = _i¢ b_

Li - --ieijkrjOk

a = I+L. (2.7.8)

1)

We are interested to see whether this operator has any negative eigenvalues. For static

configurations, we can use temporal eigenfunctions of exp(i2nTrT'r) and see that the

fi_'st term of -D 2 is positive semi-definite by making the replacement -iOo .-) 2nlrT.

In addition, we can see that the last term is positive definite by noting that (L.)_) = 0

and replacing (i. .) by (J.)_). Furthermore, the radial derivative terms are positive

definite since

0 2 2 0 L 2

-0_= 0r 2 r0r + r-_ (2.7.9)

is positive definite even when L 2 = 0. Therefore the whole ghost operatc, r is positive

definite.

What about the gauge operator? To begin examining W, we first note that

far from the monopole, there is no electric field and consequently F_)i = 0. From

eqn. (2.2.7), this implies that Woi = Wio = 0. The gauge determinant can then be

separated into two determinants:

det(W_) = det(-D 2) det(Wij), (2.7.10)

where we have already shown that the first is positive definite. Dropping the spatial

indices on Wij, we can use techniques similar to those used for the ghosts to write:
g

0 _ 2 0 1w =
Q

where S and K are spin and total angular momenta defined by:

(&)_ = -ic_jk

Ii = I+ S+L. (2.7.12)
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The only nonzero commutator among the operators of (2.7.11) is between S. K and

S. .. Even with this difficuly, however, we can still make W block diagonal by

quantizing with respect to S 2, h "2, m = (I. _), s = (S. _) and I = Kz.

The dangerous modea of this operator are when K < 2 and n = m = -s = :t:1.

For the K = 0 modes the operator reduces to:

02 2 0 1

W = 0r 2 r0r r2 . (2.7.13)

In ref. [Col81], Coleman presented an elegant way to show that operators which take

the above form far away from the origin always have negative eigen ¢alues due to their

attractive centrifugal potential. Consider the following radial function:

¢ = l(v/7-v )exp(-r/a), r > R

= 0, r < R, (2.7.14)

where R and a are positive numbers. The expectation value of W from eqn. (2.7.13)

for this function is:

< W > = r2dr_(W)¢

= --lo_ dr[r2(d¢/dr) 2 - ¢2]

-- --3In(a/R)+ ... (2.7.15)8

where the triple dots denote terms that have a finite limit as a _ oc. For any fixed R,

this expression becomes negative for sufficiently large a. To get a negative expecta-

tion value for some function, there must be eigenfunctions with negative eigenvalues,

since any function can be formed from linear combinations of eigenfunctions. Fur-

thermore, since the proof works for arbitrarily large R, no behavior of the fields near

the center of the monopole where F and H are nonzero can save W from having

negative eigenvalues.

Another way to see that monopole configurations like the one suggested above

would not be stable is to see that, unlike the normal 't Hooft-Polyakov monopole
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with a Higg's, these monopoles are not protected by topology at infinity. As r _ co,

the Ao field approaches a constant value of 71= 2rrT/g which is simply a temporal

gauge transformation of Ao = 0. If Ao _ 0, it doesn't matter whether it looks like a

hedgehog or is in a uniform color direction, and consequently topology is lost. There

is nothing to stop a configuration which has Ao = 0 at both r = 0 and r = oo from

' reducing Ao to 0 at intermediate values of r in order to minimize its action. This will

be a general problem with any monopoles in pure gauge Yang-Mills theories: finite

energy monopole configurations which minimize the effective action will feature the

A_ fields approaching minima of the effective potential as r --, rc. These minima,

however, will be gauge equivalent to Ag = 0, so the monopole configuration will not

be stable.

2.7.2 Generalization to SU(3) with fermions

To better illustrate these points, I will consider SU(3). From Appendix B, we know

that we only need consider field configurations in which gAo/(27rT) = tJ$3 + v/3p_s,

where _ are the Gell-Mann matrices. Again using Appendix B, we have plotted

the effective potential as a function of p for v = 0 in fig. 2.7.1. The only minima

of the potential in this direction occur at the points p = 2n/3 which are just gauge

transformations of p = 0 (see Appendix C). Now let us look in the $3 direction by

setting p = 0 and plotting V_fr as a function of v (fig. 2.7.1). The absolute minima

are again gauge transformations of v = 0, but in addition there appear to be local

minima at v = 2n + 1. By making a contour plot with both t, and p (fig. 2.7.2),

• however, we can see that the apparent "local minimum" at t, = 1 is actually just

the side of a crater which falls to an absolute minimum at (v,p) = ('1,1/3). The

Ao matrix at this minimum has the same eigenvalues as the minimum at v = 0 and

p = -2/3, so we know that it is also a gauge transformation of Ao = 0.

On the other hand, true local minima of the effective potential can be created by

introducing fermions into the theory and thereby breaking the center symmetry of the

95

I



gauge group (see Appendix C). For example, if one massless fermion is introduced into

SU(2), the absolute minimum at glA01- 2fT is transformed into a local minimum

(fig. 2.3.1) [Ign92]. Since there is no longer an allowed gauge transformation which

takes this minimum to the Ao = 0 configuration, one might be tempted to believe

that a stable monopole configuration would exist with the lA01--+2_rT/g as r --, oo.

Unfortunately, the presence of fermions induces no change in the gauge operator W, so

there are still negative eigenmodes and the monopole is still unstable, lt is interesting

to note that if a minimum of the effective potential with fermions had occured at any

point other than one which was an absolute minimum of the pure gauge theory, then it

would have been possible to create a stable monopole configuration which minimized

the effective action.

SU(3) Effective Potential

I I I I I I I 7

6 - .\ -- "_ e" "
I , / " . \

_I' , _ ,&._ " ' \ .'_ I
oa I\I ,] . I " .

4- . " _ -- ' _ I ' -
C_ I , . I , . I

_ I ' I I

I . . ,o '" ,
0 I 2 0 2 4

p V

Figure 2.7.1" The one loop SU(3) effective potential for a constant Ao field with no
fermions (solid), 2 fermions (dot-dashed), and fermions only (dashed). The left frame
is for gAo/(2rT)= V_pX8, while the right frame is for gAo/(2rT) = rX3.
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Pure Gauge SU (3)
_,,, , , , •

• 2

P
1

0
!

0 1 2 3 4

V

Figure 2.7.2: A contour plot of the one loop pure gauge SU(3) effective potential for
a constant field given by gmo/(2rT) = vA3 + V'_p)_s.

O

Now we will examine the effect that fermions have on the SU(3) effective potential.

• Figure 2.7.1 shows this potential as a function of p for u = 0. It is not immediately

obvious by looking at the figure that the local minima with fermions will be positioned

at exactly 2nrrT/3. Nevertheless, this is the case since the absolute minima of the

gauge part of V,fr precisely line up with maxima of the fermionic part (Appendix B).
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SU (3) with 2 Fermions

•

P
1

i

i I , P ._ , , • |0 2 3 4

v

Figure 2.7.3: The SU(3) effective potential as in figure 2.7.2, but with 2 massless
fermions.

O

Similarly, each of the local minima of (u, p) shown in fig. 2.7.3 corresponds exactly to

an absolute minimum of the pure gauge theory. By the same reasoning used for SU(2)

then, any monopole configuration with Ao approaching one of these local minima is

still unstable.
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2.8 Conclusion

We have developed a covariant derivative expansion of the one loop SU(N) effective ac-

tion at finite temperature. The main use of this expansion is that it self-consistently

produces an infrared cutoff mass which can be used to determine the density of a

, plasma of solitons in tile semiclassical approximation. We have used our technique

to evaluate suggestions in the literature[Dah85, Polo91] that magnetically charged

solutions to pure gauge SU(N) could self-stabilize at finite temperature, providing

a nonperturbative mechanism for screening static magnetic fluctuations. We have

found that classical dyon solutions have infinite energy at the one loop level unless

they form an overlapping plasma, in which case they may be difficult to differenti-

ate from thermal fluctuations. In addition, we have found finite energy monopole

configurations in SU(2) and SU(3) which minimize the effective action but which are

unstable. Therefore, at least these two types of semi-classical magnetic configurations

do not solve the magnetic screening problem in hot QCD. Nevertheless, if stable, lo-

calized, finite energy solutions to pure gauge SU(N) at T # 0 are found in the future,

then the methods developed here should be useful for estimating their density at high

temperatures.

,°
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A Integrals, Sums and Functionals

In this appendix, we present some of the tools that were used in deriving expressions

for the effective action. In order to derive eqns. (2.3.6), (2.3.7), (2.3.9) and (2.3.13),

it is necessary to use the following integrals and sums:

r 1
exp(--p_t) -- (4_.t)a/2 (a.1)J

a_p 1-(_ exp(--p_t)pjpk = 2t(4rrt)a/2 8ik (A.2)

f _p 1-(_ exp(-p_t)piPkPtPm = (2t)2(41rt)a/2 (_jk_5,m+ _j_k,_ + _Sj,n,Skt)(A.3)

co n2

co 1 _ exp(- 4--_) (A.4)T,,=_co_exp(-p20t) = 2_ ,=_co

1 n2 n 2

T__,p2otexp(-p_t),, = 2V/_(½ 4T2t)exp(-4T2-'--_) (A.5)

T_"p4t2exp(-po2t) - 1 3 n2 n2 _21exp( n2
o 2vi-_ _[-4 - 34--T-_ + (4T_t, _ -4T2-----_). (A.6)

The above sums were obtained by using the Poisson summation formula:

co OO

_ F(n_)= v_ E f(na), (A.7)
n OO _ OO

where a_ = 27r and F(x) and f(p) are Fourier transforms of each other. The sums
O

on the left sides of (A.4-A.6) are over Matsubara frequencies, while those on the right

side are over T = 0 (n = 0) and T 7t 0 (n 7t 0) pieces. The latter can be seen by

noticing that in the limit as T _ 0, only the n = 0 terms survive.

In addition, we define the following functionals for notational convenience:

H, = tr f d'xD2o" (A.S)
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H1 = -g2N / d4xA2o (A.9)

F2 = tr ] d4x[D_,,D_] 2 = -g2g ] d4x(F_,) 2 (A.IO)

/ /' o_D2 = tr d4x[Dj, Do]2=-g2N d x(Fjo ) (A.11)

/a,+, = tr _[Dj,[Dj, Do_II (A.12)

, G' J,+, = -2T2tr d4x[D,, [Di,cos(nDo/T)]], (A.13)

where the last definition was introduced in eqn. (2.5.4) while developing the improved

expansion. For a constant A8 field, all of the above functionals vanish except

H, = tr f d4x(gAo) 2n , (A.14)

where we use the matrix notation Ao - f"bCA_). For SU(2) with lA01--- r/, we get the

simple form:

H, = 2(-g2rl_)nV/T. (A.15)

The following high temperature approximations were used in deriving eqns. (2.3.10),

(2.3.11) and (2.3.13):

oo

, _(2p_)_),,,-:- 1_o (A.16)
n2pexp(-en2) _ _ _

n----1

¢¢ 1 1 1 7r2 (A.17)_ _xp(-_._1 __ _- ¢_7+
n--1

oo

1 In e + 1.55 (A.18)Y_ Ei(-en 2) .-. -_/_- _
n----1

a The above sums become exact in the limit as e --_ 0 and are even good to within a few

percent when e -- 1. We also used the following integral to regulate the ultraviolet

divergences in (2.3.11)and (2.3.13)"

(1 - e-^2 = "YE+ ln($A 2) (A.19)

where "rE --_0.577 is Euler's constant.

i01



B Effective Potentials for T 0 SU(N)

The Ao fields in SU(N) can always be expressed in terms of a traceless Hermitian

1 AS)_a where 1 Aa are the N 2N × N matrix by defining Ao = _ _ -1 fundamental

generators of SU(N). Any matrix of this form can be diagonalized by a unitary trans-

formation. However, making such a unitary transformation is equivalent to making a

time-independent gauge transformation on Ao. Since the effective potential must be

invariant under all gauge transformations, it can only depend on the eigenvalues of

Ao, so it is sufficient to study configurations in which Ao is diagonal. In Appendix D

of ref.[Gro81], Gross et al. evaluate fim,'t;.._z,al determinants for constant fields which

are diagonal in color. We use theix results t¢ ,_r;._edown a general expression for the

effective potential of any traceless, diagenal Ao matrix. Let

gAo = 2_rTq (B.1)

where q is a diagonal, real and traceless matrix whose elements are given by

(q)jk = qJ6jk • (B.2)

The effective potential for this field configuration is given by[Gro81]:

2T 4 _ N cos(nrqJ) _ cos(nTr(q_- q_)) _r2T4
Vctr = _.---__ _{2N/(-1)" n4 - "" n 4 } + 4--_ " (B.3)n--1 j--1 k-1

The sums over n can be done by using the following relations:

oo
n 4 = 90 48 [zl_([x]+ - 2)2 (B.4)n=l

oo

_-'_(-1)" cos(nrx) 7_.4 _.4 , 2n4 = -72--0 + _-_(2[x]_ -[x]_), (B.5) t,n'-I

where [x]+ = [x(mod2)] and [x]_ = [(z + 1)mod2]- 1.

For SU(2), there is only one possible form of traceless diagonal matrix: q = _'aa.

The effective potential then takes the form'

7r2T4 _T 4 7Nf
V¢, = 1----_{2Nf(2[v]2 -[v]41 + [2vl_([2v]+ - 212} 15 (1 + --_-1. (B.61
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Dropping the constant term at the end, V_, eor _U(2) is plotted in fig. 2.3.1. For

SU(3), there are two diagonal generators, so an arbitrary diagonal SU(3) matrix can

be expressed by q = vAa + ,¢_pAs. The effective potential then takes the form:

_2T4

" V_, = l_{N/(2[ v + pi2 _ [v + pi4 + 2[v - pi2 _ Iv - p]4 + 212p]2__ [2p]4 )

, + [2v]_([2p]+ - 2)2 + Iv + 3p]_([v + 3pl+ - 2)2 + Iv - 3p]_.([v - 3pl+ - 2)_}

 r2T4- + . (B.7)

V., for SU(3) is plotted in figs. 2.7.1 - 2.7.3.

There are more allowed gauge transformations in pure gauge SU(N) than there

are in SU(N) with fermions (see Appendix C). For this reason, some of the degenerate

absolute minima of the pure gauge effective potential are no longer absolute minima

when fermions are included in the theory. Nevertheless, we show here that these

,r,ts remain stationary points of the complete effective potential with fermions.

A general diagonal SU(N) matrix can always be written as a linear combination of

matrices having at least one zero on the diagonal and the matrix AN2_1 given by:

AN2_1 = diag(1, 1, ..., 1 - N)v. (B.8)

Only this last matrix will feature the minima we seek (see Appendix C), so we only

need to consider its effective potential:

2T 4 _ 1V_. = _r---.-_ -_{2NI(-I)"[(N- 1)cosCnrv) +cos(n(N- 1)_'v)]
.-----|

- 2(N - 1)cos(nNrv)- (N - 1)2}. (B.9)

c By simple differentiation, it is easy to verify that the minima at v = 2m/N of the

pure gauge part correspond exactly to maxima of the fermionic part. Consequently,

for any value of NI, the full effective potential will always have stationary points at

v = 2m/N.
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C Allowed Gauge Transformations

Since there are periodic temporal boundary conditions for the fields at finite temper-

ature, the only allowed gauge transformations are those which preserve the boundary

conditions. We would like to determine the most general form of these allowed gauge

transformations. A general unitary transformation can always be written as an ex-

ponential:

U = exp[iA,,O*(r, _')1, (C.1)

where ½A° are the generators of the group. Let us now perform a gauge transformation

on Ao = { A.AJ:

Ao _ A'o = UAo,7 -1 - -i [aoU]U-_ . (C.2)
9

As usual, the first term simply rotates A i in color space, while the second term changes

its magnitude. Just looking at the second term, we can see that the magnitude of

A_o(r) will only be the same as that of A'o(r + _) if 8*(r,_) takes the form"

O*(r, _) - f_'(r, _)+ f;(_,)r, (C.3)

where f_'(r + B,g) = f_'(r, _). Now if we examine the first term of eqn. (C.2), we can

see that periodicity for a pure gauge theory also implies:

U(r +/_,g) = exp(ia)U(r,:F). (C.4)

This puts a restriction on f_. For SU(N), the only possible values of exp(ia) will be

N'th roots of 1, which form the center of the group. These discrete allowed values

of exp(ia) can only be generated by discrete values of 0". Together with eqn. (C.4),

this implies that there can be no _ dependence for ]'2, since such a dependence would ;:

be continuous rather than discrete.
tc

For SU(2),

V = cos(10_l) + iX,O* sin(10*l) , (C.5)

where O* = 0*/10 l,and it is easy to see that only f_ = n,,rT with integer n, will sat-

isfy eqn. (C.4). For SU(N) with N > 2, it is always possible to choose a fundamental
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representation in which ali but one of the generators have at least one zero eigenvalue

(for example the Gell-Mann matrices for SU(3)). The f_' terms corresponding to

each of the generators with a zero eigenvalue must be of the form f_ = 2n_,r. The

remaining generat.or AN_-I is given in its unnormalized form by (B.8) in Appendix

•_ ,, fN2-1B. It can be ve',:_¢:,_.c,_hat = 2nTr/N gives rise to allowed gauge transformations

" with exp(ia) of (C.4) equal to N'th roots of 1.

The situation changes a bit if there are fermions in the theory. Since fermions

transform like ¢ _ U¢, there are no factors of U-1 to cancel global phases. Thus

in order for fermion tempora_ boundary conditions to remain unaffected by gauge

transformations, only transformations satisfying eqn. (C.4) with a = 0 are permis-
,_

sible. In other words, fermions break the center symmetry which is present in pure

gauge theories. Therefore, the most general form of f_ for SU(N) with fermions is

f_ = 2nlrT.
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