MANUFACTURED TO AIIM STANDARDS
BY APPLIED IMAGE, INC.
GENERAL ELECTRIC

HANFORD ATOMIC PRODUCTS OPERATION - RICHLAND, WASHINGTON

<table>
<thead>
<tr>
<th>TITLE</th>
<th>SPECIFICATIONS FOR PROTOTYPE IN-CORE FLUX MONITOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTHOR</td>
<td>A. G. DUNBAR</td>
</tr>
<tr>
<td>ISSUING FILE</td>
<td></td>
</tr>
</tbody>
</table>

THIS MATERIAL CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECS. 793 AND 794, THE TRANSMISSION OR REVELATION OF WHICH IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

THIS DOCUMENT MUST NOT BE LEFT UNATTENDED OR WHERE AN UNAUTHORIZED PERSON MAY HAVE ACCESS TO IT. WHEN NOT IN USE, IT MUST BE STORED IN AN APPROVED LOCKED REPOSITORY WITHIN AN APPROVED GUARDED AREA. WHILE IT IS YOUR POSSESSION, UNLESS YOU HAVE OBTAINED A SIGNED REQUEST FROM CLASSIFIED FILES, IT IS YOUR RESPONSIBILITY TO KEEP IT AND ITS CONTENTS WITHIN THE LIMITS OF THE PROJECT AND FROM ANY UNAUTHORIZED PERSON. ITS TRANSMITTAL TO, AND REVEALMENT AT YOUR PLACE OF RESIDENCE IS PROHIBITED. IT IS NOT TO BE DUPLICATED. IF ADDITIONAL COPIES ARE REQUIRED, OBTAIN THEM FROM THE ISSUING FILE. ALL PERSONS reading this document are requested to sign in the space provided below.

RECORD COPY

<table>
<thead>
<tr>
<th>PAYROLL NO.</th>
<th>LOCATION</th>
<th>DATE</th>
<th>SIGNATURE AND DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>75</td>
<td>1-13-62</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>75</td>
<td>1-20-62</td>
<td></td>
</tr>
<tr>
<td>713</td>
<td>76</td>
<td>1-15-63</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>75</td>
<td>1-15-63</td>
<td></td>
</tr>
<tr>
<td>P. J. Howarth</td>
<td>75</td>
<td>1-15-63</td>
<td></td>
</tr>
</tbody>
</table>

DECLASSIFIED

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
This document contains restricted data as defined in the Atomic Energy Act of 1954. It is transmitted for the disclosure of its contents in any manner to an unauthorized person is prohibited.

This document consists of 3 pages, No. 22 of 45 copies. Series

DISTRIBUTION

1. GO Amy
2. JT Baker
3. CR Barker
4. RS Bell
5. RG Benham
6. RR Bloomstran
7. CW Botsford
8. RO Brugge
9. JH Brown
10. WL Bunch
11. JR Carrell
12. AB Carson
13. RG Clough
14. HG DeVoss
15. RL Dickeman
16. AG Dunbar
17. EJ Filip
18. GC Fullmer
19. JW Green
20. CN Gross
21. RS Hammond
22. WM Harty
23. RR Henderson
24. ET Hubbard
25. JT Jesen
26. JE Kaveckis
27. GL Locke
28. CG Lewis
29. DS Lewis
30. DB Lovett
31. AR Maguire
32. WK MacCready
33. JS McMahon
34. JHM Miller
35. JF Music
36. SL Nelson
37. R Nilson
38. GF Owsley
39. LP Reinig
40. RS Scott
41. RM Smithers
42. RE Trumble
43. WW Windsheimer
44. Record Center
45. 300 Area Files

Classification Cancelled and Changed To

By Authority to DECLASSIFIED

12-13-93 RL0-C5-4

By: WJ Savely 1-4-94

Verified By: BK Hansen 1-14-94
SPECIFICATIONS FOR PROTOTYPE IN-CORE FLUX MONITORS

INTRODUCTION

A direct means of monitoring and indicating the neutron flux in a reactor core is required to maintain neutron-flux equilibrium and to eliminate hot spots, flux peaking and flux oscillations.

The following operating specifications for an in-core flux monitor are based upon the recognized requirements and operating characteristics for Hanford reactors.

OBJECTIVE

The objective of the following specifications is to present the criteria for development, application, and evaluation of prototype in-core flux monitor systems.

SPECIFICATIONS FOR IN-CORE FLUX MONITORS

1. Minimum range of neutron flux level to be monitored: 2 decades
2. Maximum neutron flux to be monitored: 2×10^{14} nV
3. Normal level of neutron flux while operating: 5×10^{13} nV
4. Normal gamma-ray intensity: 10^6 R/hr
5. Maximum time for the continuous-indicating flux detector to respond to 63% of a 1 decade change in neutron flux level: 60 seconds
6. Maximum response time for a wire traverse flux monitor: Established by the half life of the neutron-induced gamma-ray activity of the traverse wire.
7. Maximum ambient temperature for continuous-indicating detectors: 50°C
8. Maximum ambient temperature for wire-traverse system:
 (a) Water-cooled channel: 50°C
 (b) Normal reactor process-tube channel: 150°C
 (c) Normal pressurized process-tube channel: 350°C
 (d) Air-graphite channel: 600-1000°C
9. Locations of the flux-traverse wire for continuous-indicating detectors: Front to rear 1/12 and 11/12 of the front-to-rear dimension of the active core.
10. Locations of the flux-profile indices to be built into the wire-traverse system: 1/6, 1/3, 1/2 or center line, 2/3, and 5/6 of the front-to-rear dimension of the active core.
11. Locations of the continuous-indicating flux detectors:
12. Entry point of the signal cables of the continuous-indicating flux detectors and the guide tubes of the wire-traverse monitor: Front face
13. Preparation of reactor process-tube channels for the continuous-indicating flux detectors is to provide:

(a) 1" ID, dry, water-cooled channels.
(b) Spiral gamma-ray shielding pieces at the front face for signal leads and wire-traverse guide tubes.
(c) Neutron-beam shielding at the front face.
(d) Means for charging and discharging the detectors, lead wires and wire-traverse guide channels.

14. Each process-tube channel for the continuous-indicating flux monitors is to include:

(a) Five flux-detectors.
(b) One wire-traverse guide tube.
(c) Two wire-traverse indices.

15. Minimum number of process-tube channels to be employed for in-core monitoring:

5

16. Wire-traverse guide tubes included in process-tube channels with uranium charges shall:

(a) Cause minimum disturbance to flow characteristics.
(b) Be replacable. Preferably, replacement of the guide tube shall not be required to charge or discharge uranium.

17. The continuous-indicating flux-monitor system is to provide:

(a) Continuous visual indications with adjustable alarm trips (high and low) for each detector.
(b) A selection-switch system permitting ratio comparisons of any two detectors.
(c) Records of each detector by means of a multi-point recorder with provision for obtaining relative or ratio recordings of selected pairs of detectors to determine deviations.

18. Neutron-flux profiles from the wire-traverse system are to be displayed with an X-Y recorder with the active-core length as the X coordinate and the neutron-flux level as the Y coordinate. Indices resulting from absorbers causing perturbations in the neutron flux will appear at 1/12 and 11/12 of the active-core dimension (see #10 above).

The above specifications may required modification as the development program progresses. It is the intent at this time to allow as much freedom for research and development as possible, and yet to specify the minimum and maximum requirements as presently known.

Comments, suggestions, and additions are welcome; please call the author on 2-5336.