health and safety laboratory

STRONTIUM PROGRAM
QUARTERLY SUMMARY REPORT
October 1, 1959

UNITED STATES ATOMIC ENERGY COMMISSION
NEW YORK OPERATIONS OFFICE
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

This report has been reproduced directly from the best available copy.

Printed in USA. Price $3.50. Available from the Office of Technical Services, Department of Commerce, Washington 25, D.C.
HEALTH AND SAFETY LABORATORY

STRONTIUM PROGRAM
Quarterly Summary Report

Prepared by
Edward P. Hardy Jr.
and
Stanley Klein
Analytical Division

October 1, 1959

UNITED STATES ATOMIC ENERGY COMMISSION
New York Operations Office
Abstract

This report is one of a sequence of quarterly reports, each designed to up-date its predecessor beginning with HASL-42, "Environmental Contamination from Weapon Tests". Herein are presented data accrued since HASL-65. Levels of strontium-90 in fallout, air, water, milk, vegetation, foods, animal and human bone are given, based on data available from May 21, 1959 to September 1, 1959. In addition, the effect of milling upon the strontium-90 levels in wheat are shown in a material balance study. Finally, a bibliography of recent literature lists material related to fallout and the strontium program. An appendix has been added which comprises cesium and potassium measurements on humans and milk.
TABLE OF CONTENTS

Abstract

Additions and Corrections to Quarterly Summary Report dated May 29, 1959, HASL-65 viii

Introduction 1

Fallout Monitoring and Documentation

1. Deposition
 1.1 Monthly Fallout Collections for Radiostrontium and Tungsten-185 2
 1.11 United States Sites 4
 1.12 Non-United States Sites 5
 1.13 Atlantic Ocean Sites - U. S. Coast Guard Ships 19
 1.2 Precipitation Collections for Radiostrontium, Barium-140, and Tungsten-185 24
 1.3 Soil Collections for Strontium-90 31

2. Air
 2.1 Surface Air - Naval Research Laboratory 38
 2.2 High Altitude Air Sampling 55
 2.3 Strontium-90 in Hawaiian Air Samples 100

3. Water
 3.1 Strontium-90 in Richmond, California Tap Water 103
 3.2 Strontium-90 in Mount Washington Observatory Precipitation Collections 104

4. Uptake of Strontium-90
 4.1 Milk
 4.11 Monthly Radiostrontium Levels in Liquid Milk from New York City 109
 4.12 Monthly Radiostrontium Levels in Powdered Milk from Perry, New York 110
 4.13 Monthly Radiostrontium Levels in Powdered Milk from Mandan, North Dakota 112
 4.14 Monthly Radiostrontium and Other Radionuclide Levels in Liquid Milk Sampled and Analyzed by the U. S. Public Health Service 114
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Other Foods and Herbage</td>
</tr>
<tr>
<td>1.21 Flour and Bread - New York City</td>
</tr>
<tr>
<td>1.22 Wheat and Milling Products - North Dakota</td>
</tr>
<tr>
<td>1.23 Study of Milling Process at Mandan, North Dakota - John H. Harley</td>
</tr>
<tr>
<td>1.24 Strontium-90 in U. S. Wheat (1958 Crop)</td>
</tr>
<tr>
<td>1.25 Strontium-90 in Minnesota Corn Seed</td>
</tr>
<tr>
<td>1.26 Strontium-90 in Milk, Human Bone, and Soil - Lamont Geological Observatory</td>
</tr>
<tr>
<td>1.3 Uptake in Humans</td>
</tr>
<tr>
<td>1.4 Uptake in Animals</td>
</tr>
<tr>
<td>1.41 University of Nevada Samples - Bovine</td>
</tr>
<tr>
<td>1.5 Field Studies</td>
</tr>
<tr>
<td>1.51 Nebraska Milk and Shelled Corn</td>
</tr>
<tr>
<td>5. Published Reports Related to Fallout and the Strontium Program</td>
</tr>
<tr>
<td>6. Appendix</td>
</tr>
<tr>
<td>6.1 Tabulation of Gamma Radioactivity of People and Milk During 1959 - LASL</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Monthly Fallout Collections: United States</td>
<td>6</td>
</tr>
<tr>
<td>1b</td>
<td>Monthly Fallout Collections: Non-United States</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>Fallout Collected at Sea</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Precipitation Collections</td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>California, Richmond</td>
<td>25</td>
</tr>
<tr>
<td>3b</td>
<td>New Jersey, Westwood</td>
<td>26</td>
</tr>
<tr>
<td>3c</td>
<td>Pennsylvania, Pittsburgh</td>
<td>29</td>
</tr>
<tr>
<td>4a</td>
<td>Replication of 1958 Soil Data</td>
<td>32</td>
</tr>
<tr>
<td>4b,c</td>
<td>Strontium-90 in United States Soils (1958)</td>
<td>33</td>
</tr>
<tr>
<td>4d</td>
<td>Strontium-90 in United States Soils (1959)</td>
<td>37</td>
</tr>
<tr>
<td>5a</td>
<td>Daily Fission Product Beta Activity in Surface Air, June 1959 - U. S. N. R. L.</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>Radiochemical Analyses of High Altitude Air Samples</td>
<td>56</td>
</tr>
<tr>
<td>7</td>
<td>Surface Air Sampling - Hawaii</td>
<td>101</td>
</tr>
<tr>
<td>8</td>
<td>Richmond, California Tap Water</td>
<td>103</td>
</tr>
<tr>
<td>9</td>
<td>Mt. Washington Observatory Collections</td>
<td>105</td>
</tr>
<tr>
<td>10</td>
<td>Monthly Strontium-90 Levels in Liquid Milk from New York City</td>
<td>110</td>
</tr>
<tr>
<td>11</td>
<td>Monthly Strontium-90 Levels in Powdered Milk from Perry, New York</td>
<td>112</td>
</tr>
<tr>
<td>12</td>
<td>Monthly Strontium-90 Levels in Powdered Milk from Mandan, North Dakota</td>
<td>114</td>
</tr>
</tbody>
</table>

Cont'd.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Average Radionuclide Levels in Milk Samples for Period Ending June 1959</td>
<td>117</td>
</tr>
<tr>
<td>14a</td>
<td>Average Radionuclide Levels in Milk Sampled: June 1959</td>
<td>118</td>
</tr>
<tr>
<td>14b</td>
<td>Average Radionuclide Levels in Milk Sampled: May 1959</td>
<td>119</td>
</tr>
<tr>
<td>14c</td>
<td>Average Radionuclide Levels in Milk Sampled: April 1959</td>
<td>120</td>
</tr>
<tr>
<td>14d</td>
<td>Average Radionuclide Levels in Milk Sampled: March 1959</td>
<td>121</td>
</tr>
<tr>
<td>15</td>
<td>Store Purchased Bread and Flour - New York City</td>
<td>124</td>
</tr>
<tr>
<td>16</td>
<td>Wheat and Milling Products - North Dakota</td>
<td>126</td>
</tr>
<tr>
<td>17</td>
<td>Material Balance Study - Wheat and Its Milling Products</td>
<td>128</td>
</tr>
<tr>
<td>18</td>
<td>Strontium-90 in U. S. Wheat (1958 crop)</td>
<td>130</td>
</tr>
<tr>
<td>19</td>
<td>Strontium-90 in Minnesota Corn Seed</td>
<td>132</td>
</tr>
<tr>
<td>20</td>
<td>Strontium-90 in Soil, Milk, and Human Bone - North Dakota</td>
<td>134</td>
</tr>
<tr>
<td>21</td>
<td>Human Bone and Teeth</td>
<td>136</td>
</tr>
<tr>
<td>22a</td>
<td>Bovine Rumen and Feces - University of Nevada</td>
<td>138</td>
</tr>
<tr>
<td>22b</td>
<td>Bovine Bones - University of Nevada</td>
<td>139</td>
</tr>
<tr>
<td>22c</td>
<td>Bovine Milk - University of Nevada</td>
<td>143</td>
</tr>
</tbody>
</table>

Appendix: Gamma Radioactivity of People and Milk During 1959

1	United States People	159
2	United States Dry Milk	165
3	Canadian People	190
4	Canadian Dry Milk	191
5	Foreign People	198
6	Foreign Milk	199
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monthly Strontium-90 in New York City</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Radioactive Profile for June 1959 - Surface Air</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Radioactive Profile for May 1959 - Surface Air</td>
<td>48</td>
</tr>
<tr>
<td>4</td>
<td>Strontium-90 in Milk - New York City</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>Strontium-90 in Milk - Perry, New York</td>
<td>113</td>
</tr>
<tr>
<td>6</td>
<td>Strontium-90 in Milk - Mandan, North Dakota</td>
<td>115</td>
</tr>
<tr>
<td>7</td>
<td>U. S. Public Health Service Milk Analyses</td>
<td>122</td>
</tr>
</tbody>
</table>

Monthly Fallout Collections

<table>
<thead>
<tr>
<th>Page</th>
<th>March</th>
<th>mc W^{185}_{mi^2} on 6-1-58</th>
<th>Corrected Value</th>
<th>Old Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>129 ± 2</td>
<td>28 ± 1</td>
<td>24 ± 1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>63 ± 1</td>
<td>92 ± 2</td>
<td>54 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>102 ± 6</td>
<td>112 ± 7</td>
<td>89 ± 5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>122 ± 14</td>
<td>190 ± 12</td>
<td>105 ± 12</td>
<td></td>
</tr>
</tbody>
</table>

W^{185} Data, N, Y, C.

<table>
<thead>
<tr>
<th>Page</th>
<th>Sampling Date</th>
<th>mc W^{185}_{mi^2} on 6-1-58</th>
<th>Sampling Midpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>6/58</td>
<td>14.2 ± 0.7</td>
<td>11.5 ± 0.7</td>
</tr>
<tr>
<td>7/58</td>
<td>70 ± 3</td>
<td>107 ± 4</td>
<td></td>
</tr>
<tr>
<td>8/58</td>
<td>32 ± 1</td>
<td>64 ± 2</td>
<td></td>
</tr>
<tr>
<td>9/58</td>
<td>46 ± 2</td>
<td>125 ± 1</td>
<td></td>
</tr>
<tr>
<td>10/58</td>
<td>43 ± 3</td>
<td>155 ± 11</td>
<td></td>
</tr>
<tr>
<td>11/58</td>
<td>28 ± 1</td>
<td>137 ± 5</td>
<td></td>
</tr>
<tr>
<td>12/58</td>
<td>32 ± 2</td>
<td>208 ± 13</td>
<td></td>
</tr>
</tbody>
</table>

Precipitation Collections

- Westwood, New Jersey - Collector Area is 2.50 ft^2, not 2.58 ft^2.
Introduction

Quarterly summary reports are prepared by the Health and Safety Laboratory (HASL) with the objective of presenting a current picture of the Strontium Program. It is hoped that these reports will aid investigators in relating their own work to that of others. Thus, we urge other investigators to send recent results of their work to the Health and Safety Laboratory for publication in succeeding summaries. No attempt is made to interpret submitted data in these reports.

This report, which updates HASL-65, presents data routinely reported by the Analytical Division of the Health and Safety Laboratory and its contractor laboratories - Nuclear Science and Engineering Corporation, Isotopes, Incorporated, Radiochemistry, Incorporated, and Tracerlab, Incorporated. In addition, this issue includes data submitted by the U. S. Public Health Service, the Naval Research Laboratory, the Lamont Geological Observatory, and the Medical Biological Laboratory of the National Defense Research Council ToN.C. - Netherlands. Omission of one phase of the program in a given quarterly indicates that insufficient information has accrued to justify its inclusion.

Please note that data presented in these summaries are subject to revision and that changes in format may occur because of the dynamic nature of the program.

These reports are scheduled to become generally available on the first of each month terminating a quarterly period. The next report will appear January 1, 1960. Back reports (HASL 42, 51, 55, and 65), each containing data not appearing in preceding or succeeding issues, may be obtained from the Office of Technical Services, Department of Commerce, Washington 25, D. C.
Fallout Monitoring and Documentation

1. Deposition

The two important features of deposition are the total accumulated fallout and the fallout rate. The measurement of fallout rate requires collection over relatively short periods, usually on the order of one month, and radiochemical measurement for strontium-90. The stainless steel open vessel or pot, when exposed continuously, collects both dry fallout and material carried down by precipitation. In order to expand the collecting network, an improved device consisting of a plastic funnel and ion-exchange column has been developed. Through the cooperation of Dr. Lester Machta of the U. S. Weather Bureau, 22 sites were added in February 1959.

The material carried down by individual precipitations is also monitored to obtain meteorological information as to the probable atmospheric source of fallout. Such short term collections may also be analyzed for shorter-lived isotopes to estimate the approximate age of the radioactive debris.

During the Pacific test series in the spring and summer of 1958, tungsten-185 was produced in some weapons and can be used as a tracer for this particular test series. This radionuclide has been measured in precipitation and monthly fallout collections.

The rate of fallout over the ocean is measured by collecting fallout deposition aboard U. S. Coast Guard ships located at stationary positions in the Atlantic Ocean. This program is being operated under auspices of the United States Weather Bureau.
The radiochemical analysis of soils gives a direct measurement of fallout accumulated since the start of testing. Soil samples have been collected within the Continental United States and other areas of the world by Dr. Lyle T. Alexander of the U. S. Department of Agriculture and Health and Safety Laboratory personnel.

These two methods of measurement - rate of fallout and cumulative deposition - are considered supplementary since none of the monthly pot collections were started early enough to allow valid estimates of total deposition. On the other hand, difficulties in the sampling and analysis of soils prevent use of soil data for short term rate measurements.
1.1 Monthly Fallout Collections for Radiostrontium and Tungsten-185

The Health and Safety Laboratory, AEC, has set up a network of fallout collection stations using either stainless-steel pots or ion-exchange collectors, each having an open area of approximately 1 sq. ft. The sampling period is one month, and the residues are collected and analyzed for strontium-90. This operation is carried out through the cooperation of scientists at the individual stations.

The data for U. S. sites are given in Table 1a, non-U. S. sites in Table 1b. New York City monthly strontium-90 levels are graphed in Figure 1 (page 11).

For some samples strontium-89 values do not appear with strontium-90 data; they will be reported in the next quarterly.
1.11 United States Sites

The following table shows monthly fallout deposition at United States sampling stations. At five sites - Richmond, Calif., Louisville, Ky., Westwood, N. J., Pittsburgh, Pa., and Houston, Texas - duplicate samplers are exposed simultaneously for the same monthly period. A plastic funnel, ion-exchange collector is in operation at New York, N. Y. and Louisville, Ky. Eventually it is expected that all sites will utilize only the ion-exchange collection method.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr(^{90})</th>
<th>Sr(^{89})</th>
<th>W(^{185})</th>
<th>Sr(^{89}/\text{Sr}^{90}) at Midpoint</th>
<th>W(^{185}/\text{Sr}^{90}) on 6-1-58</th>
<th>Cumulative no Sr(^{90}[/\text{mil}2]) in inches</th>
<th>ppt'm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama, Birmingham</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/57 through 12/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>1.50 ± 0.09</td>
<td>71.7 ± 2.2</td>
<td>12.6 ± 0.8</td>
<td>145 ± 9</td>
<td>148</td>
<td>97</td>
<td>15.02</td>
</tr>
<tr>
<td>3/59</td>
<td>6.16 ± 0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/59</td>
<td>lost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaska, Anchorage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaska, Barrow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/17-2/28/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alaska, Cold Bay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California, Richmond</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/58 through 1/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>1.61 ± 0.02</td>
<td>43.2 ± 0.3</td>
<td>5.95 ± 0.19</td>
<td>68.2 ± 2.2</td>
<td>38</td>
<td>47</td>
<td>6.15</td>
</tr>
<tr>
<td>3/59</td>
<td>0.516 ± 0.39</td>
<td>6.95 ± 0.08</td>
<td>2.19 ± 0.11</td>
<td>32.1 ± 1.7</td>
<td>13</td>
<td>61</td>
<td>8.63</td>
</tr>
<tr>
<td>4/59</td>
<td>0.324 ± 0.010</td>
<td>3.07 ± 0.05</td>
<td>1.01 ± 0.02</td>
<td>20.4 ± 0.4</td>
<td>10</td>
<td>69</td>
<td>8.94</td>
</tr>
<tr>
<td>California, West Los Angeles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/56 through 12/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>1.62 ± 0.07</td>
<td>71.3 ± 1.7</td>
<td>13.8 ± 0.9</td>
<td>159 ± 10</td>
<td>11</td>
<td>48</td>
<td>9.67</td>
</tr>
<tr>
<td>2/59</td>
<td>5.31 ± 0.24</td>
<td>91.4 ± 3.5</td>
<td></td>
<td></td>
<td>26</td>
<td>48</td>
<td>11.09</td>
</tr>
<tr>
<td>3/59</td>
<td>0.10 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California, San Francisco</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.50 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ion-exchange collectors.

(1) Coincides with collection period.

Cont'd.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sampling Period</th>
<th>Sr59</th>
<th>Sr89</th>
<th>Sr185/Sr90</th>
<th>Sr89/Sr90</th>
<th>Cumulative Sr90/mi2</th>
<th>ppt'n.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at midpoint on 6-1-58</td>
<td>on 6-1-58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at midpoint on 6-1-58</td>
<td>on 6-1-58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cumulative Sr90/mi2</td>
<td>ppt'n.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>in inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>per square mile</td>
<td></td>
</tr>
</tbody>
</table>

Florida, Coral Gables

- 5/7 through 12/4/58:
 - 1.86 ± 0.12
 - 5.23 ± 1.02

- 1/6-2/6/59:
 - 2.90 ± 0.05
 - 2.25 ± 0.39
 - 19.6 ± 3.4

- 2/6-3/6/59:
 - 21.6 ± 0.9
 - 5.6 ± 0.6
 - 64.5 ± 7.0

Hawaii, Hilo

- 2/59:
 - 6.02 ± 0.23
 - 11.6 ± 1.0
 - 10.33 ± 0.52
 - 115 ± 6

- 3/59:
 - 1.86 ± 0.06
 - 3.28 ± 0.06
 - 2.41 ± 0.48
 - 27.7 ± 5.5
 - 5.2 ± 4.9

Hawaii, Makalua Loa

- 2/59:
 - 1.86 ± 0.05
 - 1.93 ± 0.59
 - 22.2 ± 6.8

- 3/59:
 - 1.86 ± 0.05
 - 0.14 ± 0.55
 - 2.1 ± 6.3

Hawaii, Oahu (Gartley Hall-Univ. of Hawaii)

- 6/57 through 12/58:
 - 1.86 ± 0.06
 - 27.4 ± 0.9
 - 5.75 ± 0.49
 - 28.2 ± 2.4
 - 57 ± 59
 - 13.08
 - 15.29
 - 16.20

- 7/57 through 10/58:
 - 1.86 ± 0.04
 - 2.07 ± 0.13
 - 71.5 ± 1.3
 - 11.2 ± 0.5
 - 74.6 ± 3.3
 - 35 ± 36
 - 15.19

Hawaii, Oahu (ABC Lab - Coconut Is.)

- 6/57 through 10/58:
 - 1.86 ± 0.04
 - 20.87 ± 0.58
 - 1.58 ± 0.56
 - 13.7 ± 4.9
 - 37 ± 4
 - 19.78

Illinois, Lemont

- 12/56 through 11/58:
 - 0.03 ± 0.03
 - 20.87 ± 0.58
 - 1.58 ± 0.56
 - 13.7 ± 4.9
 - 49
 - 18.6
 - 18.78

- 1/59:
 - 1.00 ± 0.06
 - 36.9 ± 0.9
 - 1.58 ± 0.56
 - 13.7 ± 4.9
 - 37
 - 4
 - 19.78

* Ion-exchange collectors.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr90</th>
<th>Sr89</th>
<th>W185</th>
<th>Cumulative Sr90/W185</th>
<th>ppt/or in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kentucky, Louisville</td>
<td>9/18/59 through 3/59</td>
<td>19/59</td>
<td>0.11 ± 0.007</td>
<td>1.28 ± 0.06</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>4/59</td>
<td>0.29 ± 0.02</td>
<td>0.00 ± 0.00</td>
<td>0.05 ± 0.005</td>
<td>1.0 ± 0.1</td>
<td>32</td>
</tr>
<tr>
<td>5/59</td>
<td>0.07 ± 0.02</td>
<td>23.3 ± 1.0</td>
<td>7.5 ± 0.7</td>
<td>202 ± 153</td>
<td>11</td>
</tr>
<tr>
<td>6/10-30/59</td>
<td>0.22 ± 0.01</td>
<td>1.06 ± 0.03</td>
<td>1.21 ± 0.06</td>
<td>13.2 ± 2.1</td>
<td>5</td>
</tr>
<tr>
<td>6/59</td>
<td>0.04 ± 0.02</td>
<td>5.37 ± 0.59</td>
<td>1.21 ± 0.06</td>
<td>14.3 ± 2.1</td>
<td>6</td>
</tr>
<tr>
<td>6/10-30/59</td>
<td>0.22 ± 0.01</td>
<td>1.06 ± 0.03</td>
<td>1.21 ± 0.06</td>
<td>13.2 ± 2.1</td>
<td>5</td>
</tr>
<tr>
<td>6/59</td>
<td>0.04 ± 0.02</td>
<td>5.37 ± 0.59</td>
<td>1.21 ± 0.06</td>
<td>14.3 ± 2.1</td>
<td>6</td>
</tr>
<tr>
<td>Minnesota, International Falls</td>
<td>2/59</td>
<td>3.65 ± 0.48</td>
<td>287</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.13 ± 0.01</td>
<td>5.80 ± 1.19</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missouri, Columbus</td>
<td>2/59</td>
<td>3.65 ± 0.48</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.13 ± 0.01</td>
<td>3.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana, Helena</td>
<td>2/59</td>
<td>0.58 ± 0.03</td>
<td>5.86 ± 0.21</td>
<td>15.0 ± 0.2</td>
<td>23.12</td>
</tr>
<tr>
<td>New Jersey, Westwood</td>
<td>8/57 through 2/59</td>
<td>4/59</td>
<td>14.49 ± 0.10</td>
<td>61.6 ± 1.0</td>
<td>9.94 ± 0.12</td>
</tr>
<tr>
<td>3/59</td>
<td>14.39 ± 0.09</td>
<td>61.2 ± 0.9</td>
<td>10.2 ± 0.12</td>
<td>154 ± 2</td>
<td>13</td>
</tr>
<tr>
<td>4/59</td>
<td>6.20 ± 0.15</td>
<td>65.1 ± 1.0</td>
<td>15.2 ± 0.2</td>
<td>205 ± 4</td>
<td>11</td>
</tr>
<tr>
<td>5/59</td>
<td>12.53 ± 0.04</td>
<td>18.1 ± 0.5</td>
<td>4.86 ± 0.21</td>
<td>131 ± 6</td>
<td>7</td>
</tr>
<tr>
<td>5/59</td>
<td>12.53 ± 0.04</td>
<td>18.1 ± 0.5</td>
<td>4.86 ± 0.21</td>
<td>131 ± 6</td>
<td>7</td>
</tr>
</tbody>
</table>

* Ion-exchange collectors.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr²⁹/²⁹Sr</th>
<th>Sr²⁹</th>
<th>Sr°⁹</th>
<th>Sr°⁹/²⁹Sr</th>
<th>Cumulative</th>
<th>ppt'ns.</th>
<th>in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at midpoint of sampling period</td>
<td>on 6-1-58</td>
<td>on 6-1-58</td>
<td>on 6-1-58</td>
<td>on 6-1-58</td>
<td>on 6-1-58</td>
<td>on 6-1-58</td>
</tr>
<tr>
<td>New York, New York</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59 through 3/59</td>
<td>5.78 ± 0.16</td>
<td>5.76 ± 0.16</td>
<td>6.60 ± 0.16</td>
<td>6.98 ± 0.39</td>
<td>1.27 ± 0.03</td>
<td>1.62 ± 0.04</td>
<td>1.49 ± 0.04</td>
</tr>
<tr>
<td>4/59</td>
<td>6.76 ± 0.16</td>
<td>6.98 ± 0.39</td>
<td>1.49 ± 0.04</td>
<td>1.62 ± 0.04</td>
<td>1.59 ± 0.03</td>
<td>65.38</td>
<td>3.79</td>
</tr>
<tr>
<td>5/59*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota, Williston*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>4.98 ± 0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma, Tulsa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/58 through 12/58</td>
<td>20.7 ± 1.0</td>
<td>207 ± 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>17.3 ± 0.6</td>
<td>261 ± 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon, Medford*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.92 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvania, Pittsburgh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/57 through 3/59</td>
<td>58.5 ± 1.5</td>
<td>9.3 ± 0.6</td>
<td>188 ± 12</td>
<td>11</td>
<td>4.0</td>
<td>23.71</td>
<td>3.65</td>
</tr>
<tr>
<td>4/59</td>
<td>52.6 ± 2.5</td>
<td>15.5 ± 0.9</td>
<td>313 ± 18</td>
<td>11</td>
<td>67</td>
<td>23.71</td>
<td>3.65</td>
</tr>
<tr>
<td>3/59</td>
<td>21.6 ± 0.9</td>
<td>5.6 ± 0.6</td>
<td>64.4 ± 6.9</td>
<td>62</td>
<td>22.13</td>
<td>23.71</td>
<td>3.65</td>
</tr>
<tr>
<td>South Dakota, Vermillion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>21.6 ± 0.9</td>
<td>5.6 ± 0.6</td>
<td>64.4 ± 6.9</td>
<td>62</td>
<td>22.13</td>
<td>23.71</td>
<td>3.65</td>
</tr>
<tr>
<td>2/59</td>
<td>21.6 ± 0.9</td>
<td>5.6 ± 0.6</td>
<td>64.4 ± 6.9</td>
<td>62</td>
<td>22.13</td>
<td>23.71</td>
<td>3.65</td>
</tr>
<tr>
<td>3/59</td>
<td>21.6 ± 0.9</td>
<td>5.6 ± 0.6</td>
<td>64.4 ± 6.9</td>
<td>62</td>
<td>22.13</td>
<td>23.71</td>
<td>3.65</td>
</tr>
<tr>
<td>Texas, Dallas*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>52.8 ± 1.4</td>
<td>64.1 ± 0.37</td>
<td>73.7 ± 4.3</td>
<td>33</td>
<td>15</td>
<td>2.47</td>
<td>trace</td>
</tr>
<tr>
<td>Texas, El Paso*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.15 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1a - Cont'd.

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr89</th>
<th>Sr-90</th>
<th>W185</th>
<th>Sr+Sr90</th>
<th>Cumulative on Sr89/mile2</th>
<th>ppt'ns in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texas, Houston</td>
<td>1.94 ± 0.07</td>
<td>13.4 ± 1.0</td>
<td>11.9 ± 0.4</td>
<td>137 ± 5</td>
<td>22</td>
<td>71</td>
</tr>
<tr>
<td>2/59</td>
<td>1.75 ± 0.07</td>
<td>38.0 ± 0.8</td>
<td>10.9 ± 0.2</td>
<td>125 ± 2</td>
<td>22</td>
<td>71</td>
</tr>
<tr>
<td>3/59</td>
<td>1.57 ± 0.05</td>
<td>25.1 ± 0.2</td>
<td>9.97 ± 0.24</td>
<td>151 ± 4</td>
<td>16</td>
<td>96</td>
</tr>
<tr>
<td>4/59</td>
<td>1.02 ± 0.05</td>
<td>22.1 ± 0.2</td>
<td>10.5 ± 0.28</td>
<td>159 ± 4</td>
<td>17</td>
<td>124</td>
</tr>
<tr>
<td>Texas, Houston*</td>
<td>1.02 ± 0.07</td>
<td>13.5 ± 0.4</td>
<td>12.3 ± 0.5</td>
<td>21.8 ± 10</td>
<td>11</td>
<td>60</td>
</tr>
<tr>
<td>2/59</td>
<td>1.02 ± 0.07</td>
<td>11.3 ± 0.4</td>
<td>11.2 ± 0.5</td>
<td>226 ± 10</td>
<td>10</td>
<td>56</td>
</tr>
<tr>
<td>Utah, Salt Lake City</td>
<td>2.12 ± 0.07</td>
<td>68.8 ± 2.2</td>
<td>13.35 ± 0.74</td>
<td>111 ± 6</td>
<td>27</td>
<td>101</td>
</tr>
<tr>
<td>1/59</td>
<td>2.56 ± 0.21</td>
<td>22.61 ± 1.2</td>
<td>256 ± 11</td>
<td>43</td>
<td>33.77</td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>4.56 ± 0.02</td>
<td>12.9 ± 0.6</td>
<td>195 ± 9</td>
<td>101</td>
<td>29.22</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>1.80 ± 0.30</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>1.98 ± 0.09</td>
<td>54.5 ± 1.7</td>
<td>16.4 ± 0.5</td>
<td>143 ± 4</td>
<td>26</td>
<td>63</td>
</tr>
<tr>
<td>3/59</td>
<td>3.07 ± 0.43</td>
<td>15.67 ± 0.60</td>
<td>122 ± 8</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin, Columbus</td>
<td>2.16 ± 0.28</td>
<td>88.2 ± 2.0</td>
<td>8.19 ± 0.39</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ion-exchange collectors.
1.12 Non-United States Sites

The following table shows recent monthly fallout deposition for non-United States sampling stations. It concludes with 1957 and 1958 monthly strontium-90 levels in Rijswijk Z. H., Netherlands.
TABLE 1b

Monthly Fallout Collections: Non-United States Sites

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr90</th>
<th>Sr90</th>
<th>Sr90</th>
<th>Sr90</th>
<th>Sr90</th>
<th>Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at midpoint of sampling period</td>
<td>on 6-1-58</td>
<td>at Sampling Midpoint</td>
<td>on 6-1-58</td>
<td>Cumulative mc Sr90/mL</td>
<td>ppt’ns. in inches</td>
</tr>
<tr>
<td>Australia, Adelaide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/6/58 through 7/58</td>
<td>0.60 ± 0.25</td>
<td>6.05 ± 0.98</td>
<td>6.15 ± 0.98</td>
<td>17.7 ± 2.0</td>
<td>0.20</td>
<td>2.35</td>
</tr>
<tr>
<td>8/58</td>
<td>0.35 ± 0.25</td>
<td>3.50 ± 0.98</td>
<td>3.65 ± 0.98</td>
<td>10.7 ± 2.0</td>
<td>0.18</td>
<td>2.18</td>
</tr>
<tr>
<td>9/58</td>
<td>0.25 ± 0.25</td>
<td>2.50 ± 0.98</td>
<td>2.65 ± 0.98</td>
<td>8.5 ± 2.0</td>
<td>0.16</td>
<td>2.06</td>
</tr>
<tr>
<td>10/58</td>
<td>0.15 ± 0.25</td>
<td>1.50 ± 0.98</td>
<td>1.65 ± 0.98</td>
<td>5.3 ± 2.0</td>
<td>0.14</td>
<td>1.94</td>
</tr>
<tr>
<td>11/58</td>
<td>0.05 ± 0.25</td>
<td>0.50 ± 0.98</td>
<td>0.65 ± 0.98</td>
<td>2.1 ± 2.0</td>
<td>0.12</td>
<td>1.82</td>
</tr>
<tr>
<td>12/58</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>0.9 ± 2.0</td>
<td>0.10</td>
<td>1.70</td>
</tr>
<tr>
<td>1/59</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>0.7 ± 2.0</td>
<td>0.08</td>
<td>1.58</td>
</tr>
<tr>
<td>2/59</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>0.5 ± 2.0</td>
<td>0.06</td>
<td>1.46</td>
</tr>
<tr>
<td>Australia, Brisbane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/58</td>
<td>0.05 ± 0.25</td>
<td>0.50 ± 0.98</td>
<td>0.65 ± 0.98</td>
<td>15.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>7/58</td>
<td>0.04 ± 0.25</td>
<td>0.40 ± 0.98</td>
<td>0.55 ± 0.98</td>
<td>13.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>8/58</td>
<td>0.03 ± 0.25</td>
<td>0.30 ± 0.98</td>
<td>0.45 ± 0.98</td>
<td>11.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>9/58</td>
<td>0.02 ± 0.25</td>
<td>0.20 ± 0.98</td>
<td>0.35 ± 0.98</td>
<td>9.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>10/58</td>
<td>0.01 ± 0.25</td>
<td>0.10 ± 0.98</td>
<td>0.25 ± 0.98</td>
<td>7.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>11/58</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>5.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>12/58</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>3.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>1/59</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>1.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>2/59</td>
<td>0.00 ± 0.25</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>0.5 ± 2.0</td>
<td>0.053</td>
<td>0.95</td>
</tr>
<tr>
<td>Australia, Darwin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/58</td>
<td>0.43 ± 0.01</td>
<td>4.30 ± 0.98</td>
<td>4.45 ± 0.98</td>
<td>13.5 ± 2.0</td>
<td>0.43</td>
<td>1.73</td>
</tr>
<tr>
<td>8/58</td>
<td>0.34 ± 0.01</td>
<td>3.40 ± 0.98</td>
<td>3.55 ± 0.98</td>
<td>11.5 ± 2.0</td>
<td>0.34</td>
<td>1.64</td>
</tr>
<tr>
<td>9/58</td>
<td>0.25 ± 0.01</td>
<td>2.50 ± 0.98</td>
<td>2.65 ± 0.98</td>
<td>9.5 ± 2.0</td>
<td>0.25</td>
<td>1.55</td>
</tr>
<tr>
<td>10/58</td>
<td>0.16 ± 0.01</td>
<td>1.60 ± 0.98</td>
<td>1.75 ± 0.98</td>
<td>7.5 ± 2.0</td>
<td>0.16</td>
<td>1.46</td>
</tr>
<tr>
<td>11/58</td>
<td>0.07 ± 0.01</td>
<td>0.70 ± 0.98</td>
<td>0.85 ± 0.98</td>
<td>5.5 ± 2.0</td>
<td>0.07</td>
<td>1.37</td>
</tr>
<tr>
<td>12/58</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>3.5 ± 2.0</td>
<td>0.00</td>
<td>1.28</td>
</tr>
<tr>
<td>1/59</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>1.5 ± 2.0</td>
<td>0.00</td>
<td>1.19</td>
</tr>
<tr>
<td>2/59</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>0.5 ± 2.0</td>
<td>0.00</td>
<td>1.10</td>
</tr>
<tr>
<td>Australia, Hobart (State of Tasmania)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/58</td>
<td>0.20 ± 0.01</td>
<td>2.00 ± 0.98</td>
<td>2.15 ± 0.98</td>
<td>15.5 ± 2.0</td>
<td>0.20</td>
<td>1.40</td>
</tr>
<tr>
<td>9/58</td>
<td>0.08 ± 0.01</td>
<td>0.80 ± 0.98</td>
<td>0.95 ± 0.98</td>
<td>13.5 ± 2.0</td>
<td>0.08</td>
<td>1.30</td>
</tr>
<tr>
<td>10/58</td>
<td>0.03 ± 0.01</td>
<td>0.30 ± 0.98</td>
<td>0.45 ± 0.98</td>
<td>11.5 ± 2.0</td>
<td>0.03</td>
<td>1.20</td>
</tr>
<tr>
<td>11/58</td>
<td>0.01 ± 0.01</td>
<td>0.10 ± 0.98</td>
<td>0.25 ± 0.98</td>
<td>9.5 ± 2.0</td>
<td>0.01</td>
<td>1.10</td>
</tr>
<tr>
<td>12/58</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>7.5 ± 2.0</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1/59</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>5.5 ± 2.0</td>
<td>0.00</td>
<td>0.90</td>
</tr>
<tr>
<td>2/59</td>
<td>0.00 ± 0.01</td>
<td>0.00 ± 0.98</td>
<td>0.00 ± 0.98</td>
<td>3.5 ± 2.0</td>
<td>0.00</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Cont'd.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr9° at Midpoint of Sampling Period</th>
<th>Sr9° on 6-1-58</th>
<th>ml85 on 6-1-58</th>
<th>Cumulative</th>
<th>ppt'^a in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia, Melbourne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/58 through 7/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/58</td>
<td>0.18 ± 0.02</td>
<td>2.19 ± 0.50</td>
<td>14.2 ± 3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.18 ± 0.02</td>
<td>5.66 ± 0.31</td>
<td>19 ± 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia, Perth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1/58 through 7/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/58</td>
<td>0.15 ± 0.03</td>
<td>2.46 ± 0.28</td>
<td>16.4 ± 1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.19 ± 0.01</td>
<td>1.19 ± 0.01</td>
<td>10 ± 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia, Sydney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/3/58 through 7/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/58</td>
<td>0.64 ± 0.02</td>
<td>5.98 ± 0.21</td>
<td>28 ± 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia, Townsville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/6/58 through 7/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/58</td>
<td>0.23 ± 0.04</td>
<td>4.73 ± 0.51</td>
<td>32 ± 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Cont'd.
TABLE Ib - Cont'd.

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr59</th>
<th>W185</th>
<th>at midpoint of sampling period</th>
<th>Sr59/Sr90</th>
<th>W185/Sr90</th>
<th>Cumulative ppt'n. in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria, Klagenfurt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/57 through 11/58</td>
<td>2.40</td>
<td>1.39</td>
<td>12.81</td>
<td>1.39</td>
<td>12.41</td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.32 ± 0.03</td>
<td>9.1 ± 1.0</td>
<td>3.8 ± 0.8</td>
<td>3.3 ± 7</td>
<td>26</td>
<td>108</td>
</tr>
<tr>
<td>2/59</td>
<td>lost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.75 ± 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austria, Vienna</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/57 through 11/58</td>
<td>1.26</td>
<td>1.45</td>
<td>28.10</td>
<td>1.12</td>
<td>28.22</td>
<td>2.73</td>
</tr>
<tr>
<td>12/58</td>
<td>1.17 ± 0.04</td>
<td>6.9 ± 0.53</td>
<td>16.1 ± 3.5</td>
<td>1.45</td>
<td>16.62</td>
<td>1.0</td>
</tr>
<tr>
<td>1/59</td>
<td>0.43 ± 0.02</td>
<td>14.3 ± 0.8</td>
<td>4.5 ± 0.8</td>
<td>33</td>
<td>15.22</td>
<td>1.39</td>
</tr>
<tr>
<td>3/59</td>
<td>1.15 ± 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil, Itaici (State of Sao Paulo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/58 through 11/58</td>
<td>1.39</td>
<td>1.45</td>
<td>13.62</td>
<td>1.12</td>
<td>13.77</td>
<td>1.37</td>
</tr>
<tr>
<td>12/58</td>
<td>0.25 ± 0.03</td>
<td>3.3 ± 0.4</td>
<td>7.4 ± 0.9</td>
<td>18</td>
<td>10.92</td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>2.73 ± 0.59</td>
<td></td>
<td>30 ± 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil, Nova Friburg (State of Rio)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.15</td>
</tr>
<tr>
<td>8/58 through 10/58</td>
<td></td>
<td></td>
<td>13.62</td>
<td>1.12</td>
<td>13.77</td>
<td>1.37</td>
</tr>
<tr>
<td>12/58</td>
<td>0.37 ± 0.02</td>
<td>6.6 ± 0.7</td>
<td>17.1 ± 2.1</td>
<td>33</td>
<td>15.22</td>
<td>1.0</td>
</tr>
<tr>
<td>1/59</td>
<td>0.20 ± 0.02</td>
<td>2.6 ± 0.3</td>
<td>3.8 ± 0.7</td>
<td>33</td>
<td>15.22</td>
<td>1.39</td>
</tr>
<tr>
<td>Brazil, São José dos Campos (State of Sao Paulo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/58</td>
<td>0.32 ± 0.02</td>
<td>4.9 ± 0.6</td>
<td>9.2 ± 1.0</td>
<td>18</td>
<td>10.92</td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>1.01 ± 0.12</td>
<td></td>
<td>2.73 ± 0.59</td>
<td>30 ± 3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Canton Island</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.41 ± 0.04</td>
<td></td>
<td>1.92 ± 0.35</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>1.22 ± 0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile, Santiago</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.02 ± 0.01</td>
<td></td>
<td>0.15 ± 0.59</td>
<td>1.3 ± 5.1</td>
<td>590</td>
<td>11.33</td>
</tr>
<tr>
<td>2/59</td>
<td>0.20 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ion exchange column.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr90/M</th>
<th>Sr90/M</th>
<th>137Cs/M</th>
<th>Sr90/M</th>
<th>137Cs/M</th>
<th>Cumulative loss Sr90/m²</th>
<th>ppt. inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>at Sampling Midpoint</td>
<td>6-1-58</td>
<td></td>
<td>at Sampling Midpoint</td>
<td>6-1-58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia, Bogota</td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>1/59</td>
<td>0.06 ± 0.01</td>
<td>1.64 ± 0.16</td>
<td>2.7 ± 0.7</td>
<td>31.1 ± 1.1</td>
<td>515</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.07 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan, Hiroshima</td>
<td>5/56 through 12/58</td>
<td></td>
<td></td>
<td>5/56 through 12/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>2.14 ± 0.05</td>
<td>69.6 ± 2.5</td>
<td>11.7 ± 0.7</td>
<td>11.7 ± 0.7</td>
<td>155</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>1.95 ± 0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan, Nagasaki</td>
<td>5/56 through 11/58</td>
<td></td>
<td></td>
<td>5/56 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>2.14 ± 0.11</td>
<td>56.4 ± 1.9</td>
<td>16.4 ± 1.9</td>
<td>164</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>1.74 ± 0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenya, Kiburu</td>
<td>1/57 through 11/58</td>
<td></td>
<td></td>
<td>1/57 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>2.14 ± 0.05</td>
<td>10.7 ± 0.8</td>
<td>5.9 ± 0.9</td>
<td>513</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.22 ± 0.03</td>
<td>6.2 ± 0.4</td>
<td>1.3 ± 0.4</td>
<td>10.0</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.22 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pakistan, Karachi</td>
<td>2/58 through 11/58</td>
<td></td>
<td></td>
<td>2/58 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.29 ± 0.02</td>
<td>10.7 ± 0.8</td>
<td>5.9 ± 0.9</td>
<td>513</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.22 ± 0.03</td>
<td>6.2 ± 0.4</td>
<td>1.3 ± 0.4</td>
<td>10.0</td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Rhodesia, Salisbury</td>
<td>11/57 through 12/58</td>
<td></td>
<td></td>
<td>11/57 through 12/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>1.53 ± 0.03</td>
<td>2.6 ± 0.3</td>
<td>1.8 ± 0.4</td>
<td>20.7 ± 4.6</td>
<td>13</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.13 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan, Taipei</td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.28 ± 0.02</td>
<td>15.14 ± 0.35</td>
<td>10.0 ± 1.0</td>
<td>66.0 ± 6.7</td>
<td>47</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.77 ± 0.05</td>
<td>22.3 ± 1.0</td>
<td>3.2 ± 0.5</td>
<td>36.8 ± 5.8</td>
<td>29</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td>0.14 ± 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan, Taibei</td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>1.96 ± 0.05</td>
<td>13.9 ± 0.5</td>
<td>12.1 ± 4.4</td>
<td>20.4</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>2.81 ± 0.02</td>
<td>70.4 ± 2.5</td>
<td>17.7 ± 1.5</td>
<td>20.4</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taiwan, Taipung</td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td>1/58 through 11/58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/59</td>
<td>0.50 ± 0.03</td>
<td>20.74 ± 0.51</td>
<td>4.89 ± 0.51</td>
<td>38</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/59</td>
<td>0.52 ± 0.03</td>
<td>11.4 ± 0.9</td>
<td>3.6 ± 0.3</td>
<td>14.4 ± 5.8</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) Same sample counted twice.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr90</th>
<th>Sr89</th>
<th>W185</th>
<th>Sr90/W185</th>
<th>Sr90/W185</th>
</tr>
</thead>
<tbody>
<tr>
<td>at midpoint of sampling period</td>
<td>on 6-1-58</td>
<td>at Sampling Midpoint</td>
<td>on 6-1-58</td>
<td>Cumulative me Sr90/mi²</td>
<td>ppt"n. in inches</td>
</tr>
<tr>
<td>Thailand, Bangkok</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/57 through 11/58</td>
<td>0.03 ± 0.03</td>
<td>0.62 ± 0.66</td>
<td>3.33 ± 0.72</td>
<td>21.6 ± 4.7</td>
<td>21</td>
</tr>
<tr>
<td>12/58</td>
<td>0.03 ± 0.03</td>
<td>0.62 ± 0.66</td>
<td>3.33 ± 0.72</td>
<td>21.6 ± 4.7</td>
<td>21</td>
</tr>
<tr>
<td>1/59</td>
<td>40.015</td>
<td>0.06</td>
<td><0.7</td>
<td><6.1</td>
<td>--</td>
</tr>
<tr>
<td>2/59</td>
<td>0.05 ± 0.01</td>
<td>0.40 ± 0.23</td>
<td>4.6 ± 2.6</td>
<td>21.6 ± 4.7</td>
<td>21</td>
</tr>
<tr>
<td>Union of South Africa, Durban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/47 through 12/58</td>
<td>0.37 ± 0.05</td>
<td>1.9 ± 0.5</td>
<td>6.1 ± 0.9</td>
<td>53.1 ± 7.8</td>
<td>3</td>
</tr>
<tr>
<td>1/59</td>
<td>0.14 ± 0.11</td>
<td>0.64 ± 0.12</td>
<td>1.7 ± 0.4</td>
<td>19.6 ± 4.6</td>
<td>5</td>
</tr>
<tr>
<td>2/59</td>
<td>0.35 ± 0.03</td>
<td>1.10 ± 0.13</td>
<td>2.56 ± 0.31</td>
<td>29.7 ± 3.57</td>
<td>3</td>
</tr>
<tr>
<td>Union of South Africa, Pretoria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/57 through 11/58</td>
<td>0.76 ± 0.03</td>
<td>14.2 ± 0.7</td>
<td>15.7 ± 0.6</td>
<td>102 ± 4</td>
<td>7</td>
</tr>
<tr>
<td>12/58</td>
<td>0.76 ± 0.03</td>
<td>14.2 ± 0.7</td>
<td>15.7 ± 0.6</td>
<td>102 ± 4</td>
<td>7</td>
</tr>
<tr>
<td>1/59</td>
<td>0.48 ± 0.03</td>
<td>3.2 ± 0.7</td>
<td>7.3 ± 0.9</td>
<td>65.5 ± 7.8</td>
<td>7</td>
</tr>
<tr>
<td>2/59</td>
<td>0.35 ± 0.03</td>
<td>1.10 ± 0.13</td>
<td>2.56 ± 0.31</td>
<td>29.7 ± 3.57</td>
<td>3</td>
</tr>
</tbody>
</table>
TABLE Ib - Cont'd.

Submitted by the
MEDICAL BIOLOGICAL LABORATORY OF THE NATIONAL
DEFENSE RESEARCH COUNCIL T.N.O.

Rijswijk Z.H., NETHERLANDS

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>mc/mi²</th>
<th>ppt'ns. (in.)</th>
<th>μuc/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>December</td>
<td>0.23</td>
<td>1.68</td>
<td>2.04</td>
</tr>
<tr>
<td>1957</td>
<td>January</td>
<td>0.20</td>
<td>1.33</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>0.64</td>
<td>2.98</td>
<td>3.27</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>0.44</td>
<td>2.35</td>
<td>2.87</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>0.44</td>
<td>0.98</td>
<td>6.87</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>0.81</td>
<td>2.18</td>
<td>5.64</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>0.32</td>
<td>0.47</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>0.78</td>
<td>3.84</td>
<td>3.10</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>0.64</td>
<td>6.73</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>1.02</td>
<td>6.54</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>0.26</td>
<td>2.31</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>0.18</td>
<td>1.30</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>0.31</td>
<td>2.44</td>
<td>1.94</td>
</tr>
<tr>
<td>1958</td>
<td>January</td>
<td>0.39</td>
<td>3.41</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>February</td>
<td>0.76</td>
<td>3.78</td>
<td>3.06</td>
</tr>
<tr>
<td></td>
<td>March</td>
<td>0.44</td>
<td>1.47</td>
<td>4.20</td>
</tr>
<tr>
<td></td>
<td>April</td>
<td>0.78</td>
<td>1.56</td>
<td>7.58</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>2.77</td>
<td>1.24</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>June</td>
<td>0.86</td>
<td>2.18</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>July</td>
<td>1.83</td>
<td>2.14</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>August</td>
<td>0.95</td>
<td>3.59</td>
<td>4.00</td>
</tr>
<tr>
<td></td>
<td>September</td>
<td>0.61</td>
<td>2.71</td>
<td>3.14</td>
</tr>
<tr>
<td></td>
<td>October</td>
<td>0.54</td>
<td>3.17</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>November</td>
<td>0.32</td>
<td>0.72</td>
<td>6.76</td>
</tr>
<tr>
<td></td>
<td>December</td>
<td>1.65</td>
<td>4.09</td>
<td>6.13</td>
</tr>
</tbody>
</table>

"All figures are averages of two measurements, except December 1956, January and August 1957, January and May 1958.

"Differences between duplicate measurements are less than 10%, except for February 1957 (14.6%), April 1957 (14.0%), December 1957 (15%), and November 1958 (12.6%).

"N.B. The figures for the Sr₀⁹ fallout in August 1957 and May 1958 given in a previous table (0.49 and 7.15 mc/mi² respectively) have been corrected for an error in the calculation."
Atlantic Ocean Sites - U. S. Coast Guard Ships

To measure fallout rates over the ocean, the U. S. Weather Bureau, through Dr. Lester Machta, has arranged for Coast Guard ships at four stationary positions in the Atlantic Ocean to expose rain gauges for such periods as is feasible. The recent data are shown in the following table.
TABLE 2

Fallout Collected at Sea

<table>
<thead>
<tr>
<th>Sampling Period from to</th>
<th>Sr90</th>
<th>Sr99</th>
<th>W185</th>
<th>Sr99/Sr90 at midpoint of sampling period</th>
<th>Sr99/Sr90 at midpoint on 6-1-58</th>
<th>W185/Sr90 on 6-1-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>56° 30'N, 51° 00'W (Station "Bravo")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-25-58 12-1-58</td>
<td>0.13 ± 0.06</td>
<td>4.41 ± 0.83</td>
<td>3.22 ± 1.02</td>
<td>34</td>
<td>17 ± 6</td>
<td>131</td>
</tr>
<tr>
<td>12-1-58 12-8-58</td>
<td>No sample received</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-8-58 12-28-58</td>
<td>0.13 ± 0.03</td>
<td>5.61 ± 0.36</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-29-58 1-5-59</td>
<td>0.17 ± 0.03</td>
<td>7.67 ± 0.32</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5-59 1-12-59</td>
<td>No sample received</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-12-59 1-20-59</td>
<td>0.21 ± 0.03</td>
<td>7.34 ± 0.34</td>
<td>35</td>
<td>3.9 ± 2.9</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>1-20-59 1-27-59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-27-59 2-4-59</td>
<td>0.11 ± 0.02</td>
<td>3.4 ± 0.5</td>
<td>31</td>
<td>6.0 ± 3.0</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>2-5-59 2-11-59</td>
<td>0.10 ± 0.01</td>
<td>2.6 ± 0.4</td>
<td>26</td>
<td>11.6 ± 4.2</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>2-11-59 2-20-59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-20-59 3-3-59</td>
<td>0.13 ± 0.03</td>
<td>3.05 ± 0.15</td>
<td>23</td>
<td>5.0 ± 3.8</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>3-2-59 3-24-59</td>
<td>0.52 ± 0.05</td>
<td>1.14 ± 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cont'd.
<table>
<thead>
<tr>
<th>Sampling Period from to</th>
<th>Station "Charlie"</th>
<th>Sr89/Sr90 at midpoint of sampling period</th>
<th>Sr90</th>
<th>Sr89</th>
<th>W185</th>
<th>Sr89/Sr90 at sampling midpoint</th>
<th>mc W185/mi2 on 6-1-58</th>
<th>W185/Sr90 on 6-1-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-14-58 10-24-58</td>
<td>52° 45'N, 35° 30'W</td>
<td>0.19 ± 0.04 6.91 ± 0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-24-58 11-4-58</td>
<td>0.33 ± 0.05 14.1 ± 0.8 0.79 ± 0.86 24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-4-58 11-24-58</td>
<td>0.21 ± 0.04 7.59 ± 0.35 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-24-58 12-14-58</td>
<td>0.45 ± 0.08 16.28 ± 1.05 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-14-58 12-31-58</td>
<td>0.45 ± 0.08 16.28 ± 1.05 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-23-58 12-26-58</td>
<td>0.16 ± 0.04 5.35 ± 0.45 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1-59 1-4-59</td>
<td>0.04 ± 0.02 0.60 ± 0.15 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-4-59 1-6-59</td>
<td>No sample received</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6-59 1-25-59</td>
<td>0.46 ± 0.04 17.03 ± 0.48 20.40 ± 0.49 37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-25-59 2-1-59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1-59 2-9-59</td>
<td>0.36 ± 0.04 8.8 ± 2.4 1.6 ± 0.6 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-10-59 2-17-59</td>
<td>0.26 ± 0.03 6.6 ± 1.6 1.5 ± 0.6 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-17-59 3-10-59</td>
<td>0.66 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampling Period from to</td>
<td>millicuries per square mile at midpoint of sampling period</td>
<td>(\text{Sr}^{89}/\text{Sr}^{90} \text{ at sampling midpoint})</td>
<td>(\text{mc W}^{185}/\text{m}^2) on 6-1-58</td>
<td>(\text{W}^{185}/\text{Sr}^{90}) on 6-1-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44° 00'N, 41° 00'W (Station "Delta")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-12-58 12-2-58</td>
<td>0.24 ± 0.11</td>
<td>2.51 ± 1.00</td>
<td>3.15 ± 0.82</td>
<td>10</td>
<td>18.5 ± 4.8</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-9-58 12-17-58</td>
<td>0.63 ± 0.04</td>
<td>29.8 ± 0.80</td>
<td>41</td>
<td>14.7 ± 4.0</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-18-58 12-22-58</td>
<td>0.87 ± 0.24</td>
<td>0.34 ± 0.48</td>
<td>2.2 ± 0.6</td>
<td>6</td>
<td>14.7 ± 4.0</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-22-58 1-4-59</td>
<td>0.25 ± 0.04</td>
<td>14.0 ± 0.56</td>
<td>2.2 ± 0.6</td>
<td>6</td>
<td>14.7 ± 4.0</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5-59 1-12-59</td>
<td>0.51 ± 0.08</td>
<td>12.4 ± 0.77</td>
<td>0.09 ± 0.22</td>
<td>2.8</td>
<td>0.7 ± 1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-12-59 1-17-59</td>
<td>0.22 ± 0.11</td>
<td>7.67 ± 0.17</td>
<td>0.09 ± 0.67</td>
<td>35</td>
<td>0.75 ± 5.6</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-18-59 2-3-59</td>
<td>0.58 ± 0.03</td>
<td>19.9 ± 0.43</td>
<td>1.42 ± 0.64</td>
<td>34</td>
<td>9.5 ± 4.3</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3-59 2-11-59</td>
<td></td>
<td></td>
<td>2.05 ± 0.29</td>
<td>21 ± 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-11-59 2-23-59</td>
<td>0.70 ± 0.44</td>
<td>7 ± 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-24-59 3-7-59</td>
<td>0.76 ± 0.06</td>
<td>0.15 ± 0.47</td>
<td>1.9 ± 6.2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-7-59 3-14-59</td>
<td>0.42 ± 0.03</td>
<td>0.97 ± 0.34</td>
<td>13.7 ± 4.7</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cont'd.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>Sr90</th>
<th>Sr89</th>
<th>W\textsubscript{185}</th>
<th>Sr89/Sr90 at sampling midpoint</th>
<th>W\textsubscript{185}/Sr90 on 6-1-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>35\textdegree\ 00' N, 48\textdegree\ 00' W (Station "Echo")</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-29-58 to 1-4-59</td>
<td>0.31 \pm 0.04</td>
<td>15.5 \pm 0.5</td>
<td>0.66 \pm 0.33</td>
<td>50</td>
<td>5.1 \pm 2.5</td>
</tr>
<tr>
<td>1-4-59 to 1-9-59</td>
<td>0.26 \pm 0.03</td>
<td>10.4 \pm 0.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10-59 to 1-17-59</td>
<td></td>
<td></td>
<td>10.36 \pm 0.44</td>
<td></td>
<td>11.3 \pm 3.7</td>
</tr>
<tr>
<td>1-18-59 to 1-29-59</td>
<td></td>
<td></td>
<td>10.39 \pm 0.44</td>
<td></td>
<td>12.6 \pm 4.0</td>
</tr>
<tr>
<td>1-30-59 to 2-26-59</td>
<td>0.82 \pm 0.04</td>
<td></td>
<td>10.3 \pm 0.5</td>
<td>34</td>
<td>14.6 \pm 5.6</td>
</tr>
<tr>
<td>2-26-59 to 2-28-59</td>
<td></td>
<td>0.44 \pm 0.03</td>
<td></td>
<td>< 0.5</td>
<td>< 6.3</td>
</tr>
<tr>
<td>2-28-59 to 3-11-59</td>
<td>0.20 \pm 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-11-59 to 3-14-59</td>
<td>0.51 \pm 0.03</td>
<td></td>
<td>10.15 \pm 0.25</td>
<td>2</td>
<td>16.4 \pm 3.6</td>
</tr>
<tr>
<td>3-14-59 to 3-16-59</td>
<td></td>
<td></td>
<td>0.049 \pm 0.059</td>
<td></td>
<td>56.0 \pm 8.6</td>
</tr>
<tr>
<td>3-16-59 to 4-7-59</td>
<td>0.73 \pm 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.2 Precipitation Collections for Radiostrontium, Barium-140 and Tungsten-185

Collection and analysis of individual precipitations are made at three sites. Pittsburgh, Pennsylvania has been in operation since 1955; Westwood, New Jersey and Richmond, California were initiated in 1958. At each site, two collectors are exposed simultaneously during dry and rainy weather. The collection period terminates immediately after a precipitation or after a week of no rainfall. Recent data for the three stations are shown in Tables 3a, 3b, and 3c.
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>mc Sr90/mi2</th>
<th>mc Sr89/mi2</th>
<th>mc Ba140/mi2</th>
<th>mc W185/mi2</th>
<th>Sr90/Sr90</th>
<th>Ba140/Sr90</th>
<th>Cumulative mc Sr90/mi2</th>
<th>Precip. (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/9</td>
<td>0.050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.04</td>
<td>2.00</td>
</tr>
<tr>
<td>2/12</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.84</td>
<td>1.83</td>
</tr>
<tr>
<td>2/17</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>1.43</td>
</tr>
<tr>
<td>2/19</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>2/24</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3/3</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3/10</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3/17</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3/21</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3/26</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>3/31</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4/7</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4/14</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4/21</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4/25</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

TABLE 3a
Precipitation Collections - Richmond, California

At Midpoint of Sampling Period

* From the start of sampling at this site, March 20, 1958 until February 9, 1959, 7.79 mc/mi2 of Sr90 were cumulated.
TABLE 2b
Precipitation Collections - Westwood, New Jersey

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>mc Sr<sub>90</sub>/m²</th>
<th>mc Ba<sub>140</sub>/m²</th>
<th>mc Na<sub>180</sub>/m²</th>
<th>Sr<sub>90</sub>/m²</th>
<th>Ba<sub>140</sub>/m²</th>
<th>Cumulative mc Sr<sub>90</sub>/m²</th>
<th>ppt' in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>0.515 ± 0.011</td>
<td>15.66 ± 0.15</td>
<td>1.37 ± 0.02</td>
<td>lost</td>
<td>28</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>2-12</td>
<td>0.607 ± 0.012</td>
<td>15.82 ± 0.14</td>
<td>1.69 ± 0.02</td>
<td>3.57 ± 0.05</td>
<td>26</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2-13</td>
<td>0.653 ± 0.003</td>
<td>1.30 ± 0.04</td>
<td>0.053 ± 0.003</td>
<td>0.107 ± 0.005</td>
<td>26</td>
<td>--</td>
<td>1.00</td>
</tr>
<tr>
<td>2-16</td>
<td>0.096 ± 0.004</td>
<td>2.55 ± 0.03</td>
<td>0.107 ± 0.005</td>
<td>0.096 ± 0.004</td>
<td>24</td>
<td>--</td>
<td>0.10</td>
</tr>
<tr>
<td>3-3</td>
<td>0.102 ± 0.004</td>
<td>1.80 ± 0.04</td>
<td>0.102 ± 0.004</td>
<td>0.102 ± 0.004</td>
<td>26</td>
<td>--</td>
<td>0.11</td>
</tr>
<tr>
<td>3-6</td>
<td>0.142 ± 0.003</td>
<td>3.11 ± 0.05</td>
<td>0.142 ± 0.003</td>
<td>0.142 ± 0.003</td>
<td>20</td>
<td>--</td>
<td>0.37</td>
</tr>
<tr>
<td>3-9</td>
<td>0.015 ± 0.003</td>
<td>0.390 ± 0.026</td>
<td>0.015 ± 0.003</td>
<td>0.015 ± 0.003</td>
<td>1.00</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-12</td>
<td>0.212 ± 0.004</td>
<td>3.86 ± 0.05</td>
<td>0.212 ± 0.004</td>
<td>0.212 ± 0.004</td>
<td>0.10</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-15</td>
<td>0.133 ± 0.003</td>
<td>2.58 ± 0.03</td>
<td>0.133 ± 0.003</td>
<td>0.133 ± 0.003</td>
<td>0.41</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-18</td>
<td>0.253 ± 0.004</td>
<td>4.32 ± 0.05</td>
<td>0.253 ± 0.004</td>
<td>0.253 ± 0.004</td>
<td>0.04</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-21</td>
<td>0.515 ± 0.005</td>
<td>16.00 ± 0.19</td>
<td>0.515 ± 0.005</td>
<td>0.515 ± 0.005</td>
<td>1.00</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-24</td>
<td>0.899 ± 0.009</td>
<td>15.51 ± 0.18</td>
<td>0.899 ± 0.009</td>
<td>0.899 ± 0.009</td>
<td>1.10</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td>0.130 ± 0.004</td>
<td>2.35 ± 0.07</td>
<td>0.130 ± 0.004</td>
<td>0.130 ± 0.004</td>
<td>0.10</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td>0.152 ± 0.004</td>
<td>1.95 ± 0.07</td>
<td>0.152 ± 0.004</td>
<td>0.152 ± 0.004</td>
<td>0.77</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-9</td>
<td>0.197 ± 0.004</td>
<td>3.69 ± 0.07</td>
<td>0.197 ± 0.004</td>
<td>0.197 ± 0.004</td>
<td>0.09</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-12</td>
<td>0.280 ± 0.008</td>
<td>5.89 ± 0.15</td>
<td>0.280 ± 0.008</td>
<td>0.280 ± 0.008</td>
<td>1.08</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-15</td>
<td>0.282 ± 0.005</td>
<td>5.62 ± 0.12</td>
<td>0.282 ± 0.005</td>
<td>0.282 ± 0.005</td>
<td>1.28</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-18</td>
<td>0.298 ± 0.003</td>
<td>1.57 ± 0.05</td>
<td>0.298 ± 0.003</td>
<td>0.298 ± 0.003</td>
<td>0.66</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-21</td>
<td>0.305 ± 0.005</td>
<td>1.55 ± 0.05</td>
<td>0.305 ± 0.005</td>
<td>0.305 ± 0.005</td>
<td>0.71</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-24</td>
<td>0.308 ± 0.003</td>
<td>1.68 ± 0.06</td>
<td>0.308 ± 0.003</td>
<td>0.308 ± 0.003</td>
<td>0.69</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3-27</td>
<td>0.312 ± 0.003</td>
<td>1.63 ± 0.05</td>
<td>0.312 ± 0.003</td>
<td>0.312 ± 0.003</td>
<td>0.54</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

* From the start of sampling at this site, February 4, 1958 until February 12, 1959, 13.73 mc/m² of Sr₉₀ were cumulated.
TABLE 3b - Cont'd.

At Midpoint of Sampling Period

<table>
<thead>
<tr>
<th>Sampling Period from to</th>
<th>mc Sr(^{90})/mi(^2)</th>
<th>mc Sr(^{90})/mi(^2)</th>
<th>mc Ba(^{140})/mi(^2)</th>
<th>mc W(^{185})/mi(^2)</th>
<th>Sr(^{90})/Sr(^{90})</th>
<th>Ba(^{140})/Sr(^{90})</th>
<th>Cumulative mc Sr(^{90})/mi(^2)</th>
<th>ppt" in inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959 4-29 5-1</td>
<td>0.272 ± 0.005</td>
<td>2.22 ± 0.03</td>
<td>**</td>
<td>0.652 ± 0.015</td>
<td>8</td>
<td>--</td>
<td>23.99</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>0.317 ± 0.005</td>
<td>2.82 ± 0.03</td>
<td>**</td>
<td>0.709 ± 0.018</td>
<td>9</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-3</td>
<td>0.110 ± 0.005</td>
<td>1.21 ± 0.02</td>
<td>**</td>
<td>0.365 ± 0.014</td>
<td>9</td>
<td>--</td>
<td>24.13</td>
<td>0.03</td>
</tr>
<tr>
<td>5-8</td>
<td>0.160 ± 0.005</td>
<td>1.27 ± 0.02</td>
<td>**</td>
<td>0.430 ± 0.018</td>
<td>8</td>
<td>--</td>
<td>24.30</td>
<td>0.06</td>
</tr>
<tr>
<td>5-14</td>
<td>0.762 ± 0.008</td>
<td>5.22 ± 0.04</td>
<td>**</td>
<td>1.255 ± 0.03</td>
<td>7</td>
<td>--</td>
<td>25.06</td>
<td>0.88</td>
</tr>
<tr>
<td>5-17</td>
<td>0.076 ± 0.004</td>
<td>0.417 ± 0.013</td>
<td>**</td>
<td>1.36 ± 0.02</td>
<td>6</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-19</td>
<td>0.350 ± 0.006</td>
<td>1.24 ± 0.04</td>
<td>**</td>
<td>6</td>
<td>--</td>
<td>25.14</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>5-24</td>
<td>0.037 ± 0.003</td>
<td>0.235 ± 0.012</td>
<td>**</td>
<td>6</td>
<td>--</td>
<td>25.33</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>0.028 ± 0.004</td>
<td>0.147 ± 0.018</td>
<td>**</td>
<td>5</td>
<td>--</td>
<td>25.56</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>6-4</td>
<td>0.200 ± 0.004</td>
<td>1.01 ± 0.02</td>
<td>**</td>
<td>5</td>
<td>--</td>
<td>25.78</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>0.390 ± 0.006</td>
<td>1.64 ± 0.02</td>
<td>**</td>
<td>5</td>
<td>--</td>
<td>26.08</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>6-13</td>
<td>0.598 ± 0.009</td>
<td>2.26 ± 0.02</td>
<td>**</td>
<td>4</td>
<td>--</td>
<td>26.82</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>6-18</td>
<td>0.171 ± 0.006</td>
<td>1.26 ± 0.09</td>
<td>**</td>
<td>7</td>
<td>--</td>
<td>27.09</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

** Ba-140 analyses discontinued as of April 6, 1959.**
<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>mo Sr(^{89})</th>
<th>mo Ba(^{140})</th>
<th>mo Sr(^{90})</th>
<th>Cumulative mo Sr(^{90})/mi(^2)</th>
<th>Precip. (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953</td>
<td></td>
<td></td>
<td></td>
<td>Accuracy lost due to trace</td>
<td></td>
</tr>
<tr>
<td>1/2 2100</td>
<td>5.26 ± 0.22</td>
<td><0.02</td>
<td>0.16 ± 0.08</td>
<td>0.317 ± 0.015</td>
<td>17</td>
</tr>
<tr>
<td>1/3 2100</td>
<td>5.10 ± 0.26</td>
<td><0.06</td>
<td>0.54 ± 0.05</td>
<td>0.344 ± 0.014</td>
<td>15</td>
</tr>
<tr>
<td>1/4 2100</td>
<td>1.62 ± 0.08</td>
<td><0.02</td>
<td>0.16 ± 0.03</td>
<td>0.091 ± 0.006</td>
<td>18</td>
</tr>
<tr>
<td>1/6 2030</td>
<td>1.77 ± 0.09</td>
<td><0.02</td>
<td>0.18 ± 0.03</td>
<td>0.091 ± 0.009</td>
<td>19</td>
</tr>
<tr>
<td>1/4 2030</td>
<td>1.97 ± 0.20</td>
<td>0.05 ± 0.03</td>
<td>0.56 ± 0.05</td>
<td>0.366 ± 0.029</td>
<td>14</td>
</tr>
<tr>
<td>1/6 2030</td>
<td>5.21 ± 0.21</td>
<td>0.05 ± 0.03</td>
<td>0.58 ± 0.04</td>
<td>0.391 ± 0.019</td>
<td>18</td>
</tr>
<tr>
<td>1/4 1900</td>
<td>1.69 ± 0.02</td>
<td>0.05 ± 0.02</td>
<td>0.53 ± 0.06</td>
<td>0.321 ± 0.016</td>
<td>15</td>
</tr>
<tr>
<td>1/6 1900</td>
<td>5.21 ± 0.25</td>
<td><0.02</td>
<td>0.59 ± 0.04</td>
<td>0.386 ± 0.015</td>
<td>13</td>
</tr>
<tr>
<td>1/10 0930</td>
<td>0.52 ± 0.08</td>
<td><0.02</td>
<td><0.05</td>
<td><0.030</td>
<td>--</td>
</tr>
<tr>
<td>1/11 1800</td>
<td>0.52 ± 0.04</td>
<td><0.02</td>
<td>0.11 ± 0.03</td>
<td>0.021 ± 0.006</td>
<td>15</td>
</tr>
<tr>
<td>1/13 1800</td>
<td>3.33 ± 0.28</td>
<td><0.02</td>
<td>1.13 ± 0.08</td>
<td>0.312 ± 0.015</td>
<td>11</td>
</tr>
<tr>
<td>1/13 1800</td>
<td>3.00 ± 0.25</td>
<td>0.05 ± 0.02</td>
<td>3.06 ± 0.15</td>
<td>0.508 ± 0.018</td>
<td>12</td>
</tr>
<tr>
<td>1/20 1900</td>
<td>6.70 ± 0.4</td>
<td><0.04</td>
<td>1.16 ± 0.12</td>
<td>0.665 ± 0.028</td>
<td>13</td>
</tr>
<tr>
<td>1/20 1900</td>
<td>6.70 ± 0.5</td>
<td>0.10 ± 0.05</td>
<td>1.19 ± 0.10</td>
<td>0.662 ± 0.030</td>
<td>14</td>
</tr>
<tr>
<td>1/25 2300</td>
<td>2.53 ± 0.35</td>
<td><0.02</td>
<td>0.28 ± 0.09</td>
<td>0.197 ± 0.011</td>
<td>13</td>
</tr>
<tr>
<td>1/25 2300</td>
<td>2.53 ± 0.12</td>
<td><0.02</td>
<td>0.12 ± 0.02</td>
<td>0.204 ± 0.010</td>
<td>10</td>
</tr>
<tr>
<td>1/27 1330</td>
<td>20.4 ± 0.8</td>
<td><0.07 ± 0.03</td>
<td>3.03 ± 0.18</td>
<td>1.72 ± 0.07</td>
<td>12</td>
</tr>
<tr>
<td>1/27 1330</td>
<td>18.4 ± 0.8</td>
<td>0.06 ± 0.03</td>
<td>3.08 ± 0.25</td>
<td>1.68 ± 0.10</td>
<td>11</td>
</tr>
<tr>
<td>1/28 1300</td>
<td>5.7 ± 0.3</td>
<td><0.05</td>
<td>1.01 ± 0.12</td>
<td>0.520 ± 0.024</td>
<td>11</td>
</tr>
<tr>
<td>1/28 1300</td>
<td>5.7 ± 0.3</td>
<td><0.03</td>
<td>lost</td>
<td>0.515 ± 0.030</td>
<td>10</td>
</tr>
<tr>
<td>1/28 2330</td>
<td>8.7 ± 0.3</td>
<td><0.03</td>
<td>1.16 ± 0.11</td>
<td>0.797 ± 0.037</td>
<td>11</td>
</tr>
<tr>
<td>1/28 2330</td>
<td>6.1 ± 0.3</td>
<td><0.03</td>
<td>1.62 ± 0.13</td>
<td>0.678 ± 0.031</td>
<td>9</td>
</tr>
<tr>
<td>1/30 1000</td>
<td>1.65 ± 0.15</td>
<td><0.03</td>
<td>0.29 ± 0.08</td>
<td>0.122 ± 0.010</td>
<td>15</td>
</tr>
<tr>
<td>1/30 1000</td>
<td>1.75 ± 0.18</td>
<td><0.02</td>
<td>0.21 ± 0.08</td>
<td>0.181 ± 0.020</td>
<td>10</td>
</tr>
<tr>
<td>5/1 0930</td>
<td>2.36 ± 0.12</td>
<td><0.02</td>
<td>0.52 ± 0.10</td>
<td>0.287 ± 0.012</td>
<td>10</td>
</tr>
<tr>
<td>5/1 0930</td>
<td>2.12 ± 0.13</td>
<td><0.02</td>
<td>0.19 ± 0.09</td>
<td>0.293 ± 0.021</td>
<td>11</td>
</tr>
<tr>
<td>5/7 0930</td>
<td>0.69 ± 0.10</td>
<td>**</td>
<td>0.16 ± 0.06</td>
<td>0.079 ± 0.006</td>
<td>9</td>
</tr>
<tr>
<td>5/7 0930</td>
<td>0.77 ± 0.08</td>
<td>**</td>
<td>0.15 ± 0.05</td>
<td>0.070 ± 0.005</td>
<td>11</td>
</tr>
<tr>
<td>5/7 0930</td>
<td>3.02 ± 0.35</td>
<td>**</td>
<td>0.51 ± 0.08</td>
<td>0.155 ± 0.021</td>
<td>7</td>
</tr>
<tr>
<td>5/7 0930</td>
<td>3.27 ± 0.15</td>
<td>**</td>
<td>0.46 ± 0.08</td>
<td>0.339 ± 0.016</td>
<td>10</td>
</tr>
</tbody>
</table>

* From the start of sampling at this site, Feb. 25, 1955, until April 1, 1959, 11.22 mc/mi\(^2\) of Sr\(^{90}\) were cumulated.
** Ba-140 analyses discontinued as of May 1, 1959.
<table>
<thead>
<tr>
<th>Sampling Period* from to</th>
<th>1959</th>
<th>1959</th>
<th>1959</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/10 2130 5/12 0830</td>
<td>1.21 ± 0.08</td>
<td>0.16 ± 0.05</td>
<td>0.105 ± 0.010</td>
</tr>
<tr>
<td>5/12 0830 5/12 1500</td>
<td>1.03 ± 0.12</td>
<td>0.33 ± 0.07</td>
<td>0.110 ± 0.007</td>
</tr>
<tr>
<td>5/12 1500 5/13 1330</td>
<td>2.63 ± 0.25</td>
<td>0.37 ± 0.06</td>
<td>0.289 ± 0.013</td>
</tr>
<tr>
<td>5/13 1330 5/14 0615</td>
<td>3.52 ± 0.16</td>
<td>0.61 ± 0.10</td>
<td>0.410 ± 0.016</td>
</tr>
<tr>
<td>5/14 0615 5/15 1300</td>
<td>0.55 ± 0.05</td>
<td>0.16 ± 0.05</td>
<td>0.052 ± 0.004</td>
</tr>
<tr>
<td>5/15 1300 5/16 0830</td>
<td>0.11 ± 0.03</td>
<td>< 0.10</td>
<td>0.013 ± 0.007</td>
</tr>
<tr>
<td>5/16 0830 5/19 1300</td>
<td>1.64 ± 0.10</td>
<td>0.26 ± 0.06</td>
<td>0.176 ± 0.010</td>
</tr>
<tr>
<td>5/19 1300 5/22 0815</td>
<td>0.91 ± 0.12</td>
<td>0.11 ± 0.10</td>
<td>0.136 ± 0.010</td>
</tr>
<tr>
<td>5/22 0815 5/23 0715</td>
<td>0.12 ± 0.15</td>
<td>0.36 ± 0.08</td>
<td>0.164 ± 0.009</td>
</tr>
<tr>
<td>5/23 0715 5/25 0930</td>
<td>0.12 ± 0.03</td>
<td>< 0.10</td>
<td>0.012 ± 0.003</td>
</tr>
<tr>
<td>5/25 0930 5/26 1300</td>
<td>0.11 ± 0.05</td>
<td>0.07 ± 0.03</td>
<td>0.016 ± 0.004</td>
</tr>
<tr>
<td>5/26 1300 5/27 0900</td>
<td>0.12 ± 0.04</td>
<td>< 0.10</td>
<td>0.012 ± 0.003</td>
</tr>
<tr>
<td>5/27 0900 5/27 2015</td>
<td>0.21 ± 0.01</td>
<td>0.12 ± 0.06</td>
<td>0.082 ± 0.006</td>
</tr>
<tr>
<td>5/27 2015 5/28 2315</td>
<td>0.13 ± 0.06</td>
<td>0.066 ± 0.005</td>
<td></td>
</tr>
<tr>
<td>5/28 2315 5/30 1145</td>
<td>0.19 ± 0.10</td>
<td>0.09 ± 0.04</td>
<td>0.089 ± 0.003</td>
</tr>
</tbody>
</table>

** Ba-140 analyses discontinued as of May 1, 1959.
1.3 Continental United States Soils Collected in 1958

During October 1958, soil samples were taken by HASL personnel at 17 locations within Continental United States for strontium-90 assay. An incomplete set of data for these samples was reported in HASL-65.

The samples were sent from the collection site directly to Dr. L. T. Alexander of the U.S. Department of Agriculture in Beltsville, Maryland where they were dried, crushed and blended. Duplicate blind aliquots of each soil were sent to HASL for radiochemical analysis.

Table 4a was compiled by Dr. Alexander and Mr. Jordan of the USDA in Beltsville, Maryland at HASL's request and shows the reproducibility of the strontium-90 data between analytical duplicates and site duplicates.

Table 4b, also compiled by Dr. Alexander and Mr. Jordan, gives the strontium-90 data for each sample collected and the precipitation for each site.

Table 4c shows the strontium-90 data for each sample analyzed including the blind duplicates. After all the data had been forwarded to Beltsville, an identifying code was sent to HASL enabling the preparation of this table.

On April 24 and 25th, 1959, Dr. Alexander collected a soil sample at Derby, Colorado and Rapid City, South Dakota for fallout documentation (Table 4d). The Rapid City sample was collected as a check on the two samples previously taken at this site in October 1958.
TABLE 4a

REPLICATION OF 1958 DATA

1. Average difference between analytical duplicates
 - 0-2" = 1.12 mc Sr 90/mi²
 - 2-8" = 1.11 mc Sr 90/mi²

2. Average difference between means of site duplicates
 - 4.77 mc/mi²

3. Average percent differences between means of site duplicates 12.1%
<table>
<thead>
<tr>
<th>Location</th>
<th>Site</th>
<th>mc Sr 90/mi² : av.</th>
<th>Precip * (inches)</th>
<th>mc Sr 90/mi²/in. precip. : av. rate</th>
<th>Lat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle, Wash.</td>
<td>A</td>
<td>34.9</td>
<td>30.7</td>
<td>0.148</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>26.5</td>
<td>198</td>
<td>0.134</td>
<td></td>
</tr>
<tr>
<td>Rapid City, S.D.</td>
<td>A</td>
<td>75.0</td>
<td>74.1</td>
<td>0.779</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>73.2</td>
<td>106</td>
<td>0.693</td>
<td></td>
</tr>
<tr>
<td>Boise, Id.</td>
<td>A</td>
<td>37.6</td>
<td>38.8</td>
<td>0.533</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>40.0</td>
<td>70.6</td>
<td>0.567</td>
<td></td>
</tr>
<tr>
<td>Rochester, N.Y.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detroit, Mich.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binghamton, N.Y.</td>
<td>A</td>
<td>40.5</td>
<td>39.6</td>
<td>0.187</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>38.7</td>
<td>216</td>
<td>0.179</td>
<td></td>
</tr>
<tr>
<td>Des Moines, Ia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Lake City, Ut.</td>
<td></td>
<td>55.2</td>
<td>55.2</td>
<td>0.367</td>
<td>41</td>
</tr>
<tr>
<td>New York, N.Y.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pa.</td>
<td></td>
<td>43.7</td>
<td>43.7</td>
<td>0.182</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>46.8</td>
<td>0.352</td>
<td></td>
</tr>
<tr>
<td>Grand Junction, Colo.</td>
<td></td>
<td>38.9</td>
<td>38.9</td>
<td>0.754</td>
<td>39</td>
</tr>
<tr>
<td>Memphis, Tenn.</td>
<td></td>
<td>36.8</td>
<td>36.8</td>
<td>0.114</td>
<td>35</td>
</tr>
<tr>
<td>Albuquerque, N.M.</td>
<td></td>
<td>27.2</td>
<td>27.2</td>
<td>0.693</td>
<td>35</td>
</tr>
<tr>
<td>Atlanta, Ga.</td>
<td></td>
<td>36.9</td>
<td>36.9</td>
<td>0.142</td>
<td>34</td>
</tr>
<tr>
<td>Los Angeles, Calif.</td>
<td>A</td>
<td>16.6</td>
<td>18.8</td>
<td>0.246</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>21.1</td>
<td>74.0</td>
<td>0.285</td>
<td></td>
</tr>
<tr>
<td>New Orleans, La.</td>
<td>A</td>
<td>29.0</td>
<td>33.9</td>
<td>0.087</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>38.8</td>
<td>365</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td>Jacksonville, Fla.</td>
<td></td>
<td>36.0</td>
<td>36.0</td>
<td>0.120</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>32.6</td>
<td>0.312</td>
<td></td>
</tr>
</tbody>
</table>

*1953 through date of sampling.

Strontium 90 values are from Health and Safety Laboratory, New York.
TABLE 40

1958 U.S. Soil Samples
- analyzed for Strontium 90 as blind duplicates

<table>
<thead>
<tr>
<th>Beltsville/ Site</th>
<th>depth in inches</th>
<th>d/m Sr90 kg soil</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binghamton, N.Y. - A</td>
<td>0-2</td>
<td>651 ± 11</td>
<td>pasture field</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>658 ± 16</td>
<td></td>
</tr>
<tr>
<td>5946</td>
<td>w</td>
<td>63 ± 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>65 ± 5</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>2-8</td>
<td>502 ± 8</td>
<td>same field as A</td>
</tr>
<tr>
<td>5958</td>
<td>w</td>
<td>514 ± 7</td>
<td>above but ~100 ft. from A</td>
</tr>
<tr>
<td>595</td>
<td>0-2</td>
<td>520 ± 8</td>
<td></td>
</tr>
<tr>
<td>5977</td>
<td>w</td>
<td>508 ± 7</td>
<td></td>
</tr>
<tr>
<td>596</td>
<td>w</td>
<td>527 ± 2</td>
<td></td>
</tr>
<tr>
<td>5973</td>
<td>2-8</td>
<td>37 ± 3</td>
<td></td>
</tr>
<tr>
<td>597</td>
<td>0-2</td>
<td>470 ± 7</td>
<td>Detroit, Mich.</td>
</tr>
<tr>
<td>5949</td>
<td>w</td>
<td>488 ± 9</td>
<td></td>
</tr>
<tr>
<td>598</td>
<td>w</td>
<td>52 ± 3</td>
<td>Des Moines, Ia.</td>
</tr>
<tr>
<td>5947</td>
<td>w</td>
<td>56 ± 3</td>
<td></td>
</tr>
<tr>
<td>599</td>
<td>0-9</td>
<td>114 ± 4</td>
<td>municipal airport</td>
</tr>
<tr>
<td>5952</td>
<td>w</td>
<td>114 ± 4</td>
<td></td>
</tr>
<tr>
<td>5910</td>
<td>0-8</td>
<td>216 ± 5</td>
<td>Rapid City, S.D. - A</td>
</tr>
<tr>
<td>5969</td>
<td>w</td>
<td>222 ± 5</td>
<td>Pine Lawn Cemetery ~8 miles from A</td>
</tr>
<tr>
<td>5911</td>
<td>0-7</td>
<td>247 ± 10</td>
<td>Veterans' Hospital</td>
</tr>
<tr>
<td>5948</td>
<td>w</td>
<td>252 ± 6</td>
<td></td>
</tr>
<tr>
<td>5912</td>
<td>0-2</td>
<td>526 ± 8</td>
<td>Boise, Ida. - A</td>
</tr>
<tr>
<td>5955</td>
<td>w</td>
<td>538 ± 9</td>
<td></td>
</tr>
<tr>
<td>5913</td>
<td>2-8</td>
<td>76 ± 3</td>
<td>Boise, Ida. - A</td>
</tr>
<tr>
<td>5956</td>
<td>w</td>
<td>66 ± 4</td>
<td>118 ± 4</td>
</tr>
<tr>
<td>5914</td>
<td>w</td>
<td></td>
<td>municipal airport ~3 miles from A</td>
</tr>
<tr>
<td>5965</td>
<td>w</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Error term shown is one standard deviation due to counting.
<table>
<thead>
<tr>
<th>Beltsville</th>
<th>Site</th>
<th>depth in inches</th>
<th>d/m 8^90 Ec soil</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5915</td>
<td>Seattle, Wash - A</td>
<td>0-2</td>
<td>564 ± 12</td>
<td>Univ. of Washington - Radiation Biology</td>
</tr>
<tr>
<td>5975</td>
<td></td>
<td>2-8</td>
<td>24 ± 2</td>
<td></td>
</tr>
<tr>
<td>5916</td>
<td></td>
<td>2-8</td>
<td>28 ± 2</td>
<td></td>
</tr>
<tr>
<td>5917</td>
<td>Seattle, Wash - B</td>
<td>0-2</td>
<td>387 ± 6</td>
<td>Sea Tac airport ~15 miles from A</td>
</tr>
<tr>
<td>5918</td>
<td></td>
<td>2-8</td>
<td>43 ± 2</td>
<td></td>
</tr>
<tr>
<td>5919</td>
<td></td>
<td>2-8</td>
<td>46 ± 3</td>
<td></td>
</tr>
<tr>
<td>5920</td>
<td>Philadelphia, Pa.</td>
<td>0-2</td>
<td>549 ± 7</td>
<td></td>
</tr>
<tr>
<td>5921</td>
<td></td>
<td>2-8</td>
<td>56 ± 4</td>
<td></td>
</tr>
<tr>
<td>5922</td>
<td></td>
<td>2-8</td>
<td>54 ± 3</td>
<td></td>
</tr>
<tr>
<td>5923</td>
<td>Jacksonville, Fla.</td>
<td>0-2</td>
<td>491 ± 8</td>
<td></td>
</tr>
<tr>
<td>5924</td>
<td></td>
<td>2-8</td>
<td>38 ± 2</td>
<td></td>
</tr>
<tr>
<td>5925</td>
<td></td>
<td>2-8</td>
<td>40 ± 2</td>
<td></td>
</tr>
<tr>
<td>5926</td>
<td>Atlanta, Ga.</td>
<td>0-2</td>
<td>559 ± 14</td>
<td></td>
</tr>
<tr>
<td>5927</td>
<td></td>
<td>2-8</td>
<td>542 ± 7</td>
<td></td>
</tr>
<tr>
<td>5928</td>
<td>Memphis, Tenn.</td>
<td>0-2</td>
<td>697 ± 25</td>
<td></td>
</tr>
<tr>
<td>5929</td>
<td></td>
<td>2-8</td>
<td>681 ± 8</td>
<td></td>
</tr>
<tr>
<td>5930</td>
<td>New Orleans, La - A</td>
<td>0-2</td>
<td>335 ± 6</td>
<td>municipal airport</td>
</tr>
<tr>
<td>5931</td>
<td></td>
<td>2-8</td>
<td>335 ± 5</td>
<td></td>
</tr>
<tr>
<td>5932</td>
<td></td>
<td>2-8</td>
<td>14 ± 4</td>
<td></td>
</tr>
<tr>
<td>5933</td>
<td></td>
<td>2-8</td>
<td>19 ± 4</td>
<td></td>
</tr>
</tbody>
</table>

Error term shown is one standard deviation due to counting.
TABLE IIP - Cont'd

<table>
<thead>
<tr>
<th>Site</th>
<th>d/m Sr90</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Orleans, La. - B</td>
<td>499 ± 7</td>
<td>U.S. Naval Establishment, Algiers, La., ~16 miles from A</td>
</tr>
<tr>
<td>Los Angeles, Calif. - A</td>
<td>295 ± 5</td>
<td>International Airport</td>
</tr>
<tr>
<td>Los Angeles, Calif. - B</td>
<td>181 ± 5</td>
<td>Inglewood Cemetery, ~2 miles from A</td>
</tr>
<tr>
<td>Albuquerque, N. M.</td>
<td>246 ± 4</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City, Uto</td>
<td>1137 ± 25</td>
<td></td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>180 ± 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>177 ± 17</td>
<td></td>
</tr>
</tbody>
</table>

Depth in inches:
- 0-2
- 2-8
- 0-2
- 2-9

Error term shown is one standard deviation due to counting.
<table>
<thead>
<tr>
<th>HASL#</th>
<th>Beltsville#</th>
<th>Site</th>
<th>Collection Date</th>
<th>depth in inches</th>
<th>d/m Sr90/kg soil</th>
<th>mc Sr90/mi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10500</td>
<td>59371</td>
<td>Rapid City, S.D.</td>
<td>4-25-59</td>
<td>0-6</td>
<td>385 ± 7</td>
<td>78.6 ± 1.3</td>
</tr>
<tr>
<td>10501</td>
<td>59372</td>
<td>Derby, Colo.</td>
<td>4-24-59</td>
<td>0-7</td>
<td>158 ± 5</td>
<td>54.6 ± 1.7</td>
</tr>
</tbody>
</table>

Error term is one standard deviation due to counting.
2. Air

Measurements of airborne strontium-90 and other isotopes serve one of two purposes, depending on whether the samples are taken at ground level or in the upper atmosphere. Surface air samples do show the presence of radioactivity and, as such, have been useful for meteorological studies. On the other hand they cannot be readily related to deposition since the actual deposition process is a complex function of local meteorology and particle characteristics. Upper air collections, particularly in the stratosphere, can be used for the prediction of future deposition and in material balance studies.

It must be emphasized that none of the air concentrations found are at activity levels that would in themselves be a direct hazard in inhalation. Hence the measurements are designed purely for obtaining information relating to trajectories and the prediction of future fallout.
Subj: Fission product radioactivity of the air along the 80th meridian (west) during June 1959; NRL Problem A02-13, Project No. NR 571-003; interim report on

Table 5a: Daily Record of Fission Product β-Activity Collected by Air Filtration

Figure: (2) Radioactivity Profile for June 1959

1. Radioactivity measurements of air-filter samples collected at various sites along the 80th meridian (west) during the month of June 1959 are presented in Table 5a. The radioactivity profile for June 1959 is shown in Figure (2).

2. All radioactivity concentrations are given in disintegrations per minute per cubic meter of air at the collecting site. The following factors may be used to correct to disintegrations per minute per standard cubic meter of air (sea level density):

<table>
<thead>
<tr>
<th>Station</th>
<th>Altitude</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antofagasta, Chile</td>
<td>519 meters</td>
<td>1.06</td>
</tr>
<tr>
<td>Santiago, Chile</td>
<td>520 meters</td>
<td>1.06</td>
</tr>
<tr>
<td>Bogota, Colombia</td>
<td>2640 meters</td>
<td>1.30</td>
</tr>
<tr>
<td>Quito, Ecuador</td>
<td>2818 meters</td>
<td>1.33</td>
</tr>
<tr>
<td>Huancayo, Peru</td>
<td>3353 meters</td>
<td>1.39</td>
</tr>
<tr>
<td>Chacaltaya, Bolivia</td>
<td>5220 meters</td>
<td>1.71</td>
</tr>
</tbody>
</table>

No correction is required for those stations located at an altitude of less than 300 meters.

3. These measurements are being carried out as part of the U. S. Naval Research Laboratory program of atmospheric radioactivity studies. Partial financial support is provided by the Division of Biology and Medicine, U. S. Atomic Energy Commission.
TABLE 5a
DAILY RECORD OF FISSION PRODUCT β-ACTIVITY
COLLECTED BY AIR FILTRATION

June 1959

<table>
<thead>
<tr>
<th>Day</th>
<th>Punta Arenas</th>
<th>Puerto Montt</th>
<th>Santiago</th>
<th>Porto Alegre</th>
<th>Antofagasta</th>
<th>Chacaltaya</th>
<th>Huanuco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disintegrations/minute per cubic meter of air</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- 0.09</td>
<td>0.21</td>
<td>0.23</td>
<td>0.26</td>
<td>-</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- 0.12</td>
<td>0.19</td>
<td>0.23</td>
<td>0.23</td>
<td>-</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.0</td>
<td>0.16</td>
<td>0.16</td>
<td>0.19</td>
<td>-</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- 0.14</td>
<td>0.21</td>
<td>0.28</td>
<td>0.24</td>
<td>-</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- 0.35</td>
<td>0.46</td>
<td>0.29</td>
<td>0.22</td>
<td>0.15</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>- T</td>
<td>0.30</td>
<td>0.13</td>
<td>0.24</td>
<td>0.29</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>- 0.11</td>
<td>0.38</td>
<td>0.16</td>
<td>0.19</td>
<td>0.15</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>- T</td>
<td>0.24</td>
<td>0.13</td>
<td>0.22</td>
<td>0.20</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>- T</td>
<td>0.19</td>
<td>0.16</td>
<td>0.22</td>
<td>0.16*</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>- 0.13</td>
<td>0.24</td>
<td>-</td>
<td>0.19</td>
<td>0.16*</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>- 0.21</td>
<td>0.24</td>
<td>-</td>
<td>0.22</td>
<td>0.19*</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>- 0.21</td>
<td>0.19</td>
<td>-</td>
<td>0.19</td>
<td>0.19*</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>- T</td>
<td>0.19</td>
<td>0.11</td>
<td>0.22</td>
<td>0.15</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>- 0.11</td>
<td>0.19</td>
<td>0.21</td>
<td>0.19</td>
<td>0.15</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>- 0.37</td>
<td>0.21</td>
<td>0.30</td>
<td>0.21</td>
<td>0.20</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>- 0.25</td>
<td>0.26</td>
<td>0.14</td>
<td>0.21</td>
<td>-</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>- 0.18</td>
<td>0.16</td>
<td>-</td>
<td>0.14</td>
<td>-</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>- T</td>
<td>0.19</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>- 0.13</td>
<td>0.16</td>
<td>-</td>
<td>0.11</td>
<td>-</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>- T</td>
<td>-</td>
<td>T</td>
<td>0.14</td>
<td>-</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>- T</td>
<td>T</td>
<td>-</td>
<td>0.14</td>
<td>-</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>- T</td>
<td>0.19</td>
<td>T</td>
<td>0.16</td>
<td>-</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>- T</td>
<td>0.16</td>
<td>T</td>
<td>0.16</td>
<td>-</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>- 0.11</td>
<td>0.19</td>
<td>0.13</td>
<td>0.19</td>
<td>-</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>- 0.11</td>
<td>T</td>
<td>-</td>
<td>0.24</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>- 0.11</td>
<td>T</td>
<td>0.23</td>
<td>0.30</td>
<td>T</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>- 0.13</td>
<td>T</td>
<td>0.24</td>
<td>0.22</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>- 0.13</td>
<td>-</td>
<td>0.13</td>
<td>0.24</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>- T</td>
<td>-</td>
<td>T</td>
<td>0.16</td>
<td>0.12</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>- 0.11</td>
<td>-</td>
<td>0.11</td>
<td>-</td>
<td>T</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

Mean Value: - 0.11 0.19 0.13 0.19 0.14 0.20

* denotes combined collections
- not received
T Trace
TABLE 5a (Cont'd)

DAILY RECORD OF FISSION PRODUCT β-ACTIVITY
COLLECTED BY AIR FILTRATION

June 1959

<table>
<thead>
<tr>
<th>Day</th>
<th>Lima</th>
<th>Iquitos</th>
<th>Guayaquil</th>
<th>Quito</th>
<th>Bogota</th>
<th>Miraflor</th>
<th>San Juan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>6.81</td>
</tr>
<tr>
<td>2</td>
<td>0.09</td>
<td>T</td>
<td>0.21</td>
<td>0.10</td>
<td>1.29</td>
<td>3.61</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>0.11</td>
<td>0.33</td>
<td>0.17</td>
<td>0.58</td>
<td>4.72</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>T</td>
<td>0.11</td>
<td>T</td>
<td>0.43</td>
<td>6.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.19</td>
<td>0.13</td>
<td>0.26</td>
<td>T</td>
<td>0.87</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.21</td>
<td>T</td>
<td>T</td>
<td>0.12</td>
<td>0.60</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.10</td>
<td>0.18</td>
<td>4.51</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>0.13</td>
<td>T</td>
<td>0.21</td>
<td>T</td>
<td>4.97</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.13</td>
<td>0.16</td>
<td>0.21</td>
<td>0.14</td>
<td>2.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.36</td>
<td>0.96</td>
<td>4.68</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.13</td>
<td>0.11</td>
<td>T</td>
<td>T</td>
<td>0.98</td>
<td>5.83</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.16</td>
<td>0.13</td>
<td>0.10</td>
<td>0.10</td>
<td>1.40</td>
<td>5.59</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.11</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.69</td>
<td>3.04*</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.28</td>
<td>3.04*</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.10</td>
<td>0.18</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.13</td>
<td>0.13</td>
<td>0.10</td>
<td>0.14</td>
<td>0.14</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.17</td>
<td>0.12</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.16</td>
<td>3.15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.13</td>
<td>T</td>
<td>T</td>
<td>0.17</td>
<td>0.14</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.13</td>
<td>T</td>
<td>T</td>
<td>0.33</td>
<td>0.21</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.11</td>
<td>T</td>
<td>0.12</td>
<td>0.29</td>
<td>0.99</td>
<td>2.32</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.11</td>
<td>T</td>
<td>0.33</td>
<td>T</td>
<td>0.58</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.11</td>
<td>0.64</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.13</td>
<td>T</td>
<td>T</td>
<td>0.09</td>
<td>1.05</td>
<td>3.38</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.21</td>
<td>T</td>
<td>T</td>
<td>0.19</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.13</td>
<td>T</td>
<td>0.14</td>
<td>T</td>
<td>1.20</td>
<td>6.30</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
<td>T</td>
<td>0.37</td>
<td>2.58</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>-</td>
<td>0.12</td>
<td>0.26</td>
<td>0.09</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>0.10</td>
<td>0.25</td>
<td>2.44</td>
<td></td>
</tr>
</tbody>
</table>

Mean Value: 0.11 T 0.06 - 0.10 0.13 0.58 3.88

* denotes combined collections
- not received
T Trace
TABLE 5a (Cont'd)

DAILY RECORD OF FISSION PRODUCT β-ACTIVITY COLLECTED BY AIR FILTRATION

June 1959

<table>
<thead>
<tr>
<th>Day</th>
<th>Miami</th>
<th>Columbia S.C.</th>
<th>Washington</th>
<th>Bedford</th>
<th>Moosonee</th>
<th>Coral Harbour</th>
<th>Thule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.2</td>
<td>2.99</td>
<td>7.13</td>
<td>3.15</td>
<td>24.4</td>
<td>4.46</td>
<td>12.6</td>
</tr>
<tr>
<td>2</td>
<td>12.6</td>
<td>1.56</td>
<td>4.88</td>
<td>7.27</td>
<td>19.2</td>
<td>4.39</td>
<td>9.25*</td>
</tr>
<tr>
<td>3</td>
<td>10.0</td>
<td>1.47</td>
<td>4.44</td>
<td>2.09</td>
<td>7.17</td>
<td>3.54</td>
<td>9.25*</td>
</tr>
<tr>
<td>4</td>
<td>5.27</td>
<td>5.08</td>
<td>9.55</td>
<td>8.96</td>
<td>7.53</td>
<td>2.62</td>
<td>2.47</td>
</tr>
<tr>
<td>5</td>
<td>2.44</td>
<td>9.02</td>
<td>9.52</td>
<td>10.7</td>
<td>10.9</td>
<td>3.38</td>
<td>4.53*</td>
</tr>
<tr>
<td>6</td>
<td>4.90</td>
<td>11.7</td>
<td>9.36</td>
<td>12.6</td>
<td>5.11</td>
<td>3.15</td>
<td>4.53*</td>
</tr>
<tr>
<td>7</td>
<td>4.85</td>
<td>11.9</td>
<td>9.06</td>
<td>12.1</td>
<td>9.96</td>
<td>3.50</td>
<td>7.31</td>
</tr>
<tr>
<td>8</td>
<td>4.09</td>
<td>13.8</td>
<td>14.6</td>
<td>7.57</td>
<td>52.0</td>
<td>2.78</td>
<td>13.2</td>
</tr>
<tr>
<td>9</td>
<td>2.69</td>
<td>11.0</td>
<td>14.4</td>
<td>13.1</td>
<td>2.53</td>
<td>4.16</td>
<td>4.42</td>
</tr>
<tr>
<td>10</td>
<td>4.37</td>
<td>10.1</td>
<td>11.8</td>
<td>3.77</td>
<td>8.10</td>
<td>3.66</td>
<td>13.3</td>
</tr>
<tr>
<td>11</td>
<td>6.10</td>
<td>10.1</td>
<td>11.3</td>
<td>6.26</td>
<td>13.9</td>
<td>7.98</td>
<td>4.21</td>
</tr>
<tr>
<td>12</td>
<td>7.96</td>
<td>8.51</td>
<td>10.4</td>
<td>0.71</td>
<td>9.45</td>
<td>4.65</td>
<td>7.04</td>
</tr>
<tr>
<td>13</td>
<td>7.91</td>
<td>6.92</td>
<td>14.4</td>
<td>2.44</td>
<td>6.74</td>
<td>4.12</td>
<td>4.69</td>
</tr>
<tr>
<td>14</td>
<td>9.09</td>
<td>8.60</td>
<td>5.87</td>
<td>4.25</td>
<td>6.14</td>
<td>3.01</td>
<td>2.18*</td>
</tr>
<tr>
<td>15</td>
<td>4.12</td>
<td>6.14</td>
<td>14.8</td>
<td>0.62</td>
<td>2.90</td>
<td>4.07</td>
<td>2.18*</td>
</tr>
<tr>
<td>16</td>
<td>2.60</td>
<td>8.05</td>
<td>16.1</td>
<td>1.47</td>
<td>7.38</td>
<td>2.90*</td>
<td>3.06</td>
</tr>
<tr>
<td>17</td>
<td>2.67</td>
<td>12.2</td>
<td>15.1</td>
<td>2.99</td>
<td>1.50</td>
<td>4.50</td>
<td>5.34</td>
</tr>
<tr>
<td>18</td>
<td>2.94</td>
<td>9.11</td>
<td>10.3</td>
<td>0.78</td>
<td>1.52</td>
<td>0.83</td>
<td>3.92*</td>
</tr>
<tr>
<td>19</td>
<td>0.78</td>
<td>6.00</td>
<td>5.52</td>
<td>2.14</td>
<td>4.23</td>
<td>1.38</td>
<td>3.92*</td>
</tr>
<tr>
<td>20</td>
<td>1.79</td>
<td>9.06</td>
<td>6.51</td>
<td>0.85</td>
<td>8.51</td>
<td>0.48</td>
<td>2.71</td>
</tr>
<tr>
<td>21</td>
<td>1.50</td>
<td>6.74</td>
<td>9.61</td>
<td>8.33</td>
<td>0.51</td>
<td>0.16</td>
<td>1.13</td>
</tr>
<tr>
<td>22</td>
<td>2.53</td>
<td>6.00</td>
<td>10.8</td>
<td>9.06</td>
<td>5.36</td>
<td>2.76</td>
<td>2.71</td>
</tr>
<tr>
<td>23</td>
<td>3.86</td>
<td>9.36</td>
<td>8.14</td>
<td>8.00</td>
<td>5.18</td>
<td>2.28</td>
<td>3.86</td>
</tr>
<tr>
<td>24</td>
<td>2.71</td>
<td>2.76</td>
<td>5.18</td>
<td>11.7</td>
<td>8.81</td>
<td>0.46</td>
<td>0.90</td>
</tr>
<tr>
<td>25</td>
<td>2.28</td>
<td>1.77</td>
<td>6.83</td>
<td>6.53</td>
<td>7.45</td>
<td>-</td>
<td>3.80</td>
</tr>
<tr>
<td>26</td>
<td>2.78</td>
<td>1.21</td>
<td>5.11</td>
<td>8.65</td>
<td>12.4</td>
<td>-</td>
<td>7.41</td>
</tr>
<tr>
<td>27</td>
<td>2.81</td>
<td>1.53*</td>
<td>1.86</td>
<td>4.21</td>
<td>7.91</td>
<td>-</td>
<td>9.68</td>
</tr>
<tr>
<td>28</td>
<td>3.01</td>
<td>1.53*</td>
<td>1.15</td>
<td>2.28</td>
<td>4.53</td>
<td>-</td>
<td>7.02</td>
</tr>
<tr>
<td>29</td>
<td>3.98</td>
<td>1.56</td>
<td>1.93</td>
<td>3.66</td>
<td>1.77</td>
<td>-</td>
<td>8.44</td>
</tr>
<tr>
<td>30</td>
<td>2.23</td>
<td>1.75</td>
<td>1.79</td>
<td>2.32</td>
<td>2.32</td>
<td>-</td>
<td>7.84</td>
</tr>
</tbody>
</table>

Mean Value

* denotes combined collections
- not received
T Trace
FIGURE 2
RADIOACTIVITY PROFILE FOR JUNE 1959

AVERAGE FISSION PRODUCT CONCENTRATION IN D/M PER CUBIC METER OF AIR
Subj: Fission product radioactivity of the air along the 80th meridian (west) during May 1959; NRL Problem A02-13, Project No. NR 571-003; interim report on

Table 5b Daily Record of Fission Product β-Activity Collected by Air Filtration

Figure: (3) Radioactivity Profile for May 1959

1. Radioactivity measurements of air-filter samples collected at various sites along the 80th meridian (west) during the month of May 1959 are presented in Table 5b. The radioactivity profile for May 1959 is shown in Figure (3).

2. All radioactivity concentrations are given in disintegrations per minute per cubic meter of air at the collecting site. The following factors may be used to correct to disintegrations per minute per standard cubic meter of air (sea level density):

<table>
<thead>
<tr>
<th>Station</th>
<th>Altitude</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antofagasta, Chile</td>
<td>519 meters</td>
<td>1.06</td>
</tr>
<tr>
<td>Santiago, Chile</td>
<td>520 meters</td>
<td>1.06</td>
</tr>
<tr>
<td>Bogota, Colombia</td>
<td>2640 meters</td>
<td>1.30</td>
</tr>
<tr>
<td>Quito, Ecuador</td>
<td>2818 meters</td>
<td>1.33</td>
</tr>
<tr>
<td>Huancayo, Peru</td>
<td>3353 meters</td>
<td>1.39</td>
</tr>
<tr>
<td>Chacaltaya, Bolivia</td>
<td>5220 meters</td>
<td>1.71</td>
</tr>
</tbody>
</table>

No correction is required for those stations located at an altitude of less than 300 meters.

3. These measurements are being carried out as part of the U. S. Naval Research Laboratory program of atmospheric radioactivity studies. Partial financial support is provided by the Division of Biology and Medicine, U. S. Atomic Energy Commission.

L. B. LOCKHART, JR.
Table 5b

Daily Record of Fission Product β-Activity Collected by Air Filtration

May 1959

<table>
<thead>
<tr>
<th>Day</th>
<th>Punta Arenas</th>
<th>Puerto Montt</th>
<th>Santiago</th>
<th>Porto Alegre</th>
<th>Antofagasta</th>
<th>Chacaltaya</th>
<th>Huanacayo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
<td>0.27</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>0.24</td>
<td>0.18</td>
<td>0.51</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.13</td>
<td>0.22</td>
<td>0.30</td>
<td>0.39</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.23</td>
<td>0.35</td>
<td>0.35</td>
<td>0.30</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.39</td>
<td>0.33</td>
<td>0.43</td>
<td>0.30</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.29</td>
<td>0.38</td>
<td>0.35</td>
<td>0.35</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.24</td>
<td>0.24</td>
<td>0.29</td>
<td>0.33</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.16</td>
<td>0.16</td>
<td>0.27</td>
<td>0.33</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.13</td>
<td>0.19</td>
<td>0.24</td>
<td>0.27</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.24</td>
<td>0.19</td>
<td>0.27</td>
<td>0.22</td>
<td>0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.24</td>
<td>0.11</td>
<td>0.51</td>
<td>0.24</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.27</td>
<td>0.24</td>
<td>0.12</td>
<td>0.30</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.51</td>
<td>0.30</td>
<td>0.18</td>
<td>0.36</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.45</td>
<td>0.38</td>
<td>0.18</td>
<td>0.46</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.29</td>
<td>0.11</td>
<td>0.37</td>
<td>0.27</td>
<td>0.26</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.24</td>
<td></td>
<td>0.29</td>
<td>0.33</td>
<td>0.21</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.19</td>
<td>0.27</td>
<td>0.24</td>
<td>0.19</td>
<td>0.12</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.13</td>
<td>0.24</td>
<td>T</td>
<td>0.22</td>
<td>0.15</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.27</td>
<td>0.41</td>
<td>0.19</td>
<td>0.27</td>
<td>0.15</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.24</td>
<td>0.43</td>
<td>0.13</td>
<td>0.16</td>
<td>0.15</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.35</td>
<td>0.35</td>
<td>0.16</td>
<td>0.19</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>T</td>
<td>0.41</td>
<td>0.24</td>
<td>0.22</td>
<td>T</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.24</td>
<td>0.35</td>
<td>T</td>
<td>0.22</td>
<td>0.26</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>T</td>
<td>0.24</td>
<td>0.16</td>
<td>0.22</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.14</td>
<td>0.21</td>
<td>0.14</td>
<td>0.26</td>
<td>-</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.23</td>
<td>0.09</td>
<td>0.21</td>
<td>0.26</td>
<td>-</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.14</td>
<td>0.12</td>
<td>0.23</td>
<td>0.19</td>
<td>-</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.14</td>
<td>0.16</td>
<td>0.25</td>
<td>0.16</td>
<td>-</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>0.16</td>
<td>0.28</td>
<td>0.21</td>
<td>-</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.09</td>
<td>0.19</td>
<td>0.38</td>
<td>T</td>
<td>-</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.12</td>
<td>0.19</td>
<td>0.30</td>
<td>0.23</td>
<td>-</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

Mean value

- 0.20
- 0.25
- 0.25
- 0.27
- 0.18
- 0.16

* denotes combined collections
- not received
T Trace
TABLE 5b (Cont'd)

DAILY RECORD OF FISSION PRODUCT 8-ACTIVITY
COLLECTED BY AIR FILTRATION

May 1959

<table>
<thead>
<tr>
<th>Day</th>
<th>Lima</th>
<th>Iquitos</th>
<th>Guayaquil</th>
<th>Quito</th>
<th>Bogota</th>
<th>Miraflores</th>
<th>San Juan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.19</td>
<td>-</td>
<td>0.24</td>
<td>0.83</td>
<td>3.67</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>T</td>
<td>0.17</td>
<td>0.52</td>
<td>3.05</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>0.14</td>
<td>3.43</td>
<td>6.60</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.21</td>
<td>T</td>
<td>T</td>
<td>0.12</td>
<td>5.52</td>
<td>2.39</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.32</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>4.99</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.16</td>
<td>0.0</td>
<td>T</td>
<td>0.12</td>
<td>T</td>
<td>2.69</td>
<td>9.98</td>
</tr>
<tr>
<td>7</td>
<td>0.11</td>
<td>-</td>
<td>T</td>
<td>0.17</td>
<td>1.85</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.13</td>
<td>0.11</td>
<td>T</td>
<td>T</td>
<td>4.46</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>0.32</td>
<td>T</td>
<td>0.10</td>
<td>T</td>
<td>3.96</td>
<td>6.26</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>0.45</td>
<td>T</td>
<td>0.26</td>
<td>1.98</td>
<td>3.34</td>
<td>8.65</td>
</tr>
<tr>
<td>11</td>
<td>0.11</td>
<td>0.21</td>
<td>T</td>
<td>0.10</td>
<td>3.26</td>
<td>5.80</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.11</td>
<td>T</td>
<td>T</td>
<td>0.29</td>
<td>1.81</td>
<td>3.91</td>
<td>4.78</td>
</tr>
<tr>
<td>13</td>
<td>0.11</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>3.63</td>
<td>1.85*</td>
<td>13.0</td>
</tr>
<tr>
<td>14</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>0.10</td>
<td>0.57</td>
<td>1.85*</td>
<td>2.44</td>
</tr>
<tr>
<td>15</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>0.10</td>
<td>0.95</td>
<td>3.79</td>
<td>6.10</td>
</tr>
<tr>
<td>16</td>
<td>0.21</td>
<td>T</td>
<td>T</td>
<td>0.17</td>
<td>1.12</td>
<td>3.24</td>
<td>4.78</td>
</tr>
<tr>
<td>17</td>
<td>0.13</td>
<td>0.09</td>
<td>T</td>
<td>0.17</td>
<td>0.57</td>
<td>5.54</td>
<td>5.78</td>
</tr>
<tr>
<td>18</td>
<td>0.13</td>
<td>-</td>
<td>T</td>
<td>0.17</td>
<td>0.31</td>
<td>3.31</td>
<td>11.2</td>
</tr>
<tr>
<td>19</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>0.17</td>
<td>0.14</td>
<td>2.54</td>
<td>6.67</td>
</tr>
<tr>
<td>20</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>0.21</td>
<td>0.14</td>
<td>4.61</td>
<td>11.1</td>
</tr>
<tr>
<td>21</td>
<td>-</td>
<td>T</td>
<td>T</td>
<td>0.14</td>
<td>T</td>
<td>3.34</td>
<td>6.83</td>
</tr>
<tr>
<td>22</td>
<td>0.16</td>
<td>0.12</td>
<td>T</td>
<td>0.21</td>
<td>0.10</td>
<td>2.90</td>
<td>5.11</td>
</tr>
<tr>
<td>23</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>0.21</td>
<td>T</td>
<td>1.56</td>
<td>7.41</td>
</tr>
<tr>
<td>24</td>
<td>0.13</td>
<td>0.09</td>
<td>T</td>
<td>0.36</td>
<td>T</td>
<td>1.19</td>
<td>3.45</td>
</tr>
<tr>
<td>25</td>
<td>0.19</td>
<td>T</td>
<td>T</td>
<td>0.10</td>
<td>0.26</td>
<td>0.48</td>
<td>2.25</td>
</tr>
<tr>
<td>26</td>
<td>0.23</td>
<td>T</td>
<td>T</td>
<td>0.14</td>
<td>0.29</td>
<td>0.70</td>
<td>0.09</td>
</tr>
<tr>
<td>27</td>
<td>0.11</td>
<td>T</td>
<td>T</td>
<td>0.29</td>
<td>T</td>
<td>0.67</td>
<td>4.85</td>
</tr>
<tr>
<td>28</td>
<td>0.13</td>
<td>T</td>
<td>T</td>
<td>0.21</td>
<td>0.19</td>
<td>0.50</td>
<td>8.21</td>
</tr>
<tr>
<td>29</td>
<td>0.19</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1.06</td>
<td>8.92</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.16</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>1.25</td>
<td>5.15</td>
<td></td>
</tr>
</tbody>
</table>

Mean value 0.13 0.07 - 0.14 0.38 2.84 6.18

* denotes combined collections
- not received
T Trace
<table>
<thead>
<tr>
<th>Day</th>
<th>Miami</th>
<th>Columbia S.C.</th>
<th>Washington</th>
<th>Bedford</th>
<th>Moosonee</th>
<th>Coral Harbour</th>
<th>Thule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.7</td>
<td>30.0</td>
<td>-</td>
<td>1.68</td>
<td>4.23</td>
<td>11.9</td>
<td>9.89</td>
</tr>
<tr>
<td>2</td>
<td>23.2</td>
<td>20.5</td>
<td>-</td>
<td>12.3</td>
<td>14.1</td>
<td>13.4</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>29.8</td>
<td>18.4</td>
<td>-</td>
<td>13.9</td>
<td>27.1</td>
<td>7.71</td>
<td>10.6</td>
</tr>
<tr>
<td>4</td>
<td>31.2</td>
<td>19.9</td>
<td>-</td>
<td>12.3</td>
<td>12.9</td>
<td>10.1</td>
<td>27.3</td>
</tr>
<tr>
<td>5</td>
<td>37.1</td>
<td>16.7</td>
<td>-</td>
<td>15.1</td>
<td>3.96</td>
<td>11.5</td>
<td>21.2</td>
</tr>
<tr>
<td>6</td>
<td>26.1</td>
<td>30.2</td>
<td>12.8</td>
<td>22.8</td>
<td>17.5</td>
<td>8.30</td>
<td>13.4</td>
</tr>
<tr>
<td>7</td>
<td>27.1</td>
<td>19.2</td>
<td>19.6</td>
<td>8.91</td>
<td>8.17</td>
<td>8.07</td>
<td>13.0</td>
</tr>
<tr>
<td>8</td>
<td>20.0</td>
<td>16.8</td>
<td>26.0</td>
<td>10.8</td>
<td>9.94</td>
<td>8.14</td>
<td>14.2</td>
</tr>
<tr>
<td>9</td>
<td>20.6</td>
<td>27.4</td>
<td>18.0</td>
<td>8.86</td>
<td>15.4</td>
<td>11.5</td>
<td>22.5</td>
</tr>
<tr>
<td>10</td>
<td>19.4</td>
<td>15.5</td>
<td>19.3</td>
<td>28.2</td>
<td>16.8</td>
<td>14.7</td>
<td>13.9</td>
</tr>
<tr>
<td>11</td>
<td>16.6</td>
<td>23.3</td>
<td>25.3</td>
<td>23.5</td>
<td>23.5</td>
<td>19.8</td>
<td>12.5</td>
</tr>
<tr>
<td>12</td>
<td>5.70</td>
<td>13.0</td>
<td>11.5</td>
<td>15.8</td>
<td>14.2</td>
<td>20.5</td>
<td>10.4</td>
</tr>
<tr>
<td>13</td>
<td>12.1</td>
<td>11.1</td>
<td>12.1</td>
<td>13.0</td>
<td>8.67</td>
<td>17.7</td>
<td>12.5</td>
</tr>
<tr>
<td>14</td>
<td>12.0</td>
<td>11.8</td>
<td>13.3</td>
<td>29.0</td>
<td>2.92</td>
<td>17.1</td>
<td>18.3</td>
</tr>
<tr>
<td>15</td>
<td>8.60</td>
<td>13.0</td>
<td>4.74</td>
<td>7.73</td>
<td>17.1</td>
<td>17.1</td>
<td>21.9</td>
</tr>
<tr>
<td>16</td>
<td>3.51</td>
<td>10.6</td>
<td>2.28</td>
<td>10.8*</td>
<td>21.9</td>
<td>14.4</td>
<td>27.5</td>
</tr>
<tr>
<td>17</td>
<td>5.87</td>
<td>17.1</td>
<td>15.6</td>
<td>10.8*</td>
<td>21.0</td>
<td>14.3</td>
<td>31.3</td>
</tr>
<tr>
<td>18</td>
<td>3.63</td>
<td>17.6</td>
<td>22.6</td>
<td>10.8*</td>
<td>18.8</td>
<td>6.21</td>
<td>18.4</td>
</tr>
<tr>
<td>19</td>
<td>7.13</td>
<td>11.9</td>
<td>17.3</td>
<td>25.3</td>
<td>20.6</td>
<td>12.6</td>
<td>16.8</td>
</tr>
<tr>
<td>20</td>
<td>6.49</td>
<td>5.08</td>
<td>10.7</td>
<td>13.6</td>
<td>13.3</td>
<td>5.68</td>
<td>12.0</td>
</tr>
<tr>
<td>21</td>
<td>9.11</td>
<td>2.12</td>
<td>5.80</td>
<td>10.2</td>
<td>7.45</td>
<td>-</td>
<td>10.2</td>
</tr>
<tr>
<td>22</td>
<td>9.52</td>
<td>3.27</td>
<td>5.43</td>
<td>8.26</td>
<td>4.83</td>
<td>6.30</td>
<td>9.36</td>
</tr>
<tr>
<td>23</td>
<td>10.1</td>
<td>8.53*</td>
<td>2.23</td>
<td>19.6</td>
<td>13.6</td>
<td>4.32</td>
<td>5.31</td>
</tr>
<tr>
<td>24</td>
<td>9.22</td>
<td>2.09*</td>
<td>2.74</td>
<td>19.6</td>
<td>22.2</td>
<td>7.50</td>
<td>5.50*</td>
</tr>
<tr>
<td>25</td>
<td>6.14</td>
<td>2.09*</td>
<td>18.0</td>
<td>24.9</td>
<td>25.3</td>
<td>2.23</td>
<td>5.50*</td>
</tr>
<tr>
<td>26</td>
<td>6.28</td>
<td>24.9</td>
<td>30.8</td>
<td>24.4</td>
<td>18.3</td>
<td>6.28</td>
<td>5.11</td>
</tr>
<tr>
<td>27</td>
<td>9.91</td>
<td>28.2</td>
<td>26.1</td>
<td>24.5</td>
<td>3.08</td>
<td>7.52</td>
<td>4.46</td>
</tr>
<tr>
<td>28</td>
<td>6.03</td>
<td>18.5</td>
<td>31.1</td>
<td>21.4</td>
<td>8.00</td>
<td>5.98</td>
<td>1.43</td>
</tr>
<tr>
<td>29</td>
<td>5.73</td>
<td>16.0</td>
<td>4.30</td>
<td>9.57</td>
<td>10.7</td>
<td>6.39</td>
<td>3.24</td>
</tr>
<tr>
<td>30</td>
<td>12.2</td>
<td>12.5</td>
<td>3.82</td>
<td>16.3</td>
<td>11.0</td>
<td>5.98</td>
<td>3.84</td>
</tr>
<tr>
<td>31</td>
<td>8.63</td>
<td>7.41</td>
<td>7.68</td>
<td>4.69</td>
<td>16.7</td>
<td>5.96</td>
<td>4.21</td>
</tr>
</tbody>
</table>

Mean value 14.0 15.6 14.2 15.4 14.0 10.3 12.8

* denotes combined collections
- not received
T Trace

TABLE 5b (Cont'd)

DAILY RECORD OF FISSION PRODUCT β-ACTIVITY COLLECTED BY AIR FILTRATION

May 1959
FIGURE 3
RADIOACTIVITY PROFILE FOR MAY 1959

AVERAGE FISSION PRODUCT CONCENTRATION IN D/M PER CUBIC METER OF AIR
Monthly Radionuclide Levels in Surface Air

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gross <sup>141</sup>Ce <sup>90</sup>Sr <sup>144</sup>Ca <sup>137</sup>Pb</td>
<td><sup>141</sup>Ce/<sup>90</sup>Sr <sup>89</sup>Sr/<sup>90</sup>Sr <sup>137</sup> Sr/<sup>90</sup>Sr</td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td>335</td>
<td>406</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.1</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.054</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>2.2</td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td>Jan</td>
<td>Feb</td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td>50</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.1</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.050</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* The U.S. Naval Research Laboratory submitted this data which represent samples of airborne dust at the surface of the given sampling stations.
<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall (days)</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gross β</td>
<td>Ce²²¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td>36</td>
<td>2.4</td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td>30</td>
<td>1.8</td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td>22</td>
<td>2.3</td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>20</td>
<td>5.1</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>35</td>
<td>6.3</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>246</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punta Arenas, Chile</td>
<td>Lat. 53°58'S</td>
<td>Long. 70°53'W</td>
<td>Elev. 3 m</td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td>9</td>
<td>0.9</td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td>12</td>
<td>1.7</td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td>12</td>
<td>1.7</td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>6</td>
<td>0.7</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>4</td>
<td>5.8</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>4</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drifting Station Alpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td>148</td>
<td>26</td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td>158</td>
<td>15</td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td>580</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearl Harbor, Hawaiian Islands</td>
<td>Lat. 21°22'N</td>
<td>Long. 157°58'W</td>
<td>Elev. 5 m</td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td>202</td>
<td>21</td>
</tr>
<tr>
<td>Feb</td>
<td></td>
<td>215</td>
<td>26</td>
</tr>
<tr>
<td>Mar</td>
<td></td>
<td>1090</td>
<td>312</td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td>850</td>
<td>56</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>450</td>
<td>56</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>580</td>
<td>116</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>510</td>
<td>41</td>
</tr>
</tbody>
</table>

Cont'd.
<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gross 8 Pb Sr 141 Y 91 Ce 144 Sr 90 Se 137 Pb 210 W185 Sr90/Gross 8 Pb 141/Y 91/Ce 144/Sr 90 Sr90/Sr90 Cs137/Sr90</td>
<td></td>
</tr>
<tr>
<td>1956</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>24</td>
<td>18 1.1</td>
<td>0.995 0.7 23</td>
</tr>
<tr>
<td>Feb</td>
<td>24</td>
<td>8 * 0.4</td>
<td>0.0090</td>
</tr>
<tr>
<td>Mar</td>
<td>22</td>
<td>8 0.9</td>
<td>0.0067 1.9</td>
</tr>
<tr>
<td>Apr</td>
<td>12</td>
<td>8 3.8</td>
<td>0.0100 1.4</td>
</tr>
<tr>
<td>May</td>
<td>12</td>
<td>207 40</td>
<td>0.0008 1.0</td>
</tr>
<tr>
<td>June</td>
<td>1</td>
<td>9 178 33</td>
<td>0.0017 5.5</td>
</tr>
<tr>
<td>July</td>
<td>5</td>
<td>5 1240 599 179 122 36 1.3 2.9</td>
<td>0.0011 4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17°10'S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>11</td>
<td>26 * 5.0</td>
<td>0.0089 21</td>
</tr>
<tr>
<td>Feb</td>
<td>3</td>
<td>14 0.8</td>
<td>0.013 16</td>
</tr>
<tr>
<td>Mar</td>
<td>3</td>
<td>9 * 0.6</td>
<td>0.013 4</td>
</tr>
<tr>
<td>Apr</td>
<td>2</td>
<td>10 0.7</td>
<td>0.011 6.3</td>
</tr>
<tr>
<td>May</td>
<td>2</td>
<td>6 260 * 62 14 3.4</td>
<td>0.0014 294</td>
</tr>
<tr>
<td>June</td>
<td>0</td>
<td>0 33 71 52 29 7.2</td>
<td>0.0016 99</td>
</tr>
<tr>
<td>July</td>
<td>1</td>
<td>1 2220 832 216 353 50 2.7 3.9</td>
<td>0.0012 81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23°37'S</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>-</td>
<td>31 2.6</td>
<td>0.015 4</td>
</tr>
<tr>
<td>Feb</td>
<td>-</td>
<td>32 13</td>
<td>0.015 3.5</td>
</tr>
<tr>
<td>Mar</td>
<td>-</td>
<td>27 2.8</td>
<td>0.012 8.5</td>
</tr>
<tr>
<td>Apr</td>
<td>-</td>
<td>22 0.4</td>
<td>0.014 3.1</td>
</tr>
<tr>
<td>May</td>
<td>-</td>
<td>9 7.0</td>
<td>0.009 56</td>
</tr>
<tr>
<td>June</td>
<td>-</td>
<td>13 24 8.1 3.1</td>
<td>0.0043 2.2</td>
</tr>
<tr>
<td>July</td>
<td>-</td>
<td>650 35 78 76 21 0.88 2.0</td>
<td>0.0013 0.2</td>
</tr>
<tr>
<td>Sept</td>
<td>-</td>
<td>30 6.1</td>
<td>0.0061 17</td>
</tr>
<tr>
<td>Nov</td>
<td>-</td>
<td>11 12 20 11 0.69 1.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5c - Cont'd.

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>days</td>
<td>mm</td>
<td>Sr²³⁵</td>
</tr>
<tr>
<td>Jan</td>
<td>5</td>
<td>19</td>
<td>99</td>
</tr>
<tr>
<td>Feb</td>
<td>6</td>
<td>48</td>
<td>68</td>
</tr>
<tr>
<td>Mar</td>
<td>12</td>
<td>52</td>
<td>85</td>
</tr>
<tr>
<td>Apr</td>
<td>17</td>
<td>37</td>
<td>85</td>
</tr>
<tr>
<td>May</td>
<td>15</td>
<td>62</td>
<td>55</td>
</tr>
<tr>
<td>June</td>
<td>16</td>
<td>46</td>
<td>107</td>
</tr>
<tr>
<td>July</td>
<td>10</td>
<td>68</td>
<td>372</td>
</tr>
</tbody>
</table>

Bogota, Colombia Lat. 4°37'N Long. 74°04'W Elev. 2640 m

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td>Sr²³⁵</td>
</tr>
<tr>
<td>Jan</td>
<td>8</td>
<td>73</td>
<td>15</td>
</tr>
<tr>
<td>Feb</td>
<td>11</td>
<td>90</td>
<td>15</td>
</tr>
<tr>
<td>Mar</td>
<td>5</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>Apr</td>
<td>17</td>
<td>166</td>
<td>11</td>
</tr>
<tr>
<td>May</td>
<td>17</td>
<td>139</td>
<td>41</td>
</tr>
<tr>
<td>June</td>
<td>6</td>
<td>32</td>
<td>71</td>
</tr>
<tr>
<td>July</td>
<td>3</td>
<td>2</td>
<td>161</td>
</tr>
</tbody>
</table>

Quito, Ecuador Lat. 0°08'S Long. 78°26'W Elev. 2818 m

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td>Sr²³⁵</td>
</tr>
<tr>
<td>Feb</td>
<td>25</td>
<td>633</td>
<td>13</td>
</tr>
<tr>
<td>Mar</td>
<td>21</td>
<td>370</td>
<td>13</td>
</tr>
<tr>
<td>Apr</td>
<td>23</td>
<td>231</td>
<td>17</td>
</tr>
<tr>
<td>May</td>
<td>5</td>
<td>114</td>
<td>20</td>
</tr>
<tr>
<td>June</td>
<td>2</td>
<td>tr</td>
<td>67</td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>0</td>
<td>158</td>
</tr>
</tbody>
</table>

Guayaquil, Ecuador Lat. 2°10'S Long. 79°52'W Elev. 7 m

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td>Sr²³⁵</td>
</tr>
<tr>
<td>Jan</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Feb</td>
<td>2</td>
<td>tr</td>
<td>16</td>
</tr>
<tr>
<td>Mar</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Apr</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>May</td>
<td>11</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>June</td>
<td>21</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>July</td>
<td>18</td>
<td>4</td>
<td>265</td>
</tr>
</tbody>
</table>

Lima, Peru Lat. 12°06'S Long. 77°01'W Elev. 134 m

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958</td>
<td></td>
<td>Sr²³⁵</td>
</tr>
<tr>
<td>Jan</td>
<td>10</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Feb</td>
<td>24</td>
<td>tr</td>
<td>16</td>
</tr>
<tr>
<td>Mar</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Apr</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>May</td>
<td>11</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>June</td>
<td>21</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>July</td>
<td>18</td>
<td>4</td>
<td>265</td>
</tr>
</tbody>
</table>

Cont'd.
<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gross 14I 14Ce 89Sr 91Y 144Ce 90Sr 137Cs 210Pb 185W</td>
<td>89Sr/Gross 14I 14Ce 91Y 137Cs 89/Sr 137/Sr</td>
</tr>
<tr>
<td>1958</td>
<td>days mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>6 85</td>
<td>356 55 26 51 34 1.9 3.3 - 0.0053 1.1 14 1.7</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>9 99</td>
<td>175 49 32 63 49 2.8 4.9 - 0.0059 0.8 11 1.7</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>10 85</td>
<td>621 103 32 78 49 2.7 5.5 - 0.0043 1.3 12 2.0</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>10 97</td>
<td>1200 160 84 161 108 5.3 13.3 - 0.0034 1.0 16 2.2</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>11 79</td>
<td>1140 73 90 171 135 6.9 15.5 - 0.0061 0.4 13 2.3</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>12 88</td>
<td>748 51 56 100 95 4.4 10.4 - 0.0039 0.6 13 2.3</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>14 230</td>
<td>736 219 95 25 28 1.9 4.5 - 0.0026 8.8 50 2.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>12 127</td>
<td>479 102 37 74 49 2.4 3.4 1.1 - 0.0090 1.4 15 1.4</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>3 1</td>
<td>538 63 33 99 52 2.2 4.6 2.1 - 0.0041 1.2 15 2.1</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>11 178</td>
<td>333 133 40 107 71 3.5 5.7 - 0.0037 1.4 11 1.7</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>2 4</td>
<td>1280 137 92 191 120 4.4 5.5 - 0.0035 0.6 21 1.9</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>15 249</td>
<td>867 60 52 104 106 4.6 5.4 - 0.0053 0.6 11 1.4</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>19 168</td>
<td>511 59 37 49 60 2.9 5.3 - 0.0037 1.2 13 1.9</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>18 182</td>
<td>495 61 46 58 33 1.5 2.8 - 0.0030 - 43 30 1.8</td>
<td></td>
</tr>
<tr>
<td>Sept</td>
<td>19 168</td>
<td>360 30 35 18 26 1.2 2.0 - 0.0033 0.6 21 1.6</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td>17 94</td>
<td>1500 369 90 244 34 2.2 3.9 - 0.0024 1.4 42 1.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td>5 37</td>
<td>168 32 14 26 17 0.79 1.5 - 0.0047 1.2 18 1.9</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td>1 tr</td>
<td>150 17 11 22 17 0.79 1.5 - 0.0033 - 4 14 1.9</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>1 tr</td>
<td>268 38 16 36 31 1.5 2.8 - 0.0056 1.1 11 1.9</td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td>4 38</td>
<td>486 60 25 54 50 2.3 4.3 - 0.0047 1.1 11 1.9</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>21 450</td>
<td>73 14 7.5 9.7 9.7 0.52 0.95 - 2.7 0.0069 1.4 14 1.8</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>17 135</td>
<td>14 6.9 8.7 4.1 2.5 0.17 0.24 15 0.0025 1.7 40 2.0</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>19 230</td>
<td>134 41 18 14 5.5 0.25 0.72 - 12 0.0019 2.9 74 2.9</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5c - Cont'd.

Miami, Fla. Lat. 25°49'N, Long. 80°17'W Elev. 1 m

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gross 14I 14Ce 89Sr 91Y 144Ce 90Sr 137Cs 210Pb 185W</td>
<td>89Sr/Gross 14I 14Ce 91Y 137Cs 89/Sr 137/Sr</td>
</tr>
<tr>
<td>June</td>
<td>17 135</td>
<td>14 6.9 8.7 4.1 2.5 0.17 0.24 15 0.0025 1.7 40 2.0</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>19 230</td>
<td>134 41 18 14 5.5 0.25 0.72 - 12 0.0019 2.9 74 2.9</td>
<td></td>
</tr>
</tbody>
</table>

Cont'd.
Table 1. Radiochemical Analyses of Composite Monthly Air Filter Collections

<table>
<thead>
<tr>
<th>Month</th>
<th>Rainfall days mm</th>
<th>Activity (Disintegrations/Minute Per 100 Standard Cubic Meters of Air)*</th>
<th>Activity Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gross β</td>
<td>141Ce</td>
</tr>
<tr>
<td>1958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td>4</td>
<td>272</td>
<td>60</td>
</tr>
<tr>
<td>Apr</td>
<td>12</td>
<td>589</td>
<td>177</td>
</tr>
<tr>
<td>May</td>
<td>149</td>
<td>369</td>
<td>65</td>
</tr>
<tr>
<td>June</td>
<td>28</td>
<td>273</td>
<td>41</td>
</tr>
<tr>
<td>July</td>
<td>54</td>
<td>178</td>
<td>29</td>
</tr>
<tr>
<td>Coral Harbour, N.W.T., Canada</td>
<td>Lat. 64°12'N</td>
<td>Long. 83°22'W</td>
<td>Elev. 59 m</td>
</tr>
<tr>
<td>Jan</td>
<td>11</td>
<td>219</td>
<td>39</td>
</tr>
<tr>
<td>Feb</td>
<td>100</td>
<td>220</td>
<td>15</td>
</tr>
<tr>
<td>Mar</td>
<td>47</td>
<td>428</td>
<td>61</td>
</tr>
<tr>
<td>Apr</td>
<td>31</td>
<td>927</td>
<td>229</td>
</tr>
<tr>
<td>May</td>
<td>107</td>
<td>542</td>
<td>54</td>
</tr>
<tr>
<td>June</td>
<td>82</td>
<td>655</td>
<td>95</td>
</tr>
<tr>
<td>July</td>
<td>71</td>
<td>342</td>
<td>36</td>
</tr>
<tr>
<td>Moosonee, Ont., Canada</td>
<td>Lat. 51°16'N</td>
<td>Long. 80°30'W</td>
<td>Elev. 10 m</td>
</tr>
<tr>
<td>Jan</td>
<td>17</td>
<td>309</td>
<td>45</td>
</tr>
<tr>
<td>Feb</td>
<td>90</td>
<td>341</td>
<td>30</td>
</tr>
<tr>
<td>Mar</td>
<td>120</td>
<td>477</td>
<td>84</td>
</tr>
<tr>
<td>Apr</td>
<td>141</td>
<td>1250</td>
<td>164</td>
</tr>
<tr>
<td>May</td>
<td>47</td>
<td>1330</td>
<td>25</td>
</tr>
<tr>
<td>June</td>
<td>92</td>
<td>855</td>
<td>60</td>
</tr>
<tr>
<td>July</td>
<td>188</td>
<td>717</td>
<td>119</td>
</tr>
<tr>
<td>Sept</td>
<td>79</td>
<td>317</td>
<td>*</td>
</tr>
<tr>
<td>Nov</td>
<td>63</td>
<td>1210</td>
<td>*</td>
</tr>
<tr>
<td>Washington, D. C. - Lat. 38°50'N</td>
<td>Long. 76°57'W</td>
<td>Elev. 88 m</td>
<td></td>
</tr>
</tbody>
</table>
2.2 High Altitude Sampling

High altitude air samples have been taken for radiochemical analysis starting in November 1956. Sampling equipment is carried by balloons to pre-determined altitudes where an attempt is made to pass approximately 1000 standard cubic feet of air through the filter.

Primarily, four sampling sites have been used: Minneapolis, Minnesota (changed to Sioux City, Iowa in August 1958); San Angelo, Texas; the Panama Canal Zone (discontinued December 1958); and Sao Paulo, Brazil (discontinued February 1959). At each site, at four nominal altitudes (50,000; 60,000; 80,000; and 90,000 ft.), an endeavor is made to obtain a sample each month. In addition to the difficulty of controlling sample flights at altitude for the required period of time, a number of samples are not recovered or are otherwise lost. Isotope "B" which is indicated on the more recent tables is a designation for Tungsten-185. All available completed data have been included in this report as shown in Table 6.

Since August 1958 paired samples using two types of filter apparatus have been flown on an irregular basis from Denver, Colorado. These flights have all been at altitudes greater than 90,000 ft. Also, at irregular intervals a series of "research" samples (pp. 90 to 99) have been flown at Minneapolis by General Mills, Inc. and Chicago Midway Laboratory. The analytical results of these flights are included in the following tables. However, the interpretation of the data requires in some cases additional information regarding the experimental equipment.
TABLE 6
Radiochemical Analyses of High Altitude Air Samples

AUGUST 1959

<table>
<thead>
<tr>
<th>Hasl No.</th>
<th>Flight No.</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume S.C.F.</th>
<th>C-date</th>
<th>Total Activity d/m/sample</th>
<th>d/m/S.C.F.</th>
<th>BalhO</th>
<th>Br95</th>
<th>Cz87</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Sioux City, Iowa</td>
<td></td>
</tr>
<tr>
<td>11038</td>
<td>T-73</td>
<td>8-3-59</td>
<td>50</td>
<td>49.5</td>
<td>47.9</td>
<td>2559</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11046</td>
<td>T-74</td>
<td>8-7-59</td>
<td>90</td>
<td>90.5</td>
<td>S</td>
<td>1070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11047</td>
<td>T-75</td>
<td>8-8-59</td>
<td>65</td>
<td>65.75/65.25</td>
<td>S</td>
<td>1655</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11048</td>
<td>T-76</td>
<td>8-9-59</td>
<td>80</td>
<td>80.3/80.0</td>
<td>S</td>
<td>1744</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td></td>
</tr>
<tr>
<td>11039</td>
<td>T-349</td>
<td>8-1-59</td>
<td>90</td>
<td>91.7/91.0</td>
<td>S</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11040</td>
<td>T-350*</td>
<td>8-2-59</td>
<td>80</td>
<td>80.65/80.4</td>
<td>S</td>
<td>1865</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11041</td>
<td>T-351*</td>
<td>8-3-59</td>
<td>65</td>
<td>65.7/65.5</td>
<td>S</td>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11063</td>
<td>T-352</td>
<td>8-7-59</td>
<td>50</td>
<td>50.4</td>
<td>48.8/51.5</td>
<td>1853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exhaust ducts used on flights T-350 T-351
TABLE 6 — Cont'd.

JULY 1959

<table>
<thead>
<tr>
<th>HASL NO.</th>
<th>Flight NO.</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume S.C.F.</th>
<th>0-date</th>
<th>Total Activity d/m/sample</th>
<th>4/m/1000 ft³</th>
<th>4/m/G.C.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sioux City, Iowa</td>
<td></td>
</tr>
<tr>
<td>10849</td>
<td>I-68</td>
<td>7-2-59</td>
<td>50</td>
<td>49</td>
<td>50</td>
<td>2293</td>
<td>7-20-59</td>
<td>0 ± 64</td>
<td>no analysis</td>
<td></td>
</tr>
<tr>
<td>10850</td>
<td>I-69</td>
<td>7-5-59</td>
<td>90</td>
<td>90/97.25</td>
<td>s</td>
<td>1105</td>
<td>7-20-59</td>
<td>5335 ± 1150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10851</td>
<td>I-70</td>
<td>7-6-59</td>
<td>80</td>
<td>80/79.75</td>
<td>s</td>
<td>1857</td>
<td>7-20-59</td>
<td>2661 ± 1060</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10871</td>
<td>I-71</td>
<td>7-9-59</td>
<td>80</td>
<td>80.5/80</td>
<td>s</td>
<td>1748</td>
<td>7-20-59</td>
<td>4035 ± 1340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10890</td>
<td>I-72</td>
<td>7-11-59</td>
<td>65</td>
<td>65.25/65</td>
<td>s</td>
<td>1733</td>
<td>7-20-59</td>
<td>3852 ± 1440</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

San Angelo, Texas										
10847	T-315	7-1-59	90	90.64	s	1066	7-20-59	2790 ± 1840		
10848	T-316	7-2-59	50	51.5/50.6	i.6	1718	7-20-59	390 ± 346		
10870	T-317	7-7-59	80	80.5/79.6	s	1855	7-20-59	5136 ± 2950		
10899	T-318	7-8-59	65	65.6/65.3	s	1966	7-20-59	615 ± 249		

* *tropospheric sample*
TABLE 6 - Cont'd.

JUNE 1959

<table>
<thead>
<tr>
<th>HASL No.</th>
<th>Flight No.</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume</th>
<th>C-date</th>
<th>Total Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sioux City, Iowa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10612</td>
<td>I-64</td>
<td>6-1-59</td>
<td>50</td>
<td>50/49.5</td>
<td>37</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10613</td>
<td>I-65</td>
<td>6-2-59</td>
<td>90</td>
<td>90/39.5</td>
<td></td>
<td>1095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10614</td>
<td>I-66</td>
<td>6-2-59</td>
<td>80</td>
<td>81.2/70</td>
<td></td>
<td>1778</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10736</td>
<td>I-67</td>
<td>6-15-59</td>
<td>65</td>
<td>65.7/65.5</td>
<td></td>
<td>1617</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10690</td>
<td>T-339</td>
<td>6-6-59</td>
<td>90</td>
<td>89.8</td>
<td></td>
<td>1026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10691</td>
<td>T-340</td>
<td>6-6-59</td>
<td>50</td>
<td>48.7</td>
<td></td>
<td>1850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10692</td>
<td>T-341</td>
<td>6-7-59</td>
<td>90</td>
<td>88.6/88.6</td>
<td></td>
<td>1115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10717</td>
<td>T-342</td>
<td>6-8-59</td>
<td>80</td>
<td>81.1/80.6</td>
<td></td>
<td>1746</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10772</td>
<td>T-343</td>
<td>6-15-59</td>
<td>65</td>
<td>66.6/65.8</td>
<td></td>
<td>1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10773</td>
<td>T-344</td>
<td>6-17-59</td>
<td>65</td>
<td>66.2/65.5</td>
<td></td>
<td>1658</td>
<td>7-30-59</td>
<td>3714 2 736</td>
</tr>
</tbody>
</table>

Texas June samples sent to Dr. Kalkstein for analysis.

Sioux City June samples sent to Dr. Russel for analysis.
TABLE 6 - Cont'd.

MAY 1959

<table>
<thead>
<tr>
<th>HASL NO.</th>
<th>FLIGHT NO.</th>
<th>DATE</th>
<th>NOMINAL ALTITUDE</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume S.C.F.</th>
<th>d/m/sample</th>
<th>d/m/S.C.F.</th>
<th>Total Activity</th>
<th>d/m/1000 ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>10359</td>
<td>1-59</td>
<td>5-11-59</td>
<td>50</td>
<td>48.9</td>
<td>37</td>
<td>2061</td>
<td>7-20-59</td>
<td>1215</td>
<td>1140</td>
<td></td>
</tr>
<tr>
<td>10472</td>
<td>1-61</td>
<td>5-16-59</td>
<td>90</td>
<td>91.5/87</td>
<td>8</td>
<td>1022</td>
<td>6-8-59</td>
<td>354</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>10502</td>
<td>1-63</td>
<td>5-23-59</td>
<td>65</td>
<td>65.5/65</td>
<td>8</td>
<td>1731</td>
<td>7-20-59</td>
<td>3561</td>
<td>1195</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HASL NO.</th>
<th>FLIGHT NO.</th>
<th>DATE</th>
<th>NOMINAL ALTITUDE</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume S.C.F.</th>
<th>d/m/sample</th>
<th>d/m/S.C.F.</th>
<th>Total Activity</th>
<th>d/m/1000 ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no analysis</td>
<td></td>
</tr>
</tbody>
</table>

Sioux City, Iowa

San Angelo, Texas

<table>
<thead>
<tr>
<th>HASL NO.</th>
<th>FLIGHT NO.</th>
<th>DATE</th>
<th>NOMINAL ALTITUDE</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume S.C.F.</th>
<th>d/m/sample</th>
<th>d/m/S.C.F.</th>
<th>Total Activity</th>
<th>d/m/1000 ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>10337</td>
<td>T-335</td>
<td>5-1-59</td>
<td>90</td>
<td>90.4/88.5</td>
<td>8</td>
<td>1201</td>
<td>6-8-59</td>
<td>0</td>
<td>518</td>
<td></td>
</tr>
<tr>
<td>10340</td>
<td>T-336</td>
<td>5-6-59</td>
<td>65</td>
<td>65.8/65.2</td>
<td>8</td>
<td>1795</td>
<td>6-8-59</td>
<td>1450</td>
<td>1450</td>
<td></td>
</tr>
<tr>
<td>10357</td>
<td>T-337</td>
<td>5-7-59</td>
<td>80</td>
<td>80.1/79.7</td>
<td>8</td>
<td>1870</td>
<td>6-8-59</td>
<td>13100</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>10358</td>
<td>T-338</td>
<td>5-11-59</td>
<td>50</td>
<td>52.5</td>
<td>19.0</td>
<td>2074</td>
<td>6-8-59</td>
<td>0</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no analysis</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6 - Cont’d.

April 1959

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9873</td>
<td>1-54</td>
<td>4-2-59</td>
<td>50</td>
<td>66/68.5</td>
<td>36</td>
<td>1722</td>
<td>4-23-59</td>
<td>2776</td>
<td>1188</td>
<td>11.6</td>
<td>953</td>
<td>94.4</td>
<td>308</td>
<td>54.2</td>
<td>6.23</td>
</tr>
<tr>
<td>9876</td>
<td>1-56</td>
<td>4-16-59</td>
<td>65</td>
<td>66.5/65.85</td>
<td>8</td>
<td>1752</td>
<td>4-11-59</td>
<td>9934</td>
<td>2980</td>
<td>9.0</td>
<td>773</td>
<td>2500</td>
<td>217</td>
<td>181</td>
<td>129</td>
</tr>
<tr>
<td>9948</td>
<td>1-56</td>
<td>4-13-59</td>
<td>90</td>
<td>91.2/88.0</td>
<td>8</td>
<td>1069</td>
<td>5-8-59</td>
<td>7680</td>
<td>2718</td>
<td>9.9</td>
<td>656</td>
<td>700</td>
<td>276</td>
<td>975</td>
<td>6.5</td>
</tr>
<tr>
<td>9970</td>
<td>1-57</td>
<td>4-21-59</td>
<td>80</td>
<td>81.2/80.75</td>
<td>8</td>
<td>1813</td>
<td>4-9-59</td>
<td>9408</td>
<td>1508</td>
<td>11.6</td>
<td>662</td>
<td>800</td>
<td>307</td>
<td>633</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Sioux City, Iowa

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9873</td>
<td>1-54</td>
<td>4-2-59</td>
<td>50</td>
<td>66/68.5</td>
<td>36</td>
<td>1722</td>
<td>4-23-59</td>
<td>2776</td>
<td>1188</td>
<td>11.6</td>
<td>953</td>
<td>94.4</td>
<td>308</td>
<td>54.2</td>
<td>6.23</td>
</tr>
<tr>
<td>9876</td>
<td>1-56</td>
<td>4-16-59</td>
<td>65</td>
<td>66.5/65.85</td>
<td>8</td>
<td>1752</td>
<td>4-11-59</td>
<td>9934</td>
<td>2980</td>
<td>9.0</td>
<td>773</td>
<td>2500</td>
<td>217</td>
<td>181</td>
<td>129</td>
</tr>
<tr>
<td>9948</td>
<td>1-56</td>
<td>4-13-59</td>
<td>90</td>
<td>91.2/88.0</td>
<td>8</td>
<td>1069</td>
<td>5-8-59</td>
<td>7680</td>
<td>2718</td>
<td>9.9</td>
<td>656</td>
<td>700</td>
<td>276</td>
<td>975</td>
<td>6.5</td>
</tr>
<tr>
<td>9970</td>
<td>1-57</td>
<td>4-21-59</td>
<td>80</td>
<td>81.2/80.75</td>
<td>8</td>
<td>1813</td>
<td>4-9-59</td>
<td>9408</td>
<td>1508</td>
<td>11.6</td>
<td>662</td>
<td>800</td>
<td>307</td>
<td>633</td>
<td>1.96</td>
</tr>
</tbody>
</table>

San Angelo, Texas

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9855</td>
<td>1-589</td>
<td>4-2-59</td>
<td>80</td>
<td>81.5/80.1</td>
<td>8</td>
<td>1764</td>
<td>4-14-59</td>
<td>9404</td>
<td>1062</td>
<td>4.4</td>
<td>301</td>
<td>1850</td>
<td>168</td>
<td>131</td>
<td>96</td>
</tr>
<tr>
<td>9867</td>
<td>1-551</td>
<td>4-6-59</td>
<td>65</td>
<td>66</td>
<td>8</td>
<td>1147</td>
<td>4-16-59</td>
<td>1906</td>
<td>2720</td>
<td>10.5</td>
<td>773</td>
<td>2500</td>
<td>217</td>
<td>181</td>
<td>129</td>
</tr>
<tr>
<td>9868</td>
<td>1-538</td>
<td>4-6-59</td>
<td>90</td>
<td>91.0/90.0</td>
<td>8</td>
<td>1368</td>
<td>4-14-59</td>
<td>1992</td>
<td>2780</td>
<td>6.8</td>
<td>1930</td>
<td>3070</td>
<td>276</td>
<td>975</td>
<td>6.5</td>
</tr>
<tr>
<td>9969</td>
<td>1-533</td>
<td>4-13-59</td>
<td>65</td>
<td>66.6/66.8</td>
<td>8</td>
<td>1752</td>
<td>5-8-59</td>
<td>6605</td>
<td>1850</td>
<td>11.6</td>
<td>662</td>
<td>800</td>
<td>307</td>
<td>633</td>
<td>1.96</td>
</tr>
<tr>
<td>9950</td>
<td>1-534</td>
<td>4-11-59</td>
<td>50</td>
<td>50.4</td>
<td>8</td>
<td>1618</td>
<td>5-8-59</td>
<td>8514</td>
<td>2770</td>
<td>11.6</td>
<td>662</td>
<td>800</td>
<td>307</td>
<td>633</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Note: All values are approximate and indicate total activity.
<table>
<thead>
<tr>
<th>Flight Date</th>
<th>Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height (ft)</th>
<th>C-Date</th>
<th>Total Activity (Ci)</th>
<th>Decay</th>
<th>Sp95</th>
<th>Ca137</th>
<th>Sp90</th>
<th>Sp90/Sp90</th>
<th>Sp90/Sp90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sioux City, Iowa</td>
<td></td>
</tr>
<tr>
<td>9667</td>
<td>5-14</td>
<td>5-11-59</td>
<td>90</td>
<td>91.0/90.5</td>
<td>S</td>
<td>896.2</td>
<td>3-02-59</td>
<td>777 ± 135</td>
<td>0.97 ± 0.18</td>
<td>0.71</td>
<td>1.96</td>
</tr>
<tr>
<td>9707</td>
<td>4-5</td>
<td>3-30-59</td>
<td>65</td>
<td>66.2/65.3</td>
<td>V</td>
<td>160</td>
<td>7-11-59</td>
<td>94,668</td>
<td>1,200</td>
<td>1.21</td>
<td>1.73</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td></td>
</tr>
<tr>
<td>9668</td>
<td>2-32</td>
<td>3-3-59</td>
<td>50</td>
<td>49.8/47.2</td>
<td>L</td>
<td>2337</td>
<td>3-02-59</td>
<td>2,864</td>
<td>1.39</td>
<td>1.33</td>
<td>0.19</td>
</tr>
<tr>
<td>9669</td>
<td>2-32</td>
<td>3-3-59</td>
<td>80</td>
<td>61.2/60.8</td>
<td>S</td>
<td>1409</td>
<td>3-02-59</td>
<td>5,662</td>
<td>0.37</td>
<td>1.35</td>
<td>0.36</td>
</tr>
<tr>
<td>9738</td>
<td>2-32</td>
<td>5-7-59</td>
<td>80</td>
<td>61.5/60.8</td>
<td>S</td>
<td>1308</td>
<td>3-02-59</td>
<td>2,013</td>
<td>1.65</td>
<td>1.77</td>
<td>0.35</td>
</tr>
<tr>
<td>9739</td>
<td>2-32</td>
<td>3-12-59</td>
<td>65</td>
<td>64.7/63.5</td>
<td>S</td>
<td>1033</td>
<td>4-11-59</td>
<td>226</td>
<td>1,008</td>
<td>1.20</td>
<td>1.26</td>
</tr>
<tr>
<td>9740</td>
<td>2-32</td>
<td>3-17-59</td>
<td>80</td>
<td>82.0/80.8</td>
<td>S</td>
<td>1596</td>
<td>4-11-59</td>
<td>1,688</td>
<td>1,068</td>
<td>< 33</td>
<td>652</td>
</tr>
<tr>
<td>Serial#</td>
<td>Flight#</td>
<td>Flight Date</td>
<td>Nominal Altitude</td>
<td>Actual Altitude</td>
<td>Tropopause Height</td>
<td>Total Activity (LO)</td>
<td>4/6/1000 ft³</td>
<td>(\Delta \text{LO}^0)</td>
<td>(\Delta \text{LO}^1)</td>
<td>(\Delta \text{LO}^2)</td>
<td>(\Delta \text{LO}^3)</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Sioux City, Iowa</td>
<td>9666</td>
<td>2-28-59</td>
<td>90</td>
<td>85.5/90.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td>9655</td>
<td>2-4-59</td>
<td>90</td>
<td>90.5/95.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>9656</td>
<td>2-5-59</td>
<td>90</td>
<td>91.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>9550</td>
<td>2-15-59</td>
<td>90</td>
<td>90.5/95.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>9551</td>
<td>2-16-59</td>
<td>90</td>
<td>90.5/95.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>9532</td>
<td>2-3-59</td>
<td>90</td>
<td>90.5/95.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>9533</td>
<td>2-4-59</td>
<td>90</td>
<td>90.5/95.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
<tr>
<td></td>
<td>9534</td>
<td>2-7-59</td>
<td>90</td>
<td>90.5/95.5</td>
<td>31</td>
<td>2171</td>
<td>3-01-59</td>
<td>5.271 x 10^6</td>
<td>14.3 x 21.2</td>
<td>265</td>
<td>539</td>
</tr>
</tbody>
</table>

Table 6 - Cont'd.

February 1959
| City | Flight | Flight Date | Nominal Altitude | Actual Altitude | Cross-Planes Volume (c/s) | Total Activity | \(d/n/1000 \text{ ft}^3 \) | \(d/n/1000 \text{ ft}^3 \) |
|--------------|--------|------------|------------------|-----------------|---------------------------|----------------|------------------------------|
| Sioux City, Iowa | 9270 | 1-44 | 1-859 | 90 | 89 | 2-21-59 | 1,167 ± 627 | 1.12 ± 0.57 |
| | 9313 | 1-45 | 1-859 | 80 | 81.5 | 2-21-59 | 5,478 ± 692 | 1.4 ± 0.53 |
| San Angelo, Texas | 9272 | 1-16 | 1-1059 | 80 | 80.5/70.1 | 2-21-59 | 3,625 ± 680 | 1.4 ± 0.50 |
| | 9312 | 1-31 | 1-2459 | 90 | 95.9/95.0 | 2-22-59 | 4,162 ± 701 | 1.6 ± 1.02 |
| San Paulo, Brazil | 9362 | 5-60 | 1-1559 | 80 | 79.3/77.1 | 2-21-59 | 0 ± 781 | 0.0 ± 0.34 |
| | 9363 | 5-32 | 1-2059 | 65 | 64.4 | 2-22-59 | 1,430 ± 612 | 1.54 ± 2.02 |
| | 9364 | 8-32 | 1-2059 | 90 | 91.6/87.7 | 2-22-59 | 1,230 ± 582 | 0.60 ± 0.35 |

TABLE 6 - Cont'd.

January 1959

| City | Flight | Flight Date | Nominal Altitude | Actual Altitude | Cross-Planes Volume (c/s) | Total Activity | \(d/n/1000 \text{ ft}^3 \) | \(d/n/1000 \text{ ft}^3 \) |
|--------------|--------|------------|------------------|-----------------|---------------------------|----------------|------------------------------|
| Sioux City, Iowa | 9270 | 1-44 | 1-859 | 90 | 89 | 2-21-59 | 1,167 ± 627 | 1.12 ± 0.57 |
| | 9313 | 1-45 | 1-859 | 80 | 81.5 | 2-21-59 | 5,478 ± 692 | 1.4 ± 0.53 |
| San Angelo, Texas | 9272 | 1-16 | 1-1059 | 80 | 80.5/70.1 | 2-21-59 | 3,625 ± 680 | 1.4 ± 0.50 |
| | 9312 | 1-31 | 1-2459 | 90 | 95.9/95.0 | 2-22-59 | 4,162 ± 701 | 1.6 ± 1.02 |
| San Paulo, Brazil | 9362 | 5-60 | 1-1559 | 80 | 79.3/77.1 | 2-21-59 | 0 ± 781 | 0.0 ± 0.34 |
| | 9363 | 5-32 | 1-2059 | 65 | 64.4 | 2-22-59 | 1,430 ± 612 | 1.54 ± 2.02 |
| | 9364 | 8-32 | 1-2059 | 90 | 91.6/87.7 | 2-22-59 | 1,230 ± 582 | 0.60 ± 0.35 |

TABLE 6 - Cont'd.

January 1959

City	Flight	Flight Date	Nominal Altitude	Actual Altitude	Cross-Planes Volume (c/s)	Total Activity	\(d/n/1000 \text{ ft}^3 \)	\(d/n/1000 \text{ ft}^3 \)											
Sioux City, Iowa	9270	1-44	1-859	90	89	2-21-59	1,167 ± 627	1.12 ± 0.57											
	9313	1-45	1-859	80	81.5	2-21-59	5,478 ± 692	1.4 ± 0.53											
San Angelo, Texas	9272	1-16	1-1059	80	80.5/70.1	2-21-59	3,625 ± 680	1.4 ± 0.50											
	9312	1-31	1-2459	90	95.9/95.0	2-22-59	4,162 ± 701	1.6 ± 1.02											
San Paulo, Brazil	9362	5-60	1-1559	80	79.3/77.1	2-21-59	0 ± 781	0.0 ± 0.34											
	9363	5-32	1-2059	65	64.4	2-22-59	1,430 ± 612	1.54 ± 2.02											
	9364	8-32	1-2059	90	91.6/87.7	2-22-59	1,230 ± 582	0.60 ± 0.35											
Date	Flight	Altitude	Actual Altitude	Tropopause	Volume (ft²)	C-date	d/m/1000 ft³	d/m/ft³	Bal40	2r95	650	820	21.5	38.5	20.6	3.06	3.9	21.5	
------------	--------	----------	-----------------	-------------	--------------	--------	--------------	---------	-------	------	------	-----	------	------	------	-----	------	------	--------
December 1958																			
Sioux City, Iowa	9165	1-4-59	12-37-59	80	81.75/82.5	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
San Antonio, Texas	9050	1-1-59	12-1-59	90	93.6/88.5	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
San Paulo, Brazil	9078	1-11-58	12-11-58	80	80.5/80.0	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
Canal Zone	9066	1-11-59	12-11-59	80	80.5/80.0	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
	9092	1-3-59	12-3-59	90	92.4/91	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
	9091	1-3-59	12-3-59	90	92.4/91	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
	9073	1-4-59	12-4-59	65	69.2/67.8	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
	9071	1-4-59	12-4-59	80	81.5/78.4	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			
	9072	1-4-59	12-4-59	90	88.1/86.1	8	650	792	60.6	820	21.5	38.5	20.6	3.06	3.9	21.5			

TABLE 6 - Cont'd.
TABLE 6 - Cont'd.

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Height (ft)</th>
<th>Total Activity</th>
<th>(\text{d}^4/1000 \text{ ft}^3)</th>
<th>(\text{d}^4/\text{sample})</th>
<th>(\text{d}^4/\text{ms})</th>
<th>(\text{sp}^4/\text{py})</th>
<th>(\text{sp}^4/\text{py})</th>
<th>(\text{sp}^4/\text{py})</th>
<th>(\text{sp}^4/\text{py})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Sioéc City, Texas</td>
<td></td>
</tr>
<tr>
<td>9207</td>
<td>T-305</td>
<td>11-1-58</td>
<td>90</td>
<td>88.25/87.5</td>
<td>S</td>
<td>1110</td>
<td>11-11-58</td>
<td>1.97 ± 0.68</td>
<td>< 0.05</td>
<td>152</td>
<td>170</td>
<td>52.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Canal Zone</td>
<td></td>
</tr>
<tr>
<td>8990</td>
<td>P-266</td>
<td>11-11-58</td>
<td>65</td>
<td>65.1/74.75</td>
<td>S</td>
<td>1685</td>
<td>12-11-58</td>
<td>129,000 ± 1650</td>
<td>76.1 ± 0.98</td>
<td>< 0.05</td>
<td>6540</td>
<td>6850</td>
</tr>
<tr>
<td>9017</td>
<td>P-269</td>
<td>11-16-58</td>
<td>90</td>
<td>90.75/88.25</td>
<td>S</td>
<td>1118</td>
<td>12-11-58</td>
<td>7,796 ± 637</td>
<td>6.97 ± 0.75</td>
<td>< 0.05</td>
<td>151</td>
<td>1650</td>
</tr>
<tr>
<td>9036</td>
<td>P-270</td>
<td>11-19-58</td>
<td>80</td>
<td>82.4/90.8</td>
<td>S</td>
<td>1553</td>
<td>1-5-59</td>
<td>20,700 ± 1150</td>
<td>13.2 ± 1.75</td>
<td>< 0.05</td>
<td>2100</td>
<td>7540</td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td></td>
</tr>
<tr>
<td>9013</td>
<td>B-301</td>
<td>11-4-58</td>
<td>80</td>
<td>83.8/83</td>
<td>S</td>
<td>1950</td>
<td>12-11-58</td>
<td>3,530 ± 667</td>
<td>1.81 ± 0.31</td>
<td>< 0.05</td>
<td>236</td>
<td>516</td>
</tr>
<tr>
<td>9014</td>
<td>B-305</td>
<td>11-9-58</td>
<td>90</td>
<td>95.5/92.4</td>
<td>S</td>
<td>853</td>
<td>12-11-58</td>
<td>515 ± 704</td>
<td>0.60 ± 0.82</td>
<td>< 0.05</td>
<td>123</td>
<td>575</td>
</tr>
<tr>
<td>9015</td>
<td>B-309</td>
<td>11-9-58</td>
<td>65</td>
<td>66.6/66</td>
<td>S</td>
<td>1517</td>
<td>12-11-58</td>
<td>377 ± 666</td>
<td>0.25 ± 0.40</td>
<td>*</td>
<td>66.9</td>
<td>62.8</td>
</tr>
</tbody>
</table>

* Analyzed after 10 half lives - not calculated.
TABLE 6 - Cont'd.

October 1958

<table>
<thead>
<tr>
<th>BASE</th>
<th>Flight No.</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height (ft)</th>
<th>Total Activity</th>
<th>dA/1000 ft³</th>
<th>4d*/1000 ft³</th>
<th>Ca 1410</th>
<th>Ca 137</th>
<th>Ca 589</th>
<th>Ca 599/997</th>
<th>Ca 137/997</th>
<th>m</th>
<th>m/8p20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sioux City, Iowa</td>
<td>8811</td>
<td>1-23</td>
<td>10-11-58</td>
<td>65</td>
<td>64.5/64.25</td>
<td>S</td>
<td>1072</td>
<td>11-5-58</td>
<td>3,144 ± 518</td>
<td>1.73 ± 0.26</td>
<td>*</td>
<td>77</td>
<td>108</td>
<td>76</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td>8823</td>
<td>1-27</td>
<td>10-18-58</td>
<td>90</td>
<td>90/89.5</td>
<td>S</td>
<td>1061</td>
<td>11-5-58</td>
<td>1,866 ± 176</td>
<td>0.46 ± 0.26</td>
<td><380</td>
<td>32.1</td>
<td>95.4</td>
<td>61.7</td>
<td><1.15</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td>8824</td>
<td>T-302</td>
<td>10-17-58</td>
<td>65</td>
<td>65.75/65.25</td>
<td>S</td>
<td>1001</td>
<td>11-5-58</td>
<td>5,183 ± 515</td>
<td>3.01 ± 0.28</td>
<td>*</td>
<td>116</td>
<td>588</td>
<td>178</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>8825</td>
<td>T-301</td>
<td>10-16-58</td>
<td>80</td>
<td>79.5/79.0</td>
<td>S</td>
<td>2101</td>
<td>11-5-58</td>
<td>0.0 ± 635</td>
<td>0.0 ± 0.09</td>
<td><1150</td>
<td>21.5</td>
<td>100</td>
<td>57.6</td>
<td>25.9</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>8809</td>
<td>P-204</td>
<td>10-5-58</td>
<td>65</td>
<td>66.1/64.8</td>
<td>S</td>
<td>1674</td>
<td>11-5-58</td>
<td>95,958 ± 1,100</td>
<td>97.1 ± 0.34</td>
<td>*</td>
<td>1820</td>
<td>5020</td>
<td>11,400</td>
<td>268</td>
</tr>
<tr>
<td>Sao Paulo, Brasil</td>
<td>8817</td>
<td>R-300</td>
<td>10-6-58</td>
<td>65</td>
<td>67.0/66.5</td>
<td>S</td>
<td>1335</td>
<td>11-5-58</td>
<td>4,509 ± 515</td>
<td>3.38 ± 0.28</td>
<td>*</td>
<td>856</td>
<td>765</td>
<td>360</td>
<td>69.4</td>
</tr>
<tr>
<td></td>
<td>8819</td>
<td>R-302</td>
<td>10-8-58</td>
<td>80</td>
<td>83.5/82.5</td>
<td>S</td>
<td>1266</td>
<td>11-5-58</td>
<td>12,998 ± 781</td>
<td>8.76 ± 0.53</td>
<td><1770</td>
<td>590</td>
<td>2650</td>
<td>305</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>8820</td>
<td>R-301</td>
<td>10-7-58</td>
<td>90</td>
<td>94.5/93.9</td>
<td>S</td>
<td>866</td>
<td>11-5-58</td>
<td>0 ± 670</td>
<td>0.0 ± 0.08</td>
<td><2200</td>
<td>127</td>
<td>149.2</td>
<td>27.1</td>
<td><58.9</td>
</tr>
</tbody>
</table>

* Analysed after 10 half lives - not calculated.
TABLE 6 - Cont'd.

<table>
<thead>
<tr>
<th>HASL#</th>
<th>Flight#</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Sample Lost</th>
<th>4/4/1000 cc²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sioux City, Iowa</td>
<td>8681</td>
<td>1-17</td>
<td>9-1-58</td>
<td>50</td>
<td>69.5</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>1.01 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>8667</td>
<td>1-10</td>
<td>9-7-58</td>
<td>10</td>
<td>70.75/80</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>8672</td>
<td>1-19</td>
<td>9-8-58</td>
<td>65</td>
<td>61.5/51.75</td>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td>8679</td>
<td>T-295</td>
<td>9-3-58</td>
<td>80</td>
<td>60.5/79.75</td>
<td>8</td>
<td>1797.7</td>
<td>9-26-58</td>
<td>1,101 * 512</td>
<td>0.79 * 0.28</td>
</tr>
<tr>
<td>Sao Paulo, Brasil</td>
<td>8700</td>
<td>B-294</td>
<td>9-6-58</td>
<td>90</td>
<td>91.5/96</td>
<td>8</td>
<td>313</td>
<td>9-26-58</td>
<td>532 ± 687</td>
<td>1.15 ± 0.77</td>
</tr>
<tr>
<td></td>
<td>8702</td>
<td>B-295</td>
<td>9-3-58</td>
<td>25</td>
<td>82.1/83.2</td>
<td>8</td>
<td>1512.3</td>
<td>9-26-58</td>
<td>341 ± 520</td>
<td>0.23 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>8701</td>
<td>B-296</td>
<td>9-6-58</td>
<td>65</td>
<td>65.3/65.9</td>
<td>6</td>
<td>1225</td>
<td>9-26-58</td>
<td>3,016 ± 599</td>
<td>2.16 ± 0.49</td>
</tr>
</tbody>
</table>

* = Analysed after 10 half lives - not calculated.
<table>
<thead>
<tr>
<th>City</th>
<th>Flight</th>
<th>Date</th>
<th>Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>γ^{137}</th>
<th>γ^{90}</th>
<th>γ^{90}/γ^{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sioux City,</td>
<td>T-299</td>
<td>8-1-58</td>
<td>90</td>
<td>60</td>
<td>90</td>
<td>7,500</td>
<td>3.74 ± 0.03</td>
<td>220</td>
<td>2570</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6 ± 3.4</td>
<td>18.3 ± 10.5</td>
</tr>
<tr>
<td></td>
<td>T-299</td>
<td>8-1-58</td>
<td>90</td>
<td>60</td>
<td>90</td>
<td>7,500</td>
<td>3.74 ± 0.03</td>
<td>220</td>
<td>2570</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.6 ± 3.4</td>
<td>18.3 ± 10.5</td>
</tr>
<tr>
<td>San Angelo,</td>
<td>T-293</td>
<td>8-4-58</td>
<td>80</td>
<td>61.0/80.5</td>
<td>80</td>
<td>560</td>
<td>0.67 ± 0.31</td>
<td>(520)</td>
<td>15.5 ± 2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.5 ± 2.9</td>
<td>23.8 ± 1.9</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>T-293</td>
<td>8-4-58</td>
<td>80</td>
<td>61.0/80.5</td>
<td>80</td>
<td>560</td>
<td>0.67 ± 0.31</td>
<td>(520)</td>
<td>15.5 ± 2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.5 ± 2.9</td>
<td>23.8 ± 1.9</td>
</tr>
<tr>
<td>Sao Paulo,</td>
<td>B-297</td>
<td>8-4-58</td>
<td>90</td>
<td>73.8/92.4</td>
<td>90</td>
<td>391</td>
<td>50,13</td>
<td>(71.2)</td>
<td>36.6 ± 13.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.6 ± 13.9</td>
<td>19.6 ± 10.4</td>
</tr>
<tr>
<td></td>
<td>B-297</td>
<td>8-4-58</td>
<td>90</td>
<td>73.8/92.4</td>
<td>90</td>
<td>391</td>
<td>50,13</td>
<td>(71.2)</td>
<td>36.6 ± 13.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.6 ± 13.9</td>
<td>19.6 ± 10.4</td>
</tr>
<tr>
<td>TABLE 6 - Cont'd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 1958</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>San Antonio, Texas</th>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume (ft³)</th>
<th>Total Activity</th>
<th>7-10-58</th>
<th>7-11-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>8323</td>
<td>T-290</td>
<td>7-2-58</td>
<td>80</td>
<td>81.3/81.7</td>
<td>3</td>
<td>1665</td>
<td>10-18-58</td>
<td><800</td>
<td><400</td>
</tr>
<tr>
<td>8332</td>
<td>T-281</td>
<td>7-3-58</td>
<td>65</td>
<td>67</td>
<td></td>
<td>1651</td>
<td>10-18-58</td>
<td>2,950</td>
<td>1,794</td>
</tr>
<tr>
<td>8367</td>
<td>T-297</td>
<td>7-18-58</td>
<td>90</td>
<td>86.5</td>
<td></td>
<td>1978</td>
<td>5-23-58</td>
<td>231</td>
<td>2-171</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>San Paolo, Brazil</th>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume (ft³)</th>
<th>Total Activity</th>
<th>7-7-58</th>
<th>7-10-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>8327</td>
<td>B-285</td>
<td>7-7-58</td>
<td>65</td>
<td>69.1/70.2</td>
<td>3</td>
<td>1299</td>
<td>---</td>
<td>---</td>
<td>-161</td>
</tr>
<tr>
<td>8329</td>
<td>B-285</td>
<td>7-9-58</td>
<td>90</td>
<td>89.4/89.7</td>
<td>3</td>
<td>1073</td>
<td>---</td>
<td>---</td>
<td>-118</td>
</tr>
<tr>
<td>8330</td>
<td>B-286</td>
<td>7-12-58</td>
<td>65</td>
<td>62.5/63.5</td>
<td>3</td>
<td>1800</td>
<td>9-18-58</td>
<td>34.1</td>
<td>16</td>
</tr>
<tr>
<td>8331</td>
<td>B-297</td>
<td>7-15-58</td>
<td>60</td>
<td>76.4/79.4</td>
<td>3</td>
<td>1615</td>
<td>9-17-58</td>
<td>378</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4/g/1000 ft³</th>
<th>Halo</th>
<th>C137</th>
<th>C137/M</th>
<th>CO²/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-18-58</td>
<td>98.3</td>
<td><19</td>
<td>25.2</td>
<td>16.2</td>
</tr>
<tr>
<td>7-11-58</td>
<td>94.6</td>
<td>297</td>
<td>19.4</td>
<td>10.7</td>
</tr>
<tr>
<td>7-10-58</td>
<td>59.3</td>
<td>394</td>
<td>10.4</td>
<td>10.4</td>
</tr>
<tr>
<td>7-11-58</td>
<td>61.1</td>
<td>31.9</td>
<td>15.8</td>
<td>5.23</td>
</tr>
<tr>
<td>7-10-58</td>
<td>68.1</td>
<td>311</td>
<td>15.2</td>
<td>5.23</td>
</tr>
<tr>
<td>7-11-58</td>
<td>69.1</td>
<td>311</td>
<td>15.2</td>
<td>5.23</td>
</tr>
<tr>
<td>7-10-58</td>
<td>71.9</td>
<td>32.9</td>
<td>15.8</td>
<td>5.23</td>
</tr>
<tr>
<td>7-11-58</td>
<td>74.0</td>
<td>32.1</td>
<td>15.6</td>
<td>5.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4/g/1000 ft³</th>
<th>Halo</th>
<th>C137</th>
<th>C137/M</th>
<th>CO²/p</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-18-58</td>
<td>98.3</td>
<td><19</td>
<td>25.2</td>
<td>16.2</td>
</tr>
<tr>
<td>7-11-58</td>
<td>94.6</td>
<td>297</td>
<td>19.4</td>
<td>10.7</td>
</tr>
<tr>
<td>7-10-58</td>
<td>59.3</td>
<td>394</td>
<td>10.4</td>
<td>10.4</td>
</tr>
<tr>
<td>7-11-58</td>
<td>61.1</td>
<td>311</td>
<td>15.2</td>
<td>5.23</td>
</tr>
<tr>
<td>7-10-58</td>
<td>68.1</td>
<td>311</td>
<td>15.2</td>
<td>5.23</td>
</tr>
<tr>
<td>7-11-58</td>
<td>69.1</td>
<td>311</td>
<td>15.2</td>
<td>5.23</td>
</tr>
<tr>
<td>7-10-58</td>
<td>71.9</td>
<td>32.9</td>
<td>15.8</td>
<td>5.23</td>
</tr>
<tr>
<td>7-11-58</td>
<td>74.0</td>
<td>32.1</td>
<td>15.6</td>
<td>5.23</td>
</tr>
<tr>
<td>Base</td>
<td>Flight#</td>
<td>Flight Date</td>
<td>Nominal Altitude</td>
<td>Actual Altitude</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>8176</td>
<td>6-7-58</td>
<td>90</td>
<td>90.7/91.4</td>
</tr>
<tr>
<td>8177</td>
<td>6-11-58</td>
<td>50</td>
<td>69.1</td>
<td>80.7/81.0</td>
</tr>
<tr>
<td>8188</td>
<td>6-17-58</td>
<td>80</td>
<td>76.9</td>
<td>80.4/80.7</td>
</tr>
<tr>
<td>8302</td>
<td>6-27-58</td>
<td>65</td>
<td>63.5/64.3</td>
<td>59.5</td>
</tr>
<tr>
<td>San Angelo, TX</td>
<td>8098</td>
<td>6-3-58</td>
<td>80</td>
<td>79.9/80.5</td>
</tr>
<tr>
<td>8099</td>
<td>6-5-58</td>
<td>90</td>
<td>88.8/89.5</td>
<td>80.8/81.0</td>
</tr>
<tr>
<td>8175</td>
<td>6-7-58</td>
<td>65</td>
<td>65.9/66.3</td>
<td>65.9/66.3</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>8072</td>
<td>6-8-58</td>
<td>65</td>
<td>64.5/64.8</td>
</tr>
<tr>
<td>8178</td>
<td>6-6-58</td>
<td>80</td>
<td>79.5/81.7</td>
<td>79.5/81.7</td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td>8183</td>
<td>6-4-58</td>
<td>65</td>
<td>69.6/70.1</td>
</tr>
<tr>
<td>8185</td>
<td>6-8-58</td>
<td>80</td>
<td>79.1</td>
<td>80.0/80.7</td>
</tr>
<tr>
<td>8187</td>
<td>6-13-58</td>
<td>80</td>
<td>78.1/78.6</td>
<td>78.1/78.6</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.
TABLE 6 - Cont'd.

May 1958

BASE #	Flight	Flight Date	Nominal Altitude	Actual Altitude	Tropopause Height	Volume (ft³)	C-Date	Total Activity	1/4/1000 m³	1/4/1000 m³	Sr89/Sr90	Sr90/ Sr90	C¹³⁷/C¹⁹⁵	Sr89/Sr90	Sr90/Sr90	C¹³⁷/C¹⁹⁵	
Minneapolis 8005	2147	5-8-58	50	18.3	32.5	3653	8-19-58	8,200	2.12	121	697	571	51.0	257	11.3	82.7	5.01
8006	2348	5-19-58	90	90.6	8	1506	8-7-58	700	0.46	58.7	14.6	113	29.2	14.8	32.8	5.49	2.28
8033	2955-2	5-16-58	65	64.5	39.0	28.81	8-7-58	5,600	2.05	21.4	190	953	86.7	233	51.8	4.05	1.15
8051	2350	5-13-58	60	77.7	8	1517	8-1-58	750	0.49	<716	50.1	35.9	73.2	91.2	21.2	9.18	>31.7
San Antonio, Texas 7988	T-266	5-1-58	65	65.4/66.0	8	1693	6-27-58	4,750	2.80	--	281	665	62.6	379	16.7	9.47	1.34
7989	T-257	5-1-58	90	92.0/93.0	8	927	6-27-58	400	0.43	--	31.3	35.6	425.7	410	5.02	19.4	4.10
7990	T-251	5-10-58	50	65.1	44.8	1131	6-27-58	4,000	3.35	--	656	675	50.4	669	23.1	10.4	1.32
8036	T-373	5-13-58	60	79.9/80.4	8	1795	7-25-58	1,100	0.63	33.6	15.9	152	106	33.0	10.6	<2.68	0.41
Canal Zone 7983	P-615	5-1-58	65	64.1/64.4	51.5	1259	6-16-58	4,700	2.63	--	251	597	68.0	16.3	10.1	4.86	1.7
7995	P-617	5-4-58	90	72.9/94.2	8	1328	6-16-58	2,510	1.65	--	144	142	80.8	137	10.2	4.33	2.04
8031	P-619	5-9-58	80	7776	8-7-58	10,100	5.86	802	1,800	125	126	51.6	452	91.8	5.90	1.59	
Sao Paulo, Brazil 8037	B-368	5-9-58	65	64.6	53.7/65	2066	8-4-58	580	2.87	<146.5	283.2	81.1	38.1	35.4	5.44	4.65	5.40
8058	B-271	5-11-58	90	85.5/90.2	8	1192	8-19-58	580	0.89	<51.2	162.2	16.1	26.9	120.8	5.16	7.93	4.85
8059	B-273	5-17-58	80	78.9/79.4	8	2050	8-5-58	750	0.37	<89.4	113	15.0	20.7	<19.5	5.34	<3.65	3.88

1. Stratospheric sample.
| BASE | Flight | Flight Date | Nominal Altitude | Actual Altitude | Troppass Volume | Flight Data | Total Activity | 110mBe | 75Se | 111In | 137Ba | 54Mn | 39Sr | 95Zr | 137Ba/90Sr | 152Eu/153Eu | 155Eu/153Eu | 157Eu/153Eu | 159Eu/153Eu | 161Eu/153Eu | 163Eu/153Eu | 165Eu/153Eu | 167Eu/153Eu | 169Eu/153Eu | 171Eu/153Eu | 173Eu/153Eu | 175Eu/153Eu | 177Eu/153Eu | 179Eu/153Eu | 181Eu/153Eu | 183Eu/153Eu |
|------|--------|-------------|-----------------|-----------------|----------------|-------------|---------------|-----------|---------|---------|---------|---------|---------|---------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Minneapolis | 7805 | 1-7-58 | 90 | 90.1 | 8 | 1163 | 5-8-58 | 150 | 2 | 0.101 ± 0.007 | 5771 | 54.9 | 115 | 22.9 | 36.4 | 34.8 | 3.0 | 1.78 |
| | 7806 | 2-37 | 7-8-58 | 80 | 74.4/77.9 | 8 | 1502 | 6-8-58 | 340 | 2 | 0.43 ± 0.007 | 399 | 121 | 172 | 142.9 | 61.8 | 16.5 | 3.7 | 2.6 |
| | 7807 | 9-9-58 | 50 | 16.5/17.3 | 34 | 3799 | 6-8-58 | 7,800 | 100 | 2.15 ± 0.03 | 1110 | 3960 | 1110 | 17.4 | 371 | 26.1 | 21.9 | 1.85 |
| | 7808 | 2-39 | 2-3-58 | 65 | 64.1/64.7 | 14 | 3750 | 7-11-58 | 2,470 | 50 | 0.26 ± 0.02 | 294 | 556 | 265 | 138 | 269 | 52.9 | 9.08 | 2.61 |
| San Angelo, Texas | 7703 | T-259 | 1-1-58 | 90 | 90.0/90.7 | 8 | 1052 | 6-10-58 | 180 | 2 | 0.44 ± 0.02 | 532 | 119 | 201 | 55.4 | 18.6 | 22.6 | 0.82 | 2.45 |
| | 7704 | T-250 | 1-2-58 | 80 | 79.9 | 8 | 1887 | 6-9-58 | 180 | 2 | 0.089 ± 0.001 | 1415 | 15.9 | 50.1 | 8.9 | 1.25 | 3.42 |
| | 7705 | T-261 | 1-3-58 | 65 | 64.7 | 10 | 1923 | 6-7-58 | 3,270 | 60 | 1.70 ± 0.04 | 915 | 910 | 321 | 130 | 267 | 35.6 | 3.68 |
| | 7706 | T-255 | 1-8-58 | 50 | 19.4 | 41.3 | 1780 | 6-7-58 | 570 | 20 | 0.52 ± 0.01 | 116 | 554 | 186 | 9.18 | 66.2 | 4.3 | 15.9 | 2.14 |
| Canal Zone | 7868 | E-231 | 1-1-58 | 90 | 91.4/93.5 | 5 | 920 | 7-11-58 | 221 | 9 | 0.26 ± 0.01 | 145 | 37.9 | 231 | 92.9 | 5.25 | 47.3 | 0.11 | 1.96 |
| | 7869 | E-232 | 1-11-58 | 65 | 65.0 | 54.0 | 1892 | 7-11-58 | 1,110 | 50 | 0.59 ± 0.01 | 199 | 565 | 257 | 86.9 | 32 | 4.18 | 2.09 |
| Sao Paulo, Brazil | 7809 | B-2-5 | 3-3-58 | 60 | 65.5 | 52.0 | 1887 | 6-8-58 | 151 | 6 | 0.06 ± 0.003 | 230 | 66.7 | 47.4 | 11.5 | 58.3 | 5.08 | 4.13 | 1.95 |
| | 7810 | B-235 | 1-3-58 | 80 | 79.1/79.5 | 8 | 1968 | 7-4-58 | 183 | 9 | 0.22 ± 0.004 | 241 | 15.4 | 256 | 123 | 53.7 | 30.0 | 0.78 | 4.02 |
| | 7811 | B-266 | 5-3-58 | 90 | 90.7 | 5 | 657 | 7-4-58 | 38 | 6 | 0.06/7 ± 0.007 | 462 | 56.4 | 65.0 | 27.7 | 1.82 | 12.3 | 0.15 | 2.25 |
| Flight# | Flight Date | Nominal Altitude | Actual Altitude | Tropopause Height | Value | Total Activity | C-Data | $\frac{C}{g/gal}$ | $\frac{C}{g/gal}$ | $\frac{C}{g/gal}$ | Total Activity |
|--------|-------------|------------------|-----------------|-------------------|-------|----------------|--------|----------------|----------------|----------------|----------------|----------------|
| 7712 | 3-6-58 | 50 | 53.7 | 54.0 | 51.84 | 3-13-58 | 12,690 | 933 | 2.30 ± 0.17 | 5.05 | 190 | 214.4 | 1.01 |
| 7713 | 3-12-58 | 65 | 63.4/63.7 | 64.0 | 3591 | 5-26-58 | 5,760 | 650 | 1.6 ± 0.01 | 1360 | 125.5 | 600 | 0.95 |
| 7714 | 5-20-58 | 97.1/77.1 | 97.5 | 90.3 | 1454 | 3-13-58 | 1,912 | 27 | 0.26 ± 0.06 | 501 | 12.5 | 129 | 3.01 |
| 7715 | 3-26-58 | 90 | 92.8 | 87.2 | 1284 | 4-1-58 | 593 | 16 | 0.16 ± 0.02 | 2105 | 180 | 10.1 | 960 | 0.005 |
| 7716 | 3-3-58 | 90 | 91.5/87.6 | 90.3 | 1180 | 4-2-58 | 1,160 | 558 | 1.08 ± 0.36 | 734 | 11.3 | 9.51 | 1.05 | 1.57 |
| 7717 | 3-9-58 | 65 | 65.1 | 37.8 | 1851 | 4-17-58 | 4,760 | 162 | 2.57 ± 0.25 | 19000 | 718 | 129 | 0.0 | 129 | 9.23 |
| 7718 | 3-1-58 | 80 | 80.5/80.7 | 80.3 | 1758 | 4-2-58 | 2,239 | 608 | 1.26 ± 0.24 | 5860 | 89.7 | 783 | 1.6 | 1.61 |
| 7719 | 3-4-58 | 90 | 91.4/92.0 | 92.5 | 905 | 4-1-58 | 236 | 17 | 0.26 ± 0.07 | 3620 | 60.0 | 22.6 | 0.0 | 22.6 | 1.02 |
| 7720 | 3-6-58 | 88.9/89.4 | 89.5 | 85.8 | 1080 | 4-17-58 | 350 | 0.18 | 530 | 19.6 | 7.27 | 7.55 | 3.0 | 0.96 |
| 7721 | 3-7-58 | 80 | 78.1/78.1 | 78.1 | 2049 | 5-13-58 | 660 | 20 | 0.31 ± 0.01 | 1560 | 76.5 | 35.6 | 14 | 2.33 | 2.85 |

March 1956
TABLE 6 - Cont'd.

February 1959

<table>
<thead>
<tr>
<th>Hasi#</th>
<th>Flight#</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume (ft³)</th>
<th>June 1959</th>
<th>June 1959</th>
<th>June 1959</th>
<th>July 1959</th>
<th>July 1959</th>
<th>June 1959</th>
<th>June 1959</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE 6 - Cont'd.

January 1958

<table>
<thead>
<tr>
<th>City</th>
<th>Flight #</th>
<th>Flight Date</th>
<th>Normal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume</th>
<th>Total Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td>7514</td>
<td>1-10-58</td>
<td>65</td>
<td>64.2</td>
<td>33.0</td>
<td>3165</td>
<td>81.6</td>
</tr>
<tr>
<td></td>
<td>7518</td>
<td>1-12-58</td>
<td>90</td>
<td>92/89.5</td>
<td>8</td>
<td>2310</td>
<td>81.6</td>
</tr>
<tr>
<td></td>
<td>7526</td>
<td>1-20-58</td>
<td>65</td>
<td>57.7/70</td>
<td>8</td>
<td>2311</td>
<td>577.0</td>
</tr>
<tr>
<td>San Angelo, TX</td>
<td>7032</td>
<td>1-7-58</td>
<td>90</td>
<td>79.6/91.1</td>
<td>8</td>
<td>1707</td>
<td>89.95</td>
</tr>
<tr>
<td></td>
<td>7035</td>
<td>1-8-58</td>
<td>65</td>
<td>76.9/91.3</td>
<td>8</td>
<td>7032</td>
<td>52.8</td>
</tr>
<tr>
<td></td>
<td>7036</td>
<td>1-17-58</td>
<td>65</td>
<td>65.1</td>
<td>40.0</td>
<td>1069</td>
<td>107.2</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>7201</td>
<td>1-5-58</td>
<td>60</td>
<td>76.9/91.2</td>
<td>8</td>
<td>1708</td>
<td>70.2</td>
</tr>
<tr>
<td></td>
<td>7202</td>
<td>1-13-58</td>
<td>90</td>
<td>59.4/91.3</td>
<td>5</td>
<td>7202</td>
<td>59.4</td>
</tr>
<tr>
<td>Sao Paulo, Br</td>
<td>7596</td>
<td>1-8-58</td>
<td>90</td>
<td>90.1/92.0</td>
<td>8</td>
<td>391</td>
<td>20.16</td>
</tr>
<tr>
<td></td>
<td>7597</td>
<td>1-10-58</td>
<td>65</td>
<td>61.6/69.2</td>
<td>52.5</td>
<td>1650</td>
<td>66.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight Data</th>
<th>1-10-58</th>
<th>1-12-58</th>
<th>1-20-58</th>
<th>1-7-58</th>
<th>1-8-58</th>
<th>1-17-58</th>
<th>1-5-58</th>
<th>1-13-58</th>
<th>1-8-58</th>
<th>1-10-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1-58</td>
<td>8,139</td>
<td>9,50</td>
<td>8,267</td>
<td>7,70</td>
<td>7,10</td>
<td>12,371</td>
<td>7,40</td>
<td>5,70</td>
<td>5,70</td>
<td>5,70</td>
</tr>
<tr>
<td>2-2-58</td>
<td>3,96</td>
<td>500</td>
<td>1,041</td>
<td>1,23</td>
<td>1,03</td>
<td>8,05</td>
<td>1,33</td>
<td>2,23</td>
<td>2,23</td>
<td>2,23</td>
</tr>
<tr>
<td>1-2-58</td>
<td>1,170</td>
<td>576</td>
<td>1,190</td>
<td>9,70</td>
<td>9,70</td>
<td>1,190</td>
<td>9,70</td>
<td>1,190</td>
<td>1,190</td>
<td>1,190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C-date</th>
<th>2-1-58</th>
<th>2-2-58</th>
<th>1-2-58</th>
<th>2-1-58</th>
<th>1-8-58</th>
<th>1-17-58</th>
<th>1-5-58</th>
<th>1-13-58</th>
<th>1-8-58</th>
<th>1-10-58</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10-58</td>
<td>273</td>
<td>513</td>
<td>124</td>
<td>371</td>
<td>39.5</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>1-12-58</td>
<td>124</td>
<td>371</td>
<td>39.5</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>1-20-58</td>
<td>371</td>
<td>39.5</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
<td>9.4</td>
</tr>
<tr>
<td>1-7-58</td>
<td>9.4</td>
</tr>
<tr>
<td>1-8-58</td>
<td>9.4</td>
</tr>
<tr>
<td>1-17-58</td>
<td>9.4</td>
</tr>
<tr>
<td>1-5-58</td>
<td>9.4</td>
</tr>
<tr>
<td>1-13-58</td>
<td>9.4</td>
</tr>
<tr>
<td>1-8-58</td>
<td>9.4</td>
</tr>
<tr>
<td>1-10-58</td>
<td>9.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr95</th>
<th>32.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs137</td>
<td>10.4</td>
</tr>
<tr>
<td>Sr99</td>
<td>10.4</td>
</tr>
<tr>
<td>Sr97/9y00</td>
<td>10.4</td>
</tr>
<tr>
<td>Sr97/9y00</td>
<td>10.4</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>7899</td>
<td>12-4-57</td>
<td>50</td>
<td>56.7/67.5</td>
<td>55.0</td>
<td>12065</td>
<td>12-12-57</td>
<td>77.570 ± 1.580</td>
<td>6.16 ± 0.32</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7877</td>
<td>12-12-57</td>
<td>80</td>
<td>81.1/91.5</td>
<td>81.2</td>
<td>1596</td>
<td>1-7-58</td>
<td>12,100 ± 892</td>
<td>8.34 ± 0.56</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7861</td>
<td>12-21-57</td>
<td>65</td>
<td>65.46</td>
<td>63.3</td>
<td>5106</td>
<td>1-7-58</td>
<td>28,380 ± 690</td>
<td>8.33 ± 0.20</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7823</td>
<td>12-13-57</td>
<td>90</td>
<td>88.1/98.6</td>
<td>92.7</td>
<td>1163</td>
<td>1-16-58</td>
<td>$750 ± 554</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>San Angelo, Texa</td>
<td>7829</td>
<td>12-9-57</td>
<td>90</td>
<td>92.7</td>
<td>90.2</td>
<td>1021</td>
<td>12-16-57</td>
<td>1,270 ± 60</td>
<td>1.27 ± 0.54</td>
<td><1.8 ± 0.75</td>
</tr>
<tr>
<td></td>
<td>7877</td>
<td>12-23-57</td>
<td>80</td>
<td>80.4</td>
<td>80.7</td>
<td>1375</td>
<td>12-16-57</td>
<td>1,600 ± 660</td>
<td>0.80 ± 0.38</td>
<td><21.2 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>7861</td>
<td>12-9-57</td>
<td>50</td>
<td>88.8</td>
<td>88.0</td>
<td>1712</td>
<td>12-16-57</td>
<td>1,270 ± 60</td>
<td>0.70 ± 0.35</td>
<td><21.2 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>7856</td>
<td>12-11-57</td>
<td>65</td>
<td>62.4</td>
<td>62.9</td>
<td>2005</td>
<td>12-23-57</td>
<td>22,760 ± 815</td>
<td>10.9 ± 0.86</td>
<td><234 ± 17</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>7888</td>
<td>P-211</td>
<td>90</td>
<td>89.5/98.3</td>
<td>90.7</td>
<td>1133</td>
<td>12-16-57</td>
<td>690 ± 60</td>
<td>0.57 ± 0.20</td>
<td><234 ± 17</td>
</tr>
<tr>
<td></td>
<td>7987</td>
<td>P-212</td>
<td>65</td>
<td>65.9/65.5</td>
<td>66.4</td>
<td>1740</td>
<td>12-23-57</td>
<td>20,950 ± 920</td>
<td>11.6 ± 0.74</td>
<td><591 ± 35</td>
</tr>
<tr>
<td>Sao Paulo, Brasil</td>
<td>7856</td>
<td>B-234</td>
<td>80</td>
<td>81.2/90.3</td>
<td>81.6</td>
<td>1821</td>
<td>1-16-58</td>
<td>8460 ± 540</td>
<td>50.30 ± 0.48</td>
<td><21.2 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>7865</td>
<td>B-236</td>
<td>65</td>
<td>65.3/65.8</td>
<td>66.2</td>
<td>1571</td>
<td>1-16-58</td>
<td>9660 ± 540</td>
<td>50.30 ± 0.48</td>
<td><15.1 ± 0.65</td>
</tr>
<tr>
<td></td>
<td>7867</td>
<td>B-239</td>
<td>50</td>
<td>61.9/60.2</td>
<td>62.0</td>
<td>2784</td>
<td>1-16-58</td>
<td>9660 ± 540</td>
<td>50.30 ± 0.48</td>
<td><7.1 ± 0.28</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.
TABLE 6 - Cont'd.

November 1957

<table>
<thead>
<tr>
<th>Location</th>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volumes (S.C.F.)</th>
<th>Total Activity</th>
<th>$3/4/1000$ S.C.F.</th>
<th>35Cl</th>
<th>37Cl</th>
<th>40K</th>
<th>85Sr</th>
<th>90Sr</th>
<th>90Sr/85Sr</th>
<th>137Cs</th>
<th>137Cs/85Sr</th>
<th>137Cs/137Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td></td>
</tr>
<tr>
<td>7297</td>
<td>2099</td>
<td>11-25-57</td>
<td>60</td>
<td>78.6/79.0</td>
<td>3</td>
<td>8</td>
<td>806</td>
<td>12-12-57</td>
<td>2,990 ± 610</td>
<td>3.21 ± 1.00</td>
<td>22.6</td>
<td>24.7</td>
<td>395</td>
<td>29.3</td>
<td>11.7</td>
<td>3.43</td>
<td></td>
</tr>
<tr>
<td>7298</td>
<td>2301</td>
<td>11-03-57</td>
<td>65</td>
<td>93.7/44.3</td>
<td>30.5</td>
<td>3617</td>
<td>12-10-57</td>
<td>3,780 ± 650</td>
<td>1.04 ± 0.17</td>
<td>73.7</td>
<td>98.6</td>
<td>200</td>
<td>50.5</td>
<td>14.6</td>
<td>7.53</td>
<td>3.46</td>
<td></td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td></td>
</tr>
<tr>
<td>7234</td>
<td>7-031</td>
<td>11-18-57</td>
<td>80</td>
<td>81.0/80.2</td>
<td>5</td>
<td>5554</td>
<td>11-26-57</td>
<td>3,720 ± 660</td>
<td>0.66 ± 0.12</td>
<td>--</td>
<td>11.3</td>
<td>207</td>
<td>71.4</td>
<td>7.04</td>
<td>0.28</td>
<td>3.68</td>
<td></td>
</tr>
<tr>
<td>7235</td>
<td>7-032</td>
<td>11-18-57</td>
<td>50</td>
<td>47.5</td>
<td>66.0</td>
<td>2,820</td>
<td>11-26-57</td>
<td>16,000 ± 900</td>
<td>6.68 ± 0.37</td>
<td>1350</td>
<td>735</td>
<td>518</td>
<td>159</td>
<td>9.92</td>
<td>11.0</td>
<td>3.42</td>
<td></td>
</tr>
<tr>
<td>7236</td>
<td>7-036</td>
<td>11-07-57</td>
<td>65</td>
<td>66.5/65.5</td>
<td>66.0</td>
<td>1,770</td>
<td>12-12-57</td>
<td>12,600 ± 870</td>
<td>7.11 ± 0.49</td>
<td>159</td>
<td>581</td>
<td>152</td>
<td>172</td>
<td>18.25</td>
<td>11.5</td>
<td>3.80</td>
<td></td>
</tr>
<tr>
<td>7240</td>
<td>7-039</td>
<td>11-23-57</td>
<td>66</td>
<td>66</td>
<td>1766</td>
<td>1-7-58</td>
<td>144,000</td>
<td>890 ± 25.0</td>
<td>0.50</td>
<td>2517</td>
<td>2011</td>
<td>21.6</td>
<td>8998.</td>
<td>71.2</td>
<td>35.0</td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td></td>
</tr>
<tr>
<td>7301</td>
<td>8-031</td>
<td>11-04-57</td>
<td>80</td>
<td>80/79.5</td>
<td>8</td>
<td>1980</td>
<td>12-23-57</td>
<td>80.4 ± 630</td>
<td>0.42 ± 0.32</td>
<td>-16.9</td>
<td><11.8</td>
<td>61.9</td>
<td>38.6</td>
<td><11.5</td>
<td>9.79</td>
<td>1.17</td>
<td>3.95</td>
</tr>
</tbody>
</table>
TABLE 6 - Cont'd.

October 1957

<table>
<thead>
<tr>
<th>Location</th>
<th>Flight #</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Total Activity</th>
<th>(\text{\textit{A}}/1000 \text{ S.C.F.})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\text{d}/\text{q}/\text{a})</td>
<td>(\text{d}/\text{q}/\text{a})</td>
</tr>
<tr>
<td>Minneapolis</td>
<td>6980</td>
<td>10-2-57</td>
<td>50</td>
<td>18.4/18.2</td>
<td>18.5</td>
<td>1,220</td>
<td>630</td>
</tr>
<tr>
<td>San Angeles, Texas</td>
<td>6981</td>
<td>10-1-57</td>
<td>50</td>
<td>18.0</td>
<td>18.5</td>
<td>2,910</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>6982</td>
<td>10-3-57</td>
<td>90</td>
<td>91.25/90.75</td>
<td>90</td>
<td>3,540</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td>6996</td>
<td>10-4-57</td>
<td>80</td>
<td>80</td>
<td>82.5</td>
<td>3,500</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>6997</td>
<td>10-5-57</td>
<td>65</td>
<td>63.5</td>
<td>67.0</td>
<td>6,265</td>
<td>120</td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td>7059</td>
<td>10-8-57</td>
<td>90</td>
<td>89.5</td>
<td>89.5</td>
<td>5,470</td>
<td>69.6</td>
</tr>
<tr>
<td></td>
<td>7060</td>
<td>10-9-57</td>
<td>80</td>
<td>80.2</td>
<td>80.2</td>
<td>625</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7065</td>
<td>10-11-57</td>
<td>65</td>
<td>67.2</td>
<td>67.2</td>
<td>925</td>
<td>120</td>
</tr>
</tbody>
</table>

1. Stratospheric sample.

() Values suspect due to late analysis date.
TABLE 6 - Cont'd.

September 1957

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Flight Date</th>
<th>Date</th>
<th>Altitude</th>
<th>Altitude</th>
<th>Flight</th>
<th>Volume</th>
<th>Total Activity</th>
<th>6/4/1000 B.c.f.</th>
<th>6/37/60</th>
<th>6/37/90</th>
<th>6/30/90</th>
<th>6/29/90</th>
</tr>
</thead>
<tbody>
<tr>
<td>6085</td>
<td>2263</td>
<td>9-4-57</td>
<td>50</td>
<td>46.4/48.9</td>
<td>38.9</td>
<td>2250</td>
<td>9-23-57</td>
<td>5,160 ± 770</td>
<td>2.91 ± 0.24</td>
<td>± 18.5</td>
<td>272</td>
<td>400</td>
</tr>
<tr>
<td>6057</td>
<td>2265</td>
<td>9-6-57</td>
<td>60</td>
<td>80.5</td>
<td>217</td>
<td>9-23-57</td>
<td>2,160 ± 820</td>
<td>0.72 ± 0.26</td>
<td>± 108</td>
<td>112</td>
<td>134</td>
<td>55.9</td>
</tr>
<tr>
<td>6086</td>
<td>2266</td>
<td>9-9-57</td>
<td>65</td>
<td>63.8</td>
<td>39.6</td>
<td>366</td>
<td>9-23-57</td>
<td>6,000 ± 740</td>
<td>1.86 ± 0.29</td>
<td>± 11.4</td>
<td>58.4</td>
<td>510</td>
</tr>
<tr>
<td>6032</td>
<td>2269</td>
<td>9-9-57</td>
<td>65</td>
<td>65.0</td>
<td>38.6</td>
<td>180</td>
<td>10-4-57</td>
<td>4,170 ± 880</td>
<td>1.06 ± 0.23</td>
<td>± 177.1</td>
<td>54.5</td>
<td>186</td>
</tr>
<tr>
<td>6758</td>
<td>T-201</td>
<td>9-4-57</td>
<td>90</td>
<td>90.1</td>
<td>8</td>
<td>100</td>
<td>9-23-57</td>
<td>5,000 ± 600</td>
<td>4.87 ± 0.58</td>
<td>± 107</td>
<td>214</td>
<td>197</td>
</tr>
<tr>
<td>6815</td>
<td>T-223</td>
<td>9-6-57</td>
<td>60</td>
<td>60.5</td>
<td>8</td>
<td>100</td>
<td>9-23-57</td>
<td>6,550 ± 750</td>
<td>3.51 ± 0.40</td>
<td>± 621</td>
<td>160</td>
<td>159</td>
</tr>
<tr>
<td>6816</td>
<td>T-224</td>
<td>9-11-57</td>
<td>65</td>
<td>64.7</td>
<td>30.9</td>
<td>180</td>
<td>9-23-57</td>
<td>5,510 ± 710</td>
<td>3.06 ± 0.39</td>
<td>± 585</td>
<td>197</td>
<td>196</td>
</tr>
<tr>
<td>6817</td>
<td>8-214</td>
<td>9-11-57</td>
<td>50</td>
<td>49.3/50.7</td>
<td>44.0</td>
<td>165</td>
<td>10-4-57</td>
<td>2,050 ± 640</td>
<td>1.39 ± 0.29</td>
<td>± 412</td>
<td>137</td>
<td>219</td>
</tr>
</tbody>
</table>

Notes:
1. Stratospheric Sample.
TABLE 6 - Cont'd.

August 1957

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td>6605</td>
<td>8-2-57</td>
<td>50</td>
<td>60</td>
<td>13.1</td>
<td>5171</td>
<td>9</td>
<td>9-17-57</td>
<td>6.006 ± 1</td>
<td>3.17 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>6610</td>
<td>8-3-57</td>
<td>90</td>
<td>89.6/31.6</td>
<td>S</td>
<td>2101</td>
<td>9</td>
<td>9-17-57</td>
<td>6.61 ± 0.25</td>
<td>0.25 ± 0.23</td>
</tr>
<tr>
<td></td>
<td>6661</td>
<td>8-10-57</td>
<td>90</td>
<td>88.9</td>
<td>S</td>
<td>2666</td>
<td>9-17-57</td>
<td>6.66 ± 0.10</td>
<td>0.60 ± 0.24</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>6695</td>
<td>6-20-57</td>
<td>65</td>
<td>64.0</td>
<td>LI.1</td>
<td>1260</td>
<td>9-17-57</td>
<td>20.39 ± 0.1</td>
<td>1.61 ± 0.08</td>
<td>S</td>
</tr>
<tr>
<td>San Angelo,</td>
<td>6653</td>
<td>7-2-57</td>
<td>65</td>
<td>64.9</td>
<td>50.6</td>
<td>1660</td>
<td>9-17-57</td>
<td>4.670 ± 2</td>
<td>690 ± 2.81</td>
<td>9.21 ± 0.42</td>
</tr>
<tr>
<td>Texas</td>
<td>6654</td>
<td>7-2-57</td>
<td>90</td>
<td>89.4/91.8</td>
<td>S</td>
<td>1061</td>
<td>9-17-57</td>
<td>3.100 ± 1</td>
<td>710 ± 2.92</td>
<td>0.67 ± 0.07</td>
</tr>
<tr>
<td>Sao Paulo,</td>
<td>6697</td>
<td>8-2-57</td>
<td>65</td>
<td>64.0/66.0</td>
<td>S</td>
<td>1830</td>
<td>9-17-57</td>
<td>1.100 ± 1</td>
<td>780 ± 0.99</td>
<td>0.58 ± 0.58</td>
</tr>
<tr>
<td>Brazil</td>
<td>6668</td>
<td>8-20-57</td>
<td>90</td>
<td>69.0</td>
<td>S</td>
<td>1061</td>
<td>9-23-57</td>
<td>2.280 ± 5</td>
<td>690 ± 1.14</td>
<td>0.35 ± 0.35</td>
</tr>
<tr>
<td></td>
<td>6700</td>
<td>8-211</td>
<td>90</td>
<td>79.0/79.0</td>
<td>S</td>
<td>1797</td>
<td>9-17-57</td>
<td>6.66 ± 0.1</td>
<td>510 ± 1.30</td>
<td>7.03 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>6701</td>
<td>8-231</td>
<td>90</td>
<td>90.1</td>
<td>S</td>
<td>993</td>
<td>9-17-57</td>
<td>2.290 ± 2</td>
<td>700 ± 2.43</td>
<td>0.70 ± 0.70</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.

() Values suspect due to late analysis.

Note:
- Bolded values indicate significant changes or errors.
- Underlined values indicate special conditions or annotations.

August 1957

- Minneapolis: 6605, 6610, 6661, 6695
- San Angelo, Texas: 6653, 6654
- Sao Paulo, Brazil: 6697, 6668, 6700, 6701
TABLE 6 - Cont'd.

July 1957

<table>
<thead>
<tr>
<th>City</th>
<th>Flight</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume (S.C.F.)</th>
<th>Total Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td>6726</td>
<td>90</td>
<td>91.0/88.7</td>
<td>8</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6237</td>
<td>7-9-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6727</td>
<td>7-11-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6728</td>
<td>7-13-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6729</td>
<td>7-15-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6731</td>
<td>7-17-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td>San Angelo, Tex.</td>
<td>6734</td>
<td>7-19-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6735</td>
<td>7-21-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td>6736</td>
<td>7-23-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6737</td>
<td>7-25-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
<tr>
<td></td>
<td>6738</td>
<td>7-27-57</td>
<td>90</td>
<td>91.0/88.7</td>
<td>1738</td>
<td>79 ± 26</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.

() Values suspect due to late analysis.
TABLE 6 - Cont'd.

June 1957

<table>
<thead>
<tr>
<th>City</th>
<th>Flight #</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume (S.C.F.)</th>
<th>Date</th>
<th>Total Activity</th>
<th>1/a/2000 S.C.F.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Minneapolis</td>
<td>6531</td>
<td>6-19-57</td>
<td>90</td>
<td>90.1/90.7</td>
<td></td>
<td>8253</td>
<td>8-26-57</td>
<td>6,420 ± 760</td>
<td>2.81 ± 0.33</td>
</tr>
<tr>
<td></td>
<td>6334</td>
<td>6-27-57</td>
<td>50</td>
<td>49.4</td>
<td>36.3</td>
<td>10800</td>
<td>8-26-57</td>
<td>12,810 ± 637</td>
<td>1.19 ± 0.057</td>
</tr>
<tr>
<td></td>
<td>6335</td>
<td>6-30-57</td>
<td>65</td>
<td>62.3</td>
<td>14.75</td>
<td>7886</td>
<td>8-26-57</td>
<td>61,150 ± 680</td>
<td>1.83 ± 0.006</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td>6095</td>
<td>6-6-57</td>
<td>90</td>
<td>90.9</td>
<td></td>
<td>1219</td>
<td>7-19-57</td>
<td>1,330 ± 670</td>
<td>1.08 ± 0.052</td>
</tr>
<tr>
<td></td>
<td>6102</td>
<td>6-6-57</td>
<td>73.4/90.4</td>
<td></td>
<td></td>
<td>1089</td>
<td>7-19-57</td>
<td>1,790 ± 740</td>
<td>1.74 ± 0.72</td>
</tr>
<tr>
<td></td>
<td>6103</td>
<td>6-7-57</td>
<td>79.7/90.1</td>
<td></td>
<td></td>
<td>1211</td>
<td>7-19-57</td>
<td>1,440 ± 690</td>
<td>0.99 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>6104</td>
<td>6-11-57</td>
<td>65</td>
<td>66.8/92.6</td>
<td></td>
<td>1736</td>
<td>7-19-57</td>
<td>3,160 ± 890</td>
<td>1.98 ± 0.51</td>
</tr>
<tr>
<td></td>
<td>6203</td>
<td>6-19-57</td>
<td>60</td>
<td>60.3/81.5</td>
<td></td>
<td>1813</td>
<td>8-26-57</td>
<td>3,500 ± 720</td>
<td>1.93 ± 0.46</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>6105</td>
<td>6-7-57</td>
<td>78.1/71.1</td>
<td></td>
<td></td>
<td>1932</td>
<td>8-26-57</td>
<td>5,520</td>
<td>1.27 ± 0.265</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47.66 (139)</td>
<td>51.81 ± 1.43</td>
</tr>
<tr>
<td>Sao Paulo, Brasil</td>
<td>6175</td>
<td>6-1-57</td>
<td>90</td>
<td>88.0</td>
<td></td>
<td>706</td>
<td>8-26-57</td>
<td>3,790 ± 540</td>
<td>4.62 ± 0.69</td>
</tr>
<tr>
<td></td>
<td>6174</td>
<td>6-4-57</td>
<td>66</td>
<td>66.2/63.4</td>
<td>53.9</td>
<td>1206</td>
<td>8-26-57</td>
<td>1,440 ± 450</td>
<td>1.11 ± 0.36</td>
</tr>
<tr>
<td></td>
<td>6177</td>
<td>6-2-57</td>
<td>90</td>
<td>93.3/95.9</td>
<td></td>
<td>1278</td>
<td>8-26-57</td>
<td>2,080 ± 510</td>
<td>1.58 ± 1.46</td>
</tr>
<tr>
<td></td>
<td>6106</td>
<td>6-13-57</td>
<td>90</td>
<td>93.5</td>
<td></td>
<td>919</td>
<td>8-26-57</td>
<td>2,030 ± 160</td>
<td>1.08 ± 0.18</td>
</tr>
<tr>
<td></td>
<td>6199</td>
<td>6-11-57</td>
<td>80</td>
<td>77.1/81.1</td>
<td></td>
<td>1788</td>
<td>8-26-57</td>
<td>1,700 ± 560</td>
<td>0.97 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>6200</td>
<td>6-35-57</td>
<td>50</td>
<td>10.3</td>
<td>16.1</td>
<td>1926</td>
<td>8-26-57</td>
<td>1,870 ± 560</td>
<td>0.97 ± 0.38</td>
</tr>
</tbody>
</table>

1. Stratospheric samples.

() Values suspect due to late analysis.
TABLE 6 - Cont'd.

May 1957

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Flight</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Volume</th>
<th>Total Activity</th>
<th>d/yr/1000 Bq CF</th>
<th>sp</th>
<th>sp29</th>
<th>sp58</th>
<th>sp99</th>
<th>sp157</th>
<th>sp199</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td>5823</td>
<td>5-11-57</td>
<td>65</td>
<td>62.1/61.7</td>
<td>38.6</td>
<td>5810</td>
<td>6-17-57</td>
<td>15,000 ± 1,100</td>
<td>2.74 ± 0.19</td>
<td>1.09</td>
<td>680</td>
<td>159</td>
<td>58</td>
<td>7.72</td>
</tr>
<tr>
<td></td>
<td>5826</td>
<td>5-16-57</td>
<td>80</td>
<td>78/93.5</td>
<td>S</td>
<td>5893</td>
<td>6-17-57</td>
<td>1,150 ± 580</td>
<td>0.37 ± 0.15</td>
<td>5.16</td>
<td>17.3</td>
<td>22.2</td>
<td>597.1</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>6025</td>
<td>5-27-57</td>
<td>65</td>
<td>60.3/68.9</td>
<td>37.6</td>
<td>6110</td>
<td>7-19-57</td>
<td>12,780 ± 1,100</td>
<td>1.98 ± 0.17</td>
<td>3.9</td>
<td>16.4</td>
<td>24.5</td>
<td>548.1</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>6026</td>
<td>5-27-57</td>
<td>90</td>
<td>72.5/90.1</td>
<td>S</td>
<td>1916</td>
<td>7-19-57</td>
<td>13,100 ± 660</td>
<td>6.99 ± 0.35</td>
<td>14.6</td>
<td>213.3</td>
<td>57.2</td>
<td>73.3</td>
<td>41.7</td>
</tr>
<tr>
<td></td>
<td>6039</td>
<td>5-29-57</td>
<td>80</td>
<td>73.8/71.1</td>
<td>S</td>
<td>5952</td>
<td>7-19-57</td>
<td>2,460 ± 530</td>
<td>0.68 ± 0.01</td>
<td>43.5</td>
<td>595</td>
<td>67.7</td>
<td>55.2</td>
<td>29.6</td>
</tr>
<tr>
<td></td>
<td>5941</td>
<td>5-197</td>
<td>9-8-57</td>
<td>60</td>
<td>81.5</td>
<td>S</td>
<td>2046</td>
<td>6-17-57</td>
<td>1,700 ± 630</td>
<td>0.87 ± 0.35</td>
<td>76.6</td>
<td>260</td>
<td>130.7</td>
<td>639</td>
</tr>
<tr>
<td></td>
<td>5722</td>
<td>5-99</td>
<td>5-10-57</td>
<td>65</td>
<td>66.5</td>
<td>S</td>
<td>2024</td>
<td>6-17-57</td>
<td>4,160 ± 810</td>
<td>2.16 ± 0.44</td>
<td>18.5</td>
<td>755</td>
<td>176</td>
<td>593.1</td>
</tr>
<tr>
<td></td>
<td>5870</td>
<td>5-109</td>
<td>5-10-57</td>
<td>50</td>
<td>48.7</td>
<td>39.1</td>
<td>2015</td>
<td>6-17-57</td>
<td>580 ± 50.5</td>
<td>10.35</td>
<td>153.3</td>
<td>22.7</td>
<td>6.52</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td>5871</td>
<td>1-200</td>
<td>5-14-57</td>
<td>50</td>
<td>47.5</td>
<td>35.9</td>
<td>2019</td>
<td>6-17-57</td>
<td>5600 ± 56.3</td>
<td>55.7</td>
<td>33.1</td>
<td>8.47</td>
<td>11.07</td>
<td>72.0</td>
</tr>
<tr>
<td></td>
<td>6075</td>
<td>5-202</td>
<td>5-19-57</td>
<td>90</td>
<td>88.6/89.5</td>
<td>S</td>
<td>1066</td>
<td>6-17-57</td>
<td>660 ± 550</td>
<td>0.51 ± 0.43</td>
<td>36.2</td>
<td>36.2</td>
<td>9.66</td>
<td>147.6</td>
</tr>
<tr>
<td></td>
<td>5970</td>
<td>5-203</td>
<td>5-20-57</td>
<td>50</td>
<td>40</td>
<td>12.5</td>
<td>1061</td>
<td>7-17-57</td>
<td>2,130 ± 660</td>
<td>1.69 ± 0.16</td>
<td>13.1</td>
<td>104.9</td>
<td>25.7</td>
<td>(396)</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>6005</td>
<td>5-176</td>
<td>5-11-57</td>
<td>65</td>
<td>64.5/65.5</td>
<td>55.9</td>
<td>1652</td>
<td>7-19-57</td>
<td>1,610 ± 750</td>
<td>0.99 ± 0.15</td>
<td>9.1</td>
<td>10.9</td>
<td>27 (1180)</td>
<td>20.2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sea Poute, Brazil</td>
<td>6606</td>
<td>5-195</td>
<td>5-11-57</td>
<td>46</td>
<td>66.5</td>
<td>12.4</td>
<td>1796</td>
<td>7-19-57</td>
<td>560 ± 53.4</td>
<td>514.8</td>
<td>180</td>
<td>129.1 (4.77)</td>
<td>32.3</td>
<td>< 4.94</td>
</tr>
<tr>
<td></td>
<td>6609</td>
<td>5-188</td>
<td>5-17-57</td>
<td>59</td>
<td>80/79.1</td>
<td>S</td>
<td>1695</td>
<td>7-17-57</td>
<td>1,030 ± 760</td>
<td>0.96 ± 0.16</td>
<td>19.2</td>
<td>12.2</td>
<td>46.6</td>
<td>195.6</td>
</tr>
<tr>
<td></td>
<td>6012</td>
<td>5-191</td>
<td>5-19-57</td>
<td>80</td>
<td>79</td>
<td>S</td>
<td>1733</td>
<td>7-17-57</td>
<td>2,400 ± 780</td>
<td>1.38 ± 0.15</td>
<td>19.3</td>
<td>14.7</td>
<td>3.13</td>
<td>157</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.

() Values suspect due to late analysis date.
TABLE 6 - Cont’d.

April 1957

<table>
<thead>
<tr>
<th>Sample</th>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>C/μg/2000 B.C.P.</th>
<th>α10</th>
<th>α20</th>
<th>α37</th>
<th>α99</th>
<th>α137/α20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-Date</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
</tr>
<tr>
<td>Minneapolis 5563</td>
<td>2390</td>
<td>4-8-57</td>
<td>65</td>
<td>65/57</td>
<td>31.1</td>
<td>14211</td>
<td>5-7-57</td>
<td>39,390 ± 1,860</td>
<td>1.4 ± 0.09</td>
<td>514.0</td>
<td>331</td>
<td>114.3</td>
<td>235.5</td>
</tr>
<tr>
<td>5563</td>
<td>2001</td>
<td>4-15-57</td>
<td>50</td>
<td>47.5</td>
<td>39.5</td>
<td>6180</td>
<td>5-7-57</td>
<td>39,790 ± 1,660</td>
<td>1.79 ± 0.23</td>
<td>103</td>
<td>103</td>
<td>80.6</td>
<td>510</td>
</tr>
<tr>
<td>5564</td>
<td>2003</td>
<td>4-17-57</td>
<td>80</td>
<td>51,5</td>
<td>43.5</td>
<td>1751</td>
<td>5-7-57</td>
<td>34,160 ± 1,860</td>
<td>9.54 ± 0.33</td>
<td>372</td>
<td>608</td>
<td>66.8</td>
<td>351</td>
</tr>
<tr>
<td>5566</td>
<td>2027</td>
<td>4-26-57</td>
<td>90</td>
<td>60.4/93.5</td>
<td>57</td>
<td>1500</td>
<td>5-18-57</td>
<td>1,180 ± 900</td>
<td>9.75 ± 0.28</td>
<td>533.3</td>
<td>530.0</td>
<td>31.6</td>
<td>21.6</td>
</tr>
<tr>
<td>5660</td>
<td>2028</td>
<td>4-29-57</td>
<td>85</td>
<td>67.4/68</td>
<td>3120</td>
<td>5-17-57</td>
<td>17,500 ± 390</td>
<td>5.71 ± 0.32</td>
<td>295</td>
<td>1147</td>
<td>31.6</td>
<td>1800</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-Date</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
</tr>
<tr>
<td>San Angelo, Texas 5566</td>
<td>2-125</td>
<td>4-17-57</td>
<td>90</td>
<td>89.5</td>
<td>56.5</td>
<td>2809</td>
<td>5-7-57</td>
<td>1,000 ± 600</td>
<td>0.6 ± 0.26</td>
<td>598.6</td>
<td>1147</td>
<td>7.53</td>
<td>656.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-Date</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
</tr>
<tr>
<td>Canal Zone 5591</td>
<td>2-165</td>
<td>4-8-57</td>
<td>80</td>
<td>76.0/78.4</td>
<td>54.5</td>
<td>2091</td>
<td>5-18-57</td>
<td>5500 ± 490</td>
<td>50.28</td>
<td>111</td>
<td>229</td>
<td>9.52* (64.6)</td>
<td>41.59</td>
</tr>
<tr>
<td>5592</td>
<td>2-167</td>
<td>4-12-57</td>
<td>65</td>
<td>61.75/61</td>
<td>56.5</td>
<td>1002</td>
<td>5-7-57</td>
<td>4,500 ± 770</td>
<td>1.05 ± 0.19</td>
<td>75</td>
<td>329</td>
<td>1.72</td>
<td>445.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-Date</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
<td>%/Sample</td>
</tr>
<tr>
<td>Sao Paulo, Brazil 5567</td>
<td>8-173</td>
<td>4-9-57</td>
<td>90</td>
<td>90.4</td>
<td>56.5</td>
<td>894</td>
<td>5-7-57</td>
<td>960 ± 600</td>
<td>1.05 ± 0.73</td>
<td>526.5</td>
<td>102</td>
<td>24.5 (1806)</td>
<td>14.6</td>
</tr>
<tr>
<td>5568</td>
<td>8-176</td>
<td>4-12-57</td>
<td>80</td>
<td>78.6/90</td>
<td>54</td>
<td>1253</td>
<td>5-7-57</td>
<td>1,390 ± 670</td>
<td>1.12 ± 0.53</td>
<td>289</td>
<td>77.2</td>
<td>61.2</td>
<td>56.8</td>
</tr>
<tr>
<td>5569</td>
<td>8-178</td>
<td>4-25-57</td>
<td>80</td>
<td>60.5/90</td>
<td>56</td>
<td>1179</td>
<td>5-18-57</td>
<td>1,900 ± 590</td>
<td>1.61 ± 0.50</td>
<td>132</td>
<td>501</td>
<td>52.1</td>
<td>56.9</td>
</tr>
<tr>
<td>5566</td>
<td>8-179</td>
<td>4-25-57</td>
<td>65</td>
<td>64</td>
<td>54.0</td>
<td>2920</td>
<td>5-18-57</td>
<td>9,000 ± 600</td>
<td>3.94 ± 0.19</td>
<td>46.5</td>
<td>290</td>
<td>116.7</td>
<td>4007</td>
</tr>
<tr>
<td>5567</td>
<td>8-131</td>
<td>4-25-57</td>
<td>80</td>
<td>78/80.5</td>
<td>56</td>
<td>1561</td>
<td>5-18-57</td>
<td>2,470 ± 390</td>
<td>1.58 ± 0.28</td>
<td>4103</td>
<td>447</td>
<td>134.9</td>
<td>434.4</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.
2. Values suspect due to late analysis date.
TABLE 6 - Cont’d.

March 1957

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Altitude</th>
<th>Height (S.C.F.)</th>
<th>Total Activity</th>
<th>^14C (\mu \text{c})</th>
<th>^37Cl</th>
<th>^83Sr</th>
<th>Sr</th>
<th>^89Sr</th>
<th>^90Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td>5416</td>
<td>3-13-57</td>
<td>65</td>
<td>65.7/55</td>
<td>32^1</td>
<td>80.8</td>
<td>9-2-57</td>
<td>12,150 ± 990</td>
<td>2.37 ± 0.12</td>
<td>185</td>
</tr>
<tr>
<td>5418</td>
<td>3-19-57</td>
<td>50</td>
<td>143.5/47</td>
<td>31.5^1</td>
<td>89.2</td>
<td>4-1-57</td>
<td>12,050 ± 1,010</td>
<td>1.55 ± 0.11</td>
<td>69.9</td>
<td>264</td>
</tr>
<tr>
<td>5470</td>
<td>3-21-57</td>
<td>80</td>
<td>81.5/55</td>
<td>8</td>
<td>1.87</td>
<td>4-6-57</td>
<td>11,840 ± 1,170</td>
<td>2.51 ± 0.11</td>
<td>195</td>
<td>718</td>
</tr>
<tr>
<td>5533</td>
<td>3-27-57</td>
<td>90</td>
<td>67.4/64.5</td>
<td>3</td>
<td>39.5</td>
<td>5-7-57</td>
<td>5,900 ± 730</td>
<td>1.28 ± 0.10</td>
<td>90.6</td>
<td>312</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td>5404</td>
<td>T-101</td>
<td>3-11-57</td>
<td>60</td>
<td>77.5/78.5</td>
<td>8</td>
<td>2007</td>
<td>3-25-57</td>
<td>990 ± 800</td>
<td>0.16 ± 0.14</td>
</tr>
<tr>
<td>5441</td>
<td>T-105</td>
<td>3-12-57</td>
<td>90</td>
<td>24/35</td>
<td>8</td>
<td>1979</td>
<td>4-5-57</td>
<td>660 ± 603</td>
<td>0.8 ± 0.76</td>
<td>179</td>
</tr>
<tr>
<td>Canal Zone</td>
<td>5437</td>
<td>P-160</td>
<td>3-3-57</td>
<td>80</td>
<td>80.1/81.6</td>
<td>8</td>
<td>1828</td>
<td>3-25-57</td>
<td>9,970 ± 850</td>
<td>1.62 ± 0.16</td>
</tr>
<tr>
<td>5467</td>
<td>P-162</td>
<td>3-4-57</td>
<td>90</td>
<td>89.2/86.0</td>
<td>8</td>
<td>92.0</td>
<td>4-6-57</td>
<td>1890</td>
<td>40.0</td>
<td>4200</td>
</tr>
<tr>
<td>5468</td>
<td>P-163</td>
<td>3-9-57</td>
<td>90</td>
<td>64.5/63.1</td>
<td>57.3^1</td>
<td>319</td>
<td>4-9-57</td>
<td>6,900 ± 960</td>
<td>2.84 ± 0.31</td>
<td>191</td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td>5462</td>
<td>B-162</td>
<td>3-8-57</td>
<td>90</td>
<td>90</td>
<td>8</td>
<td>969</td>
<td>4-5-57</td>
<td>550</td>
<td>50.78</td>
</tr>
<tr>
<td>5464</td>
<td>B-164</td>
<td>3-23-57</td>
<td>90</td>
<td>81.5</td>
<td>8</td>
<td>644</td>
<td>5-7-57</td>
<td>1750</td>
<td>51.16</td>
<td>580</td>
</tr>
<tr>
<td>5466</td>
<td>B-167</td>
<td>3-23-57</td>
<td>65</td>
<td>66</td>
<td>8</td>
<td>3273</td>
<td>5-7-57</td>
<td>4,700 ± 750</td>
<td>1.03 ± 0.10</td>
<td>758.8</td>
</tr>
<tr>
<td>5520</td>
<td>B-171</td>
<td>3-27-57</td>
<td>80</td>
<td>80.8</td>
<td>8</td>
<td>1769</td>
<td>6-25-57</td>
<td>1,660 ± 500</td>
<td>0.95 ± 0.28</td>
<td>172</td>
</tr>
</tbody>
</table>

1. Stratospheric sample.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5300</td>
<td>2-13-57</td>
<td>8</td>
<td>79.7/74.0</td>
<td>8</td>
<td>3829</td>
<td>7-3-57</td>
<td>70.4</td>
<td>3.00</td>
<td>7-3-57</td>
<td>70.4</td>
<td>3.00</td>
<td>7-3-57</td>
<td>70.4</td>
<td>3.00</td>
<td>7-3-57</td>
<td>70.4</td>
<td>3.00</td>
</tr>
<tr>
<td>5321</td>
<td>2-27-57</td>
<td>50</td>
<td>10/5/39</td>
<td>53.31</td>
<td>17169</td>
<td>2-22-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-22-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-22-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-22-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
<tr>
<td>5322</td>
<td>2-19-57</td>
<td>84</td>
<td>66/38/51</td>
<td>6</td>
<td>5044</td>
<td>2-27-57</td>
<td>65.0</td>
<td>1.40</td>
<td>2-27-57</td>
<td>65.0</td>
<td>1.40</td>
<td>2-27-57</td>
<td>65.0</td>
<td>1.40</td>
<td>2-27-57</td>
<td>65.0</td>
<td>1.40</td>
</tr>
<tr>
<td>5339</td>
<td>2-174</td>
<td>65</td>
<td>69.5</td>
<td>6</td>
<td>3229</td>
<td>2-19-57</td>
<td>65.0</td>
<td>1.40</td>
<td>2-19-57</td>
<td>65.0</td>
<td>1.40</td>
<td>2-19-57</td>
<td>65.0</td>
<td>1.40</td>
<td>2-19-57</td>
<td>65.0</td>
<td>1.40</td>
</tr>
<tr>
<td>5319</td>
<td>2-21-57</td>
<td>50</td>
<td>19.0/49.0/0.0</td>
<td>36.01</td>
<td>7320</td>
<td>2-17-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-17-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-17-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-17-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
<tr>
<td>5326</td>
<td>2-17-57</td>
<td>60</td>
<td>86/86/26</td>
<td>8</td>
<td>1776</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
<tr>
<td>5320</td>
<td>2-1-57</td>
<td>99/194</td>
<td>95/88/12</td>
<td>53.11</td>
<td>19373</td>
<td>2-10-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-10-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-10-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-10-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
<tr>
<td>5310</td>
<td>2-1-57</td>
<td>66</td>
<td>67/69/39.2</td>
<td>53.11</td>
<td>2180</td>
<td>2-29-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-29-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-29-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-29-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
<tr>
<td>5351</td>
<td>2-24-57</td>
<td>50</td>
<td>78</td>
<td>5</td>
<td>2850</td>
<td>2-19-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-19-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-19-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-19-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
<tr>
<td>5399</td>
<td>2-24-57</td>
<td>99/59.5</td>
<td>95/88/12</td>
<td>53.11</td>
<td>11201</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
<td>2-25-57</td>
<td>51.9</td>
<td>1.00</td>
</tr>
</tbody>
</table>

| 1. Stratospheric Sample. |
| 3. Sample contaminated with cerium and strontium. |
TABLE 6 - Cont'd.

January 1957

<table>
<thead>
<tr>
<th>Flight#</th>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height (S.C.F.)</th>
<th>Volume</th>
<th>Total Activity</th>
<th>$d/150$</th>
<th>$d/2500$</th>
<th>$d/157$</th>
<th>$d/50$</th>
<th>$d/50$</th>
<th>$d/1000$</th>
<th>$d/2500$</th>
<th>$d/157$</th>
<th>$d/50$</th>
<th>$d/50$</th>
<th>$d/1000$</th>
<th>$d/2500$</th>
<th>$d/157$</th>
<th>$d/50$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$^{2}1$</td>
<td></td>
</tr>
<tr>
<td>Minneapolis</td>
<td>5115</td>
<td>2051</td>
<td>1-16-57</td>
<td>50</td>
<td>14/43</td>
<td>32</td>
<td>11952</td>
<td>3-20-57</td>
<td>31,790±1</td>
<td>990</td>
<td>2.15±0.08</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Antonio, Texas</td>
<td>5170</td>
<td>7-16</td>
<td>1-17-57</td>
<td>90</td>
<td>105/106</td>
<td>5</td>
<td>8</td>
<td>850</td>
<td>3-20-57</td>
<td>600</td>
<td>60.76</td>
<td>80.6</td>
<td>80.6</td>
<td>80.6</td>
<td>80.6</td>
<td>80.6</td>
<td>80.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal Zone</td>
<td>522</td>
<td>4-116</td>
<td>1-18-57</td>
<td>65</td>
<td>65</td>
<td>36.8</td>
<td>3457</td>
<td>3-20-57</td>
<td>341,000</td>
<td>1,400</td>
<td>0.85±0.36</td>
<td>--</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Paulo, Brazil</td>
<td>5279</td>
<td>7-131</td>
<td>1-31-57</td>
<td>65</td>
<td>65</td>
<td>53.1</td>
<td>3313</td>
<td>3-20-57</td>
<td>613±70</td>
<td>0.18±0.04</td>
<td>7-1-57</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.
TABLE 6 - Cont’d.
December 1956

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Billboard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-date</td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5/1000 B.C.F.</td>
<td></td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.
2. Tropospheric Sample.
TABLE 6 - Cont'd.

November 1956

<table>
<thead>
<tr>
<th>City</th>
<th>Flight#</th>
<th>Flight Date</th>
<th>Nominal Altitude</th>
<th>Actual Altitude</th>
<th>Tropopause Height</th>
<th>Values</th>
<th>Total Activity</th>
<th>P-140</th>
<th>4/8/1000 B.C.F.</th>
<th>C-147</th>
<th>C-137</th>
<th>C-137/C-127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minneapolis</td>
<td>1666</td>
<td>11-6-56</td>
<td>65</td>
<td>67</td>
<td>s</td>
<td>3726</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-11-57</td>
<td>15,300</td>
<td>960 ± 0.26</td>
<td>6-09-57</td>
<td>50.8</td>
<td>50.8</td>
</tr>
<tr>
<td></td>
<td>1702</td>
<td>11-9-56</td>
<td>90</td>
<td>95</td>
<td>s</td>
<td>1000</td>
<td>1-19-57</td>
<td>9,600</td>
<td>9,400 ± 1.76</td>
<td>1-09-57</td>
<td>32.8</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>1801</td>
<td>11-17-56</td>
<td>50</td>
<td>77/44/55</td>
<td>39,43</td>
<td>8572</td>
<td>3-7-57</td>
<td>15,000</td>
<td>990 ± 0.12</td>
<td>8-18-57</td>
<td>50.8</td>
<td>50.8</td>
</tr>
<tr>
<td>San Angelo, Texas</td>
<td>1880</td>
<td>11-30-56</td>
<td>50</td>
<td>59.2</td>
<td>53.0</td>
<td>7837</td>
<td>3-11-57</td>
<td>9,500</td>
<td>1,080 ± 0.15</td>
<td>6-20-57</td>
<td>51.9</td>
<td>51.9</td>
</tr>
<tr>
<td></td>
<td>1881</td>
<td>11-30-56</td>
<td>90</td>
<td>99</td>
<td>s</td>
<td>834</td>
<td>1-19-57</td>
<td>1,106</td>
<td>1,162 ± 0.68</td>
<td>1-09-57</td>
<td>59.9</td>
<td>59.9</td>
</tr>
<tr>
<td>Sao Paulo, Brazil</td>
<td>1902</td>
<td>11-25-56</td>
<td>90</td>
<td>90.5</td>
<td>s</td>
<td>1200</td>
<td>1-19-57</td>
<td>7,400</td>
<td>6,150 ± 1.25</td>
<td>1-09-57</td>
<td>59.4</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>1903</td>
<td>11-28-56</td>
<td>65</td>
<td>65.7</td>
<td>s</td>
<td>3330</td>
<td>1-19-57</td>
<td>6,135</td>
<td>1,080 ± 0.39</td>
<td>1-09-57</td>
<td>53.5</td>
<td>53.5</td>
</tr>
</tbody>
</table>

1. Stratospheric Sample.
2. Tropospheric Sample.
<table>
<thead>
<tr>
<th>EASL No.</th>
<th>Flight No.</th>
<th>Flight Date</th>
<th>Altitude</th>
<th>Type Flight</th>
<th>Volume (ft³)</th>
<th>Initial Activity</th>
<th>Total Activity</th>
<th>4/4/1000 ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>9768</td>
<td>2142-1</td>
<td>3-19-58</td>
<td>86.8</td>
<td>D.F. 50' Exhaust Shock Mount B.P.</td>
<td>1399</td>
<td>1-13-59</td>
<td>2.671 ± 0.10</td>
<td>1.82 ± 0.38</td>
</tr>
<tr>
<td>9769</td>
<td>2142-2</td>
<td>3-19-58</td>
<td>86.8</td>
<td>A.C. 50' Exhaust Shock Mount B.P.</td>
<td>1689</td>
<td>1-13-59</td>
<td>3.667 ± 0.68</td>
<td>1.60 ± 0.33</td>
</tr>
<tr>
<td>9750</td>
<td>2142-3</td>
<td>3-19-58</td>
<td>86.8</td>
<td>A.C. 50' Exhaust Shock Mount B.P.</td>
<td>1918</td>
<td>1-13-59</td>
<td>5.280 ± 0.50</td>
<td>1.58 ± 0.49</td>
</tr>
<tr>
<td>9751</td>
<td>2142-4</td>
<td>3-19-58</td>
<td>86.8</td>
<td>A. C. No dust, No shock mount No B.P.</td>
<td>1554</td>
<td>1-13-59</td>
<td>1.166 ± 0.16</td>
<td>0.96 ± 0.30</td>
</tr>
<tr>
<td>10669</td>
<td>2105-1A</td>
<td>6-5-59</td>
<td>60.5</td>
<td>Direct Flow</td>
<td>1175</td>
<td>7-20-59</td>
<td>5,111 ± 500</td>
<td>500</td>
</tr>
<tr>
<td>10670</td>
<td>2105-1B</td>
<td>6-5-59</td>
<td>60.5</td>
<td>Direct Flow</td>
<td>1175</td>
<td>7-20-59</td>
<td>271 ± 257</td>
<td>257</td>
</tr>
<tr>
<td>10651</td>
<td>2105-2</td>
<td>6-5-59</td>
<td>60.5</td>
<td>Ash Can Exhaust dust shock mount</td>
<td>1056</td>
<td>7-20-59</td>
<td>2,571 ± 1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>10652</td>
<td>2105-3</td>
<td>6-5-59</td>
<td>60.5</td>
<td>Ash Can Exhaust dust shock mount</td>
<td>1025</td>
<td>7-20-59</td>
<td>3,711 ± 1,110</td>
<td>1,110</td>
</tr>
<tr>
<td>10653</td>
<td>2105-4</td>
<td>6-5-59</td>
<td>60.5</td>
<td>Ash Can No dust, No shock mount</td>
<td>1093</td>
<td>7-20-59</td>
<td>1,309 ± 650</td>
<td>650</td>
</tr>
<tr>
<td>10795</td>
<td>2105-1</td>
<td>6-19-59</td>
<td>59.9</td>
<td>D.F. Exhaust tube</td>
<td>2785</td>
<td>7-20-59</td>
<td>0 ± 0.44</td>
<td>no analysis</td>
</tr>
<tr>
<td>10796</td>
<td>2105-2</td>
<td>6-19-59</td>
<td>59.9</td>
<td>D.F. Exhaust tube</td>
<td>2996</td>
<td>7-20-59</td>
<td>0 ± 0.44</td>
<td>no analysis</td>
</tr>
<tr>
<td>11032</td>
<td>2133-1A</td>
<td>7-63-59</td>
<td>67.0</td>
<td>D.F. 50' Exhaust Shock Mount, Limer</td>
<td>2342</td>
<td>7-20-59</td>
<td>0 ± 0.44</td>
<td>no analysis</td>
</tr>
<tr>
<td>11061</td>
<td>2133-1B</td>
<td>7-63-59</td>
<td>67.0</td>
<td>D.F. 50' Exhaust Shock Mount, Limer</td>
<td>2342</td>
<td>7-20-59</td>
<td>0 ± 0.44</td>
<td>no analysis</td>
</tr>
<tr>
<td>Flights#</td>
<td>Flight Type</td>
<td>Flight Date</td>
<td>Altitude</td>
<td>Type</td>
<td>Volume (ft³)</td>
<td>C-date</td>
<td>d/m/sample</td>
<td>d/m/S/C.F.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>9582 2405-1</td>
<td>D.F. 1st filter</td>
<td>2-19-59</td>
<td>71.5</td>
<td>D.F.</td>
<td>1226</td>
<td>3-24-59</td>
<td>666</td>
<td>3.76 ± 0.34</td>
</tr>
<tr>
<td>9583 2405-2</td>
<td>D.F. 2nd filter</td>
<td>2-19-59</td>
<td>71.5</td>
<td>D.F.</td>
<td>1226</td>
<td>3-24-59</td>
<td>621</td>
<td>0.0 ± 0.34</td>
</tr>
<tr>
<td>9584 2405-3</td>
<td>A.C. Shock mount B.P. 50' exhaust</td>
<td>3-24-59</td>
<td>71.5</td>
<td>A.C.</td>
<td>2700</td>
<td>3-24-59</td>
<td>682</td>
<td>582</td>
</tr>
<tr>
<td>9585 2405-4</td>
<td>A.C. Shock mount B.P. 50' exhaust</td>
<td>3-24-59</td>
<td>71.5</td>
<td>A.C.</td>
<td>2650</td>
<td>3-24-59</td>
<td>692</td>
<td>531</td>
</tr>
<tr>
<td>9586 2405-5</td>
<td>A.C. No shock mount No B.P. No exhaust</td>
<td>3-24-59</td>
<td>71.5</td>
<td>A.C.</td>
<td>2358</td>
<td>3-24-59</td>
<td>548</td>
<td>641</td>
</tr>
<tr>
<td>9734 2407-1</td>
<td>D.F. 50' exhaust</td>
<td>3-11-59</td>
<td>72.0</td>
<td>D.F.</td>
<td>2100</td>
<td>4-13-59</td>
<td>8270</td>
<td>684</td>
</tr>
<tr>
<td>9735 2407-2</td>
<td>A.C. 50' exhaust</td>
<td>4-13-59</td>
<td>72.0</td>
<td>A.C.</td>
<td>2278</td>
<td>4-13-59</td>
<td>8374</td>
<td>541</td>
</tr>
<tr>
<td>9736 2407-3</td>
<td>A.C. 50' exhaust</td>
<td>4-13-59</td>
<td>72.0</td>
<td>A.C.</td>
<td>2336</td>
<td>4-13-59</td>
<td>10110</td>
<td>557</td>
</tr>
<tr>
<td>9737 2407-4</td>
<td>A.C. No exhaust</td>
<td>4-13-59</td>
<td>72.0</td>
<td>A.C.</td>
<td>2150</td>
<td>4-13-59</td>
<td>9219</td>
<td>673</td>
</tr>
</tbody>
</table>

D.F. - Direct flow
A.C. - Ash Can
B.P. - Photographic paper liner used
TABLE 6 - Cont'd.

Research Flights

<table>
<thead>
<tr>
<th>EAST</th>
<th>Flight No.</th>
<th>Flight Date</th>
<th>Normal Altitude</th>
<th>Actual Altitude</th>
<th>Type Flight</th>
<th>Volume (cc)</th>
<th>S-d Activity</th>
<th>% 2^{14}O</th>
<th>% 18_O</th>
<th>% 36_S</th>
<th>% 137_Ca</th>
<th>% 87_Sr</th>
<th>% 89 Sr</th>
<th>% 90 Sr</th>
<th>% 37 Sr</th>
<th>% 90 Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8405</td>
<td>2241-1</td>
<td>8-28-58</td>
<td>50</td>
<td>46.4/46.1</td>
<td></td>
<td>5200</td>
<td>5-21-59</td>
<td>17,372 ± 507</td>
<td>3.99 ± 0.11</td>
<td>--</td>
<td>1200</td>
<td>1160</td>
<td>86.8</td>
<td>3060</td>
<td>36.4</td>
<td>81.1</td>
</tr>
<tr>
<td>8606</td>
<td>2241-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5200</td>
<td>5-21-59</td>
<td>14,331 ± 599</td>
<td>3.52 ± 0.13</td>
<td>--</td>
<td>1114</td>
<td>998</td>
<td>89.4</td>
<td>2650</td>
<td>38.3</td>
<td>69.7</td>
</tr>
<tr>
<td>8621</td>
<td>2241-3</td>
<td>10-16-58</td>
<td>60</td>
<td>66/66.9</td>
<td></td>
<td>3273</td>
<td>11-5-59</td>
<td>12,316 ± 712</td>
<td>3.76 ± 0.22</td>
<td>--</td>
<td>154</td>
<td>600</td>
<td>567</td>
<td>15.7</td>
<td>8.05</td>
<td>790</td>
</tr>
<tr>
<td>8622</td>
<td>2241-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3138</td>
<td>11-5-59</td>
<td>11,156 ± 762</td>
<td>3.56 ± 0.21</td>
<td>--</td>
<td>110</td>
<td>654</td>
<td>262</td>
<td>52.6</td>
<td>3.98</td>
<td>1,180</td>
</tr>
<tr>
<td>9100</td>
<td>2200-1</td>
<td>12-12-58</td>
<td>60</td>
<td>57</td>
<td>Bl. paper</td>
<td>3296</td>
<td>2-12-59</td>
<td>3,282 ± 124</td>
<td>1.01 ± 0.04</td>
<td>--</td>
<td>--</td>
<td>1000</td>
<td>--</td>
<td>1,285</td>
<td>35.7</td>
<td>52.3</td>
</tr>
<tr>
<td>9121</td>
<td>2200-2</td>
<td>Bl. paper</td>
<td>5256</td>
<td>Sample Lost</td>
<td>--</td>
</tr>
<tr>
<td>9098</td>
<td>2200-3</td>
<td>Direct Flow</td>
<td>8990</td>
<td></td>
<td></td>
<td>2-12-59</td>
<td>45,000 ± 1,000</td>
<td>25.2 ± 0.39</td>
<td>1864</td>
<td>2800</td>
<td>5100</td>
<td>990</td>
<td>6550</td>
<td>21.5</td>
<td>27.1</td>
<td>3.67</td>
</tr>
<tr>
<td>9099</td>
<td>2200-4</td>
<td>Bl. paper</td>
<td>4259</td>
<td></td>
<td></td>
<td>2-12-59</td>
<td>799 ± 123</td>
<td>0.18 ± 0.15</td>
<td>--</td>
<td>--</td>
<td>27.4</td>
<td>--</td>
<td>103</td>
<td>23.7</td>
<td>16.4</td>
<td>--</td>
</tr>
<tr>
<td>9095</td>
<td>2201-1</td>
<td>1-9-59</td>
<td>57.75/58.25</td>
<td>50 Exhaust BP</td>
<td>4721</td>
<td>2-12-59</td>
<td>3,066 ± 133</td>
<td>0.04 ± 0.03</td>
<td>--</td>
<td>--</td>
<td>125</td>
<td>--</td>
<td>112</td>
<td>6.98</td>
<td>16.2</td>
<td>--</td>
</tr>
<tr>
<td>9096</td>
<td>2201-2</td>
<td>50 Exhaust BP</td>
<td>4396</td>
<td></td>
<td>2-12-59</td>
<td>8,698 ± 177</td>
<td>1.96 ± 0.04</td>
<td>--</td>
<td>--</td>
<td>258</td>
<td>--</td>
<td>145</td>
<td>26.2</td>
<td>16.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9061</td>
<td>2202-1</td>
<td>2-6-59</td>
<td>58.25/59.0</td>
<td>50 Exhaust BP</td>
<td>860</td>
<td>2-12-59</td>
<td>17,183 ± 1,157</td>
<td>54.0 ± 1.94</td>
<td>--</td>
<td>--</td>
<td>7830</td>
<td>--</td>
<td>6130</td>
<td>166</td>
<td>15.2</td>
<td>--</td>
</tr>
<tr>
<td>9062</td>
<td>2202-2</td>
<td>50 Exhaust BP</td>
<td>3482</td>
<td></td>
<td>2-12-59</td>
<td>16,669 ± 885</td>
<td>51.7 ± 0.26</td>
<td>--</td>
<td>--</td>
<td>1160</td>
<td>--</td>
<td>798</td>
<td>78.9</td>
<td>10.1</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9063</td>
<td>2202-3</td>
<td>50 Exhaust BP</td>
<td>3272</td>
<td></td>
<td>2-12-59</td>
<td>26,459 ± 899</td>
<td>8.41 ± 0.31</td>
<td>--</td>
<td>--</td>
<td>1150</td>
<td>--</td>
<td>572</td>
<td>43.1</td>
<td>13.3</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9064</td>
<td>2202-4</td>
<td>(No filter)</td>
<td>2954</td>
<td></td>
<td>2-12-59</td>
<td>21,673 ± 895</td>
<td>7.49 ± 0.31</td>
<td>--</td>
<td>--</td>
<td>904</td>
<td>--</td>
<td>753</td>
<td>74.4</td>
<td>10.1</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

* Isotopic analysis not requested since sample was dry ashed.

* Tropopause height 37,300 ft.
<table>
<thead>
<tr>
<th>Flight#</th>
<th>Flight#</th>
<th>Date</th>
<th>Altitude</th>
<th>Actual Altitude</th>
<th>Volume (ft³)</th>
<th>Total Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6100</td>
<td>2366-2</td>
<td>6-12-58</td>
<td>90</td>
<td>91.0</td>
<td>1814</td>
<td>6.1 ± 0.02</td>
</tr>
<tr>
<td>6101</td>
<td>2366-3</td>
<td>6-12-58</td>
<td>90</td>
<td>91.0</td>
<td>1615</td>
<td>6.1 ± 0.02</td>
</tr>
<tr>
<td>6109</td>
<td>2366-1</td>
<td>8-19-58</td>
<td>65</td>
<td>65.0</td>
<td>1319</td>
<td><0.011</td>
</tr>
<tr>
<td>6099</td>
<td>2372-1</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>14795</td>
<td><0.011</td>
</tr>
<tr>
<td>6090</td>
<td>2372-2</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>14374</td>
<td><0.011</td>
</tr>
<tr>
<td>6091</td>
<td>2372-3</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>13577</td>
<td><0.011</td>
</tr>
<tr>
<td>6092</td>
<td>2372-4</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>12897</td>
<td><0.011</td>
</tr>
<tr>
<td>6093</td>
<td>2373-1</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>12217</td>
<td><0.011</td>
</tr>
<tr>
<td>6094</td>
<td>2373-2</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>11537</td>
<td><0.011</td>
</tr>
<tr>
<td>6095</td>
<td>2373-3</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>10857</td>
<td><0.011</td>
</tr>
<tr>
<td>6096</td>
<td>2373-4</td>
<td>6-27-58</td>
<td>95</td>
<td>95.5</td>
<td>10177</td>
<td><0.011</td>
</tr>
<tr>
<td>6032</td>
<td>2380-1</td>
<td>7-17-58</td>
<td>95</td>
<td>95.5</td>
<td>9497</td>
<td><0.011</td>
</tr>
<tr>
<td>6033</td>
<td>2380-2</td>
<td>7-17-58</td>
<td>95</td>
<td>95.5</td>
<td>8817</td>
<td><0.011</td>
</tr>
</tbody>
</table>

1. Total Sample Analyzed.
2. Estimated Volume.
<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>Altitude</th>
<th>Nominal Altitude</th>
<th>Total Activity</th>
<th>Volume</th>
<th>C-date</th>
<th>4/5/1000 F3</th>
<th>Be128</th>
<th>Be129</th>
<th>Ca137</th>
<th>Ca138</th>
<th>Ca139</th>
<th>Ca140</th>
<th>Sr89/Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td>2354-1</td>
<td>4-18-58</td>
<td>80</td>
<td>81.2</td>
<td>2344-1</td>
<td>4-18-58</td>
<td>1805</td>
<td>lost</td>
<td>lost</td>
<td>152</td>
<td>95.9</td>
<td>0.76</td>
<td>0.31</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>2354-2</td>
<td>80</td>
<td></td>
<td>81.2</td>
<td>2354-2</td>
<td>4-23-58</td>
<td>2069</td>
<td>lost</td>
<td>lost</td>
<td>155</td>
<td>95.9</td>
<td>0.76</td>
<td>0.31</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>2356-1</td>
<td>4-33-58</td>
<td>80</td>
<td>81.0</td>
<td>2356-1</td>
<td>5-6-58</td>
<td>1896</td>
<td>lost</td>
<td>lost</td>
<td>156</td>
<td>95.9</td>
<td>0.76</td>
<td>0.31</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>2356-2</td>
<td>5-16-58</td>
<td>65</td>
<td>64.8</td>
<td>2356-2</td>
<td>5-28-58</td>
<td>3577</td>
<td>lost</td>
<td>lost</td>
<td>158</td>
<td>95.9</td>
<td>0.76</td>
<td>0.31</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>2357-1</td>
<td>5-28-58</td>
<td>65</td>
<td>64.8</td>
<td>2357-1</td>
<td>7-16-58</td>
<td>3551</td>
<td>lost</td>
<td>lost</td>
<td>160</td>
<td>95.9</td>
<td>0.76</td>
<td>0.31</td>
<td>0.37</td>
<td>0.92</td>
</tr>
<tr>
<td>2357-2</td>
<td>7-16-58</td>
<td>65</td>
<td>64.8</td>
<td>2357-2</td>
<td>7-16-58</td>
<td>3577</td>
<td>lost</td>
<td>lost</td>
<td>162</td>
<td>95.9</td>
<td>0.76</td>
<td>0.31</td>
<td>0.37</td>
<td>0.92</td>
</tr>
</tbody>
</table>

1. Estimated Volume.
TABLE 6 - Cont'd.

<table>
<thead>
<tr>
<th>Flight No.</th>
<th>Flight Date</th>
<th>Type</th>
<th>Actual</th>
<th>Tropopause</th>
<th>Volume</th>
<th>Total Activity</th>
<th>Cs-11.5</th>
<th>Cs-10</th>
<th>Cs-10</th>
<th>Cs-9</th>
<th>Cs-9</th>
<th>Cs-9</th>
<th>Cs-9/13/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>8665</td>
<td>2-25-59</td>
<td>Flight 5</td>
<td>100</td>
<td>8</td>
<td>6,156</td>
<td>620</td>
<td>455</td>
<td>270</td>
<td>780</td>
<td>534</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
<tr>
<td>9164</td>
<td>6-25-59</td>
<td>Flight 6</td>
<td>100</td>
<td>8</td>
<td>6,156</td>
<td>620</td>
<td>455</td>
<td>270</td>
<td>780</td>
<td>534</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
<tr>
<td>6365</td>
<td>9-20-59</td>
<td>Flight 7</td>
<td>100</td>
<td>8</td>
<td>6,156</td>
<td>620</td>
<td>455</td>
<td>270</td>
<td>780</td>
<td>534</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
<tr>
<td>6366</td>
<td>12-20-59</td>
<td>Flight 8</td>
<td>100</td>
<td>8</td>
<td>6,156</td>
<td>620</td>
<td>455</td>
<td>270</td>
<td>780</td>
<td>534</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
<tr>
<td>6367</td>
<td>3-10-59</td>
<td>Flight 9</td>
<td>100</td>
<td>8</td>
<td>6,156</td>
<td>620</td>
<td>455</td>
<td>270</td>
<td>780</td>
<td>534</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
<tr>
<td>6368</td>
<td>4-10-59</td>
<td>Flight 10</td>
<td>100</td>
<td>8</td>
<td>6,156</td>
<td>620</td>
<td>455</td>
<td>270</td>
<td>780</td>
<td>534</td>
<td>534</td>
<td>534</td>
<td>534</td>
</tr>
</tbody>
</table>

Note: Flight Data includes flight numbers, dates, types, and actual altitudes.
<table>
<thead>
<tr>
<th>Sample</th>
<th>d/m</th>
<th>C-date</th>
<th>Sr99</th>
<th>Sr90</th>
<th>Cs137</th>
<th>Ra226</th>
<th>Ba140</th>
<th>Ce144</th>
<th>Sr88/Sr90</th>
<th>Cs137/Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>6.8 ± 0.6</td>
<td>7-25-58</td>
<td>115 ± 3</td>
<td>5.5 ± 0.2</td>
<td>15.6 ± 3.3</td>
<td>10.8 ± 0.5</td>
<td>370 ± 31</td>
<td>60 ± 3</td>
<td>20.9</td>
<td>1.96</td>
</tr>
<tr>
<td>B-1</td>
<td>7-26-58</td>
<td>100 ± 4</td>
<td>5.8 ± 0.4</td>
<td>19.0 ± 4.4</td>
<td>10.0 ± 0.4</td>
<td>146 ± 46</td>
<td>62 ± 3</td>
<td>17.2</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>8-26-58</td>
<td>99 ± 2</td>
<td>89.3 ± 5.4</td>
<td>5.2 ± 0.3</td>
<td>2100 ± 154</td>
<td>42.8 ± 16.3</td>
<td>1050 ± 169</td>
<td>54.1 ± 5.1</td>
<td>47.8</td>
<td>0.34</td>
</tr>
<tr>
<td>D-1</td>
<td>8-6-58</td>
<td>1150 ± 16</td>
<td>6 ± 1</td>
<td>5.2 ± 1.4</td>
<td>3.3 ± 0.4</td>
<td>169 ± 31</td>
<td>5.2 ± 0.92</td>
<td>222</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 ± 7</td>
<td>3780 ± 35</td>
<td>17 ± 1</td>
<td>4.0 ± 1.4</td>
<td>2.4 ± 0.4</td>
<td>231 ± 31</td>
<td>4.6 ± 1.0</td>
<td>191</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

| 7986 | #6351-1 (Vol. 3517 ft³) | 3010 ± 80 | 1040 ± 22 | 38 ± 1 | 3590 ± 33 | 79 ± 3 | 1190 ± 31 | 1450 ± 31 | 27.4 | 2.08 |
| | (40' exhaust tube) | 987 ± 22 | 45 ± 1 | 3606 ± 44 | 82 ± 3 | 1050 ± 31 | 1550 ± 51 | 21.9 | 1.82 |

<p>| 7987 | #6351-2 (Vol. 8579 ft³) | 3700 ± 90 | 1673 ± 13 | 5280 ± 87 | 92 ± 1 | 1280 ± 31 | 1830 ± 61 | 11.5 | 0.61 |
| | (40' exhaust tube) | 930 ± 14 | 4950 ± 87 | 89 ± 1 | 1340 ± 31 | 2000 ± 71 | 23.1 | 2.12 |</p>
<table>
<thead>
<tr>
<th>Sample#</th>
<th>d/a</th>
<th>C-date</th>
<th>Sr89</th>
<th>Sr90</th>
<th>Zr95</th>
<th>Ca137</th>
<th>Ba140</th>
<th>Ce144</th>
<th>Sr89/Sr90</th>
<th>Ca137/Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-2</td>
<td>16 ± 6</td>
<td>9-23-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-2</td>
<td>4194 ± 13</td>
<td>9-18-58</td>
<td>65 ± 3</td>
<td></td>
<td>3.2 ± 0.4</td>
<td>61.7 ± 2.2</td>
<td>43.4 ± 0.4</td>
<td>111 ± 14</td>
<td>141.5 ± 2.4</td>
<td>20 ± 1.1</td>
</tr>
<tr>
<td>C-2</td>
<td>2140 ± 60</td>
<td>9-17-58</td>
<td>14 ± 8</td>
<td></td>
<td>25 ± 1</td>
<td><60.5 ± 2.4</td>
<td><6.0 ± 0.6</td>
<td>279 ± 25</td>
<td>112.4 ± 2.4</td>
<td>6.2 ± 0.26</td>
</tr>
<tr>
<td>D-2</td>
<td>30 ± 8</td>
<td>9-17-58</td>
<td>3 ± 3</td>
<td>9 ± 1</td>
<td><86.2 ± 4.3</td>
<td><23.3 ± 0.3</td>
<td>1121 ± 10</td>
<td>141.1 ± 2.1</td>
<td>0.33 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>E-2</td>
<td>24 ± 6</td>
<td>10-3-58</td>
<td>5 ± 2.5</td>
<td>6.5 ± 0.7</td>
<td><33.5 ± 2.4</td>
<td>42.6 ± 0.4</td>
<td><203 ± 15</td>
<td>23.4 ± 2.5</td>
<td>6.8 ± 0.48</td>
<td></td>
</tr>
<tr>
<td>F-2</td>
<td><9</td>
<td>9-11-58</td>
<td>37 ± 1</td>
<td></td>
<td><6.8 ± 1.2</td>
<td><5.2 ± 0.3</td>
<td><172 ± 13</td>
<td><3.1 ± 0.7</td>
<td>65.0 ± <0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1110 ± 21</td>
<td>18 ± 1</td>
<td></td>
<td></td>
<td><7.4 ± 1.2</td>
<td><3.1 ± 0.3</td>
<td><66 ± 9</td>
<td>46.8 ± 0.7</td>
<td>61.7 ± <0.08</td>
<td></td>
</tr>
<tr>
<td>8332</td>
<td>0.0 ± 530</td>
<td>7-31-58</td>
<td><68</td>
<td><2</td>
<td><82.1</td>
<td><15</td>
<td>98</td>
<td>20.6</td>
<td>31</td>
<td>7.5</td>
</tr>
<tr>
<td>8333</td>
<td>56.9 ± 22.7</td>
<td>7-31-58</td>
<td>30.4 ± 10.1</td>
<td><12</td>
<td>48</td>
<td>39.6</td>
<td>29.2</td>
<td>6</td>
<td>45.5</td>
<td>>8.7</td>
</tr>
<tr>
<td></td>
<td>68.2 ± 20.9</td>
<td>1.5</td>
<td>14.1 ± 14.7</td>
<td>13 ± 5</td>
<td>98</td>
<td>36.8</td>
<td>45.5</td>
<td>>8.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6 - Cont'd.

CHICAGO MIDWAY FLIGHT #3

August 28, 1958

Total d/m

*Altitude 19.1 K_

<table>
<thead>
<tr>
<th>Sample</th>
<th>d/m</th>
<th>C-date</th>
<th>Sr-89</th>
<th>Sr-90</th>
<th>Ca-137</th>
<th>Ba-140</th>
<th>Ca-144</th>
<th>Sr-89/Sr-90</th>
<th>Ca-137/Sr-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3</td>
<td>12</td>
<td>2</td>
<td>10-10-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-3</td>
<td>2370 ± 92</td>
<td>9-27-58</td>
<td>372 ± 18</td>
<td>13 ± 1</td>
<td>236 ± 8.6</td>
<td>64.1 ± 0.5</td>
<td>898 ± 12</td>
<td>186 ± 3.3</td>
<td>26.6 ± 4.7</td>
</tr>
<tr>
<td>C-3</td>
<td>11 ± 6</td>
<td>10-4-58</td>
<td>6.5 ± 0.6</td>
<td>1.6 ± 0.3</td>
<td>1.3 ± 0.2</td>
<td>1.3 ± 0.2</td>
<td>26.2 ± 19</td>
<td>9.6 ± 2.4</td>
<td>4.06 ± 1.3</td>
</tr>
<tr>
<td>D-3</td>
<td>4123 ± 6</td>
<td>10-11-58</td>
<td>65.4 ± 2.3</td>
<td>1.1 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>69 ± 4.1</td>
<td>46.8 ± 1.1</td>
<td>7.51 ± 0.5</td>
</tr>
<tr>
<td>E-3</td>
<td>13 ± 5</td>
<td>9-26-58</td>
<td>0.56 ± 0.56</td>
<td>2.0 ± 0.4</td>
<td>4.36 ± 0.8</td>
<td>5.5 ± 0.4</td>
<td>6.0 ± 1.2</td>
<td><5 ± 1.1</td>
<td>0.28 ± 0.7</td>
</tr>
</tbody>
</table>

additional data

<p>| Flight | 238L-1 | (40° exhaust | 17372 ± 507 | 3-24-59 | 12200 | 112 | ± 10 | 6350 | 5400 | ± 222 |
| | tube 1406 ft? | | 1.4900 | | | | | 4750 | ± 179 |
| Flight | 238L-2 | (40° exhaust | 11331 ± 559 | 3-24-59 | 10400 | 167 | ± 8 | 5200 | 3960 | ± 135 |
| | tube 1521 ft? | | 10700 | | | | | 4670 | ± 154 |</p>
<table>
<thead>
<tr>
<th>Sample#</th>
<th>A-1</th>
<th>B-1</th>
<th>C-1</th>
<th>D-1</th>
<th>E-1</th>
<th>F-1</th>
<th>G-1</th>
<th>H-1</th>
<th>I-1</th>
<th>J-1</th>
<th>K-1</th>
<th>L-1</th>
<th>M-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>d/n</td>
<td>C-date</td>
<td>Sr90</td>
<td>Sr90</td>
<td>Sr90</td>
<td>Ba137</td>
<td>Ba140</td>
<td>Sr89/Br90</td>
<td>Sr137/Sr90</td>
<td>Sr87/Sr90</td>
<td>Sr89/Sr90</td>
<td>Sr89/Sr90</td>
<td>Sr89/Sr90</td>
</tr>
<tr>
<td>A-1</td>
<td>41</td>
<td>11-12-58</td>
<td>---</td>
</tr>
<tr>
<td>D-1</td>
<td>52</td>
<td>11-26-58</td>
<td>1.7</td>
<td>11-26-58</td>
<td>1.7</td>
<td>11-26-58</td>
<td>1.7</td>
<td>11-26-58</td>
<td>1.7</td>
<td>11-26-58</td>
<td>1.7</td>
<td>11-26-58</td>
<td>1.7</td>
</tr>
<tr>
<td>E-1</td>
<td>8921</td>
<td>11-5-58</td>
<td>12,500</td>
<td>11-5-58</td>
<td>1160</td>
<td>11-5-58</td>
<td>1160</td>
<td>11-5-58</td>
<td>1160</td>
<td>11-5-58</td>
<td>1160</td>
<td>11-5-58</td>
<td>1160</td>
</tr>
</tbody>
</table>

CHICAGO MIDWAY FLIGHT #4

October 16, 1958

Total d/n

Altitude 60/60.9 K
2.3 ^{90}Sr in Hawaiian Air Samples

A series of air samples have been taken in Hawaii on Mount Haleakala and Mauna Loa. The altitudes are about 10,000 ft. and the samples were collected by Dr. Hans Pettersson of Sweden, whose basic interest is in meteoric dust. The locations are quite free from terrestrial dust and are, therefore, of interest in sampling for meteoric debris and radioactive particulates. The results of these measurements are given in Table 7.
TABLE 3
Air Filters - Hawaii

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Date Sampled</th>
<th>Sampling Period (hours)</th>
<th>Volume (cu. ft.)</th>
<th>(\text{dpm Sr}^{90} / \text{sample})</th>
<th>Total (\text{C-14})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\pm)</td>
<td>(\pm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\text{dpm/sample})</td>
<td>(\text{C-date})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1958)</td>
<td>(1959)</td>
</tr>
<tr>
<td>HASI#</td>
<td>Sampled Date 1958</td>
<td>Sampling Period (hours)</td>
<td>Volume cusef.</td>
<td>dpm Sr90 sample</td>
<td>Total dpm/sample 1959</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>9421A</td>
<td>9-23</td>
<td>23</td>
<td>34,560</td>
<td>4.29 ± 0.26</td>
<td>1150 ± 50</td>
</tr>
<tr>
<td>9422A</td>
<td>10-1</td>
<td>24.2</td>
<td>36,620</td>
<td>0.955 ± 0.157</td>
<td>201 ± 8</td>
</tr>
<tr>
<td>9423A</td>
<td>10-4</td>
<td>24</td>
<td>32,030</td>
<td>1.48 ± 0.19</td>
<td>271 ± 9</td>
</tr>
<tr>
<td>9424A</td>
<td>10-7</td>
<td>24</td>
<td>35,280</td>
<td>3.90 ± 0.19</td>
<td>361 ± 10</td>
</tr>
<tr>
<td>9425A</td>
<td>10-14</td>
<td>24.7</td>
<td>33,740</td>
<td>2.55 ± 0.26</td>
<td>316 ± 16</td>
</tr>
<tr>
<td>9426A</td>
<td>10-29</td>
<td>24</td>
<td>36,200</td>
<td>1.04 ± 0.19</td>
<td>190 ± 12</td>
</tr>
<tr>
<td>9427A</td>
<td>11-16</td>
<td>9</td>
<td>12,960</td>
<td>2.09 ± 0.44</td>
<td>185 ± 11</td>
</tr>
</tbody>
</table>
3. Water

3.1 Sr90 in Richmond, California Tap Water

Since April 1958, Tracerlab, Inc. has been collecting and analyzing Richmond, California tap water for radiostrontium. Approximately 40 liters comprise each sample. The results of analyses are given in the table below.

\[
\begin{array}{|c|c|c|}
\hline
\text{Sampling Period} & \text{Sr}^{90} & \text{Sr}^{89} / \text{Sr}^{90} \\
\hline
1959 & & \\
February & 0.34 \pm 0.01 & 5.6 \\
March & 0.36 \pm 0.01 & 5.3 \\
April & 0.31 \pm 0.05 & 4.7 \\
May & 0.32 \pm 0.01 & 3.7 \\
\hline
\end{array}
\]
3.2 Strontium-90 in Mount Washington Observatory Precipitation Collections

Samples consisting of rimed and unrimed precipitation have been collected at Mount Washington Observatory. These samples are taken to test the relative efficiencies of various types of precipitation in scavenging atmospheric fission product debris.

The data are presented in Table 9.
TABLE 9

Mt. Washington Observatory Collections

<table>
<thead>
<tr>
<th>Sampling Dates</th>
<th>Sample Volume (liters)</th>
<th>pm Sr(^{90}) per sample</th>
<th>µg Sr(^{90}) per liter</th>
<th>Type of Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/23, 1310</td>
<td>2/24, 1400</td>
<td>1.002</td>
<td>8.76 ± 0.30</td>
<td>Unrimed stars.</td>
</tr>
<tr>
<td>3/27, 0330</td>
<td>3/27, 0330</td>
<td>0.994</td>
<td>11.8 ± 0.2</td>
<td>"10% columns and flour snowy, high levels original. 90% stars."</td>
</tr>
<tr>
<td>4/30, 2230</td>
<td>5/1, 1230</td>
<td>1.095</td>
<td>186 ± 1</td>
<td>"Light ice. 5 hrs. snowfall. Fairly rimed stars. Needles."</td>
</tr>
<tr>
<td>5/1, 2205</td>
<td>5/1, 2205</td>
<td>0.965</td>
<td>91.6 ± 0.7</td>
<td>Light ice.</td>
</tr>
<tr>
<td>5/2, 0313</td>
<td>5/2, 0500</td>
<td>1.000</td>
<td>70.2 ± 0.6</td>
<td>Light ice.</td>
</tr>
<tr>
<td>5/14, 1800</td>
<td>5/15, 0130</td>
<td>1.002</td>
<td>80.5 ± 0.6</td>
<td>Light ice. No precipitation.</td>
</tr>
<tr>
<td>5/15, 0130</td>
<td>5/15, 0500</td>
<td>1.001</td>
<td>5.32 ± 0.16</td>
<td>Light to moderate rime.</td>
</tr>
<tr>
<td>5/15, 1100</td>
<td>5/15, 1100</td>
<td>1.090</td>
<td>3.56 ± 0.32</td>
<td>Light rime. Snow showers, 0.16 inches melted.</td>
</tr>
<tr>
<td>5/15, 1100</td>
<td>5/15, 1100</td>
<td>1.010</td>
<td>1.69 ± 0.30</td>
<td>Light rime. Light snow.</td>
</tr>
<tr>
<td>5/15, 1530</td>
<td>5/15, 2030</td>
<td>1.030</td>
<td><0.4</td>
<td>"Moderate rime and B.S. light snowfall."</td>
</tr>
<tr>
<td>5/15, 2030</td>
<td>5/15, 2315</td>
<td>1.025</td>
<td>6.11 ± 0.28</td>
<td>"Heavy and light ice and B.S. light snow."</td>
</tr>
<tr>
<td>5/15, 2315</td>
<td>5/16, 0015</td>
<td>1.010</td>
<td>12.6 ± 0.5</td>
<td>Moderate rime and B.S. snow (Needles rimed).</td>
</tr>
<tr>
<td>5/16, 0015</td>
<td>5/16, 0300</td>
<td>1.015</td>
<td>2.28 ± 0.40</td>
<td>"Moderate rime. Some snow and B.S."</td>
</tr>
<tr>
<td>5/16, 0300</td>
<td>5/16, 0730</td>
<td>1.020</td>
<td>1.51 ± 0.52</td>
<td>"Light ice. B.S."</td>
</tr>
<tr>
<td>5/16, 0500</td>
<td>5/16, 0730</td>
<td>1.020</td>
<td>13.0 ± 0.6</td>
<td>"Moderate rime. B.S."</td>
</tr>
</tbody>
</table>

Error term is one standard deviation due to counting.
<table>
<thead>
<tr>
<th>HASL #</th>
<th>Sampling Dates (1959)</th>
<th>Sample Vol. (liters)</th>
<th>dpm Sr-90/sample</th>
<th>μCi Sr-90/liter (Actual Volume)</th>
<th>Type of Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10654</td>
<td>5/16, 0730 to 5/16, 1015</td>
<td>1.024</td>
<td>112.94 ± 10.84</td>
<td>49.68 ± 4.77</td>
<td>Moderate rime</td>
</tr>
<tr>
<td>10655</td>
<td>5/17, 2130 to 5/18, 0030</td>
<td>0.994</td>
<td>155.40 ± 15.38</td>
<td>70.12 ± 6.97</td>
<td>Light rime</td>
</tr>
<tr>
<td>10656</td>
<td>5/18, 0030 to 5/19, 0330</td>
<td>1.024</td>
<td>157.43 ± 11.49</td>
<td>69.25 ± 5.06</td>
<td>Light rime</td>
</tr>
<tr>
<td>10657</td>
<td>5/18, 0330 to 5/18, 0700</td>
<td>0.908</td>
<td>192.28 ± 23.16</td>
<td>95.39 ± 11.64</td>
<td>Light ice</td>
</tr>
<tr>
<td>10658</td>
<td>5/19, 1630 to 5/19, 2030</td>
<td>1.016</td>
<td>82.16 ± 10.11</td>
<td>36.43 ± 4.43</td>
<td>Fog</td>
</tr>
<tr>
<td>10659</td>
<td>5/19, 2030 to 5/19, 2330</td>
<td>0.990</td>
<td>18.12 ± 6.34</td>
<td>22.03 ± 2.89</td>
<td>Fog</td>
</tr>
<tr>
<td>10660</td>
<td>5/20, 1150 to 5/20, 2030</td>
<td>1.012</td>
<td>126.23 ± 10.86</td>
<td>56.22 ± 4.83</td>
<td>Fog</td>
</tr>
<tr>
<td>10661</td>
<td>5/24, 1800 to 5/24, 2000</td>
<td>1.030</td>
<td>179.92 ± 13.13</td>
<td>78.69 ± 5.74</td>
<td>Heavy rime</td>
</tr>
<tr>
<td>10662</td>
<td>5/24, 2000 to 5/24, 2215</td>
<td>1.019</td>
<td>212.20 ± 13.79</td>
<td>93.80 ± 6.10</td>
<td>Heavy rime</td>
</tr>
<tr>
<td>10663</td>
<td>5/24, 2215 to 5/25, 0015</td>
<td>1.014</td>
<td>222.39 ± 14.01</td>
<td>98.79 ± 6.22</td>
<td>Heavy rime</td>
</tr>
<tr>
<td>10664</td>
<td>5/25, 0030 to 5/25, 0200</td>
<td>1.014</td>
<td>168.37 ± 12.80</td>
<td>74.80 ± 5.68</td>
<td>Heavy rime</td>
</tr>
<tr>
<td>10665</td>
<td>5/25, 0200 to 5/25, 0430</td>
<td>1.021</td>
<td>275.38 ± 35.97</td>
<td>121.50 ± 7.05</td>
<td>Heavy rime</td>
</tr>
<tr>
<td>10666</td>
<td>5/28, 0000 to 5/28, 0250</td>
<td>1.016</td>
<td>135.86 ± 11.68</td>
<td>60.23 ± 5.18</td>
<td>Fog</td>
</tr>
<tr>
<td>10667</td>
<td>5/28, 0250 to 5/28, 0435</td>
<td>1.011</td>
<td>50.59 ± 9.16</td>
<td>22.54 ± 4.22</td>
<td>Fog</td>
</tr>
<tr>
<td>10668</td>
<td>5/28, 0435 to 5/28, 0615</td>
<td>1.011</td>
<td>81.55 ± 8.40</td>
<td>36.33 ± 3.74</td>
<td>Fog</td>
</tr>
<tr>
<td>10669</td>
<td>5/28, 0615 to 5/28, 0915</td>
<td>0.964</td>
<td>74.99 ± 8.10</td>
<td>35.04 ± 3.92</td>
<td>Fog</td>
</tr>
</tbody>
</table>
Uptake of Strontium-90

Uptake studies are designed primarily to measure and/or predict the levels of strontium-90 in man. It is thus necessary to understand the mechanisms by which this isotope enters the food chain and is eventually incorporated into the human bone structure.

Milk has been monitored most extensively. In this report data are presented from the monitoring networks of the Health and Safety Laboratory and the U. S. Public Health Service. (Tables 10 through 14d).

Bread and flour samples purchased from local stores in New York City have been assayed since February 1959 and will continue to be collected and analyzed on a monthly basis. (Table 15)

Wheat samples from the largest wheat producing states in the U. S. have been collected under the auspices of the University of Minnesota and sent to HASL for radioassay. The milling products of some of the wheat samples are being analyzed as well to determine the distribution of Sr90. (Tables 16, 17, & 18). In addition to wheat, HASL has also received samples of corn seed from the University of Minnesota. (Table 19)

Studies of Sr90 levels in human bone and other biological materials are conducted at the Lamont Geological Observatory, under an AEC research contract. Summary papers have been published in Science magazine and in the next quarterly report it is expected that more individual analytical results will be presented. (Table 20)
Additional human bone and teeth samples are sporadically received at HASL for strontium-90 assay and are reported as the data become available. (Table 21)

Special studies of animal bone and other biological material have been carried out at the University of Nevada under the direction of Dr. Bernard F. Trum. (Tables 22a, b, c, and d)
4.1 Milk

The two earliest series of milk analyses were begun in 1954 and included powdered milk from Perry, New York and liquid milk purchased in New York City. Two stations were added in 1955: Columbus, Wisconsin and Mandan, North Dakota; sampling from the former was recently terminated.

The U. S. Public Health Service began sampling liquid milk at five locations in the spring of 1957 and have expanded the number of sites to twelve.
4.11 Monthly Strontium-90 Levels in Liquid Milk from New York City

A quart of liquid milk is purchased five days a week from a store near HASL. The labeled brands are varied to avoid sampling milk from particular farms. The daily samples are composited, evaporated, ashed and analyzed on a monthly basis. The values in the table below represent averages of replicate analyses made on monthly composites; the error term represents one standard deviation from the mean.

All of the monthly data since the inception of this sampling site are graphed in Figure 4. The values through May 1956 represent monthly averages of weekly analyses. Each weekly analysis consisted of a five day composite.

<table>
<thead>
<tr>
<th>Sampling Month</th>
<th>µmc Sr90</th>
<th>Sr89/Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959 February</td>
<td>8.36 ± 0.45</td>
<td>0.43 ± 0.2</td>
</tr>
<tr>
<td>March</td>
<td>8.05 ± 0.42</td>
<td>1.0 ± 0.3</td>
</tr>
<tr>
<td>April</td>
<td>7.71 ± 0.41</td>
<td>0.8 ± 0.3</td>
</tr>
<tr>
<td>May</td>
<td>13.42 ± 1.63</td>
<td>1.5 ± 0.3</td>
</tr>
</tbody>
</table>
4.12 Monthly Strontium-90 Levels in Powdered Milk from Perry, New York

Since April 1954, 5-pound cans of powdered whole milk have been sent to HASL each week from a milk powdering plant at Perry, New York.

Table 11, below, summarizes the recent data in µmc Sr\(^{90}\)/gram Ca. All the Sr\(^{90}\) data are graphed in Figure 5. The values through December 1955 represent monthly averages of weekly samples, the error term representing one standard deviation from the mean. The monthly values for the year 1956 represent one analysis and a standard error of counting since the weekly samples were pooled each month. Starting January 1957, the monthly composites have been analyzed in replicate, the values thus being an average and the error term one standard deviation from the mean.

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>µmc Sr(^{90})/g Ca</th>
<th>Sr(^{89})/Sr(^{90})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959 March</td>
<td>7.60 ± 0.50</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>1959 April</td>
<td>6.60 ± 0.50</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>1959 May</td>
<td>7.19 ± 0.39</td>
<td>0.7 ± 0.4</td>
</tr>
<tr>
<td>1959 May</td>
<td>8.86 ± 0.55</td>
<td>0.8 ± 0.3</td>
</tr>
</tbody>
</table>
HASL FIG 5 SR 90 IN MILK - PERRY N.Y.
Monthly Strontium-90 Levels in Powdered Milk from Mandan, North Dakota

Five-pound samples of powdered milk have been obtained weekly from milk powdering plants in Mandan, North Dakota (powdered buttermilk) and composited on a monthly basis.

Table 13 summarizes the recent data in μg $\text{Sr}^{90}/g \text{Ca}$. The error term is one standard deviation from the mean of replicate analyses. Figure 6 graphs all of the Sr^{90} data.

The high concentration of strontium-90 in the dried buttermilk from Mandan has not been satisfactorily explained in terms of soil content, rate of fallout, or vegetation content. Several experiments in the past have shown that no significant difference exists in the strontium-90 to calcium ratio in the separate portions of milk, such as whole milk, skimmed milk, or buttermilk. While this Mandan powdered buttermilk is used for animal feed, it still may be a contributor to the overall strontium-90 level in animal bone and also in milk for the human diet.

TABLE 13

<table>
<thead>
<tr>
<th>Sampling Period</th>
<th>μg $\text{Sr}^{90}/g \text{Ca}$</th>
<th>$\text{Sr}^{89}/\text{Sr}^{90}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959 February</td>
<td>18.4 ± 0.8</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>March</td>
<td>23.9 ± 0.7</td>
<td>1.0 ± 0.2</td>
</tr>
</tbody>
</table>
HASL FIG 6 SR 90 IN MILK — MANDAN N.D.
The USPHS now has 12 locations where a monthly one gallon composite sample is collected and analyzed for I131, Sr89, Ba140, and Cs137 in addition to Sr90. The following tables of data were extracted from their monthly reports for March, April, May, and June, 1959. The mean and maximum values by month are grouped in Figure 7 which covers data for 1958 and 1959.
TABLE 13

U.S. DEPARTMENT OF HEALTH, EDUCATION AND WELFARE
Public Health Service

Milk Samples
Average Levels for Period Ending June 1959
(Micromicrocuries per liter)

<table>
<thead>
<tr>
<th>Area</th>
<th>No. Mos.</th>
<th>Iodine 131</th>
<th>Strontium 89</th>
<th>Strontium 90</th>
<th>Barium 140</th>
<th>Cesium 137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible Limits*</td>
<td>Lifetime Average Exposure (NORPBM)</td>
<td>3,000*</td>
<td>7,000*</td>
<td>80.0*</td>
<td>200,000*</td>
<td>150,000*</td>
</tr>
<tr>
<td>Atlanta, Ga.</td>
<td>12</td>
<td>17</td>
<td>71</td>
<td>13.6</td>
<td>8</td>
<td>94</td>
</tr>
<tr>
<td>Austin, Texas</td>
<td>12</td>
<td>28</td>
<td>39</td>
<td>5.4</td>
<td>6</td>
<td>51</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>12</td>
<td>24</td>
<td>37</td>
<td>8.0</td>
<td>6</td>
<td>72</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>12</td>
<td>32</td>
<td>65</td>
<td>12.7</td>
<td>20</td>
<td>67</td>
</tr>
<tr>
<td>Fargo, N.Dak.- Moorhead, Minn.</td>
<td>12</td>
<td>24</td>
<td>59</td>
<td>13.7</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>New York, N.Y.</td>
<td>12</td>
<td>22</td>
<td>35</td>
<td>8.2</td>
<td>13</td>
<td>66</td>
</tr>
<tr>
<td>Overton, Nevada</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3.3</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>Sacramento, Calif.</td>
<td>12</td>
<td>11</td>
<td>21</td>
<td>5.3</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>Salt Lake City, Utah</td>
<td>12</td>
<td>27</td>
<td>20</td>
<td>5.6</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>Spokane, Washington</td>
<td>11</td>
<td>20</td>
<td>38</td>
<td>11.4</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>St. George, Utah</td>
<td>4</td>
<td>2</td>
<td>11</td>
<td>6.3</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>12</td>
<td>75</td>
<td>159</td>
<td>20.0</td>
<td>39</td>
<td>99</td>
</tr>
</tbody>
</table>

* These limits are the maxima permissible limits for lifetime exposure of population groups to specific radioisotopes in water and are derived from the current recommendations of the National Committee on Radiation Protection and Measurements. The limits have been generally accepted as being applicable to milk.
Table 1

<table>
<thead>
<tr>
<th>Area</th>
<th>Iodine 131</th>
<th>Strontium 89</th>
<th>Strontium 90</th>
<th>Barium 140</th>
<th>Cesium 137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible Limits*</td>
<td>3,000*</td>
<td>7,000*</td>
<td>20.0*</td>
<td>200,000*</td>
<td>150,000*</td>
</tr>
<tr>
<td>Lifetime Average Exposure (NCRP&M)</td>
<td>16</td>
<td>42</td>
<td>19.9</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td>Atlanta, Ga.</td>
<td>1</td>
<td>24</td>
<td>8.2</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>Austin, Texas</td>
<td>2</td>
<td>19</td>
<td>12.1</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>2</td>
<td>32</td>
<td>17.4</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>6</td>
<td>44</td>
<td>20.6</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>Fargo, N. Dak.</td>
<td>7</td>
<td>24</td>
<td>11.8</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Moorhead, Minn.</td>
<td>5</td>
<td>54</td>
<td>22.1</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>New York, N.Y.</td>
<td>0</td>
<td>28</td>
<td>14.0</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>Overton, Nevada</td>
<td>4</td>
<td>4</td>
<td>4.2</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Sacramento, Calif.</td>
<td>3</td>
<td>10</td>
<td>6.4</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Salt Lake City, Utah</td>
<td>7</td>
<td>24</td>
<td>11.8</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Spokane, Washington</td>
<td>5</td>
<td>54</td>
<td>22.1</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>St. George, Utah</td>
<td>5</td>
<td>20</td>
<td>7.9</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>5</td>
<td>77</td>
<td>11.2</td>
<td>0</td>
<td>104</td>
</tr>
</tbody>
</table>

* These limits are the maxima permissible limits for lifetime exposure of population groups to specific radioisotopes in water and are derived from the current recommendations of the National Committee on Radiation Protection and Measurements. The limits have been generally accepted as being applicable to milk.
<table>
<thead>
<tr>
<th>Area</th>
<th>Iodine 131</th>
<th>Strontium 89</th>
<th>Strontium 90</th>
<th>Barium 140</th>
<th>Cesium 137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible Limits*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Average Exposure (NCRP)</td>
<td>3,000*</td>
<td>7,000*</td>
<td>80.0*</td>
<td>200,000*</td>
<td>150,000*</td>
</tr>
<tr>
<td>Atlanta, Ga.</td>
<td>4</td>
<td>94</td>
<td>22.8</td>
<td>0</td>
<td>143</td>
</tr>
<tr>
<td>Austin, Texas</td>
<td>11</td>
<td>58</td>
<td>6.5</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>0</td>
<td>57</td>
<td>12.5</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>4</td>
<td>53</td>
<td>18.2</td>
<td>0</td>
<td>89</td>
</tr>
<tr>
<td>Fargo, N. Dak. - Moorhead, Minn.</td>
<td>1</td>
<td>20</td>
<td>16.2</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>New York, N.Y.</td>
<td>0</td>
<td>20</td>
<td>12.0</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Overton, Nevada</td>
<td>0</td>
<td>3</td>
<td>3.8</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>Sacramento, Calif.</td>
<td>0</td>
<td>25</td>
<td>8.6</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>Salt Lake City, Utah</td>
<td>7</td>
<td>32</td>
<td>9.8</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Spokane, Washington</td>
<td>18</td>
<td>90</td>
<td>22.6</td>
<td>0</td>
<td>104</td>
</tr>
<tr>
<td>St. George, Utah</td>
<td>1</td>
<td>15</td>
<td>5.7</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>0</td>
<td>140</td>
<td>34.6</td>
<td>0</td>
<td>166</td>
</tr>
</tbody>
</table>

*These limits are the maxima permissible limits for lifetime exposure of population groups to specific radioisotopes in water and are derived from the current recommendations of the National Committee on Radiation Protection and Measurements. The limits have been generally accepted as being applicable to milk.
Analysis Summary of Samples Collected in April 1959 From Milksheds Serving Specified Areas (Micromicrocuries per liter)

<table>
<thead>
<tr>
<th>Area</th>
<th>Iodine 131</th>
<th>Strontium 89</th>
<th>Strontium 90</th>
<th>Barium 140</th>
<th>C. 137</th>
<th>Permissible Limits* Lifetime Exposure (MCRP&M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta, Ga.</td>
<td>3</td>
<td>131</td>
<td>20.8</td>
<td>0</td>
<td>114</td>
<td>3,000* 7,000* 80.0* 200,000* 150,000*</td>
</tr>
<tr>
<td>Austin, Texas</td>
<td>0</td>
<td>67</td>
<td>8.9</td>
<td>0</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>3</td>
<td>7</td>
<td>7.2</td>
<td>0</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>1</td>
<td>39</td>
<td>16.5</td>
<td>0</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Fargo, N. Dak.-Moorhead, Minn.</td>
<td>0</td>
<td>10</td>
<td>12.3</td>
<td>0</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>3</td>
<td>7</td>
<td>7.6</td>
<td>0</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Overton, Nevada</td>
<td>0</td>
<td>4</td>
<td>3.1</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Sacramento, Calif.</td>
<td>4</td>
<td>36</td>
<td>7.5</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City, Utah</td>
<td>5</td>
<td>6</td>
<td>5.4</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Spokane, Washington</td>
<td>0</td>
<td>15</td>
<td>10.5</td>
<td>0</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>St. George, Utah</td>
<td>0</td>
<td>6</td>
<td>5.6</td>
<td>0</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>0</td>
<td>162</td>
<td>37.3</td>
<td>0</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

*These limits are the maxima permissible limits for lifetime exposure of population groups to specific radioisotopes in water and are derived from the current recommendations of the National Committee on Radiation Protection and Measurements. The limits have been generally accepted as being applicable to milk.
<table>
<thead>
<tr>
<th>Area</th>
<th>Calcium grams/liter</th>
<th>I-131</th>
<th>Sr.-89</th>
<th>Sr.-90</th>
<th>Ba.-140</th>
<th>Cs.-137</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible Limits*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NCRP&M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atlanta, Ga.</td>
<td>1.246</td>
<td>4</td>
<td>100</td>
<td>14.0</td>
<td>0</td>
<td>98</td>
</tr>
<tr>
<td>Austin, Texas</td>
<td>1.169</td>
<td>2</td>
<td>68</td>
<td>7.3</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>Chicago, Ill.</td>
<td>1.085</td>
<td>5</td>
<td>6</td>
<td>5.5</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>Cincinnati, Ohio</td>
<td>1.150</td>
<td>1</td>
<td>19</td>
<td>12.9</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>Fargo, N. Dak.-</td>
<td>1.109</td>
<td>5</td>
<td>12</td>
<td>12.2</td>
<td>0</td>
<td>67</td>
</tr>
<tr>
<td>Moorhead, Minn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td>1.106</td>
<td>0</td>
<td>5</td>
<td>6.5</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>Overton, Nevada</td>
<td>1.098</td>
<td>1</td>
<td>7</td>
<td>4.2</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Sacramento, Calif.</td>
<td>1.133</td>
<td>1</td>
<td>58</td>
<td>7.7</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>Salt Lake City, Utah</td>
<td>1.176</td>
<td>2</td>
<td>4</td>
<td>4.6</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>Spokane, Washington</td>
<td>1.236</td>
<td>8</td>
<td>6</td>
<td>10.9</td>
<td>0</td>
<td>68</td>
</tr>
<tr>
<td>St. George, Utah</td>
<td>1.161</td>
<td>3</td>
<td>2</td>
<td>6.0</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td>St. Louis, Mo.</td>
<td>1.225</td>
<td>4</td>
<td>130</td>
<td>22.5</td>
<td>5</td>
<td>92</td>
</tr>
</tbody>
</table>
HASL FIG 7 USPHS MILK ANALYSES
4.2 Other Foods and Herbage

4.21 Strontium-90 in Bread and Flour Purchased in New York City

Strontium-90 results for flour and bread samples purchased in New York City during the first and last parts of May 1959 are given in Table 15.

A set of flour and bread samples from New York City had previously been purchased on February 19, 1959 and results reported in Table 23, p. 168, in HASL-65. The possibility had been pointed out on page 163 of HASL-65 that the white and whole wheat bread results might have been reversed. Analyses of material purchased in May 1955 would seem to confirm this possibility inasmuch as these most recent results show that whole wheat bread contains more strontium-90 than white bread.
TABLE 15

New York City

Store Purchased Bread and Flour Samples

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Type</th>
<th>Purchase Date</th>
<th>% ash of orig. mat.</th>
<th>% Ca in Ash</th>
<th>g Ca per kg orig. mat.</th>
<th>g Ca</th>
<th>g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>orig. mat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10321</td>
<td>whole wheat</td>
<td>5-1-59</td>
<td>1.64</td>
<td>1.89</td>
<td>0.31</td>
<td>600</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>late May '59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10327</td>
<td>white</td>
<td>5-1-59</td>
<td>0.67</td>
<td>2.28</td>
<td>0.15</td>
<td>79</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>late May '59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flour

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Type</th>
<th>Purchase Date</th>
<th>% ash of orig. mat.</th>
<th>% Ca in Ash</th>
<th>g Ca per kg orig. mat.</th>
<th>g Ca</th>
<th>g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Date</td>
<td>orig. mat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10329</td>
<td>whole wheat</td>
<td>5-1-59</td>
<td>6.85</td>
<td>1.42</td>
<td>0.97</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>late May '59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10330</td>
<td>white</td>
<td>5-1-59</td>
<td>2.55</td>
<td>7.70</td>
<td>1.96</td>
<td>5.9</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>late May '59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10647</td>
<td>whole wheat</td>
<td>late May '59</td>
<td>2.57</td>
<td>3.34</td>
<td>0.86</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>late May '59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10648</td>
<td>white</td>
<td>late May '59</td>
<td>2.31</td>
<td>5.30</td>
<td>1.22</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

* Duplicate analyses.

Error term is one standard deviation due to counting.
Two wheat samples were collected by Dr. Glen Smith of the North Dakota Agricultural College at Fargo at the request of Dr. L.T. Alexander. The samples represent two different farms in the region of Fargo.

The first three wheat samples (Table 16) from Mandan were furnished by local farmers and represent three separate farms. Mr. Earnest J. George of the Agricultural Experiment Station arranged for these collections at Dr. Alexander's request. The fourth Mandan wheat sample and the milling products were obtained from the North Dakota State Mill. A material balance study of the distribution of strontium-90 in the wheat and its milling products is presented in a memorandum to the files on page 127.

All of the wheat samples collected from Fargo and Mandan are of the Spring variety and were harvested in August of 1958.
Wheat and Milling Products - North Dakota

Fargo, North Dakota

North Dakota Agricultural College - G. Smith

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Type</th>
<th>ref#</th>
<th>% ash of orig. mat.</th>
<th>d/m Sr90/g ash</th>
<th>% Ca in Ash</th>
<th>mpc Sr90 g Ca</th>
<th>Ave. mpc Sr90 kg orig. mat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9587</td>
<td>wheat</td>
<td>1</td>
<td>2.24</td>
<td>5.30 ± 0.28</td>
<td>1.08</td>
<td>221 ± 12</td>
<td>221 ± 12</td>
</tr>
<tr>
<td>9588</td>
<td>wheat</td>
<td>2</td>
<td>1.78</td>
<td>6.04 ± 0.29</td>
<td>1.65</td>
<td>165 ± 8</td>
<td>165 ± 8</td>
</tr>
</tbody>
</table>

Mandan, North Dakota

Agricultural Experiment Station - E. George

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Type</th>
<th>ref#</th>
<th>% ash of orig. mat.</th>
<th>d/m Sr90/g ash</th>
<th>% Ca in Ash</th>
<th>mpc Sr90 g Ca</th>
<th>Ave. mpc Sr90 kg orig. mat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9599</td>
<td>wheat</td>
<td>1</td>
<td>1.74</td>
<td>6.65 ± 0.31</td>
<td>1.46</td>
<td>205 ± 10</td>
<td>205 ± 10</td>
</tr>
<tr>
<td>9601</td>
<td>wheat</td>
<td>2</td>
<td>1.42</td>
<td>5.39 ± 0.27(1)</td>
<td>2.22</td>
<td>107 ± 5</td>
<td>107 ± 5</td>
</tr>
<tr>
<td>9600(2) wheat</td>
<td>3</td>
<td>1.76</td>
<td>3.46 ± 0.24</td>
<td>1.79</td>
<td>87 ± 6</td>
<td>87 ± 6</td>
<td>29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Type</th>
<th>ref#</th>
<th>% ash of orig. mat.</th>
<th>d/m Sr90/g ash</th>
<th>% Ca in Ash</th>
<th>mpc Sr90 g Ca</th>
<th>Ave. mpc Sr90 kg orig. mat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>9633</td>
<td>wheat(4)</td>
<td>4</td>
<td>2.44</td>
<td>3.94 ± 0.21</td>
<td>1.77</td>
<td>100 ± 5</td>
<td>100 ± 5</td>
</tr>
<tr>
<td>9634</td>
<td>flour-1st clear</td>
<td>4A</td>
<td>1.11</td>
<td>3.18 ± 0.20</td>
<td>1.98</td>
<td>72 ± 4</td>
<td>72 ± 4</td>
</tr>
<tr>
<td>9635(2) flour-2nd clear</td>
<td>4B</td>
<td>2.66</td>
<td>2.44 ± 0.23</td>
<td>1.31</td>
<td>84 ± 8</td>
<td>84 ± 8</td>
<td>31</td>
</tr>
<tr>
<td>9731</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9636(3) flour-patent ashed</td>
<td>4C</td>
<td>3.315 kg</td>
<td>60 ± 2 d/m/s</td>
<td>142 mg/s</td>
<td>61 ± 2</td>
<td>61 ± 2</td>
<td>8.2</td>
</tr>
<tr>
<td>9637</td>
<td>feed midlings</td>
<td>4D</td>
<td>5.04</td>
<td>7.11 ± 0.31</td>
<td>1.81</td>
<td>177 ± 8</td>
<td>177 ± 8</td>
</tr>
<tr>
<td>9638(2) bran</td>
<td>4E</td>
<td>6.37</td>
<td>6.12 ± 0.29</td>
<td>1.61</td>
<td>171 ± 8</td>
<td>171 ± 8</td>
<td>184</td>
</tr>
<tr>
<td>9730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) recount
(2) blind duplicate
(3) in the process of ashing, the material fused to the silica tray and it was necessary to dissolve the residue in aqua-regia.
(4) hard, red spring, 1958 crop.

Error term given is one standard deviation due to counting.
Through the courtesy of Mr. E. J. George of the USDA Agricultural Research Service in Mandan, we were supplied with a set of samples of wheat and the milling products from this wheat. We were also able to obtain data on the weight distribution of the fractions produced from wheat at the particular mill which supplied the samples. These data have been combined with the laboratory analyses to show a material balance as indicated in the attached table.

The three balances on ash content, calcium content, and Strontium-90 content are reasonably satisfactory, with the Strontium-90 balance showing the greatest deviation. This may possibly be due to incorrect analysis of the wheat or of the two high strontium fractions.

Additional balances may be obtained from the wheat survey currently being processed at the Laboratory. An attempt will be made to get data on wheat distribution from the mills concerned.

Attachment:
1. Table
<table>
<thead>
<tr>
<th>Material</th>
<th>Weight (kg)</th>
<th>Ash Balance (g. Ash per kg)</th>
<th>Calcium Balance (g. Ca per kg)</th>
<th>Sr90 Balance (µg Ca per kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g. Ash</td>
<td>g. Ash Total</td>
<td>g. Ca</td>
</tr>
<tr>
<td>Input</td>
<td>100</td>
<td>Wheat 24.4</td>
<td>2440</td>
<td>.432</td>
</tr>
<tr>
<td>Output</td>
<td>57.6</td>
<td>Patent Flour 10.0 *</td>
<td>576</td>
<td>.133</td>
</tr>
<tr>
<td></td>
<td>12.2</td>
<td>1st Clear Flour 11.1</td>
<td>135</td>
<td>.220</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>2nd Clear Flour 26.6</td>
<td>58</td>
<td>.354</td>
</tr>
<tr>
<td></td>
<td>16.8</td>
<td>Middlings 50.4</td>
<td>847</td>
<td>.912</td>
</tr>
<tr>
<td></td>
<td>11.2</td>
<td>Bran 63.7</td>
<td>713</td>
<td>1.010</td>
</tr>
<tr>
<td>Output Total</td>
<td></td>
<td></td>
<td>2329</td>
<td>37.75</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td>111</td>
<td>5.45</td>
</tr>
<tr>
<td>% Difference</td>
<td></td>
<td></td>
<td>4.6%</td>
<td>12.6%</td>
</tr>
</tbody>
</table>

* Estimated, Ash not determined.
4.24 Strontium-90 in U. S. Wheat (1958 crop)

HASL has received, from Dr. Richard S. Caldecott of the University of Minnesota, samples of wheat from most of the major producing states in the United States. The milling products have been received as well for nine of these states. In Table 18 available strontium-90 data for wheat samples only have been reported. The milling product results and the remaining wheat data will be reported in succeeding quarterlies.
<table>
<thead>
<tr>
<th>Stateln</th>
<th>Ref.</th>
<th>Section</th>
<th>Type</th>
<th>% ash of orig. mat.</th>
<th>$d/100$ ash</th>
<th>% Sr90 in ash</th>
<th>g Ca per kg orig. mat.</th>
<th>g Sr90 Ca per kg orig. mat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>1A</td>
<td>Hard Red Winter</td>
<td>1.62</td>
<td>9.99 ± 0.33</td>
<td>1.96</td>
<td>0.36</td>
<td>227 ± 8</td>
<td>82</td>
</tr>
<tr>
<td>N. Dakota</td>
<td>2A</td>
<td>Hard Red Spring</td>
<td>1.85</td>
<td>5.25 ± 0.25</td>
<td>1.70</td>
<td>0.31</td>
<td>139 ± 6</td>
<td>14</td>
</tr>
<tr>
<td>N. Dakota</td>
<td>3A</td>
<td>Hard Red Winter</td>
<td>1.62</td>
<td>6.63 ± 0.31</td>
<td>1.70</td>
<td>0.31</td>
<td>176 ± 8</td>
<td>54</td>
</tr>
<tr>
<td>Minot</td>
<td>18A</td>
<td>Hard Red Spring</td>
<td>1.60</td>
<td>3.03 ± 0.24</td>
<td>1.86</td>
<td>0.33</td>
<td>73 ± 6</td>
<td>24</td>
</tr>
<tr>
<td>N. Dakota</td>
<td>19A</td>
<td>Hard Red Spring</td>
<td>1.69</td>
<td>2.71 ± 0.21</td>
<td>1.91</td>
<td>0.32</td>
<td>67 ± 5</td>
<td>21</td>
</tr>
<tr>
<td>Tex.-Oka.</td>
<td>3A</td>
<td>Hard Red Winter</td>
<td>1.69</td>
<td>6.02 ± 0.27</td>
<td>2.50</td>
<td>0.42</td>
<td>108 ± 5</td>
<td>46</td>
</tr>
<tr>
<td>Texas</td>
<td>7A</td>
<td>Hard Red Spring</td>
<td>2.06</td>
<td>4.15 ± 0.26</td>
<td>2.24</td>
<td>0.46</td>
<td>89 ± 5</td>
<td>42</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>9A</td>
<td>Hard Red Winter</td>
<td>1.98</td>
<td>3.78 ± 0.24</td>
<td>2.09</td>
<td>0.41</td>
<td>81 ± 6</td>
<td>34</td>
</tr>
<tr>
<td>Montana</td>
<td>14A</td>
<td>Hard Red Winter</td>
<td>1.94</td>
<td>2.67 ± 0.22</td>
<td>0.96</td>
<td>0.47</td>
<td>125 ± 10</td>
<td>59</td>
</tr>
<tr>
<td>Illinois</td>
<td>15A</td>
<td>Soft Red Winter</td>
<td>1.16</td>
<td>7.10 ± 0.39</td>
<td>0.97</td>
<td>0.40</td>
<td>330 ± 13</td>
<td>133</td>
</tr>
<tr>
<td>Minnesota</td>
<td>6A</td>
<td>Hard Red Spring</td>
<td>5.06</td>
<td>2.26 ± 0.21</td>
<td>0.77</td>
<td>0.39</td>
<td>132 ± 1</td>
<td>52</td>
</tr>
<tr>
<td>Minnesota</td>
<td>12A</td>
<td>Hard Red Spring</td>
<td>2.54</td>
<td>6.76 ± 0.50</td>
<td>1.16</td>
<td>0.29</td>
<td>262 ± 12</td>
<td>77</td>
</tr>
<tr>
<td>Central</td>
<td>13A</td>
<td>Hard Red Spring</td>
<td>3.06</td>
<td>6.12 ± 0.26</td>
<td>1.37</td>
<td>0.42</td>
<td>201 ± 9</td>
<td>84</td>
</tr>
<tr>
<td>Western</td>
<td>11A</td>
<td>Hard Red Spring</td>
<td>data incomplete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minnesota</td>
<td>15A</td>
<td>Putnam 2912</td>
<td>1.98</td>
<td>3.27 ± 0.21</td>
<td>1.75</td>
<td>0.35</td>
<td>81 ± 5</td>
<td>29</td>
</tr>
<tr>
<td>Minnesota</td>
<td>16A</td>
<td>Putnam 2912</td>
<td>1.87</td>
<td>4.87 ± 0.26</td>
<td>2.07</td>
<td>0.39</td>
<td>106 ± 6</td>
<td>41</td>
</tr>
<tr>
<td>Minnesota</td>
<td>17A</td>
<td>Crookston</td>
<td>1.87</td>
<td>5.14 ± 0.26</td>
<td>1.66</td>
<td>0.27</td>
<td>159 ± 8</td>
<td>43</td>
</tr>
<tr>
<td>New York</td>
<td>10A</td>
<td>Soft White</td>
<td>1.62</td>
<td>6.06 ± 0.28</td>
<td>2.25</td>
<td>0.36</td>
<td>122 ± 6</td>
<td>44</td>
</tr>
<tr>
<td>Michigan</td>
<td>11A</td>
<td>Soft Red</td>
<td>1.56</td>
<td>6.02 ± 0.29</td>
<td>2.30</td>
<td>0.36</td>
<td>118 ± 5</td>
<td>42</td>
</tr>
</tbody>
</table>

Note: sample ref. nos. 12-19 are guaranteed to be from the 1958 crop. Sample ref. nos. 1-12 some question as to whether or not there is a mixture of the 1957 and 1958 crop.

Error term is one standard deviation due to counting.
4.25 Strontium-90 in Minnesota Corn Seed.

Samples of corn seed were sent to HASL by Dr. R.S. Caldecott of the University of Minnesota for strontium-90 assay. The data are presented in Table 19.
TABLE 19

<table>
<thead>
<tr>
<th>Item#</th>
<th>HAS#</th>
<th>Lot</th>
<th>Location</th>
<th>orig. wt. sent to HAS</th>
<th>% ash of orig. mat.</th>
<th>Weight of ash in grams analyzed</th>
<th>grams Ca in sample</th>
<th>d/m Sr²⁹⁰ in sample</th>
<th>macro Sr²⁹⁰ in kg orig. mat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9612</td>
<td>1945-46 blend</td>
<td>Waseca (Southern Minn.)</td>
<td>2219 g</td>
<td>1.61</td>
<td>10.6</td>
<td>≤ 0.1</td>
<td>≤ 1.48</td>
<td>≤ 1.01</td>
</tr>
<tr>
<td>2</td>
<td>9643</td>
<td>1946</td>
<td>Waseca (Southern Minn.)</td>
<td>2286 g</td>
<td>1.77</td>
<td>11.6</td>
<td>≤ 0.1</td>
<td>≤ 0.87</td>
<td>≤ 0.60</td>
</tr>
<tr>
<td>3</td>
<td>9644</td>
<td>1947</td>
<td>St. Paul (Central Minn.)</td>
<td>1233 g</td>
<td>1.42</td>
<td>3.42</td>
<td>≤ 0.1</td>
<td>≤ 1.12</td>
<td>≤ 2.09</td>
</tr>
<tr>
<td>4</td>
<td>9645</td>
<td>1948</td>
<td>Sacred Heart (West Central Minn.)</td>
<td>2193 g</td>
<td>1.79</td>
<td>10.3</td>
<td>≤ 0.1</td>
<td>≤ 0.98</td>
<td>≤ 0.77</td>
</tr>
<tr>
<td>5</td>
<td>9646</td>
<td>1949</td>
<td>St. Paul (Central Minn.)</td>
<td>2204 g</td>
<td>1.57</td>
<td>9.58</td>
<td>≤ 0.1</td>
<td>≤ 0.76</td>
<td>≤ 0.56</td>
</tr>
<tr>
<td>6</td>
<td>9647</td>
<td>1950</td>
<td>Waseca (Southern Minn.)</td>
<td>2206 g</td>
<td>1.94</td>
<td>7.84</td>
<td>≤ 0.1</td>
<td>≤ 0.98</td>
<td>≤ 1.09</td>
</tr>
<tr>
<td></td>
<td>9856</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9648</td>
<td>1951</td>
<td>Vernon Center (Southern Minn.)</td>
<td>2209 g</td>
<td>1.85</td>
<td>10.5</td>
<td>≤ 0.1</td>
<td>≤ 0.87</td>
<td>≤ 0.69</td>
</tr>
<tr>
<td>8</td>
<td>9649</td>
<td>1952</td>
<td>Waterville (Southern Minn.)</td>
<td>2214 g</td>
<td>1.71</td>
<td>10.1</td>
<td>≤ 0.1</td>
<td>≤ 1.12</td>
<td>≤ 0.85</td>
</tr>
<tr>
<td>9</td>
<td>9650</td>
<td>1953</td>
<td>Waseca (Southern Minn.)</td>
<td>2217 g</td>
<td>1.58</td>
<td>11.7</td>
<td>≤ 0.1</td>
<td>≤ 1.03</td>
<td>≤ 0.69</td>
</tr>
<tr>
<td>10</td>
<td>9651</td>
<td>1954</td>
<td>Waseca (Southern Minn.)</td>
<td>2287 g</td>
<td>1.68</td>
<td>11.8</td>
<td>≤ 0.1</td>
<td>≤ 1.01</td>
<td>≤ 0.65</td>
</tr>
<tr>
<td>11</td>
<td>9652</td>
<td>1955</td>
<td>St. Paul (Central Minn.)</td>
<td>2187 g</td>
<td>1.53</td>
<td>6.36</td>
<td>≤ 0.1</td>
<td>≤ 1.42</td>
<td>≤ 1.54</td>
</tr>
<tr>
<td>12</td>
<td>9653</td>
<td>1956</td>
<td>Vernon Center (Southern Minn.)</td>
<td>2211 g</td>
<td>1.52</td>
<td>6.34</td>
<td>≤ 0.1</td>
<td>≤ 0.76</td>
<td>≤ 0.82</td>
</tr>
<tr>
<td></td>
<td>9857</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>9654</td>
<td>1957</td>
<td>Olivia (West Central Minn.)</td>
<td>2254 g</td>
<td>1.71</td>
<td>5.00</td>
<td>≤ 0.1</td>
<td>≤ 1.26</td>
<td>≤ 1.94</td>
</tr>
<tr>
<td></td>
<td>9655</td>
<td>1958</td>
<td>Deleran (Southern Minn.)</td>
<td>2255 g</td>
<td>1.59</td>
<td>8.13</td>
<td>≤ 0.1</td>
<td>≤ 1.05</td>
<td>≤ 0.92</td>
</tr>
</tbody>
</table>

* Blind duplicate.
Table 20 summarizes the results of milk, bone, and soil collected in North Dakota and analyzed at the Lamont Geological Observatory, Columbia University.
TABLE 20

North Dakota Strontium-90 Analyses - Milk

Data from Lamont Geological Observatory, Palisades, N.Y.

Milk

<table>
<thead>
<tr>
<th>Location</th>
<th>Date Collected</th>
<th>(\mu g \text{ Sr}^{90}) g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismark</td>
<td>March '57</td>
<td>6.23 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>April '57</td>
<td>7.98 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>May '57</td>
<td>11.58 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>June '57</td>
<td>6.83 ± 0.11</td>
</tr>
<tr>
<td></td>
<td>July '57</td>
<td>7.34 ± 0.10</td>
</tr>
<tr>
<td></td>
<td>Aug. '57</td>
<td>12.20 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>Sept. '57</td>
<td>18.00 ± 0.15</td>
</tr>
<tr>
<td></td>
<td>Oct. '57</td>
<td>16.12 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>Nov. '57</td>
<td>15.02 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>Dec. '57</td>
<td>11.58 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Jan. '58</td>
<td>17.6 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>Feb. '58</td>
<td>13.7 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>March '58</td>
<td>14.6 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>April '58</td>
<td>13.6 ± 0.7</td>
</tr>
<tr>
<td>South Soo</td>
<td>May '58</td>
<td>21.27 ± 0.45</td>
</tr>
<tr>
<td>West of South Soo</td>
<td>May '58</td>
<td>11.16 ± 0.45</td>
</tr>
<tr>
<td>McLaughlin</td>
<td>May '58</td>
<td>8.70 ± 0.45</td>
</tr>
<tr>
<td>North Soo</td>
<td>May '58</td>
<td>35.81 ± 0.75</td>
</tr>
<tr>
<td>South Branch</td>
<td>May '58</td>
<td>18.52 ± 0.60</td>
</tr>
</tbody>
</table>

Cont'd.
TABLE 20 - Cont'd.

North Dakota Strontium-90 Analyses-Cont’d. - Bone and Soil

Data from Lamont Geological Observatory, Palisades, N. Y.

Human bone

<table>
<thead>
<tr>
<th>Lo.G.O. #</th>
<th>Sex</th>
<th>Age</th>
<th>Date of Death</th>
<th>μmc Sr(^{90}) / g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>7470</td>
<td>F</td>
<td>fetus</td>
<td>mid '58</td>
<td>0.53 ± 0.06</td>
</tr>
<tr>
<td>7473</td>
<td>M</td>
<td>fetus</td>
<td>mid '58</td>
<td>1.05 ± 0.06</td>
</tr>
<tr>
<td>7471</td>
<td>M</td>
<td>stillborn</td>
<td>mid '58</td>
<td>1.34 ± 0.26</td>
</tr>
<tr>
<td>7478</td>
<td>M</td>
<td>3</td>
<td>mid '58</td>
<td>2.62 ± 0.05</td>
</tr>
<tr>
<td>7475</td>
<td>M</td>
<td>23</td>
<td>mid '58</td>
<td>0.66 ± 0.11</td>
</tr>
<tr>
<td>7476</td>
<td>M</td>
<td>25</td>
<td>mid '58</td>
<td>1.19 ± 0.14</td>
</tr>
<tr>
<td>7471</td>
<td>M</td>
<td>61</td>
<td>mid '58</td>
<td>0.51 ± 0.04</td>
</tr>
<tr>
<td>7472</td>
<td>M</td>
<td>61</td>
<td>mid '58</td>
<td>0.40 ± 0.04</td>
</tr>
<tr>
<td>7477</td>
<td>M</td>
<td>64</td>
<td>mid '58</td>
<td>0.53 ± 0.08</td>
</tr>
<tr>
<td>7474</td>
<td>M</td>
<td>65</td>
<td>mid '58</td>
<td>0.43 ± 0.10</td>
</tr>
</tbody>
</table>

Soil

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
<th>Depth in inches</th>
<th>μmc Sr(^{90}) / mi(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Williston</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>13.5 ± 0.6</td>
</tr>
<tr>
<td>Williston</td>
<td>Aug. '58</td>
<td>2-6</td>
<td>1.4 ± 0.5</td>
</tr>
<tr>
<td>Williston</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>39.8 ± 0.5</td>
</tr>
<tr>
<td>Williston</td>
<td>Aug. '58</td>
<td>2-6</td>
<td>10.8 ± 0.9</td>
</tr>
<tr>
<td>Mandan-west edge of</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>22.7 ± 0.3</td>
</tr>
<tr>
<td>Mandan-west edge of</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>34.1 ± 0.4</td>
</tr>
<tr>
<td>Mandan-west of</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>41.1 ± 0.6</td>
</tr>
<tr>
<td>Mandan-west of</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>39.4 ± 0.4</td>
</tr>
<tr>
<td>Arnold</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>47.4 ± 0.5</td>
</tr>
<tr>
<td>Mandan-10 mi. so. of (1)</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>23.4 ± 0.7</td>
</tr>
<tr>
<td>Mandan-10 mi. so. of (2)</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>38.0 ± 0.5</td>
</tr>
<tr>
<td>Bismark</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>26.8 ± 0.3</td>
</tr>
<tr>
<td>Bismark</td>
<td>Aug. '58</td>
<td>0-2</td>
<td>25.1 ± 0.4</td>
</tr>
</tbody>
</table>

(1) level ground.
(2) depression - 4° - 15°
TABLE 21

HUMAN TEETH

Source: Washington University, St. Louis, Mo.

Dr. Ralph Rosenthal

<table>
<thead>
<tr>
<th>HASL#</th>
<th>Descriptive material</th>
<th>Weight (g)</th>
<th>% Ash</th>
<th>G Ash (g)</th>
<th>d/m Sr90</th>
<th>% Ca</th>
<th>μc Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td>9448</td>
<td>"early '53"</td>
<td>2.26</td>
<td>77.0</td>
<td>1.74</td>
<td>0.46 ± 0.16</td>
<td>37.5</td>
<td>0.56 ± 0.20</td>
</tr>
<tr>
<td>9449</td>
<td>"late '53 - early '54"</td>
<td>0.74</td>
<td>82.4</td>
<td>0.58</td>
<td>0.68 ± 0.57</td>
<td>35.4</td>
<td>0.87 ± 0.72</td>
</tr>
</tbody>
</table>

HUMAN BONE

Source: Bellevue Hospital

<table>
<thead>
<tr>
<th>HASL#</th>
<th>Date of Death</th>
<th>Descriptive Material</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Bone Type</th>
<th>Sample Weight (g)</th>
<th>% Ca</th>
<th>μc Sr90</th>
</tr>
</thead>
<tbody>
<tr>
<td>9311</td>
<td>1-25-59</td>
<td>fracture of skull</td>
<td>3</td>
<td>Male</td>
<td>Spine</td>
<td>4.84</td>
<td>33.3</td>
<td>1.80 ± 0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>intermeningeal hemorrhage</td>
<td></td>
<td></td>
<td>Rib</td>
<td>4.58</td>
<td>37.5</td>
<td>1.75 ± 0.26</td>
</tr>
</tbody>
</table>
4.4 Uptake in Animals

4.4.1 University of Nevada Samples - Bovine

Under an AEC contract, studies are being made at the University of Nevada to determine levels of strontium-90 in animal material. The animals are selected from areas near the Nevada Test Site as well as other parts of the world. Table 22a consists of rumen and feces data, Table 22b, bovine bone data; and 22c, bovine milk data.
<table>
<thead>
<tr>
<th>HAS#</th>
<th>Case #</th>
<th>I. D. #</th>
<th>Type of Sample</th>
<th>Weight of sample (g)</th>
<th>Weight of ash (g)</th>
<th>% ash of orig. weight</th>
<th>Age of Animal</th>
<th>Date Slaughtered</th>
<th>d/m Sr(^{90}) g ash</th>
<th>d/m Sr(^{90}) per g orig. sample</th>
<th>% Ca</th>
<th>yue Sr(^{90})</th>
<th>yue Sr(^{90})/g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>9112</td>
<td>B-22-57</td>
<td>WRS-#2</td>
<td>Rumen</td>
<td>1000</td>
<td>81.4</td>
<td>8.14</td>
<td>6 mos.</td>
<td>11-27-57</td>
<td>61 (\pm 1)</td>
<td>723</td>
<td>8.26</td>
<td>333</td>
<td>19.3</td>
</tr>
<tr>
<td>9113</td>
<td>B-23-57</td>
<td>WRS-#1</td>
<td>Rumen</td>
<td>1000</td>
<td>99.0</td>
<td>9.90</td>
<td>1 yr.</td>
<td>12-2-57</td>
<td>51 (\pm 1)</td>
<td>515</td>
<td>4.52</td>
<td>11.8</td>
<td>533</td>
</tr>
<tr>
<td>9114</td>
<td>B-24-57</td>
<td>WRS-#15</td>
<td>Rumen</td>
<td>530</td>
<td>18.8</td>
<td>9.20</td>
<td>6 mos.</td>
<td>12-2-57</td>
<td>75 (\pm 3)</td>
<td>815</td>
<td>5.96</td>
<td>966</td>
<td>13.2</td>
</tr>
<tr>
<td>9115</td>
<td>B-25-57</td>
<td>WRS-#15</td>
<td>Rumen</td>
<td>1000</td>
<td>150.0</td>
<td>15.00</td>
<td>1 yr.</td>
<td>12-1-57</td>
<td>35 (\pm 1)</td>
<td>233</td>
<td>7.16</td>
<td>221</td>
<td>13.0</td>
</tr>
<tr>
<td>9116</td>
<td>DM-26-57</td>
<td></td>
<td>Bighorn sheep</td>
<td>696</td>
<td>39.0</td>
<td>7.67</td>
<td>5 yr.</td>
<td>12-5-57</td>
<td>22 (\pm 1)</td>
<td>287</td>
<td>12.50</td>
<td>82</td>
<td>not run</td>
</tr>
<tr>
<td>9117</td>
<td>B-27-57</td>
<td>DW-#1</td>
<td>Rumen</td>
<td>665</td>
<td>92.6</td>
<td>13.92</td>
<td>1 yr.</td>
<td>12-5-57</td>
<td>22 (\pm 1)</td>
<td>158</td>
<td>6.52</td>
<td>140</td>
<td>14.4</td>
</tr>
<tr>
<td>9118</td>
<td>B-28-57</td>
<td>DW-#2</td>
<td>Rumen</td>
<td>1000</td>
<td>118.2</td>
<td>11.82</td>
<td>9 yrs.</td>
<td>12-6-57</td>
<td>9.4 (\pm 0.3)</td>
<td>80</td>
<td>4.94</td>
<td>86</td>
<td>13.6</td>
</tr>
<tr>
<td>9119</td>
<td>B-29-57</td>
<td>DW-#3</td>
<td>Rumen</td>
<td>1000</td>
<td>129.4</td>
<td>12.94</td>
<td>7 mos.</td>
<td>12-6-57</td>
<td>11 (\pm 1)</td>
<td>107</td>
<td>3.23</td>
<td>192</td>
<td>15.0</td>
</tr>
<tr>
<td>9120</td>
<td>B-30-57</td>
<td>DW-#4</td>
<td>Rumen</td>
<td>1000</td>
<td>103.2</td>
<td>10.32</td>
<td>1 yr.</td>
<td>12-6-57</td>
<td>20 (\pm 1)</td>
<td>194</td>
<td>6.75</td>
<td>134</td>
<td>16.6</td>
</tr>
<tr>
<td>9121</td>
<td>B-31-57</td>
<td>DW-#5</td>
<td>Rumen</td>
<td>1000</td>
<td>85.9</td>
<td>8.59</td>
<td>9 yrs.</td>
<td>12-2-57</td>
<td>20 (\pm 1)</td>
<td>233</td>
<td>13.31</td>
<td>67</td>
<td>5.6</td>
</tr>
<tr>
<td>9122</td>
<td>B-32-57</td>
<td>DW-#6</td>
<td>Rumen</td>
<td>763</td>
<td>58.8</td>
<td>7.71</td>
<td>7 mos.</td>
<td>12-9-57</td>
<td>23 (\pm 1)</td>
<td>298</td>
<td>13.34</td>
<td>77</td>
<td>17.8</td>
</tr>
<tr>
<td>9123</td>
<td>B-34-57</td>
<td>WRS-#2</td>
<td>Rumen</td>
<td>1000</td>
<td>142.6</td>
<td>14.26</td>
<td>7 yrs.</td>
<td>12-12-57</td>
<td>59 (\pm 1)</td>
<td>444</td>
<td>4.45</td>
<td>599</td>
<td>13.1</td>
</tr>
<tr>
<td>9124</td>
<td>Area sample</td>
<td>WRS</td>
<td>Feces</td>
<td>1000</td>
<td>178.0</td>
<td>17.80</td>
<td></td>
<td></td>
<td>116 (\pm 2)</td>
<td>680</td>
<td>8.28</td>
<td>581</td>
<td>11.1</td>
</tr>
<tr>
<td>9125</td>
<td>Area sample</td>
<td>DW</td>
<td>Feces</td>
<td>1000</td>
<td>253.0</td>
<td>25.30</td>
<td></td>
<td></td>
<td>32 (\pm 1)</td>
<td>126</td>
<td>13.05</td>
<td>111</td>
<td>13.25</td>
</tr>
</tbody>
</table>

* Bovine
TABLE 22b
Sr90 and Ca in Bovine Bones

University of Nevada

<table>
<thead>
<tr>
<th>HASI#</th>
<th>Analyzed</th>
<th>Species</th>
<th>Type of Bone</th>
<th>% Ca in Ash</th>
<th>Date of Death</th>
<th>Age at Death</th>
<th>dpm Sr90 g ash</th>
<th>μμc Sr90 g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida, Hillsborough County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8440</td>
<td>5.24</td>
<td>Bovine</td>
<td>Coy. Vert.</td>
<td>39</td>
<td>2-1-55</td>
<td>2 yrs.</td>
<td>4.47 ± 0.29</td>
<td>5.1 ± 0.4</td>
</tr>
<tr>
<td>Massachusetts, Somerville</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8444</td>
<td>0.98</td>
<td>Bovine</td>
<td>Coy. Vert.</td>
<td>33</td>
<td>2-1-55</td>
<td>8 mo. fetus</td>
<td>3.3 ± 0.7</td>
<td>4.5 ± 1.0</td>
</tr>
<tr>
<td>North Carolina, Greensboro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8452</td>
<td>8.64</td>
<td>Bovine</td>
<td>Rib</td>
<td>37</td>
<td>3-2-55</td>
<td>3½ mos.</td>
<td>2.6 ± 0.1</td>
<td>3.17 ± 0.17</td>
</tr>
<tr>
<td>Japan, Tokyo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8464(1)</td>
<td>6.59</td>
<td>Bovine</td>
<td>Rib</td>
<td>38</td>
<td>3-1-55</td>
<td>6 mos.</td>
<td>1.8 ± 0.2</td>
<td>2.16 ± 0.22</td>
</tr>
<tr>
<td>Utah, Spanish Fork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8467</td>
<td>41.1</td>
<td>Bovine</td>
<td>Rib</td>
<td>38</td>
<td>3-4-55</td>
<td>4 mos.</td>
<td>0.64 ± 0.04</td>
<td>0.76 ± 0.6</td>
</tr>
<tr>
<td>Island of Harvais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8506</td>
<td>11.9</td>
<td>Bovine</td>
<td>Coy. Vert.</td>
<td>28</td>
<td>2-1-55</td>
<td>2 yrs.</td>
<td>1.13 ± 0.04</td>
<td>1.85 ± 0.07</td>
</tr>
</tbody>
</table>

(1) Sample is from same animal as sample 8463.

Cont'd.
TABLE 22b - Cont'd.

Strontium-90 Analyses of Bovine Bone

<table>
<thead>
<tr>
<th>Animal#</th>
<th>HASI#</th>
<th>Wt. of Sample before Ashing (gms)</th>
<th>Wt. of Ash (gms)</th>
<th>% Ca</th>
<th>dpm Sr(^{90})/g ash</th>
<th>Type of Bone</th>
<th>Date of Death</th>
<th>Age at Death</th>
<th>Age at Death</th>
<th>(\mu)g Sr(^{90})/g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-18-58</td>
<td>9886</td>
<td>124.7</td>
<td>10.00</td>
<td>34.7</td>
<td>12.02 ± 0.24</td>
<td>Rib</td>
<td>11-6-58</td>
<td>cow</td>
<td>15.59 ± 0.31</td>
<td>7.80 ± 0.27</td>
</tr>
<tr>
<td>B-18-58</td>
<td>9887</td>
<td>671.0</td>
<td>10.00</td>
<td>34.5</td>
<td>9.12 ± 0.22</td>
<td>Femur</td>
<td>11-6-58</td>
<td>cow</td>
<td>11.58 ± 0.28</td>
<td>19.21 ± 0.27</td>
</tr>
<tr>
<td>B-18-58</td>
<td>9959</td>
<td>671.0</td>
<td>10.00</td>
<td>37.4</td>
<td>15.94 ± 0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-19-58</td>
<td>9888</td>
<td>169.6</td>
<td>10.00</td>
<td>35.9</td>
<td>20.91 ± 0.38</td>
<td>Rib</td>
<td>11-6-58</td>
<td>2 yr.</td>
<td>26.26 ± 0.47</td>
<td>19.37 ± 0.35</td>
</tr>
<tr>
<td>B-19-58</td>
<td>9889</td>
<td>666.6</td>
<td>10.00</td>
<td>37.2</td>
<td>16.01 ± 0.29</td>
<td>Femur</td>
<td>11-6-58</td>
<td>2 yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-20-58</td>
<td>9890</td>
<td>124.0</td>
<td>10.00</td>
<td>33.8</td>
<td>8.03 ± 0.14</td>
<td>Rib</td>
<td>11-6-58</td>
<td>1 yr.</td>
<td>10.69 ± 0.19</td>
<td>34.51 ± 0.38</td>
</tr>
<tr>
<td>B-20-58</td>
<td>9891</td>
<td>314.3</td>
<td>10.00</td>
<td>34.6</td>
<td>26.50 ± 0.29</td>
<td>Femur</td>
<td>11-6-58</td>
<td>1 yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-21-58</td>
<td>9892</td>
<td>25.5</td>
<td>2.00</td>
<td>31.3</td>
<td>16.47 ± 0.46</td>
<td>Rib</td>
<td>11-6-58</td>
<td>calf</td>
<td>23.74 ± 0.67</td>
<td>14.83 ± 0.22</td>
</tr>
<tr>
<td>B-21-58</td>
<td>9893</td>
<td>129.2</td>
<td>10.00</td>
<td>34.0</td>
<td>11.20 ± 0.17</td>
<td>Femur</td>
<td>11-6-58</td>
<td>calf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8-58</td>
<td>9912</td>
<td>137.2</td>
<td>10.00</td>
<td>36.0</td>
<td>11.41 ± 0.19</td>
<td>Rib</td>
<td>5-20-58</td>
<td>cow</td>
<td>14.28 ± 0.24</td>
<td>28.94 ± 0.46</td>
</tr>
<tr>
<td>B-8-58</td>
<td>9913</td>
<td>785.8</td>
<td>10.00</td>
<td>36.8</td>
<td>23.64 ± 0.38</td>
<td>Femur</td>
<td>5-20-58</td>
<td>cow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8-58</td>
<td>9962</td>
<td>785.8</td>
<td>10.00</td>
<td>37.1</td>
<td>30.20 ± 0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-8-58</td>
<td>9963</td>
<td>341.3</td>
<td>10.00</td>
<td>35.6</td>
<td>15.71 ± 0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-9-58</td>
<td>9914</td>
<td>72.7</td>
<td>10.00</td>
<td>34.0</td>
<td>3.37 ± 0.10</td>
<td>Rib</td>
<td>5-20-58</td>
<td>1 yr.</td>
<td>4.46 ± 0.13</td>
<td>37.90 ± 0.38</td>
</tr>
<tr>
<td>B-9-58</td>
<td>9915</td>
<td>341.3</td>
<td>10.00</td>
<td>36.9</td>
<td>31.05 ± 0.31</td>
<td>Femur</td>
<td>5-20-58</td>
<td>1 yr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-10-58</td>
<td>9916</td>
<td>29.4</td>
<td>2.00</td>
<td>31.9</td>
<td>12.86 ± 0.42</td>
<td>Rib</td>
<td>5-20-58</td>
<td>1 mo.</td>
<td>18.16 ± 0.60</td>
<td>7.00 ± 0.15</td>
</tr>
<tr>
<td>B-10-58</td>
<td>9917</td>
<td>138.2</td>
<td>10.00</td>
<td>34.5</td>
<td>5.36 ± 0.12</td>
<td>Femur</td>
<td>5-20-58</td>
<td>1 mo.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Blind duplicates.
** Blind triplicates.
Strontium-90 Analyses of Bovine Bone - Cont'd.

Nevada, Delamar Valley

<table>
<thead>
<tr>
<th>Animal</th>
<th>HASI#1</th>
<th>Wt. of Sample before Ashing (gms.)</th>
<th>Ash Wt. Analyzed (gms.)</th>
<th>% Ca in Ash</th>
<th>dpm Sr(^{90}) g ash</th>
<th>Type of Bone</th>
<th>Date of Death</th>
<th>Age at Death</th>
<th>Amount Sr(^{90}) g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-11-58</td>
<td>9918</td>
<td>93.3</td>
<td>10.00</td>
<td>35.0</td>
<td>5.28 ± 0.13</td>
<td>Rib</td>
<td>5-27-58</td>
<td>cow</td>
<td>6.80 ± 0.16</td>
</tr>
<tr>
<td>B-11-58</td>
<td>9919</td>
<td>503.4</td>
<td>10.00</td>
<td>36.7</td>
<td>3.16 ± 0.09</td>
<td>Femur</td>
<td>5-27-58</td>
<td>cow</td>
<td>3.88 ± 0.11</td>
</tr>
<tr>
<td>B-12-58</td>
<td>9920</td>
<td>53.6</td>
<td>7.00</td>
<td>32.3</td>
<td>21.51 ± 0.30</td>
<td>Rib</td>
<td>5-27-58</td>
<td>1 yr.</td>
<td>29.96 ± 0.42</td>
</tr>
<tr>
<td>B-12-58</td>
<td>9921</td>
<td>414.5</td>
<td>10.50</td>
<td>34.2</td>
<td>15.92 ± 0.22</td>
<td>Femur</td>
<td>5-27-58</td>
<td>1 yr.</td>
<td>20.99 ± 0.29</td>
</tr>
<tr>
<td>B-12-58</td>
<td>9924</td>
<td></td>
<td>10.00</td>
<td>35.4</td>
<td>21.88 ± 0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-13-58</td>
<td>9922</td>
<td>18.6</td>
<td>1.50</td>
<td>33.7</td>
<td>11.98 ± 0.46</td>
<td>Rib</td>
<td>5-27-58</td>
<td>3 mo.</td>
<td>16.03 ± 0.61</td>
</tr>
<tr>
<td>B-13-58</td>
<td>9923</td>
<td>132.6</td>
<td>10.50</td>
<td>34.4</td>
<td>13.98 ± 0.10</td>
<td>Femur</td>
<td>5-27-58</td>
<td>3 mo.</td>
<td>18.32 ± 0.26</td>
</tr>
<tr>
<td>B-22-58</td>
<td>9894</td>
<td>143.5</td>
<td>10.00</td>
<td>36.3</td>
<td>7.06 ± 0.14</td>
<td>Rib</td>
<td>11-14-58</td>
<td>cow</td>
<td>8.76 ± 0.18</td>
</tr>
<tr>
<td>B-22-58</td>
<td>9895</td>
<td>543.0</td>
<td>10.00</td>
<td>35.1</td>
<td>7.22 ± 0.15</td>
<td>Femur</td>
<td>11-14-58</td>
<td>cow</td>
<td>9.27 ± 0.20</td>
</tr>
<tr>
<td>B-23-58</td>
<td>9896</td>
<td>119.5</td>
<td>10.00</td>
<td>34.7</td>
<td>10.89 ± 0.19</td>
<td>Rib</td>
<td>11-14-58</td>
<td>2 yr.</td>
<td>14.12 ± 0.24</td>
</tr>
<tr>
<td>B-23-58</td>
<td>9897</td>
<td>549.1</td>
<td>10.00</td>
<td>37.2</td>
<td>10.52 ± 0.19</td>
<td>Femur</td>
<td>11-14-58</td>
<td>2 yr.</td>
<td>12.75 ± 0.23</td>
</tr>
<tr>
<td>B-24-58</td>
<td>9898</td>
<td>101.3</td>
<td>10.00</td>
<td>33.8</td>
<td>7.35 ± 0.15</td>
<td>Rib</td>
<td>11-14-58</td>
<td>1 yr.</td>
<td>9.79 ± 0.20</td>
</tr>
<tr>
<td>B-24-58</td>
<td>9899</td>
<td>260.0</td>
<td>10.00</td>
<td>35.2</td>
<td>11.57 ± 0.17</td>
<td>Femur</td>
<td>11-14-58</td>
<td>1 yr.</td>
<td>14.81 ± 0.22</td>
</tr>
<tr>
<td>B-25-58</td>
<td>9900</td>
<td>76.1</td>
<td>6.00</td>
<td>30.7</td>
<td>3.98 ± 0.14</td>
<td>Rib</td>
<td>11-14-58</td>
<td>calf</td>
<td>5.84 ± 0.20</td>
</tr>
<tr>
<td>B-25-58</td>
<td>9901</td>
<td>250.0</td>
<td>10.00</td>
<td>35.6</td>
<td>16.11 ± 0.23</td>
<td>Femur</td>
<td>11-14-58</td>
<td>calf</td>
<td>20.40 ± 0.29</td>
</tr>
</tbody>
</table>

* Blind duplicates.
<table>
<thead>
<tr>
<th>Animal#</th>
<th>HASL#</th>
<th>Wt. of Sample before Ashing (gms.)</th>
<th>Ash Wt. (gms.)</th>
<th>% Ca</th>
<th>dpm Sr-90 in Ash</th>
<th>g ash</th>
<th>Type of Bone</th>
<th>Date of Bone Death</th>
<th>Age at Death</th>
<th>Age at Bone Death</th>
<th>Type of Animal</th>
<th>g Sr-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-26-58</td>
<td>9902</td>
<td>204.4</td>
<td>10.00</td>
<td>35.7</td>
<td>5.05 ± 0.12</td>
<td></td>
<td>Rib</td>
<td>11-21-58</td>
<td>cow</td>
<td>6.37 ± 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-26-58</td>
<td>*9903</td>
<td>378.3</td>
<td>10.00</td>
<td>35.5</td>
<td>12.19 ± 0.17</td>
<td></td>
<td>Femur</td>
<td>11-21-58</td>
<td>cow</td>
<td>15.49 ± 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-26-58</td>
<td>9960</td>
<td>378.3</td>
<td>10.00</td>
<td>36.7</td>
<td>14.03 ± 0.02</td>
<td></td>
<td>Femur</td>
<td>11-21-58</td>
<td></td>
<td>17.23 ± 0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-27-58</td>
<td>9904</td>
<td>114.1</td>
<td>10.00</td>
<td>33.8</td>
<td>2.89 ± 0.09</td>
<td></td>
<td>Rib</td>
<td>11-21-58</td>
<td>2 yr</td>
<td>3.84 ± 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-27-58</td>
<td>9905</td>
<td>567.0</td>
<td>10.00</td>
<td>35.0</td>
<td>14.40 ± 0.20</td>
<td></td>
<td>Femur</td>
<td>11-21-58</td>
<td>2 yr</td>
<td>18.52 ± 0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-28-58</td>
<td>9906</td>
<td>122.8</td>
<td>10.00</td>
<td>34.4</td>
<td>6.49 ± 0.14</td>
<td></td>
<td>Rib</td>
<td>11-21-58</td>
<td>1 yr</td>
<td>8.51 ± 0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-28-58</td>
<td>*9907</td>
<td>511.6</td>
<td>10.00</td>
<td>35.5</td>
<td>22.21 ± 0.24</td>
<td></td>
<td>Femur</td>
<td>11-21-58</td>
<td>1 yr</td>
<td>28.19 ± 0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-28-58</td>
<td>9961</td>
<td>511.6</td>
<td>10.00</td>
<td>35.4</td>
<td>23.06 ± 0.28</td>
<td></td>
<td>Rib</td>
<td>11-21-58</td>
<td></td>
<td>29.34 ± 0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-29-58</td>
<td>9908</td>
<td>87.0</td>
<td>4.00</td>
<td>30.2</td>
<td>7.28 ± 0.23</td>
<td></td>
<td>Rib</td>
<td>11-21-58</td>
<td>calf</td>
<td>10.04 ± 0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-29-58</td>
<td>9909</td>
<td>254.9</td>
<td>10.00</td>
<td>34.7</td>
<td>34.52 ± 0.35</td>
<td></td>
<td>Femur</td>
<td>11-21-58</td>
<td>calf</td>
<td>14.76 ± 0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-14-58</td>
<td>9924</td>
<td>97.1</td>
<td>7.00</td>
<td>30.7</td>
<td>2.55 ± 0.10</td>
<td></td>
<td>Rib</td>
<td>6-2-58</td>
<td>1 yr</td>
<td>3.74 ± 0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-14-58</td>
<td>9915</td>
<td>308.5</td>
<td>10.00</td>
<td>36.1</td>
<td>5.73 ± 0.13</td>
<td></td>
<td>Femur</td>
<td>6-2-58</td>
<td>1 yr</td>
<td>7.15 ± 0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-15-58</td>
<td>9926</td>
<td>80.9</td>
<td>10.00</td>
<td>35.4</td>
<td>5.73 ± 0.13</td>
<td></td>
<td>Rib</td>
<td>6-3-58</td>
<td>2 yr</td>
<td>7.28 ± 0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-15-58</td>
<td>9927</td>
<td>490.1</td>
<td>10.00</td>
<td>35.3</td>
<td>15.55 ± 0.22</td>
<td></td>
<td>Femur</td>
<td>6-3-58</td>
<td>2 yr</td>
<td>19.83 ± 0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-16-58</td>
<td>9928</td>
<td>--</td>
<td>10.00</td>
<td>36.1</td>
<td>6.55 ± 0.05</td>
<td></td>
<td>Rib</td>
<td>6-3-58</td>
<td>cow</td>
<td>8.16 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-16-58</td>
<td>9929</td>
<td>--</td>
<td>10.00</td>
<td>37.2</td>
<td>7.89 ± 0.15</td>
<td></td>
<td>Femur</td>
<td>6-3-58</td>
<td>cow</td>
<td>9.55 ± 0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-17-58</td>
<td>9930</td>
<td>55.6</td>
<td>10.00</td>
<td>30.7</td>
<td>10.36 ± 0.32</td>
<td></td>
<td>Rib</td>
<td>6-3-58</td>
<td>1 mo</td>
<td>15.021 ± 0.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-17-58</td>
<td>9931</td>
<td>141.4</td>
<td>3.00</td>
<td>34.8</td>
<td>21.53 ± 0.26</td>
<td></td>
<td>Femur</td>
<td>6-3-58</td>
<td>1 mo</td>
<td>27.89 ± 0.34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Blind duplicates.*

TABLE 22c

Strontium-90 Analyses of Bovine Milk

| HASI# | Wt. of Sample before Ashing (gms.) | Ash Wt. Analyzed (gms.) | Location* | Date Sampled | % Ca in Ash | mµo Sr\(^{90}\) g Ca | dpm Sr\(^{90}\) g ash |
|-------|-----------------------------------|-------------------------|------------|--------------|-------------|----------------|----------------|---------------|
| 9932 | 261.0 | 7.00 | Knoll Creek| 5-20-58 | 15.3 | 5.07 ± 0.23 | 1.72 ± 0.08 |
| 9910 | 3911 | 10.00 | Knoll Creek| 11-58 | 22.2 | 4.66 ± 0.15 | 2.30 ± 0.07 |
| 9933 | 3882 | 10.00 | Delamar Valley| 5-27-58 | 18.8 | 3.10 ± 0.14 | 1.29 ± 0.06 |
| 9911 | 3899 | 10.00 | Delamar Valley| 11-58 | 21.6 | 1.82 ± 0.09 | 0.87 ± 0.04 |

* Nevada.
4.5 Field Studies

4.51 Nebraska Milk and Shelled Corn

A series of samples from the Lincoln, Nebraska area were collected in May 1959 by Dr. L. T. Alexander of the U. S. Department of Agriculture. These samples consisted of milk, shelled corn and soil. The soil data are not yet available but will be reported in the next quarterly.

Milk

University of Nebraska

<table>
<thead>
<tr>
<th>HASL #</th>
<th>Type</th>
<th>Sampling Date</th>
<th>% Ca</th>
<th>νυν Sr(^{90}) g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>10528</td>
<td>1 gal. liquid</td>
<td>5-25-59</td>
<td>16.50</td>
<td>5.57 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>received</td>
<td></td>
<td></td>
<td>5.10 ± 0.33</td>
</tr>
</tbody>
</table>

Lincoln, Nebraska

<table>
<thead>
<tr>
<th>HASL #</th>
<th>Type</th>
<th>Sampling Date</th>
<th>% Ca</th>
<th>νυν Sr(^{90}) g Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>10718</td>
<td>powdered non-fat</td>
<td>2-9-59(2)</td>
<td>16.45</td>
<td>8.75 ± 0.42</td>
</tr>
<tr>
<td></td>
<td>(10# received)</td>
<td></td>
<td></td>
<td>7.48 ± 0.39</td>
</tr>
</tbody>
</table>

Shelled Corn

1958 Fall Harvest, Agronomy Dept. - University of Nebraska

<table>
<thead>
<tr>
<th>HASL #</th>
<th>% ash of orig. mat.</th>
<th>% Ca</th>
<th>νυν Sr(^{90}) g Ca</th>
<th>νυν Sr(^{90}) kg orig. mat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10719</td>
<td>1.42</td>
<td>1.11</td>
<td>15.8 ± 6.8</td>
<td>2.5 ± 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.9 ± 6.2</td>
<td>0.8 ± 1.0</td>
</tr>
</tbody>
</table>

(1) Duplicate analyses

(2) Process date

Error term is one standard deviation due to counting.
5. Published Reports Related to Fallout and the Strontium Program.

Cont'd.

30. Dunham, C. L., "Fallout, One of Several Sources of Radiation Exposure to Total Population", (Speech delivered before 6th Annual Meeting of Society of Nuclear Medicine, June 19, 1959).

35. Petrova, O. N., "Local and Distance Effects of Whole-Body Roentgen Irradiation in the Production of Injury to the Ovaries in Mice", Soviet Physics "Doklady" 3, No. 6, 1309-11 (November-December 1958).

Cont'd.

Cont'd.

6. Appendix

The following data arrived too late to be included in the body of the report.
TABULATION OF GAMMA RADIOACTIVITY OF PEOPLE AND MILK DURING 1959
(Measured at the Los Alamos Scientific Laboratory)

The following tables list the results of measurements made at the Los Alamos Scientific Laboratory during the first 8 months of 1959 on the gamma radioactivity of people and of milk. Previous tabulations have been published in HASL-42 (1) for the year 1956 and through April 1958, and in LA-2296 (2) for 1958. Summaries and interpretations have also been published (3,4,5).

A discussion of methods, errors, and statistical analyses can be found in LA-2296 (2). Counting statistical errors for a typical subject are +3% on the potassium and +6 μμc Cs/g K (one standard deviation). For dry milk samples, the errors are 0.5% for potassium and +1.2 μμc Cs/g K. Repeated measurements on control milk samples indicated the reproducibility to be +1.2% for potassium and 1.9 μμc Cs/g K (2). On an absolute basis, the Cs-137 values may have a systematic (consistent) error of 10 to 30% due to uncertainty in the calibration of the primary Cs-137 source. The exact value of the absolute Cs-137 calibration is currently under study. Relative values will not be changed by recalibration.

Data are presented in the following tables:
1. United States People (general population, no occupational exposure)
2. United States Dry Milk (50- to 100-pound samples of commercial dry milk solids)
3. Canadian People
4. Canadian Dry Milk
5. Foreign People
6. Foreign milk

The following column headings are used:

CL = class number identifying type as sample.

SERIAL = serial number associated with each determination. Separate serial sequences are maintained for milk and for people.

DATE = for people, the date of the measurement; for milk, either the date of manufacture (M) or the date sample was received at LASL (R).

TOWN = for milk, the location of the milk-drying plant (see Table 7 for list of abbreviations).

AGE = for people, age in years at time of measurement.

STATE = for milk, location of drying plant; for people, place of principal residence during preceding six months.

WGT = weight of subject or sample, in kilograms.

GM K/KG = potassium concentration in grams per kilogram of subject or sample weight.

UUC CS/GM K = Cs-137 concentration in micromicrocuries per gram of potassium.

ACKNOWLEDGMENTS

We are grateful to the many manufacturers who supplied the milk samples. Arrangements for sample purchase were greatly facilitated by the cooperation of the American Dry Milk Institute, the Canadian Milk Powder Manufacturers Association, Afico, S.A., and the Atomic Bomb Casualty Commission.
TABLE 7. Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Town and State or Foreign Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIZ</td>
<td>Arizona</td>
</tr>
<tr>
<td>FE CAL</td>
<td>Fernbridge, California</td>
</tr>
<tr>
<td>FR CAL</td>
<td>Fresno, California</td>
</tr>
<tr>
<td>NE CAL</td>
<td>Newman, California</td>
</tr>
<tr>
<td>TI CAL</td>
<td>Tipton, California</td>
</tr>
<tr>
<td>WO CAL</td>
<td>Willows, California</td>
</tr>
<tr>
<td>COLO</td>
<td>Colorado</td>
</tr>
<tr>
<td>DC</td>
<td>District of Columbia</td>
</tr>
<tr>
<td>CO GA</td>
<td>Columbus, Georgia</td>
</tr>
<tr>
<td>IF IDA</td>
<td>Idaho Falls, Idaho</td>
</tr>
<tr>
<td>PA IDA</td>
<td>Payette, Idaho</td>
</tr>
<tr>
<td>MI ILL</td>
<td>Minonk, Illinois</td>
</tr>
<tr>
<td>IND</td>
<td>Indiana</td>
</tr>
<tr>
<td>DM IOWA</td>
<td>Des Moines, Iowa</td>
</tr>
<tr>
<td>SB IOWA</td>
<td>Sibley, Iowa</td>
</tr>
<tr>
<td>KAN</td>
<td>Kansas</td>
</tr>
<tr>
<td>LO KY</td>
<td>Louisville, Kentucky</td>
</tr>
<tr>
<td>FR LA</td>
<td>Franklinton, Louisiana</td>
</tr>
<tr>
<td>AN MASS</td>
<td>Andover, Massachusetts</td>
</tr>
<tr>
<td>MD</td>
<td>Maryland</td>
</tr>
<tr>
<td>LA IOWA</td>
<td>Lansing, Michigan</td>
</tr>
<tr>
<td>BE MINN</td>
<td>Bertha, Minnesota</td>
</tr>
<tr>
<td>CL MINN</td>
<td>Claremont, Minnesota</td>
</tr>
<tr>
<td>ST MINN</td>
<td>Stillwater, Minnesota</td>
</tr>
<tr>
<td>AB MISS</td>
<td>Aberdeen, Mississippi</td>
</tr>
<tr>
<td>ST MISS</td>
<td>Starkville, Mississippi</td>
</tr>
<tr>
<td>SP MO</td>
<td>Springfield, Missouri</td>
</tr>
<tr>
<td>WB NC</td>
<td>Wilkesboro, North Carolina</td>
</tr>
<tr>
<td>BI NDAK</td>
<td>Bismarck, North Dakota</td>
</tr>
<tr>
<td>BO NDAK</td>
<td>Bottineau, North Dakota</td>
</tr>
<tr>
<td>CA NDAK</td>
<td>Cando, North Dakota</td>
</tr>
</tbody>
</table>

- 154 -
<table>
<thead>
<tr>
<th>Code</th>
<th>City/State/Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEV</td>
<td>Nevada</td>
</tr>
<tr>
<td>NJ</td>
<td>New Jersey</td>
</tr>
<tr>
<td>AL NM</td>
<td>Albuquerque, New Mexico</td>
</tr>
<tr>
<td>BI NY</td>
<td>Binghamton, New York</td>
</tr>
<tr>
<td>LV NY</td>
<td>Little Valley, New York</td>
</tr>
<tr>
<td>MA OHIO</td>
<td>Marietta, Ohio</td>
</tr>
<tr>
<td>EC OKLA</td>
<td>Elk City, Oklahoma</td>
</tr>
<tr>
<td>PO ORE</td>
<td>Portland, Oregon</td>
</tr>
<tr>
<td>SP PENN</td>
<td>Springboro, Pennsylvania</td>
</tr>
<tr>
<td>YO PENN</td>
<td>York, Pennsylvania</td>
</tr>
<tr>
<td>PUR</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>TENN</td>
<td>Tennessee</td>
</tr>
<tr>
<td>LA TEX</td>
<td>LaGrange, Texas</td>
</tr>
<tr>
<td>MO UTAH</td>
<td>Monroe, Utah</td>
</tr>
<tr>
<td>OG UTAH</td>
<td>Ogden, Utah</td>
</tr>
<tr>
<td>HA VA</td>
<td>Harrisonburg, Virginia</td>
</tr>
<tr>
<td>ST VT</td>
<td>St. Albans, Vermont</td>
</tr>
<tr>
<td>BU WASH</td>
<td>Burlington, Washington</td>
</tr>
<tr>
<td>SS WASH</td>
<td>Sunnyside, Washington</td>
</tr>
<tr>
<td>DE WIS</td>
<td>Deerfield, Wisconsin</td>
</tr>
<tr>
<td>CA ALB</td>
<td>Calgary, Alberta, Canada</td>
</tr>
<tr>
<td>ED ALB</td>
<td>Edmonton, Alberta, Canada</td>
</tr>
<tr>
<td>WI MANT</td>
<td>Winnipeg, Manitoba, Canada</td>
</tr>
<tr>
<td>SU NEWB</td>
<td>Sussex, New Brunswick, Canada</td>
</tr>
<tr>
<td>CH ONT</td>
<td>Chesterville, Ontario, Canada</td>
</tr>
<tr>
<td>GA ONT</td>
<td>Gananoque, Ontario, Canada</td>
</tr>
<tr>
<td>JA ONT</td>
<td>Jarvis, Ontario, Canada</td>
</tr>
<tr>
<td>KI ONT</td>
<td>Kincardine, Ontario, Canada</td>
</tr>
<tr>
<td>BC QUE</td>
<td>Bon Conseil, Quebec, Canada</td>
</tr>
<tr>
<td>GR QUE</td>
<td>Granby, Quebec, Canada</td>
</tr>
<tr>
<td>SA QUE</td>
<td>St. Augustin, Quebec, Canada</td>
</tr>
<tr>
<td>SA° SASK</td>
<td>Saskatoon, Saskatchewan, Canada</td>
</tr>
<tr>
<td>BA ARG</td>
<td>Buenos Aires, Argentina</td>
</tr>
<tr>
<td>Code</td>
<td>City</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>SY AUST</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>BELG</td>
<td>Belgium</td>
</tr>
<tr>
<td>BRAZ</td>
<td>Brazil</td>
</tr>
<tr>
<td>SA CHIL</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>BO COL</td>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>CO DEN</td>
<td>Copenhagen, Denmark</td>
</tr>
<tr>
<td>MI ENG</td>
<td>Middlesex, England</td>
</tr>
<tr>
<td>PA FRAN</td>
<td>Paris, France</td>
</tr>
<tr>
<td>FR GERM</td>
<td>Frankfurt a.M., Germany</td>
</tr>
<tr>
<td>JAP</td>
<td>Japan</td>
</tr>
<tr>
<td>LIBE</td>
<td>Liberia</td>
</tr>
<tr>
<td>MEX</td>
<td>Mexico</td>
</tr>
<tr>
<td>SWIT</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CA VENE</td>
<td>Caracas, Venezuela</td>
</tr>
</tbody>
</table>
REFERENCES

CONTROL SUBJECTS

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>AGE</th>
<th>INIT</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UVC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>3756</td>
<td>38</td>
<td>ECA</td>
<td>66.82</td>
<td>1.97</td>
<td>84.85</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3832</td>
<td>38</td>
<td>ECA</td>
<td>67.73</td>
<td>2.09</td>
<td>75.96</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3853</td>
<td>38</td>
<td>ECA</td>
<td>65.91</td>
<td>1.95</td>
<td>95.18</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3868</td>
<td>38</td>
<td>ECA</td>
<td>65.91</td>
<td>2.01</td>
<td>85.64</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3879</td>
<td>38</td>
<td>ECA</td>
<td>64.55</td>
<td>2.07</td>
<td>85.01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3861</td>
<td>12</td>
<td>EAC</td>
<td>40.45</td>
<td>2.05</td>
<td>72.89</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3722</td>
<td>12</td>
<td>EAC</td>
<td>39.09</td>
<td>1.84</td>
<td>118.38</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3823</td>
<td>13</td>
<td>EAC</td>
<td>35.45</td>
<td>2.05</td>
<td>77.27</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3992</td>
<td>13</td>
<td>EAC</td>
<td>38.64</td>
<td>1.87</td>
<td>59.72</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3662</td>
<td>11</td>
<td>LDC</td>
<td>34.55</td>
<td>2.30</td>
<td>75.05</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3642</td>
<td>11</td>
<td>LDC</td>
<td>34.55</td>
<td>2.59</td>
<td>49.19</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3643</td>
<td>11</td>
<td>LDC</td>
<td>34.55</td>
<td>2.25</td>
<td>84.24</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3720</td>
<td>11</td>
<td>LDC</td>
<td>35.00</td>
<td>2.03</td>
<td>64.02</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3823</td>
<td>6</td>
<td>LDC</td>
<td>36.64</td>
<td>1.97</td>
<td>62.71</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3993</td>
<td>11</td>
<td>LDC</td>
<td>36.36</td>
<td>2.14</td>
<td>49.96</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3785</td>
<td>21</td>
<td>MFB</td>
<td>55.91</td>
<td>1.73</td>
<td>68.38</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3724</td>
<td>34</td>
<td>BCE</td>
<td>70.91</td>
<td>1.69</td>
<td>85.83</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3723</td>
<td>33</td>
<td>WDM</td>
<td>77.27</td>
<td>2.09</td>
<td>66.08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3637</td>
<td>6</td>
<td>BIS</td>
<td>21.82</td>
<td>2.84</td>
<td>92.02</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3638</td>
<td>6</td>
<td>BIS</td>
<td>21.82</td>
<td>2.18</td>
<td>30.61</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3639</td>
<td>9</td>
<td>DPS</td>
<td>34.55</td>
<td>2.41</td>
<td>45.05</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3640</td>
<td>9</td>
<td>DPS</td>
<td>34.55</td>
<td>2.46</td>
<td>12.18</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3784</td>
<td>34</td>
<td>RLS</td>
<td>76.36</td>
<td>1.94</td>
<td>61.43</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3880</td>
<td>34</td>
<td>RLS</td>
<td>78.64</td>
<td>1.76</td>
<td>80.96</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3704</td>
<td>16</td>
<td>TRS</td>
<td>76.36</td>
<td>2.43</td>
<td>63.20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3660</td>
<td>12</td>
<td>MXS</td>
<td>40.00</td>
<td>1.96</td>
<td>86.66</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3641</td>
<td>12</td>
<td>MXS</td>
<td>40.00</td>
<td>1.91</td>
<td>68.68</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3721</td>
<td>12</td>
<td>MXS</td>
<td>40.91</td>
<td>1.70</td>
<td>82.29</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3821</td>
<td>12</td>
<td>MXS</td>
<td>41.36</td>
<td>1.75</td>
<td>88.19</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3994</td>
<td>12</td>
<td>MXS</td>
<td>43.18</td>
<td>1.82</td>
<td>67.80</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3757</td>
<td>40</td>
<td>MES</td>
<td>61.82</td>
<td>1.66</td>
<td>80.27</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3842</td>
<td>34</td>
<td>JWV</td>
<td>60.00</td>
<td>1.69</td>
<td>74.08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3759</td>
<td>32</td>
<td>JWV</td>
<td>80.45</td>
<td>2.01</td>
<td>83.18</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3834</td>
<td>35</td>
<td>JWV</td>
<td>79.55</td>
<td>2.01</td>
<td>75.64</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3758</td>
<td>29</td>
<td>CGW</td>
<td>87.73</td>
<td>1.96</td>
<td>90.64</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3786</td>
<td>33</td>
<td>DCW</td>
<td>88.18</td>
<td>1.82</td>
<td>77.89</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3755</td>
<td>38</td>
<td>MAUD</td>
<td>70.45</td>
<td>2.01</td>
<td>92.72</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3852</td>
<td>38</td>
<td>MAUD</td>
<td>71.36</td>
<td>2.07</td>
<td>93.07</td>
<td></td>
</tr>
</tbody>
</table>

- 158 -
<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>AGE</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/</th>
<th>GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3938</td>
<td>6/29/59</td>
<td>21</td>
<td>ARIZ</td>
<td>73.64</td>
<td>2.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3674</td>
<td>3/17/59</td>
<td>38</td>
<td>CAL</td>
<td>70.00</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3734</td>
<td>4/3/59</td>
<td>61</td>
<td>CAL</td>
<td>50.45</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3737</td>
<td>4/3/59</td>
<td>73</td>
<td>CAL</td>
<td>67.27</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3851</td>
<td>5/19/59</td>
<td>38</td>
<td>CAL</td>
<td>74.09</td>
<td>2.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3892</td>
<td>6/18/59</td>
<td>24</td>
<td>CAL</td>
<td>72.27</td>
<td>2.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3989</td>
<td>8/3/59</td>
<td>59</td>
<td>CAL</td>
<td>87.73</td>
<td>1.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4010</td>
<td>8/17/59</td>
<td>28</td>
<td>CAL</td>
<td>98.64</td>
<td>1.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4011</td>
<td>8/17/59</td>
<td>31</td>
<td>CAL</td>
<td>77.27</td>
<td>2.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3707</td>
<td>3/24/59</td>
<td>57</td>
<td>COLO</td>
<td>75.00</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3708</td>
<td>3/24/59</td>
<td>42</td>
<td>COLO</td>
<td>74.09</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3709</td>
<td>3/24/59</td>
<td>35</td>
<td>COLO</td>
<td>71.36</td>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3710</td>
<td>3/24/59</td>
<td>50</td>
<td>COLO</td>
<td>80.45</td>
<td>1.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3711</td>
<td>3/24/59</td>
<td>36</td>
<td>COLO</td>
<td>88.64</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3780</td>
<td>4/18/59</td>
<td>18</td>
<td>COLO</td>
<td>69.09</td>
<td>1.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3837</td>
<td>5/14/59</td>
<td>18</td>
<td>COLO</td>
<td>56.36</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3838</td>
<td>5/14/59</td>
<td>25</td>
<td>COLO</td>
<td>85.45</td>
<td>2.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3875</td>
<td>6/9/59</td>
<td>23</td>
<td>COLO</td>
<td>68.18</td>
<td>2.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3906</td>
<td>6/26/59</td>
<td>14</td>
<td>COLO</td>
<td>55.00</td>
<td>2.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3907</td>
<td>6/26/59</td>
<td>14</td>
<td>COLO</td>
<td>48.18</td>
<td>2.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3908</td>
<td>6/26/59</td>
<td>14</td>
<td>COLO</td>
<td>45.45</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3909</td>
<td>6/26/59</td>
<td>16</td>
<td>COLO</td>
<td>62.27</td>
<td>2.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3910</td>
<td>6/26/59</td>
<td>16</td>
<td>COLO</td>
<td>57.73</td>
<td>2.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3911</td>
<td>6/26/59</td>
<td>14</td>
<td>COLO</td>
<td>60.00</td>
<td>2.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3912</td>
<td>6/29/59</td>
<td>16</td>
<td>COLO</td>
<td>51.36</td>
<td>1.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3913</td>
<td>6/29/59</td>
<td>13</td>
<td>COLO</td>
<td>51.36</td>
<td>1.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3914</td>
<td>6/29/59</td>
<td>14</td>
<td>COLO</td>
<td>49.09</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3915</td>
<td>6/29/59</td>
<td>18</td>
<td>COLO</td>
<td>65.91</td>
<td>2.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3916</td>
<td>6/29/59</td>
<td>16</td>
<td>COLO</td>
<td>50.45</td>
<td>2.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3917</td>
<td>6/29/59</td>
<td>14</td>
<td>COLO</td>
<td>61.36</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3918</td>
<td>6/29/59</td>
<td>15</td>
<td>COLO</td>
<td>47.27</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3919</td>
<td>6/29/59</td>
<td>14</td>
<td>COLO</td>
<td>57.27</td>
<td>2.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3920</td>
<td>6/29/59</td>
<td>15</td>
<td>COLO</td>
<td>50.91</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3921</td>
<td>6/29/59</td>
<td>40</td>
<td>COLO</td>
<td>63.18</td>
<td>2.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3922</td>
<td>6/29/59</td>
<td>16</td>
<td>COLO</td>
<td>55.00</td>
<td>2.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3923</td>
<td>6/29/59</td>
<td>15</td>
<td>COLO</td>
<td>51.82</td>
<td>2.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3924</td>
<td>6/29/59</td>
<td>13</td>
<td>COLO</td>
<td>38.64</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3925</td>
<td>6/29/59</td>
<td>13</td>
<td>COLO</td>
<td>47.73</td>
<td>1.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3926</td>
<td>6/29/59</td>
<td>14</td>
<td>COLO</td>
<td>50.91</td>
<td>2.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3927</td>
<td>6/29/59</td>
<td>14</td>
<td>COLO</td>
<td>65.00</td>
<td>1.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3928</td>
<td>6/29/59</td>
<td>11</td>
<td>COLO</td>
<td>45.45</td>
<td>2.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3929</td>
<td>6/29/59</td>
<td>14</td>
<td>COLO</td>
<td>61.82</td>
<td>2.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3930</td>
<td>6/29/59</td>
<td>17</td>
<td>COLO</td>
<td>63.18</td>
<td>2.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3931</td>
<td>6/29/59</td>
<td>15</td>
<td>COLO</td>
<td>62.27</td>
<td>1.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

PEOPLE - CLASS 10=MALE, 11=FEMALE
Table 1 - Cont'd.

PEOPLE - CLASS 10=MALE, 11=FEMALE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>AGE</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3932</td>
<td>6/29/59</td>
<td>15</td>
<td>COLO</td>
<td>62.27</td>
<td>2.10</td>
<td>73.36</td>
</tr>
<tr>
<td>10</td>
<td>3933</td>
<td>6/29/59</td>
<td>16</td>
<td>COLO</td>
<td>70.45</td>
<td>1.85</td>
<td>62.26</td>
</tr>
<tr>
<td>11</td>
<td>3934</td>
<td>6/29/59</td>
<td>42</td>
<td>COLO</td>
<td>65.91</td>
<td>1.56</td>
<td>79.93</td>
</tr>
<tr>
<td>10</td>
<td>3935</td>
<td>6/29/59</td>
<td>52</td>
<td>COLO</td>
<td>77.73</td>
<td>1.71</td>
<td>93.99</td>
</tr>
<tr>
<td>10</td>
<td>3936</td>
<td>6/29/59</td>
<td>18</td>
<td>COLO</td>
<td>58.64</td>
<td>2.13</td>
<td>101.66</td>
</tr>
<tr>
<td>10</td>
<td>3937</td>
<td>6/29/59</td>
<td>17</td>
<td>COLO</td>
<td>73.18</td>
<td>2.37</td>
<td>77.39</td>
</tr>
<tr>
<td>11</td>
<td>3938</td>
<td>8/6/59</td>
<td>25</td>
<td>DC</td>
<td>61.36</td>
<td>1.48</td>
<td>52.32</td>
</tr>
<tr>
<td>10</td>
<td>4037</td>
<td>8/28/59</td>
<td>17</td>
<td>GA</td>
<td>57.73</td>
<td>1.83</td>
<td>121.41</td>
</tr>
<tr>
<td>10</td>
<td>3703</td>
<td>3/20/59</td>
<td>45</td>
<td>ILL</td>
<td>85.00</td>
<td>2.06</td>
<td>64.35</td>
</tr>
<tr>
<td>10</td>
<td>3866</td>
<td>6/1/59</td>
<td>31</td>
<td>ILL</td>
<td>92.73</td>
<td>1.97</td>
<td>67.59</td>
</tr>
<tr>
<td>10</td>
<td>3870</td>
<td>6/5/59</td>
<td>54</td>
<td>ILL</td>
<td>65.45</td>
<td>1.87</td>
<td>88.84</td>
</tr>
<tr>
<td>10</td>
<td>3871</td>
<td>6/5/59</td>
<td>35</td>
<td>ILL</td>
<td>69.55</td>
<td>2.05</td>
<td>79.82</td>
</tr>
<tr>
<td>11</td>
<td>3940</td>
<td>6/29/59</td>
<td>18</td>
<td>ILL</td>
<td>61.82</td>
<td>1.62</td>
<td>56.28</td>
</tr>
<tr>
<td>11</td>
<td>4007</td>
<td>8/17/59</td>
<td>16</td>
<td>ILL</td>
<td>49.09</td>
<td>2.06</td>
<td>90.02</td>
</tr>
<tr>
<td>11</td>
<td>4008</td>
<td>8/17/59</td>
<td>16</td>
<td>ILL</td>
<td>47.73</td>
<td>1.71</td>
<td>110.71</td>
</tr>
<tr>
<td>11</td>
<td>4009</td>
<td>8/17/59</td>
<td>46</td>
<td>ILL</td>
<td>64.99</td>
<td>1.84</td>
<td>76.01</td>
</tr>
<tr>
<td>10</td>
<td>3716</td>
<td>3/30/59</td>
<td>33</td>
<td>IND</td>
<td>80.91</td>
<td>2.24</td>
<td>98.93</td>
</tr>
<tr>
<td>10</td>
<td>3878</td>
<td>6/11/59</td>
<td>33</td>
<td>IND</td>
<td>77.27</td>
<td>2.19</td>
<td>134.18</td>
</tr>
<tr>
<td>11</td>
<td>4021</td>
<td>8/24/59</td>
<td>55</td>
<td>IND</td>
<td>65.91</td>
<td>1.51</td>
<td>55.23</td>
</tr>
<tr>
<td>10</td>
<td>4023</td>
<td>8/24/59</td>
<td>69</td>
<td>IND</td>
<td>81.36</td>
<td>1.66</td>
<td>74.00</td>
</tr>
<tr>
<td>10</td>
<td>4025</td>
<td>8/26/59</td>
<td>25</td>
<td>IND</td>
<td>71.36</td>
<td>2.38</td>
<td>70.85</td>
</tr>
<tr>
<td>10</td>
<td>4027</td>
<td>8/26/59</td>
<td>33</td>
<td>IND</td>
<td>75.00</td>
<td>1.99</td>
<td>89.51</td>
</tr>
<tr>
<td>11</td>
<td>3939</td>
<td>6/29/59</td>
<td>21</td>
<td>IOWA</td>
<td>64.55</td>
<td>1.49</td>
<td>61.49</td>
</tr>
<tr>
<td>10</td>
<td>3717</td>
<td>3/30/59</td>
<td>29</td>
<td>KAN</td>
<td>69.64</td>
<td>1.94</td>
<td>73.01</td>
</tr>
<tr>
<td>10</td>
<td>3867</td>
<td>6/1/59</td>
<td>26</td>
<td>KAN</td>
<td>75.00</td>
<td>2.08</td>
<td>100.59</td>
</tr>
<tr>
<td>11</td>
<td>4034</td>
<td>8/24/59</td>
<td>33</td>
<td>KAN</td>
<td>78.18</td>
<td>1.84</td>
<td>85.15</td>
</tr>
<tr>
<td>11</td>
<td>4035</td>
<td>8/27/59</td>
<td>14</td>
<td>KAN</td>
<td>46.82</td>
<td>1.85</td>
<td>67.31</td>
</tr>
<tr>
<td>11</td>
<td>4036</td>
<td>8/27/59</td>
<td>15</td>
<td>KAN</td>
<td>50.00</td>
<td>1.97</td>
<td>74.84</td>
</tr>
<tr>
<td>10</td>
<td>3869</td>
<td>6/2/59</td>
<td>37</td>
<td>MASS</td>
<td>65.00</td>
<td>2.08</td>
<td>96.93</td>
</tr>
<tr>
<td>10</td>
<td>3893</td>
<td>6/18/59</td>
<td>23</td>
<td>MASS</td>
<td>75.91</td>
<td>1.73</td>
<td>64.45</td>
</tr>
<tr>
<td>10</td>
<td>4030</td>
<td>8/27/59</td>
<td>61</td>
<td>MASS</td>
<td>59.55</td>
<td>1.94</td>
<td>169.75</td>
</tr>
<tr>
<td>11</td>
<td>4031</td>
<td>8/27/59</td>
<td>58</td>
<td>MASS</td>
<td>70.00</td>
<td>1.27</td>
<td>126.37</td>
</tr>
<tr>
<td>11</td>
<td>4032</td>
<td>8/27/59</td>
<td>20</td>
<td>MASS</td>
<td>68.64</td>
<td>1.45</td>
<td>107.66</td>
</tr>
<tr>
<td>10</td>
<td>3841</td>
<td>5/15/59</td>
<td>50</td>
<td>MD</td>
<td>82.27</td>
<td>1.93</td>
<td>84.61</td>
</tr>
<tr>
<td>10</td>
<td>3876</td>
<td>6/3/59</td>
<td>23</td>
<td>MD</td>
<td>83.64</td>
<td>2.01</td>
<td>148.32</td>
</tr>
<tr>
<td>10</td>
<td>3565</td>
<td>1/7/59</td>
<td>54</td>
<td>MICH</td>
<td>76.36</td>
<td>1.68</td>
<td>84.02</td>
</tr>
<tr>
<td>10</td>
<td>3566</td>
<td>1/7/59</td>
<td>54</td>
<td>MICH</td>
<td>72.27</td>
<td>1.88</td>
<td>74.24</td>
</tr>
<tr>
<td>10</td>
<td>3588</td>
<td>5/22/59</td>
<td>67</td>
<td>MICH</td>
<td>67.27</td>
<td>1.77</td>
<td>144.00</td>
</tr>
<tr>
<td>11</td>
<td>3859</td>
<td>5/22/59</td>
<td>63</td>
<td>MINN</td>
<td>81.82</td>
<td>1.34</td>
<td>66.72</td>
</tr>
<tr>
<td>10</td>
<td>3884</td>
<td>6/15/59</td>
<td>42</td>
<td>MO</td>
<td>76.36</td>
<td>1.76</td>
<td>83.78</td>
</tr>
<tr>
<td>10</td>
<td>3891</td>
<td>6/16/59</td>
<td>34</td>
<td>MO</td>
<td>79.09</td>
<td>2.18</td>
<td>73.86</td>
</tr>
<tr>
<td>11</td>
<td>3991</td>
<td>8/11/59</td>
<td>08</td>
<td>MO</td>
<td>24.09</td>
<td>2.22</td>
<td>104.01</td>
</tr>
<tr>
<td>10</td>
<td>3624</td>
<td>2/25/59</td>
<td>43</td>
<td>NEV</td>
<td>71.82</td>
<td>1.84</td>
<td>36.87</td>
</tr>
</tbody>
</table>

- 160 -
| CL | SERIAL | DATE | AGE | STATE | WGT | GM | K/KG | UUC | CS/GM
|----|--------|--------|-----|-------|-----|----|------|-----|--------
| 10 | 3738 | 4/7/59 | 27 | NJ | 75.00 | 2.05 | | 102.30 |
| 10 | 3773 | 4/18/59| 50 | NJ | 67.27 | 1.34 | | 84.74 |
| 10 | 3569 | 1/7/59 | 37 | NM | 64.09 | 2.59 | | 59.88 |
| 10 | 3570 | 1/7/59 | 44 | NM | 65.91 | 2.36 | | 44.48 |
| 10 | 3623 | 2/25/59| 38 | NM | 62.73 | 2.44 | | 66.54 |
| 10 | 3631 | 2/25/59| 33 | NM | 82.73 | 1.86 | | 53.28 |
| 11 | 3675 | 3/17/59| 33 | NM | 82.73 | 2.25 | | 52.26 |
| 11 | 3676 | 3/17/59| 34 | NM | 51.32 | 1.34 | | 72.98 |
| 10 | 3719 | 3/30/59| 39 | NM | 55.91 | 1.34 | | 91.08 |
| 10 | 3744 | 4/10/59| 20 | NM | 77.27 | 2.13 | | 75.82 |
| 10 | 3745 | 4/10/59| 19 | NM | 77.27 | 2.01 | | 70.82 |
| 11 | 3746 | 4/10/59| 31 | NM | 54.09 | 1.55 | | 101.18 |
| 10 | 3747 | 4/14/59| 35 | NM | 56.82 | 1.56 | | 52.94 |
| 10 | 3748 | 4/14/59| 37 | NM | 57.73 | 1.44 | | 65.78 |
| 10 | 3751 | 4/14/59| 41 | NM | 96.82 | 1.67 | | 92.41 |
| 11 | 3752 | 4/14/59| 20 | NM | 52.27 | 1.52 | | 86.40 |
| 11 | 3753 | 4/14/59| 27 | NM | 59.09 | 1.76 | | 98.75 |
| 11 | 3754 | 4/14/59| 33 | NM | 46.36 | 1.72 | | 100.28 |
| 10 | 3772 | 4/18/59| 63 | MM | 47.27 | 1.88 | | 64.00 |
| 10 | 3793 | 4/23/59| 14 | MM | 59.09 | 2.31 | | 51.11 |
| 11 | 3794 | 4/23/59| 14 | MM | 52.27 | 1.87 | | 98.63 |
| 10 | 3795 | 4/23/49| 13 | MM | 49.55 | 1.79 | | 78.97 |
| 10 | 3796 | 4/23/14| 14 | MM | 49.09 | 2.09 | | 71.15 |
| 10 | 3797 | 4/23/14| 15 | MM | 65.00 | 2.47 | | 77.55 |
| 10 | 3798 | 4/23/14| 13 | MM | 78.64 | 2.50 | | 66.12 |
| 11 | 3799 | 4/23/14| 15 | MM | 51.36 | 2.63 | | 81.03 |
| 11 | 3800 | 4/23/14| 15 | MM | 44.09 | 2.10 | | 69.52 |
| 10 | 3801 | 4/23/14| 14 | MM | 48.18 | 2.38 | | 78.34 |
| 10 | 3802 | 4/23/14| 14 | MM | 61.36 | 2.46 | | 80.26 |
| 10 | 3803 | 4/23/14| 14 | MM | 49.55 | 2.24 | | 66.09 |
| 11 | 3804 | 4/23/14| 13 | MM | 47.27 | 1.67 | | 64.85 |
| 10 | 3805 | 4/23/14| 15 | MM | 54.55 | 2.12 | | 67.90 |
| 11 | 3806 | 4/23/14| 14 | MM | 41.36 | 2.02 | | 86.10 |
| 10 | 3807 | 4/23/14| 14 | MM | 60.00 | 1.65 | | 86.16 |
| 11 | 3808 | 4/23/14| 31 | MM | 61.36 | 1.50 | | 67.70 |
| 10 | 3809 | 4/23/14| 13 | MM | 42.73 | 1.93 | | 75.96 |
| 11 | 3810 | 4/23/14| 13 | MM | 56.36 | 1.78 | | 70.86 |
| 11 | 3811 | 4/23/14| 14 | MM | 54.55 | 1.75 | | 98.49 |
| 10 | 3826 | 5/11/59| 31 | MM | 85.45 | 1.67 | | 73.50 |
| 10 | 3827 | 5/11/59| 19 | MM | 82.73 | 1.87 | | 83.32 |
| 10 | 3828 | 5/11/59| 29 | MM | 80.91 | 2.03 | | 75.50 |
| 10 | 3829 | 5/11/59| 29 | MM | 65.91 | 2.41 | | 74.15 |
| 10 | 3831 | 5/12/59| 33 | MM | 55.00 | 2.46 | | 75.43 |

= 161 =
<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>AGE</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3843</td>
<td>5/16/59</td>
<td>09</td>
<td>NM</td>
<td>33.18</td>
<td>1.95</td>
<td></td>
<td>118.58</td>
</tr>
<tr>
<td>10</td>
<td>3844</td>
<td>5/16/59</td>
<td>10</td>
<td>NM</td>
<td>24.09</td>
<td>3.35</td>
<td></td>
<td>81.23</td>
</tr>
<tr>
<td>10</td>
<td>3845</td>
<td>5/16/59</td>
<td>10</td>
<td>NM</td>
<td>22.73</td>
<td>2.81</td>
<td></td>
<td>67.77</td>
</tr>
<tr>
<td>10</td>
<td>3846</td>
<td>5/16/59</td>
<td>08</td>
<td>NM</td>
<td>26.36</td>
<td>2.21</td>
<td></td>
<td>60.04</td>
</tr>
<tr>
<td>10</td>
<td>3847</td>
<td>5/16/59</td>
<td>09</td>
<td>NM</td>
<td>29.09</td>
<td>2.47</td>
<td></td>
<td>51.07</td>
</tr>
<tr>
<td>10</td>
<td>3848</td>
<td>5/16/59</td>
<td>09</td>
<td>NM</td>
<td>28.18</td>
<td>2.45</td>
<td></td>
<td>85.27</td>
</tr>
<tr>
<td>11</td>
<td>3849</td>
<td>5/16/59</td>
<td>30</td>
<td>NM</td>
<td>63.18</td>
<td>1.68</td>
<td></td>
<td>92.58</td>
</tr>
<tr>
<td>11</td>
<td>3850</td>
<td>5/16/59</td>
<td>31</td>
<td>NM</td>
<td>53.64</td>
<td>1.57</td>
<td></td>
<td>95.67</td>
</tr>
<tr>
<td>11</td>
<td>3862</td>
<td>5/26/59</td>
<td>00</td>
<td>NM</td>
<td>4.09</td>
<td>4.61</td>
<td></td>
<td>92.59</td>
</tr>
<tr>
<td>11</td>
<td>3864</td>
<td>5/27/59</td>
<td>34</td>
<td>NM</td>
<td>74.09</td>
<td>1.50</td>
<td></td>
<td>54.47</td>
</tr>
<tr>
<td>10</td>
<td>3877</td>
<td>6/11/59</td>
<td>43</td>
<td>NM</td>
<td>84.55</td>
<td>2.18</td>
<td></td>
<td>94.61</td>
</tr>
<tr>
<td>11</td>
<td>3885</td>
<td>6/15/59</td>
<td>48</td>
<td>NM</td>
<td>63.18</td>
<td>1.22</td>
<td></td>
<td>66.36</td>
</tr>
<tr>
<td>11</td>
<td>3886</td>
<td>6/15/59</td>
<td>08</td>
<td>NM</td>
<td>25.45</td>
<td>1.79</td>
<td></td>
<td>75.28</td>
</tr>
<tr>
<td>11</td>
<td>3887</td>
<td>6/15/59</td>
<td>61</td>
<td>NM</td>
<td>70.00</td>
<td>1.11</td>
<td></td>
<td>87.07</td>
</tr>
<tr>
<td>10</td>
<td>3888</td>
<td>6/15/59</td>
<td>65</td>
<td>NM</td>
<td>78.18</td>
<td>1.61</td>
<td></td>
<td>74.66</td>
</tr>
<tr>
<td>10</td>
<td>3889</td>
<td>6/15/59</td>
<td>29</td>
<td>NM</td>
<td>86.82</td>
<td>1.76</td>
<td></td>
<td>66.69</td>
</tr>
<tr>
<td>10</td>
<td>3890</td>
<td>6/15/59</td>
<td>57</td>
<td>NM</td>
<td>85.91</td>
<td>2.05</td>
<td></td>
<td>75.93</td>
</tr>
<tr>
<td>11</td>
<td>3903</td>
<td>6/25/59</td>
<td>28</td>
<td>NM</td>
<td>57.73</td>
<td>1.76</td>
<td></td>
<td>115.32</td>
</tr>
<tr>
<td>11</td>
<td>3901</td>
<td>6/25/59</td>
<td>07</td>
<td>NM</td>
<td>25.00</td>
<td>1.81</td>
<td></td>
<td>84.28</td>
</tr>
<tr>
<td>11</td>
<td>3902</td>
<td>6/25/59</td>
<td>13</td>
<td>NM</td>
<td>50.91</td>
<td>1.71</td>
<td></td>
<td>53.95</td>
</tr>
<tr>
<td>11</td>
<td>3948</td>
<td>7/ 3/59</td>
<td>34</td>
<td>NM</td>
<td>74.55</td>
<td>1.55</td>
<td></td>
<td>68.38</td>
</tr>
<tr>
<td>10</td>
<td>3965</td>
<td>7/23/59</td>
<td>37</td>
<td>NM</td>
<td>75.00</td>
<td>1.72</td>
<td></td>
<td>80.75</td>
</tr>
<tr>
<td>10</td>
<td>3968</td>
<td>7/24/59</td>
<td>06</td>
<td>NM</td>
<td>18.64</td>
<td>1.59</td>
<td></td>
<td>45.62</td>
</tr>
<tr>
<td>10</td>
<td>3969</td>
<td>7/24/59</td>
<td>36</td>
<td>NM</td>
<td>90.91</td>
<td>1.74</td>
<td></td>
<td>75.87</td>
</tr>
<tr>
<td>10</td>
<td>3970</td>
<td>7/24/59</td>
<td>41</td>
<td>NM</td>
<td>18.64</td>
<td>1.75</td>
<td></td>
<td>65.82</td>
</tr>
<tr>
<td>10</td>
<td>3971</td>
<td>7/24/59</td>
<td>34</td>
<td>NM</td>
<td>63.64</td>
<td>1.99</td>
<td></td>
<td>57.73</td>
</tr>
<tr>
<td>11</td>
<td>3985</td>
<td>7/28/59</td>
<td>50</td>
<td>NM</td>
<td>56.82</td>
<td>1.42</td>
<td></td>
<td>84.28</td>
</tr>
<tr>
<td>11</td>
<td>3987</td>
<td>7/30/59</td>
<td>46</td>
<td>NM</td>
<td>68.64</td>
<td>1.42</td>
<td></td>
<td>69.66</td>
</tr>
<tr>
<td>10</td>
<td>3988</td>
<td>7/30/59</td>
<td>51</td>
<td>NM</td>
<td>74.55</td>
<td>1.96</td>
<td></td>
<td>47.41</td>
</tr>
<tr>
<td>11</td>
<td>3999</td>
<td>8/13/59</td>
<td>35</td>
<td>NM</td>
<td>65.45</td>
<td>1.65</td>
<td></td>
<td>73.71</td>
</tr>
<tr>
<td>10</td>
<td>4000</td>
<td>8/13/59</td>
<td>07</td>
<td>NM</td>
<td>22.27</td>
<td>2.02</td>
<td></td>
<td>79.16</td>
</tr>
<tr>
<td>10</td>
<td>4001</td>
<td>8/13/59</td>
<td>07</td>
<td>NM</td>
<td>24.09</td>
<td>2.14</td>
<td></td>
<td>73.04</td>
</tr>
<tr>
<td>10</td>
<td>4002</td>
<td>8/13/59</td>
<td>10</td>
<td>NM</td>
<td>37.27</td>
<td>2.04</td>
<td></td>
<td>46.30</td>
</tr>
<tr>
<td>10</td>
<td>4003</td>
<td>8/13/59</td>
<td>10</td>
<td>NM</td>
<td>35.00</td>
<td>1.87</td>
<td></td>
<td>94.91</td>
</tr>
<tr>
<td>10</td>
<td>4004</td>
<td>8/13/59</td>
<td>10</td>
<td>NM</td>
<td>42.27</td>
<td>1.57</td>
<td></td>
<td>68.31</td>
</tr>
<tr>
<td>10</td>
<td>4005</td>
<td>8/13/59</td>
<td>39</td>
<td>NM</td>
<td>75.00</td>
<td>1.76</td>
<td></td>
<td>75.65</td>
</tr>
<tr>
<td>11</td>
<td>4006</td>
<td>8/13/59</td>
<td>08</td>
<td>NM</td>
<td>25.45</td>
<td>1.79</td>
<td></td>
<td>54.37</td>
</tr>
<tr>
<td>11</td>
<td>4013</td>
<td>8/18/59</td>
<td>17</td>
<td>NM</td>
<td>73.64</td>
<td>1.60</td>
<td></td>
<td>51.67</td>
</tr>
<tr>
<td>10</td>
<td>4114</td>
<td>8/18/59</td>
<td>34</td>
<td>NM</td>
<td>65.45</td>
<td>2.18</td>
<td></td>
<td>71.83</td>
</tr>
<tr>
<td>10</td>
<td>4015</td>
<td>8/19/59</td>
<td>17</td>
<td>NM</td>
<td>69.09</td>
<td>2.27</td>
<td></td>
<td>68.45</td>
</tr>
<tr>
<td>10</td>
<td>4016</td>
<td>8/19/59</td>
<td>16</td>
<td>NM</td>
<td>57.73</td>
<td>2.50</td>
<td></td>
<td>84.78</td>
</tr>
<tr>
<td>10</td>
<td>4017</td>
<td>8/19/59</td>
<td>38</td>
<td>NM</td>
<td>64.55</td>
<td>2.06</td>
<td></td>
<td>74.27</td>
</tr>
<tr>
<td>11</td>
<td>4020</td>
<td>8/24/59</td>
<td>37</td>
<td>NM</td>
<td>64.55</td>
<td>1.51</td>
<td></td>
<td>64.69</td>
</tr>
<tr>
<td>10</td>
<td>4022</td>
<td>8/24/59</td>
<td>06</td>
<td>NM</td>
<td>23.18</td>
<td>2.18</td>
<td></td>
<td>46.60</td>
</tr>
<tr>
<td>CL SERIAL</td>
<td>DATE</td>
<td>AGE</td>
<td>STATE</td>
<td>WGT</td>
<td>GM K/KG</td>
<td>UUC CS/GM K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4024</td>
<td>32</td>
<td>NM</td>
<td>60.00</td>
<td>1.63</td>
<td>88.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4038</td>
<td>17</td>
<td>NM</td>
<td>47.73</td>
<td>2.07</td>
<td>82.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3705</td>
<td>32</td>
<td>NY</td>
<td>61.36</td>
<td>2.08</td>
<td>45.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3770</td>
<td>46</td>
<td>NY</td>
<td>54.55</td>
<td>1.57</td>
<td>89.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3775</td>
<td>51</td>
<td>NY</td>
<td>84.09</td>
<td>1.73</td>
<td>96.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3836</td>
<td>25</td>
<td>NY</td>
<td>46.36</td>
<td>2.08</td>
<td>75.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3986</td>
<td>54</td>
<td>NY</td>
<td>72.73</td>
<td>1.31</td>
<td>91.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3958</td>
<td>15</td>
<td>NY</td>
<td>44.09</td>
<td>1.74</td>
<td>92.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3959</td>
<td>47</td>
<td>NY</td>
<td>50.45</td>
<td>1.43</td>
<td>87.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3615</td>
<td>30</td>
<td>ORE</td>
<td>100.00</td>
<td>2.11</td>
<td>72.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3616</td>
<td>37</td>
<td>ORE</td>
<td>86.36</td>
<td>2.13</td>
<td>69.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3617</td>
<td>29</td>
<td>ORE</td>
<td>62.27</td>
<td>2.31</td>
<td>63.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3618</td>
<td>28</td>
<td>ORE</td>
<td>77.73</td>
<td>2.06</td>
<td>51.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3620</td>
<td>28</td>
<td>ORE</td>
<td>88.64</td>
<td>1.71</td>
<td>55.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3621</td>
<td>29</td>
<td>ORE</td>
<td>81.82</td>
<td>2.28</td>
<td>67.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3622</td>
<td>36</td>
<td>ORE</td>
<td>75.00</td>
<td>2.27</td>
<td>51.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3625</td>
<td>49</td>
<td>ORE</td>
<td>75.00</td>
<td>2.27</td>
<td>49.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3626</td>
<td>31</td>
<td>ORE</td>
<td>84.09</td>
<td>1.89</td>
<td>57.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3627</td>
<td>38</td>
<td>ORE</td>
<td>72.73</td>
<td>2.13</td>
<td>54.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3628</td>
<td>35</td>
<td>ORE</td>
<td>77.27</td>
<td>1.92</td>
<td>79.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3629</td>
<td>29</td>
<td>ORE</td>
<td>75.00</td>
<td>2.06</td>
<td>65.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3599</td>
<td>57</td>
<td>PENN</td>
<td>77.27</td>
<td>1.82</td>
<td>38.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3735</td>
<td>71</td>
<td>PENN</td>
<td>71.82</td>
<td>1.13</td>
<td>76.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3736</td>
<td>73</td>
<td>PENN</td>
<td>71.82</td>
<td>1.79</td>
<td>64.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4012</td>
<td>51</td>
<td>PENN</td>
<td>50.00</td>
<td>1.58</td>
<td>67.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3883</td>
<td>36</td>
<td>PUR</td>
<td>56.82</td>
<td>1.23</td>
<td>118.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3865</td>
<td>31</td>
<td>TENN</td>
<td>65.45</td>
<td>2.34</td>
<td>95.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3613</td>
<td>42</td>
<td>TEX</td>
<td>79.55</td>
<td>2.16</td>
<td>62.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3614</td>
<td>11</td>
<td>TEX</td>
<td>37.27</td>
<td>2.33</td>
<td>45.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3619</td>
<td>26</td>
<td>TEX</td>
<td>81.82</td>
<td>1.90</td>
<td>47.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3739</td>
<td>32</td>
<td>TEX</td>
<td>83.18</td>
<td>2.04</td>
<td>59.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3740</td>
<td>18</td>
<td>TEX</td>
<td>70.00</td>
<td>2.35</td>
<td>55.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3741</td>
<td>19</td>
<td>TEX</td>
<td>80.45</td>
<td>1.74</td>
<td>55.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3742</td>
<td>19</td>
<td>TEX</td>
<td>68.18</td>
<td>2.28</td>
<td>78.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3743</td>
<td>20</td>
<td>TEX</td>
<td>59.09</td>
<td>1.62</td>
<td>68.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3760</td>
<td>12</td>
<td>TEX</td>
<td>51.82</td>
<td>1.59</td>
<td>66.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3761</td>
<td>8</td>
<td>TEX</td>
<td>28.64</td>
<td>2.07</td>
<td>94.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3762</td>
<td>38</td>
<td>TEX</td>
<td>53.64</td>
<td>1.78</td>
<td>90.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3763</td>
<td>42</td>
<td>TEX</td>
<td>92.27</td>
<td>1.69</td>
<td>51.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3764</td>
<td>38</td>
<td>TEX</td>
<td>81.36</td>
<td>1.77</td>
<td>56.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3765</td>
<td>51</td>
<td>TEX</td>
<td>86.36</td>
<td>1.71</td>
<td>59.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3766</td>
<td>53</td>
<td>TEX</td>
<td>56.82</td>
<td>1.36</td>
<td>61.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3767</td>
<td>52</td>
<td>TEX</td>
<td>53.18</td>
<td>1.27</td>
<td>100.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3768</td>
<td>54</td>
<td>TEX</td>
<td>61.82</td>
<td>1.30</td>
<td>72.74</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 - Cont'd.

PEOPLE - CLASS 10=MALE, 11=FEMALE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>AGE</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3769</td>
<td>4/18/59</td>
<td>38</td>
<td>TEX</td>
<td>72.27</td>
<td>1.46</td>
<td>84.30</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3771</td>
<td>4/18/59</td>
<td>47</td>
<td>TEX</td>
<td>51.82</td>
<td>2.31</td>
<td>62.72</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3774</td>
<td>4/18/59</td>
<td>72</td>
<td>TEX</td>
<td>75.00</td>
<td>1.81</td>
<td>69.36</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3776</td>
<td>4/18/59</td>
<td>53</td>
<td>TEX</td>
<td>93.18</td>
<td>1.62</td>
<td>45.23</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3777</td>
<td>4/18/59</td>
<td>67</td>
<td>TEX</td>
<td>53.18</td>
<td>1.57</td>
<td>63.88</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3778</td>
<td>4/18/59</td>
<td>58</td>
<td>TEX</td>
<td>78.64</td>
<td>2.00</td>
<td>61.12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3779</td>
<td>4/18/59</td>
<td>33</td>
<td>TEX</td>
<td>59.55</td>
<td>1.58</td>
<td>72.73</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3781</td>
<td>4/18/59</td>
<td>41</td>
<td>TEX</td>
<td>84.09</td>
<td>1.81</td>
<td>90.16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3782</td>
<td>4/18/59</td>
<td>35</td>
<td>TEX</td>
<td>88.64</td>
<td>1.58</td>
<td>70.37</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3783</td>
<td>4/18/59</td>
<td>50</td>
<td>TEX</td>
<td>64.55</td>
<td>1.51</td>
<td>56.98</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3949</td>
<td>7/6/59</td>
<td>37</td>
<td>TEX</td>
<td>76.82</td>
<td>2.00</td>
<td>83.89</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3874</td>
<td>6/9/59</td>
<td>25</td>
<td>TEX</td>
<td>70.00</td>
<td>2.21</td>
<td>74.94</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3950</td>
<td>7/6/59</td>
<td>12</td>
<td>TEX</td>
<td>34.09</td>
<td>2.34</td>
<td>54.49</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4029</td>
<td>8/27/59</td>
<td>42</td>
<td>TEX</td>
<td>60.00</td>
<td>1.54</td>
<td>70.67</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3702</td>
<td>3/20/59</td>
<td>23</td>
<td>UTAH</td>
<td>83.64</td>
<td>2.01</td>
<td>71.33</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3725</td>
<td>4/2/59</td>
<td>46</td>
<td>VIRG</td>
<td>74.09</td>
<td>1.94</td>
<td>94.78</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3726</td>
<td>4/2/59</td>
<td>31</td>
<td>VIRG</td>
<td>75.00</td>
<td>2.23</td>
<td>60.76</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3727</td>
<td>4/2/59</td>
<td>44</td>
<td>VIRG</td>
<td>81.36</td>
<td>1.93</td>
<td>82.63</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3728</td>
<td>4/2/59</td>
<td>42</td>
<td>VIRG</td>
<td>74.55</td>
<td>1.93</td>
<td>75.74</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3815</td>
<td>4/2/59</td>
<td>40</td>
<td>VIRG</td>
<td>85.91</td>
<td>2.20</td>
<td>67.74</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3733</td>
<td>4/3/59</td>
<td>52</td>
<td>WASH</td>
<td>69.55</td>
<td>2.11</td>
<td>58.04</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3835</td>
<td>5/13/59</td>
<td>29</td>
<td>WASH</td>
<td>76.36</td>
<td>2.13</td>
<td>68.78</td>
<td></td>
</tr>
</tbody>
</table>
Table 2

Milk - Class 20 = Fresh, 21 = Whole Dry, 22 = Nonfat Dry, 23 = Dry Buttermilk, 24 = Control Sample

<table>
<thead>
<tr>
<th>Cl</th>
<th>Serial</th>
<th>Date</th>
<th>Town</th>
<th>State</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4327</td>
<td>7/14/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>19.03</td>
<td></td>
<td>29.01</td>
</tr>
<tr>
<td>22</td>
<td>4374</td>
<td>7/27/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.05</td>
<td></td>
<td>31.73</td>
</tr>
<tr>
<td>22</td>
<td>4249</td>
<td>7/30/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.26</td>
<td></td>
<td>26.07</td>
</tr>
<tr>
<td>22</td>
<td>4292</td>
<td>8/7/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.49</td>
<td></td>
<td>24.87</td>
</tr>
<tr>
<td>22</td>
<td>3043</td>
<td>7/17/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.53</td>
<td></td>
<td>59.71</td>
</tr>
<tr>
<td>22</td>
<td>3080</td>
<td>1/13/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.95</td>
<td></td>
<td>73.50</td>
</tr>
<tr>
<td>22</td>
<td>3119</td>
<td>1/20/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.61</td>
<td></td>
<td>77.63</td>
</tr>
<tr>
<td>22</td>
<td>3150</td>
<td>1/27/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.08</td>
<td></td>
<td>85.16</td>
</tr>
<tr>
<td>22</td>
<td>3220</td>
<td>2/5/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.18</td>
<td></td>
<td>87.10</td>
</tr>
<tr>
<td>22</td>
<td>3238</td>
<td>2/10/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.26</td>
<td></td>
<td>81.39</td>
</tr>
<tr>
<td>22</td>
<td>3272</td>
<td>2/9/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.37</td>
<td></td>
<td>37.30</td>
</tr>
<tr>
<td>22</td>
<td>3275</td>
<td>2/16/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.86</td>
<td></td>
<td>84.32</td>
</tr>
<tr>
<td>22</td>
<td>3350</td>
<td>2/27/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.29</td>
<td></td>
<td>74.42</td>
</tr>
<tr>
<td>22</td>
<td>3396</td>
<td>3/4/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.46</td>
<td></td>
<td>72.61</td>
</tr>
<tr>
<td>22</td>
<td>3465</td>
<td>3/16/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>16.42</td>
<td></td>
<td>74.57</td>
</tr>
<tr>
<td>22</td>
<td>3507</td>
<td>3/19/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>16.89</td>
<td></td>
<td>67.01</td>
</tr>
<tr>
<td>22</td>
<td>3530</td>
<td>3/26/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.93</td>
<td></td>
<td>198.58</td>
</tr>
<tr>
<td>22</td>
<td>3585</td>
<td>4/2/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.49</td>
<td></td>
<td>222.13</td>
</tr>
<tr>
<td>22</td>
<td>3637</td>
<td>4/14/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.28</td>
<td></td>
<td>173.92</td>
</tr>
<tr>
<td>22</td>
<td>3653</td>
<td>4/16/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.72</td>
<td></td>
<td>151.96</td>
</tr>
<tr>
<td>22</td>
<td>3729</td>
<td>4/23/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.18</td>
<td></td>
<td>137.37</td>
</tr>
<tr>
<td>22</td>
<td>3778</td>
<td>5/4/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.33</td>
<td></td>
<td>193.12</td>
</tr>
<tr>
<td>22</td>
<td>3779</td>
<td>5/4/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.55</td>
<td></td>
<td>206.56</td>
</tr>
<tr>
<td>22</td>
<td>3864</td>
<td>5/15/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.97</td>
<td></td>
<td>183.44</td>
</tr>
<tr>
<td>22</td>
<td>3870</td>
<td>5/15/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.21</td>
<td></td>
<td>167.18</td>
</tr>
<tr>
<td>22</td>
<td>3907</td>
<td>5/25/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.82</td>
<td></td>
<td>167.20</td>
</tr>
<tr>
<td>22</td>
<td>4019</td>
<td>6/5/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.88</td>
<td></td>
<td>174.82</td>
</tr>
<tr>
<td>22</td>
<td>4149</td>
<td>6/11/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.43</td>
<td></td>
<td>126.24</td>
</tr>
<tr>
<td>22</td>
<td>4147</td>
<td>6/22/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.58</td>
<td></td>
<td>136.34</td>
</tr>
<tr>
<td>22</td>
<td>4148</td>
<td>6/25/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>17.73</td>
<td></td>
<td>137.85</td>
</tr>
<tr>
<td>22</td>
<td>4194</td>
<td>7/2/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.34</td>
<td></td>
<td>101.02</td>
</tr>
<tr>
<td>22</td>
<td>4214</td>
<td>7/13/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.21</td>
<td></td>
<td>88.74</td>
</tr>
<tr>
<td>22</td>
<td>4328</td>
<td>7/17/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.28</td>
<td></td>
<td>107.07</td>
</tr>
<tr>
<td>22</td>
<td>4329</td>
<td>7/17/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.55</td>
<td></td>
<td>105.14</td>
</tr>
<tr>
<td>22</td>
<td>4361</td>
<td>7/23/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.61</td>
<td></td>
<td>96.20</td>
</tr>
<tr>
<td>22</td>
<td>4266</td>
<td>8/3/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.11</td>
<td></td>
<td>85.53</td>
</tr>
<tr>
<td>22</td>
<td>4172</td>
<td>8/3/59R</td>
<td>FR</td>
<td>LA</td>
<td>22.73</td>
<td>18.65</td>
<td></td>
<td>73.60</td>
</tr>
<tr>
<td>22</td>
<td>3081</td>
<td>1/14/59R</td>
<td>AN</td>
<td>MASS</td>
<td>45.45</td>
<td>19.33</td>
<td></td>
<td>62.87</td>
</tr>
<tr>
<td>22</td>
<td>3127</td>
<td>1/20/59R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.56</td>
<td></td>
<td>74.42</td>
</tr>
<tr>
<td>22</td>
<td>3161</td>
<td>1/28/59R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.50</td>
<td></td>
<td>59.81</td>
</tr>
<tr>
<td>22</td>
<td>3217</td>
<td>2/3/59R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.42</td>
<td></td>
<td>62.47</td>
</tr>
<tr>
<td>22</td>
<td>3258</td>
<td>2/10/59R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.55</td>
<td></td>
<td>63.60</td>
</tr>
<tr>
<td>22</td>
<td>3270</td>
<td>2/17/59R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.89</td>
<td></td>
<td>67.70</td>
</tr>
<tr>
<td>22</td>
<td>3340</td>
<td>2/24/59R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.01</td>
<td></td>
<td>72.05</td>
</tr>
<tr>
<td>CL SERIAL</td>
<td>DATE</td>
<td>TOWN</td>
<td>STATE</td>
<td>WT</td>
<td>GM</td>
<td>K/KG</td>
<td>UUC</td>
<td>CS/GM K</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>22 3599</td>
<td>4/6/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.25</td>
<td>25.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3710</td>
<td>4/24/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.62</td>
<td>32.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3756</td>
<td>4/17/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.95</td>
<td>34.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3833</td>
<td>5/11/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.73</td>
<td>39.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3866</td>
<td>5/14/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.13</td>
<td>56.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3873</td>
<td>5/1/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.80</td>
<td>37.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3928</td>
<td>5/21/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.80</td>
<td>54.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3964</td>
<td>5/28/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.23</td>
<td>48.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4084</td>
<td>6/12/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.88</td>
<td>47.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4108</td>
<td>6/19/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.24</td>
<td>33.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4180</td>
<td>7/1/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.09</td>
<td>32.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4187</td>
<td>7/1/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.51</td>
<td>38.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4317</td>
<td>7/10/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.74</td>
<td>40.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4348</td>
<td>7/20/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>15.98</td>
<td>26.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4371</td>
<td>7/24/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.14</td>
<td>30.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4371</td>
<td>7/24/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.74</td>
<td>25.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3030</td>
<td>12/28/58M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.92</td>
<td>34.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3031</td>
<td>1/2/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>19.24</td>
<td>41.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3066</td>
<td>1/4/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.23</td>
<td>37.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3104</td>
<td>1/12/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.60</td>
<td>42.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3142</td>
<td>1/19/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.55</td>
<td>40.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3184</td>
<td>1/24/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.80</td>
<td>44.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3233</td>
<td>1/31/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.83</td>
<td>37.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3326</td>
<td>2/14/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.23</td>
<td>33.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3348</td>
<td>2/21/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.80</td>
<td>37.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3388</td>
<td>3/1/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.31</td>
<td>38.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3456</td>
<td>3/9/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.20</td>
<td>43.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3502</td>
<td>3/16/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.98</td>
<td>38.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3546</td>
<td>3/21/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.59</td>
<td>50.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3626</td>
<td>3/28/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.71</td>
<td>46.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3695</td>
<td>4/5/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.60</td>
<td>45.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3677</td>
<td>4/12/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.09</td>
<td>46.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3760</td>
<td>4/20/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.54</td>
<td>65.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3828</td>
<td>4/26/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.69</td>
<td>77.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3784</td>
<td>5/7/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.28</td>
<td>91.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3876</td>
<td>5/15/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>19.13</td>
<td>60.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3930</td>
<td>5/17/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.04</td>
<td>80.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4011</td>
<td>5/24/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.85</td>
<td>53.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4017</td>
<td>6/4/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.52</td>
<td>57.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4081</td>
<td>6/14/59M</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.41</td>
<td>37.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4070</td>
<td>6/15/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.46</td>
<td>47.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4151</td>
<td>6/26/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.60</td>
<td>42.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4190</td>
<td>7/6/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>17.76</td>
<td>32.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4216</td>
<td>7/13/59R</td>
<td>LO</td>
<td>KY</td>
<td>22.73</td>
<td>18.59</td>
<td>31.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

Milk - Class 20=Fresh, 21=Whole Dry, 22=Nonfat Dry, 23=Dry Buttermilk, 24=Control Sample

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM</th>
<th>GM</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4351</td>
<td>7/20/59R</td>
<td>MI</td>
<td>ILL</td>
<td>22.73</td>
<td>18.03</td>
<td>26.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4381</td>
<td>7/27/59R</td>
<td>MI</td>
<td>ILL</td>
<td>22.73</td>
<td>17.76</td>
<td>24.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4264</td>
<td>8/5/59R</td>
<td>MI</td>
<td>ILL</td>
<td>22.73</td>
<td>17.86</td>
<td>29.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3051</td>
<td>1/8/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.52</td>
<td>36.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3061</td>
<td>1/12/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.16</td>
<td>36.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3123</td>
<td>1/21/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.85</td>
<td>38.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3135</td>
<td>1/26/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.74</td>
<td>39.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3226</td>
<td>2/9/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.53</td>
<td>36.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3268</td>
<td>2/16/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.17</td>
<td>39.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3290</td>
<td>2/13/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.67</td>
<td>41.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3329</td>
<td>2/25/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.86</td>
<td>37.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3362</td>
<td>2/24/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.07</td>
<td>44.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3418</td>
<td>3/4/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.30</td>
<td>43.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3453</td>
<td>3/9/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.71</td>
<td>43.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3519</td>
<td>3/23/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.02</td>
<td>37.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3587</td>
<td>3/29/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.90</td>
<td>48.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3658</td>
<td>4/4/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.08</td>
<td>49.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3665</td>
<td>4/12/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.93</td>
<td>50.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3719</td>
<td>4/19/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.21</td>
<td>51.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3781</td>
<td>4/26/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.89</td>
<td>65.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3846</td>
<td>5/11/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.29</td>
<td>70.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3947</td>
<td>5/11/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.74</td>
<td>65.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3909</td>
<td>5/20/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.05</td>
<td>92.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3984</td>
<td>5/25/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.78</td>
<td>81.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4060</td>
<td>6/3/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.75</td>
<td>74.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4137</td>
<td>6/15/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.10</td>
<td>51.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4234</td>
<td>6/29/59M</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.87</td>
<td>42.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4168</td>
<td>7/1/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.24</td>
<td>47.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4333</td>
<td>7/20/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.38</td>
<td>43.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4258</td>
<td>7/31/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.94</td>
<td>35.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4277</td>
<td>8/4/59R</td>
<td>DM</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.61</td>
<td>27.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3019</td>
<td>1/5/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.95</td>
<td>29.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3085</td>
<td>1/13/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.32</td>
<td>28.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3117</td>
<td>1/19/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.01</td>
<td>27.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3151</td>
<td>1/27/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.95</td>
<td>29.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3208</td>
<td>2/2/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.48</td>
<td>27.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3309</td>
<td>2/16/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.92</td>
<td>29.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3319</td>
<td>2/17/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.61</td>
<td>35.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3342</td>
<td>2/24/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>18.23</td>
<td>31.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3366</td>
<td>2/25/59M</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.57</td>
<td>34.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3438</td>
<td>3/9/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.95</td>
<td>31.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3454</td>
<td>3/9/59M</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.47</td>
<td>36.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3510</td>
<td>3/20/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>16.61</td>
<td>30.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3568</td>
<td>3/30/59R</td>
<td>SB</td>
<td>IOWA</td>
<td>22.73</td>
<td>17.33</td>
<td>33.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 167 -
Table 2 - Cont’d.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3753</td>
<td>4/20/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.53</td>
<td>54.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3712</td>
<td>4/27/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.52</td>
<td>59.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3838</td>
<td>5/ 4/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.47</td>
<td>52.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3847</td>
<td>5/11/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.41</td>
<td>69.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3911</td>
<td>5/25/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.83</td>
<td>68.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3954</td>
<td>5/18/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.37</td>
<td>65.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4027</td>
<td>6/ 8/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>18.05</td>
<td>111.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4097</td>
<td>6/19/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.41</td>
<td>118.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4113</td>
<td>6/22/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.20</td>
<td>70.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4158</td>
<td>7/ 1/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.22</td>
<td>55.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4198</td>
<td>7/ 6/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.46</td>
<td>52.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4222</td>
<td>7/13/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.41</td>
<td>56.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4358</td>
<td>7/21/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.10</td>
<td>51.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4395</td>
<td>7/21/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.30</td>
<td>31.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4382</td>
<td>7/27/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.48</td>
<td>37.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4270</td>
<td>8/ 3/59R</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.35</td>
<td>34.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3005</td>
<td>1/ 5/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.79</td>
<td>38.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3083</td>
<td>1/13/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.17</td>
<td>41.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3097</td>
<td>1/12/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.86</td>
<td>46.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3181</td>
<td>1/27/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.11</td>
<td>49.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3195</td>
<td>1/26/59R</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.85</td>
<td>55.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3235</td>
<td>2/ 2/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.23</td>
<td>54.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3276</td>
<td>2/16/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.92</td>
<td>54.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3328</td>
<td>2/15/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.49</td>
<td>59.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3372</td>
<td>2/23/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.28</td>
<td>57.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3411</td>
<td>3/ 2/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.30</td>
<td>58.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3475</td>
<td>3/ 9/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.27</td>
<td>60.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3498</td>
<td>3/16/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.24</td>
<td>62.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3567</td>
<td>3/23/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>19.12</td>
<td>60.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3616</td>
<td>3/30/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.26</td>
<td>71.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3657</td>
<td>4/ 6/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.73</td>
<td>66.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3723</td>
<td>4/20/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.50</td>
<td>82.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3736</td>
<td>4/13/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.28</td>
<td>73.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3782</td>
<td>4/27/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.38</td>
<td>81.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3824</td>
<td>5/ 5/59R</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>19.07</td>
<td>81.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3905</td>
<td>5/25/59R</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.06</td>
<td>70.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3944</td>
<td>5/11/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.44</td>
<td>56.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4007</td>
<td>5/25/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.37</td>
<td>68.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4023</td>
<td>5/ 1/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>19.31</td>
<td>61.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4105</td>
<td>6/ 8/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.98</td>
<td>43.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4125</td>
<td>6/15/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.76</td>
<td>41.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4185</td>
<td>6/22/59M</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.77</td>
<td>55.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4221</td>
<td>7/13/59R</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>18.42</td>
<td>27.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4304</td>
<td>7/ 6/59R</td>
<td>ILL</td>
<td>ILL</td>
<td>22.73</td>
<td>17.77</td>
<td>31.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont’d.

MILK - CLASS 20= FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3027</td>
<td>1/5/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.66</td>
<td>55.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3109</td>
<td>1/19/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.22</td>
<td>62.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3054</td>
<td>1/21/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.05</td>
<td>50.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3144</td>
<td>1/23/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.63</td>
<td>59.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3196</td>
<td>2/2/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.16</td>
<td>59.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3239</td>
<td>2/9/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.26</td>
<td>52.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3307</td>
<td>2/17/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.25</td>
<td>59.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3325</td>
<td>2/20/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.68</td>
<td>70.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3387</td>
<td>3/2/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>17.58</td>
<td>65.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3588</td>
<td>3/16/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.04</td>
<td>84.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3513</td>
<td>3/20/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>17.96</td>
<td>79.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3581</td>
<td>3/30/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.40</td>
<td>68.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3624</td>
<td>4/3/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.26</td>
<td>54.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3683</td>
<td>4/14/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.72</td>
<td>82.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3709</td>
<td>4/20/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.51</td>
<td>81.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3764</td>
<td>4/27/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.35</td>
<td>62.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3837</td>
<td>5/4/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.15</td>
<td>62.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3875</td>
<td>5/13/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.10</td>
<td>78.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3868</td>
<td>5/15/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.11</td>
<td>76.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3920</td>
<td>5/18/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>17.65</td>
<td>74.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3998</td>
<td>5/23/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.12</td>
<td>85.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4045</td>
<td>6/8/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.49</td>
<td>89.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4119</td>
<td>6/14/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.17</td>
<td>50.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4073</td>
<td>6/15/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.01</td>
<td>78.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4169</td>
<td>7/1/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>17.15</td>
<td>47.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4228</td>
<td>7/14/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.08</td>
<td>54.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4206</td>
<td>7/18/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>17.73</td>
<td>67.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4352</td>
<td>7/20/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>17.84</td>
<td>41.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4268</td>
<td>8/3/59</td>
<td>IF</td>
<td>IDA</td>
<td>22.73</td>
<td>18.27</td>
<td>42.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3028</td>
<td>1/5/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.96</td>
<td>58.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3067</td>
<td>1/12/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.95</td>
<td>41.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3124</td>
<td>1/21/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.99</td>
<td>45.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3140</td>
<td>1/26/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.13</td>
<td>51.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3205</td>
<td>2/3/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.73</td>
<td>44.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3241</td>
<td>2/11/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.88</td>
<td>38.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3301</td>
<td>2/18/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.04</td>
<td>42.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3330</td>
<td>2/24/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.09</td>
<td>53.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3360</td>
<td>3/2/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.69</td>
<td>43.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3414</td>
<td>3/9/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.06</td>
<td>64.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3461</td>
<td>3/16/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.99</td>
<td>66.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3538</td>
<td>3/25/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.05</td>
<td>55.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3557</td>
<td>3/30/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.94</td>
<td>58.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3619</td>
<td>4/6/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>16.79</td>
<td>48.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3669</td>
<td>4/13/59</td>
<td>PA</td>
<td>IDA</td>
<td>22.73</td>
<td>17.07</td>
<td>52.59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

Milk - Class 20 = Fresh, 21 = Whole Dry, 22 = Nonfat Dry, 23 = Dry Buttermilk, 24 = Control Sample

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4188</td>
<td>7/1/59</td>
<td>RI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.97</td>
<td>27.98</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4217</td>
<td>7/7/59</td>
<td>RI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.48</td>
<td>26.44</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4189</td>
<td>7/8/59</td>
<td>RI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.56</td>
<td>23.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4340</td>
<td>7/20/59</td>
<td>RI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.43</td>
<td>8.04</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4375</td>
<td>7/27/59</td>
<td>RI</td>
<td>CAL</td>
<td>22.73</td>
<td>19.01</td>
<td>9.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4262</td>
<td>8/3/59</td>
<td>RI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.85</td>
<td>13.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3022</td>
<td>1/5/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.24</td>
<td>22.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3062</td>
<td>1/5/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.18</td>
<td>29.32</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3157</td>
<td>1/26/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.93</td>
<td>40.38</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3200</td>
<td>2/2/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.87</td>
<td>33.11</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3250</td>
<td>2/9/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.37</td>
<td>34.64</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3311</td>
<td>2/17/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.62</td>
<td>37.43</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3365</td>
<td>2/27/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.02</td>
<td>42.10</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3378</td>
<td>3/2/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.18</td>
<td>60.39</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3422</td>
<td>3/9/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.10</td>
<td>49.66</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3481</td>
<td>3/16/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.50</td>
<td>56.21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3517</td>
<td>3/12/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.46</td>
<td>44.94</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3548</td>
<td>3/30/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.95</td>
<td>46.18</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3623</td>
<td>4/3/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>16.99</td>
<td>48.99</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3641</td>
<td>4/10/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.64</td>
<td>45.51</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3765</td>
<td>4/21/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.18</td>
<td>31.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3739</td>
<td>4/27/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.32</td>
<td>39.26</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3802</td>
<td>5/4/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.66</td>
<td>63.99</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3813</td>
<td>5/8/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.76</td>
<td>64.48</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3929</td>
<td>5/22/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.27</td>
<td>43.58</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4002</td>
<td>6/1/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.42</td>
<td>45.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3951</td>
<td>6/7/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.83</td>
<td>45.25</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4022</td>
<td>6/8/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.68</td>
<td>38.48</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4104</td>
<td>6/18/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.81</td>
<td>27.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4121</td>
<td>6/22/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.70</td>
<td>16.65</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4235</td>
<td>6/30/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.59</td>
<td>21.45</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4171</td>
<td>7/1/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.58</td>
<td>16.64</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4213</td>
<td>7/13/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.54</td>
<td>10.27</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4346</td>
<td>7/20/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.33</td>
<td>6.87</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4372</td>
<td>7/27/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>18.00</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4278</td>
<td>8/4/59</td>
<td>WI</td>
<td>CAL</td>
<td>22.73</td>
<td>17.84</td>
<td>13.47</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3436</td>
<td>3/6/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.22</td>
<td>87.42</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3877</td>
<td>5/14/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.45</td>
<td>124.37</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4297</td>
<td>6/16/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.52</td>
<td>79.30</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4202</td>
<td>7/7/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.49</td>
<td>78.32</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4203</td>
<td>1/7/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.76</td>
<td>53.28</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4212</td>
<td>7/10/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>17.65</td>
<td>73.26</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4323</td>
<td>7/10/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.04</td>
<td>84.74</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4248</td>
<td>7/30/59</td>
<td>CO</td>
<td>GA</td>
<td>45.45</td>
<td>18.77</td>
<td>124.55</td>
<td></td>
</tr>
</tbody>
</table>
MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>KG/KG</th>
<th>UOC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3539</td>
<td>3/15</td>
<td>59M</td>
<td>22.73</td>
<td>17.69</td>
<td></td>
<td>54.95</td>
</tr>
<tr>
<td>22</td>
<td>3590</td>
<td>3/28</td>
<td>59M</td>
<td>22.73</td>
<td>17.48</td>
<td></td>
<td>48.60</td>
</tr>
<tr>
<td>22</td>
<td>3594</td>
<td>3/28</td>
<td>59M</td>
<td>22.73</td>
<td>17.72</td>
<td></td>
<td>28.14</td>
</tr>
<tr>
<td>22</td>
<td>3674</td>
<td>3/28</td>
<td>59M</td>
<td>22.73</td>
<td>17.56</td>
<td></td>
<td>30.35</td>
</tr>
<tr>
<td>22</td>
<td>3737</td>
<td>4/14</td>
<td>59M</td>
<td>22.73</td>
<td>17.89</td>
<td></td>
<td>45.94</td>
</tr>
<tr>
<td>22</td>
<td>3801</td>
<td>4/24</td>
<td>59M</td>
<td>22.73</td>
<td>18.66</td>
<td></td>
<td>33.55</td>
</tr>
<tr>
<td>22</td>
<td>3809</td>
<td>5/2</td>
<td>59M</td>
<td>22.73</td>
<td>18.21</td>
<td></td>
<td>39.88</td>
</tr>
<tr>
<td>22</td>
<td>3886</td>
<td>5/8</td>
<td>59M</td>
<td>22.73</td>
<td>18.39</td>
<td></td>
<td>39.38</td>
</tr>
<tr>
<td>22</td>
<td>3913</td>
<td>5/16</td>
<td>59M</td>
<td>22.73</td>
<td>17.99</td>
<td></td>
<td>37.66</td>
</tr>
<tr>
<td>22</td>
<td>3983</td>
<td>5/31</td>
<td>59M</td>
<td>22.73</td>
<td>18.27</td>
<td></td>
<td>32.19</td>
</tr>
<tr>
<td>22</td>
<td>4006</td>
<td>5/17</td>
<td>59M</td>
<td>22.73</td>
<td>18.29</td>
<td></td>
<td>30.48</td>
</tr>
<tr>
<td>22</td>
<td>4111</td>
<td>5/31</td>
<td>59M</td>
<td>22.73</td>
<td>18.14</td>
<td></td>
<td>24.87</td>
</tr>
<tr>
<td>22</td>
<td>4061</td>
<td>6/1</td>
<td>59M</td>
<td>22.73</td>
<td>18.32</td>
<td></td>
<td>38.60</td>
</tr>
<tr>
<td>22</td>
<td>4156</td>
<td>6/26</td>
<td>59R</td>
<td>22.73</td>
<td>18.54</td>
<td></td>
<td>27.07</td>
</tr>
<tr>
<td>22</td>
<td>4197</td>
<td>6/28</td>
<td>59M</td>
<td>22.73</td>
<td>17.82</td>
<td></td>
<td>17.19</td>
</tr>
<tr>
<td>22</td>
<td>4211</td>
<td>7/10</td>
<td>59R</td>
<td>22.73</td>
<td>18.19</td>
<td></td>
<td>19.47</td>
</tr>
<tr>
<td>22</td>
<td>4325</td>
<td>7/12</td>
<td>59M</td>
<td>22.73</td>
<td>18.54</td>
<td></td>
<td>11.25</td>
</tr>
<tr>
<td>22</td>
<td>4365</td>
<td>7/19</td>
<td>59M</td>
<td>22.73</td>
<td>17.96</td>
<td></td>
<td>13.12</td>
</tr>
<tr>
<td>22</td>
<td>4246</td>
<td>7/30</td>
<td>59R</td>
<td>22.73</td>
<td>18.61</td>
<td></td>
<td>12.11</td>
</tr>
<tr>
<td>22</td>
<td>4286</td>
<td>8/5</td>
<td>59R</td>
<td>22.73</td>
<td>17.80</td>
<td></td>
<td>12.62</td>
</tr>
<tr>
<td>22</td>
<td>3046</td>
<td>1/7</td>
<td>59R</td>
<td>45.45</td>
<td>18.49</td>
<td></td>
<td>19.75</td>
</tr>
<tr>
<td>22</td>
<td>3070</td>
<td>1/14</td>
<td>59R</td>
<td>22.73</td>
<td>18.85</td>
<td></td>
<td>21.37</td>
</tr>
<tr>
<td>22</td>
<td>3118</td>
<td>1/21</td>
<td>59R</td>
<td>22.73</td>
<td>18.75</td>
<td></td>
<td>21.95</td>
</tr>
<tr>
<td>22</td>
<td>3146</td>
<td>1/28</td>
<td>59R</td>
<td>22.73</td>
<td>18.62</td>
<td></td>
<td>17.88</td>
</tr>
<tr>
<td>22</td>
<td>3204</td>
<td>2/4</td>
<td>59R</td>
<td>22.73</td>
<td>18.66</td>
<td></td>
<td>22.78</td>
</tr>
<tr>
<td>22</td>
<td>3236</td>
<td>2/11</td>
<td>59R</td>
<td>22.73</td>
<td>18.39</td>
<td></td>
<td>20.33</td>
</tr>
<tr>
<td>22</td>
<td>3266</td>
<td>2/18</td>
<td>59R</td>
<td>22.73</td>
<td>18.67</td>
<td></td>
<td>17.47</td>
</tr>
<tr>
<td>22</td>
<td>3349</td>
<td>2/26</td>
<td>59R</td>
<td>22.73</td>
<td>18.80</td>
<td></td>
<td>11.72</td>
</tr>
<tr>
<td>22</td>
<td>3366</td>
<td>3/4</td>
<td>59R</td>
<td>22.73</td>
<td>18.45</td>
<td></td>
<td>18.61</td>
</tr>
<tr>
<td>22</td>
<td>3442</td>
<td>3/11</td>
<td>59R</td>
<td>22.73</td>
<td>18.81</td>
<td></td>
<td>15.41</td>
</tr>
<tr>
<td>22</td>
<td>3483</td>
<td>3/18</td>
<td>59R</td>
<td>22.73</td>
<td>18.26</td>
<td></td>
<td>16.06</td>
</tr>
<tr>
<td>22</td>
<td>3543</td>
<td>3/25</td>
<td>59R</td>
<td>22.73</td>
<td>18.51</td>
<td></td>
<td>18.18</td>
</tr>
<tr>
<td>22</td>
<td>3636</td>
<td>4/1</td>
<td>59R</td>
<td>22.73</td>
<td>18.62</td>
<td></td>
<td>29.60</td>
</tr>
<tr>
<td>22</td>
<td>3565</td>
<td>4/9</td>
<td>59R</td>
<td>22.73</td>
<td>18.78</td>
<td></td>
<td>32.57</td>
</tr>
<tr>
<td>22</td>
<td>3681</td>
<td>4/15</td>
<td>59R</td>
<td>22.73</td>
<td>18.72</td>
<td></td>
<td>27.50</td>
</tr>
<tr>
<td>22</td>
<td>3766</td>
<td>4/22</td>
<td>59R</td>
<td>22.73</td>
<td>18.63</td>
<td></td>
<td>27.62</td>
</tr>
<tr>
<td>22</td>
<td>3799</td>
<td>5/6</td>
<td>59R</td>
<td>22.73</td>
<td>18.94</td>
<td></td>
<td>34.70</td>
</tr>
<tr>
<td>22</td>
<td>3845</td>
<td>5/13</td>
<td>59R</td>
<td>22.73</td>
<td>19.04</td>
<td></td>
<td>35.54</td>
</tr>
<tr>
<td>22</td>
<td>3938</td>
<td>5/20</td>
<td>59R</td>
<td>22.73</td>
<td>18.71</td>
<td></td>
<td>36.85</td>
</tr>
<tr>
<td>22</td>
<td>3966</td>
<td>5/27</td>
<td>59R</td>
<td>22.73</td>
<td>19.54</td>
<td></td>
<td>32.26</td>
</tr>
<tr>
<td>22</td>
<td>4016</td>
<td>6/3</td>
<td>59R</td>
<td>22.73</td>
<td>19.09</td>
<td></td>
<td>36.02</td>
</tr>
<tr>
<td>22</td>
<td>4044</td>
<td>6/10</td>
<td>59R</td>
<td>22.73</td>
<td>18.91</td>
<td></td>
<td>34.98</td>
</tr>
<tr>
<td>22</td>
<td>4098</td>
<td>6/18</td>
<td>59R</td>
<td>22.73</td>
<td>18.64</td>
<td></td>
<td>45.24</td>
</tr>
<tr>
<td>22</td>
<td>4142</td>
<td>6/24</td>
<td>59R</td>
<td>22.73</td>
<td>18.63</td>
<td></td>
<td>25.55</td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3038</td>
<td>1/7/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.70</td>
<td>17.60</td>
</tr>
<tr>
<td>22</td>
<td>3094</td>
<td>1/14/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.93</td>
<td>19.42</td>
</tr>
<tr>
<td>22</td>
<td>3143</td>
<td>1/22/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.27</td>
<td>18.97</td>
</tr>
<tr>
<td>22</td>
<td>3177</td>
<td>1/28/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.77</td>
<td>24.33</td>
</tr>
<tr>
<td>22</td>
<td>3223</td>
<td>2/5/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.82</td>
<td>14.92</td>
</tr>
<tr>
<td>22</td>
<td>3286</td>
<td>2/13/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.46</td>
<td>25.98</td>
</tr>
<tr>
<td>22</td>
<td>3315</td>
<td>2/18/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.25</td>
<td>21.33</td>
</tr>
<tr>
<td>22</td>
<td>3369</td>
<td>2/27/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.94</td>
<td>26.95</td>
</tr>
<tr>
<td>22</td>
<td>3446</td>
<td>3/4/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.99</td>
<td>25.86</td>
</tr>
<tr>
<td>22</td>
<td>3447</td>
<td>3/11/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.48</td>
<td>31.68</td>
</tr>
<tr>
<td>22</td>
<td>3508</td>
<td>3/20/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.56</td>
<td>31.83</td>
</tr>
<tr>
<td>22</td>
<td>3541</td>
<td>3/25/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.35</td>
<td>37.39</td>
</tr>
<tr>
<td>22</td>
<td>3588</td>
<td>4/2/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.36</td>
<td>28.96</td>
</tr>
<tr>
<td>22</td>
<td>3563</td>
<td>4/9/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.00</td>
<td>34.24</td>
</tr>
<tr>
<td>22</td>
<td>3666</td>
<td>4/16/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.20</td>
<td>30.55</td>
</tr>
<tr>
<td>22</td>
<td>3738</td>
<td>4/23/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.00</td>
<td>32.10</td>
</tr>
<tr>
<td>22</td>
<td>3742</td>
<td>4/30/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.88</td>
<td>29.79</td>
</tr>
<tr>
<td>22</td>
<td>3805</td>
<td>5/6/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.86</td>
<td>40.48</td>
</tr>
<tr>
<td>22</td>
<td>3829</td>
<td>5/13/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.70</td>
<td>41.69</td>
</tr>
<tr>
<td>22</td>
<td>3924</td>
<td>5/21/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.08</td>
<td>42.67</td>
</tr>
<tr>
<td>22</td>
<td>3962</td>
<td>5/28/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.43</td>
<td>31.33</td>
</tr>
<tr>
<td>22</td>
<td>4013</td>
<td>6/4/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.48</td>
<td>28.76</td>
</tr>
<tr>
<td>22</td>
<td>4057</td>
<td>6/11/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.71</td>
<td>24.55</td>
</tr>
<tr>
<td>22</td>
<td>4082</td>
<td>6/17/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.40</td>
<td>18.93</td>
</tr>
<tr>
<td>22</td>
<td>4152</td>
<td>6/20/59M</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>16.45</td>
<td>43.08</td>
</tr>
<tr>
<td>22</td>
<td>4146</td>
<td>6/25/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.13</td>
<td>24.44</td>
</tr>
<tr>
<td>22</td>
<td>4184</td>
<td>7/1/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.52</td>
<td>25.36</td>
</tr>
<tr>
<td>22</td>
<td>4201</td>
<td>7/6/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.83</td>
<td>16.22</td>
</tr>
<tr>
<td>22</td>
<td>4326</td>
<td>7/14/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>19.01</td>
<td>12.36</td>
</tr>
<tr>
<td>22</td>
<td>4360</td>
<td>7/22/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>17.90</td>
<td>14.25</td>
</tr>
<tr>
<td>22</td>
<td>4250</td>
<td>7/30/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.27</td>
<td>11.77</td>
</tr>
<tr>
<td>22</td>
<td>4288</td>
<td>8/6/59FR</td>
<td>FR</td>
<td>CAL</td>
<td>22.73</td>
<td>18.39</td>
<td>15.46</td>
</tr>
<tr>
<td>22</td>
<td>3024</td>
<td>1/2/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>17.92</td>
<td>19.02</td>
</tr>
<tr>
<td>22</td>
<td>3045</td>
<td>1/9/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>18.01</td>
<td>18.26</td>
</tr>
<tr>
<td>22</td>
<td>3092</td>
<td>1/15/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>17.91</td>
<td>21.97</td>
</tr>
<tr>
<td>22</td>
<td>3133</td>
<td>1/23/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>18.21</td>
<td>33.47</td>
</tr>
<tr>
<td>22</td>
<td>3183</td>
<td>1/30/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>16.29</td>
<td>38.84</td>
</tr>
<tr>
<td>22</td>
<td>3227</td>
<td>2/6/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>17.95</td>
<td>23.13</td>
</tr>
<tr>
<td>22</td>
<td>3291</td>
<td>2/12/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>18.13</td>
<td>24.11</td>
</tr>
<tr>
<td>22</td>
<td>3316</td>
<td>2/15/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>18.49</td>
<td>45.23</td>
</tr>
<tr>
<td>22</td>
<td>3371</td>
<td>2/15/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>17.72</td>
<td>45.65</td>
</tr>
<tr>
<td>22</td>
<td>3410</td>
<td>3/3/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>17.91</td>
<td>54.60</td>
</tr>
<tr>
<td>22</td>
<td>3444</td>
<td>3/7/59NE</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>18.13</td>
<td>72.53</td>
</tr>
<tr>
<td>22</td>
<td>3512</td>
<td>3/14/59M</td>
<td>NE</td>
<td>CAL</td>
<td>22.73</td>
<td>17.42</td>
<td>65.83</td>
</tr>
</tbody>
</table>

-172-
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>640</td>
<td>1/6/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.27</td>
<td>16.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>640</td>
<td>1/10/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.42</td>
<td>17.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>640</td>
<td>1/21/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.41</td>
<td>16.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3108</td>
<td>1/28/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.45</td>
<td>13.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3162</td>
<td>2/6/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.83</td>
<td>11.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3174</td>
<td>2/13/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.29</td>
<td>14.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3259</td>
<td>2/26/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.54</td>
<td>19.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3334</td>
<td>3/7/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.12</td>
<td>17.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3363</td>
<td>3/14/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.46</td>
<td>16.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3469</td>
<td>4/7/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.10</td>
<td>16.84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3592</td>
<td>4/20/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.25</td>
<td>17.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3690</td>
<td>5/14/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.30</td>
<td>15.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3957</td>
<td>6/8/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.06</td>
<td>16.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3977</td>
<td>6/16/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.25</td>
<td>23.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4066</td>
<td>7/21/59</td>
<td>A</td>
<td>CONT</td>
<td>21.36</td>
<td>19.15</td>
<td>15.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3173</td>
<td>2/13/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>17.28</td>
<td>128.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3260</td>
<td>2/26/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>17.51</td>
<td>122.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3335</td>
<td>3/7/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>17.11</td>
<td>134.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3364</td>
<td>3/14/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>17.49</td>
<td>125.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3407</td>
<td>3/27/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.85</td>
<td>137.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3470</td>
<td>4/7/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.67</td>
<td>138.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3591</td>
<td>4/20/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.76</td>
<td>131.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3691</td>
<td>5/14/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.79</td>
<td>136.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3958</td>
<td>6/8/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.46</td>
<td>136.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3976</td>
<td>6/16/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.64</td>
<td>126.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4067</td>
<td>7/21/59</td>
<td>B</td>
<td>CONT</td>
<td>22.73</td>
<td>16.54</td>
<td>125.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3059</td>
<td>12/31/58</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>17.18</td>
<td>49.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3640</td>
<td>4/6/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>17.36</td>
<td>134.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3725</td>
<td>4/13/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.87</td>
<td>97.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3743</td>
<td>4/20/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.43</td>
<td>68.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3803</td>
<td>4/27/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.78</td>
<td>77.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3811</td>
<td>5/4/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.89</td>
<td>90.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3945</td>
<td>5/11/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.35</td>
<td>100.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3950</td>
<td>5/18/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.68</td>
<td>97.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4012</td>
<td>5/25/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.74</td>
<td>82.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4031</td>
<td>6/1/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.10</td>
<td>61.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4065</td>
<td>6/9/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.14</td>
<td>61.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4117</td>
<td>6/16/59</td>
<td>M</td>
<td>FE</td>
<td>22.73</td>
<td>16.54</td>
<td>46.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4233</td>
<td>6/29/59</td>
<td>R</td>
<td>FE</td>
<td>22.73</td>
<td>16.93</td>
<td>39.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4284</td>
<td>7/22/59</td>
<td>R</td>
<td>FE</td>
<td>22.73</td>
<td>16.11</td>
<td>25.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4341</td>
<td>7/9/59</td>
<td>R</td>
<td>FE</td>
<td>22.73</td>
<td>16.13</td>
<td>32.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4356</td>
<td>7/15/59</td>
<td>R</td>
<td>FE</td>
<td>22.73</td>
<td>16.23</td>
<td>25.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3008</td>
<td>1/2/59</td>
<td>R</td>
<td>FR</td>
<td>22.73</td>
<td>18.00</td>
<td>16.49</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 173 -
Table 2 - Cont’d.
MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3437</td>
<td>3/9/59R</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>19.04</td>
<td>42.26</td>
</tr>
<tr>
<td>22</td>
<td>3485</td>
<td>3/10/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.58</td>
<td>39.24</td>
</tr>
<tr>
<td>22</td>
<td>3537</td>
<td>3/18/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.62</td>
<td>39.47</td>
</tr>
<tr>
<td>22</td>
<td>3551</td>
<td>3/24/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>19.02</td>
<td>36.48</td>
</tr>
<tr>
<td>22</td>
<td>3608</td>
<td>3/31/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.87</td>
<td>33.13</td>
</tr>
<tr>
<td>22</td>
<td>3685</td>
<td>4/7/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.61</td>
<td>39.19</td>
</tr>
<tr>
<td>22</td>
<td>3692</td>
<td>4/21/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>15.43</td>
<td>34.81</td>
</tr>
<tr>
<td>22</td>
<td>3693</td>
<td>4/15/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>16.43</td>
<td>34.68</td>
</tr>
<tr>
<td>22</td>
<td>3812</td>
<td>4/29/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.47</td>
<td>36.10</td>
</tr>
<tr>
<td>22</td>
<td>3816</td>
<td>5/4/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.69</td>
<td>34.95</td>
</tr>
<tr>
<td>22</td>
<td>3885</td>
<td>5/11/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.38</td>
<td>36.84</td>
</tr>
<tr>
<td>22</td>
<td>3901</td>
<td>5/18/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.29</td>
<td>42.54</td>
</tr>
<tr>
<td>22</td>
<td>4001</td>
<td>5/26/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.28</td>
<td>43.39</td>
</tr>
<tr>
<td>22</td>
<td>4040</td>
<td>6/2/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.10</td>
<td>44.08</td>
</tr>
<tr>
<td>22</td>
<td>4090</td>
<td>6/9/59M</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.35</td>
<td>49.23</td>
</tr>
<tr>
<td>22</td>
<td>4124</td>
<td>6/22/59R</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.05</td>
<td>39.43</td>
</tr>
<tr>
<td>22</td>
<td>4306</td>
<td>7/2/59R</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.03</td>
<td>44.05</td>
</tr>
<tr>
<td>22</td>
<td>4337</td>
<td>7/20/59R</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>17.58</td>
<td>40.89</td>
</tr>
<tr>
<td>22</td>
<td>4362</td>
<td>7/23/59R</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.02</td>
<td>34.01</td>
</tr>
<tr>
<td>22</td>
<td>4247</td>
<td>7/29/59R</td>
<td>DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.51</td>
<td>37.31</td>
</tr>
<tr>
<td>CL</td>
<td>SERIAL</td>
<td>DATE</td>
<td>TOWN</td>
<td>STATE</td>
<td>WGT</td>
<td>GM</td>
<td>K/ KG</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>22</td>
<td>4224</td>
<td>7/ 6/59M BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.56</td>
<td>115.93</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4353</td>
<td>7/20/59R BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.00</td>
<td>138.02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4380</td>
<td>7/27/59R BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.36</td>
<td>100.38</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4282</td>
<td>8/ 3/59R BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.11</td>
<td>106.55</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4394</td>
<td>8/10/59R BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.15</td>
<td>85.90</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3035</td>
<td>1/ 5/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.47</td>
<td>25.18</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3053</td>
<td>1/ 3/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.27</td>
<td>31.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3148</td>
<td>1/17/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.07</td>
<td>26.29</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3110</td>
<td>1/19/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>16.98</td>
<td>32.76</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3197</td>
<td>1/24/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.81</td>
<td>23.92</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3244</td>
<td>1/31/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.09</td>
<td>25.62</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3333</td>
<td>2/ 4/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>16.94</td>
<td>25.71</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3293</td>
<td>2/ 7/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.56</td>
<td>27.94</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3384</td>
<td>2/21/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>16.73</td>
<td>29.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3423</td>
<td>2/28/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.35</td>
<td>31.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3476</td>
<td>3/ 7/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.42</td>
<td>29.22</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3518</td>
<td>3/14/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.20</td>
<td>25.02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3576</td>
<td>3/21/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.00</td>
<td>31.85</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3609</td>
<td>3/28/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.15</td>
<td>28.63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3686</td>
<td>4/13/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>16.69</td>
<td>41.63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3726</td>
<td>4/19/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.58</td>
<td>42.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3732</td>
<td>4/12/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.28</td>
<td>39.24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3852</td>
<td>5/ 3/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>16.80</td>
<td>37.58</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3910</td>
<td>5/17/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>16.71</td>
<td>32.14</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3956</td>
<td>5/18/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.37</td>
<td>27.59</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3993</td>
<td>5/24/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.32</td>
<td>32.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4024</td>
<td>5/31/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.35</td>
<td>26.63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4075</td>
<td>6/ 7/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.07</td>
<td>23.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4120</td>
<td>6/14/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.06</td>
<td>22.79</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4243</td>
<td>6/28/59M SS</td>
<td>WASH</td>
<td>22.73</td>
<td>18.36</td>
<td>27.23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4170</td>
<td>7/ 1/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.30</td>
<td>33.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4215</td>
<td>7/13/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.36</td>
<td>21.67</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4338</td>
<td>7/20/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>18.15</td>
<td>18.44</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4383</td>
<td>7/27/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.47</td>
<td>18.76</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4173</td>
<td>8/ 3/59R SS</td>
<td>WASH</td>
<td>22.73</td>
<td>17.57</td>
<td>16.72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3036</td>
<td>1/ 5/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.69</td>
<td>33.26</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3058</td>
<td>1/12/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.12</td>
<td>36.14</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3112</td>
<td>1/19/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.11</td>
<td>34.36</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3159</td>
<td>1/26/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>19.68</td>
<td>32.57</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3215</td>
<td>2/ 3/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>19.31</td>
<td>32.74</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3265</td>
<td>2/12/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.90</td>
<td>32.19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3338</td>
<td>2/24/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>19.21</td>
<td>35.23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3339</td>
<td>2/24/59R DE</td>
<td>WIS</td>
<td>45.45</td>
<td>18.67</td>
<td>36.33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3380</td>
<td>2/24/59M DE</td>
<td>WIS</td>
<td>45.45</td>
<td>19.08</td>
<td>37.70</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3822</td>
<td>3/20/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.86</td>
<td></td>
<td>75.09</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3615</td>
<td>3/31/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.24</td>
<td></td>
<td>89.84</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3775</td>
<td>4/20/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.26</td>
<td></td>
<td>78.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3808</td>
<td>5/1/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>19.43</td>
<td></td>
<td>81.47</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3934</td>
<td>5/18/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>17.79</td>
<td></td>
<td>93.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3915</td>
<td>5/18/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>17.79</td>
<td></td>
<td>89.68</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3969</td>
<td>5/26/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>19.14</td>
<td></td>
<td>96.96</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4025</td>
<td>6/1/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.97</td>
<td></td>
<td>151.15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4074</td>
<td>6/8/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.41</td>
<td></td>
<td>114.72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4367</td>
<td>6/15/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>19.11</td>
<td></td>
<td>106.07</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4240</td>
<td>7/6/59R</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.93</td>
<td></td>
<td>126.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4309</td>
<td>7/6/59R</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.51</td>
<td></td>
<td>151.18</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4232</td>
<td>7/13/59R</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.64</td>
<td></td>
<td>185.07</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4342</td>
<td>7/20/59R</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.93</td>
<td></td>
<td>130.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4386</td>
<td>7/20/59M</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.50</td>
<td></td>
<td>131.32</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4275</td>
<td>8/3/59R</td>
<td>ST</td>
<td>VT</td>
<td>22.73</td>
<td>18.74</td>
<td></td>
<td>135.99</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3025</td>
<td>12/29/58M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.76</td>
<td></td>
<td>76.24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3064</td>
<td>1/5/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.08</td>
<td></td>
<td>71.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3106</td>
<td>1/19/59R</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.24</td>
<td></td>
<td>60.01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3138</td>
<td>1/19/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.09</td>
<td></td>
<td>64.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3203</td>
<td>1/26/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.06</td>
<td></td>
<td>63.37</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3231</td>
<td>2/2/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.99</td>
<td></td>
<td>66.24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3274</td>
<td>2/9/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.66</td>
<td></td>
<td>65.00</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3358</td>
<td>2/16/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.88</td>
<td></td>
<td>64.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3361</td>
<td>2/16/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.84</td>
<td></td>
<td>60.64</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3420</td>
<td>3/2/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.74</td>
<td></td>
<td>79.43</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3473</td>
<td>3/9/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.16</td>
<td></td>
<td>76.70</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3554</td>
<td>3/17/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.31</td>
<td></td>
<td>84.23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3582</td>
<td>3/24/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.59</td>
<td></td>
<td>87.14</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3618</td>
<td>3/31/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.31</td>
<td></td>
<td>91.51</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3671</td>
<td>4/6/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.97</td>
<td></td>
<td>103.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3734</td>
<td>4/13/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.84</td>
<td></td>
<td>115.73</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3735</td>
<td>4/20/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.57</td>
<td></td>
<td>135.63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3789</td>
<td>4/27/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.33</td>
<td></td>
<td>142.16</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3844</td>
<td>5/4/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.18</td>
<td></td>
<td>178.37</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3883</td>
<td>5/11/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.07</td>
<td></td>
<td>186.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3898</td>
<td>5/18/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.51</td>
<td></td>
<td>211.74</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3948</td>
<td>5/18/59R</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.13</td>
<td></td>
<td>297.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3996</td>
<td>5/25/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.11</td>
<td></td>
<td>181.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4043</td>
<td>6/1/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.10</td>
<td></td>
<td>150.30</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4069</td>
<td>6/8/59R</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.64</td>
<td></td>
<td>135.28</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4100</td>
<td>6/15/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>18.33</td>
<td></td>
<td>134.79</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4159</td>
<td>6/22/59M</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.51</td>
<td></td>
<td>133.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4199</td>
<td>7/6/59R</td>
<td>BU</td>
<td>WASH</td>
<td>22.73</td>
<td>17.23</td>
<td></td>
<td>114.00</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3263</td>
<td>2/12/59R OG UTAH</td>
<td>22.73</td>
<td>18.95</td>
<td>34.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3282</td>
<td>2/27/59R OG UTAH</td>
<td>22.73</td>
<td>18.35</td>
<td>43.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3306</td>
<td>2/19/59R OG UTAH</td>
<td>22.73</td>
<td>18.33</td>
<td>35.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3391</td>
<td>3/5/59R OG UTAH</td>
<td>22.73</td>
<td>18.78</td>
<td>46.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3441</td>
<td>3/12/59R OG UTAH</td>
<td>22.73</td>
<td>18.60</td>
<td>42.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3488</td>
<td>3/19/59R OG UTAH</td>
<td>22.73</td>
<td>17.74</td>
<td>40.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3544</td>
<td>3/26/59R OG UTAH</td>
<td>22.73</td>
<td>18.66</td>
<td>41.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3589</td>
<td>4/2/59R OG UTAH</td>
<td>22.73</td>
<td>18.61</td>
<td>41.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3648</td>
<td>4/10/59R OG UTAH</td>
<td>22.73</td>
<td>18.75</td>
<td>44.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3661</td>
<td>4/16/59R OG UTAH</td>
<td>22.73</td>
<td>18.35</td>
<td>39.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3762</td>
<td>4/23/59R OG UTAH</td>
<td>22.73</td>
<td>17.88</td>
<td>47.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3763</td>
<td>4/30/59R OG UTAH</td>
<td>22.73</td>
<td>18.04</td>
<td>46.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3817</td>
<td>5/7/59R OG UTAH</td>
<td>22.73</td>
<td>18.77</td>
<td>46.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3867</td>
<td>5/14/59R OG UTAH</td>
<td>22.73</td>
<td>18.78</td>
<td>46.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3889</td>
<td>5/22/59R OG UTAH</td>
<td>22.73</td>
<td>18.26</td>
<td>66.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4004</td>
<td>6/1/59R OG UTAH</td>
<td>22.73</td>
<td>18.15</td>
<td>90.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4014</td>
<td>6/4/59R OG UTAH</td>
<td>22.73</td>
<td>18.30</td>
<td>99.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4071</td>
<td>6/15/59R OG UTAH</td>
<td>22.73</td>
<td>18.92</td>
<td>84.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4101</td>
<td>6/18/59R OG UTAH</td>
<td>22.73</td>
<td>18.34</td>
<td>68.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4300</td>
<td>6/25/59R OG UTAH</td>
<td>22.73</td>
<td>18.29</td>
<td>57.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4193</td>
<td>7/2/59R OG UTAH</td>
<td>22.73</td>
<td>17.77</td>
<td>71.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4205</td>
<td>7/9/59R OG UTAH</td>
<td>22.73</td>
<td>18.38</td>
<td>90.77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4330</td>
<td>7/17/59R OG UTAH</td>
<td>22.73</td>
<td>18.24</td>
<td>69.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4311</td>
<td>7/23/59R OG UTAH</td>
<td>22.73</td>
<td>17.56</td>
<td>58.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4251</td>
<td>7/30/59R OG UTAH</td>
<td>22.73</td>
<td>18.42</td>
<td>59.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4291</td>
<td>8/7/59R OG UTAH</td>
<td>22.73</td>
<td>18.73</td>
<td>47.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3103</td>
<td>1/19/59R HA VH</td>
<td>22.73</td>
<td>17.98</td>
<td>62.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3336</td>
<td>2/25/59R HA VA</td>
<td>22.73</td>
<td>18.53</td>
<td>93.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3018</td>
<td>12/4/58M ST VT</td>
<td>22.73</td>
<td>18.73</td>
<td>80.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3049</td>
<td>12/28/58M ST VT</td>
<td>22.73</td>
<td>18.97</td>
<td>80.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3088</td>
<td>1/8/59M ST VT</td>
<td>22.73</td>
<td>18.82</td>
<td>71.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3134</td>
<td>1/10/59M ST VT</td>
<td>22.73</td>
<td>18.67</td>
<td>77.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3185</td>
<td>1/11/59M ST VT</td>
<td>22.73</td>
<td>18.34</td>
<td>77.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3277</td>
<td>1/17/59M ST VT</td>
<td>22.73</td>
<td>18.81</td>
<td>76.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3216</td>
<td>1/27/59M ST VT</td>
<td>22.73</td>
<td>18.95</td>
<td>78.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3228</td>
<td>1/27/59M ST VT</td>
<td>22.73</td>
<td>18.75</td>
<td>79.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3302</td>
<td>2/11/59M ST VT</td>
<td>22.73</td>
<td>18.95</td>
<td>78.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3368</td>
<td>2/24/59M ST VT</td>
<td>22.73</td>
<td>18.68</td>
<td>75.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3415</td>
<td>2/27/59M ST VT</td>
<td>22.73</td>
<td>18.78</td>
<td>80.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3497</td>
<td>3/10/59M ST VT</td>
<td>22.73</td>
<td>18.76</td>
<td>85.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3532</td>
<td>3/10/59M ST VT</td>
<td>22.73</td>
<td>18.25</td>
<td>85.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3580</td>
<td>3/20/59M ST VT</td>
<td>22.73</td>
<td>18.39</td>
<td>80.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3654</td>
<td>3/20/59M ST VT</td>
<td>22.73</td>
<td>18.26</td>
<td>80.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3751</td>
<td>3/20/59M ST VT</td>
<td>22.73</td>
<td>18.46</td>
<td>84.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>Cl</th>
<th>Serial</th>
<th>Date</th>
<th>Town</th>
<th>State</th>
<th>Wgt</th>
<th>Gm K/Kg</th>
<th>Uuc</th>
<th>Cs/Gm K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3937</td>
<td>5/21/59R LA TEX</td>
<td>22.73</td>
<td>18.45</td>
<td>80.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4038</td>
<td>6/8/59R LA TEX</td>
<td>22.73</td>
<td>18.48</td>
<td>65.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4021</td>
<td>6/3/59R LA TEX</td>
<td>22.73</td>
<td>18.64</td>
<td>106.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4138</td>
<td>6/22/59R LA TEX</td>
<td>22.73</td>
<td>18.72</td>
<td>55.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4143</td>
<td>6/24/59R LA TEX</td>
<td>22.73</td>
<td>18.66</td>
<td>65.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4166</td>
<td>7/1/59R LA TEX</td>
<td>22.73</td>
<td>18.32</td>
<td>30.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4315</td>
<td>7/10/59R LA TEX</td>
<td>22.73</td>
<td>17.56</td>
<td>29.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4293</td>
<td>7/21/59R LA TEX</td>
<td>22.73</td>
<td>17.45</td>
<td>28.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4289</td>
<td>8/6/59R LA TEX</td>
<td>22.73</td>
<td>17.70</td>
<td>26.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3068</td>
<td>1/15/59R MO UTAH</td>
<td>22.73</td>
<td>18.26</td>
<td>36.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3069</td>
<td>1/14/59R MO UTAH</td>
<td>22.73</td>
<td>18.37</td>
<td>61.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3131</td>
<td>1/22/59R MO UTAH</td>
<td>22.73</td>
<td>18.18</td>
<td>45.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3180</td>
<td>1/29/59R MO UTAH</td>
<td>22.73</td>
<td>18.56</td>
<td>68.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3218</td>
<td>2/4/59R MO UTAH</td>
<td>22.73</td>
<td>18.54</td>
<td>36.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3280</td>
<td>2/27/59R MO UTAH</td>
<td>22.73</td>
<td>18.31</td>
<td>74.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3303</td>
<td>2/17/59R MO UTAH</td>
<td>22.73</td>
<td>18.01</td>
<td>34.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3310</td>
<td>2/19/59R MO UTAH</td>
<td>22.73</td>
<td>17.72</td>
<td>38.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3435</td>
<td>3/9/59R MO UTAH</td>
<td>22.73</td>
<td>18.16</td>
<td>43.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3443</td>
<td>3/11/59R MO UTAH</td>
<td>22.73</td>
<td>17.84</td>
<td>37.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3499</td>
<td>3/18/59R MO UTAH</td>
<td>22.73</td>
<td>17.82</td>
<td>61.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3516</td>
<td>3/23/59R MO UTAH</td>
<td>22.73</td>
<td>18.13</td>
<td>62.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3584</td>
<td>3/30/59R MO UTAH</td>
<td>22.73</td>
<td>18.54</td>
<td>67.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3617</td>
<td>4/6/59R MO UTAH</td>
<td>22.73</td>
<td>18.45</td>
<td>62.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3678</td>
<td>4/13/59R MO UTAH</td>
<td>22.73</td>
<td>18.30</td>
<td>38.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3746</td>
<td>4/27/59R MO UTAH</td>
<td>22.73</td>
<td>18.36</td>
<td>49.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3750</td>
<td>4/20/59R MO UTAH</td>
<td>22.73</td>
<td>18.12</td>
<td>62.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3839</td>
<td>5/4/59R MO UTAH</td>
<td>22.73</td>
<td>18.43</td>
<td>50.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3853</td>
<td>5/11/59R MO UTAH</td>
<td>22.73</td>
<td>18.33</td>
<td>55.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3992</td>
<td>6/1/59R MO UTAH</td>
<td>22.73</td>
<td>18.93</td>
<td>46.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4005</td>
<td>6/2/59R MO UTAH</td>
<td>22.73</td>
<td>18.31</td>
<td>45.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4086</td>
<td>6/8/59M MO UTAH</td>
<td>22.73</td>
<td>18.57</td>
<td>40.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4063</td>
<td>6/15/59R MO UTAH</td>
<td>22.73</td>
<td>18.05</td>
<td>68.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4114</td>
<td>6/22/59M MO UTAH</td>
<td>22.73</td>
<td>18.41</td>
<td>40.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4160</td>
<td>6/26/59M MO UTAH</td>
<td>22.73</td>
<td>18.15</td>
<td>38.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4239</td>
<td>7/6/59R MO UTAH</td>
<td>22.73</td>
<td>18.46</td>
<td>38.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4354</td>
<td>7/21/59R MO UTAH</td>
<td>22.73</td>
<td>18.56</td>
<td>37.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4379</td>
<td>7/27/59R MO UTAH</td>
<td>22.73</td>
<td>18.61</td>
<td>32.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4260</td>
<td>7/31/59R MO UTAH</td>
<td>22.73</td>
<td>18.24</td>
<td>32.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3023</td>
<td>1/2/59R OG UTAH</td>
<td>22.73</td>
<td>18.44</td>
<td>39.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3052</td>
<td>1/8/59R OG UTAH</td>
<td>22.73</td>
<td>18.76</td>
<td>39.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3087</td>
<td>1/15/59R OG UTAH</td>
<td>22.73</td>
<td>18.43</td>
<td>35.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3130</td>
<td>1/22/59R OG UTAH</td>
<td>22.73</td>
<td>18.80</td>
<td>40.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3179</td>
<td>1/29/59R OG UTAH</td>
<td>22.73</td>
<td>18.69</td>
<td>36.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3225</td>
<td>2/5/59R OG UTAH</td>
<td>22.73</td>
<td>18.07</td>
<td>27.23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=MNFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4052</td>
<td>6/8/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.79</td>
</tr>
<tr>
<td>22</td>
<td>4095</td>
<td>6/17/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.26</td>
</tr>
<tr>
<td>22</td>
<td>4301</td>
<td>6/25/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>19.04</td>
</tr>
<tr>
<td>22</td>
<td>4303</td>
<td>7/1/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.90</td>
</tr>
<tr>
<td>22</td>
<td>3566</td>
<td>3/13/59M MI</td>
<td>SDAK</td>
<td>45.91</td>
<td>18.12</td>
</tr>
<tr>
<td>22</td>
<td>3529</td>
<td>3/20/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.85</td>
</tr>
<tr>
<td>22</td>
<td>3606</td>
<td>4/3/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.64</td>
</tr>
<tr>
<td>22</td>
<td>3660</td>
<td>4/10/59M MI</td>
<td>SDAK</td>
<td>40.91</td>
<td>17.38</td>
</tr>
<tr>
<td>22</td>
<td>3745</td>
<td>4/17/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>17.65</td>
</tr>
<tr>
<td>22</td>
<td>3720</td>
<td>4/24/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>17.06</td>
</tr>
<tr>
<td>22</td>
<td>3792</td>
<td>5/1/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.95</td>
</tr>
<tr>
<td>22</td>
<td>3791</td>
<td>5/13/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>19.12</td>
</tr>
<tr>
<td>22</td>
<td>3953</td>
<td>5/15/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.23</td>
</tr>
<tr>
<td>22</td>
<td>3912</td>
<td>5/22/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>17.81</td>
</tr>
<tr>
<td>22</td>
<td>4018</td>
<td>5/29/59M MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.91</td>
</tr>
<tr>
<td>22</td>
<td>4047</td>
<td>6/11/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>17.90</td>
</tr>
<tr>
<td>22</td>
<td>4094</td>
<td>6/17/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>17.61</td>
</tr>
<tr>
<td>22</td>
<td>4144</td>
<td>6/26/59R MI</td>
<td>SDAK</td>
<td>42.27</td>
<td>18.98</td>
</tr>
<tr>
<td>22</td>
<td>4164</td>
<td>7/2/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.51</td>
</tr>
<tr>
<td>22</td>
<td>4192</td>
<td>7/3/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.10</td>
</tr>
<tr>
<td>22</td>
<td>4322</td>
<td>7/15/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.82</td>
</tr>
<tr>
<td>22</td>
<td>4355</td>
<td>7/22/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.56</td>
</tr>
<tr>
<td>22</td>
<td>4256</td>
<td>7/31/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.20</td>
</tr>
<tr>
<td>22</td>
<td>4276</td>
<td>8/4/59R MI</td>
<td>SDAK</td>
<td>45.45</td>
<td>18.44</td>
</tr>
<tr>
<td>22</td>
<td>3047</td>
<td>1/7/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.73</td>
</tr>
<tr>
<td>22</td>
<td>3086</td>
<td>1/14/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.10</td>
</tr>
<tr>
<td>22</td>
<td>3101</td>
<td>1/16/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.79</td>
</tr>
<tr>
<td>22</td>
<td>3145</td>
<td>1/26/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.27</td>
</tr>
<tr>
<td>22</td>
<td>3206</td>
<td>2/2/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.28</td>
</tr>
<tr>
<td>22</td>
<td>3237</td>
<td>2/9/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.09</td>
</tr>
<tr>
<td>22</td>
<td>3271</td>
<td>2/16/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.33</td>
</tr>
<tr>
<td>22</td>
<td>3327</td>
<td>2/24/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.36</td>
</tr>
<tr>
<td>22</td>
<td>3359</td>
<td>3/2/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.87</td>
</tr>
<tr>
<td>22</td>
<td>3428</td>
<td>3/9/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.97</td>
</tr>
<tr>
<td>22</td>
<td>3472</td>
<td>3/16/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.41</td>
</tr>
<tr>
<td>22</td>
<td>3514</td>
<td>3/23/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.27</td>
</tr>
<tr>
<td>22</td>
<td>3552</td>
<td>3/30/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.56</td>
</tr>
<tr>
<td>22</td>
<td>3610</td>
<td>4/6/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.09</td>
</tr>
<tr>
<td>22</td>
<td>3664</td>
<td>4/14/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.04</td>
</tr>
<tr>
<td>22</td>
<td>3703</td>
<td>4/20/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.72</td>
</tr>
<tr>
<td>22</td>
<td>3730</td>
<td>4/28/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>18.15</td>
</tr>
<tr>
<td>22</td>
<td>3796</td>
<td>5/4/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.42</td>
</tr>
<tr>
<td>22</td>
<td>3823</td>
<td>5/11/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.66</td>
</tr>
<tr>
<td>22</td>
<td>3897</td>
<td>5/25/59R LA</td>
<td>TEX</td>
<td>22.73</td>
<td>17.55</td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>KG/KG</th>
<th>UUC CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4116</td>
<td>6/8/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.28</td>
<td>140.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4296</td>
<td>5/25/59M</td>
<td>ORE</td>
<td>22.73</td>
<td>17.95</td>
<td>223.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4157</td>
<td>6/15/59M</td>
<td>ORE</td>
<td>22.73</td>
<td>18.13</td>
<td>215.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4343</td>
<td>7/20/59R</td>
<td>ORE</td>
<td>22.73</td>
<td>17.81</td>
<td>110.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4391</td>
<td>7/28/59R</td>
<td>ORE</td>
<td>22.73</td>
<td>17.56</td>
<td>116.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4265</td>
<td>7/28/59M</td>
<td>ORE</td>
<td>22.73</td>
<td>17.77</td>
<td>106.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3020</td>
<td>12/30/58M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>20.22</td>
<td>61.75</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3073</td>
<td>1/6/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>20.44</td>
<td>63.02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3115</td>
<td>1/13/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>20.11</td>
<td>60.70</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3152</td>
<td>1/20/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.92</td>
<td>64.57</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3212</td>
<td>1/27/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>20.40</td>
<td>64.73</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3253</td>
<td>2/3/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.58</td>
<td>66.89</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3320</td>
<td>2/12/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.72</td>
<td>66.11</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3352</td>
<td>2/19/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.41</td>
<td>65.29</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3395</td>
<td>2/24/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>20.01</td>
<td>65.28</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3432</td>
<td>3/3/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.53</td>
<td>70.90</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3494</td>
<td>3/10/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.44</td>
<td>70.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3531</td>
<td>3/17/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.80</td>
<td>70.38</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3634</td>
<td>3/24/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.51</td>
<td>76.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3559</td>
<td>3/31/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.93</td>
<td>74.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3682</td>
<td>4/7/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.41</td>
<td>65.06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3757</td>
<td>4/14/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>20.46</td>
<td>72.02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3820</td>
<td>4/21/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.68</td>
<td>68.59</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3842</td>
<td>4/29/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.79</td>
<td>74.25</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3849</td>
<td>5/5/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.45</td>
<td>83.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3941</td>
<td>5/12/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.27</td>
<td>94.85</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3918</td>
<td>5/19/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.77</td>
<td>107.58</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3979</td>
<td>5/26/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.94</td>
<td>111.70</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4048</td>
<td>6/2/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.58</td>
<td>100.44</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4131</td>
<td>6/10/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.65</td>
<td>89.80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4150</td>
<td>6/16/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.41</td>
<td>90.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4186</td>
<td>6/23/59M</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.34</td>
<td>103.44</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4313</td>
<td>7/7/59R</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.76</td>
<td>97.78</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4230</td>
<td>7/14/59R</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.96</td>
<td>87.81</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4350</td>
<td>7/20/59R</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.38</td>
<td>68.95</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4254</td>
<td>7/30/59R</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>19.52</td>
<td>83.41</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4285</td>
<td>8/5/59R</td>
<td>SP</td>
<td>PENN</td>
<td>22.73</td>
<td>18.69</td>
<td>73.43</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3767</td>
<td>5/11/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.73</td>
<td>57.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3768</td>
<td>5/12/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.99</td>
<td>76.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3769</td>
<td>4/13/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>16.25</td>
<td>43.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3770</td>
<td>4/6/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>16.89</td>
<td>48.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3771</td>
<td>4/20/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.70</td>
<td>52.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3925</td>
<td>5/21/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.40</td>
<td>56.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3959</td>
<td>5/28/59R YO</td>
<td>PENN</td>
<td>45.45</td>
<td>18.70</td>
<td>77.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM</th>
<th>K/KG</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>3314</td>
<td>9/0</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.83</td>
<td>35.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3219</td>
<td>10/0</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.11</td>
<td>31.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3392</td>
<td>10/0</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.51</td>
<td>47.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3044</td>
<td>1/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.56</td>
<td>31.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3089</td>
<td>1/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.34</td>
<td>28.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3132</td>
<td>1/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.09</td>
<td>28.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3162</td>
<td>1/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.72</td>
<td>34.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3264</td>
<td>2/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>14.63</td>
<td>36.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3353</td>
<td>2/59M</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.62</td>
<td>32.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3468</td>
<td>3/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.24</td>
<td>44.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3504</td>
<td>3/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.11</td>
<td>43.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3574</td>
<td>3/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.24</td>
<td>29.61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3635</td>
<td>3/59M</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.12</td>
<td>38.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3661</td>
<td>4/59M</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.28</td>
<td>42.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3707</td>
<td>4/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.45</td>
<td>62.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3694</td>
<td>4/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.49</td>
<td>68.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3695</td>
<td>4/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.72</td>
<td>67.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3821</td>
<td>5/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.02</td>
<td>36.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3855</td>
<td>5/59M</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.58</td>
<td>65.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3932</td>
<td>5/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.89</td>
<td>89.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3963</td>
<td>5/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.80</td>
<td>81.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4015</td>
<td>6/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.50</td>
<td>77.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4039</td>
<td>6/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.10</td>
<td>56.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4103</td>
<td>6/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.32</td>
<td>49.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4299</td>
<td>6/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.89</td>
<td>50.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4241</td>
<td>7/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.00</td>
<td>43.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4359</td>
<td>7/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>15.55</td>
<td>31.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4293</td>
<td>8/59R</td>
<td>OKLA</td>
<td>45.45</td>
<td>16.01</td>
<td>33.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3068</td>
<td>12/58M</td>
<td>ORE</td>
<td>45.45</td>
<td>18.05</td>
<td>79.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3102</td>
<td>1/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.73</td>
<td>79.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3147</td>
<td>1/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>18.46</td>
<td>100.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3186</td>
<td>1/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.92</td>
<td>101.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3269</td>
<td>2/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.34</td>
<td>85.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3367</td>
<td>2/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.40</td>
<td>99.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3439</td>
<td>3/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.48</td>
<td>102.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3503</td>
<td>3/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.77</td>
<td>100.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3549</td>
<td>3/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.50</td>
<td>100.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3625</td>
<td>3/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>18.19</td>
<td>107.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3673</td>
<td>3/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.29</td>
<td>98.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3662</td>
<td>4/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.98</td>
<td>112.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3724</td>
<td>4/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.95</td>
<td>104.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3780</td>
<td>4/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.06</td>
<td>123.70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3815</td>
<td>4/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.75</td>
<td>93.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3985</td>
<td>5/59M</td>
<td>ORE</td>
<td>45.45</td>
<td>17.93</td>
<td>203.61</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

Milk - Class 20=FRESH, 21=WHOLE DRY, 22=NOMFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>UOC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>4389</td>
<td>7/28/59</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.75</td>
<td>57.20</td>
</tr>
<tr>
<td>22</td>
<td>4281</td>
<td>8/4/59</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>14.51</td>
<td>70.12</td>
</tr>
<tr>
<td>20</td>
<td>3149</td>
<td>2/5/59</td>
<td>AL</td>
<td>NM</td>
<td>110.45</td>
<td>1.56</td>
<td>14.07</td>
</tr>
<tr>
<td>20</td>
<td>3952</td>
<td>6/8/59</td>
<td>AL</td>
<td>NM</td>
<td>110.45</td>
<td>1.48</td>
<td>22.57</td>
</tr>
<tr>
<td>20</td>
<td>3988</td>
<td>6/19/59</td>
<td>AL</td>
<td>NM</td>
<td>110.45</td>
<td>1.50</td>
<td>29.38</td>
</tr>
<tr>
<td>22</td>
<td>3039</td>
<td>1/7/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>19.20</td>
<td>57.34</td>
</tr>
<tr>
<td>22</td>
<td>3079</td>
<td>1/13/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>21.69</td>
<td>51.68</td>
</tr>
<tr>
<td>22</td>
<td>3191</td>
<td>1/30/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.32</td>
<td>52.95</td>
</tr>
<tr>
<td>22</td>
<td>3213</td>
<td>2/3/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>21.20</td>
<td>49.82</td>
</tr>
<tr>
<td>22</td>
<td>3255</td>
<td>2/10/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>18.43</td>
<td>50.29</td>
</tr>
<tr>
<td>22</td>
<td>3299</td>
<td>2/16/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.35</td>
<td>52.64</td>
</tr>
<tr>
<td>22</td>
<td>3337</td>
<td>2/9/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.39</td>
<td>50.50</td>
</tr>
<tr>
<td>22</td>
<td>3389</td>
<td>2/15/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.16</td>
<td>56.44</td>
</tr>
<tr>
<td>22</td>
<td>3426</td>
<td>2/23/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.88</td>
<td>54.47</td>
</tr>
<tr>
<td>22</td>
<td>3489</td>
<td>3/2/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.39</td>
<td>51.55</td>
</tr>
<tr>
<td>22</td>
<td>3520</td>
<td>3/9/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.87</td>
<td>54.02</td>
</tr>
<tr>
<td>22</td>
<td>3577</td>
<td>3/20/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.57</td>
<td>56.83</td>
</tr>
<tr>
<td>22</td>
<td>3607</td>
<td>3/23/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>19.24</td>
<td>45.64</td>
</tr>
<tr>
<td>22</td>
<td>3655</td>
<td>3/27/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.88</td>
<td>57.60</td>
</tr>
<tr>
<td>22</td>
<td>3701</td>
<td>4/13/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>21.11</td>
<td>52.86</td>
</tr>
<tr>
<td>22</td>
<td>3752</td>
<td>4/10/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>21.10</td>
<td>57.93</td>
</tr>
<tr>
<td>22</td>
<td>3785</td>
<td>4/20/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>21.64</td>
<td>57.23</td>
</tr>
<tr>
<td>22</td>
<td>3843</td>
<td>4/27/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.29</td>
<td>58.44</td>
</tr>
<tr>
<td>22</td>
<td>3919</td>
<td>5/20/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.55</td>
<td>58.86</td>
</tr>
<tr>
<td>22</td>
<td>3949</td>
<td>5/4/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.73</td>
<td>65.20</td>
</tr>
<tr>
<td>22</td>
<td>3972</td>
<td>6/1/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.32</td>
<td>48.95</td>
</tr>
<tr>
<td>22</td>
<td>4033</td>
<td>6/8/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.41</td>
<td>53.19</td>
</tr>
<tr>
<td>22</td>
<td>4067</td>
<td>6/15/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.02</td>
<td>90.10</td>
</tr>
<tr>
<td>22</td>
<td>4174</td>
<td>6/20/59</td>
<td>BI</td>
<td>NY</td>
<td>13.64</td>
<td>20.71</td>
<td>87.96</td>
</tr>
<tr>
<td>22</td>
<td>4126</td>
<td>6/22/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>18.73</td>
<td>79.09</td>
</tr>
<tr>
<td>22</td>
<td>4191</td>
<td>6/22/59</td>
<td>BI</td>
<td>NY</td>
<td>15.91</td>
<td>20.78</td>
<td>23.97</td>
</tr>
<tr>
<td>22</td>
<td>4231</td>
<td>7/13/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.59</td>
<td>74.48</td>
</tr>
<tr>
<td>22</td>
<td>4345</td>
<td>7/20/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.14</td>
<td>61.06</td>
</tr>
<tr>
<td>22</td>
<td>4392</td>
<td>7/28/59</td>
<td>BI</td>
<td>NY</td>
<td>22.73</td>
<td>20.68</td>
<td>91.99</td>
</tr>
<tr>
<td>21</td>
<td>3163</td>
<td>1/21/59</td>
<td>LV</td>
<td>NY</td>
<td>18.18</td>
<td>15.34</td>
<td>46.42</td>
</tr>
<tr>
<td>21</td>
<td>3404</td>
<td>2/16/59</td>
<td>LV</td>
<td>NY</td>
<td>18.18</td>
<td>14.94</td>
<td>49.93</td>
</tr>
<tr>
<td>21</td>
<td>3857</td>
<td>3/16/59</td>
<td>LV</td>
<td>NY</td>
<td>22.73</td>
<td>14.79</td>
<td>46.16</td>
</tr>
<tr>
<td>21</td>
<td>3858</td>
<td>4/13/59</td>
<td>LV</td>
<td>NY</td>
<td>18.18</td>
<td>14.88</td>
<td>50.30</td>
</tr>
<tr>
<td>22</td>
<td>3832</td>
<td>5/11/59</td>
<td>MA</td>
<td>OHIO</td>
<td>45.45</td>
<td>18.31</td>
<td>103.54</td>
</tr>
<tr>
<td>22</td>
<td>3933</td>
<td>5/18/59</td>
<td>MA</td>
<td>OHIO</td>
<td>45.45</td>
<td>18.08</td>
<td>118.85</td>
</tr>
<tr>
<td>22</td>
<td>3967</td>
<td>5/27/59</td>
<td>MA</td>
<td>OHIO</td>
<td>45.45</td>
<td>18.04</td>
<td>95.22</td>
</tr>
<tr>
<td>22</td>
<td>4008</td>
<td>6/3/59</td>
<td>MA</td>
<td>OHIO</td>
<td>45.45</td>
<td>17.97</td>
<td>77.82</td>
</tr>
<tr>
<td>22</td>
<td>4056</td>
<td>6/16/59</td>
<td>MA</td>
<td>OHIO</td>
<td>45.45</td>
<td>18.25</td>
<td>75.32</td>
</tr>
<tr>
<td>22</td>
<td>4302</td>
<td>7/1/59</td>
<td>MA</td>
<td>OHIO</td>
<td>45.45</td>
<td>17.68</td>
<td>46.33</td>
</tr>
<tr>
<td>CL SERIAL</td>
<td>DATE</td>
<td>TOWN</td>
<td>STATE</td>
<td>WGT</td>
<td>GM/ KG</td>
<td>UUC</td>
<td>CS/GM K</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>23 3029</td>
<td>1/5/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>17.29</td>
<td></td>
<td>49.14</td>
</tr>
<tr>
<td>23 3057</td>
<td>1/12/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.92</td>
<td></td>
<td>52.62</td>
</tr>
<tr>
<td>23 3120</td>
<td>1/12/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.51</td>
<td></td>
<td>51.40</td>
</tr>
<tr>
<td>23 3199</td>
<td>2/2/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.29</td>
<td></td>
<td>53.19</td>
</tr>
<tr>
<td>23 3201</td>
<td>2/2/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.78</td>
<td></td>
<td>48.52</td>
</tr>
<tr>
<td>23 3249</td>
<td>2/2/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.68</td>
<td></td>
<td>53.44</td>
</tr>
<tr>
<td>23 3292</td>
<td>2/9/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.45</td>
<td></td>
<td>57.84</td>
</tr>
<tr>
<td>23 3332</td>
<td>2/16/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.35</td>
<td></td>
<td>47.61</td>
</tr>
<tr>
<td>23 3345</td>
<td>2/23/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.78</td>
<td></td>
<td>56.81</td>
</tr>
<tr>
<td>23 3424</td>
<td>3/2/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.24</td>
<td></td>
<td>50.69</td>
</tr>
<tr>
<td>23 3493</td>
<td>3/9/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.44</td>
<td></td>
<td>55.49</td>
</tr>
<tr>
<td>23 3522</td>
<td>3/16/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>17.13</td>
<td></td>
<td>50.34</td>
</tr>
<tr>
<td>23 3612</td>
<td>3/30/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>17.63</td>
<td></td>
<td>40.03</td>
</tr>
<tr>
<td>23 3632</td>
<td>3/23/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>17.15</td>
<td></td>
<td>49.18</td>
</tr>
<tr>
<td>23 3680</td>
<td>4/6/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>14.40</td>
<td></td>
<td>52.94</td>
</tr>
<tr>
<td>23 3704</td>
<td>4/13/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>18.18</td>
<td></td>
<td>49.58</td>
</tr>
<tr>
<td>23 3749</td>
<td>4/20/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.48</td>
<td></td>
<td>57.80</td>
</tr>
<tr>
<td>23 3797</td>
<td>5/4/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.58</td>
<td></td>
<td>55.82</td>
</tr>
<tr>
<td>23 3989</td>
<td>5/11/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.42</td>
<td></td>
<td>63.85</td>
</tr>
<tr>
<td>23 3902</td>
<td>5/18/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.43</td>
<td></td>
<td>91.06</td>
</tr>
<tr>
<td>23 3955</td>
<td>5/11/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.04</td>
<td></td>
<td>84.55</td>
</tr>
<tr>
<td>23 3970</td>
<td>5/25/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.14</td>
<td></td>
<td>73.59</td>
</tr>
<tr>
<td>23 4037</td>
<td>6/1/59M</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.37</td>
<td></td>
<td>110.40</td>
</tr>
<tr>
<td>23 4076</td>
<td>6/15/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.55</td>
<td></td>
<td>80.50</td>
</tr>
<tr>
<td>23 4122</td>
<td>6/22/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.82</td>
<td></td>
<td>56.23</td>
</tr>
<tr>
<td>23 4172</td>
<td>7/1/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.35</td>
<td></td>
<td>58.02</td>
</tr>
<tr>
<td>23 4200</td>
<td>7/8/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.35</td>
<td></td>
<td>63.11</td>
</tr>
<tr>
<td>23 4219</td>
<td>7/13/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.65</td>
<td></td>
<td>42.63</td>
</tr>
<tr>
<td>23 4373</td>
<td>7/27/59R</td>
<td>BO</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.48</td>
<td></td>
<td>55.54</td>
</tr>
<tr>
<td>23 3416</td>
<td>3/2/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.37</td>
<td></td>
<td>66.16</td>
</tr>
<tr>
<td>23 3479</td>
<td>3/12/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.97</td>
<td></td>
<td>55.33</td>
</tr>
<tr>
<td>23 3505</td>
<td>3/17/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.97</td>
<td></td>
<td>67.23</td>
</tr>
<tr>
<td>23 3555</td>
<td>3/24/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.52</td>
<td></td>
<td>59.34</td>
</tr>
<tr>
<td>23 3689</td>
<td>4/7/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.63</td>
<td></td>
<td>66.06</td>
</tr>
<tr>
<td>23 3747</td>
<td>4/16/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.27</td>
<td></td>
<td>67.71</td>
</tr>
<tr>
<td>23 3748</td>
<td>4/23/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.67</td>
<td></td>
<td>65.83</td>
</tr>
<tr>
<td>23 3794</td>
<td>4/5/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.34</td>
<td></td>
<td>77.05</td>
</tr>
<tr>
<td>23 3935</td>
<td>4/12/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.58</td>
<td></td>
<td>69.63</td>
</tr>
<tr>
<td>23 3960</td>
<td>5/21/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>14.68</td>
<td></td>
<td>69.98</td>
</tr>
<tr>
<td>23 4009</td>
<td>5/28/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.84</td>
<td></td>
<td>82.33</td>
</tr>
<tr>
<td>23 4059</td>
<td>6/6/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>17.13</td>
<td></td>
<td>89.23</td>
</tr>
<tr>
<td>23 4112</td>
<td>6/16/59M</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>16.58</td>
<td></td>
<td>70.68</td>
</tr>
<tr>
<td>23 4163</td>
<td>7/2/59R</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.02</td>
<td></td>
<td>60.17</td>
</tr>
<tr>
<td>23 4227</td>
<td>7/14/59R</td>
<td>CA</td>
<td>NDAK</td>
<td>22.73</td>
<td>15.04</td>
<td></td>
<td>62.76</td>
</tr>
</tbody>
</table>

Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3667</td>
<td>4/6/59M</td>
<td>NC</td>
<td>22.73</td>
<td>17.24</td>
<td></td>
<td>80.82</td>
</tr>
<tr>
<td>22</td>
<td>3758</td>
<td>4/11/59M</td>
<td>NC</td>
<td>22.73</td>
<td>17.85</td>
<td></td>
<td>83.87</td>
</tr>
<tr>
<td>22</td>
<td>3759</td>
<td>4/20/59M</td>
<td>NC</td>
<td>22.73</td>
<td>17.73</td>
<td></td>
<td>151.80</td>
</tr>
<tr>
<td>22</td>
<td>3827</td>
<td>5/4/59R</td>
<td>NC</td>
<td>22.73</td>
<td>17.75</td>
<td></td>
<td>137.57</td>
</tr>
<tr>
<td>22</td>
<td>3869</td>
<td>5/4/59M</td>
<td>NC</td>
<td>22.73</td>
<td>17.64</td>
<td></td>
<td>149.50</td>
</tr>
<tr>
<td>22</td>
<td>3940</td>
<td>5/11/59M</td>
<td>NC</td>
<td>22.73</td>
<td>17.59</td>
<td></td>
<td>162.98</td>
</tr>
<tr>
<td>22</td>
<td>3980</td>
<td>5/25/59M</td>
<td>NC</td>
<td>22.73</td>
<td>17.55</td>
<td></td>
<td>153.05</td>
</tr>
<tr>
<td>22</td>
<td>4036</td>
<td>6/1/59M</td>
<td>NC</td>
<td>22.73</td>
<td>18.13</td>
<td></td>
<td>140.08</td>
</tr>
<tr>
<td>22</td>
<td>4092</td>
<td>6/7/59M</td>
<td>NC</td>
<td>22.73</td>
<td>18.36</td>
<td></td>
<td>150.58</td>
</tr>
<tr>
<td>22</td>
<td>4132</td>
<td>6/15/59M</td>
<td>NC</td>
<td>22.73</td>
<td>18.25</td>
<td></td>
<td>109.74</td>
</tr>
<tr>
<td>22</td>
<td>4178</td>
<td>6/20/59M</td>
<td>NC</td>
<td>22.73</td>
<td>18.25</td>
<td></td>
<td>115.86</td>
</tr>
<tr>
<td>22</td>
<td>4294</td>
<td>7/6/59R</td>
<td>NC</td>
<td>22.73</td>
<td>17.56</td>
<td></td>
<td>91.84</td>
</tr>
<tr>
<td>22</td>
<td>4218</td>
<td>7/13/59R</td>
<td>NC</td>
<td>22.73</td>
<td>18.50</td>
<td></td>
<td>32.24</td>
</tr>
<tr>
<td>22</td>
<td>4390</td>
<td>7/26/59R</td>
<td>NC</td>
<td>22.73</td>
<td>18.19</td>
<td></td>
<td>85.53</td>
</tr>
<tr>
<td>23</td>
<td>3060</td>
<td>1/12/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>17.28</td>
<td></td>
<td>75.39</td>
</tr>
<tr>
<td>23</td>
<td>3107</td>
<td>1/19/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.59</td>
<td></td>
<td>66.12</td>
</tr>
<tr>
<td>23</td>
<td>3137</td>
<td>1/26/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.86</td>
<td></td>
<td>61.06</td>
</tr>
<tr>
<td>23</td>
<td>3189</td>
<td>2/2/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>17.09</td>
<td></td>
<td>66.82</td>
</tr>
<tr>
<td>23</td>
<td>3234</td>
<td>2/9/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.78</td>
<td></td>
<td>65.54</td>
</tr>
<tr>
<td>23</td>
<td>3267</td>
<td>2/13/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.66</td>
<td></td>
<td>69.98</td>
</tr>
<tr>
<td>23</td>
<td>3313</td>
<td>2/16/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.48</td>
<td></td>
<td>67.81</td>
</tr>
<tr>
<td>23</td>
<td>3357</td>
<td>2/23/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.79</td>
<td></td>
<td>66.91</td>
</tr>
<tr>
<td>23</td>
<td>3412</td>
<td>3/2/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.06</td>
<td></td>
<td>70.73</td>
</tr>
<tr>
<td>23</td>
<td>3471</td>
<td>3/9/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.23</td>
<td></td>
<td>73.27</td>
</tr>
<tr>
<td>23</td>
<td>3501</td>
<td>3/20/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>15.63</td>
<td></td>
<td>74.97</td>
</tr>
<tr>
<td>23</td>
<td>3575</td>
<td>3/27/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.04</td>
<td></td>
<td>81.25</td>
</tr>
<tr>
<td>23</td>
<td>3628</td>
<td>4/3/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.78</td>
<td></td>
<td>78.11</td>
</tr>
<tr>
<td>23</td>
<td>3643</td>
<td>4/6/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.26</td>
<td></td>
<td>79.14</td>
</tr>
<tr>
<td>23</td>
<td>3716</td>
<td>4/13/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.59</td>
<td></td>
<td>86.36</td>
</tr>
<tr>
<td>23</td>
<td>3754</td>
<td>4/20/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.39</td>
<td></td>
<td>79.06</td>
</tr>
<tr>
<td>23</td>
<td>3793</td>
<td>5/4/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>17.11</td>
<td></td>
<td>95.82</td>
</tr>
<tr>
<td>23</td>
<td>3814</td>
<td>5/4/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>17.14</td>
<td></td>
<td>114.52</td>
</tr>
<tr>
<td>23</td>
<td>3946</td>
<td>5/11/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>17.18</td>
<td></td>
<td>129.70</td>
</tr>
<tr>
<td>23</td>
<td>3900</td>
<td>5/18/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.19</td>
<td></td>
<td>113.19</td>
</tr>
<tr>
<td>23</td>
<td>3990</td>
<td>5/25/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.03</td>
<td></td>
<td>101.47</td>
</tr>
<tr>
<td>23</td>
<td>4034</td>
<td>6/1/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>16.76</td>
<td></td>
<td>136.26</td>
</tr>
<tr>
<td>23</td>
<td>4062</td>
<td>6/8/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>17.00</td>
<td></td>
<td>142.26</td>
</tr>
<tr>
<td>23</td>
<td>4106</td>
<td>6/19/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.19</td>
<td></td>
<td>106.60</td>
</tr>
<tr>
<td>23</td>
<td>4162</td>
<td>7/1/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>15.12</td>
<td></td>
<td>98.50</td>
</tr>
<tr>
<td>23</td>
<td>4208</td>
<td>7/6/59M</td>
<td>NDak</td>
<td>45.45</td>
<td>14.96</td>
<td></td>
<td>102.82</td>
</tr>
<tr>
<td>23</td>
<td>4318</td>
<td>7/15/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.10</td>
<td></td>
<td>34.31</td>
</tr>
<tr>
<td>23</td>
<td>4344</td>
<td>7/20/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>15.96</td>
<td></td>
<td>67.76</td>
</tr>
<tr>
<td>23</td>
<td>4366</td>
<td>7/24/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.19</td>
<td></td>
<td>79.27</td>
</tr>
<tr>
<td>23</td>
<td>4257</td>
<td>7/31/59R</td>
<td>NDak</td>
<td>45.45</td>
<td>16.46</td>
<td></td>
<td>71.15</td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3090</td>
<td>1/15/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.17</td>
<td>31.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3139</td>
<td>1/26/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.34</td>
<td>31.42</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3188</td>
<td>2/2/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.22</td>
<td>28.48</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3222</td>
<td>2/6/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>16.45</td>
<td>47.15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3278</td>
<td>2/24/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.28</td>
<td>50.19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3281</td>
<td>2/27/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.54</td>
<td>46.68</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3347</td>
<td>3/1/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.55</td>
<td>93.33</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3533</td>
<td>3/1/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.13</td>
<td>105.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3440</td>
<td>3/4/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.26</td>
<td>87.20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3489</td>
<td>3/5/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.21</td>
<td>78.14</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3620</td>
<td>3/30/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.61</td>
<td>96.85</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3593</td>
<td>4/6/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.70</td>
<td>126.44</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3741</td>
<td>4/13/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.67</td>
<td>143.83</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3728</td>
<td>4/20/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>18.67</td>
<td>144.83</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3727</td>
<td>4/24/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.46</td>
<td>153.01</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3810</td>
<td>4/27/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.69</td>
<td>111.07</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3968</td>
<td>5/4/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.54</td>
<td>120.57</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3865</td>
<td>5/11/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.34</td>
<td>120.14</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3926</td>
<td>5/18/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.47</td>
<td>159.60</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3965</td>
<td>5/25/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.90</td>
<td>136.70</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4020</td>
<td>6/1/59M</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>18.84</td>
<td>123.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4058</td>
<td>6/18/59M</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>15.35</td>
<td>97.06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4118</td>
<td>6/15/59M</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>15.02</td>
<td>98.02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4153</td>
<td>6/22/59M</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>14.78</td>
<td>91.84</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4204</td>
<td>7/1/59M</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>14.78</td>
<td>70.25</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4195</td>
<td>7/2/59R</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.47</td>
<td>87.58</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4324</td>
<td>7/14/59R</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.35</td>
<td>59.06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4368</td>
<td>7/24/59R</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>18.02</td>
<td>80.73</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4255</td>
<td>7/30/59R</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.26</td>
<td>72.82</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4290</td>
<td>8/7/59R</td>
<td>SP</td>
<td>MO</td>
<td>18.18</td>
<td>17.51</td>
<td>59.29</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3033</td>
<td>12/0/58M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>18.16</td>
<td>55.09</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3074</td>
<td>1/5/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>18.97</td>
<td>55.32</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3116</td>
<td>1/12/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>18.84</td>
<td>93.48</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3160</td>
<td>1/9/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>18.15</td>
<td>77.59</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3247</td>
<td>2/9/59R</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.44</td>
<td>78.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3251</td>
<td>2/9/59R</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.21</td>
<td>73.68</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3304</td>
<td>2/9/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.68</td>
<td>53.63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3343</td>
<td>2/24/59R</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>18.20</td>
<td>79.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3394</td>
<td>2/24/59R</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.90</td>
<td>82.97</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3451</td>
<td>3/2/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.94</td>
<td>62.76</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3455</td>
<td>3/9/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.96</td>
<td>85.17</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3523</td>
<td>3/13/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.46</td>
<td>86.22</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3569</td>
<td>3/30/59R</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.45</td>
<td>86.35</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3597</td>
<td>3/23/59M</td>
<td>WB</td>
<td>NC</td>
<td>22.73</td>
<td>17.43</td>
<td>75.32</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>Serial</td>
<td>Date</td>
<td>Town</td>
<td>State</td>
<td>Wgt</td>
<td>Gm</td>
<td>K/Kg</td>
<td>UUC</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>22</td>
<td>3884</td>
<td>5/18/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.27</td>
<td>79.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3921</td>
<td>5/25/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.11</td>
<td>75.66</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3994</td>
<td>5/27/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>19.93</td>
<td>85.39</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4053</td>
<td>6/8/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.00</td>
<td>92.49</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4080</td>
<td>6/15/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.31</td>
<td>83.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4135</td>
<td>6/15/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.31</td>
<td>85.60</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4155</td>
<td>6/26/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.14</td>
<td>97.71</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4312</td>
<td>6/30/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>17.68</td>
<td>105.12</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4207</td>
<td>7/6/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.01</td>
<td>101.35</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4259</td>
<td>7/31/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>17.72</td>
<td>75.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4377</td>
<td>7/27/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>17.73</td>
<td>68.40</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3034</td>
<td>1/7/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.96</td>
<td>60.73</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3065</td>
<td>1/12/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.30</td>
<td>43.23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3105</td>
<td>1/19/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.83</td>
<td>58.84</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3136</td>
<td>1/26/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.95</td>
<td>42.02</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3187</td>
<td>2/2/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.81</td>
<td>66.59</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3229</td>
<td>2/9/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.56</td>
<td>64.78</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3273</td>
<td>2/16/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.84</td>
<td>41.19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3331</td>
<td>2/16/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.17</td>
<td>88.39</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3373</td>
<td>2/24/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.43</td>
<td>90.20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3417</td>
<td>3/3/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.61</td>
<td>69.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3652</td>
<td>3/8/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.90</td>
<td>109.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3457</td>
<td>3/11/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.09</td>
<td>89.47</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3515</td>
<td>3/17/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.11</td>
<td>80.88</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3556</td>
<td>3/25/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.58</td>
<td>105.85</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3614</td>
<td>3/31/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>19.81</td>
<td>60.78</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3711</td>
<td>4/11/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.58</td>
<td>132.70</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3722</td>
<td>4/28/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>16.02</td>
<td>132.24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3819</td>
<td>4/28/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>18.48</td>
<td>118.49</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3856</td>
<td>5/6/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>18.81</td>
<td>96.60</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3914</td>
<td>5/20/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.54</td>
<td>103.74</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3943</td>
<td>5/13/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.99</td>
<td>87.80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3987</td>
<td>6/1/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>18.16</td>
<td>103.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4051</td>
<td>6/2/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>17.66</td>
<td>91.03</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4115</td>
<td>6/16/59M</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>18.75</td>
<td>97.06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4165</td>
<td>7/1/59R</td>
<td>AB</td>
<td>MISS</td>
<td>22.73</td>
<td>18.75</td>
<td>77.58</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4145</td>
<td>7/11/59R</td>
<td>ST</td>
<td>MISS</td>
<td>22.73</td>
<td>18.15</td>
<td>69.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4319</td>
<td>7/14/59R</td>
<td>ST</td>
<td>MISS</td>
<td>22.73</td>
<td>18.82</td>
<td>54.31</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4339</td>
<td>7/20/59R</td>
<td>ST</td>
<td>MISS</td>
<td>22.73</td>
<td>19.66</td>
<td>47.46</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4388</td>
<td>7/27/59R</td>
<td>ST</td>
<td>MISS</td>
<td>22.73</td>
<td>17.53</td>
<td>43.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4267</td>
<td>8/3/59R</td>
<td>ST</td>
<td>MISS</td>
<td>22.73</td>
<td>17.94</td>
<td>44.30</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3305</td>
<td>12/29/58M</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.63</td>
<td>45.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3037</td>
<td>1/7/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.21</td>
<td>38.82</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3050</td>
<td>1/8/59R</td>
<td>SP</td>
<td>MO</td>
<td>22.73</td>
<td>17.03</td>
<td>37.13</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>SERIAL</td>
<td>DATE</td>
<td>TOWN</td>
<td>STATE</td>
<td>WGT</td>
<td>GM</td>
<td>K/KG</td>
<td>UUC</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>22</td>
<td>3295</td>
<td>2/29/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.47</td>
<td>44.91</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3354</td>
<td>2/17/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.39</td>
<td>37.98</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3382</td>
<td>2/23/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.85</td>
<td>41.55</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3421</td>
<td>3/2/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.31</td>
<td>42.43</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3450</td>
<td>3/9/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.28</td>
<td>43.95</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3536</td>
<td>3/16/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.11</td>
<td>42.78</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3547</td>
<td>3/24/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.85</td>
<td>43.09</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3611</td>
<td>3/30/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.92</td>
<td>35.98</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3651</td>
<td>4/6/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.17</td>
<td>41.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3740</td>
<td>4/13/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.16</td>
<td>41.23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3755</td>
<td>4/20/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.34</td>
<td>44.56</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3836</td>
<td>4/27/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.83</td>
<td>42.83</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3818</td>
<td>5/4/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.32</td>
<td>37.68</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3871</td>
<td>5/11/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.62</td>
<td>42.48</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3927</td>
<td>5/18/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.46</td>
<td>59.67</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3986</td>
<td>5/25/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.55</td>
<td>62.97</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4049</td>
<td>6/1/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.53</td>
<td>69.15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4064</td>
<td>6/8/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.33</td>
<td>62.67</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4107</td>
<td>6/15/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.47</td>
<td>48.15</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4154</td>
<td>6/22/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.61</td>
<td>59.57</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4209</td>
<td>7/6/59R</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.39</td>
<td>63.98</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4245</td>
<td>7/6/59R</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.18</td>
<td>52.72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4349</td>
<td>7/20/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.03</td>
<td>39.87</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4310</td>
<td>7/23/59</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.18</td>
<td>37.68</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4263</td>
<td>8/3/59R</td>
<td>CL</td>
<td>MINN</td>
<td>22.73</td>
<td>18.00</td>
<td>34.25</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3014</td>
<td>1/2/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>20.40</td>
<td>58.50</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3075</td>
<td>1/5/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.95</td>
<td>58.41</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3100</td>
<td>1/16/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>19.50</td>
<td>60.07</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3153</td>
<td>1/26/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.83</td>
<td>63.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3207</td>
<td>2/2/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.72</td>
<td>55.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3252</td>
<td>2/9/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.90</td>
<td>48.66</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3294</td>
<td>2/13/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>20.30</td>
<td>53.27</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3323</td>
<td>2/16/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.21</td>
<td>64.72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3370</td>
<td>2/23/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.67</td>
<td>66.13</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3433</td>
<td>3/9/59R</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.96</td>
<td>61.51</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3477</td>
<td>3/10/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.48</td>
<td>68.65</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3509</td>
<td>3/17/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.67</td>
<td>54.36</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3553</td>
<td>3/27/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.97</td>
<td>64.30</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3621</td>
<td>3/30/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>19.04</td>
<td>65.19</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3687</td>
<td>4/6/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>19.44</td>
<td>63.69</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3713</td>
<td>4/20/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.21</td>
<td>59.66</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3761</td>
<td>4/20/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.63</td>
<td>72.24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3834</td>
<td>4/27/59</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.28</td>
<td>66.32</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3850</td>
<td>5/4/59M</td>
<td>ST</td>
<td>MINN</td>
<td>22.73</td>
<td>18.46</td>
<td>62.48</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 4133</td>
<td>6/22/59R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.97</td>
<td>64.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4161</td>
<td>6/26/59M</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.97</td>
<td>44.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4242</td>
<td>7/6/59R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.94</td>
<td>45.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4316</td>
<td>7/10/59R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.66</td>
<td>45.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4347</td>
<td>7/20/59R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.14</td>
<td>36.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4369</td>
<td>7/24/59R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.50</td>
<td>60.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4174</td>
<td>8/3/59R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.14</td>
<td>62.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3009</td>
<td>1/2/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.62</td>
<td>76.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3035</td>
<td>1/14/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>20.05</td>
<td>63.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3121</td>
<td>1/20/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>20.22</td>
<td>63.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3192</td>
<td>1/30/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.66</td>
<td>70.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3194</td>
<td>2/2/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>20.32</td>
<td>59.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3279</td>
<td>2/27/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.80</td>
<td>74.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3296</td>
<td>2/16/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.82</td>
<td>66.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3297</td>
<td>2/16/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>20.14</td>
<td>67.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3374</td>
<td>3/2/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.66</td>
<td>66.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3474</td>
<td>3/16/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.26</td>
<td>72.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3500</td>
<td>3/17/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.53</td>
<td>69.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3521</td>
<td>3/23/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.31</td>
<td>68.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3613</td>
<td>4/6/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.18</td>
<td>56.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3633</td>
<td>3/31/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.55</td>
<td>68.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3717</td>
<td>4/27/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.83</td>
<td>75.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3744</td>
<td>4/20/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>21.01</td>
<td>74.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3835</td>
<td>5/4/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.78</td>
<td>81.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3848</td>
<td>5/11/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.38</td>
<td>78.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3906</td>
<td>5/25/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.76</td>
<td>81.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3942</td>
<td>5/19/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.84</td>
<td>84.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4010</td>
<td>6/3/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.75</td>
<td>83.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4042</td>
<td>6/9/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.69</td>
<td>91.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4077</td>
<td>6/15/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.71</td>
<td>86.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4123</td>
<td>6/22/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.90</td>
<td>88.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4173</td>
<td>7/1/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.63</td>
<td>95.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4244</td>
<td>7/6/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.02</td>
<td>113.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4229</td>
<td>7/14/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>19.03</td>
<td>121.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4334</td>
<td>7/20/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>20.39</td>
<td>90.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4385</td>
<td>7/27/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.26</td>
<td>102.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4269</td>
<td>8/3/59R</td>
<td>BE</td>
<td>MINN</td>
<td>22.73</td>
<td>18.65</td>
<td>101.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3010</td>
<td>12/22/58M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.52</td>
<td>44.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3021</td>
<td>12/29/58M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>20.02</td>
<td>35.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3056</td>
<td>1/5/59M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>20.56</td>
<td>39.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3111</td>
<td>1/12/59M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.60</td>
<td>37.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3300</td>
<td>1/19/59M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>20.07</td>
<td>40.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3198</td>
<td>1/26/59M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>19.98</td>
<td>35.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3248</td>
<td>2/2/59M CL</td>
<td>MINN</td>
<td>22.73</td>
<td>20.23</td>
<td>38.64</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3390</td>
<td>2/23/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.06</td>
<td>72.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3434</td>
<td>3/ 2/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.45</td>
<td>76.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3490</td>
<td>3/11/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.13</td>
<td>65.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3535</td>
<td>3/16/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.40</td>
<td>71.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3583</td>
<td>3/24/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.57</td>
<td>79.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3596</td>
<td>3/30/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.50</td>
<td>67.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3684</td>
<td>4/ 6/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.53</td>
<td>57.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3696</td>
<td>4/19/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.37</td>
<td>82.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3697</td>
<td>4/13/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.08</td>
<td>82.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3790</td>
<td>4/27/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.45</td>
<td>78.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3841</td>
<td>5/11/59 R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.15</td>
<td>80.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3882</td>
<td>5/11/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.69</td>
<td>87.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3899</td>
<td>5/18/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.29</td>
<td>89.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3997</td>
<td>5/25/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.59</td>
<td>88.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4041</td>
<td>6/ 1/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.27</td>
<td>82.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4079</td>
<td>6/ 8/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.45</td>
<td>87.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4134</td>
<td>6/15/59 M</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>17.96</td>
<td>91.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4179</td>
<td>7/ 1/59 R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.81</td>
<td>162.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4225</td>
<td>7/13/59 R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>18.41</td>
<td>153.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4332</td>
<td>7/20/59 R</td>
<td>AN</td>
<td>MASS</td>
<td>22.73</td>
<td>19.27</td>
<td>134.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3007</td>
<td>1/ 2/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.52</td>
<td>43.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3048</td>
<td>1/ 7/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>21.03</td>
<td>41.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3091</td>
<td>1/16/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>19.15</td>
<td>29.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3141</td>
<td>1/26/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>21.79</td>
<td>32.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3193</td>
<td>1/30/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>20.98</td>
<td>42.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3230</td>
<td>2/ 9/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>20.53</td>
<td>40.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3287</td>
<td>2/13/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.26</td>
<td>37.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3317</td>
<td>2/20/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>21.80</td>
<td>39.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3351</td>
<td>2/27/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>21.13</td>
<td>36.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3409</td>
<td>2/28/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>21.38</td>
<td>45.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3480</td>
<td>3/16/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>19.69</td>
<td>41.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3511</td>
<td>3/20/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>20.59</td>
<td>48.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3579</td>
<td>3/30/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.06</td>
<td>48.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3627</td>
<td>4/ 3/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>20.36</td>
<td>44.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3672</td>
<td>4/10/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.74</td>
<td>43.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3733</td>
<td>4/20/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.03</td>
<td>52.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3731</td>
<td>4/27/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.18</td>
<td>51.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3795</td>
<td>5/ 4/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.25</td>
<td>51.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3804</td>
<td>5/11/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>19.00</td>
<td>38.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3879</td>
<td>5/19/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.31</td>
<td>40.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3904</td>
<td>5/25/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.74</td>
<td>40.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4000</td>
<td>6/ 1/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>18.09</td>
<td>54.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4046</td>
<td>6/ 8/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.95</td>
<td>43.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4072</td>
<td>6/15/59 R</td>
<td>LA</td>
<td>MICH</td>
<td>22.73</td>
<td>17.54</td>
<td>53.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL SERIAL</td>
<td>DATE</td>
<td>AGE</td>
<td>STATE</td>
<td>WGT</td>
<td>GM</td>
<td>K/KG</td>
<td>UUC</td>
<td>CS/GM</td>
<td>K</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>11</td>
<td>3749</td>
<td>4/14/59</td>
<td>34</td>
<td>ONT</td>
<td>63.64</td>
<td>1.51</td>
<td></td>
<td></td>
<td>81.06</td>
</tr>
<tr>
<td>10</td>
<td>3750</td>
<td>4/14/59</td>
<td>32</td>
<td>ONT</td>
<td>80.45</td>
<td>2.14</td>
<td></td>
<td></td>
<td>102.22</td>
</tr>
<tr>
<td>10</td>
<td>3788</td>
<td>4/21/59</td>
<td>25</td>
<td>ONT</td>
<td>85.00</td>
<td>1.91</td>
<td></td>
<td></td>
<td>70.97</td>
</tr>
<tr>
<td>10</td>
<td>3951</td>
<td>7/14/59</td>
<td>14</td>
<td>ONT</td>
<td>6.36</td>
<td>8.81</td>
<td></td>
<td></td>
<td>120.97</td>
</tr>
</tbody>
</table>
Table 4

MILK - CLASS 20= FRESH, 21=W HOLE DRY, 22=NONFAT DRY,
23=D RY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>3261</td>
<td>2/26/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>15.86</td>
<td>32.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3449</td>
<td>3/2/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>18.87</td>
<td>31.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3545</td>
<td>3/16/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>18.08</td>
<td>33.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3630</td>
<td>3/23/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>18.48</td>
<td>48.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3572</td>
<td>3/30/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>14.18</td>
<td>43.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3675</td>
<td>4/6/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.58</td>
<td>43.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3647</td>
<td>4/10/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.07</td>
<td>46.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3715</td>
<td>4/13/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>19.08</td>
<td>44.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3806</td>
<td>4/27/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.00</td>
<td>48.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3826</td>
<td>5/4/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>19.18</td>
<td>43.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3831</td>
<td>5/4/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>18.63</td>
<td>46.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3936</td>
<td>5/8/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>15.79</td>
<td>76.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3999</td>
<td>5/18/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.82</td>
<td>56.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3982</td>
<td>5/25/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.88</td>
<td>50.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4068</td>
<td>6/1/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>16.88</td>
<td>48.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4110</td>
<td>6/8/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.95</td>
<td>46.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4141</td>
<td>6/15/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>14.99</td>
<td>52.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4314</td>
<td>6/29/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>18.86</td>
<td>60.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4183</td>
<td>7/1/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.40</td>
<td>53.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4320</td>
<td>7/14/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>18.39</td>
<td>67.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4376</td>
<td>7/27/59</td>
<td>SA</td>
<td>SASK</td>
<td>22.73</td>
<td>17.00</td>
<td>53.62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3881</td>
<td>5/5/59M BC QUE</td>
<td>22.73</td>
<td>21.15</td>
<td>97.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3991</td>
<td>5/19/59M BC QUE</td>
<td>22.73</td>
<td>21.03</td>
<td>103.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4030</td>
<td>5/24/59M BC QUE</td>
<td>22.73</td>
<td>20.69</td>
<td>104.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4028</td>
<td>6/1/59M BC QUE</td>
<td>22.73</td>
<td>20.95</td>
<td>120.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4102</td>
<td>6/8/59M BC QUE</td>
<td>22.73</td>
<td>19.82</td>
<td>117.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4130</td>
<td>6/22/59R BC QUE</td>
<td>22.73</td>
<td>19.88</td>
<td>133.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4364</td>
<td>7/14/59M BC QUE</td>
<td>22.73</td>
<td>20.92</td>
<td>131.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4253</td>
<td>7/30/59R BC QUE</td>
<td>22.73</td>
<td>20.90</td>
<td>119.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3004</td>
<td>11/13/58M SA QUE</td>
<td>22.73</td>
<td>18.65</td>
<td>121.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3003</td>
<td>11/18/58M SA QUE</td>
<td>22.73</td>
<td>18.15</td>
<td>119.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3001</td>
<td>11/27/58M SA QUE</td>
<td>22.73</td>
<td>18.51</td>
<td>138.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3000</td>
<td>12/2/58M SA QUE</td>
<td>22.73</td>
<td>18.58</td>
<td>126.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2999</td>
<td>12/9/58M SA QUE</td>
<td>22.73</td>
<td>19.89</td>
<td>75.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3002</td>
<td>12/16/58M SA QUE</td>
<td>22.73</td>
<td>19.38</td>
<td>75.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3006</td>
<td>12/22/58M SA QUE</td>
<td>22.73</td>
<td>19.87</td>
<td>110.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3467</td>
<td>12/31/58M SA QUE</td>
<td>22.73</td>
<td>20.21</td>
<td>85.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3462</td>
<td>1/5/59M SA QUE</td>
<td>22.73</td>
<td>19.20</td>
<td>88.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3466</td>
<td>1/13/59M SA QUE</td>
<td>22.73</td>
<td>18.31</td>
<td>137.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3459</td>
<td>1/24/59M SA QUE</td>
<td>22.73</td>
<td>18.69</td>
<td>101.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3464</td>
<td>1/29/59M SA QUE</td>
<td>22.73</td>
<td>18.92</td>
<td>86.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3463</td>
<td>2/3/59M SA QUE</td>
<td>22.73</td>
<td>19.51</td>
<td>87.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3460</td>
<td>2/10/59M SA QUE</td>
<td>22.73</td>
<td>18.83</td>
<td>102.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3668</td>
<td>2/18/59M SA QUE</td>
<td>22.73</td>
<td>18.48</td>
<td>107.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3650</td>
<td>3/3/59M SA QUE</td>
<td>22.73</td>
<td>18.30</td>
<td>150.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3649</td>
<td>3/10/59M SA QUE</td>
<td>22.73</td>
<td>18.99</td>
<td>149.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3638</td>
<td>3/18/59M SA QUE</td>
<td>22.73</td>
<td>18.90</td>
<td>105.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3639</td>
<td>3/24/59M SA QUE</td>
<td>22.73</td>
<td>20.21</td>
<td>116.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3659</td>
<td>3/24/59M SA QUE</td>
<td>22.73</td>
<td>19.37</td>
<td>92.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3656</td>
<td>3/31/59M SA QUE</td>
<td>22.73</td>
<td>19.54</td>
<td>97.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3891</td>
<td>4/13/59M SA QUE</td>
<td>22.73</td>
<td>20.31</td>
<td>100.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3892</td>
<td>4/20/59M SA QUE</td>
<td>22.73</td>
<td>20.70</td>
<td>89.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3890</td>
<td>4/27/59M SA QUE</td>
<td>22.73</td>
<td>20.04</td>
<td>96.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3893</td>
<td>5/4/59M SA QUE</td>
<td>22.73</td>
<td>19.74</td>
<td>96.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3895</td>
<td>5/11/59M SA QUE</td>
<td>22.73</td>
<td>19.84</td>
<td>100.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3894</td>
<td>6/4/59M SA QUE</td>
<td>22.73</td>
<td>20.28</td>
<td>132.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4305</td>
<td>7/6/59R SA QUE</td>
<td>22.73</td>
<td>19.98</td>
<td>96.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3017</td>
<td>1/2/59R SA SASK</td>
<td>22.73</td>
<td>17.41</td>
<td>46.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3078</td>
<td>1/12/59R SA SASK</td>
<td>22.73</td>
<td>16.13</td>
<td>36.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3175</td>
<td>1/28/59R SA SASK</td>
<td>22.73</td>
<td>16.76</td>
<td>34.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3176</td>
<td>1/28/59R SA SASK</td>
<td>22.73</td>
<td>16.73</td>
<td>38.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3240</td>
<td>2/6/59R SA SASK</td>
<td>22.73</td>
<td>17.05</td>
<td>24.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3284</td>
<td>2/16/59R SA SASK</td>
<td>22.73</td>
<td>17.33</td>
<td>34.79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3321</td>
<td>2/18/59R SA SASK</td>
<td>22.73</td>
<td>14.75</td>
<td>44.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3445</td>
<td>2/23/59M SA SASK</td>
<td>22.73</td>
<td>16.91</td>
<td>29.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 - Cont’d.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>UUC</th>
<th>CS/GM (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 4363</td>
<td>7/14/59M JA ONT</td>
<td>22.73</td>
<td>19.18</td>
<td>24.52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4331</td>
<td>7/20/59R JA ONT</td>
<td>22.73</td>
<td>19.97</td>
<td>26.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4387</td>
<td>7/21/59M JA ONT</td>
<td>22.73</td>
<td>18.99</td>
<td>26.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4287</td>
<td>8/6/59R JA ONT</td>
<td>22.73</td>
<td>18.68</td>
<td>24.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3011</td>
<td>12/26/58M KI ONT</td>
<td>22.73</td>
<td>18.30</td>
<td>41.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3055</td>
<td>1/2/59M KI ONT</td>
<td>22.73</td>
<td>19.40</td>
<td>35.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3113</td>
<td>1/10/59M KI ONT</td>
<td>22.73</td>
<td>19.19</td>
<td>36.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3125</td>
<td>1/14/59M KI ONT</td>
<td>22.73</td>
<td>19.48</td>
<td>40.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3242</td>
<td>1/30/59M KI ONT</td>
<td>22.73</td>
<td>19.66</td>
<td>33.09</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3285</td>
<td>2/26/59R KI ONT</td>
<td>22.73</td>
<td>19.11</td>
<td>38.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3298</td>
<td>1/26/59M KI ONT</td>
<td>22.73</td>
<td>19.31</td>
<td>38.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3393</td>
<td>2/17/59M KI ONT</td>
<td>22.73</td>
<td>19.93</td>
<td>36.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3425</td>
<td>3/1/59M KI ONT</td>
<td>22.73</td>
<td>19.38</td>
<td>41.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3495</td>
<td>3/5/59M KI ONT</td>
<td>22.73</td>
<td>19.63</td>
<td>38.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3525</td>
<td>3/13/59M KI ONT</td>
<td>22.73</td>
<td>19.42</td>
<td>34.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3534</td>
<td>3/17/59M KI ONT</td>
<td>22.73</td>
<td>18.75</td>
<td>41.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3560</td>
<td>3/30/59M KI ONT</td>
<td>22.73</td>
<td>19.68</td>
<td>40.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3706</td>
<td>4/14/59M KI ONT</td>
<td>45.45</td>
<td>20.23</td>
<td>34.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3773</td>
<td>4/21/59M KI ONT</td>
<td>22.73</td>
<td>19.82</td>
<td>43.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3854</td>
<td>4/30/59M KI ONT</td>
<td>22.73</td>
<td>19.91</td>
<td>41.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3872</td>
<td>5/7/59M KI ONT</td>
<td>22.73</td>
<td>20.26</td>
<td>41.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3917</td>
<td>5/19/59M KI ONT</td>
<td>45.45</td>
<td>19.85</td>
<td>54.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4089</td>
<td>5/28/59M KI ONT</td>
<td>22.73</td>
<td>19.20</td>
<td>57.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4078</td>
<td>6/3/59M KI ONT</td>
<td>22.73</td>
<td>19.11</td>
<td>44.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4099</td>
<td>6/11/59M KI ONT</td>
<td>22.73</td>
<td>18.92</td>
<td>45.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4176</td>
<td>7/1/59R KI ONT</td>
<td>22.73</td>
<td>19.20</td>
<td>32.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4307</td>
<td>6/12/59M KI ONT</td>
<td>22.73</td>
<td>19.30</td>
<td>30.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3126</td>
<td>11/5/58M GR QUE</td>
<td>22.73</td>
<td>18.88</td>
<td>89.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3344</td>
<td>11/5/58M GR QUE</td>
<td>22.73</td>
<td>18.57</td>
<td>85.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3224</td>
<td>11/7/58M GR QUE</td>
<td>22.73</td>
<td>18.43</td>
<td>61.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3042</td>
<td>11/8/58M GR QUE</td>
<td>22.73</td>
<td>18.63</td>
<td>89.56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3099</td>
<td>11/8/58M GR QUE</td>
<td>22.73</td>
<td>18.76</td>
<td>84.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3262</td>
<td>1/6/59M BC QUE</td>
<td>22.73</td>
<td>18.69</td>
<td>91.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3013</td>
<td>1/7/59M BC QUE</td>
<td>22.73</td>
<td>18.94</td>
<td>68.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3375</td>
<td>2/20/59M BC QUE</td>
<td>22.73</td>
<td>20.18</td>
<td>107.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3427</td>
<td>2/23/59M BC QUE</td>
<td>22.73</td>
<td>19.93</td>
<td>119.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3496</td>
<td>3/2/59M BC QUE</td>
<td>22.73</td>
<td>19.40</td>
<td>113.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3506</td>
<td>3/10/59M BC QUE</td>
<td>22.73</td>
<td>19.87</td>
<td>121.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3570</td>
<td>3/20/59M BC QUE</td>
<td>22.73</td>
<td>20.54</td>
<td>115.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3598</td>
<td>3/25/59M BC QUE</td>
<td>22.73</td>
<td>20.26</td>
<td>116.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3676</td>
<td>4/6/59M BC QUE</td>
<td>22.73</td>
<td>20.46</td>
<td>105.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3705</td>
<td>4/16/59M BC QUE</td>
<td>22.73</td>
<td>20.96</td>
<td>104.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3783</td>
<td>4/24/59M BC QUE</td>
<td>22.73</td>
<td>21.32</td>
<td>116.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3787</td>
<td>5/5/59R BC QUE</td>
<td>22.73</td>
<td>21.37</td>
<td>108.39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 - Cont'd.

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3702</td>
<td>4/14/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.93</td>
<td>64.09</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3774</td>
<td>4/19/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>21.01</td>
<td>71.42</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3788</td>
<td>4/27/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>21.05</td>
<td>65.10</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3830</td>
<td>5/ 5/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>21.59</td>
<td>82.04</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3887</td>
<td>5/12/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>21.03</td>
<td>69.63</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3922</td>
<td>5/19/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.12</td>
<td>77.67</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3971</td>
<td>5/25/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>21.36</td>
<td>103.30</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4029</td>
<td>6/ 2/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.08</td>
<td>66.29</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4091</td>
<td>6/ 8/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.13</td>
<td>79.54</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4129</td>
<td>6/22/59R</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.06</td>
<td>71.88</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4177</td>
<td>6/22/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.80</td>
<td>86.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4220</td>
<td>7/ 7/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.46</td>
<td>62.99</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4336</td>
<td>7/12/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.39</td>
<td>72.29</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4237</td>
<td>7/ 6/59R</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.32</td>
<td>71.89</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4252</td>
<td>7/30/59R</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.41</td>
<td>68.85</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4280</td>
<td>7/27/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.74</td>
<td>49.23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3040</td>
<td>12/23/58M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.32</td>
<td>41.11</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3071</td>
<td>12/30/58M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.03</td>
<td>35.09</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3084</td>
<td>1/13/55R</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.08</td>
<td>35.78</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3122</td>
<td>1/13/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.39</td>
<td>32.82</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3155</td>
<td>1/27/59R</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.63</td>
<td>32.65</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3243</td>
<td>1/27/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.00</td>
<td>38.13</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3289</td>
<td>2/ 3/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.82</td>
<td>34.36</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3385</td>
<td>2/24/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.23</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3356</td>
<td>2/24/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.92</td>
<td>34.87</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3377</td>
<td>2/-0/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.46</td>
<td>37.72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3429</td>
<td>3/ 8/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.74</td>
<td>36.40</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3524</td>
<td>3/18/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.56</td>
<td>42.80</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3622</td>
<td>3/24/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.69</td>
<td>38.20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3578</td>
<td>3/30/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.94</td>
<td>35.72</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3601</td>
<td>3/31/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.42</td>
<td>34.48</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3663</td>
<td>4/ 7/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.24</td>
<td>37.41</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3718</td>
<td>4/14/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.13</td>
<td>36.29</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3776</td>
<td>4/21/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.13</td>
<td>42.65</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3800</td>
<td>4/28/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.32</td>
<td>32.05</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3880</td>
<td>5/ 5/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.16</td>
<td>36.61</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3896</td>
<td>5/19/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.13</td>
<td>43.83</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3908</td>
<td>5/12/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.27</td>
<td>38.52</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4050</td>
<td>5/26/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.58</td>
<td>44.53</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4088</td>
<td>6/ 2/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.27</td>
<td>43.21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4127</td>
<td>6/22/59R</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.15</td>
<td>23.87</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4128</td>
<td>6/22/59R</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.72</td>
<td>23.17</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4236</td>
<td>6/30/59M</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.45</td>
<td>27.68</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4175</td>
<td>7/ 1/59R</td>
<td>JA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.12</td>
<td>28.02</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM</th>
<th>K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3098</td>
<td>12/29/58</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.28</td>
<td>64.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3154</td>
<td>1/5/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.58</td>
<td>69.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3178</td>
<td>1/21/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.70</td>
<td>66.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3246</td>
<td>1/19/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.15</td>
<td>65.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3288</td>
<td>1/26/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>17.90</td>
<td>70.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3322</td>
<td>2/4/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.31</td>
<td>72.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3381</td>
<td>2/11/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.58</td>
<td>70.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3452</td>
<td>2/23/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.01</td>
<td>72.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3486</td>
<td>3/2/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.22</td>
<td>64.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3528</td>
<td>3/9/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.37</td>
<td>63.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3571</td>
<td>3/16/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.50</td>
<td>73.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3600</td>
<td>3/23/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.32</td>
<td>59.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3688</td>
<td>3/30/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.08</td>
<td>68.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3714</td>
<td>4/6/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.79</td>
<td>72.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3777</td>
<td>4/13/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>21.48</td>
<td>68.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3786</td>
<td>4/20/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.13</td>
<td>73.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3825</td>
<td>4/27/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>21.96</td>
<td>58.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3888</td>
<td>5/4/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.12</td>
<td>68.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3923</td>
<td>5/11/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.61</td>
<td>72.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3981</td>
<td>5/25/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.07</td>
<td>76.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4003</td>
<td>6/1/59R</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.57</td>
<td>71.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4093</td>
<td>6/1/59M</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.28</td>
<td>98.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4136</td>
<td>6/8/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.40</td>
<td>97.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4223</td>
<td>6/28/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>21.71</td>
<td>134.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4283</td>
<td>8/3/59R</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.10</td>
<td>81.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4308</td>
<td>6/22/59</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.42</td>
<td>159.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4335</td>
<td>7/20/59R</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.41</td>
<td>121.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4370</td>
<td>7/24/59R</td>
<td>SU</td>
<td>NEWB</td>
<td>22.73</td>
<td>20.47</td>
<td>89.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3406</td>
<td>3/6/59M</td>
<td>CH</td>
<td>ONT</td>
<td>11.36</td>
<td>14.55</td>
<td>75.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3012</td>
<td>12/22/58</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>18.00</td>
<td>60.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3041</td>
<td>12/29/58</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>18.30</td>
<td>61.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3072</td>
<td>1/5/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.42</td>
<td>61.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3141</td>
<td>1/12/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>18.69</td>
<td>56.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3156</td>
<td>1/19/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.73</td>
<td>55.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3211</td>
<td>1/26/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.41</td>
<td>58.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3254</td>
<td>2/10/59R</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>18.05</td>
<td>54.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3324</td>
<td>2/12/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>18.61</td>
<td>56.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3345</td>
<td>2/18/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>18.82</td>
<td>51.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3379</td>
<td>2/23/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.64</td>
<td>60.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3419</td>
<td>3/2/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>19.92</td>
<td>62.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3492</td>
<td>3/9/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.12</td>
<td>61.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3540</td>
<td>3/16/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.79</td>
<td>63.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3550</td>
<td>3/23/59</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>20.87</td>
<td>73.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3670</td>
<td>4/6/59M</td>
<td>GA</td>
<td>ONT</td>
<td>22.73</td>
<td>21.13</td>
<td>84.51</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4 - Cont'd.

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY,
23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3721</td>
<td>4/13/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>19.87</td>
<td>52.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3700</td>
<td>4/20/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>20.24</td>
<td>48.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3807</td>
<td>4/27/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>18.02</td>
<td>42.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3939</td>
<td>5/12/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>18.33</td>
<td>66.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3995</td>
<td>5/25/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>18.55</td>
<td>52.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4035</td>
<td>6/2/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>19.12</td>
<td>54.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4083</td>
<td>6/8/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>17.93</td>
<td>60.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4140</td>
<td>6/15/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>16.75</td>
<td>59.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4181</td>
<td>6/22/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>19.19</td>
<td>75.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4238</td>
<td>6/29/59M</td>
<td>ALB</td>
<td>22.73</td>
<td>18.42</td>
<td>84.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4321</td>
<td>7/14/59R</td>
<td>ALB</td>
<td>22.73</td>
<td>19.29</td>
<td>88.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3093</td>
<td>12/26/58M</td>
<td>WI</td>
<td>22.73</td>
<td>21.49</td>
<td>40.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3076</td>
<td>1/5/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.79</td>
<td>44.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3128</td>
<td>1/9/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.30</td>
<td>60.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3190</td>
<td>1/16/59M</td>
<td>WI</td>
<td>22.73</td>
<td>19.33</td>
<td>48.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3232</td>
<td>1/23/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.90</td>
<td>49.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3256</td>
<td>1/30/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.50</td>
<td>35.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3283</td>
<td>2/13/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.99</td>
<td>44.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3312</td>
<td>2/16/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.67</td>
<td>50.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3383</td>
<td>2/20/59M</td>
<td>WI</td>
<td>22.73</td>
<td>19.67</td>
<td>53.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3448</td>
<td>2/27/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.99</td>
<td>49.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3642</td>
<td>3/4/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.81</td>
<td>51.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3484</td>
<td>3/6/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.50</td>
<td>49.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3526</td>
<td>3/13/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.82</td>
<td>45.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3629</td>
<td>3/20/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.91</td>
<td>62.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3558</td>
<td>3/21/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.71</td>
<td>52.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3708</td>
<td>4/10/59M</td>
<td>WI</td>
<td>22.73</td>
<td>19.93</td>
<td>64.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3772</td>
<td>4/17/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.81</td>
<td>56.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3798</td>
<td>4/24/59M</td>
<td>WI</td>
<td>22.73</td>
<td>21.06</td>
<td>49.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3840</td>
<td>5/11/59R</td>
<td>WI</td>
<td>22.73</td>
<td>21.06</td>
<td>61.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3903</td>
<td>5/15/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.29</td>
<td>63.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3931</td>
<td>5/8/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.55</td>
<td>91.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3978</td>
<td>5/22/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.43</td>
<td>76.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4026</td>
<td>5/29/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.59</td>
<td>97.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4096</td>
<td>6/17/59R</td>
<td>WI</td>
<td>22.73</td>
<td>19.94</td>
<td>97.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4139</td>
<td>6/23/59R</td>
<td>WI</td>
<td>22.73</td>
<td>20.08</td>
<td>102.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4182</td>
<td>6/19/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.03</td>
<td>75.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4295</td>
<td>7/6/59R</td>
<td>WI</td>
<td>22.73</td>
<td>19.82</td>
<td>70.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4357</td>
<td>7/10/59R</td>
<td>WI</td>
<td>22.73</td>
<td>20.27</td>
<td>85.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4226</td>
<td>7/14/59R</td>
<td>WI</td>
<td>22.73</td>
<td>20.18</td>
<td>74.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4378</td>
<td>7/17/59R</td>
<td>WI</td>
<td>22.73</td>
<td>20.38</td>
<td>85.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4279</td>
<td>7/25/59M</td>
<td>WI</td>
<td>22.73</td>
<td>20.19</td>
<td>89.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3015</td>
<td>1/2/59R</td>
<td>NEWB</td>
<td>22.73</td>
<td>18.27</td>
<td>70.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3077</td>
<td>12/20/58M</td>
<td>NEWB</td>
<td>22.73</td>
<td>19.14</td>
<td>60.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL SERIAL</td>
<td>DATE</td>
<td>TOWN</td>
<td>STATE</td>
<td>WGT</td>
<td>GM</td>
<td>K/KG</td>
<td>UUC</td>
<td>CS/GM K</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-----</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>22 3016</td>
<td>1/ 2/59R</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.01</td>
<td>41.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3026</td>
<td>12/17/58N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.07</td>
<td>32.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3082</td>
<td>12/31/58N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.00</td>
<td>31.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3158</td>
<td>1/14/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.58</td>
<td>37.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3209</td>
<td>1/21/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>21.14</td>
<td>35.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3221</td>
<td>1/26/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.29</td>
<td>38.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3257</td>
<td>2/ 4/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>21.13</td>
<td>36.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3318</td>
<td>2/10/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>21.41</td>
<td>43.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3355</td>
<td>2/18/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>21.49</td>
<td>41.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3413</td>
<td>2/28/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>21.00</td>
<td>44.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3458</td>
<td>3/ 4/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.74</td>
<td>46.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3487</td>
<td>3/11/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>21.62</td>
<td>46.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3542</td>
<td>3/18/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.34</td>
<td>52.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3631</td>
<td>3/21/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.46</td>
<td>43.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3562</td>
<td>4/ 1/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.42</td>
<td>45.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3698</td>
<td>4/21/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.30</td>
<td>61.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3699</td>
<td>4/15/59N</td>
<td>CA</td>
<td>ALB</td>
<td>18.18</td>
<td>16.50</td>
<td>52.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3851</td>
<td>4/28/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.73</td>
<td>54.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3878</td>
<td>5/ 5/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.97</td>
<td>64.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3916</td>
<td>5/20/59R</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>17.76</td>
<td>82.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3961</td>
<td>5/20/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.03</td>
<td>75.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4032</td>
<td>5/27/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>17.79</td>
<td>85.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4085</td>
<td>6/ 3/59M</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.99</td>
<td>86.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4109</td>
<td>6/10/59N</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.81</td>
<td>66.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4157</td>
<td>6/26/59R</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.33</td>
<td>73.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4196</td>
<td>7/ 2/59R</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.18</td>
<td>76.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4261</td>
<td>7/31/59R</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>19.73</td>
<td>73.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 4384</td>
<td>7/27/59R</td>
<td>CA</td>
<td>ALB</td>
<td>22.73</td>
<td>20.07</td>
<td>72.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3032</td>
<td>12/24/58M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>20.50</td>
<td>35.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3096</td>
<td>1/ 5/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.96</td>
<td>39.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3129</td>
<td>1/20/59R</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.84</td>
<td>39.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3210</td>
<td>1/19/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.66</td>
<td>37.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3214</td>
<td>1/26/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.84</td>
<td>36.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3245</td>
<td>2/ 2/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.69</td>
<td>40.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3308</td>
<td>2/ 9/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.20</td>
<td>39.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3341</td>
<td>2/16/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>18.98</td>
<td>47.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3376</td>
<td>2/23/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>18.83</td>
<td>41.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3430</td>
<td>3/ 2/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.15</td>
<td>43.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3462</td>
<td>3/ 9/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.25</td>
<td>41.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3527</td>
<td>3/16/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.05</td>
<td>48.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3573</td>
<td>3/24/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.63</td>
<td>44.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3586</td>
<td>3/30/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>18.77</td>
<td>49.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3874</td>
<td>4/ 5/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>18.88</td>
<td>43.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 3679</td>
<td>4/ 7/59M</td>
<td>ED</td>
<td>ALB</td>
<td>22.73</td>
<td>19.54</td>
<td>49.43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5

PEOPLE - CLASS 10=MALE, 11=FEMALE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>AGE</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3963</td>
<td>7/23/59</td>
<td>42</td>
<td>AUST</td>
<td>66.36</td>
<td>1.82</td>
<td>114.00</td>
</tr>
<tr>
<td>11</td>
<td>3964</td>
<td>7/23/59</td>
<td>32</td>
<td>AUST</td>
<td>59.55</td>
<td>1.60</td>
<td>92.06</td>
</tr>
<tr>
<td>10</td>
<td>3860</td>
<td>5/25/59</td>
<td>31</td>
<td>BELG</td>
<td>93.18</td>
<td>1.77</td>
<td>56.37</td>
</tr>
<tr>
<td>10</td>
<td>3861</td>
<td>5/25/59</td>
<td>36</td>
<td>BELG</td>
<td>70.91</td>
<td>2.14</td>
<td>75.31</td>
</tr>
<tr>
<td>10</td>
<td>3976</td>
<td>7/27/59</td>
<td>19</td>
<td>CHIL</td>
<td>60.00</td>
<td>2.53</td>
<td>40.16</td>
</tr>
<tr>
<td>10</td>
<td>3977</td>
<td>7/27/59</td>
<td>40</td>
<td>CHIL</td>
<td>75.91</td>
<td>2.02</td>
<td>68.31</td>
</tr>
<tr>
<td>10</td>
<td>3978</td>
<td>7/27/59</td>
<td>18</td>
<td>CHIL</td>
<td>63.64</td>
<td>2.55</td>
<td>30.42</td>
</tr>
<tr>
<td>10</td>
<td>3979</td>
<td>7/27/59</td>
<td>22</td>
<td>CHIL</td>
<td>63.18</td>
<td>2.16</td>
<td>35.26</td>
</tr>
<tr>
<td>10</td>
<td>3980</td>
<td>7/27/59</td>
<td>31</td>
<td>CHIL</td>
<td>56.36</td>
<td>1.91</td>
<td>54.96</td>
</tr>
<tr>
<td>10</td>
<td>3981</td>
<td>7/27/59</td>
<td>16</td>
<td>CHIL</td>
<td>57.73</td>
<td>2.20</td>
<td>41.84</td>
</tr>
<tr>
<td>10</td>
<td>3982</td>
<td>7/27/59</td>
<td>21</td>
<td>CHIL</td>
<td>63.64</td>
<td>1.93</td>
<td>53.47</td>
</tr>
<tr>
<td>10</td>
<td>3952</td>
<td>7/16/59</td>
<td>40</td>
<td>COL</td>
<td>64.09</td>
<td>1.92</td>
<td>35.61</td>
</tr>
<tr>
<td>11</td>
<td>3953</td>
<td>7/16/59</td>
<td>45</td>
<td>COL</td>
<td>56.36</td>
<td>1.49</td>
<td>55.34</td>
</tr>
<tr>
<td>11</td>
<td>3954</td>
<td>7/16/59</td>
<td>13</td>
<td>COL</td>
<td>41.36</td>
<td>1.97</td>
<td>32.86</td>
</tr>
<tr>
<td>10</td>
<td>3955</td>
<td>7/16/59</td>
<td>11</td>
<td>COL</td>
<td>25.00</td>
<td>2.57</td>
<td>18.53</td>
</tr>
<tr>
<td>10</td>
<td>3571</td>
<td>1/16/59</td>
<td>38</td>
<td>GERM</td>
<td>66.82</td>
<td>2.29</td>
<td>96.54</td>
</tr>
<tr>
<td>10</td>
<td>3941</td>
<td>6/29/59</td>
<td>25</td>
<td>JAP</td>
<td>61.36</td>
<td>1.94</td>
<td>56.52</td>
</tr>
<tr>
<td>10</td>
<td>4028</td>
<td>8/26/59</td>
<td>32</td>
<td>LIBE</td>
<td>85.00</td>
<td>2.06</td>
<td>61.87</td>
</tr>
<tr>
<td>10</td>
<td>3706</td>
<td>3/23/59</td>
<td>19</td>
<td>SWIT</td>
<td>84.09</td>
<td>2.35</td>
<td>99.88</td>
</tr>
</tbody>
</table>
Table 6

MILK - CLASS 20=FRESH, 21=WHOLE DRY, 22=NONFAT DRY, 23=DRY BUTTERMILK, 24=CONTROL SAMPLE

<table>
<thead>
<tr>
<th>CL</th>
<th>SERIAL</th>
<th>DATE</th>
<th>TOWN</th>
<th>STATE</th>
<th>WGT</th>
<th>GM K/KG</th>
<th>UUC</th>
<th>CS/GM K</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>3166</td>
<td>10/ 05/8M BA</td>
<td>ARG</td>
<td>11.36</td>
<td>14.98</td>
<td>16.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3167</td>
<td>11/ 05/8M BA</td>
<td>ARG</td>
<td>11.36</td>
<td>14.75</td>
<td>20.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3859</td>
<td>10/ 05/8M BA</td>
<td>ARG</td>
<td>10.00</td>
<td>17.56</td>
<td>10.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3860</td>
<td>11/ 05/8M BA</td>
<td>ARG</td>
<td>10.00</td>
<td>17.22</td>
<td>7.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3861</td>
<td>12/ 05/8M BA</td>
<td>ARG</td>
<td>10.00</td>
<td>17.02</td>
<td>13.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3602</td>
<td>11/18/8M SY</td>
<td>AUST</td>
<td>25.45</td>
<td>17.31</td>
<td>12.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3603</td>
<td>1/23/8M SY</td>
<td>AUST</td>
<td>25.45</td>
<td>16.81</td>
<td>13.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3604</td>
<td>12/23/8M SY</td>
<td>AUST</td>
<td>25.45</td>
<td>17.18</td>
<td>12.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3605</td>
<td>2/11/8M SY</td>
<td>AUST</td>
<td>25.45</td>
<td>17.16</td>
<td>11.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3974</td>
<td>12/ 05/8M</td>
<td>AUST</td>
<td>11.36</td>
<td>12.15</td>
<td>16.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3975</td>
<td>10/ 05/8M</td>
<td>BRAZ</td>
<td>11.36</td>
<td>13.62</td>
<td>28.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3165</td>
<td>6/ 05/8M SA</td>
<td>CHIL</td>
<td>11.36</td>
<td>13.45</td>
<td>49.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3397</td>
<td>6/-05/8M*SA</td>
<td>CHIL</td>
<td>11.36</td>
<td>13.40</td>
<td>48.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3168</td>
<td>9/ 05/8M SA</td>
<td>CHIL</td>
<td>11.36</td>
<td>13.85</td>
<td>58.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3398</td>
<td>9/-05/8M*SA</td>
<td>CHIL</td>
<td>11.36</td>
<td>13.01</td>
<td>54.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3169</td>
<td>12/ 05/8M SA</td>
<td>CHIL</td>
<td>11.36</td>
<td>14.42</td>
<td>96.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3399</td>
<td>12/-05/8M*SA</td>
<td>CHIL</td>
<td>11.36</td>
<td>14.31</td>
<td>90.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3401</td>
<td>12/-05/8M BD</td>
<td>COL</td>
<td>11.36</td>
<td>13.29</td>
<td>5.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3164</td>
<td>12/ 05/9M CO</td>
<td>DEN</td>
<td>11.36</td>
<td>12.31</td>
<td>38.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4054</td>
<td>3/ 05/9M CO</td>
<td>DEN</td>
<td>11.36</td>
<td>11.95</td>
<td>39.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3400</td>
<td>12/-05/8M MI</td>
<td>ENG</td>
<td>11.36</td>
<td>13.40</td>
<td>128.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3403</td>
<td>12/ 05/8M PA</td>
<td>FRAN</td>
<td>11.36</td>
<td>13.17</td>
<td>29.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3863</td>
<td>3/ 05/8M PA</td>
<td>FRAN</td>
<td>13.64</td>
<td>11.68</td>
<td>38.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3171</td>
<td>12/-05/8M FR</td>
<td>GERM</td>
<td>13.64</td>
<td>12.65</td>
<td>53.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3170</td>
<td>6/25/9M JAP</td>
<td>GERM</td>
<td>10.91</td>
<td>17.84</td>
<td>29.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3402</td>
<td>12/-05/9M MX</td>
<td>MEX</td>
<td>11.36</td>
<td>14.54</td>
<td>5.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4055</td>
<td>3/ 05/9M MX</td>
<td>MEX</td>
<td>11.36</td>
<td>13.66</td>
<td>35.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3172</td>
<td>12/-05/9M SWIT</td>
<td>MEX</td>
<td>13.64</td>
<td>13.03</td>
<td>79.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3973</td>
<td>3/ 05/9M SWIT</td>
<td>MEX</td>
<td>13.64</td>
<td>13.10</td>
<td>74.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3405</td>
<td>12/ 05/9M CA</td>
<td>VENE</td>
<td>13.64</td>
<td>11.77</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3862</td>
<td>3/ 05/9M CA</td>
<td>VENE</td>
<td>13.64</td>
<td>12.56</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>