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ABSTRACT

The effects of a poloidal potential variation of order ¢, which is likely to be produced
during high power cyclotron wave heating or neutral beam injection, upon neoclassical
particle transport and plasma current are studied theoretically, for a realistic tokamak
plasma with significant impurity content. Using an approximate collision operator,
an analytic procedure is employed to calculate the transport coefficients in the low
collisionality regime for a large aspect ratio tokamak. In the presence of carbon
impurity, the ion diffusion coefficients are generally found to increase by a factor of ~
2. Inclusion of the effects of a poloidal electric field is found to result in an increase
in the bootstrap current if the potential on the outside of the tokamak is greater than
that on the inside (as during ICRH or NBI) and the density profiles are more peaked

than roughly the square root of the temperature profiles.




I. INTRODUCTION

High power ion and electron cyclotron wave heating (ICRH and ECRH) can give rise
to significant in-out poloidal asymmetry in the electrostatic potential. It has been
shown! that, in the low collisionality regime, cyclotron wave heating causes increased
trapping, leading to a poloidal variation in the potential, which can reach magnitudes
of the order ¢, i.e., e®(8)/T ~ O(¢). Here, e is the unit charge, $(9) is the poloidally
varying part of the potential, T is the typical temperature of the plasma constituents,
and ¢ = r/R where r and R are the minor and major radii of the tokamak respectively.
It has been suggested? that both parallel and perpendicular neutral beam injection
heating (NBI) can also give rise to a significant poloidal electric field.

A poloidal potential variation of order ¢ can cause a significant change in the neo-
classical transport coefficients in the banana regime. It has been shown by Chang?
and Shurygin et al.® that an in-out potential asymmetry of order € can cause a signif-
icant enhancement of the neoclassical transport coefficients in a simple (electron-ion)
plasma.

In a realistic scenario, the plasma is contaminated by impurities. It is well known*
that the presence of an impurity, even in small amounts, can cause a qualitative and
quantitative change in the neoclassical transport. Indeed, in an impure plasma, ion
diffusion exceeds electron diffusion by appraximately the square root of the ion to
electron mass ratio. Hence, it is important to investigate the effect of an externally
induced poloidal electric field on neoclassical transport in an impure plasma in the
banana regime, which is the purpose of this paper.

We will be primarily concerned with calculation of the particle transport and
plasma current in the low collisionality, or banana, regime. Furthermore, we limit
our consideration to a large aspect ratio (¢ < 1) tokamak. In an impure plasma,
the presence of a poloidal electric field affects the collisional coupling between the
main ions and the impurity ions in addition to affecting the electron-ion collisional
coupling. The result of such a modification is an enhancement (or reduction) of the
ion transport as well as plasma current.

The paper is organized as follows. In Sec. II, we examine particle trapping in the



presence of a poloidal electric field. We solve the drift kinetic equation in Sec. III,
using an approximate collision operator developed by Hirshman et al.> The solution
methodology closely parallels the analytical technique in Ref. 5. We end this section
by deriving a set of equations for the so called restoring coefficients.’ In Sec. IV, the
restoring coefficients are used to obtain the electron and ion transport coefficients. In
Sec. V, we consider modifications to the plasma current due to the poloidal electric

field. Section VI contains a summary and concluding remarks.

II. EFFECT OF POLOIDAL ELECTRIC FIELD
ON PARTICLE TRAPPING

The presence of a poloidal potential variation of order ¢ significantly alters the nature
of particle trapping in a tokamak. As pointed out by Chang,? the in-out potential
asymmetry leads to an electrostatic potential well either on the inside or on the outside
of a tokamak, depending on the sign of the potential variation and the charged particle
species considered. As the trapped particle effects are crucial to neoclassical transport
in the low collisionality regime, we briefly reexamine particle trapping in the presence
of a poloidal potential variation of order ¢ in a multispecies plasma. Following Chang,?
we consider particle trapping when (i) €;®;,, < €;®,. and (ii) e;®;, > €; Py, where
®,,, and &,,, are the potential on the high field and low field side of the tokamak
respectively, and e; = Zje is the charge on the species under consideration. Here,

Z; = —1,1,Z for the electron, main ion, and impurity ion respectively.

This situation obtains for ions during ICRH (or NBI) or electrons during ECRH.
In the present case, particle trapping can be separated into two categories. The first
type, called B-trapping,? is the usual magnetic trapping on the low field side modified
by the electrostatic potential. The second type of trapping, called E-field trapping,?
occurs on the inside of the torus and is due to the potential well. For a charged

particle of mass m;, we define the kinetic energy, the total energy, and the magnetic



moment per unit mass as w = v?/2, E = w + ¢;®/m;, and p = v2 /2B respectively.
Here, B is the total magnetic field, v, and v are the perpendicular (to the magnetic
field) and total velocity of the particle respectively.

1. B-trapping

Using the conservation of energy and adiabaticity of magnetic moment, and following

the same steps as in Ref. 2, it can be shown that for B-trapping,
S} < {1+ cos)(S2 - 12;1Xo) §)

where S| = v/, SL = vL/vmj, and eXo = (e®./T). Here, v, is the velocity
parallel to the magnetic field and v, ; = 2T;/m;. We have assumed B = By/1+¢cosé
and e;®(0) = e;®.cosf (e;®. > 0). The angle 6 is the poloidal angle measured from
the outside of the tokamak. We further note that in the present work X, ~ O(1).
At this stage, we assume that T, >~ T; ~ Tz = T, where the subscripts e, ¢, Z refer to
electron, main ion, and impurity ion respectively. Defining the pitch angle variable
A = uBy/E, we identify the B-trapped region in the A — E space as

(l—e)sAs(1+e)[l—%9—)] @)

In deriving Eq. (2), we have set &(7) = 0 and e;&(0) > 0.
2. E-trapping
It can be further shown that for E-trapping,
52 < e(1 - cos6)(1Z;1Xo — S2) (3)
The trapped region in the A — E space is given by
e,@(O)
e Al 24 B WP
(1+e)[1 mE <A<1l-¢ (4)

We note that the minimum energy a particle can have is Eg = e;&/m;. The trapped
particle regions for B-trapping and E-trapping in the S; — S, and A — E space are
shown in Figs. 1 and 2. The dotted lines show the trapped particle region for & = 0.
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Bo ej@in > ej@out

. This scenario holds good for ions during ECRH and electrons during ICRH. When
e;®., > €;®,, only B-trapping is present.? Letting e;®(6) = —e;$.cosé (e;®. > 0)
and proceeding as before, we determine the boundaries of the trapped particle region
in the S — S, space as

S;‘I’ < €(1 + cos0)(S% + |Z;|Xo) (5)
In the A — E space, setting e;$(0) = 0, the trapped particle region is bounded by
— ol - &2®
(1-¢) [1 —

]
Figs. 3 and 4 show the trapped particle region in the velocity (S, — S.) space and

<A< (1+¢) (6)

A — E space. (We note that the trapped particle region depicted on the A — E space
in Fig. 7 in Ref. 2 differs significantly from that shown on Fig. 4.)

The expressions for the trapped particle region [Eqs. (1)-(6)] differ from the
corresponding expressions in Ref. 2 due to the presence of |Z;| (or ¢;). In a simple
plasma, |Z;| = 1 and Eqgs. (1)-(6) reduce to the corresponding expressions in Ref. 2.
In the presence of an impurity species with charge Z, the effect of a poloidal potential
variation is greater on the impurity ions than on the main ions. Indeed, for moderate
to large Z impurities, or when the potential variation is large, i.e. Xy > 1, most of
the impurity ions are trapped in the potential well. The difference in the trapping
fraction of the impurity ions and the main ions alters the collisional coupling between
the main ion and the impurity species, causing a significant change in the necclassical

transport coefficients in an impure plasma.

III. SOLUTION OF THE DRIFT KINETIC EQUA-
TION IN THE BANANA REGIME

We begin by considering the first order (in poloidal gyroradius) version of the drift
kinetic equation (DKE)%% 7 for the species i

vi- Vi1 +Vp; - Vo + ~ Euvu 9w _ ZCJk fits fa) (7)
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where the equilibrium distribution function f;, is given by

m; 32 - m;E*
. 3 _m;
o = mao (M,-) e""( T) )

Here, due to the presence of a significant poloidal electric field, the energy E* =

w + €;®()/m;. Furthermore, n o is the flux surface averaged density. For a large
aspect ratio tokamak, we define the flux surface operator as
1 r2x 1 ror
<T>= - hz dezﬂ‘/o (1 +ecos8)z df (9)

T Jo

For the drift velocity, we use the small 8 result®?2

Vpj = --’U”ﬁ x V (2!-'-) (10)
K

where ; = e;B/m; and the gradient is taken at constant E* instead of at constant
w as in the standard neoclassical theory in the absence of a significant poloidal po-
tential variation. Ej is the parallel electric field and fj; is the first order (in poloidal
gyroradius) correction to the distribution function.

We note that in obtaining the drift kinetic equation it is customary to treat quanti-
ties which do not explicitly depend upon the gyrophase as constants.® In the presence
of a wave heating mechanism, some quantities like E; may not be independent of
the gyrophase throughout the plasma volume. We, however, treat these quantities as
gyrophase independent for the following reasons: 1) In many wave heating scenarios,
particles of only one species participate in the energy absorption process. For instance,
during ECRH, only electrons take part in the energy absorption process, while dur-
ing ICRH, ions are the main participants. (W= note that in some instances, electrons
can also participate via Landau damping and transit time magnetic pumping.) Fur-
thermore, in many wave heating mechanisms, such as ICRH (minority heating), only
a small fraction of particles participate in wave heating. 2) In most wave heating
scenarios, the launched wave has k; # 0. This means that only a fraction of the
particles satisfying the resonance condition w — kjv; = 0 participate in wave heating.
In addition, the resonance zone where E, may not be zero is confined to a thin region
across a vertical plane. Hence, for the bulk of the particles over most of the plasma

volume, E; = 0 is a good assumption.



With this treatment, we proceed with the solution of DKE. The present treatment
differs from that used by Chang? in two ways:

1. We use an analytical procedure of the type used by Hirshman et al.5 and Con-
nor,” in contrast with the variational procedure used by Chang.?

2. We use the approximate collision operator developed by Hirshman et al.%° This
collision operator has the form
PATY V)| u; 1( )
Cix(fi1, fa) = Vkﬁfj 'U"h 2 S.fJU + [V,k ,k] AL fio (11)
th.j
Various terms in this equation are defined in Appendix A. The principal dif-
ference between this operator and similar operators used by other investiga-

tors’: %10

is the distinction between the pitch angle scattering frequency (v})
and the slowing down frequency (¥;},). Many of the properties of this operator
have been described in Ref. 5. However, for our purposes, the two most im-
portant properties of this operator are: (i) its ability to treat collisions between
species of arbitrary mass difference and (ii) its capability to treat the plasma
in a tokamak with an arbitrary aspect ratio. The second property is particu-
larly important because, in the presence of a significant poloidal electric field,
the smallness of the trapped particle region in a large aspect ratio tokamak is
destroyed in the low energy region of the velocity space (see Figs. 1-4). Hence,
in the low energy region (v < v;), the trapped particle fraction is close to 1,
while it is still small in the high energy region. The above collision operator is

suited for modeling this scenario.

The solution of the DKE is obtained by adopting the procedure used by Hirshman
et al’ The aim is to reduce the DKEs for n-species to a set of coupled algebraic
equations for the restoring coefficients < r;; > in the banana regime. Here, we define
the collisionality parameter as v,; = 7g/T.ss, Where 75 is the typical time for a
particle to complete the trapped orbit and 7.gs is the effective time for the trapped
particle to scatter out of the banana orbit. Writing

fir= —;;E—g;+gj (12)



where ¢ = |y)| and ¢ = % is the sign of the parallel velocity, and expanding g; in

terms of the collisionality parameter® v,; < 1, we obtain, to the first order in v, j,

lij
%6%% — () + 7 (00E o (13)

Here, © = By/B where By = Bj/(1+cos#) is the poloidal component of the magnetic
field. We note that the lowest order (in v, ;) solution g! is again independent of the
poloidal angle §. In the absence of a significant poloidal electric field, the above
equation can be integrated in the trapped and untrapped regions to eliminate the
unknown function gj.”®> In the present case, due to the presence of a significant
poloidal variation in the potential, the collision frequencies and the velocity integrals
u;1(v) and 7y depend upon the poloidal angle. This is due to the poloidal angle
dependence of the velocity v, which is given by v? = 2[E* — e®(6)/m]. We can
divide the untrapped particle region into (i) untrapped particles forming a part of the
boundary layer (marginally untrapped particies) and (ii) well untrapped particles. In
the present analysis, we will not carry out a detailed boundary layer analysis. We
consider only the untrapyped particles with a large kinetic energy in comparison with
their potential energy. Hence, we treat the velocity to be independent of poloidal

angle for these particles. With this, Eq. (13) can be integrated to obtain’-5

[ —(B°/ < w >)[(m;/e;B3)8f0/Or
0g) _ | +(mfio/TrP)Th < > i+ (1= o) (S wunlo) > [)fia
ou +(e; fjg/T’ju}’ )E“] for passing particles

| 0 for trapped particles

Here, ¥ = S, v5, v = Ty v}, and E® =< E) >. Upon using the Eqgs. (14) and

(12) in the expressions for u;1(v) and the restoring coefficients r,;, we obtain?:®

® E*
e - iy (35 [ o ) N
1 T} VEVE e
RS (ekBO) [{ Vi f&} (AMJr T: )
Vks. Vf mkE"
S (55) s o

+ 2 gy { f’f }+E = {Vf’y“f }<r > (15)
3T S\ ik
my 3{"51'} g ' T {vis} *

Vi
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Using the same notation as Hirshman et al.,’ we have defined the “driving forces” as

—E’ﬁ_?’.ﬂ. _'ﬂ. _ 0
W= TR Azk—Tk, A3 =FE (16)

where the prime denotes derivative with respect to r.

In Eq. (15), the effect of the poloidal electric field is contained in fg (= 1— fie),
vie = fuaVk + fuvP, and E*(= v?/2 + e®(6)/m). The most significant effect is
contained in the neoclassical factor fis (= 1 — f¢). The quantity fi¢ is analogous
to the quantity f, defined in Ref. 5. Indeed, for $(6) ~ 0, fis = f.. The factor
fie contains the effect of modification of the boundary between the trapped and
untrapped regions in the velocity space due to the poloidal electric field. For a large
aspect ratio tokamak, we obtain the following approximate expressions for f.s (see
Appendix B for details).

For ; @iy, < €;P o,
_1Z1%,
T2

J

fm thll (17)

and, for ejQiu > ej‘pouh

Ty (12
1+ ___lZ;Ij( 0

2

fie = fi (18)

where :cf- = m;w/T. In the absence of a poloidal electric field, fig = f,.°
When &(6) ~ 0, the Eq. (15) reduces to Eq. (26) in Ref. 5. Noting that

Ve = feaVi + fravd,
fa _ | fwr?
Ve Vre
Using this result and summing the Eq. (15) over j, we obtain, after changing the

dummy index ! to j, the following useful expression’

erEY T, vivP e ®’

j my Vre
S,,D . D
Vg v (mkE ) _ €k Vi
+ {——Vm T fm} A2k] — A3 {Vm fadr}
S D
"Z{Vk’ kfm} < Tk > (19)
j Vg

This equation is useful in determining the particle fluxes.
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IV. PARTICLE TRANSPORT
The radial particle flux is given by
L= </d3’0 fj'vdr.j> (20)

where vy, ; is the radial component of the drift for the species j. Using the expression
for the drift [Eq. (10)] and the previously obtained solution for f;;, the particle flux

can be expressed in terms of the restoring coefficients® as

m;n T EO
Tjs =E ) "g“ "}[< Tik > — < T >] — ’g(,
k [}

Here, the subscript ® denotes the presence of a significant poloidal electric field. Using

(21)

Eq. (21) and the momentum conservation vzlation® m;n;{v5,} = muni{vg;}, it can
be easily shown that the particle fluxes a: - =x hipolar, i.e. ¥;e;T'j¢ = 0. Using the
expression (19) in Eq. (21), the particle flux is written as

m;niol; e<I> 5 D Pys (m;E*
Fjs = ——;?-—Bf—gfi[(mj T ){f@ }+A2;{fm ’J; -—3,1—

_m;njo Favf v o _MjoAs frav}
H k{ vie }<Tk’> By | vie (22)

where the restoring coefficients are given by Eq. (15). We note here that the procedure

used for obtaining the above expression for the particle flux in the presence of a
poloidal electric field is similar to that used by Connor’ and Hirshman et al.> The
above expression for the particle flux differs from the corresponding expression [Eq.
(30a)] in Ref. 5 in that f,¢ is energy dependent and E* = v2/2 + e®(6)/m. When
$(0) = 0, the above expression reduces to Eq. (30a) in Ref. 5.

As the restoring coefficients are linear in the driving forces Ay, Az, A3, and @',
the particle flux due to each of the driving forces may be obtained separately.> The
radial electric field does not contribute to the particle fluxes. Hence, we consider the

particle flux due to Aig, A2i, and Asg.

A. Response to the gradient terms

We first consider the diffusive fluxes in response to the gradient terms A;; and Ag;.

The expression for the parti le flux [Eq. (22)] indicates that, to determine the particle

11



flux to the order f,q, it is sufficient to determine the restoring coefficients < r; >
to the lowest order in fi4. This fact and t* form of the equation for the restoring

coefficients, Eq. (15), suggest the following expansion for < r;; >
<ri>=Va+ fia <Tii >1+--- (23)

where, to the zeroth order in f,p, the restoring coefficients of all the species equal a
common toroidal rotation velocity V. Such an expansion has been used by Hirshman
et al.® to solve far the particle fluxes. As discussed in Ref. 5, the validity of such an
expansion depends upon two conditions.

1. Collisional coupling among passing particles of the various species should be
sufficiently strong to establish a common flow. This condition is usually met in

a device even with a small impurity concentration.

2. The trapped particle fraction is sufficiently small. The quantity f,¢ is propor-
tional to the fraction of trapped particles. In a large aspect ratio tokamak (¢ <
1), when &(8) = 0, this condition is satisfied. In this case, fis = f; ~ O(1/€). In
the presence of a poloidal electric field, we may obtain one of the two scenarios
outlined below.

(a) When X, =~ 1, for electrons, ions, and lighter impurities the following
discussion is valid.
In the presence of a significant poloidal electric field, we have found that
the boundary between the trapped-untrapped particle regions is a func-
tion of the particle energy (see Section II.). Referring to Figs. 1-4, we
find that, for the low energy particles, the extent of the trapped particle
region in the A direction is not small. Analytically, this difficu’ty mani-
fests itself in the velocity dependence of the quantity f,4, which is velocity
independent when €(6) = 0. As a result, velocity integrals of the type
{feF(v)} # fi{F(v)} where F(v) is a. arbitrary function of velocity. Ac-
tually {fie F(v)} > fi{F(v)}, especially for large values of the poloidal
electric field (i.e. X, > 1). However, we note from Figs. 1-4 that the
extent of the region with increased trapping is small in the E direction

12




for a large aspect ratio tokamak. Furthermore, the contribution of the
low velocity region with enhanced trapping to the velocity integrals of the
type { f@l’(u"} is small (see Appendix C). We, therefore, assume that
{fie F(v)} ~ O(f,). Specifically, we assume that the enhancement of ve-

locity mtegrals of the type {fiz F(v)} over similar integrals when &(6) =
is only by a factor less than an order of magnitude.

(b) When X, = 1, for a heavy impurity (Z; = Z > 1), the quantity |1:!:l‘-}‘-‘1|1/2
can be quite large and f,3 can approach unity for moderate values of \/c.
Physically, this means that most of the impurity particles are trapped in
the electrostatic potential well. If this situation obtains, the expansic . . {
Eq. (23) is not valid.

From now on, we concentrate on those situations where figp < 1. With this, we use
the expansion (23) in the expression for particle fluxes. Using only the lowest order
(in f,e) restoring coefficient V in K<, (22) and the ambipolarity of the particle fluxes,

we obtain the common toroidal rotation velocity as

Ti(myn;T;/e;B3) [Ay; { fravfvP [vje} + Ag; { frov§VP [vje (miE* [T})}]
2 min; {fﬂb Vi vy /VJ‘I’}

Vo =—
(24)

Using this expression in Eq. (22), we obtain the following expression for the diffusive
particle fluxes.

PJQ(Ala A2 Z LanAuk (25)
kn=12
where
Lt _ }:z;ejmznz{fuwf’”ts/”m} L.
e Timmi{ fiePvf fvie} | °
i ePivemiBm))
i, = 4l (mm {.f:«wf /m} L
14 Zi T; \ Timunmi{ fravPvi [vie}
ik {ft'l’Vk Vi [vie (miE* /Tk)}
Lye = 11@

{frevP Vi [vra}
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and

2
e?By Vie

From the above equations, it is easy to see that

I".- m;
e~ o(ym)

Hence, to satisfy ambipolarity, I'; >~ —(e;)/(ez)l';. Thus, ion and impurity diffusion

VSVD
Lijg = myn;1; {fm }

occur at a comparable rate at the beginning of the discharge. Over a longer time
scale, the ion and impurity density and temperature profiles adjust to make the ion
and impurity fluxes comparable to the electron flux. When this condition (known as
the “stationary state””) ¢otains, ambipolarity gives

LPeo = Zil'ia + ZT 24 (26)

B. Response to the parallel electric field

Now, we calculate the electron flux due to the parallel electric field. The solution
method used here is similar to that used by Connor.” Using Eq. (15), in the absence
of A, Az, and &', it can be easily shown that’

< Tej DD 1 >, <11 > (27)

Here, we again have used {f,eF(v)} ~ O(f,). Using Eq. (15) to obtain < r.. >, and
using Eq. (22), the radial electron flux due to the parallel electric field can be written
as

(28)

r :o(Aa) = - [{ fu } e [} {val Vet }

By Vet {vi.(vee —vE,)/vea}
Again, as with the diffusive fluxes, the effect of the poloidal electric field is contained
in the factor fis and v.g. When (5(0) = (, our results for the Ware pinch are identical
to those obtained by Hirshman et al.® Also, if we set V k and v.¢ = v? in Eq.
(28), we obtain results identical to those obtained by Connor.”

Before we present the results on transport coefficients, we wish to make a few

simplifications which greatly facilitate the calculations.
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1. We note that vj¢ = [ + fie(vP — vF)]. In the absence of a poloidal electric
field, v; = [V + fu(vP — v§)], and, for a large aspect ratio tokamak (f, < 1),
we can set vj = v7 to the lowest order in f,.> When a poloidal electric field is
present, we have fig = fi|1£|Z;|Xo/z3|"/2. We observe that in the low energy
region where £ = v/v, < 1, fie can be quite large, approaching 1. It can be
shown (see Appendix C) that in the large aspect ratio limit, the contribution of
this region to velocity integrals of the form { fie F'(v)}, where F(v) is a function
of collision frequencies, is small. Hence, we set v;p = Vjs while evaluating the

velocity integrals.

2. We note that some of the velocity integrals in the above expressions involve
E* = w+ e®(0)/m. As the second term in this equation is comparable to
the first term only in the low velocity region, and as the contribution of the
low velocity region to the velocity integrals of the form {F(v)} is small (see
Appendix C), we use E* ~ w in evaluating the velocity integrals.

The velocity integrals appearing in the transport coefficients [see Egs. (25) and (28))
are analytically intractable. Hence, consistent with the approach used by Chang,? we
present numerical results for the transport coefficients. We consider a three species
plasma in which deuterium is the main ion and the impurity species is carbon. We
alsoset T, ~ T; ~ T.

C. Electron Transport
1. Diffusive Flux

To facilitate comparison of our results with previous results, we write, by rearranging

the terms in Eq. (25), the diffusive electrra flux as

ee 7" n’e ee ee 5 Te'

Lo = Lite (14 77) 2+ B0+ 250 (e - 3) | 7
+¢= (.I'_)( _.?_).Tl.l. ee (i) .Ti:'.__n_'e
11,& Z"Te Yie 2 71' 11,¢ Z,’Te n; n.

Z oz [Ti [ ._2)2-' _Tz g ( _§)T_é
_Tan'Q[Z.' [ni+(yub 5 T.'] Z[nz+ Yze —3) 7, (29)



Here, we have defined the quantities y;¢ as

 {ferf (mB*T))
vie = {ftQVJD}

where we have used vjp =~ VJ-S . We note that in the absence of impurities, the last

(30)

two terms in Eq. {29) vanish, and the resulting expression has the same form as the
expression for the electron flux obtained by Chang.? In the presence of an impurity
species, after the stationary state’ has been reached, the last term in Eq. (29) van-
ishes and it reduces to the form obtained by Connor.” Here, we present the results on
electron transport coefficients only after th~ stationary state has been reached. Con-
sistent with the approach used by Chang,2 we now define the transport enhancement
factors as Lk
Fli==3 (31)
Li,

where n = 1,2. Here, L{fm and L3¥ are the transport coefficients with and without
a poloidal electric field respectively. L3’ is obtained by using fis = f, in Egs. (25).

Variation of electron transpott enhancement factors Ff;f and the quantities yj¢
(j = e,1) as a function of the ::=raitude cf the poloidal potential variation X, is
shown in Figs. 5,6, and 7. We note that the topology of the curves seems to be related
to the nature of the factor f,s, which is proportional to the trapped particle fraction.
As discussed in Section IL., when e;®,, > e;®,,, B-trapping is enhanced by the
potential variation. Behavior of the enhancement factors Ff seems to reflect this. For
€;®in < €;Pou, the situation is somewhat complicated. For the low energy particles,
there is a reduction in B-trapping, which, however, is somewhat compensated by the
presence of E-trapped particles. It appears that for small values of X, there can
be a decrease in the trapped particle fraction which is reflected in the behavior of
enhancement factors for small X,. It also appears that for large values of X, there
can be an increase in the trapped particle fraction. The quantity y;¢ is related to
plasma rotation. It appears that enhanced (or reduced) trapping due to a poloidal
electric field causes a decrease (or increase) in the collisional coupling between the
species, resulting in a decrease (or increase) in the quantity y;e.

We now compare our results, in the absence of impurities, with those obtained
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Figure 5: Electron diffusion enhancement factor Fff(= L§j ¢/L{j) as a function of

the magnitude of the poloidal potential variation, X, (Impurity: Carbon; Z.;;=3.0)
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Figure 6: The transport parameter y.¢ as a function of X, (Impurity: Carbon;
Z.$5=3.0)
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Figure 7: The transport parameter y;s as a function of X, (Impurity: Carbon;
Zeff=3.0)
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by Chang.? We note that the factor Ff defined here is equivalent to the factor F|{
defined in Ref. 2. Also, the quantity 3;¢ defined here is equivalent to the variz:ional
parameter y defined by Chang. In the absence of impurities, the agreement between
yi¢ and y is very good. However, the result for Ff§ obtained in this work differs from
that obtained by Chang for Fl(f’ by 15% for X¢ = 4. The discrepancy is smaller
for smaller values of X;. (Our calculation of the enhancement factor F{f’,deﬁned by
Chang,? using the expressions in Ref. 2 yields a much closer agreement between Fff
and F{f’ , the difference being less than ~ 2% at X, = 4.) We note in passing that
the transport coefficient (a4, 92.) defined in Ref. 2 is equivalent to LS ¢(y.e — 5/2) in
this work, and the comparison between the corresponding enhancement factors yields
a result similar to that between F{ and F7.

The presence of an impurity has negligible effect on the transport enhancement
factors FiT and the quantities y;¢. This seems to be in agreement with the conclusion
drawn by Chang.? We note, however, that the presence of an impurity results in two
additional terms in the expression for the electron flux [the 4th and 5th terms in Eq.
(29)]. Finally, we note that, in the absence of a poloidal electric field, our results on

§5 and y. agree with those obtained by Connor.” However, due to the large impurity
mass assumption used in Ref. 7, Connor’s result for y; differ from those obtained in

this work by ~ 30% in the presence of carbon impurity when @ = nz;Z%/n;Z? = 1.

2. Ware pinch effect

We define the Ware pinch enhancement factor as

[4
e _ 39
Fiy = —;

13

Figure 8 shows the variation of the Ware pinch enhancement factor as a function

of Xy. The Ware pinch enhancement factor is topologically similar to the diffusion

enhancement factors. The enhancement, however, is much weaker than that of the
diffusion coefficients.

The Ware pinch enhancement factor generally decreases with increasing Z;;.

However, when ®;, > ®,,, and for X; < 1, it remains constant or might even increase

slightly. Referring to Eq. (28), the effect of electron-electron collisions is contained
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Figure 8: Ware pinch enhancement factor Ff; (= L{; 4/L{3) as a function of X,
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primarily in the second term. It appears that the presence of impurities generally
leads to a reduction in the contribution of the electron-electron collisions relative to
the first term, leading to a decrease in the Ware Pinch enhancement factor. The
behavior of the Ware pinch enhancement factor with increasing Z.; is similar to the
behavior of the neoclassical conductivity reduction factor. We discuss this in Section
V.

We have compared our result for the Ware pinch enhancement factor (Fy;) with
the result [F{5'] obtained by Chang? in the absence of impurities. As with the electron
diffusion coefficients, we find that our results differ from those obtained by Chang by
~ 20% for X, = 4 and the enhancement factors calculated here are smaller than those
in Ref. 2.

D. Ion Transport

We now consider ion diffusion coefficients. Again, to facilitate comparison with pre-

vious results, we express the main ion flux as

r = ZT [[T ﬂ_(ﬁ_.)ﬁ__7222_<§_ )22
i = T, 11,8 Z.T. | n 2 Yie T, ZT. | 7z 2 Yze T,
mene{ fravP} [ 1 [n; N (3 T;}

—Ek;éi mknk{mekD} Z ﬁ: 2 Yet i
_ I @_@_ E:
7T, [nz 5 " V)7 (32)

As expected, in the absence of impurities, the above equation reduces to Eq. (29) with

(ZiT./T) LY, ¢ = (1/Z:)L$5 4 to satisfy ambipolarity. In the presence of impurities,
the second term is negligible, and we recover an expression which has the same form
as the one obtained by Connor [Ref. 7, Eq. (48)]. The transport enhancement factor
F§ and the quantities ¥4, yze as a function of X, are shown in Figs. 9, 7, and 10
respectively. The behavior of the ion enhancement factor Fj} is qualitatively similar
to that of electron enhancement factors. However, ion enhancement factors depend
upon the impurity content as well as the type of impurity species.

The dependence of the ion transport enhancement factor Fj; upon impurity con-

centration is shown in Fig. 11. In the presence of a poloidal electric field of the order e,

22



4-0 l 1 ' ) T 1 T 1 T

0.0 08 16 24 3.2 4.0

Figure 9: Ion diffusion enhancement factor Fj} (= LY, 4/LY;) as a function of the

magnitude of the poloidal potential variation, X, (Impurity: Carbon; Z,;;=3.0)
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Figure 10: The transport parameter yzs as a function of X, (Impurity: Carbon;
Zeff=3.0) .
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i.e. e®(8)/T ~ O(e¢), due to their larger charge, the fraction of impurity ions trapped
in the electrostatic potential well is greater than that of the main ions. This causes
a reduction in the collisional coupling between the main ions and the impurity ions,
resulting in a drop in the ion transport. This effect is more pronounced for smaller
values of Z.s; due to the increasingly important role being played by the impurity
species in determining the ion transport.

We now examine the effect of impurity species on transport enhancement. Here,
we are primarily interested in the effect of impurity charge and mass upon ion trans-
port at constant @ = nzZ?%/n;Z?. The fraction of impurity ions trapped in the
electrostatic potential well increases with Z. This causes a reduction in the colli-
sional coupling between the impurity ions and the main ions, resulting in a reduction
in the ion transport. This effect, which is due to the impurity charge, is somewhat
offset by the impurity mass. An increase in the impurity mass leads to an increase
in ion transport and it appears that, at least for small to moderate Z impurities,
the transport enhancement due to the impurity mass is more important than the
transport reduction due to the impurity charge.

Table I shows the transport enhancement factor F}} in the presence of different
impurity species for & = 1 and Xo = 1. F}} increases as the impurity mass increases,
reaching a maximum for iron. For tungsten, the enhancement factor is smaller than
that for iron, apparently indicating the transport reducing effect of impurity charge.
We note that the charge state indicated in Table I corresponds to an electron tem-
perature of ~ 10 keV. We also note that a heavy impurity like tungsten may not be
in the banana reg’ ue under conditions that prevail in most tokamaks. The compari-
son presented in Table I is intended to demonstrate the opposing effects of impurity
charge and mass on ion transport enhancement.

Finally, we note that in the absence of a poloidal electric field, the quantities
L11.4, vie, and yz ¢ depend upon the impurity mass. Our calculations indicate that
the discrepancy between our results and those obtained by Connor,” using the heavy
impurity assumption, can be quite large when the impurity mass is small. For ex-
ample, when the impurity strength parameter a = 1, the discrepancy in L}, %, and
yz can be ~ 90%, 30%, and 20% respectively for carbon impurity. The differences
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Figure 11: Ion diffusion enhancement factor F}} as a function of impurity concentra-
tion, Z.;; (Impurity: Carbon; X, = 1.0)
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TABLE I: Effect of impurity species on the ion transport enhancement factor Fj}
(a = nzzz/n.'Z,? =1 Xo= 1).

Impurity | Z | mz/m, Fj

S < Pout | Pin > Pow
Helium 2 2 1.098 1.777
Carbon 6 6 1.342 2.065
Iron 26 28 1.454 2.249
Tungitfn 60 92 1.427 2.201

decrease as the impurity mass increases. However, even for tungsten, the discrepancy
in LY, is ~ 30% when a = 1.

E. Plasma Rotation Velocity

While deriving the expressions for the diffusive fluxes, we obtained an expression for
the common plasma rotation velocity, Vp [Eq. (24)]. Neglecting the contribution of
electrons, we write the rotation velocity, for a three species plasma as

Ve= ¥ REgAu (33)

kn=1,2

where the rotation coefficients RX 4 can be easily identified by comparing the above
equation with Eq. (24). Asin the case of transport coefficients, we define the rotation
enhancement factors as

Ff, = — (34)

The rotation enhancement coefficients generally decrease with increasing poloidal
potential variation. Figure 12 shows the variation of rotation enhancement factor
F}, with X,. We observe that for constant gradients, the rotation velocity decreases
for most values of X,. With increasing X, most of the rotation enhancement factors
~ asymptotically approach a constant value. The drop in the rotation enhancement
factors is a result of reduction in the collisional coupling between the main ions and

impurity ions caused by enhanced trapping due to the poloidal electric field.
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Figure 12: Enhancement of the rotation coefficient Fj,(= R} 3/R}) as a function of

Xo (Impurity: Carbon; Z,;;=3.0)
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"The behavior of the enhancement factors as a function of Z.;; is analogous to the
behavior of the ion transport enhancement factor Fii. As with ion transport, the
drop in the rotation velocity is caused by increased trapping of the impurity ions due
to their larger Z. This results in reduced collisional coupling between the main ions
and the impurity ions, and hence, reduction in the common flow velocity. Presence
of an impurity species of larger Z has a similar effect upon the rotation velocity.

For an electron-ion plasma, Shurygin and Yushmanov® have calculated the radial
electric field enhancement factor in the presence of a poloidal electric field. Their
calculations indicate that the radial electric field, which is proportional to the rotation

velocity, shows a behavior similar to that displayed by the enhancement factors Fj .

V. PLASMA CURRENT

‘The general expression for the flux surface averaged plasma current is

J= Ze,-nj <uj >= - Zejn,-(< Ue > — < Uy >) (35)
j Jj

where the parallel velocity of the species j is given by
1
= — [ 43 .
U; n; / voqfi1

The procedure used for calculating the parallel velocity is analogous to that used for
calculating the restoring coefficients < r; >. Using the solution for f;;, the parallel

velocity is found to be”

_ fev§ fio , ejAs [ fie
DA —[{71: (9130) f:0}+ { Vie } > mj {;’—:;}]
uS f](] AB
(-0 () ) e (i) <o i)

o [ e < ®> (m,E‘) ]
0 = | Ay + + A
fio LV T; T )%

As with particle transport, the current due to the ohmic field and the gradient terms

where

can be calculated by considering the driving forces individually. Again, the radial

electric field does not contribute to the current.
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A. Parallel conductivity

We calculate the parallel conductivity by considering the driving force As. As
< 4, >>< u; >,< uz >, we consider only the electron contribution. Furthermore,
< Tee >>< Ty >,< Tz, > [Eq. (27)]. Using the restoring coefficient < 7., >
calculated to the order fiy from Eq. (15) in the expression for < u, >, we obtain the
ohmic current as

J= UQE” (37)

oa = n.e? [{ fee } + {cher/Ve‘l’}Z J a

me ||Vvee) [V} —{faVivs/ves)]

For a large aspect ratio tokamak, we can write g as

where

Oe =0cL— fionce (39)

where o¢y, the conductivity in a plasma with a uniform magnetic field, is given by

2
S /,,8
neez 1 {Vee/ve }
OcL =

{ys} {vS(vs = v8)/vS} (40)

and onc e, the neoclassical conductivity reduction factor, is given by

ne? [{f«w”} 2{vs/vi} {fraver? |(v)}

oNce = VS(vs —v3)/vs)

+ {Vese/"es} {fco(Vee)zVeD/(yes)z}] (41)

2
Wi wé —va)vé?

Here, the expression for oyc ¢ is accurate to order f,. When ®(8) ~ 0, Eq. (37) for
the parallel current reduces to Eq. (49) in Ref. 5. Also, when v = v} and &(6) =
the expression (37) reduces to Eq. (46) in Ref. 7.

Consistent with our approach in the case of particle transport, we define the

enhancement factor for the neoclassical conductivity reduction as

F33 = INcs (42)
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Figure 13 shows the variation of F33 with the magnitude of the poloidal potential
variation, Xy. The behavior of Fj3 is similar to that of the Ware pinch enhancement
factor Fis.

Figure 14 shows the variation of the enhancement factor F33 with Z.s;. For
®in > ®oue with Xy > 1 and for &;,, < Py, the enhancement factor Fz; decreases,
signifying a decrease in the neoclassical conductivity reduction factor. However, for
®i. > &, and X ~ 1, F33 increases with Z;.

Before we attempt an explanation of the behavior of F33 with an increase in the
impurity content, we note that the neoclassical conductivity reduction factor oyxc.e
has three terms [see Eq. (41)]. The first term in Eq. (41) contains primarily the effect
of electron collisions with main ions and impurity ions, while the other two terms
depend mainly on electron-electron collisions. As pointed out by Hirshman et al.,*
an increase in the impurity content causes a decrease in the neoclassical conductivity
reduction by increasing the electron-ion collisions as well as by decreasing the effect
of electron-electron collisions. The former effect results in a decrease in the first term
in Eq. (41), while the latter effect causes a reduction in the last two terms in Eq.
(41).

The presence of a poloidal electric field affects onc ¢ primarily by affecting the
fraction of trapped particles. When &®;, > ®,,, and X, ~ 1, the trapped electron
fraction decreases in the region of the velocity space where v ~ v,. Hence, the
conductivity reducing effect of impurity ions is weaker, giving rise to a slight increase
in F33 with Z.4;. In all other cases, the fraction of trapped electrons in the region of
velocity space where v ~ vy, increases, and hence the conductivity reducing effect of
impurity ions is stronger. This results in a decrease in F3; with Z.;;. We note that
the behavior of Ware pinch enhancement factor Fy; as a function of Z.s; is similar to
that of F33. Hence, the present discussion applies to the behavior of Fy; as well.

Comparison of the results obtained in this work with those obtained by Chang?®
in the absence of impurities indicates a ~ 20% discrepancy between the two results
at Xy ~ 4. As with the Ware pinch enhancement factor, the values obtained in the
present work are smaller than those obtained Ref. 2. It appears that the discrepancy

decreases as Xy becomes smaller. We note in passing that in Ref. 2 the analytical
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Figure 13: Enhancement (F33) of the neoclassical conductivity reduction factor as a

function of X,
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fit for the neoclassical conductivity reduction factor (as, gs.) for the case ®;, > ®,.
does not seem to reproduce the curve shown in Fig. 12 of Ref. 2. Our comparison
here is with the curve in Fig. 12 in Ref. 2.

Finally, we note that Chang? concludes that the presence of an impurity species
in modest amounts (nzZ << n.) does not alter the transport enhancement factors
calculated for an electron-ion plasma. As can be seen from Fig. 14, this clearly is not
the case. While the effect of impurities on electron diffusion is insignificant, the effect
is significant for the Ware pinch and the conductivity reduction factor, especially at
Xo > 1. It appears that the cause of the discrepancy can be found in the way Chang
treats the electron collision term. The electron collision term C, can be written as
C. = C, + C,; + C.;. If one neglects electron-electron collisions, as Chang seems to
do, then C, = Cy + Cer =~ (V8 + VG)L =~ Z,;;v2 L, where L is the Lorentz operator
and Z.5; = ¥;2,n;Z?/n,. In this case, the effect of including an impurity species is
equivalent to replacing v2 by Zssv2 in the expressions for enhancement factors for a
simple plasma. Z.;; cancels leaving the enhancement factors unaltered. In the present
work, the results on diffusion as well as Ware pinch and conductivity were obtained
in the presence of electron-electron collision terms. In this case, C, =~ (i/.e + Z,; fug )L

and Z.;; does not cancel when we compute the enhancement factors.

B. Bootstrap current

We now compute the parallel currents due to the perpendicular gradients, A;; and
Ayj. In order to calculate the bootstrap current in a n-species plasma, we need to
calculate the n-1 parallel velocity differences in the presence of the driving terms A,;
and A [see Eq. (35)]. We will follow the procedure used by Hirshman et al.’ for
calculating the velocity differences. Using the expressions for the restoring coefficients
[Eq. (15)], the parallel velocity [Eq. (36)], and the particle flux in the absence of A3
[Eq. (22)], we obtain, correct to first order in fg, the following expression for the

parallel friction!!

<Rj> = -min;{vi} [ (<u >— <up >)+ (o — Ubje)

+3° [A{k[(< w > — <y >)+ ug)
1
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where .
o _ [eBs Jil'pe 5 T Pg
Upg.d = (mpnp) {fttl’Vj?} nd T epBg f¢7TQA2P (44)
and
1 vivP) 1 vP
Pq 20 2 LA I Fd 45
711.@ ft [{fﬂ[’ Vf } {qu} {fﬂl’ Vg }] ( )
ORI ) L {7 (22") 222 L
{fiev?} R ' | G W v ) vy
— myE” f£
(o (32)2)]
API — Vo | 1 - _If!i (47)
' v Jvd

The above expression for < Rjx > is accurate to the order A2 (AP < 1). We
have used v ~ uj' in deriving the above expressions. We note that the quantities
ud, o) g, and v5% have a form similar to those of u)., 729, and 7% defined by Eqs.
(51a), (51c), and (51d) in Ref. 5. The expression for A} is identical to that given by
Eq. (51b) in Ref. 5. The difference between uf
quantities in Ref. 5 is due to the energy dependence of the quantity f,s when $(9) # 0.

& Tog» and vr% and the corresponding

Setting $(8) = 0 causes the differences to vanish.

An important point concerns the quantity 7%%. As pointed out by Hirshman et
al..’ in the absence of a poloidal potential variation, v?4 = 79 # 0 when Vo, # v, In
other words, the component of the parallel friction proportional to 7?4 is driven by the
difference in the slowing down and pitch angle diffusion frequencies. Setting ulfq = uﬁz
causes this component of the friction to vanish. In the presence of a poloidal potential
variation, setting 1, = v2 does not cause 72§ to vanish. In this case, the component

of the parallel friction proportional to 47% is driven by the difference between qu and

D

Vg, as well a2 the energy dependence of the neoclassical factor fie.

The diffusive particle flux can be written in terms of the parallel friction as

Tje = - <Z 5 > (48)

Y e,-Bg
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Using Eq. (43) for the parallel friction in the above equation for the particle flux, and
retaining only the gradient terms, we obtain the following equation for the parallel
velocity differences!!

ZMjnijk(< Uj > = < U >) = I‘j@(&ng)-l- < Rjo,q» > (49)
k
where U
75 = {Lsk} + Z{ v Al (50)
Vi
and

VS, :
< Rjo,2 >= myn, E [{VS} { vF } uhie — [{Vi}uhe - Z{ S}APuh el (51)

Here, u],r is identical to the quantity 7 and < Rjo.¢ > is similar in its form to R
in Ref. 5.

Equation (49) provides an expression for the (n-1) parallel velocity differences that
can be used in the Eq. (35) to obtain the bootstrap current. Due to the algebraic
complexity involved in the calculations, we calculate the bootstrap current for a two-
ion species plasma. Unlike the calculations in Ref. 5, our calculations are valid for a

plasma with an impurity species of arbitrary mass. The expression for the bootstrap
current can be written as®

Jnc,@ = Z TkLgm,tbAmk (52)
kym=1,2
where the bootstrap current coefficients are of the form

x Cei

Lye = Lo-ﬁ' [éel oLt s + Cira Ll ) (53)
L:l;z’@ = Lo e: [Cej Qle K. ) + C,I QL12 P + Dk@] (54)

Here, L 4 are the diffusion coefficients [see Eq. (25)] and

Ne
Ly = —fr,Eg
_ oy EZ,' Bg
Cei = ne fi PSp
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The quantities CA',_,I,@, éiI.é, and Dk,@ are complicated functions of the collision fre-

quencies.!! Our calculations indicate that

A

C .
LLBN 0( i (55)
Cire Me

From the expressions (53), (54) for the bootstrap current coefficients and the expres-
sions for the diffusion coefficients L{'{,., in Eq. (25), it is easy to see that

Lgl,Q - ZiL?n,@ = ZLgm (56)

As mentioned in Ref. 5, this is a consequence of the ambipolarity of the particle
fluxes.

Before proceeding with a discussion of the results, we wish to illustrate the re-
lationship between the bootstrap current and the cross field diffusive particle fluxes.
Using the expressions for the particle lux [Eq. (25)] in Eq. (52), we can write the

bootstrap curreiii as
Jnet = LoCei |CeraTee + CiraTia + Y Dia Agi (57)
k

For simplicity, we consider the case of zero temperature gradients, i.e., A2; = 0. In
this case, the last term in Eq. (57) vanishes. In the absence of a significant impurity
concentration, I'.¢ ~ I';¢ and, as a consequence of Eq. (55), the second term in
Eq. (57) is negligible. In the presence of a significant impurity concentration, a

similar situation obtains after the siationary state (I'e¢ ~ I';¢) is reached. Before the

Pe‘l’ m;
s~ 0

and the second term in Eq. (57) is comparable to the first term. Thus, in the presence

stationary state is reached,

of impurities, enhancement of the ion flux due to a poloidal electric field will have
a significant effect on the bootstrap current. We note here that an analysis of the
relation between the particle fluxes and the bootstrap current similar to the one given
here has been carried out by Connor’ in the absence of a poloidal electric field.

We note that, of the six transport coefficients L%, (n = 1,2;k = e, 4, Z), only five

are independent. The coefficient L% is dependent on the transport coefficients L§,
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and Ly [see Eq. (56)]. Furthermore, the coefficient L%, is generally small. Hence,
we will primarily concentrate on the behavior of four transport coefficients, Lt (n=
1,2,k = e, ).

We now present the results of our calculations of the effect of a poloidal electric
field upon the bootstrap current coefficients. We consider a two ion species plasma in
which the impurity is carbon. We define the bootstrap current enhancement factor

as k
L3m,{’

k
L3m

where L§,, are the transport coefficients in the abscice of a poloidal electric field. Due

F3, = (58)

to Onsager symmetry,® L§; = L$;, and hence, the variation of F§; with X, is identical
to that of the Ware pinch enhancement factor, F;. Variation of the bootstrap current
enhancement factor Fj, as a function of the poloidal electric field is shown in Fig.
15. The variation of the enhancement factors F, is similar to that of F¥. As can be
seen from Figs. 8 and 15, the enhancement of the bootstrap current coefficients over
their magnitude for () = 0 is at most by a factor of 2. Furthermore, it is clear from
Figs. 8 and 15 that the electron and ion enhancement factors (F§, and Fj, ) behave
differently for ®;,, > ®,,, than for ®;, < ®,... Hence, the effect of a poloidal electric
field upon the bootstrap current cannot be deduced easily from the behavior of the
individual enhancement factors. We will evaluate the effect of the enhancement of
bootstrap current coefficients and temperature/density profiles upon the magnitude
of the bootstrap current later in this section.

Figure 16 shows the variation of the bootstrap current enhancement factor Fj,
as a function of the impurity concentration (Z.s) for Xo = 1. Due to Onsager
symmetry, the variation of Fy; is identical to that of Fy;. The variation of F§, with
Zeyss is similar to that of Fj. As with the diffusion coefficients, the variation of the
bootstrap enhancement factors with Z.s; is more pronounced for smaller values of
Z.ss due to the increasingly important role being played by the impurity species in this
range of Z.ss. As Z.s; increases, the transport enhancement factors asymptotically
reach a constant value. The presence of a poloidal electric field in an impure plasma
affects the bootstrap current primarily by increasing (or decreasing) the trapped ion or
impurity fraction in addition to the trapped electron fraction, and hence the collisional
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Figure 16: Bootstrap current enhancement factor F§, as a function of impurity con-

centration, Z.s; (Impurity: Carbon; X; = 1.0)
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coupling between them. We recall here that the bootstrap current is primarily a
trapped particle effect. It appears that when ®;,, < ®,,;, for moderate values of X
(Xo < 4), the trapped ion population decreases, resulting in a decrease in F};. For
®;, > P,u:, the opposite effect occurs, i.e., the trapped ion fraction increases, causing
an increase in F3, (sce Fig. 16). .

We now compare our results on the bootstrap current with the results obtained
by Chang? in the absence of impurities. In the absence of impurities, Eq. (52) can

be written as

e 71' n’e e e 5 e Te'
Jnce = Telje (1 + ) —=+1T. [L31,¢ +(L3e — §L31,¢)] T

TeZ; ne
e T, \(Zlhe 3\T
+lelie (z,f.r,)( Lhe 2)T (59)

Using the expressions for the the transport coefficients L3z and L3 s, it can be
shown that,!!

Zilhe {ft@ViD (m,-E'/T,-)} _

Ihe  Ue?t ®
With this result, the Eq. (59) has the same form as the expression for the bootstrap

current obtained by Chang.2 We note that Lj; ¢ and y;p defined here are equivalent
to (ay,g3.) and the variational parameter y defined in Ref. 2. Thus our previous
cor.parison oi the Ware pinch enhancement factor and the variational parameter in
Section 1V. giv= the desired comparison between the bootstrap current coefficients.
Finally, we point out that for ®(6) = 0, our calculations agree with the transport
coefficients calculated using the analytical expressions obtained by Hirshman et al.512
for a heavy i purity such as iron or tungsten. For lighter impurities, such as carbon
or helium, the ion enhancement factors Fj, differ from those calculated using the
expressions in Refs. 5,12 by less than 3% when the impurity content is low (2,75 <
1.5). For a lighter impurity like carbon, the difference in Fj, calculated using the
two approaches can be as high as 20% for higher impurity concentrations (Z.s; =~
3.0). This is to be expected as the expressions in Refs. 5,12 were obtained in
the limit mz/m, > 1. Nevertheless, the analytic expressions in Refs. 5,12 provide a
convenient means for calculating the bootstrap current coefficients for most impurities

and concentration if one could tolerate a discrepancy of the order ~ 20% for low Z
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impurities at higher concentrations.

1. Enhancement of bootstrap current and profile effects

The bootstrap current depends upon the transport coefficients L%, as well as the
driving forces A;x and Aj;. As the driving forces depend upon the density and tem-
perature profiles, the enhancement (or reduction) of bootstrap current is dependent
on the enhancement (or reduction) of the transport coefficients as well as the electron
and ion temperature/density profiles. We consider briefly the profile effects as well
as the enhancement of transport coefficients upon the magnitude of the bootstrap
current.
We begin by considering a situation where the temperature and density profiles

can be approximated by

T;(r) = Tjo(1 - p*)°™
and

n;(r) = njo(1 - p%)™

Here p = r/a where a is the minor radius. For simplicity, we consider a situation
where T, ~ T; ~ T. With this,

and

We shall further assume that Z.;; is constant in the core region of the plasma where

the present formalism is expected to be valid. This leads to

With this, Eq. (52) for the bootstrap current can be written as

2T
Juce = —7 —p e [ar > (15LY16 — Lize) —au Lgm] (60)
k k
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We recall that the subscript ® indicates the presence of a significant poloidal electric
field. In the absence of a poloidal electric field, we have

2T p

Jnc — —a—m [QT ; (1.5L§1 - ng) - an. zk: L§1] (61)

Setting Juce — Juc = 0, we obtain relation between a, and ar for the change in
the bootstrap current due to inclusion of a poloidal electric field to be positive. We
note that the relationship between a, and ar depends upon the impurity species,
concentration, and the sign and magnitude of the potential variation. As an example,
we consider the case of carbon impurity with Z.;; = 3.0. Using the numerically
computed transport coefficients,!* we find that the condition for an enhancement of
the bootstrap current due to a poloidal electric field is

(a)When &, < ®,,,:

For Xy =1, a,, > 0.64a7.

For Xy = 3, a, > 0.49a7.

(b)When ®;,, > &,

For Xy =1, a, > —0.36a7.

For Xy =3, o, > 4.12a.

Figures 17 and 18 show the relation between a, and ar, as a function of X, that
is needed for an enhancement of the bootstrap current. Under conditions that prevail
in most tokamaks, the presence of a poloidal electric field such that ®;, > ®.. (as
during ECRH) results in a reduction in the bootstrap current (Fig. 17). On the other
hand, when ®;, < ®,., (as during ICRH of NBI), the bootstrap current increases if
the density profile is more peaked than roughly the square root of the temperature
profile, i.e., @, > 0.5ar (see Fig. 18). The behavior of o, /ar depicted in Figs. 17
and 18 follows from the behavior of the enhancement factors Fi, as a function of Xj.
Finally, we note that varying Z.; from 2 to 4 has only a minor effect on the behavior

of a,, /ar shown on Figs. 17 and 18.
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Impurity: Carbon (Z,=3)
6.8

Figure 17: Relation between the density and temperature profiles for the change in
the bootstrap current (J,c¢ — Juc) due to the poloidal electric field to be positive
when ®,, > ®,,,. The profiles are of the form z; = z;(0)[1 — (r/a)?]™ where j = n,T
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Figure 18: Relation between the density and temperature profiles for the change in
the bootstrap current (J,. ¢ — Jyc) due to the poloidal electric field to be positive when
®,,, < ®..:- The profiles are of the form z; = z;(0)[1 — (r/a)?|* where j = n,T.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have examined the effect of a boloidal variation in the electrostatic
potential of order ¢ on the neoclassical particle transport and current in a multispecies
tokamak plasma. The most significant aspect of the present work is the calculation
of the effect of a poloidal electric field on the ion diffusion coefficients, neoclassical
conductivity, and bootstrap current.

We find that the main ion diffusion coefficients increase during both ECRH (®;, >
®,.:) and ICRH (®;, < ®,,) for most values of the potential variation (X, =
e®(6)/Te), implying an increase in both the outward diffusion of main ions and
the inward diffusion of impurities. Only when the poloidal potential variation is
small, i.e. Xy < 1, do the main ion diffusion coefficients decrease slightly (~ 10%)
during ICRH; which implies only a small reduction in the inward impurity diffusion
(T'z >~ —Z;/Z T). 1t seems unlikely that any significant reduction in the inward im-
purity diffusion can be achieved with either ECRH or ICRH. However, variations of
this magnitude could be important in interpreting the experimental results on impu-
rity transport, since recent results from JET34 indicate that the particle transport
in the core region of the plasma is close to the values predicted by the standard
(#(6) = 0) neoclassical theory. In general, it is expected that modifications of the
neoclassical particle transport coefficients of the type examined in this work would
be significant in such regimes or regions of the plasma where the particle transport is
close to the neoclassical levels.

It is found that in the presence of a poloidal potential variation of order ¢, the
neoclassical conductivity reduction factor (¢y¢) decreases by as much as ~ 35% (for
®,, > ®,.) or increases by ~ 70% (for ®,, < ®,.) depending on the magnitude
of the potential variation. It further appears that the presence of impurities results
in a decrease in the neoclassical conductivity reduction factor for most values of the
poloidal potential variation. Such variations in the ohmic conductivity can have sig-
nificant implications for any interpretation of experimental results using a neoclassical
conductivity model.

We further find that the presence of a poloidal electric field causes a significant
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change in the bootstrap current coefficients, which can increase by a factor of ~ 2 or
decrease by ~ 40% depending on the magnitude and sign of the potential variation.
The change in the bootstrap current, however, depends on the nature of the temper-
ature and density profiles as well as the enhancement (reduction) of the bootstrap
current coefficients. We have calculated an increase in the bootstrap current when
®.n. < ®,u: (e.g. ICRH or NBI) if the density profiles are more peaked than roughly
the square root of the temperature profiles,n a deuterium plasma with carbon impu-
rity. It is found that the bootstrap current generally decreases when ®;, > ®,,, (e.g.
ECRH). It is important to include the effect of a poloidal electric field in estimating
the contribution of the bootstrap current to the total current during strong wave
heating or NBI.
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APPENDIX A: COLLISION OPERATOR
The approximate collision operator obtained byAHirshman et al.>® has the form

Cir(fir fur) = VL + —— v”n, Vicfio + Wi — Vil =5 'v"u,l( )fJ (Al)

ehq

A=nle (57) -6 (28] ) w2

is the deflection frequency,®

2T%0 mg v
s _ <450 mi v
Yir = To (1 + mJ) Vi@ ('Uhk) / ('Uth,j) (A3)

is the slowing down frequency.® Here,

where

vjr = dnngelet In A/[(2T; )3/ %m 1/2] (A4)
where In A is the Coulomb logarithm.

_ ¢(z) — 2¢'()
is the Chandrasekhar function, where ¢(z) = (2/+/7) J§ exp(—t2)dt is the error func-

tion. The pitch angle operator is defined as

0 0
£=gaaley, (A6)
Also,
u1(0) o = (3/4) [ ufnd (A7)

where dQ = 27v~ldvy = 1T, (Bdp/w)(v/|vy|).>1? The momentum restoring coeffi-

cient 7;; is defined as
J mku,u'v" fud v

Tk = A8
5= ) (A%)
where the integration operator {} is given by
Fik = 2 Yy ) FJk fJOdS
(Fro) = 2 (L) P
= (3\/_)/ ziezp(—2) F7*(z;)dz; (A9)

Here, F7*(v) is an arbitrary function of the velocity v.
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APPENDIX B: CALCULATION OF fs

The factor fig is closely related to the fraction of trapped particles. In the absence
of poloidal potential variation, the factor has been computed for a large aspect ratio
tokamak by Rosenbluth et al.?? and more recently by Balescu.}®> The value of f,g in
the absence of a poloidal electric field is approximately 1.464/¢.1%1% In the presence of
poloidal asymmetries in the potential, the trapped particle distribution changes and,
as discussed in Section II., the boundary between the trapped-untrapped regions is
a function of the particle energy. We will calculate the value of f,¢ for the case of a

large aspect ratio tokamak using a method employed by Chang.? The quantity f,g is

) ()

given by":5 ,

3B vth,j 1 1
= — 00— | d - -
fie <Z w’ v / Hit [v“ <y >

o

Defining £ = |vy|/v and X' = uB/w, we obtain,

o = 2 {[o% [t~ 255])

- SO U O Lo -]

where the first integral is over the trapped particle region and the second integral is

over the untrapped particle region. Here, due to the large aspect ratio assumption,
we have used B =~ B’. We now observe that due to the large aspect ratio assumption,

and due to our neglect of the boundary layer,

1 1 ()

£ <&>

* Furthermore, referring to Figs. 2 and 4, A, . ~ 1 — € over most of the velocity space.

Hence the second integral makes a contribution of the order (1 — €)20(¢) ~ O(e).

Hence, to the lowest order in ¢, we write

fie = Zd: (g) o2 </::"" fi_%> + O(¢)

min

Expressing A" in terms of ¢, we obtain

fa=%(5)* (-2 f1- )

We now examine the integration limits.
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1. When qu),fﬂ < 61'@0“; :
For B-trapping, in terms of the variable £ [see Eq. (1)],

_ 1/2
it = V(1 + cos6)1/? [1 - '—Z—,,'l—’fjj—T] >£>0 (B1)
]
For E-trapping, using Eq. (2),
, 1/2
€rie = VE(1 — cos§)/? [E:—l—)is—T - 1] 2620 (B2)
/)

2. When e,~<I>,v,, > ejth :
In this case, we have only B-trapping. From Eq. (5), we éet

o

XTI

= Ve(l 1211 €2
€mit = V(1 + cos ) [ + o >¢2
From Egs. (B2) and (B3), we can determine the lower limit on z? = m;w/T by
setting &t = 1. This gives,
For ele’n < ejéwh
€(1 —cosf)|Z;|Xo 5

2> =gl .
% = 1+ ¢(1 —cosb) Tjerit

J

(B4)

For €;®;,, > €;®ou,

€(1 + cos 0)|Z;| X0 2
1—¢(1+cosg) ~ I

Using Egs. (B1), (B2), and (B3), we obtain

fie = Za: (%) o <f:cm(1 - 52)d€> = g <€cm - %ﬁ>

Using Egs. (B4) and (B5), the maximum value of f,¢ is found to be 1. Hence, fi¢ < 1.
For z; > zjcit, we can simplify the above equation by retaining only the first term.

v

2
Zj

In this case, 5
fio = 2 < Eait > +O(%/?)

Here, we have used Y, 0% = 2. In the present work, the factor f,¢ appears in the
velocity integrals of the type {} [Eq. (A9)). As will be shown in Appendix C, the

contribution to the integral from the low velocity region is negligible for a large aspect
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ratio tokamak. Hence, the above expression for f,4 is adequate for our purposes.
Using the results (B1), (B2), and (B3), we have for €;®;,, < €;®,u,

1/2

. 3 1/2 |Z;| XoT
fre =~ —ﬁ((l—cosO) > 1- mw
1z XoT |
Similarly, for e;®;, > €;®ou,
. 3 1/2 |2;1X,T |/
fuo ~ 2\/€<(1+c0s0) > 1+ mw
_ 12| XoT /2
= A+ (B7)

Here, we have used the fact that < (1 — cos8)Y/2 >=< (1 + cos8)¥2 >. In either
case, we note that f,s > /€. This justifies our neglect of the the untrapped particle
contribution, which is of the order e. We observe that when ®(8) ~ 0 i.e., Xo ~ 0, we
have fig = fi = 3/2 < (1 £ cos8)*/2 > /e = 1.35,/c. This value is somewhat smaller
than the value (1.46./€) quoted before. The main effect of the poloidal electric field
is contained in the term |1 &+ E,;lf%zllf 2. and hence, for the present wors, the above

expressions for f,p are adequate.

APPENDIX C: SIMPLIFICATION OF vj

In the presence of a poloidal electric field, ;¢ = [V + fia(vP —v7)]. Noting that f,p =
fl1 £1Z;j|Xo/2|"/2, we observe that in the low energy region where z = v/vs < 1,
fie can be quite large, approaching 1. Hence, we have to examine the consequences of
fie = 1 in the low energy region on the velocity integrals appearing in the transport
coefficients.

We begin by observing that most of the velocity integrals appearing in the trans-
port coefficients are of the type {f.eF(v)/vje} where F(v) is an arbitrary function
of velocity. We specifically consider F(v) = VDV The conclusions drawn below are

expected to be valid for other forms of F(v) appearing in the transport coefficients.
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We have

]

Vj‘ngpr
vi [1+ fie (WP /v§ - 1)

D
4 2 Vi fm
T exp(—:z:j) 2

1+ fie (VJD/VJS -1

8 00
W )} dz;  (C1)

In the absence of a poloidal electric field, z; 4 = 0, and the lower limit in the above
integral is zero. In the presence of a poloidal electric field, for large values of z;, i.e.
z; > 1, fis — f, and we can set vjg = VJS . We, therefore, examine only the region
of the velocity space where f,g ~ 1. We have, in this region, z; ~ O(f, \/X—OIZ—,-I )<1
for f, — 0. Setting f,s = 1, the integrand in the above equation reduces to

Integrand = z} exp(—z?)vf

In this region, z; ~ O(Zjrit) < 1, and v§ scales as ~ 1/z? for electrons and ~ 1/z;
for ion as well as impurity. Hence, the value of the integrand is < z; exp(—:c;‘-’) < 1,
leading to negligible contribution from this region of the velocity space. Hence, the

contribution to the velocity integral from the region where f; ~ 1 is small for a large

aspect ratio tokamak. We, therefore, set v;¢ =~ u]-s in the transport coefficients.
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