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ABSTRACT

The effectsofa poloidalpotentialvariationofordere,whichislikelytobeproduced

duringhighpowercyclotronwaveheatingorneutralbeam injection,uponneoclassical

particletransportand plasmacurrentarestudiedtheoretically,fora realistictokamak

plasmawithsignificantimpuritycontent.Usingan approximatecollisionoperator,

an analyticprocedureisemployedtocalculatethetransportcoefficientsinthelow

collisionMityregimefora largeaspectratiotokamak. In the presenceofcarbon

impurity,theiondiffusioncoefficientsaregenerMlyfoundtoincreaseby a factorof,_

2.Inclusionoftheeffectsofa poloidalelectricfieldisfoundtoresultinan increase

inthebootstrapcurrentifthepotentialontheoutsideofthetokamakisgreaterthan

thatontheinside(asduringICRH orNBI) and thedensityprofilesaremore peaked

thanroughlythesquarerootofthetemperatureprofiles.



I. INTRODUCTION

High power ion and electron cyclotron wave heating (ICRH and ECRH) can give rise

to significant in-out poloidal asymmetry in the electrostatic potential. It has been

shown I that, in the low coUisionality regime, cyclotron wave heating causes increased

trapping, leading to a poloidal variation in the potential, which can reach magnitudes

of the order e, i.e., e_(O)/T ~ O(c). Here, e is the unit charge, _(0) is the poloidaUy

varying part of the potential, T is the typical temperature of the plasma constituents,

and c = r/R where r and R are the minor and major radii of the tokamak respectively.

It has been suggested 2 that both parallel and perpendicular neutral beam injection

heating (NBI) can also give rise to a significant poloidal electric field.

A poloidal potential variation of order c can cause a significs,nt "changein the neo-

classical transport coefficients in the banana regime, lt has been shown by Chang 2

and Shurygin et al.3 that sn in-out potential asymmetry of order c can cause a signif-

icant enhancement of the neoclassical transport coefficients in a simple (electron-ion)

plasma.

- Ins realisticscenario,theplasmaiscontaminatedby impurities,ltiswellknown4

thatthepresenceofan impurity,eveninsmallamounts,cancauses qualitativeand

quantitativechangeintheneoclassicaltransport.Indeed,inan impureplasma,ion

diffusionexceedselectrondiffusionby spproximatelythesquarerootoftheionto

electronmass ratio.Hence,itisimportanttoinvestigatetheeffectofsn externally

inducedpoloidalelectricfieldon neoclassicaltransportinan impureplasmainthe

bananaregime,whichisthepurposeofthispaper.

We willbe primarilyconcernedwithcalculationofthe particletransportand

plasmacurrentinthelow collisionality,or banana,regime.Furthermore,we limit

our considerationto a largeaspectratio(e_ I)tokamak. In sn impureplasma,

the presenceofs poloidalelectricfieldalfectsthecollisionalcouplingbetweenthe

main ionsand theimpurityionsinadditiontoaffectingtheelectron-ioncollisioaal

coupling.The resultofsucha modificationisan enhancement(orreduction)ofthe

• iontransportaswellasplasmacurrent.

The psperisorgani_.edasfollows.InSec.II,we examinepsrticletrappinginthe
•
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presence of a poloidal electric field. We solve the drift kinetic equation in Sec. III,

using an approximate collision operator developed by Hirshman et al.5 The solution

methodology closely parallels the analytical technique in Ref. 5. We end this section

by deriving a set of equations for the so called restoring coefficients. 5 In Sec. IV, the

restoring coefficients are used to obtain the electron and ion transport coefficients. In

Sec. V, we consider modifications to the plasma current due to the poloidal electric

field. Section VI contains a summary and concluding remarks.

II. EFFECT OF POLOIDAL ELECTRIC FIELD

ON PARTICLE TRAPPING

The presence of a poloidal potential variation of order c significantly alters the nature

of particle trapping in a tokamak. As pointed out by Chang, 2 the in-out potential

asymmetry leads to an electrostatic potential well either on the inside or on the outside

of a tokamak, depending on the sign of the potential variation and the charged particle

species considered. As the trapped particle effects are crucial to neoclassical transport

in the low coilisionality regime, we briefly reexamine particle trapping in the presence

of a poloidal potential variation of order c in a multispecies plasma. Following Chang, 2

we consider particle trapping when (i) ej_,, < e_o_t and (ii) ej_,, > e_4'o_t, where

_,, and _o_t are the potential on the high field and low field side of the tokamak

respectively, and es - Z_e is the charge on the species under consideration. Here,

Zj - -1, 1, Z for the electron, main ion, and impurity ion respectively.

A. ejcI'in < ej_out

This situation obtains for ions during ICRH (or NBI) or electrons during ECRH.

In the present case, particle trapping can be separated into two categories. The first

type, called B-trapping, 2 is the usual magnetic trapping on the low field side modified

by the electrostatic potential. The second type of trapping, called E-field trapping, 2

occurs on the inside of the torus and is due to the potential weil. For a charged

particle of mass mi, we define the kinetic energy, the total energy, and the magnetic
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moment per unit mass as w = v2/2, E = w + e_¢/m.#, and # = v2/2B respectively.

• Here, B is the total magnetic field, v± and v axe the perpendicular (to the magnetic

field) and total velocity of the particle respectively.

1. B-trapping

Using the conservation of energy and adiabaticity of magnetic moment, and following

the same steps as in Ref. 2, it can be shown that for B-trapping,

< e(1+ cose)(s2 -IZilX0) (1)

where SII = Vll/Vthj, S± = v±/vthj, and eXo = (eCoT). Here, vii is the velocity

parallel to the magnetic field and vth,i = 2T#/mi. We have assumed B = Bo / 1+ e cos 0

and e_¢(0) = ei¢ccos0 (ej¢_ > 0). The angle 0 is the poloidal angle measured from

the outside of the tokamak. We further note that in the present work Xo _. 0(1).

At this stage, we assume that Te " T, ,'., Tz = T, where the subscripts e, i, Z refer to
Q

electron, main ion, and impurity ion respectively. Defining the pitch angle variable

A = #SoE, we identify the B-trapped region in the A - E space as

rnE (2)

In deriving Eq. (2), we have set ¢(lr) = 0 and ej@(0) > 0.

2. E-trapping

It can be further shown that for E-trapping,

S_ _<e(1- cosO)(IZ_lXo- S_) (3)

The trapped region in the X - E space is given by

[ ej_(0)] <A<l-e (4)(1 + e) 1 mi E _ _

. We note that the minimum energy a particle can have is Eo = ei¢/m i. The trapped

particle regions for B-trapping and E-trapping in the SII- S± and A - E space are

. shown in Figs. 1 and 2. The dotted lines show the trapped particle region for ¢ = 0.
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B. ejC_in > ejC_out

• This scenario holds good for ions during ECRH and electrons during ICRH. When

eie_;,, > ei¢_t, only B-trapping is present. 2 Letting ei¢(0) = -e_¢ccos0 (ej_c > 0)

and proceeding as before, we determine the boundaries of the trapped particle region

in the SII -- S± space as

S_ < c(1 + cosO)(S_ + IzjlXo) (5)

In the A - E space, setting ej_(0) = 0, the trapped particle region is bounded by

(1-_)[1 e_¢(Tr)]m.iE_<A<(l+e)_ (6)

Figs. 3 and 4 show the trapped particle region in the velocity (,.qll- S j.) space and

A- E space. (We note that the trapped particle region depicted on the ,_- E space

in Fig. 7 in Ref. 2 differs significantly from that shown on Fig. 4.)

The expressions for the trapped particle region [Eqs. (1)-(6)] differ from the

corresponding expressions in Ref. 2 due to the presence of Izil (or e,). In a simple

plasma, IZjl = 1 and Eqs. (1)-(6) reduce to the corresponding expressions in Ref. 2.

In the presence of an impurity species with charge Z, the effect of a poloidal potential

variation is greater on the impurity ions than on the main ions. Indeed, for moderate

to large Z impurities, or when the potential variation is large, i.e. X0 >> 1, most of

the impurity ions are trapped in the potential weil. The difference in the trapping

fraction of the impurity ions and the main ions alters the collisional coupling between

the main ion and the impurity species, causing a significant change in the neoclassical

transport coefficients in an impure plasma.

III. SOLUTION OF THE DRIFT KINETIC EQUA-

TION IN THE BANANA REGIME

We begin by considering the first order (in poloidal gyroradius) version of the drift

kinetic equation (DKE) 2'6'r'5 for the species j,

Ofiovii"v/,x + v_j. rho + EiivllO---ff= _-"Cj_(.bx,h_) (7)k
i.
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Figure 1 Figure 2
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Figure 3 Figure 4

. Particle Trapping when ei¢i,, > ej@,,.t



where the equilibrium distribution function fjo is given by

rio = n_o exp Ts (8)

Here, due to the presence of a significant poloidal electric field, the energy E* =

w + ejT_(O)/mj. Furthermore, n_0 is the flux surface averaged density. For a large

aspect ratio tokamak, we define the flux surface operator as

< x >= _ hz dO ___ 1 + ecos/9)x dO (9)

For the drift velocity, we use the small/_ result 6'2

v,j= xv { (1o)

where f_j = ej.B/mj and the gradient is taken at constant E* instead of at constant

w as in the standard neoclassical theory in the absence of a significant poloidal po-

tential variation. Ell is the parallel electric field and f#l is the first order (in poloidal

gyroradius) correction to the distribution function.

We note that in obtaining the drift kinetic equation it is customary to treat quanti-

ties which do not explicitly depend upon the gyrophase as constants, s In the presence

of a wave heating mechanism, some quantities like E± may not be independent of

the gyrophase throughout the plasma volume. We, however, treat these quantities as

gyrophase independent for the following reasons: I) In many wave heating scenarios,

particles of only one species participate in the energy absorption process. For instance,

during ECRH, only electrons take part in the energy absorption process, while dur-

ing ICRH, ions are the main participants. (W_ note that in some instances, electrons

can also participate via Landau damping and transit time magnetic pumping.) Fur-

thermore, in many wave heating mechanisms, such as ICRH (minority heating), only

a small fraction of particles participate in wave heating. 2) In most wave heating

scenarios, the launched wave has kll # 0. This means that only a fraction of the

particles satisfying the resonance condition w- kllVll= 0 participate in wave heating.

In addition, the resonance zone where E± may not be zero is confined to a thin region

across a vertical plane. Hence, for the bulk of the particles over most of the plasma

volume, E± = 0 is a good assumption.
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With this treatment, we proceed with the solution of DKE. The present treatment

. differs from that used by Chang 2 in two ways:

1. We use an analytical procedure of the type used by Hirshman et al.5 and Con-

nor, 7 in contrast with the variational procedure used by Chang. 2

2. We use the approximate collision operator developed by Hirshman et al. 9",5This

collision operator has the form

Cjk(fjl, hx) = vfk£fll + 2v"r*Jvfkfjo+ [vfk-vf]v"uJx(vl fjo (11/
v2th,j v2

Various terms in this equation are defined in Appendix A. The principal dif-

ference between this operator and similar operators used by other investiga-

tors 7'2'1° is the distinction between the pitch angle scattering frequency (z/_)

and the slowing down frequency (lzf_). Many of the properties of this operator

have been described in Ref. 5. However, for our purposes, the two most ira-

" portant properties of this operator are: (i) its ability to treat collisions between

species of arbitrary mass difference and (ii) its capability to treat the plasma
h

in a tokamak with an arbitrary aspect ratio. The second property is particu-

larly important because, in the presence of a significant poloidal electric field,

the smallness of the trapped particle region in a large aspect ratio tokamak is

destroyed in the low energy region of the velocity space (see Figs. 1-4). Hence,

in the low energy region (v < v_h,j), the trapped particle fraction is close to 1,

while it is still small in the high energy region. The above collision operator is

suited for modeling this scenario.

The solution of the DKE is obtained by adopting the procedure used by Hirshman

et al.5 The aim is to reduce the DKEs for n-species to a set of coupled algebraic

equations for the restoring coefficients < rkj > in the banana regime. Here, we define

the collisionality parameter as _,,,j = rB/7"_i/, where 7B is the typical time for a

particle to complete the trapped orbit and ref! is the effective time for the trapped

. particle to scatter out of the banana orbit. Writing

f_l = -ms aq Of_o + gJ (12)
. ej Be Or



where q = IVlll and cr = 4- is the sign of the parallel velocity, and expanding gj in

terms of the collisionality paralneter 5 v,j < 1, we obtain, to the first order in v,,i,

0 = C(fjl)+ "_(aq)EIl:fjo (13)

Here, O = Ba/B where Ba = B°/(l+cosO) is the poloidal component of the magnetic

field. We note that the lowest order (in v,,l) solution g_ is again independent of the

poloidal angle 0. In the absence of a significant poloidal electric field, the above

equation can be integrated in the trapped and untrapped regions to eliminate the

unknown function .q)._,s In the present case, due to the presence of a significant

poloidal variation in the potential, the collision frequencies and the velocity integrals

ujl(v) and rkj depend upon the poloidal angle. This is due to the poloidal angle

dependence of the velocity v, which is given by v2 - 2[E* - e¢(O)/m]. We can

divide the untrapped particle region into (i) untrapped particles forming a part of the

boundary layer (margina!ly untrapped particles) and (ii) well untrapped particles. In

the present analysis, ,re will not carry out a detailed boundary layer analysis. We

consider only the untrapped particles with a large kinetic energy in comparison with

their potential energy. Hence, we treat the velocity to be independent of poloidal

angle for these particles. With this, Eq. (13) can be integrated to obtain ?:s

-(B°/< vii >)[(ms/ejB°o)Ofso/Or

ogy= +(mjS olTj,?)r., <,,j >,:,+ - ,f l,?) (< >l, )Sjo (14)
O# +(ejSolT_vD)E °] for passing particles

0 for trapped particles

Here, vs = _kvst, u_ = _t u_, and E ° =< Ell >. Upon using the Eqs. (14) and

(12) in the expressions for uil(v ) and the restoring coefficients rts, we obtain n'5

1 (Ti_)[ ( ek"_ { (m_.._._E*_} ]<rki> = {,_} _ {,_} Aik+ Tk ] + ,_\ T_ S A2,

1 (
. e__ 1 Ivsit 1 [v_ivkl t+E <,,,>

+ m-'-_A3 {v_----_ i



Using the same notation as Hirshman et al.,_ we have defined the "driving forces" as
B t

Alk- nk° 3T_. A2k=T_' A3=E °
- nk-"-, 2Tk' T-'_' (16)

where the prime denotes derivative with respect to r.

In Eq. (15), the effect of the poloidal electric field is contained in fcc (= 1- ft,),

vk, = f¢cus + f,¢u D, and E*(= V2/2 + eO(O)/m). The most significant effect is

contained in the neoclassical factor ft, (= 1 - fcc). The quantity ft¢ is analogous

to the quantity ft defined in Ref. 5. Indeed, for _(0) __ 0, ft_ = ft. The factor

ft¢ contains the effect of modification of the boundary between the trapped and

untrapped regions in the velocity space due to the poloidal electric field. For a large

aspect ratio tokamak, we obtain the following approximate expressions for ft, (see

Appendix B for details).

For ei_,,_, < ei@o_t,

. ft¢"..'fttl [Zj'Xo[ 1/2x_ (17)

and, for eiip,, > eject,

z_ (18)

where x_ = rnjw/T. In the absence of a poloidal electric field, ft, = ft..5

When _(0) _ 0, the Eq. (15) reduces to Eq. (26) in Ref. 5. Noting that

vk¢ = f_v[ + ftov_,

Vk, Vk,

Using this result and summing the Eq. (15) over j, we obtain, after changing the

dummy index 1 to j, the following useful expression _

_{v_}[< rkj > - < rjk >1 = ekE° Tk s o edl_'_
i mk ekB ° _k¢ J** A1k+ Tk ]

(_vk¢ k_] f,¢ } _As v--_,lt,)

{,o}" -- E VkjVk t
J vk--_--j,, < r_k > (19)

. This equation is useful in determining the particle fluxes.
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IV. PARTICLE TRANSPORT

The radial particle flux is given by

where v_j is the radialcomponent of the drift for the species j. Using the expression

for the drift [Eq. (10)] and the previously obtained solution for ft1, the particle flux

can be expressed in terms of the restoring coefficients 5 as

njoE °

> < >] (21)e,B rjk - rkjk

Here, the subscript _ denotes the presence of a significant poloidal electric field. Using

Eq. (21) and the momentum conservation _lation 5 m.#n.#{_,sk}= ml,.nk{u_ }, it can

be easily shown that the particle fluxes a:_ ':_ bipolar, i.e. Y]i ejFi¢ = 0. Using the

expression (19) in Eq. (21), the particle flux is written as

eiB ° _ vi,_ B ° vi_

where the restoring coefficients are given by Eq. (15). We note here that the procedure

used for obtaining the above expression for the particle flux in the presence of a

poloidal electric field is similar to that used by Connor 7 and Hirshman et al.5 The

above expression for the particle flux differs from the corresponding expression [Eq.

(30a)] in Hef. 5 in that ft® is energy dependent and E* = v2/2 + e¢(O)/m. When

_(0) = 0, the above expression reduces to Eq. (30a) in Hef. 5.

As the restoring coefficients are linear in the driving forces AI}, A=k, As, and _',

the particle flux due to each of the driving forces may be obtained separately. 5 The

radial electric field does not contribute to the particle fluxes. Hence, we consider the

particle flux due to AI_, A2k, and Ask.

A. Response to the gradient terms

We first consider the diffusive fluxes in response to the gradient terms Alk and A2_.

The expression for the patti le flux [Eq. (22)] indicates that, to determine the particle

11



flux to the order f,t, it is sufficient to determine the restoring coeffidents < rt_ >

" to the' lowest order in f,t. This fact and t_ form of the equation for the restoring

coefficients, Eq. (15), suggest the following expansion for < fit >

< rk_ >= Vt + .ftr < rk_ >I +'" (23)

where,tothezerothorderinlte,therestoringcoefficientsofallthespeciesequala

common toroidalrotationvelocityV#.SuchanexpansionhasbeenusedbyHirshman

etal.5 tosolvef(,rtheparticlefluxes.As discussedinRef.5,thevalidityofsuchan

expaasiondependsupon two conditions.

1. Collisional coupling among passing particles of the various species should be

sufficiently strong to establish a common flow. This condition is usually met in

a device even with a small impurity concentration.

2. The trapped particle fraction is sufficiently small. The quantity ft# is propor-

" tional to the fraction of trapped particles. In a large aspect ratio tokamak (c ,_

1), when ¢_(0) _. O, this condition is satisfied. In this case, ftr = ft ~ O(vq). In

" the presence of a poloidal electric field, we may obtain one of the two scenarios

outlined below.

(a) When )to " 1, for electrons, ions, and lighter impurities the following

discussion is valid.

In the presence of a significant poloidal dectric field, we have found that

the boundary between the trapped-untrapped particle regions is a func-

tion of zhe particle energy (see Section II.). Referring to Figs. 1-4, we

find that, for the low energy particles, the extent of the trapped particle

region in the A direction is not small. Analytically, this difficulty mani-

fests itself in the velocity dependence of the quantity ftr, which is velocity

independent when _(0) = 0. As a result, velocity integrals of the type

{f_F(v)} _. ft{F(v)} where F(v)is a: arbitrary function of velocity. Ac-

. tually {ft#F(v)} > ft{F(v)}, especially for large values of the poloidal

electric field (i.e. Xo > 1). However, we note from Figs. 1-4 that the

. extent of the region with increased trapping is small in the E direction

12
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for a large a_pect ratio tokamak. Furthermore, the contribution of the

low velocity region with enhanced trapping to the velocity integrals of the

type {ft_t_(_)} is small (see Appendix C). We, therefore, assume that

{fftF(v)) ,_ O(ft). Specifically, we assume that the enhancement of ve-

locity integrals of the type {ft#F(v)} over similar integrals when _(0) = 0

is only by a factor less than an order of magnitude.

(b) When X0 _ 1, for a heavy impurity (Z t = Z >> 1), the quantity ]14-z_-_11/2

can be quite large and frC can approach unity for moderate values of V_.

Physically, this means that most of the impurity particles are trapped in

the electrostatic potential weil. If this situation obtains, the expansic f

Eq. (23) is not valid.

From now on, we concentrate on tbose situations where ft# < 1. With this, we use

. the expansion (23) in the expression for particle fluxes. Using only the lowest order

(in ft_) restoring coefficient V_ in Eq. (22) and the ambipolarity of the particle fluxes,

we obtain the common toroidal rotation velocity as

z,c,,.:.,_,/_,B_)[A.,{s....f..fl..,.)+A_,{s...f,,f/...c-.:'/_)}]v.---
_, ro:z,{$a_.fvf/v,.}

(24)
UsingthisexpressioninEq. (22),we obtainthefollowingexpressionforthediffusive

paniclefluxes.

rj_(A_,A_) _ i_= LI,,.,_A,,k (25)
_n= 1,2

where

.,_,,,. - - t g_-Tg,i_i L,.
" {f""?":/""("'_/_)}L"

Lh* = Z. Tj Etrntntlfa_v_vf /vt,_}

,_ {s...e.,'l._.(.,,_'/n)}Lit.L12,# ---

13
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and
f v.s vV

" L_Q= _,2_o*
_j_o t J_ )

From the above equations, it is easy to see that

Hence, to aatisfy am'bipolarity,Fz _- -(e_)/(ez)r_. Thus, ion and impurity diffusion

occur at a comparable rate at the beginning of the discharge. Over a longer time

scale, the ion and impurity density and temperature profilesadjust to make the ion

and impurity fluxes comparable to the electron flux. When this condition (known as

the "stationary state ''T)_tains, ambipolarity gives

r,#= z_rit+ zrzQ (26)

. B. Response to the parallel electric field

Now, we calculate the electron flux due to the parallel electric field. The solution

" method used here is similar to that used by Connor.7 Using Eq. (15), in the absence

of Alk, A2t, and _', it can be easily shown that_

< r_ >>>< r_j >, < r_ > (27)

Here, we again have used {f,#F(v)} ,,, O(ft). Using Eq. (15) to obtain < r,, >, and

using Eq. (22), the radial electron flux due to the parallel electric field can be written

. ..,. r,,(A3)= + {v.s(v,.-v,s,)Iv.t}

_: Again, as with the diffusive fluxes, the effect of the poloidal electric field is contained

in the factor lte and v_. When _(e) = o, our results for the Warepinch are identical

to those obtained by Hirshman et al.5 Also, if we set vfk = vft and t,_ = z/_ in Eq.

(28), we obtain results identical to those obtained by Connor.7

• Before we present the results on transpo_ coefficients, we wish to make a few

simplifications which greatly facilitate the calculations.
o

14



1. We note that Vie - Ivs + ft,l(v_ - vs)]. In the absence of a poloidal electric

field, vj = [vf + ft(vr - vr)I, and, for a large aspect ratio tokamak (ft <<: 1),

we can set vj __ vf to the lowest order in .ft..5 When a poloidal electric field is

present, we have lte = ftll ± IZilXo/x_l 1/2. We observe that in the low energy

region where x = v/vth << 1, lte can be quite large, approaching 1. It can be

shown (see Appendix C) that in the large aspect ratio limit, the contribution of

this region to velocity integrals of the form {f, eF(v)}, where F(v) is a function

of collision frequencies, is small. Hence, we set vii __ vf while evaluating the

velocity integrals.

2. We note that some of the velocity integrals in the above expressions involve

E* = w + e_(8)/m. As the second term in this equation is comparable to

the first term only in the low velocity region, and as the contribution of the

low velocity region to the velocity integrals of the form {F(v)} is small (see

Appendix C), we use E* ", w in evaluating the velocity integrals.

The velocity integrals appearing in the transport coefficients [see Eqs. (25) and (28)]

are analytically intractable. Hence, consistent with the approach used by Chang, 2 we

present numerical results for the transport coefficients. We consider a three species

plasma in which deuterium is the main ion and the impurity species is carbon. We

also set Tr _- T, __Tz.

C. Electron Transport

1. Diffusive Flux

To facilitate comparison of our results with previous results, we write, by rearranging

the terms in Eq. (25), the diffusive electr_u flux as

(")(
-'_zz ''l''e -_ _ + Ti J - -Z "_z + Tz J

;5
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Here, we have defined the quantities yj_ as

" {ft,,_(mjE*/Tj.)}

= {f,.,f} /30)
where we have used _j_ _ rf. We note that in the absence of impurities, the last

two terms in Eq. (29) vanish, and the resulting expression has the same form as the

expression for the electron flux obtained by Chang. 2 In the presence of an impurity

species, after the stationary state _ has been reached, the last term in Eq. (29) van-

ishes and it reduces to the form obtained by Connor.7 Here, we present the results on

electron transport coefficients only after th_ stationary state has been reached. Con-

sistent with the approach used by Chang, 2 we now define the transport enhancement

factors as

Fj k Lj_lh.@

L_ ' (31)

jk Ljkwhere n = 1, 2. Here, Li,,, _ and 1,, are the transport coefficients with and without

a poloidal electric field respectively. L_,k,is obtained by using frc = ft in Eqs. (25).

Variation of electron transpo_ enhancement factors F_ and the quantities yj¢

(j = e,i) as a function of thr :':::_-,:;tude cf the poloidal potential variation X0 is

shown in Figs. 5,6, and 7. We note that the topology of the curves seems to be related

to the nature of the factor ft¢, which is proportional to the trapped particle fraction.

As discussed in Section II., when ei@,_ > ei_,o_t, B-trapping is enhanced by the

potential variation. Behavior of the enhancement factors F_ seems to reflect this. For

ej@,,, < ej@o_t, the situation is somewhat complicated. For the low energy particles,

there is a reduction in B-trapping, which, however, is somewhat compensated by the

presence of E-trapped particles. It appears that for small values of X0, there can

be a decrease in the trapped particle fraction which is reflected in the behavior of

enhancement factors for small Xo. It also appears that for large values of Xo, there

can be an increase in the trapped particle fraction. The quantity yi¢ is related to

plasma rotation. It appears that enhanced (or reduced) trapping due to a poloidal

electric field muses a decrease (or hmrease) in the collisional coupling between the

species, resulting in a decrease (or increase) in the quantity yi¢.

We now compare our results, in the absence of impurities, with those obtainedJ,
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by Chang. 2 We note that the factor F_ defined here is equivalent to the factor F_ I

" defined in Ref. 2. Also, the quantity y,_ defined here is equivalent to the varia:ional

parameter y defined by Chang. In the absence of impurities, the agreement between

yi¢ and y is very good. However, the result for F_ obtained in this work differs from

that obtained by Chang for F_ ) by 15% for Xo = 4. The discrepancy is smaller

for smaller values of X0. (Our calculation of the enhancement factor F_),defined by

Chang, 2 using the expressions in Ref. 2 yields a much closer agreement between F_

and _,(e) -,, 4.) We note in passing that-n, the difference being less than 2% at X0 =

the transport coefficient (c_1,g2e) defined in ReL 2 is equivalent to L_,¢(y_¢- 5/2) in

this work, and the comparison between the corresponding enhancement factors yields

a result similar to that between F_ and F_ ).

The presence of an impurity has negligible effect on the transport enhancement

factors F_ and the quantities y_¢. This seems to be in agreement with the conclusion

drawn by Chang. 2 We note, however, that the presence of an impurity results in two

additional terms in the expression for the electron flux [the 4th and Sth terms in Eq.

(20)]. Finally, we note that, in the absence of a poloidal electric field, our results on

/,_ and ye agree with those obtained by Connor. _ However, due to the large impurity

mass assumption used in ReL 7, Connor's result for y_ differ from those obtained in

this work by _ 30% in the presence of carbon impurity when a = nzZ2/n,Z_ = 1.

2. Ware pinch effect

We define the Ware pinch enhancement factor as

Lh.®
F_3=

L_3

Figure 8 shows the variation of the Ware pinch enhancement factor as a function

of X0. The Ware pinch enhancement factor is topologically similar to the diffusion

enhancement factors. The enhancement, however, is much weaker than that of the

diffusion coefficients.

. The Ware pinch enhancement factor generally decreases with increasing Z_II.

However, when @,,_> ¢o_t and for X0 < 1, it remains constant or might even increase

. slightly. Referring to Eq. (28), the effect of electron-electron collisions is contained
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primarily in the second term. It appears that the presence of impurities generally

• leads to a reduction in the contribution of the electron-electron collisions relative to

the first term, leading to a decrease in the Ware Pinch enhancement factor. The

behavior of the Ware pinch enhancement factor with increasing Zef! is similar to the

behavior of the neoclassical conductivity reduction factor. We discuss this in Section

V.

We have compared our result for the Ware pinch enhancement factor (F_a) with

the result [F_ )] obtained by Chang 2 in the absence of impurities. As with the electron

diffusion coefficients, we find that our results differ from those obtained by Chang by

,_ 20% for X0 = 4 and the enhancement factors calculated here are smaller than those

in Ref. 2.

D. Ion Transport

We now consider ion diffusion coefficients. Again, to facilitate comparison with pre-q

, vious results, we express the main ion flux as

= - T,J ZTe -_z TzJ

mene{ft,_v D} [1 [n:

ZTe -_z- _-Yz¢ TzJ

" As expected, in the absence of impurities, the above equation reduces to Eq. (29) with

(ZiTe/Ti)L_,¢ = (1/Z_)L_,_ to satisfy ambipolarity. In the presence of impurities,

the second term is negligible, and we recover an expression which has the same form

as the one obtained by Connor [Ref. 7, Eq. (48)]. The transport enhancement factor

F_ and the quantities Yi¢, Yz¢ as a function of Xo are shown in Figs. 9, 7, and 10

respectively. The behavior of the ion enhancement factor F_ is qualitatively similar

to that of electron enhancement factors. However, ion enhancement factors depend

upon the impurity content as well as the type of impurity species.
e

The dependence of the ion transport enhancement factor F{_ upon impurity con-

centration is shown in Fig. 11. In the presence of a poloidal electric field of the order e,
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i.e. e¢(8)/T ,,_ O(e), due to their larger charge, the fraction of impurity ions trapped

in the electrostatic potential well is greater than that of the main ions. This causes

a reduction in the collisional coupling between the main ions and the impurity ions,

resulting in a drop in the ion transport. This effect is more pronounced for smaller

values of Z_I! due to the increasingly important role being played by the impurity

species in determining the ion transport.

We now examine the effect of impurity species on transport enhancement. Here,

we are primarily interested in the effect of impurity charge and mass upon ion trans-

port at constant a = nzZ2/n,Z_. The fraction of impurity ions trapped in the

electrostatic potential well increases with Z. This causes a reduction in the colli-

sional coupling between the impurity ions and the main ions, resulting in a reduction

in the ion transport. This effect, which is due to the impurity charge, is somewhat

offset by the impurity mass. An increase in the impurity mass leads to an increase

in ion transport and it appears that, at least for small to moderate Z impurities,

the transport enhancement due to the impurity mass is more important than the

transport reduction due to the impurity charge.

Table I shows the transport enhancement factor F_ in the presence of different

impurity species for a = 1 and X0 = 1. F_ increases as the impurity mass increases,

reaching a maximum for iron. For tungsten, the enhancement factor is smaller than

that for iron, apparently indicating the transport reducing effect of impurity charge.

We note that the charge state indicated in Table I corresponds to an electron tem-

perature of ,,_ 10 keV. We also note that a heavy impurity like tungsten may not be

in the banana reg_ue under conditions that prevail in most tokamaks. The compari-

son presented in Table I is intended to demonstrate the opposing effects of impurity

charge and mass on ion transport enhancement.

Finally, we note that in the absence of a poloidal electric field, the quantities

Ll1,¢, yi¢, and Yz,¢ depend upon the impurity mass. Our calculations indicate that

the discrepancy between our results and those obtained by Connor, _ using the heavy

impurity assumption, can be quite large when the impurity mass is small. For ex-
..

ample, when the impurity strength parameter a = 1, the discrepancy in L_'l, yi, and

Yz can be ~ 90°£, 300£, and 20% respectively for carbon impurity. The differences
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TABLE I: Effect of impurity species on the ion transport enhancement factor Ft1

= nzz/n,z- 1;x0- 1).
Impurity Z mz/mi F_

Helium 2 2 1.098 1.777

Carbon 6 6 1.342 2.065

Iron 26 28 1.454 2.249

Tungsten 60 92 1.427 2.201

decrease as the impurity mass increases. However, even for tungsten, the discrepancy

in LI_ is _ 30% when a = 1.

E. Plasma Rotation Velocity

While deriving the expressions for the diffusive fluxes, we obtained an expression for

the common plasma rotation velocity, II# [Eq. (24)]. Neglecting the contribution of

electrons, we write the rotation velocity, for a three species plasma as

= R,.,_A,,_ (33)
k;n- 1,2

where the rotation coefficients R t,,:_ can be easily identified by comparing the above

equation with Eq. (24). As in the case of transport coefficients, we define the rotation

enhancement factors as

F_ R_._
R_ (34)

The total;ion enhancement coefficients generally decrease with increasing poloidal

potential variation. Figure 12 shows the variation of rotation enhancement factor

F _ with Xo. We observe that for constant gradients, the rotation velocity decreasesR,1

for most values of X0. With increasing X0, most of the rotation enhancement factors

asymptotically approach a constant value. The drop in the rotation enhancement

factors is a result of reduction in the collisional coupling between the main ions and
l

impurity ions caused by enhanced trapping due to the poloidal electric field.
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The behavior of the enhancement factors as a function of Zel! is analogous to the

behavior of the ion transport enhancement factor F_. As with ion transport, the

drop in the rotation velocity is caused by increased trapping of the impurity ions due

to their larger Z. This results in reduced collisional coupling between the main ions

and the impurity ions, and hence, reduction in the common fiow velocity. Presence

of an impurity species of larger Z has a similar effect upon the rotation velocity.

For an electron-ion plasma, Shurygin and Yushmanov 3 have calculated the radial

electric field enhancement factor in the presence of a poloidal electric field. Their

calculations indicate that the radial electric field, which is proportional to the rotation

velocity, shows a behavior similar to that displayed by the enhancement factors Fk,,_.

V. PLASMA CURRENT

The general expression for the flux surface averaged plasma current is

J = _ ej,_j< _j >= - _ e_nj(<_, > - < _j>) (35)
1 j

where the parallel velocity of the species j is given by

1 f d3vo.qfj 1uJ = nj

The procedure used for calculating the parallel velocity is analogous to that used for

calculating the restoring coefficients < r_i >. Using the solution for fjl, the parallel

velocity is found to be T

< uj> = ft.c,V_Tj fjo f,¢v_ < ro >.,° -:;,o+E .,° ...,t .

+{(rS _1)( Ti )fjo_ _t {v,s} +e,A,( 1 )

where

f;o[e,<o. ]
As with particle transport, the current due to the ohmic field and the gradient terms

can be calculated by considering the driving forces individually. Again, the radial

electric field does not contribute to the current.

29



ai

A. Parallel conductivity
o

We calculate the parallel conductivity by considering the driving force A3. As

< u_ >>>< u_ >, < Uz >, we consider only the electron contribution. Furthermore,

< r_ >>>< rie >, < rze > [Eq. (27)]. Using the restoring coefficient < r_ >

calculated to the order ftl from Eq. (15) in the expression for < u_ >, we obtain the

ohmic current as

J = aiEll (37)

where

(38)

For a large aspect ratio tokamak, we can write ao as

• where acz,, the conductivity in a plasma with a uniform magnetic field, is given by

n.e a 1 + {v;,/v_. } (40)• _c_= _--7 {_sW __S)l_S}

and a_vc,i, the neoclassical conductivity reduction factor, is given by

+ }{s,....I(.:))
c,_c,,)= I,_. W)= {_s.,(_s.__s.,)l_;S}

S S 2 $2D 82

{v:.Iv:} {filC':e)<I(":)} (41)
B S S i)S

Here, the expression for alvc,i is accurate to order ft. When _)(0) _ 0, Eq. (37) for

the parallel current reduces to Eq. (49) in Ref. 5. Also, when vs_ = u_ and _)(8) = 0,

the expression (37) reduces to Eq. (46) in Ref. 7.

Consistent with our approach in the case of particle transport, we define the

enhancement factor for the neoclassical conductivity reduction as
l

Faa = a:Nc,i (42)
ant
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Figure 13 shows the variation of Fs3 with the magnitude of the poloidal potential

variation, X0. The behavior of Fsz is similar to that of the Ware pinch enhancement

factor F13.

Figure 14 shows the variation of the enhancement factor F33 with Zefl. For

¢_,_ > ¢_t with Xo > 1 and for @,, < ¢_t, the enhancement factor F33 decreases,

signifying a decrease in the neoclassical conductivity reduction factor. However, for

¢,,, > ¢_t and X0 ,._ 1, F33 increases with Zeff.

Before we attempt an explanation of the behavior of F33 with an increase in the

impurity content, we note that the neoclassical conductivity reduction factor a_v,¢

has three terms [see Eq. (41)]. The first term in Eq. (41) contains primarily the effect

of electron collisions with main ions and impurity ions, while the other two terms

depend mainly on electron-electron collisions. As pointed out by Hirshman et al.,4

an increase in the impurity content causes a decrease in the neoclassical conductivity

reduction by increasing the electron-ion collisions as well as by decreasing the effect

of electron-electron collisions. The former effect results in a decrease in the first term

in Eq. (41), while the latter effect causes a reduction in the last two terms in Eq.

(41).

The presence of a poloidal electric field affects a/vc,¢ primarily by affecting the

fraction of trapped particles. When @,,, > ¢_t and X0 _ 1, the trapped electron

fraction decreases in the region of the velocity space where v -_ vth. Hence, the

conductivity reducing effect of impurity ions is weaker, giving rise to a slight increase

in F3s with Ze11. In ali other cases, the fraction of trapped electrons in the region of

velocity space where v ,.. vth increases, and hence the conductivity reducing effect of

impurity ions is stronger. This results in a decrease in F33 with Z_1f. We note that

the behavior of Ware pinch enhancement factor Fr3 as a function of Z_I! is similar to

that of F33. Hence, the present discussion applies to the behavior of Fr3 as weil.

Comparison of the results obtained in this work with those obtained by Chang 2

in the absence of impurities indicates a ,,. 20% discrepancy between the two results

at X0 -_ 4. As with the Ware pinch enhancement factor, the values obtained in the
B

present work are smaller than those obtained Ref. 2. It appears that the discrepancy

decreases as X0 becomes smaller. We note in passing that in Ref. 2 the analytical
=
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fit for the neoclassical conductivity reduction factor (a3, g3e) for the case 0,, > ¢o,t

- does not seem to reproduce the curve shown in Fig. 12 of Ref. 2. Our comparison

here is with the curve in Fig. 12 in Ref. 2.

Finally, we note that Chang 2 concludes that the presence of an impurity species

in modest amounts (nzZ << he) does not alter the transport enhancement factors

calculated for an electron-ion plasma. As can be seen from Fig. 14, this clearly is not

the case. While the effect of impurities on electron diffusion is insignificant, the effect

is significant for the Ware pinch and the conductivity reduction factor, especially at

X0 > 1. It appears that the cause of the discrepancy can be found in the way Chang

treats the electron collision term. The electron collision term Ce can be written as

Ce = C,e + C_i + C_I. If one neglects electron-electron collisions, as Chang seems to

do, then C_ = C_, + C_I " (_,_ + v_)f... _ Z_ffv_f.., where £ is the Lorentz operator

and Zel! = _-.j#e njZ_/ne. In this case, the effect of including an impurity species is

equivalent to replacing v_ by Z_flv_ in the expressions for enhancement factors for a

" simple plasma. Zefl cancels leaving the enhancement factors unaltered. In the present

work, the results on diffusion as well as Ware pinch and conductivity were obtained

" in the presence of electron-electron collision terms. In this case, Ce - (_:'..e+ Z_llv_)£

and Zel! does not cancel when we compute the enhancement factors.

B. Bootstrap current

We now compute the parallel currents due to the perpendicular gradients, Ali and

A2j. In order to calculate the bootstrap current in a n-species plasma, we need to

calculate the n-1 parallel velocity differences in the presence of the driving terms Ali

and A2j [see Eq. (35)]. We will follow the procedure used by Hirshman et al.5 for

calculating the velocity differences. Using the expressions for the restoring coefficients

[Eq. (15)], the parallel velocity [Eq. (36)], and the particle flux in the absence of A3

[Eq. (22)], we obtain, correct to first order in frc, the following expression for the

parallel friction n

" <Rj_> = -_J{4_} [(<_,> - <_ >)+(_o..__j:.)0
+_ [_[¢<_ > _ <_j>)+_0j._]

• !
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-A_'i[(< zq > - < u_ >)+ u°_,¢]]] (43)

where

uoq:.=(epB_'_ ftP_,. (T_,)\mp-'-'_p,I{ftovf} _ + _ ftT_,_A2p (44)
and

rfvSvD}{;;'" = Lt /'*-gJJ
pq _ pq V;,qV;, 1

{lt.Vr} 7;,, -- _t Yt* _, T, .: {D':q}

/
ifr._, Tp ,]vs jj (46)

= [(-_sj {.}_} (.sjj (47)

The above expression for < R,ik > is accurate to the order A_ q (A_ q < 1). We

have used rrc -,, %s in deriving the above expressions. We note that the quantities

0 _, and _ have a form similar to those of u°q, 7_q, and 7_,q defined by Eqs.

(5la), (51c), and (5ld) in Ref. 5. The expression for A_'qis identical to that given by

Eq. (5 lb) in Ref. 5 The difference between oU_,q,¢,7_,,_,and pq• 7T¢ and the corresponding

quantities in Ref. 5 is due to the energy dependence of the quantity ft, when ¢_(0) # 0.

Setting 0(0) = 0 causes the differences to vanish.

An important point concerns the quantity pq7;,¢. As pointed out by Hirshman et

al.,5 in the absence of a poloidal potential variation, _'q%0 = 7_q # 0 when vs_ # v_. In

other words, the component of the parallel friction proportional to 7_q is driven by the

difference in the slowing down and pitch angle diffusion frequencies. Setting vsq = v_

causes this component of the friction to vanish. In the presence of a poloidal potential

variation, setting vsq = v_ does not cause 7,_ to vanish. In this case, the component

of the parallel friction proportional to pq7;_¢is driven by the difference between vsq and

v_ as well a3 the energy dependence of the neoclassical factor frc.

The diffusive particle flux can be written in terws of the parallel friction as

r,, =- (48)
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Using Eq. (43) for the parallel friction in the above equation for the particle flux, and

• retaining only the gradient terms, we obtain the following equation for the parallel

velocity differences n

mjnj_[_(<uj > - < uk>)= rj.(eja°)+ < Rio,.> (49)
k

where

and

• -- - - (511

Here, Pfr is identical to the quantity p_b and < Rjo,_ > is similar in its form to/_,0

in Ref. 5.

Equation (49) provides an expression for the (n-1) parallel velocity differences that
I

can be used in the Eq. (35) to obtain the bootstrap current. Due to the algebraic

complexity involved in the calculations, we calculate the bootstrap current for a two-

ion species plasma. Unlike the calculations in Ref. 5, our calculations are valid for a

plasma with an impurity species of arbitrary mass. The expression for the bootstrap

current can be written as5 ..

J,,_.,_= __, T_L_,,.tA_k (52)
k;m-l,2

where the bootstrap current coefficients are of the form

" L_I,_ = L0-_"k [_'_I,'J-'11,¢_+ ^ ik

!! = LO'_k L12,@ -I- i1,_ 12,_ -t-

ii Here, Lik
1,_:. are the diffusion coefficients [see Eq. (25)] and

. Lo = -ft. N
4'

.[ C_ = n, eZ, BOa
i
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The quantities Cei,¢, C_,¢, and Dk.¢ are complicated functions of the collision fre-

quencies, n Our calculations indicate that

Cii,@

From the expressions (53), (54) for the bootstrap current coefficients and the expres-
jk

sionsforthe diffusioncoefficientsLll:_ in Eq. (25),it is easy to seethat

L_ - = ZLfr:, (56)31,_ Z,L'31,,

As mentioned in Ref. 5, this is a consequence of the ambipolarity of the particle

fluxes.

Before proceeding with a discussion of the results, we wish to illustrate the re-

lationship between the bootstrap current and the cross field diffusive particle fluxes.

Using the expressions for the particle flux [Eq. (25)] in Eq. (52), we can write the

bootstrap curre__ as

J,,c,c=LoCe,[C_I,.F,.+C',I:.F,,.__,b_A2,] (57) .k

For simplicity, we consider the case of zero temperature gradients, i.e., A2_ = 0. In

this case, the last term in Eq. (57) vanishes. In the absence of a significant impurity

concentration, r_¢ ,,, ric and, as a consequence of Eq. (55), the second term in

Eq. (57) is negligible. In the presence of a significant impurity concentration, a

similar situation obtains after the stationary state (r_ ~ F.¢) is reached. Before the

stationary state is reached,

rT_~°
and the second term in Eq. (57) is comparable to the first term. Thus, in the presence

of impurities, enhancement of the ion flux due to a poloidal electric field will have

a significant effect on the bootstrap current. We note here that an analysis of the

relation between the particle fluxes and the bootstrap current similar to the one given

here has been carried out by Connor _ in the absence of a poloidal electric field.

We note that, of the six transport coefficients L_,, (n = 1, 2; k = e, i, Z), only five

are independent. The coefficient LZl is dependent on the transport coefficients L_I
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and L_I [see Eq. (56)]. Furthermore, the coefficient LaZ2is generally small. Hence,

" we will primarily concentrate on the behavior of four transport coefficients, Lak,,(n =

1,2;k = e,i).

We now present the results of our calculations of the effect of a poloidal electric

field upon the bootstrap current coefficients. We consider a two ion species plasma in

which the impurity is carbon. We define the bootstrap current enhancement fa,ctor

as
L k

(sa)

where Lakmare the transport coefficients in the absCr_ceof a poloidal electric field. Due

to Onsager symmetry, 5 L_I = L_a , and hence, the variation of F_I with X0 is identical

to that of the Ware pinch enhancement factor, F_a. Variation of the bootstrap current

enhancement factor F_I as a function of the poloidal electric field is shown in Fig.

15. The variation of the enhancement factors Fakais similar to that of Fa_l. As can be

. seen from Figs. 8 and 15, the enhancement of the bootstrap current coefficients over

their magnitude for (I)(0) = 0 is at most by a factor of 2. Furthermore, it is clear from

. Figs. 8 and 15 that the electron and ion enhancement factors (F_, and F_,,) behave

differently for @1,_> (_o_t than for _,,, < _o.t. Hence, the effect of a poloidal electric

field upon the bootstrap current cannot be deduced easily from the behavior of the

individual enhancement factors. We will evaluate the effect of the enhancement of

bootstrap current coefficients and temperature/density profiles upon the magnitude

of the bootstrap current later in this section.

Figure 16 shows the variation of the bootstrap current enhancement factor F_I

as a function of the impurity concentration (Z_ll) for Xo -- 1. Due to Onsager

symmetry, the variation of F_I is identical to that of F_a. The variation of Fak2with

Zell is similar to that of Fakl. As with the diffusion coefficients, the variation of the

bootstrap enhancement factors with Zefl is more pronounced for smaller values of

Zell due to the increasing;y important role being played by the impurity species in this

range of Zell. AS Zel! increases, the transport enhancement factors asymptotically

. reach a constant value. The presence of a poloidal electric field in an impure plasma

affects the bootstrap current primarily by increasing. (or decreasing) the trapped ion or

. impurity fraction in addition to the trapped electron fraction, and hence the collisional
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Figure 16: Bootstrap current enhancement factor F_z as a function of impurity con-

centration, Ze/t (Impurity: Carbon; X0 - 1.0)
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coupling between them. We recall here that the bootstrap current is primarily a

trapped particle effect. It appears that when _,,, < _o,,t, for moderate values of X0

(Xo < 4), the trapped ion population decreases, resulting in a decrease in F]I. For

• ,,,. > _o_t, the opposite effect occurs, i.e., the trapped ion fraction increases, causing

an increase in F_I (see Fig. 16). _

We now compare our results on the bootstrap current with the results obtained

by Chang 2 in the absence of impurities. In the absence of impurities, Eq. (52) can

be written as

= -- + LI., + -T_e

+T_L_I:¢ _ L_1;¢ "_

Using the expressions for the the transport coefficients La2.¢ and L31:¢, it can be

shown that, n

-- -- YiOL _31,o {ftov?}

With this result, the Eq. (59) has the same form as the expression for the bootstrap

current obtMned by Chang. 2 We note that LsL¢ and W# defined here arc equivalent

to (czl,g3,) and the variational parameter Y defined in Ref. 2. Thus our previous

comparison of the Ware pinch enhancement factor and the variational parameter in

Section IV. giv_ the desired comp_on between the bootstrap current coefficients.

Finally, we point out that for _(0) = 0, our calculations agree with the transport

coefficients calculated using the analytical expressions obtained by Hirshman et al.s:x2

for a heavy in:purity such as iron or tungsten. For lighter impurities, such as carbon

or helium, the ion enhancement factors Fj,, differ from those calculated using the

expressions in Refs. 5,12 by less than 3% when the impurity content is low (2,Ii <

1.5). For a lighter impurity like carbon, the difference in Fj,, calculated using the

two approaches can be as high as 20% for higher impurity concentrations (2,tl '2_

3.0). This is to be expected as the expressions in Refs. 5, 12 were obtained in

the limit rez/m, >> 1. Nevertheless, the analytic expressions in Refs. 5,12 provide a

convenient means for calculating the bootstrap current coefliciems for most impurities

and concentration if one could tolerate a discrepancy of the order _ 20% for low Z
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impurities at higher concentrations.

1. Enhancement of bootstrap current and profile effects

The bootstrap current depends upon the transport coefficients L3k, as well as the

driving forces AI_ and A2_. As the driving forces depend upon the density and tem-

perature profiles, the enhancement (or reduction) of bootstrap current is dependent

on the enhancement (or reduction) of the transport coefficients as well as the electron

and ion temperature/density profiles. We consider briefly the profile effects as well

as the enhancement of transport coefficients upon the magnitude of the bootstrap

current.

We begin by considering a situation where the temperature and density profiles

can be approximated by

Tj(r) = Tjo(1 - p2)_T_

. and

ni(r)= nj0(1- p2) .j

Here p - r/a where a is the minor radius. For simplicity, we consider a situation

where T_ __T_ __Tz. With this,

Tj T a 1 p2

and

nj a 1-p 2

We shall further assumethat Z_t! is constantin the core regionof the plasma where

the present formalismis expectedto be valid. This leads to

aj n a

With this, Eq. (52) for the bootstrap current can be written as

a 1 - p2 aT Y]_ (1.5L3_1,#- L_2,#) - a,, Y]_L_I,# (60)k k
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We recall that the subscript ¢ indicates the presence of a significant poloidal electric

field. In the absence of a poloidal electric field, we have

= a 1 -- p2 _T E -- -- _''k k

Setting J,,c,¢ - J,,c _> 0, we obtain relation between a,, and aT for the change in

the bootstrap current due to inclusion of a poloidal electric field to be positive. We

note that the relationship between a,, and aT depends upon the impurity species,

concentration, and the sign and magnitude of the potential variation. As an example,

we consider the case of carbon impurity with Z_f! = 3.0. Using the numerically

computed transport coefficients, n we find that the condition for an enhancement of

the bootstrap current due to a poloidal electric field is

(a)When ¢i,, < ¢o_t:

For X0 = 1, a,, > 0.64aT.

For Xo = 3, a,, > 0.49aT.

(b)When ¢,, > ¢_,:

For Xo = 1, a,, > --0.36aT.

For Xo = 3, a,_ > 4.12aT.

Figures 17 and 18 show the relation between a,, and aT, as a function of X0, that

is needed for an enhancement of the bootstrap current. Under conditions that prevail

in most tokamaks, the presence of a poloidal electric field such that ¢,, > ¢o_t (as

during ECRH) results in a reduction in the bootstrap current (Fig. 17). On the other

hand, when ¢,_ < ¢o_t (as during ICRH of NBI), the bootstrap current increases if

the density profile is more peaked than roughly the square root of the temperature

profile, i.e., a,, > 0.5aT (see Fig. 18). The behavior of anaT depicted in Figs. 17

and 18 follows from the behavior of the enhancement factors F_, as a function of Xo.

Finally, we note that varying Zey! from 2 to 4 has only a minor effect on the behavior

of a,_/aT shown on Figs. 17 and 18.
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Figure 17: Relation between the density and temperature profiles for the change in

the bootstrap current (J,,c,¢ - J,,c) due to the poloidal electric field to be positive

when _,. > _o_t. The profiles are of the form zj = zj(0)[1 -(r/a)2] _',where j = n, T
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Figure 18: Relation between the density and temperature profiles for the change in

the bootstrap current (J,,c,#- Jnc) due to the poloidal electric field to be positive when

• ,,_< _o_.. The profiles are of the form xj = xj(0)[1 - (r/a)2] _ where j = n,T.
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VI. SUMMARY AND CONCLUSIONS

In this paper, we have examined the effect of a Poloidal variation in the electrostatic

potential of order c on the neoclassical particle transport and current in a multispecies

tokamak plasma. The most significant aspect of the present work is the calculation

of the effect of a poloidal electric field on the ion diffusion coefficients, neoclassical

conductivity, and bootstrap current.

We find that the main ion diffusion coefficients increase during both ECRH (_s,,

_o_t) and ICRH (_,,, < _o_t) for most values of the potential variation (X0 -

e_(O)/Tc), implying an increase in both the outward diffusion of main ions and

the inward diffusion of impurities. Only when the poloidal potential variation is

small, i.e. X0 _< 1, do the main ion diffusion coefficients decrease slightly (_ 10%)

during ICRH; which implies only a small reduction in the inward impurity diffusion

(Fz --- -ZJZ F_). It seems unlikely that any significant reduction in the inward ira-

- purity diffusion c_n be achieved with either ECRH or ICRH. However, variations of

this magnitude could be important in interpreting the experimental results on impu-

- rity transport, since recent results from JET 13:14indicate that the particle transport

in the core region of the plasma is close to the values predicted by the standard

(_(0) _ 0) neoclassical theory. In general, it is expected that modifications of the

neoclassical particle transport coefficients of the type examined in this work would

be significant in such regimes or regions of the plasma where the particle transport is

close to the neoclassical levels.

It is found that in the presence of a poloidal potential variation of order c, the

neoclassical conductivity reduction factor (aNc) decreases by as much as ,._ 35% (fox

_,, > _o_t) or increases by ,_ 70% (for _,,_ < _o_t) depending on the magnitude

of the potential variation. It further appears that the presence of impurities results

in a decrease in the neoclassical conductivity reduction factor for most values of the

poloidal potential variation. Such variations in the ohmic conductivity can have sig-

nificant implications for any interpretation of experimental results using a neoclassical

• conductivity model.

We further find that the presence of a poloidal electric field causes a significant

-.
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change in the bootstrap current coefficients, which can increase by a factor of ,,_2 or

decrease by _ 40% depending on the magnitude and sign of the potential variation.

The change in the bootstrap current, however, depends on the nature of the temper-

ature and density profiles as well as the enhancement (reduction) of the bootstrap

current coefficients. We have calculated an increase in the bootstrap current when

• _,, < _t (e.g. ICRH or NBI) if the density profiles are more peaked than roughly

the square root of the temperature profiles,n a deuterium plasma with carbon impu-

rity. It is found that the bootstrap current generally decreases when _,_ > _o_t (e.g.

ECRH). It is important to include the effect of a poloidal electric field in estimating

the contribution of the bootstrap current to the total current during strong wave

heating or NBI.
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APPENDIX A: COLLISION OPERATOR

The approximate collision operator obtained by Hirshman et al.9'5 has the form

2vllr_j v'ft,fjo + [v_ - vffk]vlluJ1(v)fjo (AI)
Cjk(fjl, fkl) -- _£fjl + V2hd V2

where 3

v_=v#t [¢ (v_.k)- G (v,_,k)]/(vt_j) (A2,

is the deflection frequency, s

vfk = Tk_-_ / (A3)

is the slowing down frequency. 5 Here,

22
vjk = 47rnkejet In A/[(2Tj)3/2ml/2] (A4)

where In A is the Coulomb logarithm.
t,

a(x) = ¢(x) - x¢'(x) (A5)
2x 2

is the Chandrasekhar function, where ¢(x) = (2/v/-_) f_ exp(-t2)dt is the error func-

tion. The pitch angle operator is defined as

0 0

12= _vlj_--_(#vll)_ (A6)

Also,

ujl(v)fjo = (3/4_r) f vltfjldf_ (AT)

where df_ = 27rv-Idyll = 7r]_o(Bd#/w)(v/[vul). 5'12 The momentum restoring coeffi-

cient r_j is defined as

f m,v_j V[IfkldaV (A8)

where the integration operator {} is given by

{FJk(V)} ---- 2/( '011 _2F,'(v)f'___°d3 v\ vo,j / nj

• = (8_)fo_x4exp(_x_)FJ_(xj)dx, (Ag)

" Here, Fik(v) is an arbitrary function of the velocity v.
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APPENDIX B: CALCULATION OF /tc

The factor ftt is closely related to the fraction of trapped particles. In the absence

of poloidal potential variation, the factor has been computed for a large aspect ratio

tokamak by Rosenbluth et al. 1° and more recently by Balescu. 15 The value of fit in

the absence of a poloidal electric field is approximately 1.46_/7.1°,15 In the presence of

poloidal asymmetries in the potential, the trapped particle distribution changes and,

as discussed in Section II., the boundary between the trapped-untrapped regions is

a function of the particle energy. We will calculate the value of frc for the case of a

large aspect ratio tokamak using a method employed by Chang. z The quantity fti is

given byr,_

£_= _-_wa--_ --- d_up .

Defining _ = IvHI/v and _' = #B/w, we obtain,

1

where the first integral is over the trapped particle region and the second integral is

over the untrapped particle region. Here, due to the large aspect ratio assumption,

we have used B __B °. We now observe that due to the large aspect ratio assumption,

and due to our neglect of the boundary layer,

1 1
~ o(_)<_>

Furthermore, referring to Figs. 2 and 4, _',_ _ 1 - e over most of the velocity space.

Hence the second integral makes a contribution of the order (1 - e)20(e) ,.- O(e).

Hence, to the lowest order in e, we write

kj_,,.,, f + o(_)
Expressing A' in terms of ¢, we obtain

;,o=r <,=i,¢,_,2)<,4
Wenow examine the integration limits.
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1. When et_,, < et_.o.,t"

" For B-trapping, in terms of the variable _[se e Eq. (1)],

__.--- v/_(1+cos0) a/2[1 IZilX°T] xI2m-_ j ->_->0 (s_)
For E-trapping, using Eq. (2),

I12
_.,,- V7(1- cos0)x/z IZtlXoT 1 > _ > 0 (B2)

m_w

2. When ej_i,_ > et#.#o_t"
,z

In this case, we have only B-trapping. From Eq. (5), we get

_,it = V_(1 + cos0) 1/2 [1 + IZjlX°T]1/2_ J :_>__>0 (m)

From Eqs. (B2) and (B3), we can determine the lower limit on x2 = mjw/T by

- setting _, = 1. This gives,

For et_,,, < e_o.,,t,

2 > e(1 - cos0)lZ,IX0 2 (B4)
zj_ I+_(1-cos0) =zt'Mt

For e_,, > ei_o,,,,

=> e(1+ cosO)lZjlXo = (B5)
zt- 1-_(l+cos0) =xJ'_t

Using Eqs. (Bl), (B2), and (B3), we obtain

f,_ = _ 0.2 _'"'.1 - ¢2)d_ = _, -

Using Eqs. (B4) and (B5), the maximum value of ft,_ is found to be 1. Hence, ft_ < 1.

For z t > zt,_,_t, we can simplify the above equation by retaining only the first term.

In this case,
3

• Here, we have used Y_, cr2 = 2. In the present work, the factor ft,_ appears in the

velocity integrals of the type {} [Eq. (Ag)]. As will be shown in Appendix C, the

- contribution to the integral from the low velocity region is negligible for a large aspect
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ratio tokamak. Hence, the above expression for frc is adequate for our purposes.

Using the results (Bl), (B2), and (B3), we have for ej_,a. < ej_o_t,

,3 IZjlXoT 1

1/2

f,..- _v_((i-co_e)I_)I mjw

- ft 1 IZjlXoTx/z
mjw (86)

Similarly, for e_¢_. > eject,

3 ((1 + COS0)1/2> 1 -_ IZjlX°T[_/2-ff-_jwlf,¢_ _ _/_

IZjlXoT_/z, - ft 1+ miw (B7)

Here, we have used the fact that < (1- cosO) _/2 >=< (1 + costT)1/2 >. In either

case, we note that ft® > vr/. This justifies our neglect of the the untrapped particle

contribution, which is of the order ¢. We observe that when _(0) " 0 i.e., X0 " 0, we

have .frg = It = 3/2 < (1 4- cose)l/z > x/_ = 1.35V_. This value is somewhat smaller

than the value (1.46V_) quoted before. The main effect of the poloidal electric field '

is contained in the term ll 4- IZ,lXoT]_/2, and hence, for the present wor,., the abovemjw

expressions for frC are adequate.

APPENDIX C: SIMPLIFICATION OF vie

In the presence of a poloidal electric field, v_ = [vs + ],_(v D -rs)]. Noting that ft_ =

f, ll ± IZj]Xo/z211/2, we observe that in the low energy region where z = v/vth << 1,

ftr can be quite large, approaching 1. Hence, we have to examine the consequences of

ft_ m 1 in the low energy region on the velocity integrals appearing in the transport

coefficients.

We begin by observing that most of the velocity integrals appearing in the trans-

port coefficients are of the type {ft_F(v)/v_} where F(v) is an arbitrary function

of velocity. We specifically consider F(v) = VDVs. The conclusions drawn below are

expected to be valid for other forms of F(v) appearing in the transport coefficients.
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We have

_,. - 4 [l+f,.(_?14O]

[ ]_- 8 [_ _j'exp(-_) d_i (C1)3_,:,o.., 1+s,.(,,?i,,s- 0
In the absence of a poloidal electric field, xs,_it - O, and the lower limit in the above

integral is zero. In the presence of a poloidal electric field, for large values of xj, i.e.

zj >> 1, .fti "+ f, and we can set u#i = rf. We, therefore, examine only the region

of the velocity space where f,i _ 1. We have, in this region, xj ,.- O(ftv/X01ZjI ) < 1

for ft -+ O. Setting f,t - 1, the integrand in the above equation reduces to

'exp(-_)_fIntegrand _ xj

In this region, zj ,,. O(zj,_,) << I,and vf scales as ,.. 1Ix 3 for electrons and ,._ l/xi

" for ion as well as impurity. Hence, the value of the integrand is _<xj exp(-x_) << 1,

leading to negligible contribution from this region of the velocity space. Hence, the

contribution to the velocity integral from the region where frc -_ 1 is small for a large

aspect ratio tokamak. We, therefore, set vi¢ ,,, _,f in the transport coefficients.
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