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CHAPTER I

INTRODUCTION

th order inte-

The purpose of this paper is to study n
gral equations. The integrals studied in this paper are
of the Riemann type. The Riemann integral always exists
for a function which is continuous‘in the closed interval
defined by the limits of integration; continuity is here a
sufficient condition.

In this study a knowledge of the real number system
will be assumed. The following definitions and theorems
which aredeveloped in analysis courses will be assumed

and used in the following chapters.

Definition 1.1. ©Suppose a and b are real numbers such

that a < b. Then the closed interval [a,b] is the set of
all real numbers x such that a < x < b.

Definition 1.2. The statement that f(x) is bounded

in the interval [a,b] means that there exist constants m.
and M such that m < f(x) < M. The notation "|[f(x)| < P"
will be used to mean that the function, f(x), is bounded.

Definition 1.%. ©Suppose each of f and g is a function

such that there is an element common to their domains. The

sum of f and g, indicated by f + g, is the function h such



that D, = D N D, and if x is an element of Dy (denoted by

"X & Dh"), then h(x) = f(x) + g(x).
Definition 1.4. The statement that the function f is

continuous at (xo,f(xo)) means if € is a positive number,
there is a positive number & such that if x € Df and
|x - xOI < &, then [f(x) - f(xo)l < €.

Definition 1.5. The statement that f is continuous

means if x € Dy, then f is continuous at (x,f(x)).

Definition 1.6. A sequence is a function whose domain

is the set of positive integers; if a denotes the function,

[o o]
®h term. Tet {ai}i:l denote the se-

then ak denotes the k
quence {(l,al), (2,al}, eeo }.

Definition 1.7. The statement that the sequence

o0
{ai}i=l converges means there is a number a such that if €
is a positive number, there exists a positive integer N
such that if n > N, then lan - al < €.
[ o)

Definition 1.8. The statement that {fi} -] converges

i
uniformly on S means S < Dfi for all i, and there exists

a function f, S &« Df, such that if € is a positive number,
there exists a positive integer N such that if n > N and
x € S,then Ifn(x) - f(x)]| < e.

Theorem 1.1. Suppose that [a,b] is a number interval

and £ is a function with domain [a,b]. Suppose that for
each positive integer n, 8 is a function continuous on

[a,b]. Suppose that if & > O,then there is a positive



integer N such that if m > N and a < x £ b, then

[£(x) - gm(x)l < €. Then f is continuous on [a,b].

Theorem 1.2. Suppose [a,b] is a number interval and
for éach positive integer n, 8y is a function continuous on
[a,b]. Suppose that if € > 0, then there is a positive inte-
ger N, such that if each of p and q is a positive integer
> N then Igp(x) - gq(x)l < & for all x in [a,b]. Then there
is a function, f, continuous on [a,b] such that the hypo-
thesis of Theorem 1.1 is satisfied.

Theorem 1.3. If g is a bounded function on [a,b] and

{£, ff converges uniformly on [a,b], then {gf.}?i con-
i‘i=1 i’i=1

verges uniformly.

Definition 1.9 Suppose [a,b] is a number interval.

The statement that x5, X;, ..., X, is a subdivision of [a,b]

means that Xgsr Xy eees X is a sequence of numbers such

n

that x5 = &, x, = b and X401 <X%X351=1, 2, ..., n. The

n

statement that tl, ta, «eey b 1is an interpolating sequence

n

for Xos esey X, means that tl, ceas tn is a sequence of num-~

bers such that X459 < ti < X4 i=1, 2, ..., n.

Definition 1,10. If f is a function whose domain in-

cludes [a,b] then the statement that J is a Reimann integral
of £ on [a,b] means that J is a number such that if 0 < ¢,

then there is a positive number 68 such that if Xgor eeen Xp

is a subdivision of [a,b] with x,

l“Xi_l< 68, i 21, 2,

eey N and tl, ceey b is an interpolating sequence for

n



Xgys eees Xy then

|J _ile\-’l{f(ti)(xi - Xi"'l)}l < e,

Theorem 1,4, If f is a function whose domain includes

[a,b] then there is not more than one number, J, which is an
integral of f on [a,b].

Definition 1.11. Some elementary properties of a

Reimann integral are:
(1). Interchanging the limits of integration simply
changes the sign of the integral.
(2). For any numbers,
b b
j of (x)dx = cj £ (x)dx
a a

(3). If the first two integrals exist, then the other

exists and

b b b
J f(x)ax +I g(x)dx =j [£(x) + g(x)]ax
a a a

(4). If the first two integrals exist, then the other

exists and

fb £(x)dx +f° £(x)dx f £(x)dx
X X = X
a b a
(5). a
(x)dx =
fa f(x)dx 0

(6). If a<x<b, £f(x) < g(x) then

b b
[ £ (x)dx S.f g(x)dx

a a



b b
(7). Ij f(X)dXI.SJ' | £(x)|ax if a < b.
a a

Theorem 1.5. If [a,b] is an interval and f is a func-

tion defined on [a,b] and m is a number such that |f(x)| < M

for a £ x < b and

b
[ f(x)dax

a

o : -
exists then [{ f(x)ax] < M(b - a).
a

Theorem 1.6. Suppose f is a function defined on |a,b]

and {fi}

(e o]

;=1 1S a sequence of functions defined on [a,b] such

that if n is a positive integer, then
b
J' fn(x)dx
a

exists. OSuppose that the sequence {fi}zil converges uni-

b b
formly to £ on [a,b]. Thenj’ f(x) dx exists andj' £ (x)ax
a a

converges toj' f(x)dx as n approaches .
a

Theorem 1.7. If f is continuous on [a,b], then

b
f f(x)dx exists.
a

Theorem 1.8. Suppose f is a function continuous on

[a,b] and a < ¢ < b and A is a number. Then the following

two statements are equivalent:



(1). £'(x) = f(x) for a < x < b and f(c) = A

(2). f(x) = A +JX £(t)dt for a < x < b,
c

Theorem 1.9. Suppose [a,b] is a number interval and

{fi}io_:l is a sequence of functions with domain [a,b] such

that for each positive integer n there is a number Mn, such

that lfn+l(x) - fn(x)l <M, for a <x <b. Suppose that the

o0
series 2 M, converges. Then the sequence {f.}(.x_)_l con-

verges uniformly to some function f on [a,b].

X
Theorem 1.10. If a < x < b, then If [t - c|™at]
c

lX—C|m+l
m+ 1 *

Theorem 1,11. If each of f and g is a function con-

tinuous on [a,b] and a < ¢ < b and a < x < b, then
x X
IJ' [£(t) - g(¥)]at| < lf 1£(t) - g(t)|at].
c c

Theorem 1.12. Suppose [a,b] is a number interval and

f is a bounded function from [a,b] into the numbers such

that if a < p < g £ b, then
q
f f(x)ax
p

exists. Suppose [f(x)| < M for all x € [a,b]. Suppose

a< c<band H is a number. ILet



X
F(x) =J' £f(t)dt for a < x < b. Then F is continuous on

c

la,b].
Proof: Let e > 0. Let &

il

Let X, € la,b]. Then if x € [a,b] and |x - Xl < 8, then
X X0
|F(x) - F(x)l = |H +f £(t)dt - H —f £(t)at]
v . c . . N c

1X £(t)at 0 s (p)as| = lc £(t)dt + Xf(t)dtl
s - o st - s

1l

X

U' £f(t)at| = Mlx - XOI <Ms =Me/M+ 1K e,
%0

Therefore F(x) is continuous.

Theorem 1.13. Suppose {fi};zl is a sequence of con-

tinuous functions defined on [a,b]. If {fi}gzl converges

uniformly to some function g on [a,b] then g is continuous.
- ,

i=

verges uniformly to g on [a,b] there exists a positive

Proof: Iet x, € [a,b]. Let € > 0. Since {f;};_ 4 con-
integer N such that if n > N and x € [a,b] then
lfn(x) - g(x)] < g/3. If n > N, then since
o0

foe1 € Uiy
is continuous at X5 there exists a & > O such that if
x € [a,b] and |x - Xol < & then lfn+l(x) - fn+1(xo)l < g/3.
Let x, e [a,b] such that [x - xy| < 6 and n > N. Then

/M where M is a bound of |f(x)].



le(x) - 8(xy)l =
lg(x) = £ () + £ () + L4 (o) = £ (xp) - Bxg) <
lg(x) - £ G+ £ (&) = £, Gdl + 1£,,(x)
- g(xo)l =
1247 (x) = 8G) + £ () = £ ()] +
Ifn+l(xo) "S(Xo)l <

e/3 + €/3 + /3 = €.

Therefore g is contbtinuous.



CHAPTER II

TH

UNIQUE SOLUTIONS OF N~ ORDER

LINEAR INTEGRAL EQUATIONS

Suppose [a,b] is a number interval and f is a bounded
function from [a,b] into the real numbers. The purpose of
this chapter is to prove the existence of a unique solution

of an nth

order linear integral equation. A first degree
linear equation is studied to show its existence and unique-
ness properties and the second degree equation is studied to
show the properties that are analogous to the first degree

equation.

Theorem 2.1. Suppose [a,b] is a number interval and f

is a bounded function from [a,b] ihto the numbers such that

if a <p<qg<Xb, then

q
j f(x)dx
D
exists. Suppose [f(x)| < M for all x € [a,b]. Suppose

a<{c¢c<b, and H is a number. Let the sequence {fi};zl of

functions on [a,b] be defined as follows:

£,G) = B +fx £(6)db
Cc
X

f2(x) = H +f fl(t)dt

c



£ G) = H +fx r(6)at
Cc

If m is a positive integer and z is in [a,b], then

M*-[z - c|®
m!

£, (2) - (2] < -, where

Ifl(w) - f(w)] < M* for all w € [a,b].
Proof: Show f(x) is bounded.

10

x .
f(x) = H +f‘ f(t)dt. From previous work we have shown

C

b .
that {f f(x)dx| < M(b - a) where [f(x)| < Mand a < x < b.
a

x
Hence fl(x) =H +J’ f(t)dt, which implies Ifl(x)l =

C
X X
|H +f £(t)at] < |H] + 1[ f(t)at] £
C C

|H| + Mix - ¢| = K.
This implies fl(x) is bounded. Suppose z € [a,b].

mathematical induction to show that

M1z - c|®
m!

£ ,,(2) - £ (2)] <
for Ifl(w) - fw)] < M* for all w ¢ [a,b].

Show true for m = 1.

We use
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£, ,1(2) = £,(2)] = 1£5(2) - £,(2)] =
? e (1) * ooyl = IF £ (0t - (* 2(6)asl
|H + f.(t)dt - H - f(t)dt| = fl - =
J, o J, ) J,

[ (5 - 2easl < f12,(9) - £()lasl < [ sl -
c ¢} C

M*flz - c|®
m!

Mz - el =
Now suppose true for m = n, That is,we assume that

M*-lz - c|®
n!

Ifn+l(z) - fn(z)l < for all z such that

a < 2z <b. Therefore show true for m = ntl.

1£,1(2) = £.(2)] = [£,5(2) - £ ,,(2)l

i

Z Z
|5 +f £ (t)dt - H —f £ (t)dt|
c c

[ fan(0as [ (a8l = U? (2,4, (8) - £, (£))at] <
Cc C c

Z Z K n

o M-lt - ¢l
lflfml(t) f (®)lat] < | y at| <
c c

Mz = P w*eqn - o™

(n+1)! m!

Hence true for all m.

Theorem 2.2. Suppose [a,b] is a number interval and f

is a bounded function from [a,b] into the numbers such that
if a < p < qg £ b,then

q
‘ f(x)dx
j;
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exists. Suppose |f(x)] < M for all x e [a,b]. Suppose
a<c<band His a number. Let the sequence {fi}gzl of

functions on [a,b] be defined as follows:

1

£y (x) = H +fx £(5)at
C
X
£6) = B+ 1y (s
c
) X
fann 0 = 1+ 2,(0Dat
C

Then there is a function g on [a,b] 3 fn(x) converges to g
uniformly on [a,b], and g has the following properties:
(1). g is continuous, and
(2). glx) =

X
H +j‘ g()dt
c
for all x £ [a,b].

Proof:
1,60 - 2Gol =I +[ ()t - 26l < 18]+ [ 2(0asl + 1G]
c c '

IA

|H| + M|x - ¢|] + M
< |H] + M(b - a) + M

M*"

H]
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If, (x) - £(x)]| < ¥, for all x € [a,b), and therefore, for
1 .

m is a positive integer and x & [a,b]

* *
lfm+l(x> - fm(x)l < Molx - c|® <M lb - al®

m. - m!
® 1¥|p - al® ¥ 2 |b - al®
Now, 2 = = M —
m=1 * m=1 )
00 ..n ® . m
Since 2 %T converges, M 2 12;5721_ converges.
n=1l —° m=1 *

Therefore {fi};il converges uniformly to some function g

. [¢9) . .
on [a,bj.‘ By Theorem 1.1l each f ., & {f;};-1 is continuous.
By Theorem 1.12 a sequence of continuous functions which
converge uniformly convergesto a continuous function. There-
fore g is continuous.

< ,
Sincej' fn(t)dt exists for each n and x € [a,b] and since

c
(£.}2 . ~ x
i/i=1 converges uniformly to g on [a,b],thenf' g(t)dt for
c

X X
each x € [a,b] exists andf" £, (t)dt converges tof' g(t)dt,
c c

x
as n— o, Butj' fn(t)dt = fn+l(x)‘_I{=$fnﬁl(X> - H con~
c
x
verges toj~ g(t)dt as n— ®, but fn+l(x) converges to g(x).
c
x
Therefore g(x) = H +j' g(t)dt, for all x € [a,b].

c

Theorem 2.%. If G is a continuous function defined
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- X .y
on [a,b] and a < ¢ < b and g(x) =j' g(t)dt for all x € [a,b],
e
then g(x) = O for all x € [a,b].

Proof: As in previous theorems, we can define a se-

quence of functions {fi};21 on [a,b],as follows:

£,(x) = B J,rfx £(b)as
c
X
fo(x) = H +f £, (t)at
Cc
) X
£ ,,(x) =8 +f £ (t)ds
c

where H is equal to zero, and fk = g for all k. Now we show

. . Mlx - cln+l
by induction that lfn+l(x)l < SO for all n and all

x € [a,b].

Show true for n = 1.

X
lfl(x)l = {f f(t)dt] < M|x - c¢| where |f(x)|] < M
' c
Show true for n = 2.

X X 2
1226001 = If £3(0davl < I mle - clas] = Blhoaln
C c
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_ n
Now, assume Ifn(x)[ 5,M15~Ejgl~ for all x € [a,b].

X
1£,,601 = If £ (v)as| < |f HE=2l “ag
n+l .L n f

Mlx - c[n+1
n! n+l

Mlx - o|™L _ mip - a|2*L
@r)r ST )t
Mb = al®

Therefore, for all n Ifnl < = .

o - n
Since M 2 iD—ETQL— converges, the limit of the sequence,
n=1 *

n
{Eu9~§7§l~);il is equal to zero. This implies {f. }l _y °on-~
verges uniformly to O. Therefore g(x) =

Theorem 2.4. If H is a number and [a,b] is a number

interval and a < ¢ £ b then there exists one and only one

b
function, g with domain [a,b] such thatj' g(t)dt exists and

X
g(x) = H +f g(t)dt for all x € [a,b].
(6]

Proof: By previous theorem we know there exists a

b
continuous function g defined on [a,b] such thatf' g(t)dt

x
exists and g(x) = H +f' g(t)dt for all x € [a,b]. Suppose
c

there exists a continuous function, g* # g, defined on [a,b]

! by . * _ X %,
such thatj' g (t)at exists and g (x) = H +]' g (t)at.
c

Since each of g and g* is a continuous function, (g - g*) is
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a continuous function. Now

* X X %
hix) = g(x) - g (x) = H +f' g(t)dt -~ H -J' g (t)at =
C C
* a(b)at - [ g*(6)at le(t) - g*(t)]at = f n(t)as
g - g ( =([g(t) - g =
fC fC fC fC

Therefore by Theorem 2.3 h = 0 on [a,b].

Theorem 2.5. Suppose that each of P, 4, T and s is
a function continuous on [a,b] and a < ¢ < b and each of H
and K is a number. There is one and only one pair of func-

tions f, g such that if x € [a,b], then

£(x) = H +J}[p(t)f(t) + q(t)e(t)]dt and
C
g(x) = H +J¥[r<t>f<t> + s(t)g(s)]at
C
Proof: Consider the sequence {fi(x), gi(x)};zl de-

fined as f,(x) = H +J¥[p(t)fo(t) + q(t)go(t)]dt
c

g (x) = E +JX[r(t)fo(t) + s()gy(t)]at
C
oG = H +J¥[p<t>fn<t> v a(t)e, (8)]at
C
g .1 (x) = K +J?[r(t)fn(t) ¢ s(t), (8)]as
e
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Suppose x € [a,b]. Use mathematical induction to show for
some T, N and all n

£, ) - £, )] < R

ll’l"‘l

and

2n—2_Tn—l.N]X _ Cln—l

le, (x) - g, ()] < o .
Since each of r, s, p, and g is a bounded function, there is
a T such that T bounds each of r, s, p, and q; since f and g
are bounded, lfl - fol and lgl - gol are bounded. There is

an M and M* such that |£; - £, < M and |g, - gyl < M. Let
N = M+ MF,

Show true for n = 2.

12560 - 1,61 = o[ [p(6)2(4) + altdey () s
. .

- H —[X[p(wa(t) + a(t)gy(t)]at]
C

< IR, (8) + a0 (9] = [0 + aDgge)]las
C

[ 1p(9 (1) = 2(6) + a(6)(gy (8) - go(6))las]

c

< U, (0) = 1001+ 1al) ey (8) = go(e) s

c

[ Tp(2,(0) + atdey (]at - [ [p()26(0) + a®gy()]as]
Cc C
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X *
< |f ™ + T dat|
C

It

X *
]f T(I"I + M )dtl
C

il

x
!f TNdt| = TN|x - c] and
C .

lg,(x) - g, Gl = K +j2c r(£)£,(8) + s(t)gy (t)at
: c

-k —jxr(t)fo(t) ¢ s(t)gg(t)at]
c

IA

g§1r<t>fl<t> v 5(8)gy (8) - T(8)16() - s(t)gy(t)lat]
C

IA

g§|r<t><fl<t> S 2 (8] + 18(8) (g () - go(8))lat]
C

x * x * X
< If ™ + TM at| < lf (M + M )dt] = lf TNdt| = Tnlx - ¢
c c : c

211"2. Tn_l.N, - n"l
Suppose Ifn(x) - fn_l(x)l < (n—l)!x c| and

n-2 mn-1 _ n-1
|8, (%) = By_q ()] < E—Tollx = ¢l

Show true for n + 1.

£, () = £ G| = |H +j¥[p<t>fn<t> v a(t)g, (+)]as
[

-1 = [Tp(9)1, 5 () + (g, y (9 ]asl
. C
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= [ [p02,(6) + (e, (8 = B2, 1 () + Alodgy_y ()]as]
] .

IA

I 1pCE) (2, 0) = £, 1 ()] + 126Xy () = gy (4D asl
C

T(zn—2_Th~l.N,lt _ Cln-l)
(n-1)! |

A

+

IX T(zn—&Tn--l,N,[t —cln"l)
f (n-1)!

c

) g? S iy AR o2 yas,

(n~-1)!

2n_l-Tn-N-[x - c|B
n!

Therefore for all n Ifn+1(x) - f (x)] <L

lg 4 () - g, ()] = IK +Jx[r(t)fn(t) + s(t)g, (t)]at
Cc

- K —fx[r<t>fn_1(t>‘ + s(t)g,_(t)]at
c

I

[ 12028, (0) = £, 1 (0] + 1a(0) (g, () - gy (8D)lat]
C

X n-2 nn-1 n-1 n-2 nn-1 n-1
T(2 PR Nejt - ¢l Yy, (2 ST Ne |~ ¢ )
< f 1) * (o117 atl

C

X T£2n~l'anl°N'lt - Cln—l)
[ a-1)! at|

c

2n_1-TniN-lx - c|®
n!

o2l pl .|y - a|B
n!

Therefore for all n lgn+l(x) - gn(X)l <

(o ¢]

Now 20
n=1

n-2 mn-1 n-1
g =T (éﬁig? =2l converges; therefore,
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(e 9] 0.0
{fi(:x:)i=1 and {gi(x>)i=l converges uniformly to some func-
tion respectively, say f and g, on [a,b]. By Theorem 1.1l
oo ) .

each g, € {g;(x)};., and each £, € {£;(x)};-; is continuous.
Therefore fn+l(x) is continuous:$>{fi(x)}{21 is a sequence

of continuous functions. Similarly {gi(x))gil is a sequence
of continuous functions. Since the uniform limit of a se-
quence of continuous functions is continuous by Theorem 1.12,

f and g are continuous. By previous theorem since
X
-[ [p(8)£, (6D + a(t)g, (t)]dt
c
X
exists andj'[r(t)fn(t) + s(t)gn(t)]dt exists for all n and
c

x € [a,b] and since {fi};il converges uniformly to f on [a,b]

and {gi};il converges uniformly to g then

fi[p(t>r<t> ¢ a(t)e(t)]as
exists for all x € [a,bJ;Jx[r(t)f(t) + s(t)g(t)]dt exists
Cc
for all x € [a,b]. wa]x[p(t)fn(t) + q(t)gn(t)]dt converges
C
toji[p(t)f(t) + g(t)g(t)]at as n—w.
fi[r(t)fn(t) + s(t)gn(t)]dt converges to

fX[r(t>f<t>  s(6)a(t)]ab
R ¢

as n—w,
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But f‘[pmfn(t) v a(b)g, (8)]at = £, (x) - H> e, (x) - B
c
converges tofx[p(t)f(t) + g(t)g(t)]dt and
c
fx[r(t)fn(t) + s(t)gn(t)]dt = g 41 (%) - K;.-égnﬂ_(x) - K con-
c

< ‘
verges tof [r(£)£(t) + s(t)g(t)]dt as n—»w. However,
c

fn+l(x) converges to f(x) and gn+l(x) converges to g(x).

il

Therefore, £(x) = H +fx[p(t)f(t) + q(t)g(t)]at and
C

n

g(x) = K +f’[r<t>f<t> + s5(6)g(t)]at.
C

Now, suppose there is a pair of continuous functions £, 8,

where £¥ # £ and g* # g, defined on [a,b] such that

jp[p(t)f*(t) + g(£)g*(6))dt exists and £ (x) =
a

x * * .

H +f‘[p(t)f (t) + at)g (%) ]dt;

C
b
f[r(t)f*(t) + s(t)g*(t)]dt exists and g (x) =
a

K+X * *
f [r(6)E7(t) + s(t)g” (t)]dt
C

for all x & [a,b]. We want to show

* n-1l, n, . - oD
¥ ) - 1G] g B—d Rl el
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2n—1-Jn-P«lx - c|®
n!

and g (x) - g(x)| <
all n.

for some J,'P and

Since each of r, s, p and g 1s a bounded function there
exists a number J such that J bounds each of r, s, p, Q;
since f, f*, g, and g* are bounded, |f —'f*l and |g - g*l is
bounded. There exists a z and z* such that |f - £ <z
and fg —dg*l < 2¥. Tet P =z + 2%,

Show true for n = 1.

1£Gx) - £ = [H +fx[p<t>f<-c> + a(t)g(t)]at
C

X * *
H ’f [p(£)£7(x) + a(t)g (t)]at|
C

]

lfx[pmf(t) + a(®)et) - p(EF(E) - a(t)g¥(8)]at]
C
X * *
< [flpte(e) - 261 + L) E) - @)l
C
X * X
<[ 3>+ sl < | easl = 3wl - ol
C C
5(x) - g¥@)| = |K +f[r<t>f<t> ¢ s(t)g(t)]dt

C

X % * |
- K -f [2(£)£7(8) + s(t)g” (t)]at|
C

X * *
< lflr(’c)(f(t) - £+ Is(B)(g(t) - g (£))]at]
c

X * X
_~_<_!sz+Jz dtl_<_|fJPdt| = JP|x - ¢|.
C C
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o=l g.p. (- B

Assume |[f(x) - f*(x)l < = and
l6Gr) - g*Ge)| g EedePelx = ol®
Show true for n+l.
X
1£(x) - £5(x)| = |H +f‘[p<t>f<t> + q(t)g(t)ldt
C

X %, < 4 *
- H —j‘[p(t>f (t) + q(t)g” (t)]at|
C

N

—

g¥1p<t><f<t> SN+ (88 () - g¥(6))(ab]
C

A

'j¥ 7N gRepe g = o), 3(@27Lg%Re |t - o)
n. n.

c

2B g l.poy - oyBtl
nd

X onoghtl.p. 1y _ o2
n!

at| =

c

lg(x) - g" (x)|

]

|K +]¥[r(t)r(t) + s(t)g(t)]at
C

!

X * *
K —f [z(£)E7(t) + s(t)g (t)]at
C

X * *
< If le(E)(£(t) - £7 (N + [s(6)(glt) - g (£))]at|
C

dt|

In

X geP Lo g0pa b = o™ L gP L. gRpa g~ oD)
'f n! + n!
C

H
ey
£
o
ct
|

b—

o0

Since 2
n=1

on~l.yn.p. Ix -~ c|®
n!

converges, the limit of the
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on-1l g0 p Ix - ¢|®
n!

sequence { } is zero. This implies that

each of {g(x) - g (x)) and {£(x) - £¥(x)) is zero. There-
fore g(x) - g*(x) = 0; f(x) - £*¥(x) = 0 for all x e [a,b];
hence g(x) = g*(x); hence f(x) = f*(x) for all x € [a,b].

Hence there exists one and only oné pair of functions f, g,

such that if x € [a,b] then:

It

f(x) = H +/?[p<t)f(t> + a(t)g(t)]at
C

i

£(x) = K ffx[r<t)f<t> + s(t)e(t)]ds.
C

Theorem 2.6. If n is a positive integer and for all

positive integers i and j < n, 84 i, is a function continuous

on [a,b] and A; is a number and a < ¢ < b,then there is one

and only one sequence of functions fl, f2, ooy fn satisfying

X n
fk(x) = Ak + Zl
c J=1

(t)f (¢)at X =1, 2, ..., n.

&x,J

Proof: Consider the sequence {h. .} 0. (K = 1, 2, «.c., n)
— i,k7i=1

defined as:

hl’k(x) A +f ﬁ B, 5 (t)h j(t) dt

hp  (x) = Ay f 2 By, 5 (t)hy 5(t)dv

X n
bye, k() = A +fc J?__Dl By, 5 By 5 ()%
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where each of hO,l’ hO,B’ ooy hO,n is a function cqntinuous

on [a,b]. We want to show that {h, .}, o (k =1, 2, ..., n)
i,kii=1

converges to fk for each k. For any k

il

Ihy o (x) - hy LG = 14 +fx J? By, 5 (t)hy ()at
c

X n
X 1n
= 2 () - hy (t)dt E (t)n(t)dt|
. j=1 gk’J , f gk sd
X n .
L[R2, (t)(hy; s(t) - b, s(t))]at
'L 3=1 gk,J 1,J 0,J l
X n )
< B 10 - ng g0l
X n
< If 2 T-Ndt| = nTN[x ~ c]
E

where T is a bound of each B, 3 (x =1, 2, ..., n) and

Ih, s(t) - hy ()] < n. Since all of these functions are
1,3 0,J

continuous, we know these are bounded.

e -1 ,w-1 w-1
- ON bt
Suppose, lhw,k(X) h,_ 1, k(X)l < B = (W--ll)}'C !

Show true for w + 1.
X n

lhwl,k(X> - h\«r,k(x)l = 14y +f. jzagk,J(t)hw,J(t)dt
c

= A [ 2 ey 3(Bdhy ) (t)at]
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Ifl B g g0y (6 - By (6))las]

_<_lf Elgka<t)(hw (8 =,y S(6))[at]

X n W=l W=l .. o AWl
5 I(n T(W_llsrllt el lag

IA

Therefore, for all w |h k(x) - h, 1 k(x)l
b ]

nW"l.TW"l.N_ Ib - alW"'l

= (w=1)!

W w

1
=1 e
(k =1, 2, ..., n) converges uniformly to some function,

convergess; therefore, {hi k}fil
b

say f,, on [a,b]. By Theorem 1.1l each hi x € {hl k}l -1

(k =1, 2, ..., n) is continuous. Therefore {hi,k}i=l

(k =1, 2, ..., n) is a sequence of continuous functions.

Since the uniform limit of a sequence of continuous func-

26

tions is continuous, Theorem 1.12, fk(x) is continuous. By

X

n
previous theorem 2 g .(t)h, .(t)dt exists for all n and
j=1 k,J »d

Cc

* w L
x € [a,b] and since {hi kcx>}i=l converges uniformly to f,

on [a,b] thenj' Z) B, 5 (t)f (t)dt exists for all x € [a,b
x

andj' 'Zi gk,j(t>hw,j(t)dt converges to R2A
. c

]

53 gk’a(t)f (t)dt.
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X n
Butf ,j§l gk,j(t)hw,J(t)dt = hw+l,a.(x) ~ A _,which converges

tof Z) B, (t)fj(t)dt,which implies hw,j(x) converges to

w‘ Therefore

k(x) f JZ B, (t)fj(t)dt.

Suppose there exists a sequence of continuous functions

* % * .
£1s £5y «o., £ satisfying £y = A +] Z B, (t)fj(t)dt.

12, G) - £3Ge)| = |4 f 2 B, 5 ()T (6)at

- A f JZJ B, 5 ()T (6)at]

- lj j%é B, 5 (8) (£, (8) = £ (v))at]
< 3-2?1 s (9)(2,(8) - (o) 1as]

(@]

sf Elgka(t)(fk(ﬂ £5(6))dt]
C

X n
< | 2, ™ dt] = nTM|x - c|
e 971

where T is the bound of each g ; and |£5(6) = £, (6)] < M
k]

w-1 w-1 w-1
* T M -
Suppose |f, (x) - £,(x)| < = (w—:%.})cl el )
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Show true for w.

12, () = £ Gl = o ZI_:D By, 5 (BT, (B)at

c

f OO

H
k__:
C.J
H

E By J(t)(f (¢) - £ (t))dtl

X n
< = (£) (£ (8) - £,.(8))]at]
J=1
c
X n
S Z e 5 (9 (0 (8) = £i(6))las]
c 97
X n Eﬁnw—l-TW~l-M~lt _ clw—l) _ nw-TW-M-lx _ C[w
_<__ ’ E — ] l - 1
. (w=-1)! w!
d=1
c
* L] - w
Since 2J n- 1% Mwlx c| converges, the limit of the se-
w=1 °
WQ w. * — w
quence {& T M@!X cl } is zero. This implies

*
is zero. Therefore fk(x) - fz(x) = 0 hence fk(x) = fi(x)
for all x € [a,b]. Hence there exists one and only one se-

quence of functions fy, ..., £ such that if x € [a,b] then

() = 4y f 2 M CILLE



CHAPTER III

EXISTENCE AND UNIQUENESS OF SOLUTIONS

T

OoF N'H ORDER NONLINEAR

INTEGRAL EQUATIONS

In this chapter nonlinear integral equations will be
studied. Suppose ¢ is a bounded function defined on
[a,b] X R (where R is the set of all real numberg). The
purpose of this chapter will be to show by Picard's method

the existence of unique solutions to integral equations of

the form f(x) = fo(x) ffx O[t,f(t)]dt. Starting with an
*o0

initial function, the method consists of making successive

substitutions and is used for higher-ordered equations and

systems of equations.

Theorem 3.1. Suppose § is a bounded function defined

on[a,b] X R, is the set of all numbers such that
(1). if g is a function continuous on [a,b], then the
function h(x) = ¢(x,g(x)) is continuous on [a,b]
(2). there is a number M such that if each of x and y
is a number and z € [a,b] then
[0(z,x) - 0(z,y)| < Mix - ¥yl.

Suppose a < ¢ < b and {hi}iﬁl is a sequence of functions and

29



30 -
h is a bounded function on [a,b] and T is & number such that

b
|0(x,h(x))] < T for all x € [a,b] andj' O(x,h(x)) exists.
a

Suppose further, H is a number and

hy(x) = H «»j'X D(t,n(E))at
c .

H

Boef 0Cs,ny(6))at
) |

hz(x)

b, G = B oL 0(k,n(6))db
C

Then {hi}gzl converges uniformly to a function g defined and

continuous on [a,b] such that

g(x) = H + * ¢(t,g(t))at
C

for all x:in [a,b].

Proof: Show h, is bounded. If x is in [a,b], then

« J
hl(x) = H +f' O(t,h(t))dt. This implies
¢

thOI=IH+fCthﬁ0MH
Cc

A

m|+f®wmwn&|
C

< |H| + T|lx - ¢| £ |[H| + T{a - b].
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Therefore lhl(x)l < K. There is a number N, such that
In(x)] < N for all x in [a,b]. Then

i

by () - hG| = |H +fx O(t,h(t))at - n(x)|
()

< [H] + lfmt,hct))at: + [nGo |
C.

¥

< |H| + T|x - ¢] + N = M¥,
<

Therefore lhl(x) - n(x)| < M* for all x & [a,b].

Suppose x € [a,b]. Use mathematical induction to show

Voo |x = B
By () - b G| g Bt = ol

for all x in [a,b].

Show true for y = 1.

hy(x) - By G| = |E +f 0Ce,ny (8286 ~ 1 - 0Ct,n(6))as
C C

H

I oCm (e -f‘ 0(t,1(5))at]
C C

i

lfx [0C5,1, () - O(t,n(5))]as]
()

IA

[ 10050, () - 0(kn(e) a

c

< Ifx Mih, (£) - h(t)lat]

X
< lf M-MY at] < MeM¥|x - e.
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Suppose true for y = n - 1 or

: -1 ¥ n-1
_ MY e | x - ¢
lhn(x) hn—-l(x)l < (n-1)!

for all x in [a,b].

Show true for y = n.

. X
gy GO = B GO1 = 1w 0C,m, (6Dt = B = 0Ce,n, ())as
. C ' c

RSO —J? O(t,h,_, (£))at]
& C

= I [0Ckm,(9) =BG,y ()]t
C

X
< 10Ct,h, (8)) - 0Ct,h,_(£))]dt]
c
- .
< IJ‘ Mlhn - hn_lldtl
c
X n-1 .. % n-1
M‘ L ] L] —
= If . Pén—-B! <l at|
c

<

Therefore lhn+l(x) - hn(x)l <

- n! n!
for all n.
00 n % n 00 n
Now, 2 -1 'Ill}.{ el . Vi D _LX___;:I_'_QL
n=1 * n=1 *
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00 n n M* n
. - . — a
and since 2 %ﬁ-converges, M L? [ converges. There-
n=1 —° :

fore {hi}iil converges uniformly to some function, g, on
[a,b]. To show g is continuous, we need to show that each

o . 0
h € {hi}i=1 is continuous. Let hn+1(x) e {hi}i=l'

By Theorem 1.11 hn+l(x) is continuous which implies
{hi}ijl'is a sequence of continuous functions. Since the
uniform limit of a sequence of continuous functions is con-
tinuous, g is continuous.

X
Sincef' 0(t,b (t))dt exists for each n and x € [a,b] and J

c

since {hi}gzl converges uniformly to g on [a,b], then

X
X .
f’ O(t,g(t))dt exists for each x € [a,b]. As namn,f' @(t,hn(t))dt
o c
X ©
converges toj' O(t,g(t))dt because, if 0 < €, since {hi}i=l
c

converges uniformly to g on [a,b], there is a positive integer
N such that if p > N, then for all x in [a,b]

Ihp(x) - g(x)| < e/M+1
where M is some number such that for numbers x and y, and

some z € [a,b], then |0(z,x) - O(z,y)| < M|lx - y|. Let 0 < e.
o0

Since {hi)1=

1 converges uniformly to g on [a,b],there is a
positive integer N such that if g > N and x is in [a,b], then
l@(x,hq(X)) - 0(x,g(x))] < Mh(x) - gx)| < M e/M+l < €
which implies {@(x,hi(X))};zl converges uniformly to

{0(x,g(x))} on [a,b].



34

- ,
Butf 0(t,n,(£))dt = by (x) - Hywhich implies h,(x) - H
c
x
converges toj' O(t,g(t))dt and n>oo. However,hn+l(x) con-
c
X
verges to g(x) and thus g(x) = H +j' O(t,g(t))ds.
c

Theorem 3.2. If H is a number and [a,b] is a number

interval such that a Lc S b,'then there exists one and only

one function g with domain [a,b] such that

b b
j O(t,g(t))dt exists and g(x) = H +f O(t,g(t))dt for all
a a

x € [a,b].
Proof: By Theorem one, there is a function g defined

b
such that]' 0(t,g(t)) exists and g(x) = H +fc O(t,g(t))dt
a

C
for all x € [a,b].

Suppose there is a continuous function g* # g, defined

on [a,b] such thatjp 0(t,g¥(+))dt exists and
a
* _ X *
g (x) = H +j‘ 0(t,8 (t))dt
C
for all x € [a,b]. We want to show

MW |x - c|P
n!

*
lg(x) - g"(x)] <
for all x € [a,b].

Show true for n = 1.
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X
lg(x) - g*(x)| = |H + 0(t,g(t))dt - H —fx 0Ct,e™(t))at]|
(¢] . C

i

X X *
!f @(tsg(t>)dt "f (D(tag (t))dtl
Cc C
x *
< Ifi(b(t,g(t)) - 0(t,g (£))]at]
[+

X * X
< I‘( Mlg(t) - g (£)ldt] < lf M-Wat|
C C

< M-¥W|x - ¢l
where |g(t) - g*(t)l < W for all t € [a,b]. Since g is
bounded and g* is bounded, we know there exists a W since
l6(6) = g*(6)1 < I8t +1g*(6)] < 1* + 1™ = W for a1
t € [a,b]. Assume
lg(x) - " (x)] <
for all x € [a,b].

MEeWe |x - c|
n!

Show true for n + 1.

il

l6(x) - &%) lfx 0(t,g(t))at + H - H —fx 0(t,6*(+))at
C C

X X *
< If [0(t,g(t))dat -f 0(t,g (t))|dt]

C (¢}

X *
< IJ' Mlg(t) - g" (t)]at]
C

IA

X evlotTe _ n

n!
C
- (n+1)!
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Therefore if n is a positive integer, then

MR Loy x ~ oBYL

*:.
lg(x) - g (I £ (ntl) !
n+l ;. n+l

< M Welb - a] .

- (n+l)!
S Mlb - al®

Since 2 -y converges, the limit of the sequence

n=1 *

n o n o '
{M 'lbnT al };Zl is equal to zero. This implies {g - g*}

converges uniformly to zero. Therefore g(x) - g*(x) = 0 for

all x € [a,b). Therefore g(x) = g*(x) for all x € [a,b].
Hence there is one and only one function such that

b
j' O(t,g(t))dt exists and g(x) = H +jx O(t,g(t))dt.
a c

Theorem 3.%: Suppose that for each positive integer

——

K < n, O is a bounded function defined on [a,bp] XRXR
... X R such that

(1). if €15 «-+» 8, i a sequence of functions conti-
nuous on [a,b], then the function h(x) = 0 (x,87 () vy 8, (%))
is continuous on [a,b],

(2). if k is a positive integef < n,then there is a
number Mk’ such that if each of x and y is a number and
a € [a,b] and each of X1y eeey X, 804 ¥1, ooy ¥, is a num-
ber sequence; then

I‘Dk(q,xla ooy Xn) - q)k(q’yl’ ceey yn)l

n
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Suppose a < ¢ < b and for each positive integer X < n,

{hy i};:l is a sequence of functions,and h is a function on
9

[a,b],and T is a number such that for each positive integer

k < n,l@k(x,hl,o(x), .eos hn,O(x))I < T for all x % [a,b],
. b ‘ '
andj' @k(x,hl,o(x), cees hn,o(x))dx exists.

a

Suppose further A4, is a number (k = 1, 2, «e., n) and

by 1 GO = Ay +]x Oy (Eshy o(8)s By o(8)s wevy By ((8))at
C

il

X
hk’e(x) A +f' ®k(t,h1’l(t), hz,l(t), ceoy hn,l(t))dt
C

=g
3
=
~
™
~—
]

X
Ay +f' O (ohy g (8D ceey by Lo (8D)aE
c

Then for each k € {hk i);Zl converges uniformly to a func-
?
tion fk defined and continuous on [a,b], such that if x is
in [a,b]; then
p:4
fk(x) = Ak f[ ®k(t,fl(t), fg(t), coes fn(t))dt.
c .

Proof: For each k, we need to show hk 1 is bounded.
9

X
hk,l(x) = Ak +f‘ @k(t,hl,o(t), cees hn,O(t))dt. This implies
C

Inye 1 GO1 = I+ O Chany (8, oeny by o(6)as]
C
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X
< 1AL+ U’ Oy (t50y 5()s weny By o(6))at]
c .

< lAkl + TIX - CI < IAll + Tla - bl-
This implies lhk,l(x)l < R, where X =1, 2, ..., n.

By mathematical induction we need to show for each w

w-1
w~-1 w~1
_ My “eq *Pelb ~ a]
lhk,w(x) hk,w—l(x)l_ﬁ- (w=1)!

Suppose w = 2. Then we have

lhk,E(X> - hk,l(x)l = lAk

X
+f ®k(t’ hl,l(t)’ h2,l(t)’ see hn,l(t>)dt
C

Y _fx O(bony (8, wany By ((4))a]
c

= d? b(tshy (65 weny by 4 (6))dt
c :

[ Ol (), ey 1y, o(6)at]
C
< UF 16, (6,0 1 (85 weey by 4 (8))dE
C
- Ok<t’hl,0(t)’ *o ey hn,o(t))'dtl
X n
< U; Mk(izilhi,l(t) = hy o(E))as
X
5,{( M _-n-P at| = Mk-n-Plx - ¢
C

where P > Ihi_l(x) = h; 4(x)|, which exists since each
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{n; l(x) - h; o(x)} is continuous on [a,b] and hence bounded
b b

on [a,b] for each i < n.
Suppose true for w = y-1. ©Show true for w = y.

By G = by GO = 14y

L (8))at

X
+f. ®k(t,hl’y-l(t)’ 00y hn’y_

x | |
- = 0oy o(8), ey my - p(e)an

T TN R N OO RIS WY

ny—

- 0y (byhy o o(8)s eeny by o(6))]at]

X n
< U‘ Mk i§llhi’y—l(t) - hi’y_2(x)ldtl
c
% §> M2 TP 5 - T2
< f =1 (y-2)! at|
c
y-1 y-2
- n oPoIt — cl
v (y-2)! at|
y-1 _ -
_ Mk .ny 1.P. LX - Cly l
(y-1).:

Therefore if w is a positive integer, then

W
Mk'nw'P°IX - c|V
wl!

W
Mk-nw-P-Ib ~- al¥
w!

by ) = hy oGO <

<

- w. - — w
Now, Z) o+ P !b 2l converges; therefore {hk i};il
w—l. ’ B
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(k =1, 2, «.., n) converges uniformly to some function, 1o
on [a,b]. To show fk is continuous we must show that each

hk,i an element of {hk,i};zl (k =1, 2, vo., n) is conti~-

00
nuous. Let K,y € {hk,i ;=1 By Theorem 1.11 h is

k,y

continuous,which implies {h .}ff (k =1, 2, ..., n) is a
k,i’i=1

sequehce of continuous functions. Since the uniform limit
of a sequence of continuous functions is continuous, fk(x)

is continuous.
p'e
Sincef' o(t, hl(t), ceos hn(t))dt exists for all k and
c
x € [a,b] and since {hi,k}£:1 converges uniformly to f; on

ple
[a,b] ’chenf 0, (6, £1(), <.y £ (£))dt exists for all
c
x
x € [a,b]. As n—> w f' o(t, hy(t), ..., b ($))at converges
c
X
t?[ @k(t, fl(t), cees fn(t))dt because if 0 < €, since
c

{h, .} 2. (x=1, 2, ..., n) converges uniformly to f, on
ik/i=1 k

[a,b], there is a positive integer T such that if w > T,

n
)Y |hp W) - i‘p(x)l < g/M+1 for all x in [a,b] where M is
p=1 =

a number such that if each of s eeey X and T19 eeey Ty is

n
a number sequence and q is in [a,b] then

N)k(q’ Xls ey Xl’l) - (Dk(Qa yl’ «sey yn)l

n
S_M ( Z IX- - y’l)'
k529 1 i
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Let € > 0. There is a positive integer T such that if w > T
and t € [a,b], then

l@k(ta hl,W(t>’ esey hn’w(t)) - (Dk(t’fl(t)’ sy fn(t))l

0w
S DIy L) - £.601 <y e/ < .

Therefore {@k(x hl k(x))}l 1 (k =1, 2, ..., n) converges

uniformly to @, (x, £, (x)) on [a,bJ.

X .
Butf q)k(t, hl,y(t>’ ¢ s o 9 hn,y(t)>dt = hk,y+l
C

e
hand Ak—iJ q)k(t,fl(t), LIC I S fn(t)>dt
which implies hk,w(x)—a»fk.
, X
Therefore fk(x) = A +[ ®k(t, fl(t), oo fn(t))dt.

Suppose there exists a sequence of continuous functions

£3, £3, ..., £} satisfying

fﬁ f 0, (t, £ (t), veey £())db

15 Go) - £ G| = J O (b, E1(8)5 wuvy £ (5))as

-fx 0, (6,25 (8), .., £¥(8))at]
C

X
[ 10 (8,21 (8)5 ey £3(8D) = O (6, £7(6), oon, £1(6)) 18]
C
X n * X
< lf M Z) f.(t) - fi(t)ldtl < |f M -n-S dt|
C . c
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=M -n-8fx - ¢] < M n-Slb - al

n
where S > Z)Ifi(t) - f?(t)l which exists,since each f, is
i=1

continuous and hence bounded.

w-1,
‘ w-1 w-1
-*» . . o —
Suppose [f) (x) - £, (x)| < 2 " (5_{§1 el for all x
in [a,b] and k < n.
Show true for w.
# X '

1260 = TGO = Iy [ B8 (8)5 weny £(0))ab = Ay

c

X
-f O (5,23 (6), oy £A(E))at]
C

X .
S 10082 (8) ey £,(50088 = O(5,£3(8), ooy £7(8)) as]
&

X n
*
c .
-1
onw_'losol

t - ol"L
(w-1)!

IA

c

at]

[z X

C

_ X 'IlW'S'lt - ch“l
= U‘ (w=1)! dat|
c
W
Mk-nw-S-[x - c|V

o —

w! .

Therefore, if w is a positive integer, then

* MK‘nW'S'Ix - c|¥
Ifk(x) = fk(x)l ._<.. '

W
< Mkonw-S-Ib - al¥
T
— w. L]




4%

W
%3 Mk'nW-S'Ib - al|V¥
w!

Since converges, the limit of the se-

w=1
W
{Mk°nw-S'|b - al¥
w.

quence } is zero. This implies

{fk(x) - fz(x)} is zero. Therefore fk(x) - fﬁ(x) = QO3 hence

fk(x) = fi(x) for all x € [a,b]. Hence there is one and only

one sequence of functions defined and continuous on [a,b]

such that {hk i};zl (k =1, 2, ..., n) converges uniformly to
b .

fk and

i‘k(x) = A +fx Q)k(t,fl(t), f2(t), cees fn(t))dt.
C



